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Abstract

Strain localization and quasi-brittle failure in frictional-cohesive materials is still an
open and challenging problem in computational mechanics. Owing to its complexity
and the significant implications on numerous engineering problems, a considerable
effort has been devoted to the development of theories and techniques capable of
dealing with this topic.

The introduction of numerical methods in the 70’s provided a way to compute
solutions, even if approximated. The Finite Element Method is able to describe
efficiently a large number of geometries, engineering problems and various boundary
conditions and the displacement-based irreducible formulation represents the preferred
choice in the mechanical analysis of a solid body. Moreover, assuming the displacement
jump created by a crack to be smeared across an element band, the calculation of

the onset and evolution of a fracture can be readily performed.

However, standard finite elements are well-known to behave poorly in the case
of strain localization of softening materials. Indeed, the irreducible formulation
is strongly mesh-biased and the resulting fracture direction is frequently incorrect.
Plasticity constitutive models are largely affected by this issue, being directional by
nature. In addition, when dealing with isochoric conditions, locking of the stresses
provokes spurious pressure oscillations, that inevitably spoil the numerical solution.
Both problems can be shown not to be related to the mathematical statement of the

continuous problem but, instead, to its discrete (FEM) counterpart.

In this work, a novel mixed € — u strain-displacement finite element method for
strain localization and failure in plasticity is presented. Thanks to the independent
interpolation of the strain and displacement fields, the proposed formulation is
characterized by enhanced kinematic properties which result in a crucial improvement
in the accuracy of stresses and deformations. Moreover, it is proved that the numerical
quandaries typical of the irreducible formulation are alleviated with the introduction
of this FE technology. The € — u FEM is applied to 2D and 3D problems aimed at
benchmarking its numerical capabilities as well as proving high-fidelity predictions
and simulations of experimental results.

Firstly, failure under Mode I (opening) loading is considered, using a Rankine

failure criterion to describe the mechanical behavior of materials, such as concrete,



which exhibit cracking under tensile load. Secondly, failure under Mode II (shearing)
loading is studied, employing the J2 von Mises and the Drucker-Prager failure criteria
for incompressible and compressible plasticity cases. Thirdly, failure under Mode III
(tearing) and Mixed Mode loading is discussed. To study the complex stress state
arising in torsional and skew-symmetrical bending cases and its non-linear evolution,
Rankine and Drucker-Prager failure criteria are developed in both plasticity and
isotropic continuum damage models. Finally, the formulation is applied to crack
propagation in weak snowpack layers, which is the main cause for the initiation of
snow avalanches.

From the results, three main conclusions emerge:

(i) the mixed € —u finite element method proposed is capable of overcoming many
of the challenges posed by strain localization in solids, providing reliable and

accurate solutions;

(ii) the smeared crack approach is able to describe effectively the creation and
propagation of fracture surfaces in Mode I, Mode II, Mode III and Mixed Mode
loading;

(iii) the improvement of the kinematic description, with continuity of displacements

and strains, is considered a key factor to empower the numerical solution.

The € — u finite elements share numerous aspects with the standard displacement-
based ones, in terms of implementation of constitutive laws, initial set of data and
geometrical discretization. However, the proposed mixed formulation is superior in
predicting peak loads, strain localization patterns and failure mechanisms. Moreover,

it demonstrates its generality and its possibilities in the engineering practice.



Resumen

La resolucién de problemas de localizacién de deformaciones y fallos cuasi-fragiles
en materiales friccional-cohesivos sigue siendo un tema abierto a discusién. Debido
a su complejidad y a las implicaciones en numerosos problemas de ingenieria, se
ha dedicado un considerable esfuerzo al desarrollo de teorias y técnicas capaces de

manejar el comportamiento ineldstico de los sélidos.

Respecto a esto, la introduccién de los métodos numéricos en los afios 70 pro-
porcioné una técnica rapida de calculo que permitia obtener una solucién, aunque
aproximada, del problema a tratar. El Método de Elementos Finitos (FEM) es
capaz de describir de manera eficiente un gran nimero de geometrias, problemas
de ingenieria y diversas condiciones de contorno, por lo que hace de la formulacion
irreducible la opcién mayoritariamente escogida en el andlisis mecanico de cuerpos
sélidos. Asimismo, considerando la regularizacién del salto por el desplazamiento
producido por una grieta a través de una banda de elementos, es posible calcular

facilmente la aparicién y evolucién de una fractura.

Sin embargo, los elementos finitos estandar se comportan de manera inadecuada
en cédlculos de localizacion de deformaciones y en materiales con ablandamiento. De
hecho, la formulacién irreducible estd altamente influenciada por la malla empleada,
y frecuentemente la direccion de fractura resultante es incorrecta. Consecuentemente,
este fendmeno afecta de manera significativa los modelos constitutivos de plasticidad,
siendo ortotrépicos por naturaleza propia. De igual manera, cuando se trata con
modelos isocéricos, el bloqueo de las deformaciones provoca oscilaciones de presion
espurias, que hacen inutilizable la solucién numérica obtenida. Es posible demostrar
que ambos problemas no estan relacionados con la definicién matemaética del problema,

continuo, sino con su formulacién discreta.

En este trabajo se presenta una nueva formulacién mixta € —u de elementos finitos
en desplazamientos y deformaciones para la localizacion de deformaciones y fallo
en plasticidad. Gracias a la solucién independiente de los campos de deformaciones
y desplazamientos, la formulacién propuesta se caracteriza por la mejora de las
capacidades cinematicas, que da como resultado una mejora crucial en la precision
del célculo de tensiones y deformaciones. Ademads, se demuestra que los problemas

numéricos comunes en la formulacién irreducible se ven mitigados con el uso de la
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técnica de los elementos finitos mixtos.

En primer lugar, se considera el fallo con carga en Modo I (apertura) a través
de un criterio de fallo de Rankine para describir el comportamiento mecanico de
materiales, como el hormigén, que presentan grietas bajo carga de traccion.

En segundo lugar, se estudia el fallo con carga en Modo II (cizallamiento),
empleando los criterios de fallo de J2 von Mises y de Drucker-Prager para la plasticidad
incompresible y compresible.

En tercer lugar, se discute el fallo en Modo IIT (rasgado) y en Modo Mixto. Se
implementan los criterios de fallo Rankine y Drucker-Prager tanto en plasticidad
como en modelos isétropo de dafio continuo para realizar el estudio del estado de
tensién (y su evolucién no lineal) que aparece en casos de flexiéon desviada y de
torsién.

A partir de los resultados, surgen tres conclusiones principales:

(i) el método de elementos finitos mixto € — u es capaz de superar muchos de los
desafios planteados por la localizacién de la deformacién en sélidos, proporcio-

nando soluciones confiables y precisas;

(ii) el modelo de fisura distribuida es capaz de describir efectivamente la creacién
y propagacion de superficies de fractura por carga en Modo I, Modo II, Modo
IIT y Modo Mixto;

(iii) la mejora de la descripcién cinemédtica, con continuidad de desplazamientos y

deformaciones, se considera un factor clave para mejorar la solucién numérica.

Los elementos finitos de € — u comparten muchos detalles en términos de imple-
mentacion de leyes constitutivas, conjunto inicial de datos y discretizacién geométrica
con aquéllos del método estandar basado en desplazamientos. Sin embargo, la formula-
cién mixta propuesta es superior en la prediccion de las cargas méximas, patrones de
localizacion de deformacién y mecanismos de fallo. Ademads, demuestra su generalidad

y sus posibilidades para un uso favorable en la préactica de la ingenieria.
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Chapter 1

Introduction

1.1 Motivation

The last three decades have experienced the widespread use of computer methods
for the prediction of complex physical phenomena. A broad range of research fields,
such as industrial manufacturing, natural hazards, biomedical applications have been
heavily benefiting from these technological advances.

Strength of materials is the discipline that deals with the mechanics of solids from
initial stress-free state to failure. The problem of calculating the ultimate resistance
of a structural component with respect to various load combinations attracted the
interest of a large number of researchers, being crucial in many everyday applications.
At the same time, the prediction of the inelastic processes carries a high degree
of complexity and, as a consequence, it resulted in a broad adoption of numerical
methods.

The Finite Element Method (FEM) represents a standard tool in computational
mechanics, being able to deal with an extensive set of problems of different nature
and geometry. In addition, thanks to the numerous proven theorems and properties,
a solid mathematical foundation is available. Nevertheless, dealing with phenomena
such as material and geometrical nonlinearities or incompressibility constraints has
always been a daunting task for the standard displacement based FEM. In particular,
numerically predicting the onset and propagation of fracture in Mode I (opening),
Mode II (sliding), Mode III (tearing) or a combination of the previous modes is still
an open and challenging subject in computational solid mechanics.

Over the years, a considerable number of methods have been developed in order
to tackle localization and failure, but, unfortunately, there has not been a consistent
yet general numerical tool available. Indeed, in the study of material nonlinearity,
several theoretical and practical roadblocks are found. For example, a bifurcation
condition is satisfied when moving from the elastic to the inelastic range which implies

that, after said point, the strong form of the mechanical problem loses uniqueness of



1. Introduction

solution. Numerous methods tried to address the creation and propagation of fracture
surfaces by explicitly taking into account the jump in displacements or strains across
the computational domain, but this has either caused further complexity to the
numerical treatment of the problem or required the use of additional techniques such
as tracking. The introduction of advanced computational methods such as Enhanced
Assumed Strain, B-bar elements or X-FEM shows the large research interest in the
topic as well as the need of finding an effective and general solution to the problem.

Lately, mixed finite element formulations have proved to be a reliable tool, both
in fluid and structural mechanics. In particular, the mixed uw — p displacement-
pressure formulation [1-4] has been capable of tackling mechanical problems in the
framework of J2 softening plasticity. More recently, the foundations for a more general
approach were introduced by using mixed finite elements in term of displacement
and stress/strain variables [5-7]. Hence, starting from previous seminal works on
the topic, this thesis aims to explore the unbeaten track which links the mixed finite
element framework with the one of strain localization, propagation of cracks and
failure in solids. The focus is put especially on plasticity constitutive law since the
resulting orthotropic non-linear behavior is very challenging from both theoretical and
numerical standpoint and it requires the development a very general computational
approach.

Notwithstanding the theoretical contribution, this work addresses practical appli-
cations as well. Natural hazards represent one of the prevalent risks to human life.
Earthquakes, landslides, debris flows, and avalanches are just some of the devastating
events which threaten the population everyday and frequently result in substantial
economical and social costs. The current increase in climatic changes and land use
creates a widespread natural feedback phenomena mainly observable through the
higher rate of disastrous events.

Even considering only the landslides occurrence, it accounts for the 25 percent of
deaths due to natural hazards worldwide [8]. From an economical stand point, the
European Community estimated the annual social costs of landslides damages up to
1.2 billion of euros, without taking into account collateral damages like contamination
or erosion [9]. Similarly, the Alpine range is susceptible to snow avalanches, a seasonal
threat frequently caused by poor mechanical conditions of the snowpack and mindless
behavior of skiers, which causes about 100 fatalities per year [10] and five hundred
thousand euros in constructions and infrastructures damages [11].

With regard to the occurrence of these events, the determination of the volume
of detached soil or snow is vital for the forecast and the introduction of proper coun-
termeasures. The mass of mobilized material is directly related with its momentum
and, consequently, with the level of hazard. Likewise, the design of a protective
structures capable of deviating or restraining the flowing mass not only requires a

clear determination of their bearing capacity but also an accurate prediction of the
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post-peak behavior in case of collapse. Then, it is clear that a profound understand-
ing of the initiation of landslide and snow avalanches is required for an adequate
characterization of the subsequent outcomes. Recreating a realistic setting with an
experimental setup has significant limitations, especially with large size study cases
and complex boundary conditions. Nevertheless, numerical analysis overcomes such

restriction and any problem of interest can be studied with a high degree of accuracy.

1.2 Objective

The objective of this work is the design, development, assessment and application of a
finite element technology in the framework of a mixed formulation for the numerical

solution of localization of strain and failure in plasticity.

o=F/A

‘}‘\\\\\\\\\

IDEALIZATION DISCRETIZATION SOLUTION

Physical |____|Matmematical F EM | Diserete _| Discrete
system & model model ~| solution

A A

Solution error
Discretization + solution error

Modeling + discretization + solution error

VERIFICATION & VALIDATION

Figure 1.1: The conceptual sequence of numerical modeling: from the physical system
to the discrete solution, the steps of idealization, discretization and solution, from
Felippa [12].

When a numerical analysis is devised, there are four common steps in the
conceptual road-map, as shown in Figure 1.1. The starting point is usually the
delineation of the physical system and its boundaries. The materials to be studied,
the scale of the analysis and mechanical constraint are decided at this moment. Then,
the mathematical model is formulated. This first idealization allows to relate the
physical behavior to a set of quantities and link them through, for example, governing
partial differential equations, boundary and initial conditions.

Next, a discretization of the domain of interest is usually needed. This step is
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strictly linked with the numerical method that will be used as, for finite elements
and finite volumes, a mesh needs to be constructed whereas, for discrete elements or
particle methods, this could not be required. Among the possible limitations and
errors introduced in the discretization procedure, Strang and Fix [13] identified the

following:

e interpolation of the original physical data;

e choice of a finite number of polynomial trial functions;

e simplification of the geometry of the domain;

e modification of the boundary conditions;

e numerical integration of the underlying functional in the variational principle;

e roundoff error in the solution of the discrete system.

The discretization procedure frequently introduces an inherent approximation
error for the formulation used. When choosing a discrete space of interpolation,
one is effectively excluding possible forms of the solution. In practice, there is the
possibility that the discrete setting is not capable of capturing the basic characteristic
phenomena of the analyzed problem.

This issue arises for instance in the local error committed evaluating quantities
such as strains or stresses in a non-linear mechanical problem. If local convergence is
not guaranteed, it may become impossible to reduce such error due to the limitations
of the discretization and this may result in spurious numerical solution.

It is crucial to emphasize that, even if the phenomena of interest is extensively
described by its continuous mathematical framework, the discrete model is capable
of representing only an approximated numerical projection of the problem over the
computational domain. Indeed, in this work, the focus is mainly pointed to the
capabilities of the mixed finite element method when dealing with localization and
failure in solids being capable of delivering high accuracy discrete solutions with a
relative simple formulation.

Finally, a solver is introduced with the objective of inverting the system of
algebraic equations. In this stage, it is possible to choose between direct or iterative
solvers and, possibly, introduce an optimized solution procedure to take advantage
of the characteristics of the global stiffness matrix. In finite elements, apart from
the element assembly, the algebraic solution is the most computationally intensive
process. While iterative solvers provide an approximated solution depending on the
required tolerance, they may be more suitable than direct solvers, for a particular
computer architecture and be, therefore, more efficient. However, the trade-off in

computational resources is frequently determining which solver is the most suitable.
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Once the numerical analysis has been performed, a validation of the results is
crucial in the engineering practice. By comparing the computed solutions with
analytical or experimental ones, it is possible to identify issues in the mathematical
model, lack of accuracy in the discretization method or difficulties in the algebraic
calculations. This step is indispensable to prove the usefulness and reliability of FE
formulations.

The analysis of failure, whether it is represented by localization of strains, crack
propagation or fracture, is studied in numerous ways. Within the framework of
standard irreducible finite elements, the physical separation induced by the failure can
be approximated with the smeared crack approach. By a smoothing procedure across
a finite band width, the crack is treated as a zone where the field of displacements
is continuous and the strains are discontinuous, but bounded. Unfortunately, this
approximation is well-known to cause serious numerical drawbacks in the standard
finite element technology. Solving problems that involve strain softening, spurious
mesh dependence appears and the localization band direction is mesh biased. More-
over, when isochoric behavior is enforced (as in the case of Von Mises plasticity),
locking of the stresses provokes unbounded pressure oscillations, with the consequent
pollution of numerical calculations. Both problems are related to the mathematical
aspects of the discrete (FEM) problem, rather than its continuous counterpart.

In fact, when the elements of the computational mesh are oriented in the direction
of the localization band, the irreducible formulation provides a flawless solution.
Moreover, as the characteristic size of discretization reduces, the solution of the
continuous weak problem is recovered and the localization is calculated within
the accuracy limitations of the formulation. However, except for a few cases, the
localization of the crack is unknown a priori and the mesh cannot be pre-designed.

To alleviate the issues posed by the displacement based elements, mixed finite
element formulations can be introduced. In the field of fluid mechanics, the use of
mixed finite elements represents a well-known option for an accurate solution of
incompressibility and advective-convective-diffusive problems [14-17]. Thanks to
the similarity in the structure of the partial differential equations, the Stokes flow
and the incompressible elasticity can be solved with the same mixed formulation.
Solving displacements and pressure [1-4] as independent unknowns not only provides
a propitious strategy to the problem of incompressibility, but also it possesses the
needed robustness in the case of strain localization for J2 softening plasticity.

A natural extension of the u — p formulation is to consider the stress or strain
tensors as unknown. Consequently, starting from the contributions of Cervera et al.
[5, 6, 7], the present work intends to extend, enhance and generalize these premises on
mixed finite element methods in nonlinear solid mechanics. Moreover, the objective
is to apply the proposed formulation to examples involving Mode I, Mode II, Mode

IIT and Mixed Mode fracture, in order to ensure a high level of performance under all
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loading conditions. To summarize, the mixed finite element formulation developed

in this work has the following requirements:

e it tackles efficiently the problem of strain localization;

it results in a general approach to be used with any constitutive law;

e it possesses the required robustness, consistency and (mesh) objectivity;

it increases the accuracy and the fidelity of standard FEM results;

it avoids the need of additional techniques as, for example, tracking.

The performance of the proposed formulation is assessed in a set of 2D and 3D
numerical benchmarks and practical case studies using low order finite elements
(P1P1 triangles or tetrahedra and Q1Q1 quadrilaterals, linear hexahedra and prisms

elements with triangular base).

1.3 Outline of the thesis

This thesis is divided as follows. Chapter 2 is dedicated to the state of the art
regarding the numerical analysis of localization and failure phenomena; it lays the
foundation on which this work is based on. Chapter 3 presents the developed
formulation and its mathematical basis. The stabilization procedure is included as
well. Chapter 4 provides the implementation details of the proposed methodology in
its algebraic version. Additionally, possible savings in resources and computational
time are discussed.

Chapter 5 presents the first application, with the study of failure under Mode I
loading. The 2D and 3D pullout tests of steel anchorages embedded in plain concrete
structures are studied with a Rankine-based failure criterion in plasticity. The results
of the numerical analysis are compared with published experimental tests. Chapter 6
discusses the description of failure under Mode II loading with isochoric (von Mises)
and pressure dependent (Drucker-Prager) criteria. The proposed mixed formulation
is used to describe problems of geotechnical nature and the method is benchmarked
against the mixed u — p formulation. Additionally, the energy dissipation from the
nonlinear strain-softening constitutive law is addressed. In Chapter 7, failure under
Mode IIT and Mixed Mode loading are analyzed with the study of skew notched beams
under three point bending and torsion. The results are compared with experimental
tests and a comparison between Rankine-based and pressure dependent criteria is
drawn.

A further application of the method is presented in Chapter 8, with the inte-
gration of this work in the Bundesforschungs - und Ausbildungszentrum fir Wald,
Naturgefahren und Landschaft (BFW) Federal Institute in Innsbruck (Austria). Here
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the focus has been placed on the propagation of cracks in weak layers in the snowpack,
for the evaluation of the mechanical response of the snow, the description of the
outcomes of in-situ testing and prediction of avalanche release.

Finally, Chapter 9 lays out the conclusions and provides a short discussion of the

contributions of this thesis.
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Chapter 2

State of the art

2.1 Introduction

The understanding of the mechanical strength of solids has an intrinsic sense of
necessity in the human history. Predicting the behavior of materials and structures
-not only in civil engineering- is fundamental to provide a safe environment for the
population.

Many are the examples of structural failures and collapses that, even causing
priceless losses, improved remarkably the knowledge in the field. The leaning tower
of Pisa, completed in 1372, is one of the first examples of a soil-structure interaction
related problem. The 5.5° tilt, which appeared during the construction, is the result
of the uneven rigidity of the soil under the foundations of the tower. In the 1990’s,
this monument experienced a partial structural rehabilitation and the engineering
challenge spurred the advancements in the topics of ground stabilization techniques.
Even if the tower never collapsed, it remains a beautiful engineering failure.

In 1940, in the state of Washington (US), the Tacoma bridge was open to the
traffic. Later that year, the bridge collapsed due to large oscillations caused by a
64 km/h wind. The aerodynamic properties of the narrow bridge played a key role in
the amplification of the torsional movements caused by the vortices detaching from
the deck structure. In the engineering practice, this collapse is a memento of the
possible unexpected effects that every structure may sustain in the whole service life.

In 1963, during the initial filling of the Vajont Dam, a 260 million cubic meters
landslide from Monte Toc entered in the basin creating a tsunami wave. While
the structure of the dam was able to withstand the high dynamic pressures, 1917
deaths were recorded as several downstream villages and towns were wiped out by
the force of 50 million cubic meters of water. The disaster proved the need of a better
understanding of failure precursors in large structures, either natural or man-made,
with particular regard to those characterized by a high risk factor.

Nowadays, mechanics of solids comprises numerous intertwined research fields.
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Structural design is mainly based on the concepts developed in solid mechanics and,
clearly, it can not be performed without a profound understanding of the properties
of the materials. Similarly, numerous innovative fields of study (e.g. biomedical,
manufacturing, environmental, nuclear and energy production engineering) benefit
from the knowledge of linear and non-linear mechanical response for any given
application. Numerical analysis and computer simulations play a crucial role in the
research setting, being a multipurpose prototyping platform and bolstering a rapid
scientific development.

Among the wide range of topics, material nonlinearity and, in particular, the
mechanics of failure is one of the most tackled. The ultimate behavior of solids is a
complex topic to be addressed, mainly due to the ephemeral and frequently sudden
nature of such process. Failure is a rather general phenomenon which appears in
numerous forms. By definition, when a structure is designed and built, the engineers
have the objective of achieving a certain performance level with respect to a precise
task. From a macroscopic point of view, the loss of carrying capability, structural
integrity, serviceability or even cosmetic requirements can be considered failure.

In this work, failure is referred to as the ultimate state of a structure and of
the material therein, when the residual strength is null and any further load cannot
be supported. It is a common experience that a solid body subjected to increasing
external load or straining shows different stages of response. Initially, for low level
of stresses, the behavior of the material is elastic. In such case, the deformation
caused by the external load can be recovered if this is removed [18-20]. For higher
values of the external forces, it is possible to observe a modification of the mechanical
response in some locations of the body, upon reaching the peak load. In most
situations, a concentration of the stresses is found in the vicinity of preexistent cracks
or material flaws, where the beginning of the inelastic behavior takes place and the
proportionality between external load and internal response is lost. Locally, the
subsequent nonlinear behavior can take place under various forms. The creation of
residual strains due to microscopic dislocations [21-25], reduction of stiffness [26-31],
nucleation of voids or opening of cracks [32-36] are few of the observed phenomena
during inelastic processes.

Moreover, local failure is usually accompanied by the creation and growth of a
fault zone. A typical phenomenon is the formation of localization bands in small
regions of the solid where the strain increases while the neighborhood material unloads.
There, energy is dissipated in the advancement and concentration of the inelastic
zone. The amount of available energy required to mechanically separate a unit
surface is generally defined as fracture energy and accepted as a material parameter.
Localization and the subsequent fracture can be observed from a macroscopic point
of view in various ways (Figure 2.1).

If the loading process produces the separation of the two newly created surfaces

10



2. State of the art

(a) opening Mode I

sliding Mode II

(b)

(c) tearing Mode III

Figure 2.1: Representation of (a) Mode I, (b) Mode II and (c) Mode III loading from
Fischer-Cripps [37]. On the right, it is indicated the given displacements of material
points located on a plane which is normal to the crack in the vicinity of the tip.

in an orthogonal direction, this fracture type is called Mode I or opening mode. This
mode is typical of materials like concrete, which are relatively weak with respect to
tensile stresses and separate under sustained uniaxial traction. Historically, pure
compressive failure is not considered to pertain to mode I. However, in the literature,
it is possible to find references to collapse due to compression as in Carroll and Holt
[38], Klein et al. [39] and Wong et al. [40]. Some very porous materials, such as snow
[41], exhibit failure of the internal structure with a sudden reduction of volume due
to closing (rather than opening) of the fracture surfaces.

Mode II or sliding mode considers the case in which two surfaces slide along the
localization band. A typical example is steel, which generally shows pure isochoric
plastic response and the creation of Luder’s bands as indication of the incipient
fracture. Frequently, soil and granular material present a similar non-linear behavior
but with dependence between the volumetric pressure and the shear force through
the friction angle.

Finally, Mode III or tearing mode represents the separation of two failure surfaces

by relative rotation and it is found in torsion-like loading. This mode is less frequently

11
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encountered in practice but, nevertheless, it is important in the analysis of skew

symmetric structures.

In the field of Linear Elastic Fracture Mechanics (LEFM), Modes I, IT and III are
defined as fracture modes, as they refer to the motion of the newly created fracture
surfaces in the vicinity of the crack tip. However, it is frequent in the literature to

encounter Mode I, IT and III loading as an extension of the previous concept.

The characterization of the material has to be distinguished from the applied loads.
The former provides the mechanical response of the solid body in its equilibrium
configuration. The latter depends on the set of external forces and boundary
conditions that are externally imposed. The material can be characterized using
LEFM, which establishes the conditions for the progression of the existing crack
under a local fracture mode, or via a constitutive law, that links stresses and strains

and describes the evolution of the admissible elastic space for the inelastic behavior.

For example, uniaxial tensile tests on steel specimens is defined as Mode I loading.
Nonetheless, steel is characterized by failure in shear and, consequently, Mode II
fracture. In fact, the appearance of diagonal localization bands during the test
is typical of the inelastic response of the material and the precursor of fracture.
Likewise, an applied torsional moment on a concrete beam creates a state of Mode
IIT loading, but, given the low strength of concrete to tensile stress, a Mode I fracture

is observed.

Moreover, some loading conditions result in a mized distribution of stresses.
Classical experiments of non-uniform bending on notched beams produce mixed
tensile and shear loading at the tip of the notch. As the crack advances, it is visible

how the fracture surface is the result of the mechanical characteristics of the material

Figure 2.2: Mixed mode fracture: (a) Mode I+II and (b) Mode I+III (from Pook
[42])

12
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(Figure 2.2). Likewise, in a triaxial test of a pressure sensitive material, even when
the load is clearly orientated vertically, the specimen fails for an exact combination
of volumetric and deviatoric components, resulting in a mized mode fracture.

It is stressed that failure does not require the presence of a physical separation
of the solid but rather the initiation of a unrestrained kinematic mechanism. The
creation of fracture surfaces is definitely one of the visible effects of the failure process,
but it is regarded as equivalent to the creation of a band of localized strains with
null residual strength. Once again, this work investigates the numerical description
of failure in a general sense, implying the loss of carrying capabilities which causes

the subsequent collapse.

2.2 An historical perspective

In 1773, after returning from the military base of French Martinique where he was
the chief engineer in charge of fortifications, Charles Augustine de Coulomb presented
his original work on engineering structures to the Académie des Sciences in Paris
[43]. Among the copious number of discoveries regarding retaining walls, structural
elements and variational calculus, he introduced the very first yielding criterion
for soil, characterized by a linear proportionality between tangential shear forces
and normal pressure. Almost one century later, Henri Tresca [44] started the study
on plastification of punctured and extruded metal tubes. In his experiments, he
discovered that the overcoming of a threshold shear stress provoked the creation of
residual strains. Simultaneously, William John Macquorn Rankine [45] published
his thorough work on equilibrium and strength of solids, including the analysis of
stability of ground works.

Adopting Saint-Venant’s theory on ideally plastic materials, Lévy proposed in 1871
[46] a 3D relationship between stresses and rate of plastic strain. Apart from various
applications of the proposed methods, this work was not further developed until
the 1910’s. In 1913, using only mathematical arguments, von Mises independently
confirmed Lévy’s formula for isochoric plastic strain [47], promoting the reappraisal
of the topic of plasticity. In the following years, Ludwig Prandtl [48], Heinrich Hencky
[49] and A. Reuss [50] defined the theoretical bases for the rate of inelastic strains
based on general 3D plastic flow. Finally, much scattered information on plasticity
of solids was gathered together in a self contained format in the essential works of
Nadai [51] and Hill [52].

With similar mathematical basis as plasticity [53], in 1958 Kachanov identified the
reduction of stiffness in concrete structures [26] as a failure mechanism. Continuum
damage mechanics poses its foundation on the assumption that the unknown response
of the real damage material is established by considering the behavior of an undamaged
fictitious one. Mazars and Lemaitre [54], Lemaitre [27] and Chaboche [29, 30] assume

13



2. State of the art

that the strains in the damaged and undamaged solids are equivalent whereas the
evolution of the state of the material is dependent on the effective stress. Vice
versa, Simo and Ju [55, 56] base their continuum damage constitutive model on
the equivalence of stresses between the real and fictitious solids and the concept of
effective strains. Finally, Cordebois and Sidoroff [57] introduce the energy equivalence
between the damaged and undamaged states using both effective stress and effective
strain. A comparison on the various possibilities to measure damage is presented by
Lemaitre and Dufailly [28] and, more recently, by Voyiadjis and Kattan [58]. Finally,
the continuum damage model has been expanded and generalized by the work of
Chow and Wang [59, 60], as well as combined with plasticity, as, for instance, in
Lubliner et al. [61].

In between to the early development of plasticity and the more recent one of
damage, Linear Elastic Fracture Mechanics (LEFM) was proposed. The first steps
in the field of LEFM coincide with the beginning of the XX century, when Kirsch
[62] noticed the stress concentration in the vicinity of a circular hole in an infinite
isotropic elastic plate under uniaxial tension. Fifteen years later, Inglis [63] provided
a similar solution for the elliptic hole case and he highlighted that the stress values
close to the sharper curvatures were several times higher than the mean stress. Hence,
in 1921, Griffith [64] presented a novel understanding of the process of fracture when
observing the rupture of glass. Firstly, he observed that the crack tip was developing
from scratches and other material flaws. Secondly, he stated that, for the crack to
progress, the available energy to be dissipated in the creation of the crack surface has
to be less than the amount of stored elastic strain energy. The utmost significance
of this step lays in the fact that, for the first time, it was possible to relate the
development of the fracture of a material to an energy related quantity.

Nevertheless, this finding was only partially recognized. In fact, scientists in the
field found difficulties in embracing a theory which provided infinite stresses at the
tip of a crack. Almost 40 years later, Irwin [65], Banreblatt [66] and Dugdale [67]
proposed the concept of plastic zone in the vicinity of the crack front, giving the
theory more realistic prediction capabilities and the possibility of meeting again with

the classical continuum mechanics.

At the turn of the 1960’s, both plasticity, continuum damage and linear elastic
fracture mechanics were based on firm theoretical foundations. On the one hand, the
former two showed versatility in dealing with different failure criteria. On the other
hand, the latter provided a way to evaluate the strength of quasi brittle structures.
Nevertheless, their limitations were apparent. Linear elastic fracture mechanics
provides the stress required for the crack opening but does not provide insight in the
shape and propagation of the failure surface. In the case of plasticity, the reduction
of the stresses and the direction of the flow are available, but the change in the

structural configuration due to the creation of localization increases significantly the
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solution complexity. Analytical solutions were not available for most of practical

problems. A significant change in the way calculations were performed was needed.

2.3 Size effect

Linear Elastic Fracture Mechanics deals with perfectly brittle materials characterized
by zero or negligible fracture energy. This fact implies that the elastic solution
determines unambiguously the ultimate load and the fracture mode. Moreover, in
this theory, the crack advances when the stored elastic energy at the tip is greater
than the energy required to create new fracture surfaces [64].

However, many materials are not brittle and show a plasticization zone in the
vicinity of the crack. For example, in the cohesive zone model [67, 68], the fracture
process is gradual and it takes place in a non negligible extent of solid around the
crack tip. This model describes the evolution of the forces that pull the material
apart and, consequently, the redistribution of the stresses in the inelastic range. In
such cases, the energy criterion previously presented is not efficient and a stress
criterion is also pertinent.

Experimental studies show that specimens at different scales behave significantly
differently. At the small scale limit, the structural response is characterized by
ductile behavior whereas, a the large scale limit, the material presents a very brittle
behavior. Bazant and Planas [69] and, later, Carpinteri [70] showed theoretically
and experimentally that the nominal stress oy at failure for notched specimens of

dimension L follows the law:

oy = TR (2.1)

(1+45)

where og is the stress pertaining to a reference scale Lr and c is a constant. This
formula describes the non-linear change in behavior between the scales for a given
geometry of the specimen (Figure 2.3).

In the engineering practice, the structural mechanical response is rarely purely
brittle or perfectly ductile. In reality, most of the study cases fall in the quasi-brittle
failure case, where the size effect controls not only the peak load but also the energy
dissipated in post-peak branch. Tests on smaller specimens, such as in laboratory
experiments, are usually characterized by smaller peak loads but also a smooth
reduction of stresses, closer to a ductile-like material. Bigger structures, such as long
bridges and skyscrapers, have a high peak load followed by very steep reduction
of carrying capability. When the scale of the solid is large enough, it is possible
to observe a snap-back effect, where the unloading path has an inclination close to

the loading one, as the dissipated energy during the inelastic process is closer to

15



2. State of the art

) -1 Perfect
E plasticity \
= 10000 —
g -
E .
Q
‘5 —
= _
b 7 . .
Ea ] f(‘}ltiam—brmlc (é‘&\
ailure 47
1000 N 1 )
1 10 100 10000

log L (structural size)

Figure 2.3: Nominal stress at failure with respect to the characteristic structural size,
from Cervera and Chiumenti [71]

zero. Cervera and Chiumenti [71] show that it is possible to take into account the
structural size effect in the quasi-brittle range with local constitutive models and

accurate finite element formulations.

2.4 The introduction of FEM in computational

failure mechanics

The advent of digital computers introduced the possibility of dealing with complex
problems by discretizing space and time. Numerical methods represented a significant
leap in the scientific research and engineering practice, thanks to the capability of
providing approximate but convergent solutions.

In the community of structural mechanics, the method of finite elements emerged
as the numerical tool of choice for the stress analysis in aerospace structures due to
its tight connection with the matrix structural analysis. From the seminal works of
Argyris [72], Turner [73-75], Clough [76, 77] and, later, the fundamental contributions
of Melosh [78], Wilson [79] and Irons [80-82], the FEM rapidly got solid theoretical
bases and attracted a broad interest from many engineering fields, being able to
tackle with ease generic nonlinear structural problems [83]. Already in the 1970’s,
the method was well accepted and comprehensive books on the topic (such as Martin
and Carey [84] and Zienkiewicz and Taylor [85]) were published. A far more detailed
historical perspective is available in the article from Felippa [86].

The study of failure propagation in finite elements has always attracted a consid-
erable interest with numerous alternative methods proposed over the years, due to

the intrinsic difficulty of representing it numerically.

16



2. State of the art

In the field of continuum mechanics, fracture may be mathematically modeled by
a discontinuity in the displacement field. In this case, the fracture occurs at a line (in
2D) or a surface (in 3D) where the displacement field presents a jump, whereas the
strains are unbounded and described by a Dirac’s delta function. This representation
is equivalent to separating the body in two parts Q" and Q~ and creating boundaries
between them; Maxwell’s compatibility conditions apply across the failure line S
[87]. This approach is called continuum strong discontinuity and it is presented in
Figure 2.4(a).

Dealing with discontinuities and Dirac’s deltas is not straightforward and, from
a practical point of view, not always necessary. For this reason, it is possible to
regularize the strong discontinuity by assuming a finite band of width b, comprised
between the curves ST and S, in which the displacement field is continuous and
the strains are discontinuous but bounded. In particular, the displacement jump
w is smeared across the localization band so that the strains in the band are the
gradient of the smeared displacement field. This approach is called continuum
weak discontinuities or, frequently, continuum smeared approach, and it is presented
in Figure 2.4(b). It is noteworthy to stress that this procedure creates two weak
discontinuities, two jumps in the strain field at S* and S, rather than a single
displacement discontinuity at S.

Moving from the continuum to the discrete setting, as when the finite element
method is introduced, a computational grid composed of discrete subdomains is
considered. In this grid, the displacement field is evaluated at the nodes whereas the
derived variables, such as the strains, are computed at the sampling points.

The discrete strong discontinuity was initially proposed by Clough [88], Ngo
and Scordelis [89], Nilson [90] and it consists of separating the elements in the
computational mesh upon a certain failure criterion. The process assumes that
the strong discontinuity is approximated with the boundary of the elements and
the affected nodes are effectively doubled as shown in Figure 2.5a. Soon it was
realized that this method is mesh dependent by construction as the set of available
propagation directions is restricted to the ones of the element boundaries.

To overcome this limitation, remeshed strong discontinuity approaches were
introduced by Shephard et al. [91], Wawrzynek and Ingraffea [92] and then extended
by Bittencourt et al. [93], Tradegard et al. [94], Bouchard et al. [95]. A review on the
topic is presented in Bouchard et al. [96]. This technique is devised in such a way
that the mesh is refined in the vicinity of the propagating crack tip or, similarly, the
affected elements are divided into smaller ones. This method appears more promising
than the previous as shown in Figure 2.6a and Figure 2.6b. However, it requires
additional computational resources since the remeshing procedure has direct effect
on the topology of the mesh and on the structure of the global stiffness matrix. The

remeshing of the computational grid requires to know the direction of the progressing
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Figure 2.4: Graphical representation of modeling a localization in the continuum,

using (a) strong and (b) weak discontinuity (or smeared) approach. Image from
Cervera et al. [6].

crack but the standard displacement-based formulation cannot accurately predict it.
Moreover, being this an explicit scheme, it incorporates an extrapolation error which
is not recoverable.

After these experiences, a substantial number of researchers focused on the
possibility of inserting the discontinuity directly in the elements, in order to avoid the
limitations of the previous methods. The embedded strong discontinuity approaches
have the objective of enhancing performance of the affected elements in order to
provide accurate discontinuity orientation and avoiding the need of remeshing. Figure
2.6¢ depicts an example of enriched elements and an embedded strong discontinuity.

Ortiz et al. [98] introduced the displacement field caused by the strong disconti-
nuity in the description of the deformation at nodes. The resulting additional modes
were condensed at element level. Likewise, Belytschko et al. [99] developed a formu-
lation that considers the jump in the displacement field while preserving traction

continuity and compatibility within the element. This work resulted, some years
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Figure 2.5: Modeling of a discontinuity in a discrete setting: (a) discrete strong and
(b) discrete weak discontinuity. Image from Cervera [97]

later, in the Extended Finite Element Method (XFEM) [100-104], which assumes
an enhanced set of shape functions to interpolate the displacement in the elements
interested by the crack. The additional shape functions consist either of analytical
linear elastic fracture mechanics solutions or Heaviside functions. The method re-
quires additional degrees of freedom at each node, which cannot be condensed at
the element level but solved at each time step. Similar approaches for the study of
the propagation of localization by shape function enrichment are the Partition of
Unit finite element method (PUFEM) [105, 106] and the Generalized finite element
method (GFEM) [107, 108]. A review of the latter techniques with respect to the
XFEM has been done by Fries and Belytschko [109].

In parallel, Simo et al. [110] and Oliver and coworkers [111-113] assumed non-
conforming enrichments of the displacement field defined at the elemental level. This

contribution inspired later works from Armero and coworkers [114-116] and Borja
and coworkers [117-120].

Although the embedded strong discontinuity approach is appealing, it poses
some significant limitations and computational quandaries. With regards to the
constitutive model, a traction-separation law at the discontinuity location is required
but, from the experimental standpoint, it is not always available. In fact, most of
the models are based on the relationship between stresses and strains.

The embedding of a crack in the finite elements mesh, as mentioned before for the
remeshing, requires to know the direction of the progressing crack and, unfortunately,
this is not accurately predicted by the standard displacement-based formulation.
Any error introduced in the process is irreversible, as the solution depends on the

subsequent embedding.

Moreover, in the computational setting, the enriched elements require a particular
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treatment. For example, in the case of XFEM, a set of different integration rules
is required, to take into account the contribution of the split elements. The used
integration methodology is crucial in this technique, since the stiffness matrix relative
to the additional nodal degrees of freedom is frequently singular. In particular, the
region between enriched and non-enriched domains is composed by the so-called
blending elements, which often are source of numerical issues as reported by Chessa
et al. [121], Fries [122], Tarancén et al. [123]. Moreover, the discontinuity orientation
is an unknown of the problem and, often, an additional tracking technique is required
in order to take into account which elements have to be enriched. For further
references, see the works of Gasser and Holzapfel [124], Sancho et al. [125], Jager
et al. [126].

a b / J c
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Figure 2.6: Modeling of a discontinuity in a discrete setting: (a) discrete, (b) remeshed
and (c) embedded strong discontinuity; (d) discrete, (e) remeshed and (f) embedded
weak discontinuity. Image from Cervera and Chiumenti [127]

Conversely, the FE counterpart of the continuum weak discontinuities model is
represented by the discrete weak discontinuities or most commonly known as smeared
crack approach. This model was firstly introduced in the article of Rashid [128] in
the late 1960’s and, in it, the crack is approximated by a band of elements which
presents continuous displacements and discontinuous (although bounded) strains.
Figure 2.5b shows the computational domain with the elements that are affected by
the weak discontinuities. A comparison between this method and the discrete strong
discontinuity one is depicted in Figure 2.6d. Abundant work has been done over the
years thanks to its continuum mechanics basis and straightforward implementation

in finite elements codes. The approach relies on constitutive laws based on the
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Figure 2.7: Embedded approaches in the (a) strong and (b) discontinuous setting.
Image from Cervera [97].

relationship between stress and strain and the strain localization is induced by
strain-softening. Additionally, smeared crack models use the computational grid “as
is”, since, avoiding the insertion of discontinuities, the mesh topology needs not to
be modified. Hence, it was possible to develop numerous constitutive models, as in
the case of Bazant and Cedolin [129, 130], Rots et al. [131] or Lubliner et al. [61],
Feenstra and De Borst [132], as well as increasingly larger structural analyses as
done by Ingraffea and Panthaki [133], Bazant and Pfeiffer [134], Rots and De Borst
[135], and Cervera et al. [136, 137].

Despite its wide adoption, the smeared crack approach is not free from numerical
plights. Few years after its introduction, Pietruszczak and Mroz [138] and Bazant
and Oh [139] noticed that, within the finite element setting, the creation of a failure
surface is not only dependent on the available fracture energy but also on the
characteristic size of the mesh resolution. Consequently, the global fracture energy
appears to be not objective since it scales with the element size h. As it tends to
zero upon refinement, the energy reduces as well and the model becomes more and
more brittle, which is physically unacceptable.

This is because the energy dissipated by an element during the inelastic process
is defined per unit volume whereas the fracture energy is measured per unit surface.
The spurious mesh-size dependence is overcome by adjusting the softening parameters
of the smeared approach in terms of the fracture energy and the width of localization
band [113, 140], related to the resolution of the discrete mesh.

As an alternative to the previous numerical technique, numerous strategies have
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been proposed with the objective of recovering the missing length scale at continuum
level. Non-local constitutive laws [141-143] affirm that the behavior of a material
and, in particular, the energy release rate are spatially averaged over a representative
volume. Furthermore, they allege that the size of the “non-local” averaging zone is a
material characteristic. In the Gradient Enhanced models [144-146], non-local effects
are introduced via the consideration of higher-order deformation gradients, which
allow to take into account non-local effects. In turn, the localization is regularized
and the objectivity in the energy dissipation is recovered. Micro-polar or Cosserat
generalized media models [147-149] introduce the rotational degrees of freedom in
addition to the displacement ones to describe the material strain resulting in an
alluring non-symmetric stress tensor. Recently, the Phase Field models have been
introduced by Miehe et al. [150] and Kuhn and Miiller [151], fanning out the crack
with the definition of a regularized crack surface functional. The crack dissipation
function and its topology are defined through the proposed functional. A review of
the advances and implementation details of such constitutive model is presented in
[152-154].

In all these approaches, the underlying continuum problem is altered and a
characteristic length is inserted in it. The outcome is that strong discontinuities
are precluded from the solution space of the continuum problem and, therefore, the
corresponding discrete formulation is not disrupted by the need to approximate them.
The entire physical concept of a crack is excluded from the setup of the problem.
Additionally, these new trends carry over their own numerical gripes.

Notwithstanding the adoption of numerous and different strategies in the discrete
weak discontinuities approach, the standard displacement-based formulation appears
to be lacking of the required accuracy when dealing with the onset of localization
band in softening problems. Indeed, the irreducible formulation fails to correctly
predict stresses or strains whether it is at the tip of a notch or in the localization
band during propagation. Moreover, the direction of the discontinuity depends
only too often on the orientation of the elements in the mesh. However, when the
computational grid is properly “designed” to be oriented in the direction of the crack
propagation, the standard irreducible formulation appears to provide correct solutions
[155]. Consequently, a remeshed weak discontinuities approach was suggested (Figure
2.6e) as in the case of the Adaptive Mesh Refinement by Zienkiewicz et al. [156, 157].
Nonetheless, remeshing requires additional solution procedures and computational
resources and, if not properly devised, it can significantly slow down the calculation.

It is also possible to introduce enrichments in the definition of the strain tensor,
rather than in the displacement field, and devise an embedded weak discontinuities
approach. Figure 2.6f shows the elements that are subjected to the strain enrichment
due to the embedding of the crack. In contrast with the standard smeared approach,

in these procedures the inelastic part of the strain tensor is accounted for explicitly,
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by means of extra incompatible deformation modes in the affected elements.

The Enhanced Assumed Strain method, proposed by Simo [158-160], is the
precursor of these methods. In it the enhanced assumed strains are incompatible
modes which are enforced to be orthogonal (in a Lo sense) to the stress field. More
recently, Cervera [97, 161] introduced a Mesh Corrected Crack Model, based on the
split between elastic and inelastic stresses. For the latter, an orthotropic structure
is assumed and this method can be considered an embedded version of the non-
conforming enrichments of the displacement field, introduced also by Simo et al.
[110].

With regard to enhancements in the finite element approximation space, either
in the displacement or strain fields, two considerations are of paramount importance.
Extending these techniques to 2D and, especially, 3D problems is not straightforward
but rather cumbersome. While in the 1D case the value of the displacement jump
divided by length of the element serves the purpose, in the multidimensional case
consistent procedures are required to take into account the actual geometry of the
affected elements. In addition, as in the case of embedded strong discontinuities,
numerical instabilities and ill-conditioning frequently arise.

Secondly, the added enhancements are activated depending on the elastic strain
or stress field computed at the previous time step to their introduction, almost always
in a quasi-singular situation. Displacement-based finite element methods cannot
guarantee local convergence of the stress values and, therefore, the decisions on how
to introduce the enhancement are founded on quicksand. This is why techniques
such as X-FEM and E-FEM require the use of auxiliary crack tracking techniques,

which are not variationally consistent and lack of generality.

2.5 Mixed finite element formulations

The poor performance of the low order elements of the standard formulation was
known since the initial years of the FEM. As discussed previously, a posteriori
computation of stresses in displacement based elements is frequently unsatisfactory.
For this reason, stress recovery techniques were studied by Hinton and Campbell
[162] and Zienkiewicz and Zhu [163, 164] to retrieve improved a posteriori stress or
strain fields. More recently, Payen and Bathe [165, 166] suggested a novel stress
recovery method based on the element nodal point forces.

Over the years, other FE formulations were introduced to provide further com-
putational enhancements such as hybrid formulations in terms of assumed stresses
[167] or assumed strains [158, 168, 169], displacements and equilibrium models [170]
and using the pressure as additional variable in incompressible elasticity [171, 172].
These methods can be easily implemented in a direct stiffness matrix fashion and

their adoption showed various degrees of success.
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The term mized finite element was introduced in the 1960’s to describe formula-
tions which simultaneous resolve multiple field of interest. The mechanical description
of a solid body with multiple variables can be provided with the use of variational
formulations. By enforcing the minimum total potential energy, it is possible to
find the equilibrium configuration in terms of the field unknowns. The Hu-Washizu
variational principle describes a solid body in terms of displacements, strains and
stresses using the equations of elasticity [173, 174]. By assuming the constitutive
law that links strain and stress fields, the Hellinger-Reissner variational principle is
recovered in terms of displacement and stress. Minimization of these leads to the
weak mixed formulation of the mechanical problem.

Initial work on mixed FEM was done by Crouzeix and Raviart [175] for the
stationary Stokes equations, Raviart and Thomas [176] for second order elliptic
problems and Pian and Sumihara [177] for quadrilateral finite elements with assumed
strain. An in-depth review of the method and its features can be found in the books
by Boffi et al. [178] and Girault and Raviart [179].

In the field of computational analysis of fluids, mixed finite elements found fertile
ground for large development, as most fluids are studied under the assumption of
incompressibility. In fact, the incompressible Stokes problem cannot be written in
an irreducible format but it requires a formulation in terms of both velocity and
pressure field [180, 181].

Nevertheless, to consistently solve a mixed finite element problem, there are
two important considerations to make. On the one hand, mixed formulations
are computationally more expensive than standard ones, since they require the
simultaneous solution of multiple unknowns. To overcome this additional cost,
substantial work has been devoted through the years to fractional step methods [182—
184], as a staggered technique for the efficient solution of u — p mixed problems. On
the other hand, the choice of elements to be used is not arbitrary as the discretization
fields (velocity and pressure or displacements and stresses/strains) have to satisfy
the so-called Inf-Sup condition [185-187] for the stability of the mixed formulations.
This restriction is difficult to fulfill, and it leaded to the development of elements such
as the Q1-P0 [188, 189], Q2-P0 [190], P1-P1 [191], Q2-Q1 Taylor-Hood [192, 193],
cubic hexahedral elements [194] and the “mini” [195] elements.

Alternatively, to allow the use of arbitrary interpolations, a stabilization strategy
is required as proposed by Franca and Hughes [196]. Initially, it was recognized that
introducing a penalization method would alleviate the numerical troubles encountered
in the solution of the mixed formulations [197]. Then, Hughes and co-workers were
able to prove that the Inf-Sup condition can be circumvented with a Petrov-Galerkin
stabilization technique [14, 198] to accommodate equal-order interpolation. These
observations leaded to the introduction of the Variational Multiscale Stabilization
(VMS) by Hughes [199], Hughes et al. [200]. In the following years this stabilization
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framework was widely adopted, expanded and generalized by the work of Codina
and co-workers [16, 201-205], among many others.

As the Stokes and the Darcy equations have the same mathematical structure
than the ones of incompressible and compressible elasticity, respectively, it is possible
to apply a large number of formulations that have been developed in the last two
decades from the analysis of fluids to solid mechanics [206, 207].

For example, Bonet et al. [208, 209] constructed a linear tetrahedral element
for incompressible and nearly incompressible elasticity in which either the pressure
or the deformation gradient are averaged in the elements. Maniatty and coworkers
[210, 211] developed a higher order stabilized finite element for hyperelasticity and
viscoplastic flow. Djoko [212, 213] focused on the Hu-Washizu variational principle
at the incompressible limit while Reddy [214, 215] used penalty function methods
for mixed finite elements. De Souza [216, 217] designed low order enhanced strain
elements for elastoplasticity and large deformation. Finally, Kasper and Taylor
[218, 219] noted that the introduction of strain enhanced methods was beneficial for
the analysis of bending dominated problems.

Pastor et al. [220, 221] provided a first mixed displacement pressure finite element
for plasticity problems in the geotechnical setting. Likewise, Cervera et al. [1],
Chiumenti et al. [2, 222] used a mixed u — p formulation for the modeling of
incompressible solids in elasticity and plasticity. Their approach proved to be (i) easy
to implement in 2D and 3D thanks to the equal low order interpolation, (ii) accurate
for isochoric situations and (iii) consistent being the used variational multiscale
stabilization residual-based. This finite element technology was benchmarked with
problems involving both damage [3] and plasticity [4, 155].

As a natural extension of the mixed displacement-pressure formulation, in
2010, Cervera et al. [5, 6, 7] developed the mixed stress-displacement and strain-
displacement finite elements. Using this novel technology, the order of convergence in
the stress and strain fields is one order higher than the irreducible formulation, while
maintaining the order of convergence in the displacement field. The enhancement
in the accuracy of the solution is crucial to provide (almost) mesh independent
numerical results and alleviate the stress-locking phenomena which pollutes the
standard irreducible displacement-based formulation.

The contribution here presented is built on this previous work and it represents
its continuation, in order to generalize and exploit the high computational accuracy
of mixed finite elements in the prediction of the onset of crack propagation and

localization of strains in plasticity.
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Chapter 3

Mixed strain-displacement € — u

formulation

3.1 Strong form

Consider a body occupying the space domain Q € RY™ (where dim is the dimension
of the space), its boundary being 02 and being subjected to the body forces f,
the boundary tractions t and the imposed displacements ug. In a (quasi-)static
mechanical problem, its configuration is properly described by three quantities: the
displacement vector u, the Cauchy stress tensor o and the total strain tensor e.
These variables and their spatial variations are linked through the field equations.
The equilibrium of the body in a (quasi-)static mechanical problem is described by
the balance equation and relates the source of stresses with respect to the external

body forces:
V.o+f=0 (3.1)

Likewise, for infinitesimal deformation, the variation in the displacement field has to

be reflected in the strains as the kinematic compatibility equation reads:
—e+Vu=0 (3.2)

The symbol V*(+) is used to denote the symmetric gradient whereas V - (-) refers to

the divergence operator. Note that the latter is the adjoint operator of the former.

In order to complete the set of field equations, a constitutive equation connecting
strain and stresses is required. In case of plasticity, the total strain tensor is

decomposed additively owing to the assumption of small strains:
e=¢€.+¢ (3.3)

where €. is the elastic strain tensor and €, is the plastic strain tensor. Then, the
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constitutive equation is written as:
c=Cp:e.=Cp:(e—¢gp) (3.4)

where Cy is the fourth order elastic constitutive tensor. Note that being Cq positive

definite, expression (3.4) can be inverted:
e=Cyl:0+e¢, (3.5)

where C, ' is the fourth order elastic compliance tensor.

Now, two mixed strong forms are available. The first one, in terms of total strains

and displacements is found by substituting (3.4) in (3.1), and the problem reads

-+ Viu=0
(3.6)
V. [Ch:(e—gp)]+f=0
Pre-multiplying the first equation by the elastic constitutive tensor Cy:
—CoiE+Coivsu:0
(3.7)

V- [Cy:(e—¢gp))+f=0

provides a symmetric system only in the case of elasticity (e, = 0). In fact, in the
case of plasticity, the functional dependence of the plastic strains with respect to
the field variables provide an asymmetric set of equations. Instead, considering the

constitutive secant matrix C defined as:
C:e=Cp:(e—¢gp) (3.8)
it is possible to write the system of equations in (3.7) as

—C:e4+C:Vu=0
(3.9)
V. [C:e]+f=0

Hence, (3.9) is the final system of partial differential equations in strong form in
terms of the total strains € and displacements u for the mechanical problem involving
plasticity. In general, the secant matrix in (3.8) is not uniquely defined. Nevertheless,

it can be easily built as:

[Co : &p] ® [Co : &)
€:Cp:gp

C=Co- (3.10)
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Alternatively, in plasticity, the constitutive equation is expressed in rate form:

oc=C,:¢€ (3.11)
being C,, the elasto-plastic constitutive tensor and () the time derivative operator.

The rate form of expression (3.6) becomes:

—Cep:é+Cep: V=0
(3.12)
V. [Cop:él+f=0

where f is the rate counterpart of the volumetric external load f.

Recalling the initial set of equations, it is possible to introduce the constitutive
expression (3.5) in the compatibility one (3.2). Then, the strong form is expressed

in terms of stresses o and displacements u and it reads:

—C61:0+V5u—€p:0
(3.13)
V.o+f=0

Similarly to the € — u case, the functional dependence of the plastic strains from the
field variables makes the the final strong form of the mixed mechanical problem not
symmetric.

Expressions (3.6), (3.7), (3.9) and (3.12) represent alternative of the mixed
formulation in terms of total strains and displacement, whereas (3.13) is written
in terms of the stresses an displacements. In this work, the mixed problem in the
unknown fields [e, u] is used, starting from the strong form in equation (3.9), along

with appropriate boundary conditions and evolution laws for the plastic strain field
[223].

3.2 Weak form

Let us consider a set of test functions v € G for the symmetric tensor field of strains
and v € V for the vector field of displacements. Weighting the residual of the mixed
strong form and integrating over the volume of the body €2, the continuous weak

form of the set of equations presented in (3.9) reads:

—/7:C:£+/7:C:Vsu:0 Vv € G
Q Q
(3.14)
/v:[V‘((Cze)]—k/v:f:O Yv eV
Q Q
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Integrating by parts the second equation, it is possible to write:

—/7:C:€+/7:C:V$u:0 VyeG
Q Q
(3.15)
/VSU:C:EZF('U) YveV
Q

where the tractions t on the boundary 92 and body forces f are collected in the

term representing the work of external forces

F(v):/(mv:i—f—/gvzf (3.16)

From the mathematical requirements of the problem in (3.15), V is in the space of
square integrable functions v which are at least square integrable and have square
integrable first derivative, that is V C H' ()%™ whereas G belongs to the set of

dimxdim
sym

square integrable symmetric tensors -, that is G C L? (Q) , where dim is the
number of the dimensions of the domain of the problem.

Note that the weak form in expression (3.15) is symmetric and it can be derived
from the Hellinger-Reissner principle. The functional Il is written in terms of

displacement u and stress o variables and it reads:

HHR:/Q[O':(Vsu—ep)—;a:(Cgl:a—f-u]—/(mt-u (3.17)

The variation of this expression reads:

5HHR:/ {50:(Vsu—ep)+a:5vsu—a:(cal:50’—f-5u} —/ t-ou
Q o0

(3.18)
Finally, plugging in the constitutive equation in (3.8), & = C : €, and collecting the

common variations, it reads:

(5HHR:/Q(5€:C:(Vsu—e)—k/QéVSu:(C:e—/ﬂf-éu—/mi-éu (3.19)

Hence, if the condition dIlgr = 0 is enforced, this correspond exactly to the weak
form presented in (3.15), with du = v and de = ~. A further extension of the
Hellinger-Reissner principle which takes into accounts the variational foundation of
plasticity and the inclusion of dissipation in the total free energy is presented in Simo
and Hughes [223].
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3.3 Discrete Galerkin formulation

The discretized version of the continuous weak form is obtained considering a finite
set of interpolating functions for both the solution and the test function. For this

reason the discrete functional spaces are a subset of their continuous version:
G,cGandV, CV (3.20)

Now, the strain tensor € and the displacement field u are approximated as

Npts

s—>sh—z'yh ® ¥ € Gy
=L (3.21)
u—>uh—th uh v, €V,
The system of equations (3.15), in its discrete form, reads
—/"yh:C:Eh-f-/"/hZ(C:Vsuh:O Vv, € Gy
Q Q
(3.22)

/Vs'vh:C:E:h:F(vh) Vv, € Vp,
Q

In the following, equal interpolation finite element spaces for displacements and
strains is considered. Particularly interesting is the case of low order linear-linear
(P1P1) triangular and bilinear-bilinear (Q1Q1) quadrilateral elements.

From the work of Ladyzhenskaya [185], Babuska [186] and Brezzi [187], it is well
known that the Inf-Sup condition restricts severely the choice of solution spaces in
a mixed problem. Indeed, an identical interpolation of Gj and V}, spaces does not
provide the required numerical stability, which manifests in spurious oscillations in

the unknowns. Consequently, a stabilization procedure is now introduced.

3.4 Variational Multiscale Stabilization

In order to stabilize the set of equations of the mixed problem, it is required to perform
a modification of the discrete variational form, while maintaining consistency. Hence,
providing the necessary numerical stability, the Inf-Sup condition is circumvented
and the initial problem can be successfully resolved.

The Variational Multiscale Stabilization (VMS) was developed in first instance
by Hughes et al. [200] and then generalized by Codina [16]. This technique assumes
that the solution of the unknowns variables €, u is composed of two contributions.
The first one is provided by the resolvable scale at the FEM mesh level, which gives
€n, up. The second one is represented by a smaller scale, which cannot be computed

on the FEM mesh. It is called subscale solution and it is denoted as &, . This
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contribution can be thought as a high frequency solution that cannot be captured

with the coarse FEM mesh. The Variational Multiscale Stabilization assumes that

the solution fields are given by the sum of resolvable and irresolvable scales:
e=¢€p+e

- (3.23)
u=up+u

The subscale variables (and, later, their test functions) pertain to their respective
functional spaces G for the strain tensor and V for the displacement vector. This
hypothesis allows to effectively solve the unknowns in the extended solution spaces
given by G = Gy, ® G and V&~ V;, @ V. Then, in the case of low order elements, the
subscale variables are interpolated with continuous piecewise functions. Nevertheless,
their contribution on the boundary 0f2 is considered null, i.e. imposed displace-
ments or external forces are exactly represented by the finite element space. In the
eventuality that additional boundary terms appear, further contributions should be
considered as in Badia and Codina [204], Codina et al. [224].

The plastic strains €, are computed by the return mapping algorithm, given the
stress tensor o as input data. In turn, o is computed using the field variables, and,
in particular, the total strain. Since € presents both coarse and subscale contribution,
then the plastic strain tensor €, could posses a corresponding subscale part. However,
since the subscale contribution is assumed to be small, it is reasonable to assume
that the plastic strain depends only on the finite element solution counterpart and,

consequently, it does not posses a subscale:
ep =6, (o) ey (on) (3.24)

with
O'h:C02[€h—€p(0'h)]:(C2€h (325)

Within this enhanced functional setting, the set of equations are split in the

coarse and fine scales and they reads:

—/'yh:(C:(sh—l-é)—i-/’yh:(C:VS(uh—i-ﬂ) =0 Vv, € Gy,
Q Q
/Q Voon : [C: (en + &)] — F(vy) Vo, €V,
(3.26)

—/’y:@:(€h+é)+/’y:(C:VS(uh+’&) =0 V4 € G

Q Q
/@:(V'[C:(€h+é)])+/f):f =0 VORAY

Q Q

Owing to the fact that the subscale unknowns (&, @) vanish on the boundary, it
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follows that the second two equations are arranged as

- [AiciE-vial= [ 5:Cile— V] FeG
Q Q
(3.27)

/Vs'i;:(C:é:—/'TJ:[V-(C:Eh)—i-f] vev
Q Q
The last system of equations shows that the solution of the subscale variables depends
on the residuals of the strong form of the problem upon substitution of the FEM
solution. In particular, it is possible to see that the differential form is applied both
to the coarse scale (right hand part) and the fine scale (left hand part). Defining the
(FE scale) residuals of compatibility and equilibrium in their strong form as R j,
and Ry, respectively:

Ry, =-C:e,+C:Viuy,

(3.28)
Ry, =V -(C:ep)+ f

)

equations (3.27) represent the projection through the operators P, and P, of the

residuals on the subscale grid. They can be rewritten as:

P (—C:&+C:Va)=P (C:e, —C:Vuy) = —P (Ry})

(3.29)
Py (V% :C:8) =P (V- (C:ep)+ f) = —P2(Ray)
In order to determine the value of the subscale variables, it is required to solve the
equivalence of projections. Codina [16] shows that the subscale cannot be resolved
exactly but it has to be approximated. In turn, this implies that the projection
operator has to be chosen. By linear Fourier analysis, it follows that it is possible to

approximate the subscale variables within each element as:

Te Cfl : Pl (Rl,h)

(LY
Il

(3.30)
=7, Py (Ra)

I~

where 7, and 7. are the stabilization parameters. From dimensional considerations,
they are computed for the problem in analysis as:
hLg h

d = Cc— 3.31
10 an Te = Ce Lo ( )

Tu — Cy

In the last expressions, ¢, and ce are arbitrary positive numbers, h is the representative
size of the finite element mesh and Ly is a characteristic length of the problem. Finally,
1o is a mechanical parameter of the elastic problem, usually chosen as twice the

shear modulus of the material G or Young’s modulus E.
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The stabilization contribution is then given by residuals R, ; and R, computed
in an element by element manner. In the case of low order elements, the subscale
is piecewise linear and interelemental discontinuous. However, it is not possible to
condense its contribution at the element level since the field variable ), and uy, are

continuous.

Upon mesh refinement, the coarse scale becomes finer and the contribution of the
residuals reduces. For that reason it is reasonable to say that the subscale variables
[€,u] are smaller than their coarse scale counterpart [ep, up]. Consequently, owing
to the fact that the plastic strain g, is clearly smaller than total strain € and that
residual-based subscale vanishes upon convergence, the assumption of negligible
plastic strain subscale &, holds.

To complete the stabilization method, an appropriate projection operator has
to be selected in order to be able to compute explicitly the subscale variables and,

hence, avoiding calculating the last two equations of system (3.26).

Algebraic Subgrid Scale Stabilization (ASGS)

In the Algebraic Subgrid Scale Stabilization method [204], the projection operator is
taken as the identity, that is:

E=T, (—Eh + Vsuh)

s}
Il
~
a3

(3.32)
ﬁ:Tu(V'Uh+f)

Back-substituting in the system of equations tested against the finite element functions

and rearranging:

—(1—7-5)/Q'yh:Cish-l-(l—Ts)/Q‘Yh3C:V5“h
+/ C:V*(V-op+fl=0 Vv, €G
/stvh C: (1= 72) e+ 7 Voun)] = Flup) Vo € Vi

Now, integrating again by parts in the first equation and taking ~, = 0 on 02, the

final system of equations reads:

_(1 —Ts)/Q’Yh :C: (sh - Vsuh)
[V €] Voot =0 Vi eG

/ Vivy, : C: [(1 — TE) Ep + TEVSuh] = F(Uh) Yoy, € Vp,
Q

34



3. Mixed strain-displacement e — u formulation

The first term in the first equation represents a projection (or smoothing) of the
discontinuous strain given by the discrete displacement field over the continuous
nodal strain field. The second additional term is given by the displacement subscale
which has a crucial role in the stabilization of problems involving incompressibility.
This contribution depends on the residual of the strong form of the equilibrium
equation. The second equation is related to the balance of momentum. Defining the

stabilized total strain field as:
Estab,h = (1 - TE) Ep + Tevsuh (335)

as a blending of the continuous and discontinuous strain fields through the stabiliza-

tion parameter 7¢, the system of equations (3.36) reads:

—(1—7'5)/Q’ythz(€h—Vsuh)
L

L1V @m)l [V on+ =0 ¥y eC, (3.36)

/ sth :C: Estabh = F('vh) Vv, € Vy,
Q

Orthogonal Subgrid Stabilization Scale (OSGS)

In the Orthogonal Subgrid Scale Stabilization [204], the projection operator selected

to solve the unresolvable scale variables is the orthogonal projector
P (X) =1(X) = Py (X) (3.37)

where P, represents the projection over the finite element mesh. It represents the L?
projection of a generic variable X, or least square fitting, on the finite element space

[1]. Tt is performed taking advantage of the orthogonality condition
/(XH—X):nhZO VnhGVh or Gy, (3.38)
Q

where Xy is the projected value of X on the mesh nodes. In practice, the stabiliza-
tion given by the OSGS method adds a contribution that is located in a space which
is orthogonal to the FE one. Both ASGS and OSGS are residual based methods
which disappear when the discrete solution is converged. However, the orthogonal-
ity between spaces of the latter method ensures less numerical dissipation in the

calculation and maximizes accuracy for a given mesh.

Substituting in (3.30), the subscale variables @ and & can be approximated as:
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E=Te (C_l : [Rl,h — Py, (Rl,h)]
(3.39)
=Ty Ry — Py (Rap)]

with the residuals Ry j,, Ry, defined in (3.28). First of all, as the nodal projection
of a nodal variable is an identity operation i.e. P, (g;,) = €, the strain subscale is

given by

€ Te [(—sh + Vsuh) — Ph (—Eh + Vsuh)] = Te [Vsuh — Ph (Vsuh)] (3.40)

Now, comparing the equations (3.22) and (3.38), the weighted projection of the
discontinuous strains over the finite element mesh corresponds to the nodal continuous

strain field:
/Q'Yh :C: P, (Viuy) = /Q'Yh :C:ey (3.41)

For the displacement subscale, assuming that the body force f pertains to the FE
space i.e. Py (f) = f, it can be written:

’ZL:TU [V-O’h—Ph (V-O’h)] (3.42)
Back-substituting in the set of equations of the problem, it reads:

—(1—7'5)/S]"yh:((::(€h—vsuh)—|—

+u/ C:V[V-o,—P,(V-0,)]=0 Vv, €G
Tu | Y V.o, —P,(V-op)] Yh € Gy (3.43)

/ Voon: C: (1= 70) en+ 7 Voun] = F(v) Von € Vi
Q

Integrating by parts the second equation and rearranging, the final set of equations

is:
—(1-7) /th . C: (en — Viup)+
_Tu

L9 (€ )] [V on—Fi(V-01)] =0 vy, € Gy (3.44)

/ sth :C: Estabh = F(’Uh) Yvy, € Vy,
Q

The set of equations with OSGS stabilization resembles the one for the ASGS, except
for the second term in the first equation. In order to compute the projection of

stresses I, at each time step, we can recall expression (3.38), and write

/ Iy —V-0op):m, =0 Vn, € Gy (3.45)
)
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and, with the additional projection equation, it reads:

—(1—76)/97h1C1(€h—V8uh)
[V (€] [V o~ T =0 vy, € Gy

(3.46)
/ VS’Uh :C: Estabh = F('vh) Yv, € Vy,
Q

/Q(HU*V'Uh)”’Ih:O vny, € Gy

As commented before, the OSGS scheme is less diffusive than the ASGS scheme
[202]. However, this comes at the price of solving an additional equation: in the

implementation details it is shown how this problem can be circumvented.

3.5 Modified OSGS

The ASGS and OSGS formulations are stable and display optimal order of convergence
in space for smooth solutions. However, when dealing with problems in which the
solution presents strong gradients, such as the localization problem, a simplified
stabilization technique can be devised.

In the first expression of (3.46), the nodal stress o, and its orthogonal projection
are used to provide the displacement subscale term. If dev (o) and vol (op) =
%tr (o1,) are respectively the deviatoric and the volumetric part of the stress o, the

stabilization contribution can be written as:

L9 [V (devP (o) + vol P (on)] =

/Q[V (Ciy)]- [V devP (o) —i—/Q[V (Ci)])- [V vol P (o)
(3.47)
where, as we defined before for the subscale projection operator, P+ (o},) = o), —
Py, (o). Taking advantage of the orthogonality between deviatoric and volumetric
components of the stress and disregarding the local cross terms in the inner-products,

last expression is approximated as:

/Q[V (C:p)] - [V -devP+ (O'h)} + /Q V- (C:vp)]- [V - vol P+ (o-h)} ~

/Qdev V- (C )] -dev [V - P ()] +/

Vol [V - (C : )] - vol [V - P (o)
Q

(3.48)
This methodology is similar to the term-by-term stabilization presented in the

works of Chiumenti et al. [225], for a 3-field mixed finite element formulation, and
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Castillo and Codina [226], where it was used for the analysis of viscoelastic fluids.
It is noteworthy to remark that this split OSGS is not consistent owing to the fact
that substituting the continuous solution will not provide a null residual. However,
the consistency error remains of optimal order in space and allows to eliminate some
problematic cross terms which are not beneficial to convergence in a highly non-linear
problem, as pointed out by Castillo and Codina [227].

It has been proven by numerous numerical tests that this approach is frequently
more robust than the full consistent counterpart and its use requires a smaller number
of projection operations, resulting in a smaller computational stencil. For example,
in problems involving localization of strain in J2 plasticity, the incompressibility
condition plays a major role. Consequently, a selective stabilization containing only
the volumetric terms is chosen and the split non-residual based OSGS contribution
is: 1

5 [ (Ve (C iy [Vir (00) = P (Vir (o)) =
(3.49)

_ ;/Q[(c V)] - [Von = P (Vi)

where p;, = %tr (oh).

3.6 Additional local stabilization

Mechanical analysis with localization of strain is considered a non-smooth numerical
problem, due to the strong gradients of displacements and/or strains that characterize
the solution. The VMS method that has been presented is able to provide global
stability which implies that the norm of the unknowns are bounded. However, in the
vicinity of substantial variations of the field variables, there are local oscillations. In
the field of computational mechanics, a discontinuity capturing technique is usually
introduced with the objective of selectively provide additional numerical dissipation
close to shock fronts.

Likewise, in the problem under consideration, it is possible to modify the param-
eters 7. and 7, in a consistent manner, in order to locally increase the weight of
the stabilization contribution. If pg is an elastic mechanical parameter and p is its
secant counterpart, then the stabilization parameters in expression (3.31) read:

Ty = cu@ and 7. = csiﬂ (3.50)
0 Lo po
If softening is considered, with decreasing value of u, the parameter 7. decreases
and, consequently, the blended strain tensor in (3.35) tends to the continuous nodal
strain one:

Tlsigo Estabh = Eh (3.51)
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Owing to the fact that this quantity is employed in the computation of the stresses,
it means that a smoother field is used for the computation of the equilibrium, even
in the vicinity of the localization.

At the same time, 7, increases with decreasing u. As a consequence, the first
equation in (3.36) or (3.46) shows a predominance of the displacement subscale with
respect to the requirements of compatibility of strains. Again, the relative numerical
importance of the discontinuous symmetric gradient of displacements is reduced in

favor of a smoother solution.

3.7 Compatibility with standard u finite elements

In strong form, the mechanical problem is governed by the equilibrium equation
(3.1), the compatibility equation (3.2) and the constitutive equation (3.4). Once
the primal unknowns of the problem are chosen, the variational formulation, either
mixed or irreducible, is written.

In the mixed € — u problem, presented in equation (3.22), € and u are main
variables. A dual formulation in terms of stresses o and displacements u is also
available from the Hellinger-Reissner variational principle in (3.17). Both of them
express compatibility and equilibrium in weak form, whereas the constitutive equation
is enforced strongly. Finally, selecting the element and, consequently, restricting the
functional space of interpolation, the discrete FE form allows the solution of strain
and the displacement fields, with e, and up as nodal degrees of freedom.

In the standard displacement-based problem, the irreducible strong form is found

by substituting equation (3.2) into equation (3.4), and this into equation (3.1):
V. [C:Viu]+f=0 (3.52)

where the displacement wu is the only unknown of the problem. The corresponding

variational (weak) form reads:
/ Vv :C:Viu=F(v) YveV (3.53)
Q

The irreducible discrete FE form requires solely the interpolation of the displacement
field: s
U — up = Z v%)ug) vy € Vy (3.54)
=1
with wj, as the nodal degrees of freedom.
Comparing the variational form used in the mixed and the irreducible problem, it
is possible to identify some key features. From a computational perspective, the e —u
finite element presents a larger number of variables to be solved compared to the

standard one. For each mesh node of a 3D problem, the vector of unknowns contains
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3. Mixed strain-displacement e — u formulation

9 scalars, 3 displacements (uy, uy, u;) and 6 strains (€44, Eyy, €22, Exys €z, Eyz) Of the
symmetric deformation tensor, in Voigt’s notation.

Nevertheless, the same linear triangle or bilinear quadrilateral element can be used
to interpolate the strains and the displacements in the (stabilized) mixed elements

or the displacements in the standard elements.

Mixed £ — u Finite Elements

L [ Pl

Standard Trreducible Finite Elements

(a) (b)

Figure 3.1: FE mesh with combined standard and mixed formulations. Turquoise
color represents the mixed € — u elements whereas yellow represents the displacement-
based ones. The strain tensor at the Gauss points (symbolized with red crosses) is
computed with the interpolation of nodal strain in the mixed formulation or the
discrete symmetric gradient of displacements in the irreducible one.

Yet, from the equilibrium equation in (3.36) for the ASGS method and (3.46) for
the OSGS method, it is apparent that standard finite elements are a particular case
of the stable mixed formulation.

On the one hand, if the same interpolation and test functions wj, are selected,
the kinematics of the mixed and the irreducible formulations are compatible, i.e. the
requirement of inter-elemental continuity is satisfied. A convergent numerical method
must be consistent and stable. To prove consistency of the FE form in the classical
Rayleigh-Ritz sense it is required to ensure continuity of the interpolation fields
across the element edges. Owing to the fact that, in the elastic case, compatibility
of strains and symmetric gradient of displacements holds either in weak and strong

form, then nodal values of both fields are ensured to coincide at the boundary of
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the elements. Therefore, a mesh constructed as in Figure 3.1, where the top part is
formed by mixed € — u elements while the bottom part is made of standard w ones,
is feasible.

Moreover, setting 7. = 1 and 7, = 0 in expressions (3.36) or (3.46), the weak
compatibility equation becomes an identity and the equilibrium equation reduces to
(3.53).

This feature of the proposed method allows to reduce the computational burden
by considering a combined standard/mixed FE mesh. Setting the stabilization
parameters 7. = 1 and 7, = 0 where possible and skipping the corresponding
elemental computations leads to substantial savings in the total number of degrees

of freedom, global operations and corresponding matrix storage.
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Chapter 4

Implementation

4.1 Iterative schemes for non-linear system

In order to calculate the nodal values of strain €5 and displacement uy fields, the
set of equations in (3.36) needs to be resolved for the ASGS method or equations in
(3.46) for the OSGS method.

In the proposed formulation, an iterative procedure is introduced to take into
account the non-linear evolution of the plastic strains €, from the stress o,. The quasi-
static mechanical problem is discretized in time with a Backward Euler approximation
resulting in an implicit solution scheme. The Picard or Newton-Raphson methods
are implemented for the numerical solution. Both methods are discussed in the
following and their advantages, drawbacks and trade-offs in the context of the mixed

strain-displacement finite element are highlighted.

Consider a nonlinear multidimensional problem expressed by
R(X)=P(X)-F=0 (4.1)

In the last expression, X = [e, u]T is the solution vector of the mixed problem; R, P,
F' are respectively the residual, internal and external force vectors. For a Backward

Euler approximation in time, the same expression at time step n + 1 reads:
R(Xp11) =P (Xnp1) = Frp1 =0 (4.2)

Let the first order Taylor’s approximation of R (X ,+1) around the solution point
X 41 at iteration ¢ 4+ 1 be

R <XiL—:-11) ~ R( %H) + J( Zr'z+1) (Xf:fl - Zﬁ+1> =0 (4.3)
where the Jacobian matrix is defined as
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} OR (X! .,

J( 214-1):(7;”) (4.4)
8X n+1

The difference between the solution vector at iteration ¢ + 1 and 4 is the incremental

correction:
oX" = Xﬁﬁ - fz+1 (4.5)

It follows that, if the Jacobian matrix J <X v +1> is not singular, expression (4.3) can

be inverted to compute:
X = ( ;H)]_l R(Xi,,) (4.6)

When the linearization is properly performed, quadratic convergence is achieved
for an initial guess X, close to the solution X, 1. In some problems, the Jacobian

matrix is not defined or non-symmetric or too expensive to compute.

Alternatively, it is possible to solve the nonlinear algebraic problem with Picard’s

secant method. If the internal forces are written as:
P (Xn+1) =S (Xn+1) Xnt1 (4~7)

where S (X ,41) is the secant matrix, the system of equations for the residual in
(4.2) reads:
R(XnJrl) =S (Xn+l) Xnt1 — Fra (4'8)

and, consequently, the value of the iterative correction to the solution vector at

iteration ¢ + 1 is found by inverting:
S (X)) 0X™ = —R, (4.9)

The secant method presents the advantage of being more robust than the Newton-
Rapshon method and it does not require a consistent derivation. Although its
definition may not be unique, a symmetric secant matrix may be constructed and,
frequently, it is positive definite. This results in a method that shows super-linear

rate of convergence.

Finally, by calculating the system matrix at the first iteration and maintaining it

constant for the current step
J(Xin)=d(Xh) o S(Xi)=8(Xh) (4.10)

a further gain in computational cost is feasible, but the convergence rate drops to

linear for both methods.
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4.2 ASGS implementation

Let us recall the relationship (3.8) for the secant constitutive tensor. Differentiating
the algebraic system of nonlinear equations presented in (3.36) with respect to the

total strains tensor €; and the displacement vector uy, it reads:

M. =-(1 _Te)/ N."CoN. - Tu/ Co BBT Cy (]1— aep) (4.11)
Q Q ash
G —(1-1) / N.TCoB + / co BBT C, (a":p) (4.12)
Q Q 8uh
T T 86'],
DT:(1—TE)/ B (CONU—/ BTC, (%52 (4.13)
Q Q 8eh
T T Jep
KTZTS/ B COB—/ B¢, (4.14)
Q Q Oouyp,

which compose the Jacobian or tangent matrix:

4 M, G 7
J = 4.15
n+1 [DT K7‘|n+1 ( )

In the differentiation, N, and N, represent the matrices of shape functions respec-
tively for the strains and the displacements whereas B is the matrix of the gradient

of such shape functions. The algebraic system of equations reads:

i i+1 )
M. G, ) R
DT KT n+1 6uh n+1 RQ’h n+1

where (dep, dup,) are the iterative corrections for (ep,uy) in the Newton-Raphson
scheme.

To complete the linearization of the system of equations, the dependence of the
plastic strain from the field variables must be made explicit. Being €, computed

starting from known trial stresses, it follows:

n+1 n+1
asp o aE‘.p 8Utrial

= 4.17
8€Z+1 aUtr‘ial 352“ ( )
and . »
Oe, _ 0ey™ 00 trial (4.18)
8UZ+1 T trial a’U,Z—"—l
Recalling that o5 is computed as:
Otrial = Cn+1€z+1 =Gy : (EZH_l - Eg) (4.19)

it is possible to write the plastic strain differentiation as:
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8€n+1 Hen Tl Hentl
P _=—_F ¢ and —L =0 4.20
8€Z+1 ao-t‘m'al 0 8u2+1 ( )
Recalling the definition of the tangent elasto-plastic constitutive tensor, it is demon-

strated that:

aen—I—l
—2 =yt |Co—CL iyt (4.21)
n+1 0 0 e 0
8o-tr—i'—al |: ? }
and, finally
Oent!
P _ —Cgtl: |Co— it (4.22)
n+1 0 0 e
dept { P }

Substituting this result in the previously computed submatrices in (4.15), the Jacobian

matrix takes the following form:

M,=—(1-1) /Q NICyN, — 7, /Q CoBB' C!! (4.23)
G, =(1-1) /Q N.TcyB (4.24)

D, = /Q BT [Cgf - TECO} N, (4.25)

K. =1, /Q BTcyB (4.26)

M ; is a mass-like projection matrix, G is a gradient matrix, D, is a divergence
matrix and K, is the stiffness matrix. The subscript 7 refers to the fact that those
matrices incorporate stabilization terms. With the presented Jacobian matrix, the
rate of convergence is quadratic but the algebraic system to be solved is not symmetric
due to the dependence of the plastic strain to the total strain tensor €Z+1. With
this solution scheme symmetry is restored only in the case of elasticity, for which
(CZ; 1= Cy. For the secant method, the set of equations is obtained by substituting
the constitutive matrices with the ones given in (3.10). Hence, the global stiffness

matrix becomes symmetric and results in

M~ (1= 1) / N.ICN, — 1, / cvt! BBT ¢ (4.27)
Q Q

G —(1-r) [ NSCB (4.28)

Dy = (1-7.) [ BTN, (4.29)

K — 1, /Q BTC"'B (4.30)

From the given derivation, it is clear that a proper linearization of the non linear

equations in the Newton-Raphson method requires a non-symmetric solver. Con-
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sequently, the computational gains given by the smaller number of iterations in a
quadratic convergence rate can be neutralized by the need of larger factorization
time. Indeed, using a direct solver, a complete LU decomposition requires roughly
twice the time and the computational resources with respect to a Cholesky one.
Additionally, the constitutive tangent matrix for a softening process is not positive
definite which implies that global numerical stability can be lost.

Conversely, the use of secant constitutive tensor results in a symmetric global
stiffness matrix. This allows the use of faster solution methods, even if the required

number of iterations is higher than for the Newton-Raphson case.

4.3 OSGS implementation

The OSGS implementation is similar to the ASGS one, except for the additional
projection of the nodal stresses. Differentiation of the residuals with respect to
strains and displacements gives identical terms M., G,, D, and K ..

The projection equation gives some additional terms in the Jacobian matrix
when differentiating (3.46), owing to the presence of the additional stress projection

variable ITj:

4 " .
M, G. DE 1" [ e | Rin |

D, K, 0 Suy, — — | Roy (4.31)
Dy 0 My n+1 oI, n+1 R3h |44

where (dep, dup, 0I1;,) are the iterative corrections for (e, up, II;) in the Newton-

Raphson scheme. The added projection matrices are computed as:

My = — / N.TN. (4.32)
Q

Dp = / BTN, (4.33)
Q

Alternatively to this procedure, a staggered scheme can be devised. First, the
projection of the stresses Il is computed at the beginning of the time step. Then,
IT}, is used for the solution of (g5, wy). With this substitution, the matrix depicted

in (4.31) can be formally condensed [1] and it becomes:

(4.34)

. - .
[ M. - DiMy'Dn G, 1 [ Ser, ] [ Rip 1
+1 n+1

D, K- n+1 R2,h

This scheme is preferred with respect to the monolithic one due to the reduced
computation time required. In a similar fashion to the ASGS method, it is possible

to symmetrize the global stiffness matrix using the secant constitutive equation (3.4).
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Chapter 5

Failure under mode I loading

5.1 Introduction

This chapter deals with the application of the mixed € — u strain-displacement finite
element method to problems involving failure under mode I loading. In particular,

examples of the 2D and 3D pull-out tests on plain concrete specimens are addressed.

Mode I fracture, also known as opening fracture mode, is one the most commonly
encountered failure mechanisms in civil engineering materials at their ultimate state.
This kind of failure is associated with rock-like and glass-like materials such as
concrete, ceramics and Plexiglass, which have a very low resistance to tensile stresses
compared to their compression strength. In nature, very porous materials also fail
due to crushing of the internal structure under mode I compression: typical examples
are ceramics, rocks (sandstones and limestones), human bones and weak layers of
snow hoar crystals. Many of the mentioned materials show highly brittle behavior,
with abrupt and very little inelastic deformation due to the fact that the dissipated

fracture energy is very close to the elastic one.

From an experimental point of view, it is difficult to devise tests that stress a
body in such a way that the inelastic branch evolution is linked solely to tensile
mode I fracture. The pure uniaxial tensile test can only be performed on specimens
that are able to support the clamping force without localized failure. Indeed, various
techniques have been developed to measure the tensile strength of a material indirectly.
For example, for concrete, the indirect tensile test by Berenbaum and Brodie [228]
(also known as "Brazilian split cylinder test") is often used; it takes advantage of
the tension created by Poisson’s effect under radial compression. Alternatively, the
wedge splitting test by Brithwiler and Wittmann [229], Trunk [230], Abdalla and
Karihaloo [231] considers a volume of concrete with a central cut; each face of the

cut is subjected to a force which aims to widen the initial flaw.

Further experimental techniques are the 3-point bending tests, as realized by
Mazars et al. [232], Guinea et al. [233], Gélvez et al. [234], and the L-shaped panels,

49



5. Failure under mode | loading

tested by Winkler et al. [235]. However, all these rely on flexural loading rather than
pure uniaxial stretching to characterize the specimen. For homogeneous materials, the
correlation of peak force between flexural and uniaxial strengths is straightforward.
However, when the experiments are performed on concrete (either reinforced or not)
a sensible variation in results is found.

Additionally, it is important to note that the inelastic behavior is the result of
the complex interplay of energy dissipation, redistribution of stresses and external
forces. When a material is perfectly brittle, fracture appears suddenly after the peak
load is reached. In such cases, failure dissipates instantly the elastic energy previous
to the fracture. Conversely, for ductile materials, the peak load is followed by a
redistribution of the stresses due to the deferred unloading of the specimen as the
crack progresses. In these circumstances, the loading mode on the specimen can
change substantially. The rotation of principal stress directions or the activation
of other resisting mechanisms in the vicinity of the failure affected zone causes a
considerable change in the global experimental result. Hence, the study of the
inelastic behavior is fundamental for the proper characterization of quasi-brittle
materials and it requires a high level of accuracy.

The pull-out test is an experiment commonly used to evaluate the performance
of anchorages in concrete structures. In this test, the application of a traction force
to a steel bolt embedded in a plain concrete specimen is used for the evaluation of
the tensile strength. Also, pull-out tests have been used to determine the ultimate
slip force of rebars and adhesive compounds [236, 237].

In this chapter, the works of Dejori [238] and Thenier and Hofstetter [239] are
considered for the 2D pull-out test whereas, for the 3D version of the experiment,
the contributions by Areias and Belytschko [240], Gasser and Holzapfel [241] and
Duan et al. [242] are taken into account. The aim is to demonstrate that the use of
an accurate and reliable numerical method for the computation of localization and
failure is fundamental for both the study of quasi-brittle materials and the assessment

of a correct experimental setup.

5.2 Plasticity in small strains

Before entering in the discussion of Rankine’s failure criterion and for sake of
completeness, the basic framework for plasticity is presented. Within the framework
of infinitesimal deformation, the total strains tensor can be split in the elastic and

the plastic contributions as follows:
eE=€.+¢g (5.1)

Hence, in plasticity, Cauchy’s stress tensor is computed as:
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oc=Cp:(e—¢p) (5.2)

The elastic space of admissible stress E, is defined as:
E, = {o € RI™m | £ () <0} (5.3)

where the scalar function f (o) represents the yield surface and, for an admissible

stress tensor, its value is less or equal to zero.

The evolution of the yield surface can be accounted for introducing the a set of
internal variables. Defining the scalar function ¢ as the isotropic softening stress-like

variable, E, reads:
Es = {(0,0) € R"™ ™ xR| f (0,q) < 0} (5.4)

The function ¢ depends on the conjugate (strain-like) variable . Frequently, the

softening stress-like variable is assumed as linear:

_Hsg 0§§<%

q(§) = (5.5)
0 % <€E<
or exponential:
72HS£
0(© =0, (1- e ) (5.6)

where Hy is the parameter that controls the softening behavior and o, is the uniaxial
stress threshold.

The plastic potential function g = g (o, q) is introduced such that the evolution

of the plastic strain tensor €, and of the internal variable £ is given by:

Ep = )\agé:@:)\m
.+ 0g(0,q) (5:7)
= A7

q

where the scalar A > 0 is the plastic multiplier. This parameter must satisfy the

Kuhn-Tucker complementarity conditions [53]:
A>0 f(o,9)<0 Af(o,q)=0 (5.8)
and the consistency condition:

if f=0and A\>0 = Af(e,9)=0 = f=0 (5.9)
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Note that expressions (5.8) and (5.9) determine the cases of:

Plastic loading f=0, A>0
Neutral loading f=0,A=0 (5.10)
Elastic loading/unloading f < 0, A=0

The time derivative of the yield surface reads as:

O, 0f,_0f

_9f 0f 9q
/ 0o U+8qq_8o"

Co: [é‘ — ép] + %5{ (5.11)

Recalling the evolution expressions in (5.7) for the variables &, and ¢, last expression

reads:
_of
- o

;co:é_xﬁ:cw@mﬁ@@ (5.12)

! oo oo dq 0¢ Oq

Enforcing the consistency condition f = 0, the value of the plastic multiplier is

calculated as:

(5.13)

where the Macaulay brackets or ramp function (-) is required since A > 0 only under
a positive strain increment which satisfies the plastic loading condition. Finally, the

evolution of Cauchy’s stress tensor reads:

dg

d:CO:[é—ép]:Cozé—}\Co:% (5.14)
and, substituting the expression of \, it reads:
Cyp: % ® (Co : OT‘Z
d:Cozé—( i) @ 6>:é:(Cep:é (5.15)

of . . 9g 9f 9q 9g
I :Cy

Jo 0q 9§ Oq
Hence, the tangent elasto-plastic constitutive tensor C, is defined as:
. of . 99
(Co:55) @ (Co: 52)

ﬂ'CO: dg _ 9f 9q g

90 do ~ Bq € g

do dq 0¢ Oq

(Cep = (CO - (516)

where ® indicates the outer vectorial product. Note that, in general, C,, is not

symmetric.
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In the case of associative plasticity, the plastic potential is equal to the yield

surface, i.e. g (o,q) = f (0,q) and the evolution equations in (5.7) read

. . 0 , .
g — Af(g);:q)_m .
. L 0f(0.9) '

In such case, the flow of plastic strains m = n is orthogonal to the yield surface and,

consequently, the plastic multiplier \is computed as:

A= <‘% o é> 5.18
9., 9f _ 0f9q0f (5.18)
9o * 0 5g q O Oq
Finally, the tangent elasto-plastic constitutive tensor becomes symmetric as:
Co:2L) @ (Cy: 2L
Cep = Co — (Co:57) (Co: ) (5.19)

of ., - 9f _ 9f9q9f

5.3 Rankine’s plasticity

In the last decades, concrete has been studied using continuum damage models
[137, 243, 244], plasticity [132, 245] or a combination of the two [61, 246, 247].
In order to study Mode I fracture, a plasticity constitutive model based on

Rankine’s failure criterion is used. It can be written as follows:
file,q) =0i —1i (&) =0 — (0y —qi (&) Vi=1,2,3 (5.20)

where all principal stresses must be contained in the elastic admissible space and, for
sake of generality, different principal directions can have different hardening/softening
functions. Figure 5.1a depicts this failure surface.

A multi-surface failure criterion such as (5.20) introduces additional difficulties
that require specific algorithms as shown by Simo et al. [248]. The boundary of the
space of admissible stresses JE,, where loading conditions are considered, is divided

in different zones:

Face: fi=0or fo=0o0r f3=0
Edge: fi=0Afo=0o0r fo=0Af3=00r fs=0Af1 =0 (5.21)

Apex: fi=0Afo=0Af3=0

For associative plasticity, the gradient of the yield surface (i.e. the vector of plastic

53



5. Failure under mode | loading
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Figure 5.1: Comparison of the (a) original and (b) modified Rankine’s yielding
surface in the Haigh-Westergaard space. The original criterion can be recovered from
the modified one by setting the parameter ¢ = 0.

flow) is undefined in the cases of edges and apex. To avoid this issue, it is possible
to devise a return mapping strategy that solves a set of equations rather than a
scalar condition. Likewise, other typical algorithmic steps, such as computing the

evolution equations and updating the failure surfaces, have to be generalized to a

multidimensional version which results in a larger database for historical variables.

Furthermore, when edges and apex are sharp, the tangent constitutive matrix is

frequently ill-conditioned.

To avoid these computational issues, it is possible to regularize the sharp edges of

the failure surface with a quarter of cylinder and the apex with an eight of a sphere.

Hence, the three failure surfaces are approximated by a continuous and derivable
scalar function. Let us consider the curvature radius p of these regularization surfaces
defined as a fraction ¢ € [0, 1] of the uniaxial threshold:

p(c,q(§)) =cloy—q(§)) (5.22)

The modified Rankine yielding criterion is defined as:

/ (070’(] (6)) = \/<f1 (Cv 0,4 (5))>2 + <f2 (Ca 0,9 (5)»2 + <f3 (C’ 0,9 (5)»2*/) (Ca q (5))
(5.23)

where f; (¢,0,q(§)) is the i-th uniaxial yield function defined as:

file.o,q(©) =o' — (1~ ¢)(ay —q(§)) (5.24)

Figure 5.1b shows the proposed modification to the failure surface.
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From a computational standpoint, the modified Rankine yield criterion allows to
deal with scalar quantities rather than vectorial ones, which increases the efficiency

of the return mapping algorithm. Indeed, defining:

Vi(e,0? + f2(0,0) + f3(0,)°

(5.25)

the evolution equations for the continuous case can be compactly written as:

3
= 80'@-
g i=1 do

(5.26)

3
e~ (cra-oX fea)
i=1
Since f (¢, 0, q) in (5.23) is continuous and smooth, the gradient of the yield surface
is also continuous. Therefore, it is possible to implement a Newton-Raphson scheme
in order to have a more efficient numerical computation of the plastic multiplier.
As regards the computation of the elasto-plastic tangent constitutive matrix,
the proposed approximation is less convenient than the original version. In the
uniaxial case, an analytical form of the elasto-plastic constitutive matrix can be easily
computed and it corresponds in both original and modified models. However, when
dealing with the multi-surface case, the two algorithms do not coincide anymore in
this respect. In the case of the original Rankine model, the multi-surface tangent
matrix is a linear combination of the single-surface ones. Contrariwise, in the case
of the modified Rankine model, it is necessary to compute explicitly the first and
the second order derivatives of the yield surface function in (5.23). Not only the
analytical expression is difficult to handle, but also the implementation is very prone
to coding errors. Nevertheless, the exact differentiation can be substituted by a
finite difference numerical scheme to compute the tangent elasto-plastic constitutive

tensor:
o (E + héz) - 0’(6 — hél)

2h

where é; is the unit vector of the i-th component of the stress tensor.

A

(Cep e, =

(5.27)

Such computation requires the evaluation of multiple return mapping procedures
given by the perturbation of each single strain component. However, this method
has second order accuracy and converges to the exact differentiation result for small
enough perturbations. Moreover, it allows to create a secant-like matrix for stresses
in the vicinity of edge or apex zones. In turn, this provides a more robust alternative

to a possibly ill-conditioned constitutive tangent matrix.

55



5. Failure under mode | loading

5.4 Softening behavior

In a softening process, the energy dissipated by the inelastic behavior is linked to
the fracture energy G [138], defined by unit surface. When using a plastic model
defined in terms of stress and strain, the dissipated plastic energy %, is defined by
unit volume. In the discrete FE setting, these two definitions are related through a

characteristic length [.,, which depends on the resolution of the discretization:

_ G

/8
P lch

(5.28)
The size of the strain concentration band depends on the finite element technology
used, as pointed out by Cervera et al. [5]: irreducible finite elements, due to the
discontinuous strain field, provide a concentration band within a single element span
whereas in the € — u mixed FE formulation, with inter-elemental continuous strain,
the slip line spans two elements. Consequently, the characteristic length [, is taken
accordingly. In the plastic model, the uniaxial stress threshold function has been
defined as 7 (§) = o, — ¢ (&) from (5.23) and recalling the evolution of the plastic

strains (5.26), the rate of plastic work is computed as:
Wy=0:6,=1(6)¢ (5.29)

From the expression of the hardening/softening stress-like function ¢ (§), either linear

as in (5.5) or exponential as in (5.6), the total plastic work is calculated then as:

t=oco =00 . .2
Vo= [ “Hpat= [ Treé= gt (5.30)
Now, comparing expressions (5.28) and (5.30), the parameter Hg can be computed
as:
o~ gl (5.31)
Hg = -Z—len = Hslen :
2Gf C C

where the parameter Hg depends only on material properties.

5.5 2D pullout tests

In the referenced 2D pull-out tests [238, 239], a T-shaped flange is embedded in a
panel of plain concrete (Figure 5.2). The experiment consists in applying a vertical
traction to the steel bolt until a fracture is produced and a volume of concrete
material is detached. The unreinforced panel is restrained from vertical motion by
two pairs of steel rods which are placed in the vicinity of the two ends of the panel.
In the experiment, horizontal forces are not expected. Consequently, the movements

in the remaining two directions are limited by the friction exerted by the panel on
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Figure 5.2: Test setup in [238, 239]: (a) geometry and (b) detail of the experimental
stand.

the base of the test apparatus.

Despite a quite simple setup, the experimental results show significant differences
across the specimens. In particular, two main families of outcomes are apparent.
When the load is perfectly centered, a quasi-symmetric cracking pattern is observed
in the vicinity of the flange as presented in Figure 5.3a. The angle of fracture of
almost 45 degrees suggests that failure appears due to shear loading on the portion
of concrete in contact with the flange. Moreover, due to symmetry, the contact
between the top surface of the embedded flange and the concrete does not create
any unbalanced horizontal force. Since a small amount of sway in the load as well
as slight variations in the concrete strength (either due to quality or aggregates) is
expected, the fracture pattern is not exactly symmetric. Moreover, in this case, the
solution does not depends on the stiffness of the bracing frame since it will provide
centered reaction to the force applied from the flange.

Contrariwise, in the asymmetric case, the experimental outcome shows on one

(a) (b)

Figure 5.3: Test results in [238]: (a) symmetric and (b) asymmetric crack patterns.
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side a single fracture and on the other side a bifurcating pattern, as reported in
Figure 5.3b. It is crucial to characterize the sequence of cracking in a detailed way.
Initially, owing to a non centered flange load or considerable heterogeneity in the
concrete, the load creates a fracture on one side of the panel. From the experiments,
it starts from the contact zone, where significant friction at the interface is expected,
and it propagates in a clear direction to the bracing support. This means that, with
respect to this side of the specimen, there is a considerable reaction force given by
the steel rods on the concrete. Successively, a shift of the applied force to the less
damaged part of the specimen is observed for equilibrium reasons and this results in
a bending moment applied to the concrete. A horizontal cracking pattern suggests
that the stresses in the vicinity of the flange are vertical rather than diagonal, proving
that the bracing frame is not exerting any substantial reaction. Finally, the fracture
bifurcates in two branches and the extensive cracking concludes the test.

This experimental test has been studied numerically, with the objective of repro-
ducing the experimental outcomes and to compare the performance of the mixed
€ — u with the standard irreducible finite elements.

Firstly, the symmetric test has been modeled. As discussed before, the influence
of the bracing stiffness on the resulting 45 degrees fracture is negligible. In addition,
the boundary conditions at the point of application of the force of the bolt does not
constrain horizontal displacement, in line with the expected symmetric distribution

of reaction forces. Consequently, two models are calculated, one with stiff and

—1

a) ¢/u FEM - Bracing b) e/u FEM - No bracing
) Std FEM - Bracing ) Std FEM - No Bracing

Figure 5.4: Equivalent plastic strain contours with mixed (top row) and the standard
(bottom row) finite element formulations in the pure shear case.
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(a) (b)

Figure 5.5: Comparing the symmetric pattern in the case of free horizontal sliding of
the steel flange.

(a) (b)

Figure 5.6: Comparing the symmetric pattern for the case of effective vertical
constraint of steel bracing and constrained horizontal motion of the steel flange.

-
(a) (b)

Figure 5.7: Comparing the bifurcation pattern in the asymmetric case.
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another with loose bracing. The objective of this numerical analysis is to study
the sensibility of the finite element formulations to the frame stiffness in a problem
where the symmetric boundary conditions provide an analytical solution. The
comparison of outcomes is reported in Figure 5.4. The results show that the mixed
formulation yields similar localization patterns for the two cases. In both models,
the localization band is oriented at 45 degrees, confirming insensitivity to frame
stiffness and mesh orientation. Instead, the standard displacement-based finite
element provides substantially distinct results. In the case of effective bracing, the
irreducible formulation shows a fracture oriented in the direction of the constrained
zone. Contrariwise, when the bracing is not effective, the computed crack is initially
growing diagonally but, shortly after, it follows the mesh orientation.

This numerical example proves that the error introduced by the lack of accuracy
in the irreducible method is substantial enough to pollute the solution. The change
in numerical results is significant and highlights the intrinsic limitations of the
displacement-based finite elements. On the contrary, the mixed € — u formulation
provides the required numerical capability to solve consistently localization and
failure problems.

Next, the mixed strain-displacement formulation is applied to the asymmetric
fracture pattern. Figure 5.5 shows the previously studied symmetric solution, whereas
Figure 5.6 and Figure 5.7 present the two different outcomes of the asymmetric case
compared with the actual tests. The agreement between numerical and experimental
results is remarkably good. This is obtained even if the Rankine plasticity criterion
does not take into account crushing due to compressive stresses.

When the steel-concrete contact is engaged and the bracing is effective, the
fracture shape starts from the flange and grows in the direction of the support
as shown in Figure 5.6a. The corresponding experimental result depicts a similar
behavior, although the variability of concrete causes a little deviation in the crack
path (Figure 5.6b).

In the case of ineffective bracing, the numerical solution suggests an initial
horizontal localization followed by a bifurcation as presented in Figure 5.7a. The
complex shape of this crack is also found in the experiment (Figure 5.7b). On the
one hand, the mixed strain displacements formulation provides a bifurcation pattern
without the use of any additional technique. On the other hand, this finite element
technology achieves very accurate results, which allow a precise investigation of the

experimental tests and their outcome.

5.6 3D pullout tests

The 3D pullout test in analysis has been previously studied numerically by Areias
and Belytschko [240], Gasser and Holzapfel [241], Duan et al. [242] and Armero and
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Figure 5.8: Geometry of the 3D pullout test, from Armero and Kim [249].

Kim [249]. It consists in a cylindrical concrete anchorage with an embedded steel bolt
as shown in Figure 5.8. The specimen is constrained from movement by a circular
steel hoop running around the external circumference of the top face. Due to the
axial symmetry, the solution to this mechanical problem is a conical fracture surface
which starts in the vicinity of the steel bolt and progresses outward and upward in a

diagonal fashion with a circular front.

This example is studied with three different meshes which are characterized by

Figure 5.9: Deformed concrete block with the crack opening (left) and conical crack
surface (right) resulting from the mixed formulation analysis.
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decreasing element sizes. The objective is to demonstrate the convergence of the
mixed strain displacement formulation when reducing the element size and compare
the results with the irreducible FE.

In Figure 5.9, the final deformed model and the failure mechanism obtained with
the finer mesh are presented. As expected, the crack surface is axisymmetric and the
failure propagates from the bolt insert to the points constrained by the steel hoop.
A comparison of the irreducible and mixed formulations results across different mesh

sizes is presented in 5.10. Two facts are observable:

(a) the mixed formulation provides convergent results; even relatively coarse meshes
can produce fairly accurate results, in good agreement with reported numerical
simulations [240-242];

(b) the standard formulation is severely affected by the discretization adopted, both
qualitatively and quantitatively; the corresponding curves show significant

over-dissipation.

Even if the plots of the reaction force may appear very similar, it is clear
that a nonlinear mechanical problem which involves localization of strains can be
resolved in a more consistent and accurate fashion using a coarse mesh with the
mixed displacement-strain formulation rather than a finer mesh but the standard
displacement-based one. The € — u finite elements captures the correct failure
mechanism and the corresponding peak and post-peak behavior with relative coarse
meshes. This fact represents a substantial proof of the higher accuracy of the method,

and it is an important consideration regarding the computational cost-effectiveness.
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Figure 5.10: Reaction versus displacement curve for the 3D pullout test.
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Chapter 6

Failure under mode II loading

6.1 Introduction

This chapter presents a set of numerical benchmarks for compressible and incompress-
ible plasticity employing von Mises and Drucker-Prager yield criteria and associative
flow rule. The mixed € — u formulation is compared with analytical solutions and
with other finite elements technologies, namely the w displacement-based irreducible
formulation and mixed uw — p displacement-pressure one.

Mode II fracture, or shearing fracture mode, is caused by shear acting in the
plane of the strain localization. Under these conditions, the creation of a slip line or
surface, is observed.

Rupture of metal is historically linked with mode II fracture. Tresca (1864)
and von Mises (1913) developed failure criteria based on the shear stress values for
metal tubes under high pressure. A macroscopic phenomenon frequently observed in
uniaxial tests of low-carbon steel are Liiders lines [250]. In the inelastic deformation
range, a series of diagonal bands, caused by the creation of microscopical sliding
planes, appears progressively leading to failure (Figure 6.1).

Likewise, strength of soil and granular materials relies on the friction force exerted
between the grains. In turn, this depends on the roughness of the material and on the
stress state. When the applied shear reaches the maximum static friction force, these

materials have the tendency to show a sudden reduction of strength. An example of

(Q) 0045 mm thick (b) 1-200 mm thick

Figure 6.1: Appearance of Liiders bands in steel specimens subjected to uniaxial
traction force, from Fujita and Miyazaki [251].
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Figure 6.2: Appearance of diagonal shear bands in a sand specimen during a triaxial
test, from Alshibli and Sture [252]

shear bands in a sand specimen during a triaxial test is depicted in Figure 6.2.

Failure under mode II loading is also encountered in materials whose volume
does not change upon deformation. In elasticity, this condition is characterized by
the Poisson’s ratio equal to 0.5 and an infinite bulk modulus. In plasticity, the von
Mises (J2) failure criterion describes materials which present pure deviatoric inelastic

strains.

The strong form of the incompressible problem, whether in solid or fluid mechanics,
does not allow an irreducible format of the field equations insomuch as it is not
possible to enforce incompressibility solely with the equilibrium equation in terms of
displacements. Conversely, it is convenient to split the stress tensor into volumetric
and deviatoric contributions. Then, both the balance of momentum and mass
conservation equations are modified accordingly. This format is suitable for both

compressible and incompressible problems [2].

From a numerical point of view, the standard irreducible finite elements show
locking of the pressure in the analysis of quasi incompressible materials. As a result,
the mean-stress field is usually characterized by a checkerboard solution with highly
oscillating values across the mesh. To solve this issue, a mixed formulation in terms

of displacements and pressures is required.

Among the numerous contributions on the topic of isochoric plasticity, Simo
[253, 254] showed that the problem can be tackled using a penalty function for
the incompressibility constrain. Later, Pastor [220, 221] introduced a mixed finite
element formulation in the variables of displacement and pressure for low order
elements. In the work published by Chiumenti et al. [222], the mechanical problem
in incompressible elasticity was solved using triangular and quadrilateral low-order
elements with equal interpolation were chosen for u and p. In order to circumvent the
Inf-Sup condition, Variational Multiscale Stabilization using Orthogonal Subscales[16,
199] was introduced. Then, the method was extended to J2 plasticity in Cervera

et al. [1] and Cervera et al. [4] and J2 damage in Cervera et al. [3].
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In this work it is shown that the displacement-pressure finite elements show a good
performance when dealing with problems involving isochoric deformation. However,
the u — p FE has the same accuracy as the irreducible formulation in compressible
situations. In fact, the displacement-pressure elements compute the deviatoric strains
by discrete differentiation of the displacement vector. Consequently, lack of precision
in localization problems and mesh biased solutions are to be expected.

The mixed € — u strain-displacement finite element computes the strains in weak
form. Therefore, it provides enhanced kinematics and improved accuracy, both
in elasticity and plasticity. Indeed, the proposed formulation allows substantial
improvements in the analysis of localization of strains and failure of solids. The
2-field formulation can also be expanded to a mixed 3-field s — u — p formulation
[225] in terms of deviatoric stress, displacement and pressure, to be able to reach the

incompressible limit.

6.2 Drucker-Prager’s plasticity

The Drucker-Prager failure criterion may be constructed as a linear combination of
a J2 von Mises and a Pure Pressure criterion. The von Mises yield criterion states
that a material reaches the elastic limit when the equivalent octaedral stress equals
the uniaxial admissible threshold, whereas the pure pressure yield criterion relates
the hydrostatic pressure with an admissible pressure. The linear combination of the

two criteria is done by introducing the tangent of the friction angle ¢:
1
£(o.0) = [\3a(e) (@] +a[5he) - (©] o =0 (o)

where a determines the orientation of the failure surface, 74 (¢) and P (¢) are the
shear and pressure threshold values respectively which, in turn, depend on the
stress-like hardening/softening function ¢ (£). In the space of principal stresses, the
Drucker-Prager failure surface is a cone which symmetry axis is the hydrostatic one
(Figure 6.3a). On the (p, J2) plane, it is a line with a slope equal to tan ¢ (Figure
6.3b). The point (pmin, 0) is the vertex of the cone, the state of minimum allowed
mean stress. For the geotechnical engineering applications addressed in the following,
the orientation of the Drucker-Prager cone is set to be open for triaxial compression
(a = 1) and crushing-like failures are not considered (r? = 0).

Defining the interpolation coefficient p = 1/(1 + tan¢) and the shear stress
threshold as r¢ (&) = o, — ¢(£), the failure surface reads:

3 1
flo.g)=p (\@ |deva — (o - q(»s))) ta(l—p)sro=0 (6.2
For associative plasticity, the plastic potential coincides with the yield surface
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Figure 6.3: Drucker-Prager elastic domain in (a) the Haigh-Westergaard principal
stress space and (b) in the (p, J2) plane

f (o, q) as shown in expression (5.17) and the evolution equations for the plastic

variables read:

e = 0f(0.9) _ Alp\/ﬁ devo  a(l—p),

do 2 ||deve|| 3
(6.3)

dq =

where A is the plastic multiplier or plastic consistency parameter. Note that the
flow of plastic strains is the sum of a volumetric and deviatoric part. Owing to the
orthogonality between these two tensors, it is possible to perform the computation
of the plastic multiplier and, consequently, of the other quantities involved in the
return mapping algorithm by decomposing and computing separately the deviatoric

or the volumetric parts.

As result of the volumetric-deviatoric decomposition, the tangent elasto-plastic

constitutive tensor is written as:

[02G\/3na+a (1 - p) K1] @ [02G /304 +a (1 - p) K1]

Cep =Co — 7 (6.4)
where K and G are the bulk and shear elastic moduli, Z is:
d
7 =|(1-p)° K+ p*3G| ~ p3‘il(§) (6.5)
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and ny is the unit vector in the deviatoric component of the stress:

deve

ng = (66)

||ldever|]
The deviatoric and volumetric contributions in the constitutive tensor are easy to
identify. The coefficient p combines linearly the shear and the pressure components

of the plastic flow.

6.2.1 Apex return mapping treatment

The apex of the cone represents the maximum admissible pressure and it is the only
singular point in the Drucker-Prager plasticity surface. The part located outside the
admissible stress space can be divided in two zones by considering the orthogonal
plane to the yielding surface passing through the apex. When the failure criterion
is smooth and continuously differentiable, the plastic flow is well defined. However,
at the apex, the flow vector is not uniquely defined and, as it was presented for the
Rankine plasticity model, the singular point case requires a special treatment. Thanks
to the orthogonality between the deviatoric and volumetric parts, it is possible to

identify the “apex” cases by checking when the condition p = Py, is satisfied.

6.2.2 Softening behavior

As it was discussed for the Rankine model, the softening behavior has to be related
to the characteristic length I, (connected to the mesh resolution) to be consistent

energy-wise. Once again, the dissipated plastic energy per unit volume reads:

G
Wy =L (6.7)
lch
In the plastic model, the rate of plastic work is computed as:

Wy=0:¢,=65,=ar(£)E (6.8)

where & is the equivalent Drucker-Prager stress:

5= oyf2 ldeva |+ (1= plat v tan (@) = plo,—0) =1 (O (69)

and &, is the rate of equivalent plastic strain:

&= l&ll = A Wé ta(l- p>] (6.10)
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With respect to the Rankine failure criteria, in the Drucker-Prager model the
additional scaling factor a appears and it depends on the friction angle,
3 1-p

=/o+—F 11
o) 2+p (6.11)

Similarly to expression (5.30), the total plastic work reads:

t=oc0 | §=00 . o 2
W, = %dt:/ ar(§)é=a-—2 (6.12)
£=0 2Hg

and the parameter Hg reads:

2

2Vl = Hlo (6.13)

Heo —
S a2Gf

Once again, the parameter Hg depends only on material properties, whereas I,
depends on the resolution of the discretization. Note that, with respect to the

softening parameter in (5.31), the only modification is given by the scalar factor .

6.3 Prandtl’s punch test

In the first numerical example, the irreducible standard-based, the mixed diplacement
pressure u — p and the mixed strain-displacement € — u finite elements are compared
in Prandtl’s punch test. Let us consider a rigid shallow foundation with uniform
downward displacement into a soil in undrained conditions. Thanks to the symmetry
of the problem, the numerical model consists of half of the domain. Therefore,
possible asymmetric solutions of the problem are not accounted for.

The problem has a known analytical solution for the case of rigid-plastic soil,
with a friction angle of ¢, which is reported in Figure 6.4 [255]. Three different
zones can be defined in the solution. Below the foundation, a first zone consists of a
triangular wedge, with an angle of 45 4 ¢/2 degrees with respect to the horizontal
line of the shallow foundation. Its response is elastic while sliding along the interface
with the second zone. The second wedge is defined by the previous interface and
a slip line which is orthogonal to the first one. The lower boundary of the second
zone is given by a logarithmic spiral shaped slip line. This zone is characterized by a
rotation movement around point A. Finally, the third zone is a symmetric triangular
wedge which slides along a line inclined at 45 — ¢/2 degrees.

Firstly, the problem is studied for the case of friction angle ¢ = 0. With
respect to the theoretical solution, the numerical analysis considers elasto-plastic
behavior instead of rigid-plastic. The mesh is composed by linear triangular elements
orientated mostly in the -60/0/460 degrees directions. The resulting displacement

and equivalent plastic strain fields are presented in Figure 6.5. The irreducible
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N - 111
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Figure 6.4: Prandtl’s punch theoretical solution from Taylor [255]

formulation shows strongly mesh-biased localization, with the direction of the slip
lines orientated with the mesh. The incompressible nature of plasticity causes the
locking of the pressure and, at the same time, the lack of accuracy is given by the
discontinuous deviatoric strain field computed from the nodal displacements.

The mixed displacement-pressure u — p finite element presents a better solution
than the irreducible formulation, with the displacement field substantially identical
to the theoretical one. The localization depicted in the equivalent plastic strains plot
presents a slip band that is one element thick, with a sharp jump in value. Still, a
slight mesh dependence is observed in the localization band.

Finally, the mixed strain-displacement € — u provides a good solution in terms of
displacements, whereas the equivalent plastic strain field is continuous rather than
discontinuous. In particular, the localization band shows a linear variation spanning
across a two elements band. The mesh objectivity of the result is appreciable, with
the localization band crossing elements irrespectively of their orientation.

Secondly, the cases of ¢ = 0,15,30 degrees are analyzed with the mixed strain-
displacement formulation. The objective is to assess the Drucker-Prager constitutive
model with respect to the analytical solution given in Figure 6.4. In this analysis a
uniform mesh of square elements is used.

The first case, for ¢ = 0°, is computed in order to verify the previous result
with respect to two different meshes. As it is possible to see in Figure 6.6a, the
localization band calculated from the quadrilateral mesh coincides with that of the
triangular one. The angle of the localization band which defines zone I is clearly at
45° as expected from the analytical solution. However, the wedges corresponding to
zones 11 and III are not identified due to the elastic components.

In the case of ¢ = 15° (Figure 6.6c), the region involved in the localization process
becomes larger, with a higher angle of the slip line for the elastic wedge and for the
sliding zone III, as expected. An almost vertical failure line appears starting from
the edge of the shallow foundation to the lowest point of the main slip line.

Finally, the case for ¢ = 30° is shown in Figure 6.6¢c. The solution is characterized

by a clear definition of the three wedges. The elastic zone is half of an equilateral
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) Irreducible - Displacements ) Mixed u — p - Displacements ) Mixed € — u - Displacements
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Figure 6.5: Solution of Prandtl’s punch test

triangle as it shows a localization angle of 45° 4+ ¢/2 = 60°. Then, the rotation wedge
has a spiral-like slip line, spanning approximately 90°. Finally, the third zone is a
triangular wedge with linear slip lines.

It is shown that the mixed € — w is able to provide accurate and rather complex
failure mechanisms. The agreement with the theoretical solution is remarkable and
it shows a significant mesh objectivity. In addition, the method is able to handle
multiple localization lines at the same time. This capability is difficult to achieve
with numerical techniques such as crack tracking. Nevertheless, with the proposed

formulation, this is achieved without the need of additional modifications.
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Figure 6.6: Prandtl’s punch problem with Drucker-Prager plasticity: equivalent
plastic strain for an internal friction angle ¢ = 0°,15°, 30°

6.4 Hollow plate test under tension

The second example consists of a hollow steel plate under tension. In Figure 6.7, the
geometry of the problem is presented and, for the case in analysis, the parameter r = 1.
The single hole is centered so that only a quarter of the domain is discretized. Owing
to its double symmetry, the left and bottom contours are constrained respectively in
the horizontal and vertical displacements. A vertical displacement g is imposed on
the top of the plate.

The constitutive model is Drucker-Prager with four different friction angles: 0°,

15°, 30° and 45°. The solution of the problem is a single slip line starting from the
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side of the hole and moving diagonally to the unconstrained side of the specimen.
An analytical expression for the localization angle is obtained from Cervera et al.
[155] and Wu and Cervera [256].

The results in terms of equivalent plastic strain field are given in Figure 6.8
whereas the computed localization angles are presented in Table 6.1. Remarkable
good agreement with the analytical results is observed. The slight variation in their

values is due to the resolution of the discretization and to boundary effects.

Plane strain  Analytical [155, 256] ~ Numerical

$=0 O10c = 45.00° O100 = 44.32°
¢ =15 O10c = 40.53° O10c = 39.30°
¢ =30 O10c = 35.07° O1oc = 33.90°
¢ =45 O10c = 26.12° B10c = 26.90°

Table 6.1: Results for a the hollow strip under tension: comparison of the analytical
localization angles and numerical ones computed with the € — u formulation.

Figure 6.9 presents the force-displacement curves for each studied friction angle.
The steepness of the response after the peak load depends on the friction angle: the
lower the value of ¢, the faster the softening. Note that, in the proposed Drucker-
Prager constitutive law, the softening effects are applied directly to the deviatoric
part and, for this reason, higher angles of friction have a less steep inelastic branch.

Finally, Figure 6.10 presents a comparison of the numerical results obtained in
the case of mixed displacement-pressure and mixed strain-displacement formulations.
Results for the mesh sizes h = 0.25 and h = 0.15 are given and the dissipated energy
for the complete J2 (¢ = 0) plastic process is compared.

The theoretical solution suggests a perfectly straight localization band orientated
at 45°. The energy dissipated by such solution is 5091 J. By integrating the area
under the reaction-displacement curve for the € — u formulation, the work done
by the external forces is 5210 J. Performing the same computation for the v — p
analysis, the total work equals 6723 J. Even if the solution is similar in terms of failure
mechanism and localization angle, the displacement-pressure formulation is sensibly
more dissipative than the theoretical solution (32.02% difference). Contrariwise, the
mixed strain-displacement finite element solution is very close to the analytical value,
with just a difference of 2.33%. The enhancement in global post-peak behavior is
given by the higher accuracy in the computation of the strains.

It was observed in the previous chapter that the proposed formulation has a
convergence rate with respect to the mesh size to a continuum solution which is
sensibly faster than the irreducible method. In this example, similar conclusions

apply with respect to the u — p formulation.
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Figure 6.7: Geometry of the steel hollow plate under tension. In this case, the
parameter r = 1.

(a) (b)

Figure 6.8: Localization of strain in a hollow strip under tension with ¢ =
0°,15°,30°,45°.
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Figure 6.9: Force-displacement curves for the singly perforated strip under tension
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Figure 6.10: Force-displacement curves for the hollow strip under tension with the
u — p and € — v mixed formulations.
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6.5 3D cylinder test under tension

The following example consists in a 3D thin-walled cylinder with a small hole in the
front under tension (Figure 6.11). The cylinder is stretched from the top with an
imposed displacement ug. Once again, because of double symmetry, the modeled
domain is one quarter of the complete cylinder. The thin walled cylinder is in a state
of uniaxial tension, since no hoop or radial stresses appear. The post-peak behavior
of the material is described by J2 plasticity (¢ = 0°).

The numerical analysis has been performed with the mixed e —u strain-displacement
and mixed u — p displacement-pressure finite element formulations, using the iterative
Newton-Raphson scheme and the same convergence criteria on a mesh of triangular
prisms. The cylinder is discretized with a single element in the radial direction. The
results in terms of total displacements, equivalent plastic strain, pressure and princi-
pal strain vectors are presented in Figure 6.13 whereas the global force-displacement
curve is shown in Figure 6.12.

Although both numerical methods predict correctly the global failure mechanism
with a helicoidal slip line at about 35°, typical of a plane stress problem, the local
solutions are considerably different. In the case of the € — u elements, a single
localization line appears, with a clear concentration of strains in the slip band.
The pressure field is also homogeneous. On the contrary, the solution given by

the u — p method shows a spurious stepped localization. This result is due to the

o L L L T L L T

Figure 6.11: Geometry and computational mesh for the 3D cylinder test under
tension
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6. Failure under mode Il loading

discontinuous approximation of the deviatoric strains, that results in a physically
unrealistic numerical solution. Note that this outcome cannot be improved by
refining the mesh since the error norm of the local stress in the displacement-pressure

formulation does not depend on the element size (see [5, 6]).
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Figure 6.12: Comparison of force-displacement curves for the w — p and the € — u
mixed formulations.

In the force-displacement curves of Figure 6.12, the overly dissipative behavior of
the u — p method with respect to the € — u finite elements is clearly exhibited. The
higher accuracy of the proposed mixed formulation is due to two correlated facts:
(i) the independent solution of the strain field allows the stresses to have at least a
linear order of convergence with respect to mesh refinement; (ii) the continuity of
the strains enforces the continuity of the localization band, which, in turn, precludes

the appearance of spurious discontinuous solutions.
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(8)

Figure 6.13: Comparison of solutions of the 3D cylinder under tension with the
u — p and the € — v formulations. Mixed displacement-pressure solution for (a)
vertical displacements, (b) deviatoric plastic strains, (c) pressure and (d) principal
strain vectors. Mixed strain-displacement solution for (e) vertical displacements, (f)
deviatoric plastic strains, (g) pressure and (h) principal strain vectors.
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Chapter 7

Failure under mode 111 and

mixed mode loading

7.1 Introduction

This chapter is dedicated to the application of the proposed € — u strain-displacement
formulation to problems involving failure under mode III and mixed mode loading in
quasi-brittle materials.

Mode III fracture is also known as tearing mode. With respect to the crack path,
mode I is characterized by orthogonal separation whereas mode II by the sliding of
the two crack surfaces. In turn, mode III is given by the relative rotation of said
surfaces. A shear force acting parallel to the plane of the crack but orthogonal to
the crack propagation direction results in shear stresses arising parallel to the crack
front. This loading condition causes a mode III failure mechanism. Tearing is also
known as out-of-plane shear loading.

Mode III loading occurs in non-uniform torsion and asymmetrical bending, where
shear stresses appear orthogonal to the plane of the applied forces. However, having
experimental tests which consist of pure mode III loading is not straightforward.

In cementicious materials (such as concrete) subjected to pure shear, aggregate
interlock and other friction effects occur in the planes subjected to shear, bringing
about a significant shear strength. Contrariwise, planes at 45° with respect to the
shear stress are subjected to (pure) tension. As the aggregate-cement paste interface
and the paste itself are characterized by a low tensile strength, failure in Mode I
along this plane is far easier than in Mode II by sliding or Mode III by tearing.
Consequently, even in the case of Mode II or III loading, it is common to have failure
in Mode I.

Moreover, due to the eventual different orientation of the load with respect to the
fracture, a rotation of the stress field from mode II/III to mode I can be observed.

The simultaneous application of various loading modes is called mixed mode loading.
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7. Failure under mode Il and mixed mode loading

Likewise, the onset of fracture due to the combined effect of shear (mode II/III) and
tension (mode I) is called mixed mode fracture.

There is a vast literature regarding mode III and mixed mode testing of quasi
brittle materials [257-261] and the corresponding theoretical treatment [262-265].
Although the use of Linear Fracture Mechanics in such cases effectively provides useful
quantitative assessment of the stress intensity factor and the strain energy near the
tip of an evolving crack, it has limitations when dealing with elaborated geometries
and it does not provide either the crack shape or the global force-displacement
behavior. Hence, a numerical method such as the Finite Element Method is required
to model a complex 3D problem with cracks exhibiting twisting rotation.

In the following, the behavior of quasi-brittle materials under mixed mode
loading conditions is studied using Rankine’s and Drucker-Prager’s failure criteria,
implemented in both plasticity and isotropic continuum damage format. As it
was presented in the previous chapters, Rankine’s surface is used to model crack
formation due to tensile stresses whereas Drucker-Prager’s one is used for materials
whose maximum shear stress is pressure dependent. In this way, the transition from
mode III to mode I fracture can be studied by means of Rankine’s failure criterion,
whereas Drucker-Prager’s constitutive law allows the study of the transition to mode
IT. Rankine’s model was presented in Section 5.3 and depicted in Figure 5.1 while
Drucker-Prager’s one was discussed in Section 6.2 and sketched in Figure 6.3.

The plasticity framework provides directional inelastic behavior, with the asso-
ciative plastic flow which is orthogonal to Rankine’s and Drucker-Prager’s failure
surface. Instead, the isotropic continuum damage model provide a reduction of the
carrying capability without the dilatancy effect of associative plasticity. A summary
of the constitutive models used is presented in Table 7.1.

In the next sections, three example tests on beams with a 45° skew notch at the

midspan are presented: (a) a three point bending test of a PolyMethyl MethaAcrylate

Associative plasticity Isotropic continuum
model damage model

Constitutive equation c=C:(e—¢gp) c=(1-d)C:e
Softening function q=q(§)
Inelastic criterion flo,q)=7(o) = (0y —q)
Internal variables C % . i9f S B q
evolution §=A & =25 §=A d(§=1- ¢
Loading-unloading A>0, f(o,q) <0, Af(o,9) =0
conditions

Table 7.1: Summary of associative plasticity and isotropic continuum damage models.
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7. Failure under mode Il and mixed mode loading

(or Plexiglas) beam, (b) torsion test of a prismatic beam with square base made of

plain concrete, (c¢) a cylindrical beam under torsion as well.

7.2 Three point bending test

A PolyMethyl MethaAcrylate beam with a 45° skew notch at the midspan undergoes
a three point bending test [260, 266]. The geometry of the test is shown in Figure
7.1. The initial diagonal flaw is responsible of asymmetric bending which results
in mode III loading. However, since the Plexiglas tends to fracture due to tensile
stresses, the characteristic behavior found in the test is a transition from mode III to
mode I. As the experiment progresses, a rotation of the crack front is appreciable and

the resulting failure surface aligns with the midspan plane of the beam (Figure 7.2).

thl

‘ TIE
AN
/77E7 L. L.

A
Y
A
Y

'y
L 4

t Ty
4 /‘f\‘.

Figure 7.1: Geometry of the three point bending test on a skew-notched beam.

The numerical analysis aims to compare the results from the mixed strain-
displacement € — u and the u standard irreducible finite elements. In order to
take into account the nonlinear mechanical behavior, Rankine’s failure criterion
is implemented in both plasticity and isotropic continuum damage formats. It is
interesting to test the two constitutive model on the same numerical example since,
due to the nature of the experiment, a similar crack surface due to mode I fracture
is expected to appear independently from the two methods.

Plotting the computed isosurface corresponding to the crack surface, the closeness
of the experimental and the mixed formulation results are evident (Figure 7.2). The
crack front starts from opposing corners of the initial notch. Then, it rotates and
finally aligns with the vertical plane of the midspan of the beam.

Figure 7.3 presents a detail of the mesh used in the vicinity of the initial notch
and the resulting failure mechanism prediction of both the mixed and the irreducible

finite elements. As anticipated, the € — u provides a similar solution for both the
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7. Failure under mode Il and mixed mode loading
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(a) Experiment (b) IsoDamage (c) Plasticity

Figure 7.2: Experimental [265] and numerical (¢ — u formulation) crack surface of
the three point bending test on PMMA.

plasticity and the isotropic continuum damage cases. Contrariwise, the displacement
based FE formulation yields a significantly mesh-biased solution. In the case of
isotropic continuum damage, a single localization band appears from the notch and
propagates along the vertical direction of the mesh. However, the twisting rotation
of the crack surface is very small. Furthermore, in the case of plasticity, multiple
fracture surfaces appear and almost no rotation of the failure surface is observed. The
slight asymmetry in the localization band is due, on the one hand, to the orientation
of the structured mesh and, on the other hand, to the use of a pure tensile failure
criterion, which does not allow the crack surface to cross the compression head at

the top of the beam.

Finally, the experimental crack shape is depicted in Figure 7.4, to be compared
with the numerically computed ones. Firstly, it is possible to notice that the limited
number of elements in the direction of the crack path causes the failure surface
profile to be defined piecewise. Nevertheless, the difference between mixed and
irreducible formulations is obvious. All the cases show a crack propagating in a
diagonal fashion in the vicinity of the notch. However, as the crack grows, the
displacement-based finite elements are suddenly locked to the vertical direction as the
solution is strongly mesh biased. Contrariwise, the € — u elements predict the crack
to gradually align with the vertical direction, agreeing with the experimental tests.

Consequently, the improved kinematic capabilities of the mixed formulation allow
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region

Figure 7.3: Contour fills of major principal total strain at the front and back faces of
the beam under three point bending test.

to compute consistently the complex evolution of the failure surface without being

distinctly affected by the relatively coarse computational grid and, in particular, by

the alignment of the elements.
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Figure 7.4: Plot of the computed crack path with respect to the experimental data
from Citarella and Buchholz [267].
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Figure 7.5: Geometry and experimental setup of the tests on prismatic beam under
torsion with square cross section, from Jefferson et al. [268].
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7.3 Torsion test of a prismatic beam with square base

The following example consists in a prismatic beam with a 45° slanted notch which
is subjected to torsional loading. The test setup is illustrated in Figure 7.5. The
test is performed to evaluate the tensile strength and the post-peak behavior of
unreinforced concrete specimens. The external force is exerted by a steel frame with
four appendages. On three of these, minimal boundary conditions to avoid rigid
movements are applied. The fourth one is loaded with an imposed displacement
which provide the desired torsional force on the specimen.

It is worth noting how the slanted notch causes the specimen to be in a state of
non-uniform torsion. The sudden change in cross-section creates a concentration of
shear stresses in the vicinity of the cut. Considering tensile fracture as the main cause
for the crack appearance in the unreinforced concrete, it is possible to numerically
model this experiment with a Rankine failure criterion. In particular, it is interesting
to study the difference of results that the plasticity and the isotropic continuum
damage provide in this experimental setting. All numerical tests are performed
with the mixed strain displacement finite element method. The FE mesh has been
divided in three separate zones. Exploiting the compatibility condition, the center
part is discretized with mixed elements whereas the lateral parts and the frames
consists of standard displacement-based elements in order to significantly reduce the

computational time.

(b) (c)

Figure 7.6: Comparison of (a) the experimental outcome with the computed crack
surfaces in the case of (b) isotropic damage and (c) plasticity for the prismatic beam
with square cross section.

As it possible to see in Figure 7.6, the crack surface provided with the plasticity

and damage settings are comparable. Owing to the fact that the problem is skew-
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7. Failure under mode Ill and mixed mode loading

symmetric with regard both the mid-span and the mid-longitudinal planes of the
beam, the predicted crack surface is skew-symmetric as well. The crack starts at
the diagonal notch and propagates to the bottom of the beam. With respect to
the experimental outcome, both constitutive models predict the failure mechanism
accurately. A slight difference in the solution is given by a more curved surface in

the isotropic continuum damage with respect to the plasticity one.

(a) (b) (c)

Figure 7.7: Top views of the crack surface from (a) tests on PMMA [269], (b) isotropic
damage and (c) plasticity.

Figure 7.7 shows the computed crack shape from a top perspective. The crack
surface is clearly skew-symmetric and it is characterized by two features. The central
part is planar and it crosses the geometrical middle point of the specimen. As the
crack nears the border, its bottom profile turns, intersecting at a certain angle the
external surface of the beam. This evidences that, even if the failure is due to pure
tensile stress, there is a substantial rotation in the principal strains, typical of a
mixed mode loading condition. Moreover, skew-symmetry is kept at all times.

Although the plasticity and the isotropic damage models appear to yield almost
identical results, there is a key difference in their numerical solutions. Figure 7.8
shows the plot of the force applied to the free appendage of the steel frame with
respect to the crack mouth open displacements (CMOD) in the orthogonal and
parallel directions to the notch.

The analysis characterized by the isotropic continuum damage model presents
a very good capture of the peak load value. The subsequent inelastic branch is
characterized by a strain softening in good agreement with the experimental values.
In fact, the structure of this constitutive model implies a uniform reduction of the

all principal stresses, both tensile and compressive, upon damage.
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Contrariwise, the numerical results given by the plasticity case show an initial
stress plateau followed by a nonlinear behavior marked by an increase of the applied
force. In plasticity, the inelastic deformation grows in the direction given by the
gradient of the plastic potential which, in the case of associativity, is represented by
the failure surface itself. The corresponding reduction of the stresses depends on the
Poisson’s ratio of the material. For null Poisson’s ratio, the reduction of stresses is
oriented as the plastic strain flow, but when it is not null, significant changes occur
in the stresses in the orthogonal directions. As this orthotropic behavior emerges
during the softening process, the reduction of forces is not necessarily ensured. In the
numerical analysis of the skew notched prismatic beam under torsion, the Poisson’s
effect generates residual compressive stresses around the crack, as it can be observed
in Figure 7.9. As the boundary conditions do not allow the specimen to extend, an

increase of the longitudinal compressive force is observed as result of the cracking.

Figure 7.9: Residual principal stresses in the (a) isotropic damage and (b) plasticity
cases. Blue vectors represents compressive stress, red vectors represents tensile stress.

7.4 Torsion test of a cylindrical beam

Similarly to the previous case, this experiment consists in testing the resistance of
a cylindrical specimen with a 45° skew notch at midspan. The details of the test
geometry are presented in Figure 7.10. Although the material is plain concrete, the
experimental results in [268] report that the second batch of plain concrete for the
cylindrical beams has not been tested for Young’s elastic modulus or fracture energy.
Likewise, the loading process is performed using an equivalent steel frame with four
appendages.

Non-uniform torsion is expected to appear in this test as well. However, it is
important to notice that, if the specimen was unnotched, an imposed external torsion

would result in a uniform stress without any warping involved, due to the circular
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Figure 7.10: Geometry and experimental setup of the tests on cylindrical beam under
torsion, from Jefferson et al. [268].

geometry of the bases. For this reason, the stress field in the concrete can differ from
the previous tests on prismatic beams.

Initially, the problem is studied with the Rankine failure criterion as in the
previous example. The final shape of the fracture surface for the isotropic continuum
damage and plasticity models is presented in Figures 7.11a and 7.11b, respectively.
The crack is very similar to the previous case, with a skew-symmetric form. However,
due to the curved geometry of the cylinder, the slip line on the external surface
tends to twist more than in the respective prismatic beam test. In Figure 7.12, the
global response of the cylinder with respect to the orthogonal and parallel CMOD.
Once again, the plasticity model shows an increasing reaction force in the inelastic
range, whereas the isotropic continuum damage shows a consistent softening behavior.
However, in this case, the Rankine failure criterion results in a higher peak load than
the experimental value.

The test of concrete beams under torsional load shows a mode III stress state,
with high values of shear around the skewed notch. Since concrete fails primarily
under tension, the failure mode shows a change from mode III to mode I.

In the dedicated literature, it is known that similar experiments can involve also
shear stresses under certain conditions (e.g. [262, 265]). In particular, in the work of
Yates and Mohammed [261], it is stated that the geometrical features of the initial
notch, such as orientation, depth or inclination, cause different failure modes in the
specimen. In particular, it is possible to have a stress state typical of mixed I+IT+I111
modes.

Next, the Drucker-Prager failure surface with ¢ = 45° friction angle is introduced
to test if the interdependence between shear and pressure is significant. Figure’s 7.11c
and 7.11d present the failure surfaces provided by the isotropic continuum damage
and plasticity models, respectively. The predicted failure surface for Drucker-Prager

is significantly less rounded than for the Rankine criterion. However, the "S" shape

89



7. Failure under mode Il and mixed mode loading

(a) (b) (©) (d)
Figure 7.11: View of the crack surface at the end of the analysis from (a) Rankine’s

isotropic damage, (b) Rankine’s plasticity, (c) Drucker-Prager’s isotropic damage
and (d) Drucker-Prager’s plasticity solutions.

as well as the skew-symmetry are maintained.

In Figure 7.13, the applied force is plotted against orthogonal and parallel CMODs.
Both plasticity and isotropic continuum damage formats provide a monotonic reduc-
tion of carrying capability of the specimen. There is a slight difference in the stiffness
of the reported experimental curve with respect to the numerical one. However,
the mechanical properties of the concrete were not directly evaluated for the test of
cylindrical beams and, in the proposed numerical simulations, the same values as for
the prismatic beam are used. The peak load is found to agree with the experiments,
especially using the isotropic continuum damage model. The softening branches are

similar in the numerical analysis and the tests.
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Figure 7.12: Plots of vertical force versus (a) orthogonal CMOD and (b) sliding
CMOD using Rankine’s failure criterion

91



7. Failure under mode Ill and mixed mode loading

150 T T S T .
' | | ' —— 45° Drucker-Prager Associative Plasticity |

45° Drucker-Prager Isotropic Damage

= = = Experimental Data #1

— - —Experimental Data #2

e e e

Vertical Load on Support [kN]
(=]
n
o

——= o o

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Orthogonal CMOD [mm]

=
w
(=]
.
=

=

==

(a)
e —— S —————— ]
| 45° Drucker-Prager Associative Plasticity
| 45° Drucker-Prager Isotropic Damage
— — — Experimental Data #2

= !
T T T S
£ !
<] L !
S !
a i E
c !
S !
=] H
g |
= H !
S ! E
£ !
5] |
= |

0.00 i | ‘ R ’

Sliding CMOD [mm]

(b)

Figure 7.13: Plots of vertical force versus (a) orthogonal CMOD and (b) sliding
CMOD using Drucker-Prager failure criterion with 45° friction angle
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7.5 Computational pay-off of kinematic compatibility

and iterative procedure

The computational time and memory requirements for the last two examples are
presented in the following tables. Three different finite element technologies are
considered: full mixed e—w, combined kinematically compatible mixed and irreducible
FE and full displacement-based standard w formulations. In the first one, the whole
mesh consists of mixed elements and, for this reason, it is the most demanding from
the computational point of view. The second one combines compatible elements in
the same mesh; its performance pay-off will be benchmarked. Finally, the third one,
with the standard irreducible only, is the less demanding.

These numerical analysis are run on a desktop computer with 8 GB of RAM and
a dual core CPU clocking at 2.83 GHz.

The prismatic skew notched concrete beam under torsion is calculated with a
mesh of 67,038 elements. When the combined formulation is used, the computational
grid is composed of 9,783 irreducible and 57,255 mixed finite elements. Table 7.2
shows a substantial reduction in computational time for the proposed methodology.
Similarly, the RAM usage is slightly reduced. The irreducible formulation is added

for reference, as the corresponding results are generally deficient.

Formulation Solver tract | Niter | titer | tstep | RAM
Full mixed € — u formulation | Newton-Raphson | 71 3 71 | 213 | 5660
(67,038 elements) Secant scheme 55 10 2 75 | 2833
Mixed € — uw and irreducible w | Newton-Raphson | 61 3 61 | 183 | 4129
(57,255 + 9,783 elements) Secant scheme 51 10 2 71 | 2065
Irreducible u Newton-Raphson 7 3 7 21 683

(67,038 elements) Secant scheme 6 10 2 26 369

Table 7.2: CPU time (in seconds) and RAM memory requirements (in MB) in
the prismatic skew notched concrete beam under torsion. The proposed method
is compared with the full mixed and full irreducible formulations. Likewise, the
Newton-Raphson and Secant schemes are compared per first iteration factorization
time, number of iterations and step average time.

The cylindrical skew notched concrete beam under torsion is modeled with 62,309
elements. In the case of combination of kinematically compatible FE, the mesh is
subdivided in 53,876 mixed and 8,433 irreducible elements. CPU time gains are
similar to the ones observed for the prismatic beam case.

Note that using the irreducible formulation in only 14 % of the total number of
elements translates directly in a 14 % pay-off of CPU time per step in the Newton-
Raphson, and 5.6 % in the Secant method. In analyses where the ratio of irreducible
to mixed elements can be greater, the gain increases correspondingly.

Moreover, for each case, the performance of the Newton-Raphson solver is
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Formulation Solver tract | Niter | titer | tstep | RAM
Full mixed € — u formulation Newton-Raphson | 65 3 65 | 195 | 4459
(62,309 elements) Secant scheme 50 8 2 66 | 2232
Mixed € — w and Irreducible w | Newton-Raphson | 54 3 54 | 162 | 3334
(53,876 + 8,433 elements) Secant scheme 45 8 2 61 1668
Irreducible u Newton-Raphson 6 3 6 18 546

(62,309 elements) Secant scheme 6 8 2 22 299

Table 7.3: CPU time (in seconds) and RAM memory requirements (in MB) in the
skew-notched cylindrical beam under torsion. The proposed method is compared
with the full mixed and full irreducible formulations. Likewise, the Newton-Raphson
and Secant schemes are compared per first iteration factorization time, number of
iterations and step average time.

compared with the Secant scheme. The first one requires a lower number of iterations
per step thanks to the quadratic convergence given by the consistently linearized
global matrix. Nevertheless, each iteration requires the solution of the full updated
algebraic system which, as in this case, can not be symmetric.

Contrarily, the modified Secant scheme updates the global matrix only at the
beginning of each step and then it iterates using the already factorized system.
Although the rate of convergence is linear and more iterations are needed, it results
in a faster procedure. In both of the proposed examples, the computational time for
the secant solver is less than half of the Newton-Raphson for the same convergence
tolerance, which is set to 10™2 with respect to the residual forces. Moreover, the

symmetry of the matrix reduces the required memory to almost half.
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Chapter 8

Fracture and crack propagation

in snowpack layers

8.1 Introduction

In this chapter, the link between the work done at the Technical University of
Catalonia (UPC), in partnership with the International Center for Numerical Method
in Engineering (CIMNE) in Barcelona (Spain), and the research performed in the
Federal Research and Training Centre for Forests, Natural Hazards and Landscape
BFW in Innsbruck (Austria), in the framework of the MUMOLADE project is presented.
The objective of the stay at BEFW has been the analytical and numerical study of the
crack propagation in weak snowpack layers. In particular, the Propagation Saw Test
has been taken as study case. An analytical model has been developed and compared

with the numerical analyses based on the mixed € — u finite element method.

Figure 8.1: Destructive effects of snow avalanches.(a) The aftermath of the 1999 snow
avalanche in Galtur (Tyrol, Austria). (b) The results of the recent snow avalanche in
Farindola (Abruzzo, Italy) in 2017.
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8. Fracture and crack propagation in snowpack layers

Figure 8.2: Example of (a) loose snow avalanche, (b) slab avalanche and (c) glide
avalanche, from EAW [274].

Snow avalanches are one of the most catastrophic natural events to be found in
alpine zones [270, 271]. They initiate when large volumes of snow detach from the
surrounding snowpack due to natural or artificial causes. The weight of the snow
layers is usually sustained by the cohesive and the frictional forces exerted between
the snow crystals and the terrain below. As soon as the equilibrium is lost due
to the increase of the load or a reduction of resisting forces, snow starts to move
downhill. During the descent, it accelerates and, if the kinetic energy is enough, it is
able of eroding other layers, increasing momentum, and even tearing off most of the

structures or trees encountered in the path.

Depending on the type of snow and on the environmental conditions, multiple
types of avalanches develop [272]. The initial release type of an avalanche is defined
as “loose snow” if it occur at a single point (Figure 8.2a) or “snow slab” when it
interests a larger zone with blocks of cohesive snow sliding on a bed surface (Figure
8.2b). The bed surface is usually well consolidated and it presents on top a layer
of crystals which is significantly weaker than the adjacent ones. In addition, glide
(wet) snow avalanches release can appear during the spring season and it is caused by
rain or relatively intense heat affecting the resistance of the snowpack [273]. During
such events, free water starts to percolate through the porous matrix of the snow.
This flow is capable of reducing the strength or even modifying the structure of the
layers. If a sliding plane is created, a glide avalanche can occur. It is common to
find such slip line located in the vicinity of the interface between the snowpack and

the vegetation (Figure 8.2c).

Once the mass of snow starts to accelerate due to gravity, various flow conditions
are observed. Powder snow avalanches are characterized by a large volume of material
which, after detachment, is suspended by turbulent currents [275]. Under the white
cloud, a viscous flow of dense snow can be observed as well. This kind of avalanches
is very destructive due to the large mass of snow moving at high speeds (sometimes in
excess of 150 km/h) and, consequently, having the ability of traveling large distances

(Figure 8.3a). Contrariwise, dense snow avalanches are created when the failure
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Figure 8.3: Example of snow avalanches characterized by (a) powder or (b) dense
snow flow, from EAW [274].

of the snowpack leads to a viscous flow, which, even at lower speeds, represents a
substantial threat.

Slab avalanches (whether resulting in powder or dense flow) are by far the most
exacting, accounting for the 90 % of skier-related fatalities due to the large volume

of snow suddenly released (Figure 8.2b).

8.2 Snow formation and metamorphosis

To fully understand which are the mechanisms that bring a volume of layered snow
to failure, it is central to understand its production and continuous evolution.

Snow is a natural material found seasonally on alpine zones. It is created by
the nucleation and subsequent freezing of water vapor around particles suspended
in clouds. When supersaturated air meets with low temperatures, diffuse humidity
solidifies in crystals which grow until the weight is high enough to precipitate. The
psychrometric conditions of the air masses involved in the process is crucial for the
type of resulting snow crystals. As “there are not two snowflakes alike”, fresh snow
precipitates under one of the multiple possible structures depending on temperature
and humidity (see Figure 8.4). Studies on formation and growth of snow crystals in
the atmosphere started with the works of Schaefer [276] and Nakaya [277]. A recent
review on the topic has been written by Libbrecht [278].

It is well known that the snow cover is very variable. Morphology, orientation
and vegetation of the terrain interact with the wind direction during a snow fall
to provide a particularly uneven layer. As reported by Kronholm et al. [279], even
in a small slope of 20 meters by 20 meters it is possible to find changes in layers
strength in the range of 25 %. Immediately after deposition, snow starts an unceasing
process of modification, being subjected to an extensive number of environmental

and mechanical variables.
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Figure 8.4: Structures of fresh snow crystals depending on temperature and water
vapor supersaturation, from Libbrecht [278].

Fresh snow behaves similarly to virgin soil. It creates a porous structure with
interconnected grains and, as soon as it is deposited, a process of consolidation starts,
as reported by Feldt and Ballard [280], Bradley and Bowles [281] and Kojima [282].
As a result, the density can increase from 70 kg/m?® of fresh snow up to 300 kg/m?
of well bonded snow. The snowpack is also characterized by viscosity effects, which
is the prevalent form of deformation for an undisturbed cover on a inclined slope
[283-285]. Finally, on the top surface, wind drift lifts and redistributes part of the

loose snowpack, eventually exposing icy lower slabs [286-288].

In addition to the mechanical consolidation, a metamorphic process is also
present. Initial work on the topic was made by Colbeck [289, 290] but recently
micro-tomographic scans were used by Pinzer and Schneebeli [291], Pinzer et al. [292]
to understand the process at a crystal scale. While, in general terms, consolidation
reduces the air volume among the grains, metamorphosis moves the water content
through the porous structure. In the winter period, the atmospheric air is capable of
reaching very low temperatures, even lower than —30°C during some nights, whereas
the vegetated ground maintains a temperature slightly above 0°C. This is due to the
fact that porous snow is a very good insulator. Heat is also exchanged between snow
and the above air through radiation. Short waves are usually reflected, owing to
the fact that the snowpack has a reflection coefficient of 0.8-0.9. Contrariwise, long
waves are usually adsorbed during the day and expelled again as thermal radiation
during the night, being the snow behaving as a black body and releasing more heat

to cold air.

Consequently, an inverted temperature gradient is often observed in the snowpack.
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When multiple layers are deposited at different times of the season, the temperature
gradient is very non-linear, the conductivity varying extensively from fresh to old
snow (see Sturm et al. [293], Schneebeli and Sokratov [294]). The soil at the ground
level is usually humid, thanks to the presence of vegetation. The available water
vapor moves in the porous structure of the snow following the convective force due
to the temperature gradient and, therefore, moving mass upwards. During this
transport process, the internal matrix structure of the snowpack is continuously
changing.

The available water vapor promotes sintering, a process that creates and strengthen
the ice bridges between grains. At the same time, the transport of water vapor
results in a change of crystal structure. In fact, when the snow crystals are formed,
water suddenly freezes around grains and this fact causes the creation of the classical
dendritic form, characterized by high surface energy. Naturally, the crystals tend
to reach a configuration at which the surface energy is in a lower state. When
the temperature gradient is small (less than 1°C over 1 centimeter), grains tend to
round their shape and this is called equilibrium metamorphism. Contrariwise, when
the temperature gradient is high (more than 1°C over 1 centimeter), grains shape
becomes more faceted and this is called kinematic metamorphism. If the conductivity
of the layers is homogeneous, then the water vapor is able to reach the atmosphere
and the sudden refreezing causes the creation of surface hoar (Figure 8.5). This is
a phenomenon frequently encountered after a large snowfall followed by very cold
nights of clear sky as discussed by Birkeland [295]. It is possible that the surface hoar
is buried by a subsequent snowfall as well. Otherwise, especially in snowpacks that
present a sharp change in conductivity properties, a weak layer can be created in
the interface between the layers. These cases are typically found when the snowpack

consists of multiple snowfalls with different degrees of compaction.

(b)
Figure 8.5: Surface hoar crystals formation, from EAWS [274]

Finally, in the spring period, the high temperatures of the top surface (close to

the melting point) during daytime creates free water which re-freezes for the low
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temperatures at night. The melt-freeze metamorphism creates the so-called corn
grains, with high water content (see Wakahama [296]).

Faceted and corn structures have a fundamental role in triggering avalanches.
Their appearance creates the weak layer, a part of the snowpack that is characterized
by extremely poor bonding and limited mechanical properties. After being buried
under successive snowfalls, this crystal structure is subjected to the gravitational load
of upper layers. Additional loading, such the weight of a skier, can trigger a fracture
in the weak layer. The subsequent crack propagation along this failure surface
provokes the release of the cohesive slabs above and, consequently, the creation of an
avalanche.

The mechanical characteristics of the snow varies extensively among all different
types of crystal structures and environmental conditions. The history of previous
matrix transformations crucially determines the current mechanical state of the
snowpack. Nevertheless, depending on small changes of characteristics such as
density, crystal shapes, intergranular bridges, temperature and water content it
is possible to observe a variation of strength, elastic and viscous moduli of snow
that can span many orders of magnitude. These variations have been observed in
the field in a very short time span (1-2 hours) which immediately affect the snow
specimen characteristics and the outcomes of the experiments. Izumi [297] showed
this phenomenon in controlled laboratory tests.

This implies that, in order to have practical information on the stability of the
snowpack, a large quantity of precise data is required. On the one hand, weather
information and short-term predictions are fundamental to evaluate which are the
environmental factors that constitute the boundary conditions to be found in the
field, as done with numerical models such as SNOWPACK [298]. On the other hand,
in-situ experimental testing is, still to the present day, the only effective way to have
direct information on the mechanical state of the snow and the avalanche release
hazard since it is not possible to replicate the exact field state and variability in the

laboratory.

8.3 Mechanics of release of a dry snow avalanche

Dry snow slab avalanches are initiated by the local failure of a weak snow layer,
buried under a slab of cohesive snow. The initial crack is due to gravity or external
forces overcoming the resistance of the crystals in the weak layer. McClung [299]
first described the process of “shear fracture precipitated by strain softening” in the
snowpack (see also [300] for a geotechnical related discussion). Further studies by
Schweizer [301], Chiaia et al. [302] and Reiweger et al. [303] confirmed the shear
failure but also identified the dependence of the weak layer strength from the pressure,

typical of Mohr-Coulomb like materials. The initial collapse is followed by a rapid
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propagation of the crack which can extend to a wide area of release. Consequently,
the upper slab is progressively bent during propagation and not supported anymore
(Figure 8.6).

Frequently, it is possible to identify such weak layers by direct inspection of the
crystals but, since the weak layer is located several centimeters under the surface,
having a direct indication of the location of the initial failure is a daunting task. In
addition, the crack in the weak layer propagates suddenly, even for long distances
without any visible change. Then, the upper cohesive slab fractures and a large
volume of snow starts to slide. For this reason, snow avalanches represent an elusive
threat. The substantial difference in mechanical behavior between well consolidated
and fragile layers represents a highly nonlinear problem, which depends from a large

number of environmental conditions.

Nevertheless, dry snow avalanches (both powder and dense ones) leave a similar
evidence in the form of the release zone (Figure 8.7). After the initial localized failure
and propagation in the weak layer, if the snowpack is not capable of redistributing the
subsequent additional stresses, this volume of cohesive snow appears to be suspended
since there are no other resisting forces beside static friction. The dead weight of
the upper slab is then redistributed on the adjacent snow. On the top, a slope
orthogonal crack surface, the crown, is created by the fracture of the cohesive layer
under tensile force. This failure is characterized by a clean separation of the snow
slab. Sometimes, tensile fractures appear as a warning sign of an incipient avalanche
release. On the sides of the hanging volume, the cohesive snow is resisting a shear
force. Upon fracture a jagged surface called flank is created. The irregularity is given
by the competitive mechanism of shear and tensile failure in a non-homogeneous
and mostly anisotropic material such as snow. Finally, a compressive zone appears

at the bottom of the hanging volume. Triaxial tests [305, 306] show that cohesive

a) Weak layer composed of faceted crystals

during fracture
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Figure 8.6: Propagation of crack in the weak layer for the faceted or hoar crystals,
from Heierli [304]
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slab layer

snowpack weakness
= failure interface

Figure 8.7: Scheme of the detachment location of a dry snow avalanche, taken from
Schweizer et al. [272]

snow consolidates and hardens under compression and, then, fails due to shear on a
oblique plane. Likewise, due to sustained compression, the volume of detached snow
creates a diagonal slip line to overcome the zone of firm slab. The resulting plane of
failure is called stauchwall.

The complexity inherent to this failure mechanism is obvious. As a matter of
fact, in-situ experimental tests are devised in order to reproduce single aspects of
the problem in an isolated fashion. Instead of studying the complete phenomena of
failure initiation, crack propagation and upper slab release on a generic alpine slope,
it is more effective to analyze simpler tests which are repeatable and performed in a

more controlled environment.

8.4 Experimental testing of snow

In order to evaluate the stability of the snowpack in-situ, numerous experimental
techniques have been developed. Generally, their objective is to stress the weak layer
by applying a load on the upper cohesive slab. As result, the test provides a stability
index or, equivalently, a threshold value for the ultimate load.

Unfortunately, many avalanche events take place on slopes which are difficult to
access and dangerous for the alpine guides to stop and perform direct experiments.
Indeed, avalanches are most common on slopes of inclination between 30° and 40°,
with a north facing aspect. In order to avoid hazardous sites, testing zones are
selected in equivalent but safer locations, where the snowpack is undisturbed and
the characteristics of the layers can be related directly to the zone of interest. After
digging a pit of the required dimensions, the usual procedure is to measure the

thickness, temperature and hardness of the layers and identify the type of crystals. If
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weak layers are found, further stability tests are required to evaluate their mechanical

characteristics and the stress state given the gravitational load.

(a) Compression test

(c) Rutsch-block test (d) Shear frame test

Figure 8.8: In-situ tests for the evaluation of the strength, the stability and the
propagation characteristics of the snowpack, from Schweizer and Jamieson [307].

Among the numerous available in-situ experimental procedures, the following

ones are the most indicative and frequently used by practitioners:

e The compression test (CT) [308] is performed by considering an isolated column
with a 30 cm by 30 cm base. A shovel is placed on top and the practitioner hits
it with increasing force for 30 times. If separation of the column is observed at
the weak layer level, then the stability index is inversely proportional to the
number of hits. This test aims at identifying the weak layer and evaluating its

limit shear strength indirectly.

e The extended column test (ECT) [309] is similar to the previous one, but a
larger width of the specimen is considered (90 cm by 30 cm base). The shovel
is placed at the border of the volume of snow and a sequence of 30 hits with
increasing force is applied. In this case, the tester is interested in observing

the local failure followed by the horizontal propagation of the crack onset.
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e The rutsch-block test (literally the “sliding block” test) [310] is performed by
isolating a volume of 2 m by 1.5 m and loading the top surface with a sequences
of movements by a skier. The test considers first the simple weight of the skier
followed by 3 dynamic knee bending, followed by 3 final jumps. A score is given
based on the kind of observed failure and propagation type. This experiment

has the objective to test directly the snowpack with a realistic loading case.

e The shear-frame test [311] measures the resistance of the weak layer by applying
a sliding force to the cohesive snow through an ad-hoc steel frame. Usually, the
test takes place as close as possible to the interface with the layer of interest,

in order to avoid bending-like loads.

These tests are depicted in Figure 8.8, taken from the work of Schweizer and Jamieson
[307]. In this chapter, attention is focused on the Propagation Saw Test, a promising
novel in-situ technique to evaluate initiation and propagation of cracks in weak layers

buried under cohesive snow slabs.

8.5 The Propagation Saw Test

In the last decade, the Propagation Saw Test (PST) [312, 313] has emerged as one
of the most indicative tests to evaluate stability and crack propagation propensity of
the snowpack.

When snow samples are available in the laboratory, the effects of different kinds of
loads are accurately evaluated. Theories on the mechanics of snow are predominantly
based on such measurements, being performed in a controlled environment. As it
was mentioned before, snow is a very complex material and slight variations in the
external actions can result in profound changes in the outcome. Nevertheless, in the
classical tests presented previously, the loads applied to the snowpack are hardly well
measured. Even worse, many tests rely on approximative procedural guidelines as
well as are affected by in-situ variables such as uneven layers distribution, rocks or
vegetation.

In the compression test and its extended counterpart, the experiment procedure
requires the experimentalist to hit the column of snow with a gradual increase in
the hitting force. Instead, in the rutsch-block test, the skier movements represent a
typical loading pattern applied to the snowpack.

As a matter of fact, expert alpine guides are able to flawlessly distinguish various
test outcomes and properly interpret them, even when they are confusingly similar
[314]. However, when the in-situ results must be transmitted to the weather forecast
stations, a clear scale for comparison is missing. It is stressed that this problem has

profound consequences in the prediction of snow avalanches. If the tests are similarly
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executed but applied loads differ among the cases, then it is difficult to have a clear

idea of what conditions are actually present in the field.

In recent years, a strong push has been made to find a unified way to quantify
and share the results of many of the in-situ experiments, in order to create a reference
database. However, few tests are able to give a precise quantitative evaluation of the

outcome.

The propagation saw test is performed by isolating a conventional volume of snow
of width 30 cm and length 2 m in the downslope direction. Once the weak layer of
interest has been identified in the stratigraphy from manual snow profiling, a saw is
used to cut through it progressively (Figure 8.10). This technique aims at slowly

reducing the resisting cross section of the weak layer.

If the saw cut reaches a critical crack length for the fracture to occur, three
outcomes are possible, depending on snow properties. In the first case, defined as
full propagation or END case, a crack in the weak layer propagates from the saw
cut to the end of the specimen releasing the whole cohesive volume of snow. An
alternative outcome, defined as slab fracture after propagation or SFa, consists in the
initial propagation of the crack in the weak layer followed by a detachment of the
upper slab before the end of the specimen. Finally, if the upper slab fails before any
crack propagation in the weak layer crack, then the case is identified as slab fracture
before propagation or SFb. In the PST, the critical saw cut length is accurately
measured, since the experiment is stopped as soon as failure is initiated and the saw
remains stuck in the middle of the layers. In the same way, the propagation length
can be properly measured when the upper cohesive snow slab clearly separates (see
Figure 8.9). More recently, the PST has been studied using high-speed cameras and
particle tracking velocimetry by van Herwijnen and Jamieson [316], van Herwijnen
et al. [317].

Numerous statistical studies have validated the consistency of the test and

Figure 8.9: A typical weak layer composed by hoar crystals buried under a cohesive
snow slab (from Jamieson and Schweizer [315]). Note the collapsed crystal structure
and the detachment of the upper layer.
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Figure 8.10: Setup of the Propagation Saw Test. The black dots have been placed to
follow the test via high-speed cameras.

confirmed the good correlation between test results and likelihood of avalanche
release [318-323] but little work has been realized to analytically describe the test
evolution and outcome.

Consequently, a detailed analytical model of the Propagation Saw Test is de-
veloped by means of well known mathematical models in the field of continuum
mechanics. A snowpack consisting of three ideal layers is considered, as presented in
Figure 8.11. The top layer is a cohesive upper slab which is supported by a weak
layer. In turn, the weak layer rests above a lower bed that is considered ideally rigid.

Initially, the sequence of events that take place in a Propagation Saw Test due to
the increasing gravitational load are studied. At the beginning of the test, increasing
the cut length [ creates a volume of cohesive snow, clamped on one side and hanging
freely on the other one (Figure 8.12(a)) whereas the weak layer reduces its resisting
area. The upper layer is displaced both vertically and horizontally under its own
weight until it touches the lower bed (Figure 8.12(b)). The cut length [ at which this

Lenght ot experiment
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1
Upper Slab Section of analysis : Slab height h

Weak layer length [,, : Sawing length [
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Direction of sawing
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Ground 2

Figure 8.11: Side view sketch of the modeled Propagation Saw Test
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Bending of cantilever beam

(a) Force Scheme I: | < Lo

Initial contact with lower bed

(b) Length of Initial Contact [ = L

Lic <1< Lpc

Hinge at contact point

Increasing length of saw cut [

(c) Force Scheme II: Lic <1 < Lpc

Vertical cross section at tip

(d) Length of Full Contact | = Lpc

Lrc
' Contact zone of length [ — Lpc

(e) Force Scheme III: | > Lpc

Figure 8.12: Stages of the Propagation Saw Test: after initial bending (a), first
contact of upper slab and lower bed is reached at cut length [ = L;c (b). Following
the sawing (c), the full contact length is achieved for | = Lpc (d), at which point
the cross section has rotated back to orthogonal to the lower bed. Successively, the
length of the beam under bending is kept constant at Lo for | > Lpc, while the
contact zone is increasing as the saw progresses further (e).
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initial contact (IC) is observed is identified with [ = L;c. At first, only the tip of
the cantilever rests on the lower slab: the resulting effect is a hinged restrain, where
the beam does not displace vertically anymore but it has freedom to rotate (Figure
8.12(c)). Then, following the increase of [, the slab bends back due to its own weight
and rests with vertical cross section with respect to the lower bed. At this point,
not only the vertical movement is constrained, but also the rotation of the beam is
fixed. The cut length [, required for this condition to happen, is called length of full
contact (FC) and it is denoted by Lp¢c (Figure 8.12(d)). If the sawing continues, the
contact zone of the two slabs increases. However, the length between the saw and
the first touching point remains constant, being equal to the full contact length Lpo
(Figure 8.12(e)) due to equilibrium requirements. Hence, the beam is now behaving
as a double clamped beam, with a fixed length of Lrc, and, consequently, with a
linear bending moment and constant shear resultants along the beam. Moreover, at
the specific cross section in correspondence of the sawing, the bending moment and

the shear will not further increase.

Introducing an Euler-Bernoulli beam model, the evolution of the stresses in the
upper slab and the weak layer is computed with respect to the length of sawing. The
two layers are studied independently, assuming an interface which transfers perfectly
the applied forces. It is found that the stresses in the two studied layers are strictly
depending on the length of initial contact L;c and full adherence Lpc. The stress
in the upper slab at the cross section in correspondence of sawing is initially varying
quadratically and, upon contact with the rigid bed, the stress evolution shows linear
variation (see Figure 8.13(a) and 8.13(b)). Contrariwise, the stresses in the weak
layer have an exponential increase, both in the compressive and shear components.

In order to take into account the creation of cracks in upper slab and weak
layer, a purely brittle constitutive law is used. In the upper slab, since tensile and
bending forces are expected, the stress on the top fiber is compared with the tensile
threshold of cohesive snow. In the proposed constitutive law, after reaching the
threshold stress value, fracture appears immediately, with null dissipated energy
and immediate separation of the volume of snow. The critical saw cut length that
provokes detachment of the upper slab is denoted with /3. Likewise, in the weak layer,
compression and shear are present. They are considered separately and compared
with their respective maximum admissible value. The minimum value of critical saw
cut length that causes failure (either in shear or in compression) is given by [¥.

The gravitational load on the weak layer also depends, besides the geometrical
quantities, on the upper slab weight. In turn, it is known that Young’s elastic
modulus and the tensile strength of cohesive snow are directly related to the density
of the slab. Then, by considering different density values of the cohesive snow slab,
the different outcomes of the propagation saw test are recovered using the proposed

model.

108



8. Fracture and crack propagation in snowpack layers

+ Full Propagation |

]
5 5
St=ofory

Critical stress ratio S
Critical stress ratio S

PO B S S S SR, =il
/: : ! Se=oy oy
H | i Sy=tTh |
02F-4----)fmm e e d e e e e e e S L R
| i ! ; i i i i
0'00.0 0.5 & 10 - 1.5 ;[f:) 043 05 1.0 s ;.[chl)
Length | [m] Length 1 [m]
(c)
| Slab Fracture before Propagation
LOf----mmm e m - - I mmmmmmmmmme e T--
| f
e 08 mo o o E
2 . L
z " T
£ ; 25
b e el e e ]
2 " =
= ! Ed
—_— " l 5 5 o
54 | - n 1 -5, =’f,ff"3,| 1 =
] S A I il P B
o] " D¢ =T/ Tye, g
" g {
| W :ru Tll |&]
02F----f- g’;,,,J: ,,,,,,,,,,,,,,,,,,,,,,,,, ",,J‘!:\&d,,
| " 1
0.0 RS Lxe hin 0.0 M S S S S
0.0 0.5 1.0 1.5 2.0 0 50 100 150 200 250 300
Length 1 [m] Density p [kg/m"l

Figure 8.13: Model application results for a specimen composed of a 0.3 x 0.3 x 2 m?
upper slab and a weak layer of thickness h,, = 2 mm. The slope is inclined at 35°.
(a) Full propagation (END) case for (density of 280 kg/m?). (b) Slab Fracture after
propagation (SFa) (density of 230 kg/m?). (c) (density of 180 kg/m?). (d) Critical
crack length with respect to the upper slab density.

In Figure 8.13, a simple example setup of a 0.3 x 0.3 x 2 m? upper slab and a
weak layer of thickness h,, = 2 mm on a 35° slope is presented. S} is the ratio of
the stress of the combined bending and tensile load due to gravity and the tensile
threshold in the upper slab. S and S’ are respectively the ratio of the compressive
and shear stresses due to the upper slab weight and their threshold counterparts in

the weak layer.

Figure 8.13(a) shows the Full propagation (END) case for a cohesive snow density
of 280 kg/m3. Failure is initiated by the shear load in the weak layer which propagates
to the end of the specimen. Then, Figure 8.13(b) shows the Slab Fracture after
propagation (SFa) case, given by an upper slab density of 230 kg/m®. A crack is
initially created in the weak layer and then propagated. Then the upper slab fracture
follows. Finally, Figure 8.13(c) shows the slab fracture before crack propagation
(SFb) case for a density of 180 kg/m?>. Since the tensile failure in the upper slab

appears before any weak layer fracture, no propagation is observed.
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Figure 8.14: Signed propagation length with respect to the upper slab density for a
0.3 x 0.3 x 2 m? specimen on a 35° slope. The different test outcomes full propagation
(END), slab fracture after propagation (SFa) and slab fracture before propagation
(SFb) are highlighted on the plot with the respective limit values of density.

Figure 8.13(d) shows the critical crack length with respect to the upper slab
density. [7 is the critical saw length for the tensile fracture in the upper slab. Similarly,
l¢. and [/, represent, respectively, the critical crack length for shear and compression

stresses in the weak layer.

Furthermore, the signed propagation length is computed by subtracting the upper
slab critical length [ from the weak layer one [ (as minimum value between /¢, and
lgs). Plotting the dependence of the propagation length with respect to the density
of the upper slab, a map of all possible outcomes is developed as presented in Figure

8.14. Very good agreement with previous field experimental data is found [324, 325].

Certainly, it is possible to refine the mathematical model to take into account
additional mechanical details. For example, more complex constitutive models are
required for the interdependence of pressure and shear in the cohesive snow failure
criterion. Similarly, modeling the weak layer and upper slab as connected, rather
than independent, is necessary to consider the effect of relative deformation observed
during in-situ Propagation Saw Tests. However, the complexity and non-linearity of
the analytical solution grows significantly with each model refinement and a numerical
analysis of the mechanics connected with the experimental tests of the snowpack is

preferred.
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8.6 Numerical analysis

In the previous chapters, accurate numerical analyses of localization and propagation
of cracks has been presented employing the mixed € — u finite element formulation.
Now, the objective is to reproduce the outcomes of the Propagation Saw Test. The
experiment is modeled as a 2D problem, in a consistent fashion with the analytical
model presented in Figure 8.13. The model is 2 m long and 0.3 m wide. The upper
slab has a thickness of 0.3 m and it is supported by a weak layer of 2 mm. The lower
bed is added to the model but it is assumed to remain elastic. The gravitational
load is rotated 35° with respect to the vertical direction due to the inclination of the
slope.

As done in the previous analytical analysis, most properties are computed using
derived formulas extracted from reliable experimental tests. With regards to the
upper slab, the elastic Young’s modulus is computed as in the work of Scapozza and
Bartelt [306]:

E (p) = 1.873 - 10% exp®014%  [Pa] (8.1)

where p is the density in kg/m3. The Poisson’s ratio for cohesive snow is usually
equal to 0.1.

Since the upper slab is subjected to bending and tensile loading, an isotropic
continuum damage model based on Rankine tensile failure criterion is assumed. In
particular, the maximum admissible tensile stress is recovered from Jamieson and
Johnston [326]:

5 p 2.44
=241 — P 2
o =24-10° () [Pal 5:2)

In the field, the weak layer is usually found to contain numerous voids, as it is
possible to see in Figure 8.9. Owing to the high porosity, density of the weak layer is
assumed to be 50 kg/m?. Likewise, the elastic modulus for the weak layer is equal
to one fifth of the upper slab one, in line with the values reported by Sigrist and
Schweizer [327]. Following the work of Reiweger et al. [303], the weak layer fails
under shear, with a pressure dependent behavior. Consequently, it is reasonable to
use the Drucker-Prager plasticity model. For this case, the friction angle is 20° and
the cohesion (i.e. shear strength at zero applied pressure) is 0.5 kPa.

It is well known that snow and, in particular, weak layer crystals have a very
brittle behavior. Nevertheless, the fracture energy has been experimentally evaluated
in multiple occasions. Numerous experimental techniques have been studied to find
fracture energy starting from snow density. As discussed in the work of Schweizer
et al. [328] and van Herwijnen et al. [329] the fracture energy of the weak layer is
found to be approximately 1 J/m?. In the upper slab, owing to the well bonded and
sintered microstructure, it is plausible to assume an order of magnitude higher, so

the fracture energy is set as 10 J/m?.
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8. Fracture and crack propagation in snowpack layers

In order to simulate the cut provided by the advancing saw, it is necessary to
progressively remove the elements of the weak layer and release the vertical constraint
of the upper slab. Chiumenti et al. [330] proposed a technique of element activation
for the analysis of metal deposition in a manufacturing process. In this case, instead
of activating parts of the model, the weak layer elements are turned off at the rate
of cut speed. From an implementation point of view, this technique removes the
elements from the computational procedure and it allows to simulate the progressive
increase of gravitational load on both upper slab and weak layer.

When the displacement of the upper slab is equal to the weak layer thickness
hw, contact with the lower bed is expected. This is a key feature of the proposed
analytical model, since it motivates the various conditions that discriminate a full
propagation of the crack in the weak layer or an arrest of crack propagation due to
slab failure. From the FEM standpoint, a robust contact algorithm with frictional
interfaces is required to model such behavior. Unfortunately, this goes beyond the
purpose of this work and it has not been studied nor implemented for the mixed
strain-displacement finite element. Nevertheless, it is possible to simulate the full
propagation (END) and the slab fracture before propagation (SFb) outcomes being
the limit cases of the analytical model. In addition, the numerical model takes into
account the different rigidities of the snowpack and, then, it is able to compute the
relative deformation of the layers. The effect of such phenomena is key for describing
accurately the PST but it cannot be observed in the simplified analytical model.

In the introduced non-linear constitutive model, the fracture of the weak layer is
described using the discrete weak discontinuities approach, with a localization of the
inelastic strains inside a finite dimensional band. In reality, each material presents a
limit deformation that represents the instant at which physical separation is observed.
Camponovo and Schweizer [331] showed that the initial proportional behavior of
cohesive snow specimens stops at a total strain of 0.1. Then, after the total strain
value of 0.2, a sudden increase of strain rate is observed due to the lost of all carrying
capabilities. In the numerical test, failure of the weak layer is conventionally defined
when all points inside a slip band reach the inelastic strain value of 0.1.

Firstly, as done when presenting the analytical model, a very stiff upper slab
is considered setting the density at 280 kg/m?3. Then, Young’s elastic modulus is
12.15 MPa and the maximum tensile strength is 13.28 kPa. The results of this
numerical analysis are presented in Figure 8.15. Complete failure due to shear (Mode
IT) fracture entailing the whole weak layer is observed, as this case corresponds to the
full propagation (END) case. From the plot of displacement in the slope direction, it
is possible to observe a clear jump in the computed field. The inelastic strains are
concentrated in the weak layer and, from the plot of principal strain vectors, the

failure is induced mostly due to shear forces.

The analytical model computes the critical length of sawing at 11 cm. In this
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Figure 8.15: Numerical analysis for the full propagation (END) case with a density
of 280kg/m3

case, the numerical solution of the critical crack length, which corresponds to the
length of deactivated elements before all weak layer is characterized by the limit

strain, is 13 cm.

It can be noticed that the missing numerical description of the contact causes an
increase of the pressure in the weak layer. As it was discussed before, the weak layer
is modeled with a Drucker-Prager failure criterion, where the resistance to shear
forces is linearly dependent from the vertical compression and the friction angle.
In particular, as the vertical loading increases, the constitutive model predicts a
higher admissible shear stress. If contact was considered, the vertical force would be
distributed between the rigid bed and the weak layer. In that case, the compressive
force from gravitational load would be smaller, resulting in a lower shear strength
and, consequently, in a reduced value of critical length. A rotation of principal axis
due to pressure effects is more visible in the vicinity of the crack tip, where the
highest compression is found. Indeed, a change in the principal strain directions is
visible in the plot (Figure 8.15(c)).

The numerical solution depicts correctly the failure mechanism and it calculates
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a critical length value in agreement with the analytical model that, due to the
assumptions of pure brittleness and rigid interfaces between the layers, represents a

lower bound case.

(a) Displacement in the slope direction

(b) Norm of inelastic strains

(c) Vectors of inelastic strain

Figure 8.16: Numerical analysis for the slab fracture before propagation (SFb) case
with a density of 180kg/m?

In a second numerical simulation, an upper slab density of 180 kg/m? is considered.
Young’s elastic modulus is 2.74 MPa and the threshold value for the tensile stress is
4.52 kPa. Figure 8.16 shows the resulting displacements in the slope direction, the
norm of inelastic strains and principal strain vectors. In this case, a branched slip
line appears in the upper slab due to bending and traction in the slope direction.
The localization starts in the top fiber of cohesive snow and moves diagonally in the
direction of the saw cut. This case represents a slab fracture before propagation (SFb).
The plot of principal inelastic strain vectors shows that the main cause of failure is
opening (Mode I). It is noteworthy that the presented solution corresponds to the
last converged step, before an equilibrated numerical solution is not available. In
fact, this model has been solved within a quasi-static analysis. If a part of the upper
slab has separated from the rest of the model, then static equilibrium conditions are

not met anymore.
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The slab failure is inclined, at an angle approximately close to the slope angle.
This is mostly due to the Rankine criterion as the failure appears for the maximum
combined bending and tensile stress, that is dependent on the slope inclination. The
length at which failure appears is 33 cm whereas the analytical model suggests 59
cm.

In the FEM model, the relative deformation of the each layer is taken into account.
This assumption is crucial in the solution because stress at the interface between
upper slab and weak layer have a different distribution than in the analytical model.
In particular, if this case is interpreted as a beam on elastic soil, a concentration
of stresses is expected at the saw point. Moreover, the numerical solution does not
consider that the vertical displacement of the upper slab limited by the contact
with the lower bed which, for a deformable weak layer, appears before than the
rigid interface case. In turn, this results in a increment of tensile stress higher than
expected. For these two reasons, the critical cut is sensibly reduced with respect to
the analytical model.

It is clear that the physical limitations of the real experiment are fundamental
for a correct numerical simulation. Even if beyond the scope of this work, a proper
representation of phenomena such as frictional contact and dynamic effects would
definitely enhance the modeling of the Propagation Saw Test.

Nonetheless, even simplified numerical analyses require a high degree of accuracy
and the possibility of taking into account the various material non-linearities. While
many in-situ experiments are made and interpreted through the experienced eyes of
snow scientists, frequently, loading and environmental conditions are rather complex
and require a reliable tool to provide a quantitative and qualitative validation of
findings.

In this practical example, mixed strain-displacement finite elements show good
capabilities of computing failure mechanisms as well as the different studied behavior
with respect to density. Even if multiple physical phenomena are not implemented
and the failure mechanisms in snow is still an open question, it is possible to evaluate
failure lengths close to the analytical solutions. In turn, these analytical solutions
are shown to be quite close to field data, as in Gaume et al. [324] and Gaume et al.
[325]. Moreover, such an accurate numerical tool opens the possibility of consistently
computing the mechanical state of snow cover over larger regions, in order to provide

detailed information for avalanche hazard predictions.
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Chapter 9

Conclusions

In this work, a novel mixed € — wu finite element method for strain localization
and failure in plasticity is presented. The proposed formulation proves significant
advantages when dealing with non-linear mechanical behavior of solids. In particular,

with respect to the initial objectives, the mixed € — u finite element method:

e is able to tackle effectively localization and failure problems, without the need

of any auxiliary technique such as tracking;

e it is a general purpose FEM, being applicable to both plasticity and damage

constitutive laws;
e it provides accurate solutions in terms of displacements and strains;

e it can be used with low order elements with equal interpolation in strain and

displacements, which allows a direct extension to 3D cases;

e it employs without hindrance triangular, quadrilateral, tetrahedral, hexahedral

and prismatic elements;
e it is virtually mesh independent and energy consistent;
e it represents a key enhancement in the kinematics of standard finite elements.

Many of the advancements in the topic of localization of strains and failure have
been developed over the last three decades and this field has reached a substantial
maturity in the academic research. With these stable theoretical foundations, it was
possible to devise the proposed mixed formulation which satisfies the requirements
of consistency and stability, ensuring a convergent numerical solution. Hence, it
does not suffer from the known limitations found in the standard displacement-based
irreducible formulation.

The modeling of fracture in Mode I, Mode II, Mode III and Mixed Mode can

be correctly performed with the smeared crack approach using local constitutive
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laws. The simultaneous continuity of strains and displacements ensures the local

convergence of strains/stresses and this is the crucial factor for improving the

numerical analysis of strain localization in solids.

The mixed € — u formulation is capable to encompass a wide range of engineering

problems and it represents a reliable solution of the problem of material non-linearity.

While it provides accurate results, the method has a relatively simple mathematical

structure. Indeed, this makes the proposed formulation very appealing for the

engineering practice.

9.1 Contributions

The mixed € — u finite element method consists of the following features:

118

e Mixed weak formulation for plasticity. The mixed e—wu strain-displacement

finite element method has been developed for the strain localization in plasticity

starting from the compatibility and equilibrium equations in weak form.

Choice of interpolation spaces. With the objective of maintaining a general
approach and easy extension to the 3D case, equal shape functions interpolation
are selected for the discrete weak version of the proposed formulation. In
particular, the cases of linear triangles, linear tetrahedra, bi-linear quadrilateral,

tri-linear hexahedra and prismatic elements are considered.

Stabilization of the discrete weak form. Equal interpolation of variables
in a mixed formulation does not satisfy the Inf-Sup condition. To circumvent
it, the Variational Multiscale Stabilization is introduced and the problem is
stabilized by approximating the subscale variables through projection operators.
Besides the ASGS and the OSGS methods, a non-residual based stabilization

has been proposed for quasi-incompressible situations.

Solution of the algebraic system. Initially, the Newton-Raphson method
is studied. Exact linearization of the system of equations provides quadratically
convergent iterations, although the resulting global stiffness matrix is non-
symmetric. Alternatively, using the secant-based Picard’s method, symmetry

is restored and it allows the use of a faster solver.

Compatibility with standard FEM. In the e —u elements, the compatibility
condition is enforced weakly, whereas, in the irreducible formulation, it is
assumed to hold in the strong form. However, the displacement interpolation
space is the same. For this reason, the two methods can coexist in the same
computational mesh and it is possible to reduce considerably the required

computational resources.



9. Conclusions

The proposed mixed strain displacement finite element method is applied to

several practical examples and benchmarks. The following study cases are discussed:

e Mode I (opening) loading. 2D and 3D pullout tests are studied using a
modified Rankine’s failure criterion, developed to cope with non-differentiable
locations in the standard failure surface. With the enhanced accuracy of
the proposed formulation, it is possible to recover both the symmetric and
asymmetric solutions found in the experimental 2D pullout test and link the
characteristic cracking pattern to the effect of boundary conditions. Moreover,
in the 3D pullout case, the mixed € — u finite element is able to converge faster
to the continuous solution in term of stresses with respect to the irreducible

formulation as the computational grid refines.

e Mode II (shearing) loading. A Drucker-Prager plasticity model is written
as linear combination of the J2 von Mises and the pure pressure failure criteria
through the tangent of the friction angle. In the Prandtl punch test, while the
irreducible formulation is not able of providing satisfactory results, the e — u
formulation is consistent with the solution given by the displacement-pressure
elements. Then the cases for 0°, 15° and 30° friction angles are simulated and
the results agree with the rigid-plastic analytical solution.

In the uniaxially stretched hollow plate the angle of localization with the
proposed formulation are calculated and in good agreement with the analytical
values for the Drucker-Prager plasticity. Moreover, the dissipation energy for
the pure isochoric plasticity case is computed and only a 2.33 % deviation from
the theoretical result is found.

Finally, the strain-displacement and the displacement-pressure finite elements
are studied in a 3D perforated thin walled cylinder subjected to a vertical
imposed displacement.

The enhanced kinematics of the method results in an accurate solution, whereas
the u — p FEM fails to do so, owing to the fact that the deviatoric strains are
computed from the discrete symmetric gradient of the interpolated displace-

ments in strong form.

e Mode III (tearing) or Mixed Mode loading. Thanks to the high fidelity
of the mixed € — u finite elements, it is possible to study the differences in
results between the isotropic continuum damage and the plasticity model. Then,
a series of three point bending tests and torsion experiments on skew notched
beams are modeled. The failure mechanisms are pinpointed and the global

structural behavior observed in the experiments is reproduced as well.

Finally, in collaboration with the Federal Research Center BFW, Innsbruck, the

proposed formulation has been applied to problems involving crack propagation in
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snow avalanche release. An analytical model is developed to link the experimental
outcomes of the Propagation Saw Test to the mechanical and quantitative description
of the test. Critical crack length and propagation length are computed and the
findings are in very good agreement with the in-situ values. Then, these results are
compared with the ones calculated with the proposed mixed € — u finite element
method.

9.2 Future work

The mixed € — u finite element method shows to be a promising leap in the solution
of non-linear mechanical problems in solids. Therefore, further investigation in the

following topics is suggested:

e Crack opening-reclosure behavior. The case studies in this work are
subjected to monotonic loading. However, in many practical cases the crack
surfaces can interact after fracture. This can happen due to cyclic reclosure
(Mode I) or cyclic frictional contact (Mode IT and Mode III).

e Dynamics. The extension of the proposed finite element to dynamics is a
natural continuation of the present work and will allow the accurate study of

structures under seismic events.

e Large strains. In the presented work, infinitesimal strains were assumed in
the strong form of the mechanical problem. Further research is required in
order to include finite deformation effects, which are crucial for the description

of many real-life case studies.

e Higher order elements. The interpolation used in the case studies consisted
of linear shape functions. Higher order elements were not studied and this will

provide more insights in the proposed FE technology.

9.3 Publications

The work presented in this thesis resulted in the following peer-reviewed journal

publications:

1. Cervera, M., Chiumenti, M., Benedetti, L. and Codina, R. Mixed stabilized
finite element methods in nonlinear solid mechanics. Part III: Com-
pressible and incompressible plasticity. Computer Methods in Applied
Mechanics and Engineering, 285, 752-775, (2015).

2. Benedetti, L., Cervera, M. and Chiumenti, M. Stress-accurate Mixed FEM
for soil failure under shallow foundations involving strain localization
in plasticity. Computers and Geotechnics, 64, 32-47, (2015).
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3. Benedetti, L., Cervera, M. and Chiumenti, M. High-fidelity prediction of
crack formation in 2D and 3D pullout tests. Computers & Structures,
172, 93-109, (2016).

4. Benedetti, L., Cervera, M. and Chiumenti, M. 3D numerical modelling of
twisting cracks under bending and torsion of skew notched beams.
Submitted to Engineering Fracture Mechanics, (2017).

5. Benedetti, L., Gaume, J. and Fischer, J.-T. A mechanically-based model
of snow slab and weak layer fracture in the Propagation Saw Test.
Submitted to International Journal of Solids and Structures, (2017).
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Simplicity is the final achievement.
After one has played a vast quantity of notes and more notes,

it is simplicity that emerges as the crowning reward of art.

Frédéric Chopin
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Abstract

This paper presents the application of a stabilized mixed strain/displacement finite element
formulation for the solution nonlinear solid mechanics problems involving compressible and
incompressible plasticity. The variational multiscale stabilization introduced allows the use
of equal order interpolations in a consistent way. Such formulation presents two advantages
when compared to the standard, displacement based, irreducible formulation: (a) it provides
enhanced rate of convergence for the strain (and stress) field and (b) it is able to deal with
incompressible situations. The first advantage also applies to the comparison with the mixed
pressure/displacement formulation. The paper investigates the effect of the improved strain
and stress fields in problems involving strain softening and localization leading to failure, using
low order finite elements with continuous strain and displacement fields (P1P1 triangles or
tetrahedra and Q1Q1 quadrilaterals, hexahedra, and triangular prisms) in conjunction with an
associative frictional Drucker-Prager plastic model. The performance of the strain/displacement
formulation under compressive and nearly incompressible deformation patterns is assessed and
compared to a previously proposed pressure/displacement formulation. Benchmark numerical
examples show the capacity of the mixed formulation to predict correctly failure mechanisms
with localized patterns of strain, virtually free from any dependence of the mesh directional
bias. No auxiliary crack tracking technique is necessary.



1 Introduction

In previous works [7, 8], the authors have formulated stable mixed stress/displacement and strain/
displacement finite elements with equal order interpolation for the solution of nonlinear problems
in solid mechanics. The proposed formulation uses the sub-grid scale approach to circumvent the
restrictiveness of the inf-sup compatibility conditions on the choice of the interpolation spaces. The
objective of such formulation is to achieve a discrete scheme with enhanced stress accuracy. This
means that the mixed formulation displays a global rate of convergence on stresses higher than the
corresponding irreducible formulation. Such improvement of the convergence estimates also applies
at local level. And this characteristic proves to be crucial in strain localization problems involving
softening materials.

Strain localization inevitably occurs in softening materials subjected to monotonic straining.
Once the peak stress is reached, and upon continuing straining, the stress decreases and strains
concentrate inside a narrow band of material while the material outside the band unloads elastically.
As the localization progresses, the width of the localization band diminishes and, unless there is
a microstructural limitation, it tends to zero. The particular components of the strain tensor
that localize during this process depend on the specific constitutive behavior of the material. In
Rankine-type materials, only normal elongations localize, eventually forming tensile cracks; if the
nonlinear behavior is incompressible, shear strains concentrate, leading to slip surfaces.

Quasi-singular strain or stress states occur at the vicinity of the propagating cracks or slip lines.
For linear elements and even in elastic behavior, it is well known that the standard irreducible for-
mulation fails to provide guarantee of local convergence of stress values in such situations, such as
the tip of a notch or a propagating crack. And this lack of local convergence leads to the spurious
mesh bias dependence often displayed by standard finite elements when using local softening consti-
tutive models. Contrariwise, the proposed mixed formulations do provide the necessary guarantee
of convergence for local stress convergence. This characteristic proves to be sufficient to avoid mesh
bias dependence of the numerically computed failure mechanisms and responses.

In reference [8], the mixed strain/displacement formulation was applied in conjunction with an
isotropic Rankine damage model, formulated in secant form, to model problems of tensile cracking
propagation and failure. It was observed there that: (a) the resulting discrete FE model is well
posed and stable, (b) the formulation is convergent and, on mesh refinement, it approaches the
original continuum problem, and (c) the results obtained are not spuriously dependent of the finite
element mesh used; they depend only on the actual material model (damage criterion in this case)
adopted. This represented a significant advancement in the solution of such problems, particularly
considering two noteworthy features of the approach. On one hand, it is of general application, in
2D and 3D problems, to structured and unstructured meshes and to simplicial or non simplicial
elements. On the other hand, no "ad hoc" auxiliary crack tracking technique is necessary. However,
the application of the proposed formulation to problems involving local softening plasticity models
remained open.

In previous works, the authors have applied stabilized mixed displacement-pressure methods
([1, 2, 3, 4, 5] and [6]) to the solution of Jo elasto-plastic problems with simplicial elements. In
Jo dependent problems, the plastic flow is isochoric and the main challenge for the discrete for-
mulation is the incompressibility constraint. Unless this is properly dealt with, spurious pressure
oscillations appear and the discrete solution is totally polluted. A stabilized mixed formulation



provides a discrete problem which is fully stable, even for problems involving localization of shear
strains and the formation of slip lines. The results obtained, both in terms of collapse mechanism
and global load-deflection response, compare very favorably with those obtained with the stan-
dard irreducible formulation, which almost inevitably shows an unacceptable mesh dependence.
Nevertheless, regarding the computation of the deviatoric stresses, the stabilized mixed pressure-
displacement formulation has the same convergence behavior than the irreducible formulation. This
is because, in both formulations, the discrete deviatoric strains are computed by direct differen-
tiation of the discrete displacement field. This means that the corresponding convergence rate is
necessarily one order less than that of the displacements. When using linear interpolation for the
displacements and in quasi-singular situations, this may prove to be insufficient. The remedy is to
use an independent interpolation, linear at least, not only for the volumetric part of the strain (or
stress) tensor, but for all of its components.

Therefore, the objectives of this paper are five: (1) to extend the stabilized mixed strain/displ-
acement formulation to plasticity problems, (2) to investigate the effect of the improved strain and
stress fields in problems involving strain softening and localization leading to failure, (3) to assess the
performance of the formulation under nearly incompressible deformation patterns, (4) to compare
the performance of the proposed formulation with the previously proposed pressure/displacement
formulation and (5) to show that the formulation is applicable in 2D and 3D, to structured or
unstructured meshes of triangles, quadrilaterals, tetrahedra, hexahedra or prisms. Both pressure
sensitive and incompressible plasticity models are contemplated. To achieve this, the Drucker-
Prager plasticity model is selected as target model, as it may incorporate pressure sensitivity
through the friction angle of the material, as well as reduce to a pure cohesional behavior when
null friction is assumed.

Inelastic plastic flow is a directional phenomenon. In the stress space, assuming associative
plasticity, it occurs in the direction normal to the yield surface; in non-associative plasticity, the
directionality of the flow is established from a plastic potential, different from the yield criterion.
In any case, plasticity does not occur isotropically. This is an additional objective of this work: to
investigate the performance of the proposed mixed formulation in strain localization situations sub-
stantially different to those studied in previous works. Satisfactory performance under directional
inelastic behavior, without spurious stress locking and without the need of auxiliary discontinuity
tracking procedures, would reopen the path to the use of orthogonal and anisotropic constitutive
models than cannot be used today in practical applications.

The outline of the paper is as follows. In Section 2, the stabilized mixed strain/displacement
formulation for the solution of nonlinear solid mechanics problems is applied in conjunction with a
small strain plasticity model. The continuum problem and the corresponding discrete formulation
are introduced. Following the ideas in [7] and [8], stabilization of the latter is achieved by considering
a residual-based subscale approach. Both algebraic and orthogonal subgrid scales are considered.
Section 3 describes the implementation details for both stabilization procedures. Section 4 describes
the Drucker-Prager plasticity model. Details on the return mapping, consistent tangent constitutive
tensor and the consideration of the singular case of the apex of the yield surface are discussed.
Section 5 presents selected numerical examples involving unstructured and structured low order
finite elements meshes (triangles in 2D and triangular prisms in 3D) with continuous linear strain
and displacement fields to assess the generality and robustness of the proposed formulation.



2 Stabilized mixed strain/displacement formulation for plasticity

2.1 Mixed €/u formulation for plasticity

The strong form of the continuous quasi-static solid mechanics problem can be stated as: given the
prescribed body forces f, find the displacement field u and the stress field o such that:

-Cl'io+Viu = 0 in Q (1a)
V.o+f =0 in (1b)

where  is the open and bounded domain of R¥™ occupied by the solid in a space of dim di-
mensions. The symbol V*(-) is used to denote the symmetric gradient, whereas V - (-) refers to
the divergence operator. Eq. (1a) enforces both the geometric equation for linear kinematics and
the non-linear constitutive relationship o = C: e, with C = C (o) being the (secant) nonlinear
constitutive tensor; Eq. (1b) is the balance of momentum Cauchy equation.

Equations (1a)-(1b) are subjected to appropriate Dirichlet and Neumann boundary conditions.
In the following, we will assume these in the form of prescribed displacements u = 0 on 0%, and
prescribed tractions t on 98, respectively, being 9Q, and 9€; a partition of 9.

This mixed formulation in terms of the stress and displacement fields, o /u, is classical and it
has been used many times in the context of linear elasticity, where the constitutive tensor C = C,
is constant. However, this is not the most convenient format for the nonlinear problem. The reason
for this is that most of the algorithms used for nonlinear constitutive equations in solid mechanics
have been derived for the irreducible formulation. Thus, these procedures are usually strain driven,
and they have a format in which the stress o is computed in terms of the strain €, with € =V*u
for linear kinematics.

Because of this, the strong form of the continuum problem can be alternatively stated as: find
the displacement field u and the strain field e, for given prescribed body forces f, such that:

—-C:e+C:V’u = 0 in (2a)
V-[C:e]+f = 0 in (2b)

In small strain plasticity, the strain tensor € is decomposed additively as
€=¢€.+¢p (3)

with e, the elastic strain tensor and €, the plastic strain tensor. The plasticity model is defined
by appropriate evolution laws for the plastic strain. The constitutive equation is usually stated as

c0=C,:e.=C,: (e —¢gp) (4)

The problem is closed once the expression of €, is provided. In practice, an evolution law &, = &,(0o)
is formulated, the dot standing for the time derivative.

Using this constitutive equation, rather the secant one, the strong form of the plasticity problem
may be written as

—C,:e+Co:V'u = 0 in Q2 (5a)
V- [Co(e—¢gp))+f = 0 inQ (5b)



Let V and G be the appropriate functional spaces where u and € are sought, respectively. Mul-
tiplying by appropriate test functions and integrating by parts the second equation, the associated
weak form of the mixed problem can be stated as:

- (7a Co : E) + (’77 Co : Vsu)
(vsv’ Co: (E? - EP))

0 vy (6a)
(v,f) + (V’E)(?Qt Vv (6b)

where v € V and ~ € G are the variations of the displacements and strain fields, respectively, with
VCH 1(Q)dim7 this being the space of square integrable vector functions v which are at least square
integrable and have square integrable first derivative, and G C LQ(Q)S;ﬁXdim, this being the space
of square integrable symmetric tensors . The inclusions V ¢ H'(Q)%™ and G C L?()dim>dim
are required because functions in V must vanish on 0€2, and because more regularity might be
needed for the evolution law &, = €,(0) to make sense. Parenthesis (-, -) denotes the inner product
in L2(Q), and (v,t)sq, denotes the integral of the product of v and t over 9¢Y;.

Let us consider a finite element partition of the domain 2 from which we can construct finite
element spaces V;, C V and G, C G in the usual manner. A generic element size of this partition will
be denoted by h, and this subscript will be used to refer to finite element functions. The discrete
Galerkin finite element counterpart problem is defined as:

- (7h7 Co : Eh) + (’Yha Co : VSUh) =0 V’Yh (7&)
(sth, CO : (Eh — Ep)) = F(Vh) VVh (7b)

where uy, , v, € V, and €5, , v, € Gy are the discrete displacement and strain fields and their
variations, and F(vy,) = (vi, ) + (vp,t) o, - 1t is understood that e, is now computed in terms of
the finite element unknowns.
Remark The strong form (5a)-(5b), as well as the corresponding discrete weak form (7a)-(7b), are
not symmetric, because of the functional dependence of the plastic strain on the primary variables
of the problem. This can be remedied in two ways.

The constitutive equation (4) can be equivalently expressed, for example, as

B (Cot p) ® (Cot €p)

o= |C,
€:C, g

e=C:e¢ (8)

where the (secant) nonlinear constitutive tensor C is symmetric by construction. The form (8)
can be fitted directly in the strong form (2a)-(2b) to provide the corresponding symmetric discrete
weak form:

- (7}17 C: Eh) + (’th C :vsuh) =0 V7h (ga)
(Vvp,C:ey) = F(vp) Vv, (9b)

This form is identical to the discrete form obtained in references [7] and [8].
The second alternative is as follows. The constitutive equation (4) may be expressed in rate
form as
c=C:¢€ (10)



where C,, is the (tangent) elasto-plastic constitutive tensor, symmetric for associative plasticity
(see Subsection 4.3).

Making use of this, and stating all the governing equations in rate form, the strong form of the
problem can be written as

—Cep:€+Cp:VU = 0 in (11a)
V- [Cep:€l+f = 0 in Q (11Db)
This form is symmetric and leads to the symmetric discrete weak form:
— ('yh,Cep: éh) + (’yh,Cep:Vsilh) = 0 Yy, (12a)
(Vovi,Copi 1) = F(vi) Vv (12b)

where F(v3,) is the counterpart of F(v;,) when loads are expressed in rate form.

2.2 Variational Multiscale Stabilization

The inf-sup condition [20] establishes that the stability of the discrete formulation depends on
the appropriate choice of the finite element spaces V; and Gp. Even for linear elasticity, stan-
dard Galerkin mixed elements with continuous equal order P1P1 (linear/linear) and Q1Q1 (bi-
linear/bilinear) interpolation for both fields do not satisfy the condition and, therefore, are not
stable. For the €/u (or the o /u) problem, lack of stability manifests as spurious oscillations in
the displacement field that pollute the solution. A satisfactory way of circumventing the inf-sup
condition is to modify the discrete variational form, introducing numerical stabilization techniques
that can provide the necessary stability without affecting the consistent formulation of the discrete
problem nor degrading its convergence rate. Such techniques can be sustained from the so-call
Variational Multiscale Stabilization (VMS).

VMS was developed in first instance by [21] and then generalized in [22]. This technique
modifies appropriately the variational form of the problem in order to provide the required numerical
stability. The corresponding modified inf-sup condition is milder than the original one and it holds
for most common equal order finite element spaces [23].

The multiscale procedure decomposes the solution (e,u) into a resolvable finite element scale
(en,up) and an unresolvable subscale (&, 1), so that:

e = ep,+é€ (13a)
u = up+u (13b)

This extends the solution spaces for the displacements and the strains to V ~ V, @Y and G ~ gh@é ,
where V and G are the functional spaces for the subscale variables (€, 1) and their test functions
(4, V). It can also be assumed that & and 4 vanish on the boundary 0€.

The plastic strain €, is non-linearly dependent on the stress field, this in turn being dependent
on the strain field through the constitutive equation. Since the strain field € includes a subscale
contribution, then also the plastic strain tensor €, could present a corresponding subscale part.
However, since the subscale contribution is assumed to be small with respect the resolvable scale,
the plastic strain will be approximated as:

ep =¢p(0) ~ep(on) (14)



This implies that the constitutive model is evaluated only with the resolvable part of the strain:
on=C,:[en—egp(on)] (15)

It would be possible however to account for the effect of the subscales in this expression, at the
expense of increasing the non-linearity of the problem.
Considering the scale splitting, the discrete problem corresponding to Eqs. (6a)-(6b) is now:

— (", C, : [en +€]) + (71, C, : VE(uy, + 1)) 0 Yy, (16a)
(sth, C,: [Eh +€ - Ep]) = F(vp) Vv, (16b)

-(7,C,: en+e])+(,C,: Vi(u,+u)) = 0 Yy (16¢)
(VV.V-C,:[en+E—e)) - (T,f) = 0 Vo (16d)

where due to linear independence, each of the equations in (6a) and (6b) unfolds into two equations,
one related to each scale considered.

Rewriting the third and fourth equations, tested against the subscale test functions, and as-
suming that the subscale (&, ) vanishes on the boundary, it follows that

- (’77 Co : g)h + (%’a Co : Vsﬁ)h = - (:777 rl,h)h V’7 (17&)
(V9 V-C,:8), = — (%, 10p), W (17b)

where subscript h refers now to the fact the integrals are evaluated element-wise and where the
residuals of the first and second equations, in the finite element scale, are:

ri, = Co:(Viu,—ep) (18a)
rop = V .op+f (18b)

where the definition of the stress in expression (15) has been used.

This last system of equations shows that the solution of the subscale variables depends on
the residuals upon substitution of the resolvable FE solution in the strong form of the problem.
Therefore, following the work of [24], the residual based subscales strain can be localized within
each finite element and expressed as

= 7.C;L P (r1p) =7 P(Viuy, — &) (19a)
= TUP(PQVh):TuP(V-O'h—I—f) (19b)

[LN

o

where P(-) represents an appropriate projection operator onto the space of subscales and 7., 7

are computed as

h w hL
Te =C—— and T, =cCy—

Ho H
where c. and ¢, are positive constants, u is a mechanical parameter of the problem, usually chosen as
the ratio between the norms of the deviatoric stress and total strain tensors, u = ||dev o || / ||dev g,
I, being its initial elastic value. For nonlinear constitutive models, this ratio is non-constant and
it varies along the deformation process. Dimension h is the size of the finite element and L is
a characteristic length of the problem. The expression given by (20) has been chosen according

(20)



to the optimal convergence results obtained for equal interpolation in [24], since in the following
we precisely assume equal continuous interpolation for displacements and strains. For the sake of
clarity, h will be assumed constant for all elements, even if in practice expressions (20) are evaluated
element-wise.

To complete the stabilization method, an appropriate projection operator has to be selected in
order to be able to compute the subscale variables.

2.2.1 ASGS

In the Algebraic Subgrid Scale Stabilization [22], the projection operator is taken as the identity
when applied to finite element residuals, that is, P(r) = r, and, therefore, the subscales read:

= 7 (VPup —ep) (21a)
— o (Veop+f) (21D)

[LN

o

Introducing these strain and displacement subscales in Egs. (16a) and (16¢), integrating by parts
the last term in the first equation and recalling that the subscales vanish on the boundary, the
mixed discrete system of equations can be written as

—(1=7) (7, C,: len — Vi), + 70 (V- (Co: vy,),V-op+1), = 0 Yy, (22a)
(sth, CO : [Estab — Ep])h = F(Vh) Vvh (22b)

where
Estab = (1 — 7o) ep + 7.V, (23)
2.2.2 OSGS

In the Orthogonal Subgrid Scale Stabilization [22], the projection operator is the orthogonal pro-
jector, P(r) = P;- (r) = r — P, (r), where P represents the projection on the appropriate finite
element space. It is performed taking advantage of the orthogonality condition

("7h, Hr - I') =0 V'r]h (24>

where I, is the projected value of r on the finite element space and ny belongs either to V, or G,.
According to this, the subscale variables t and & are approximated as:

(LN

= 1. (Vou, — P, (Vuy)) (25a)
= 74 (V-op— Py (V-0p)) (25b)

o

where it has been assumed that Py, (f) = f.
Back-substituting in the set of equations of the problem, the problem to be solved is

— (Y1, Co : €n) — Te(Y1, Co = [VPuy — Pp(Viup)])p+

(Y4, Co : Vuy) = 74(V-Co: vy, V-op — Po(V-op)n = 0 V4, (26a)
(sth, C,: (Eh — €p) + TE(VSVh, C,: (Vsuh — Ph(VSuh)))h = F(Vh) Vv, (26b)



2.2.3 Modified OSGS

The formulation given by (26a)-(26b) has a numerical performance very similar to the ASGS method
given by (21a)-(21b). However, when localization occurs the formulation that has been found most
robust, and that has been used in the numerical examples, is the modification of (26a)-(26b)
described next.
First, it may be assumed that
Ph(VSuh) ~ €y (27)

which essentially means that the strain subscale is assumed to be given by the ASGS formulation
rather than by the OSGS one. This avoids the need to compute the projection Py(V*uy), but it is
not crucial at all, neither for stability nor for accuracy.

The second modification is the important one. If dev(a) and tr(a)l, with 1 the second order
identity tensor, are respectively the deviatoric and volumetric components of a tensor a, and P~ =
I — P, is the projection orthogonal to the appropriate finite element space, the last term in (26a)
may be writen as

(V-Co:v,, V-op = Pp(V-0n)n
= (PH( - dev(C, ) + %Phi(wr(co Y1), P(V - dev(o)) + éphi(vw(ah)))h (28)

For any function f smooth enough, Pi-(f) = f — Pu(f) goes to zero as h — 0 at the optimal rate
allowed by the finite element interpolation. Therefore, any term in this last expression may be
deleted without upsetting the accuracy of the formulation (see [10] for the analysis of the Oseen
problem and a discussion about this point).

The critical point is that we have observed that in cases in which there are strong gradients of the
solution the cross-products deviatoric-volumetric terms in (28) cause a numerical misbehavior, that
manifests in the plasticity problem as a (small) volumetric locking. A similar situation was found
in [11] for the viscoelastic flow problem in the presence of high stress gradients. Note that when the
solution is smooth, formulation (26a)-(26b) yields accurate and stable numerical approximations.
Moreover, the deviatoric-deviatoric product in (28) leads to a positive-definite term and in principle
should enhance stability, but we have found no instability problems when it is omitted.

In view of these observations, only the volumetric-volumetric term is kept in (28), i.e.,

(V-Co:vy,V-on—Pr(V-on))n = %(Vtr(Co :p), Vir(en) — Pro(Vir(op)))s (29)

This, together with (27), leads to the modified OSGS formulation:
1
—(1=72) (v, Co : [en — Viup)) + Tug(Vtr(Co :v), Vir(op) — Py (Vtr(ey))) = 0 VA, (30a)
(sth, CD . [estab — (-:p])h = F(Vh) VVh (30b)

with egap given by (23). As mentioned above, this is the numerical formulation used in the
numerical examples.



3 Implementation and computational aspects

In the presented mixed formulation, the presence of the non-linear plastic strains requires an iter-
ative procedure to deal with the nonlinearity of the problem. Iterative solution schemes, such as
Picard or Newton-Raphson methods, need to be introduced. Constitutive laws involving plastic-
ity are usually written in terms of rate equations and, consequently, the matrices involved in the
resulting algebraic set of equations are tangent to the strain-stress path. Hence, the use of the
Newton-Raphson scheme will be considered in the following. The advantage of such method is a
quadratic convergence rate in the iteration at each time step. Its use requires the computation of
the Jacobian matrix of the system of equation at each iteration of every time step.

3.1 ASGS

In the case of the ASGS scheme, differentiating the system of equations (22a)-(22b) at iteration 4
of time step n + 1, the Jacobian matrix presents the structure:

(i,n+1)
; M, G
(i,n+1) _ T T
J { D, K, ] (31)

where M is a projection mass-like matrix, G is a gradient matrix, D is a divergence matrix and K is
the stiffness matrix. The subscript 7 refers to the fact that those matrices incorporates stabilization
terms. Differentiating Eqs. (22a)-(22b), with the hypothesis introduced in Eqgs. (14)-(15) that the
plastic strain depends only on &, and after some manipulation, the previous matrices read:

M,=—(1- TE)/QNETCONE — TU/QCOBTB Cep (32)
G, =(1- ) /Q N."C,B (33)

D, = /Q B’ [Cp — 7 Co] Ny, (34)

K, = /Q B’C,B (35)

where N, and N,, are the matrices of shape functions of the respective strain and displacement
fields and B is the matrix of the gradient of those shape functions. The resulting algebraic system
of equations is, in general, not symmetric. Note that disregarding the terms due to plasticity,
the system matrix is symmetric and it coincides with the one presented in [7], [8]. In the general
elasto-plastic case, matrix C, is tangent to the stress-strain path. In Subsection 4.3 we introduce
it and describe how to compute it so that it is tangent to the time-discrete stress-strain path.

3.2 Modified OSGS

The modified OSGS implementation is identical to the ASGS implementation, except for the ad-
ditional projection of the gradient of the trace of the nodal stresses and the second term in (32),
which in this case only contains the volumetric components of C, and B.
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Concerning the additional equation due to the projection, it has the structure
Mpll+ Dpg¥X =0 (36)

where II are the nodal values of the projected variable (gradient of the trace of the stress) and X
of the stresses, and where

Mp= —/ N, N,
Q

The Jacobian in (31) has to be completed with the last row corresponding to (36) and the columns
accounting for the effect of IT in the first equation. Alternatively to this procedure, a staggered
scheme can be devised. First, the projection of the stresses II(%"*1) is computed at the beginning
of the time step. Then, the approximation II¢"+1) ~ II(0+1) is used for the solution of (e, uy).
This scheme is preferred with respect to the monolithic one due to the reduced computation time
required, almost identical to that of the ASGS scheme.

4 Pressure dependent plasticity. The Drucker-Prager model

4.1 Yield criterion

The Drucker-Prager plasticity model may be constructed as a linear combination of a pure isochoric
plasticity model and a pure pressure plasticity model, in the form:

flo.) = Wi |dev o]~ g

where the angle of friction ¢ is introduced to relate the admissible deviatoric stresses to the pressure.
Here, r? = r¢ () and P = rP (q) are the admissible stresses of the deviatoric and volumetric parts of
the model, respectively, and ¢ is a stress-like internal variable that controls the hardening/softening
of the model. In this work, the pressure threshold is taken as P = 0 to allow a direct comparison
between J2 incompressible plasticity and Drucker-Prager plasticity.

In the principal stress Haig-Westergaard space, the Drucker-Prager yield surface appears as a
symmetric cone with the axis coinciding with the hydrostatic pressure and a circular trace on the
octahedral plane (see Figure 1). The parameter a = +1 controls the sign of the pressure part and
the orientation of the cone. For a = 1, the cone is open in the triaxial compression end, while for

+atane [;tr o — 17 (q)] —0 (37)

a = —1, it is open for triaxial tension.
The deviatoric stress threshold is expressed as:
' (q) = oy —q(€) (38)
where ¢ is an internal strain-like parameter and ¢(§) is the hardening/softening function:
_JHE for 0<¢< %

for linear softening, whereas, in the case of exponential softening, it takes the form:

q(&) = oy <1—exp<_:H§>> for 0<¢<oo0 (40)

Y
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Figure 1: Yield surface for Drucker-Prager plasticity model in the stress space (a = 1)

where o, is the initial deviatoric threshold and H is the softening parameter.
Making p = 1/(1 4 tan ¢), the yield surface may be rewritten as:

floa)=p (\/f |dev o = (o - q<£>>> ta(l-p) o =0 (a1)

In the following, linear isotropic elasticity is assumed, with the elastic constitutive tensor given
by:

1
C,= K 1® 142G <I -3le 1) (42)

where K is the bulk modulus, G is the shear modulus and 1 and I are the second and fourth order
identity tensors, respectively.

4.2 Return mapping algorithm

Assuming associative plasticity and the existence of a plastic potential that coincides with the
definition of the admissible stress surface f (o, q), the evolution equations for the plastic variables

read: . Ot )
?p = ’Y o g,q
E = 40,f (00) (43)

where + is the plastic multiplier or plastic consistency parameter.
Additionally, given the Karush-Kuhn-Tucker and consistency conditions:

v>0, f(e,9) <0, ~f(o,9)=0 (44)

if  fle,q9)=0 =  4>0, f(o,9)<0 and 4f(o,q)=0 (45)
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Substituting the definition of the failure surface and differentiating, the plastic multiplier ¥ is
computed as [26]:

"y:% of 1 Co: € (46)
with
D:<8c,f:C 1 0o f + 0gf g0f> (47)

The time derivative of the evolution equations of the plastic variables can be approximated in-
troducing a Backward-Euler scheme with time steps of length At. Let us consider the time span
[tn,tnt1], with t,41 = t, + At, where variables are known at step (n) and must be computed at
step (n + 1). Then, the discrete-in-time version of (43) reads:

P et _glm H(nF1) (1) 3 dev o(®tD) n a(l_p)l
P Al = Al P\ 2 Jaev o] 3
(48)
é_N $(n+1) 5(71 _ p'Y(n+l)*’Y(71')
At

The trial state is defined at step n 4 1 with the plasticity variables €, and £ frozen at step n.
Therefore, the trial stresses are:

O (€(n+1) _51(;1)>

trial

(n+1)  _ q™

trial

(49)

The trial yielding function is:

1 3 1 1 1 1
t(ZL )= p (\/g Hde" 0-2(:;[)” - (Uy - qt(;liz;l ))> +a(l—p) <3t1" Uz(s?;z )> (50)
Plasticity occurs if fmall) > 0. The update of the stress is then

o) = ") _ AN ©, 0, f (51)

ria

which can be particularized for the Drucker-Prager criterion as:

(n+1) 3 dev PAARY
o_(nJrl) a_tma A,.Y (n+1) (1 _ )K]_ 4 2Gp Y trial (52)
Hdev a(nH)H
trial

The change of plastic multiplier Ay 1) = (1) _~ (") i5 computed with the discrete counterpart
of (46) as:

( ) (n+1)

n+l) trial

(1-— ) K +3Gp? + p? g
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4.3 Constitutive Elasto-Plastic Tangent operator

On one hand, the constitutive elasto-plastic tensor in continuous form is [26]:
1
Cep=Co— C, =C, — D (Co:05f) @ (Co: 0o f) (54)

On the other hand, considering the discrete Backward Euler time integration, the algorithmic
consistent constitutive elasto-plastic tensor [27] can be computed as:

Ag(n+1)
(n+1) - =22
V) = S0 (55)

Carrying out the differentiation, it yields:

C£Z+1) = G,

1 1
—ﬁ [p2G\/§n£ftjm)l +a(l-p K 1} ® [pQG\/gnngm)l +a(l—p K 1]

_ A,y(n+1)(2G)2p\/§HdeVl(n+l)) [(I — %1 & 1) — n((f;;)z ® nz(iilt:’riyl}

Ut1‘ial
(56)
where D) is the discrete counterpart of (47):
dg (gm) + PA'Y(TH_U)

DD = [(1 = p)? K + p3G] - p? i (57)

and n((int;g is the unit vector in the trial deviatoric stress direction:

(n+1)

(n+1) _ dev Jtm’al (58)

ditrial (n+1)
Hdev T trial H

4.4 Apex return mapping

The apex of the Drucker-Prager cone is a singular point in the yield surface. This means that the
cases when the return mapping is to the apex, rather than to the regular lateral surface of the cone,
have to be identified and an “ad-hoc” procedure is necessary [28, 29, 30]. In the standard return
mapping algorithm, Eq. (52), considering the deviatoric part and taking norms, it is:

Jaev )| = Jaev {1 - aq D2y 2 (59
which requires that that:
|aev ol
A HD) < : (60)



If this condition is verified, then the return mapping is made through the standard procedure
described previously. Otherwise, the return mapping will be made to the apex of the Drucker-
Prager cone.

The stress at the apex point is:

Oq ez:pmin:l:a g _Q) 1 (61)
g (1-p) (@
And, given that
Taper = Tproeg) — Cot Al (62)
the discrete increment of plastic strain is:
Ay = €t (o) = Gupea) (63a)
_ A [ (n+1) 1 (n+1)
= 3K (Pt?ml - pmm> 1+ ﬁdev o, (63Db)

Notice that the value of ppin depends on the value of the isotropic hardening ¢ = ¢(§). Consequently,
an iterative procedure is necessary in order to evaluate correctly the plastic multiplier.

Once the stress state arrives at the vertex of the cone, it will remain at the apex unless unloading
or neutral loading occurs. This means that once the apex is reached, the consistent constitutive
tensor is the null fourth order tensor.

4.5 Softening behavior

Physically, the energy dissipated during the formation of a slip surface is linked with the fracture
energy G, defined by unit surface. When using a plastic model defined in terms of stress and
strain to represent the behavior of the (regularized) slip surface, the dissipated plastic energy W,
is defined by unit volume. In the discrete FE setting, these two definitions are related through a
characteristic length [.;, connected to the mesh resolution:

Wy == (64)

In the plastic model, the rate of plastic work is computed as:

Wy=0:6,=05¢& (65)
where & is the equivalent Drucker-Prager stress:

d=p (oy—q(§)) (66)

and &, is the rate of equivalent plastic strain:
- 2. 2 .o
=2 lel = p+a\/;<1—p>] FEL: (67)
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where o > 1 depends only on the friction angle. In both the linear and exponential softening cases,
where ¢ (§) is defined by (39) and (40), respectively, the total plastic work is integrated to be:

oo | 00 ) O'y2
Wz/ Wdt:/ Gy dt=a —= (68)
P 0 P 0 P 2H

From expressions (64) and (68), the parameter H can be computed as:

2

o _
H=a ﬁzeh =Hlgy (69)

The parameter H depends only on material properties, whereas [, depends on the resolution of
the discretization. As pointed out by [8], the size of the strain concentration band depends on the
finite element technology. For instance, irreducible finite elements provide a concentration band
within a single element span, due to the discontinuous strain field. On the contrary, in the €/u
mixed FE formulation, with inter-elemental continuous strain, the slip line spans two elements.
The characteristic length [, is taken accordingly.

4.6 Orientation of the shear band discontinuities

Several authors [12, 13, 14, 15, 16, 17, 18] have found analytical and geometrical solutions for the
orientation of the discontinuity bands resulting from elasto-plastic models using different strategies.
All of them seek their solutions after the so-called localization condition, which implies the loss of
material ellipticity of the constitutive relation and is shown to be a necessary condition for the
appearance of weak discontinuities and localized failure to take place.

In this work, a different approach is adopted to find analytical expressions for the orientation of
localization bands for the Drucker-Prager model, both under plane strain and plane stress condi-
tions. This procedure, proposed in reference [19], produces far more realistic results than those used
beforehand. It makes use of the stress boundedness and decohesion conditions, which, combined,
can be shown to be also necessary conditions for the shear band to form, but more constrictive than
the before mentioned localization condition. In fact, they can be shown to be necessary conditions
for the occurrence of bifurcation and localization of the strain field, with bounded stresses and
decohesion in the limit case along a localization band (or a regularized strong discontinuity). This
is why the term strong discontinuity condition was used in reference [18] for it. However, it applies
to localization bands (limited by weak discontinuities) and strong discontinuities alike.

The physical interpretation of this condition is simple: all of the difference in the strain field
between the interior and the exterior points of the localization band, that is, the strain "jump",
must be inelastic (plastic in this case). For a given plastic flow tensor, the condition may be used
to determine the orientation of the discontinuity.

A remarkable difference between this approach and those other mentioned (based on the acoustic
tensor) is that the orientation of the discontinuity does not depend on the elastic properties. It
depends only on the plastic yield surface adopted and the stress state of interest.

In the next Section it is shown that this strategy predicts analytically orientations for the shear
bands that are almost in perfect agreement with the ones computed numerically using the proposed
stabilized mixed €/u formulation.
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5 Numerical examples

The formulation presented in the preceding sections is illustrated below in a number of benchmark
problems. Performance of the proposed stabilized mixed formulations is tested considering both 2D
and 3D examples to demonstrate the generality of the formulation and its independence from the
type of finite elements utilized. In 2D, plane-strain 3-noded linear triangular unstructured meshes
are used. In 3D, structured meshes of regular triangular prisms are employed. The examples involve
both compressible and incompressible plasticity using the Drucker-Prager model with exponential
softening. Results obtained for the incompressible cases are compared with those obtained with the
previously developed stabilized mixed pressure/displacement formulation ([1, 2, 3, 4, 5] and [6]).

The following material properties are assumed: Young’s modulus £ = 10 MPa, Poisson’s ratio
v = 0.3, deviatoric stress threshold o, = 10 KPa and fracture energy Gy = 400 J /m?2. For the
Drucker-Prager model a = 1, the cone is open in the triaxial compression end. Values ¢, = 0.01
and ¢, = 1.0 and L = 1 m are taken for the evaluation of the stabilization parameters.

The Newton-Raphson method is used to solve the non-linear system of equations arising from
the spatial and temporal discretization of the weak form of the stabilized problem. In all cases 200
equal time steps are performed to complete the analyses. Convergence of a step is attained when
the ratio between the norms of the iterative residual forces and the incremental total forces is lower
than 1075, Calculations are performed with an enhanced version of the finite element program
COMET [31, 32], developed by the authors at the International Center for Numerical Methods in
Engineering (CIMNE). Pre and post-processing is done with GiD, also developed at CIMNE [33].

5.1 Singly perforated strip

The first example is a plane-strain singly perforated strip subjected to axial imposed straining.
Because of the double symmetry of the domain and boundary conditions, only one quarter of the

()

Figure 2: Geometries for the singly perforated strip: (a) undeformed, (b) deformed (x 5) ¢ = 0°,
(c) deformed (x 5) ¢ = 45°
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(a) (b) () (d)

Figure 3: Results for singly perforated strip using the mixed u/p formulation; incompressible case
¢ = 0°. Contours for: (a) vertical displacement, (b) equivalent plastic strain, (c¢) volumetric plastic
strain and (d) deviatoric plastic strain

domain (the top right quarter) needs to be discretized. Figure 2a depicts the original geometry of
the problem; dimensions are 20 x 40 m x m (width X height) and the radius of the perforation
is » = 1 m. Thickness is 1 m. A uniform upward vertical displacement is imposed at the top

()

boundary.

8
i

.
.

)

(a)
Figure 4: Results for singly perforated strip with the mixed e/u formulation; incompressible case
¢ = 0°. Contours for: (a) vertical displacement, (b) equivalent plastic strain, (c) volumetric plastic
strain and (d) deviatoric plastic strain
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Figure 5: Results for singly perforated strip. (a) Comparison between the mixed u/p and e/u

formulations for the incompresible case. Effect of mesh refinement. (b) Comparison for the €/u
formulation for different friction angles.

19



The computational domain is divided into an unstructured uniform mesh of 7,202 linear triangles
(3,721 nodes) with an average mesh size of h = 0.25 m, not shown. The pre-processor used tends
to introduce patches of equilateral triangles with predominant directions at —30°, +30° and +90°
with the horizontal axis.

First, the incompressible case, with friction angle ¢ = 0° is investigated.

Figure 3 shows the results obtained using the stabilized mixed u/p formulation, once the shear
bands are fully developed and the collapse mechanism can be appreciated ((half)-imposed vertical
upward displacement ¢ = 0.20 m). The failure mechanism is correctly predicted, with X-shaped
shear bands forming at 45°. No mesh-bias dependency is observed. The resolution of the shear
bands is optimal for the mesh used, as shown by the displacement and equivalent plastic strain plots.
Discontinuity of the displacement tangential to the slip line and localization of the deviatoric strain
occurs across one single element. The isochoric nature of the deformation pattern is demonstrated
by the absence of volumetric plastic strains. No indication of overshoots or undershoots of any
magnitude is observed at either side of the discontinuity lines. Control on the pressure is completely
attained, and no spurious oscillations are observed anywhere in the domain.

Figure 4 shows the results obtained using the proposed stabilized mixed & /u formulation, also for
a (half)-imposed vertical displacement § = 0.20 m. Results are very similar to those obtained with
the u/p formulation. The failure mechanism is correctly predicted and no mesh-bias dependency
is observed. The resolution of the shear bands is also optimal for the mesh used. Now localization
of the deviatoric strain occurs across two elements, because of inter-element strain continuity.
Volumetric plastic strains are negligible. No spurious oscillation of any variable is observed. The
deformed shape of the strip (with an amplification factor of 5) is shown in Figure 2.

Figure 5a compares (half)-load vs (half)-imposed vertical displacement curves (recall 1 m thick-
ness is assumed) obtained with the two stabilized mixed formulations: u/p and e/u. Both mixed

(b) (c) (d)
Figure 6: Results for singly perforated strip with the mixed e/u formulation; compressible case

¢ = 45°. Contours for: (a) vertical displacement, (b) equivalent plastic strain, (c) volumetric
plastic strain and (d) deviatoric plastic strain



formulations capture adequately the peak load and the softening branch of the curve, but the re-
sponse obtained with the newly proposed formulation is less dissipative. The reason for this is that
this formulation is locally more accurate and it reduces the stress locking induced by the isochoric
deformation behavior inside the shear bands.

The total dissipated energy required to create a perfectly straight shear band branch at 45,
similar to those shown in Figures 3 and 4, but without any boundary effect, is Wy;s = Gy - A =
400 - 9/2 -1 = 5091 J. The work spent by the external forces in the €/u formulation (area under
the curve in Figure 5a) is W;iéu = 5210 J (2.33 % difference with respect the idealized solution),

while the work spent by the u/p formulation is W;ép = 6723 J (32.02 % difference). The accuracy
of the proposed formulation is remarkable.

Figure 5a also shows the (half)-load vs (half)-imposed vertical displacement curves obtained
with the two stabilized mixed formulations, u/p and €/u, on a refined unstructured uniform mesh
of 20,255 linear triangles (10,342 nodes) with an average mesh size of h = 0.15 m. These show that
the solution obtained with £/u formulation is independent of the mesh size and bias. Contrarily,
the solution of the u/p formulation converges to an over-dissipative solution. This is due to the
stress-locking induced by the poor kinematics of the elements used under localized shear. The
problem is much alleviated in the e/u formulation (see reference [8]).

Next, compressible cases, with increasing friction angles ¢ = 15°, 30°,45° are investigated.

Figure 5b shows (half)-load vs (half)-imposed vertical displacement curves obtained with the
e/u formulation for these cases. The limit load reduces as the friction angle increases, due to the
orientation of the cone (a = 1). Even if the dissipated energy per unit area remains constant, and
equal for the fracture energy of the material, the total dissipated energy decreases as the friction
angle increases, because the length of the shear band diminishes.

Table 1 shows the comparison between the analytical localization angles computed for uniaxial
tension in plane strain conditions and the ones obtained numerically. The analytical values are
obtained with the procedure presented in reference [19]. The remarkable agreement between the
analytical and the numerical values validates both the analytical and the numerical approaches.

Figure 6 shows the results obtained using the proposed stabilized mixed € /u formulation, friction
angle ¢ = 45°, and a (half)-imposed vertical displacement § = 0.20 m. The failure mechanism is
correctly predicted, with shear band now forming an angle of 26.90° with the horizontal axis (being
26.11° the analytical value), completely independent of the mesh-bias. The resolution of the shear
bands is also optimal for the mesh used. Volumetric plastic strains are of the same order than the
deviatoric plastic strains. The deformed shape (x 5) of the strip is shown in Figure 2c.

Plane strain | Analytical [19] | Numerical
¢ =0° 010 = 45.00° Oroc = 44.32°
¢ =15° 010 = 40.53° O10c = 39.30°
¢ = 30° O10c = 35.07° | 010 = 33.90°
& = 45° Or0c = 26.12° | 0100 — 26.90°

Table 1: Results for singly perforated strip with the mixed e/u formulation. Comparison be-
tween the analytical localization angles for uniaxial tension in plane strain conditions and the ones
obtained numerically
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5.2 Circular rigid inclusion

The second example is a plane-strain circular rigid inclusion subjected to an imposed vertical
downward imposed displacement. Perfect stick conditions are assumed between the inclusion and
the surrounding medium; thus, the vertical displacement is imposed directly to the interface. Figure
7a depicts the original geometry of the problem; dimensions are 20 x 20 m x m (width x height)
and the radius of the inclusion is r = 1 m. Thickness is 1 m.

This example is interesting because the symmetric collapse mechanism consists of two almost
circular curved shear bands that intersect each other. Therefore, it is an adequate test to assess
the ability of the different formulations to deal with such a complex situation in a given mesh.

Because of the symmetry of the domain and boundary conditions with respect the central
vertical axis, only one half of the domain (the right half) needs to be discretized. The computational
domain is divided into an unstructured non-uniform mesh of 13,750 linear triangles (7,006 nodes)
with smaller elements near the circular inclusion, not shown.

The incompressible case, with friction angle ¢ = 0° is investigated.

Figure 8 shows the results obtained using the stabilized mixed u/p formulation, once the col-
lapse mechanism and the shear bands are fully developed. The failure mechanism, which can be
appreciated in Figure 8a, displaying the contour fills for the norm of the displacements, and Figure
8b, displaying the contour fills for the norm of the equivalent plastic strain, is correctly predicted.
Because of the formulation used, discontinuity of the displacements across the slip lines and local-
ization of the plastic strain occurs across one single element. The attained resolution is optimal
for the mesh used. Figure 8c shows pressure contours. Not only there is no evidence of pressure
oscillations, but the pressure field is completely undisturbed by the presence of the shear bands.
An almost perfectly skew-symmetric pressure distribution is attained. Finally, Figure 8d shows the
principal strain vectors at failure. Strain localization is clear, and the direction of the computed
vectors is affected by the mesh alignment, although this is not evident because the mesh is unstruc-
tured. The deformed shape of the problem (with a displacement amplification factor of 5) is shown
in Figure 7.

(a)

Figure 7: Original and deformed (x 5) geometries for circular rigid inclusion
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(b)

e
(c) (d)

Figure 8: Results for circular rigid inclusion using the mixed u/p formulation. Incompressible

plasticity, ¢ = 0°. Contours for: (a) displacement, (b) equivalent plastic strain, (c) pressure and
(d) principal strain vectors

A

Figure 9 shows the corresponding results obtained using the proposed stabilized mixed €/u
formulation. Asin the previous example, results are qualitatively very similar to those obtained with
the u/p formulation. The failure mechanism is obviously the same and no mesh-bias dependency is
observed. Contour plots for the displacement and the pressure fields, Figures 9a and 9c are almost
identical to those in 8a and 8c, because in both formulations these fields are linearly interpolated.
A clear difference can be observed in the contour plot of the plastic strain, Figure 9b, which can be
considered as the smoothing of the piece-wise discontinuous field of Figure 8c. The inter-element
continuity of the plastic strain is clear in the picture. Figure 9d shows the principal strain vectors
at failure. In this case, the direction of the computed vectors is much less affected by the mesh
alignment than in Figure 8d.
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(b)

() (d)

Figure 9: Results for circular rigid inclusion using the mixed e/u formulation. Incompressible
plasticity, ¢ = 0°. Contours for: (a) displacement, (b) equivalent plastic strain, (c) pressure and
(d) principal strain vectors

Figure 10 compares (half)-load vs imposed vertical displacement curves obtained with the two
stabilized mixed formulations: u/p and €/u. As in the previous example, both mixed formulations
capture well the limit load and the general softening trend of the curve, but the response obtained
with the newly proposed formulation is more accurate and less dissipative.

5.3 Simply perforated thin-walled cylinder

The last example is a simply perforated thin-walled cylinder subjected to axial imposed straining.
Dimensions of the cylinder are: height 30 m, outer radius 6 m, inner radius 5.8 m, thickness 0.2
m. The perforation is a square indentation of trace 0.4 x 0.4 m?. Because of the double symmetry
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Figure 10: Force vs. displacement plot for circular rigid inclusion. Comparison between the u/p
and the £/u formulations
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Figure 11: Deformed (x 5) geometries for singly perforated thin-walled cylinder for different friction
angles: (a) 0°, (b) 15°, (c) 30°, (d) 45°
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of the domain and boundary conditions, only one quarter of the cylinder is discretized. A uniform
upward vertical displacement is imposed at the top boundary. Because the cylinder is thin-walled
and there is no restriction to deformation in the radial and hoop directions, the normal stresses
in the radial and hoop directions are null, so that the cylinder is subjected to a state of uniaxial
vertical stress. Therefore, the angles of the localized shear bands can be analytically obtained under
plane stress conditions.

The computational domain is divided into a structured uniform mesh of 3,749 triangular prisms
(7,750 nodes) with a mesh size of h = 0.2 m, half the size of the indentation and equal to the
thickness of the cylinder.

Incompressible and compressible cases, with increasing friction angles ¢ = 0°,15°, 30°,45° are
investigated using the stabilized mixed €/u formulation. The deformed shapes obtained are shown
in Figure 11 (amplification factor 5). The failure mechanisms are correctly predicted in all cases,
with X-shaped helicoidal shear bands forming at different orientations, independently of the marked
alignment of the structured mesh, and without the use of any auxiliary tracking technique. It can
be observed that, as in the first example, the angle that the shear band forms with the horizontal
plane decreases as the angle of friction of the material increases.

Table 2 shows the comparison between the analytical localization angles computed for uniaxial
tension in plane stress conditions and the ones obtained numerically. The analytical values are
obtained with the procedure presented in reference [19]. Note that the localization angles are
different in plane stress situations than under plane strain conditions. As in the first example, the
agreement between the analytical and the numerical values is remarkable, and validates both the
analytical and the numerical approaches.

This example provides a case to illustrate not only the quantitative, but the qualitative difference
between the u/p and €/u formulation. Figure 12 shows the results obtained for the incompressible
case (¢ = 0°), with the e/u formulation. As can be noted, the computed failure mechanism is
correct, as all plots, vertical displacement, equivalent plastic strain, pressure and principal strain
vectors, corroborate. Figure 13 shows the results obtained with the u/p formulation. It can be
appreciated that the solution obtained with this formulation is not realistic. Figure 13c shows that
in this case the obtained plastic strain localizes in a layered pattern which is discontinuous from one
horizontal layer of elements to the ones above or below. This spurious type of stepped localization
is possible with the w/p discrete formulation, where the deviatoric strains are discontinuous, but
cannot occur with the e/u discrete formulation, where all strains are continuous.

Figure 14 compares (half)-load vs (half)-imposed vertical displacement curves obtained with

Plane stress | Analytical [19] | Numerical
¢ =0° 010c = 35.26° B1oc = 34.04°
¢ =15° 010c = 31.55° B10c = 31.20°
¢ = 30° O10c = 26.92° B10c = 26.07°
¢ = 45° O1oc = 19.47° 010c = 20.44°

Table 2: Results for simply perforated thin-walled cylinder with the mixed &/u formulation. Com-
parison between the analytical localization angles for uniaxial tension in plane stress conditions
and the ones obtained numerically
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(b) () (d)

Figure 12: Results for simply perforated thin-walled cylinder with the mixed e/u formulation.
Contours for: (a) vertical displacement, (b) equivalent plastic strain, (c) pressure and (d) principal
strain vectors

Figure 13: Results for simply perforated thin-walled cylinder with the mixed u/p formulation.
Contours for: (a) vertical displacement, (b) equivalent plastic strain, (c) pressure and (d) principal
strain vectors
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Figure 14: Force vs. displacement plot for simply perforated thin-walled cylinder. Comparison
between the u/p and the €/u formulations

the two stabilized mixed formulations: w/p and e€/u. Here, the incorrect prediction of the failure
mechanism when using the mixed u/p formulation shows in the over prediction of the dissipated
energy spent during the failure process.

6 Conclusions

This paper presents the application of a stabilized mixed strain/displacement finite element formula-
tion for the solution nonlinear solid mechanics problems involving compressible and incompressible
plasticity. Such formulation presents two advantages when compared to the standard, displacement
based, irreducible formulation: (a) it provides enhanced strain (and stress) rate of convergence and
(b) it is able to deal with incompressible situations. The first advantage applies also to the mixed
pressure/displacement formulation.

The variational multiscale stabilization introduced allows the use of equal order interpolations in
a consistent way. Consequently, low order finite elements with continuous strain and displacement
fields are used in conjunction with an associative frictional Drucker-Prager plastic model to model
strain localization and failure. The derived model yields a general and robust scheme, suitable for
engineering applications. Its application translates in the achievement of the goals:

1. the resulting discrete FE model is well posed and stable,

2. the formulation is able to tackle compressible and incompressible inelastic behavior, without
indications of pressure oscillations in the latter case,
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3. the formulation is able to tackle directional inelastic behavior, and

4. the results are convergent and not spuriously dependent of the finite element mesh used.

Benchmark numerical examples (using triangles in 2D and triangular prisms in 3D) show
the substantial advantage of the mixed formulation over the irreducible and the mixed pres-
sure/displacement one to predict correct failure mechanisms with localized patterns of strain, vir-
tually free from any dependence of the mesh directional bias.

The proposed formulation has two salient features. On one side, it is of general application,
in 2D and 3D problem, to structured and unstructured meshes and to simplicial or non simplicial
elements. On the other side, no "ad hoc" auxiliary crack tracking technique is necessary.
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Abstract

The development of slip lines, due to strain localization, is a common cause for
failure of soil in many circumstances investigated in geotechnical engineering. Through
the use of numerical methods -like finite elements- many practitioners are able to take
into account complex geometrical and physical conditions in their analyses. However,
when dealing with shear bands, standard finite elements display lack of precision, mesh
dependency and locking. This paper introduces a (stabilized) mixed finite element
formulation with continuous linear strain and displacement interpolations. Von Mises
and Drucker-Prager local plasticity models with strain softening are considered as
constitutive law. This innovative formulation succeeds in overcoming the limitations
of the standard formulation and provides accurate results within the vicinity of the
shear bands, specifically without suffering from mesh dependency. Finally, 2D and
3D numerical examples demonstrate the accuracy and robustness in the computation
of localization bands, without the introduction of additional tracking techniques as
usually required by other methods.



1 Introduction

The stability analysis of a slope, both in the small scale of a road embankment and in
the larger one of a mountain slope, is a very frequent example of geotechnical engineering.
The prevention of failure shear bands is a fundamental requirement to ensure the safety
of a volume of soil. In the geotechnical practice, standard design procedures require
the computation of a safety factor. This is usually done by comparing the value of the
acting forces to the value of the resisting ones through simplified methods. The first
recorded case of stability analysis was performed by S. Hultin and K. Pettersson in 1916
(documented only in 1955), for the Stigberg Quay in Gothenburg (Sweden), where the
slip surface was taken to be circular and the sliding mass was divided into slices. In the
same period, the first major result was the Bishop method, proposed by Prof. A. Bishop
as an extension of the “Swedish Slip Circle Method” [1]. Although these methods are very
useful as preliminary evaluation tool, the validity of the approach is strongly limited when
simplified assumptions on soil mechanical constitutive law, geometry and slip lines shape
are required a priori. The introduction of the Finite Elements Method represented a sound
alternative to tackle detailed problems of geotechnical nature, thanks to their potential
versatility and vast application. FEM makes possible the study of materials failure and
its complex coupling with environmental actions such as seepage flow.

In the last three decades, the scientific community invested a considerable effort seeking
a consistent description of failure modes through the use of numerical methods. A slip
line is a physical discontinuity created by a localization of strains, as it is depicted in
part b of Figure 1 reported from Cervera et al. [2]. From a mathematical stand point,
the numerical discontinuity in the field variables can be treated in various ways. In the
approach adopted in this work the strain localization is assumed to occur in a band of
finite width where the displacements are continuous and the strains are discontinuous but
bounded [3]. Actually, this is a regularization of the discontinuity over a finite length, as
it is possible to see in part a of Figure 1.

It is well known that this kind of “smeared” approach poses some challenges. The
standard irreducible formulation of FEM is known to be heavily affected by spurious mesh
dependence when softening behavior occurs and, consequently, slip lines evolution is biased
by the orientation of the mesh [4]. Moreover, in the case of isochoric behavior, unbounded
pressure oscillations arise and the consequent locking of the stresses pollutes the numerical
solution. Both problems can be shown not to be related to the mathematical statement
of the continuous problem but instead to its discrete (FEM) counterpart [5, 6].

Mixed formulations in terms of both the pressure and the flow velocity are classical in
the numerical solution of Darcy’s equation [7, 8, 9, 10, 11, 12], where the focus is placed
in achieving enhanced accuracy in the velocity. The mathematical structure of Darcy’s
and Cauchy’s problems is analogous, with the pressure and velocity fields in the first one
corresponding to the displacement and stress fields in the second one. Therefore, similar
mixed methods can be applied to both problems.

In the last decade, the use of mixed finite elements for the description of failure me-
chanics has proved to be extremely useful. Initially, a stabilized displacement-pressure
(u/p) formulation was introduced to address the problem of incompressibility in elasto-
plasticity [13]. Later, it was shown that a continuum isotropic damage constitutive law can
be fitted in such formulation [14]. Recently, Badia and Codina [7], for the Stokes-Darcy
problem, and then Cervera et al. [15], for the linear and nonlinear mechanical problem,
discussed the local convergence properties of mixed formulations. From these, it follows
that the reliability in the prediction of strain concentration bands depends directly on
the capability of the method to converge to a meaningful solution. In nearly singular
situations, such as when a slip line forms, the u/p formulation presents satisfactory global
convergence in the interpolated variables, but it lacks of local convergence in the stress
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Figure 1: Localized failure: strong (right) and smeared (left) discontinuities

field, although a large number of tests showed a well behaved solution in many cases [16].

In order to achieve local convergence of stresses, and, in turn, objectivity of results with
respect of the mesh alignment, a stabilized mixed strain-displacement (¢/u) formulation
was developed by Cervera et al. [17, 18] and applied to problems involving softening
isotropic damage materials. In these references, it is shown that the enhancement of
accuracy attained by the use of mixed strain-displacement (e/u) formulation overcomes
the spurious mesh-bias dependency observed when using the standard irreducible FEM
formulation.

In this work, the strain-displacement mixed formulation is extended for the purpose of
solving problem involving compressible and incompressible plasticity. The effectiveness of
the formulation, outperforming both the standard irreducible and the mixed displacement-
pressure (u/p) approaches, is demonstrated in examples involving failure and strain con-
centration bands.

The paper is organized as follows. First, the mixed finite element method is derived
and the mathematical basis are presented. Then, the Drucker-Prager constitutive model is
introduced as a pressure-dependent generalization of the incompressible Von Mises model.
Finally, numerical examples are reported in order to demonstrate the robustness and the
accuracy of the proposed mixed finite elements.



2 e — u mixed finite elements

2.1 Strong form

Consider a body occupying the space domain £, its boundary being 9¢2. The field of total
strain has be compatible with the displacement field, so that

-+ Viu=0 (1)

where u is the field of displacements and € is the field of infinitesimal strains. The
equilibrium of the body in a (quasi-)static mechanical problem is described by the following
equation:

V.o+f=0 (2)

where o is the Cauchy stress tensor and f are the external forces applied to the body.
The symbol V - (-) refers to the divergence operator whereas V?(-) is used to denote the
symmetric gradient. In small strain plasticity the strain tensor is decomposed additively
as

e=¢c.+¢g (3)

with e, the elastic strain tensor and €, the plastic strain tensor. The constitutive equation

can be written as
oc=C:e.=C:(e—¢gp) (4)

where C is the fourth order elastic constitutive tensor. Now, substituting (4) in (2), the
problem reads
-+ Viu=0
(5)
V- [C:(e—gy)]+f=0

In order to obtain a symmetric system, the first equation is pre-multiplied by the elastic
constitutive tensor C:

—C:e+C:Viu=0
(6)

V. [C:(e—gp)]+f=0
Hence, (6) is the final system of partial differential equations in strong form in terms of the
total strains € and displacements w for the mechanical problem involving plasticity. The
mixed problem is solved for both unknown fields [u, €] introducing appropriate boundary
conditions and evolution laws for the plastic strain field [19]. For the sake of shortness
and recalling (4), it can be written:

—C:e+C:Vu=0

(7)
Veo+f=0

2.2 Weak form

The weak form of the set of equations presented in (6) is:

—/’y:(C:s—i—/’y:(C:VSu—O Vy e G
Q Q

/va:(V-U)+/'v:f:0 Vv eV

Q



The functional space V represents the set of test functions v for the displacement field
u, whereas G is the set of test function tensors for the strain e. Integrating by parts the
second equation, it can be written:

—/’y:(C:s—i—/’y:(C:VSu:O Vy e G
Q Q
(9)
/st:a:F(v) Vv eV
Q

where the boundary terms accounting for stresses on the boundary and body forces f are
collected in the term

F(v):/ag'v:(a-ﬁ)%—/ﬂ'v:f (10)

in which 7 represents the outward normal vector with respect to the boundary 9f2. From
the mathematical requirements of the problem in (9), V will be in the space of square
integrable functions v which are at least square integrable and have square integrable first
derivative, whereas G will belong to the set of square integrable symmetric tensors ~y.

2.3 Discrete Galerkin formulation

The discretized version of the continuous weak form is obtained considering a finite set
of interpolating functions for both the solution and the test function. For this reason the
discrete functional spaces are a subset of their continuous version:

G C G C LA(Q)Hm>dim and V), ¢ V C HY(Q)*™ (11)

where dim is the number of the dimensions of the domain of the problem. Now, the strain
tensor € and the displacement field u are approximated as

Mpts . .
s—>sh:27s)€§f) ¥, € Gp,

T (12)
U — up = Zvﬁf)u,(f) v € Vy

i=1

The system of equations (9), in its discrete form, reads

—/‘yh:C:Eh—i—/’)’h:CZVSuh:O Vv, € Gy,
Q Q
(13)
/VSUhZO':F(’Uh) Vv, € Vp,
Q

In the following, we will introduce equal interpolation finite element spaces for displace-
ments and strains. Particularly interesting will be the case of linear and bilinear interpo-
lations, i.e. P1P1 and Q1Q1 elements. However, it is well known that the stability of a
discrete mixed formulation depends from the choice of the finite element spaces Gy, and V),
as stated by the Inf-Sup condition [20]. Using equal order of interpolation does not satisfy
the previous condition; consequently, a Variational Multiscale Stabilization procedure is
now introduced.



2.4 Variational Multiscale Stabilization

The Variational Multiscale Stabilization was developed in first instance by Hughes et al.
[21] and then generalized by Codina [22]. This technique modifies appropriately the vari-
ational form of the problem in order to provide the required numerical stability. The
corresponding modified Inf-Sup condition is milder than the original one and it holds for
most common equal order finite element spaces [23].

The stabilization procedure supposes that the solution of variables (e, u) is given by
a resolvable scale (ep,uy), calculated on the FEM mesh, and an irresolvable one (&, a),
called subscale solution: ~

e=ente (14)
u=u,+u
The subscale variables and their test functions pertain to their respective functional spaces
G for the strain subscale and V for the displacement subscale. This initial hypothesis
allows us to consider extended solution spaces given by G = Gp, ® G and V~V,®V. The
subscale part (&, @) can be thought as a high frequency solution that cannot be captured
with the coarse FEM mesh.

The plastic strains €, are computed by the return mapping algorithm, given the stress
tensor o = C : (¢ — gp) as input data. Since the total strain field € has both coarse and
subscale contribution, then also the plastic strain tensor €, could present a corresponding
subscale part. However, since the subscale contribution is assumed to be small, the plastic
strain will be approximated as:

ep =¢€p(0) = ep(on) (15)
with
Op =C: [Eh—Ep (O'h)] (16)
Within this enhanced functional setting, the set of equations can be written as:
—/7h:C:(sh+E)+/’yh:(C:VS(uh—l—ﬁ) =0 Vv, € Gy,
Q Q
/ Vév, : [C: (e, + & — €p)] = F(v,) Yop eV,
Q
(17)
—/&:(C:(eh+é)+/5/:(C:VS(uh+ﬁ) =0 V4 € G
Q Q
/'TJ:(V-[(C:(Eh—l-é—sp)])—l-/@:f =0 Vo ev
Q Q

Rewriting the second group of equations, tested against the subscale test functions, and
assuming that the subscale (&, ) vanishes on the boundary, it follows

—/ﬁ:C:é—i—/’y:(C:Vsﬁz/'?:C:[sh—Vsuh] 4eG
Q Q Q
(18)
/VS'D:C:E‘:/’T):[V-Uh+f] peV
Q Q
The last system of equations shows that the solution of the subscale variables depends on

the residuals of the strong form of the equations upon substitution of the FEM solution.
Defining R, j, and Ry}, as the residuals of the equations defined as:

Ry, =-C:e,+C:Viuy,
(19)
Ry, =V-on+f

6



equations (18) represent the projection of the residuals on the subscale grid. They can be
rewritten as:

P (-C:&+C:V*u) =P (C:e, — C:Viuy,) = —P; (Ryp)
i ) ) (20)
Py (stl :C: é) =-P (V o+ f) =-P (R27h)

Following the work of Codina [22], it is possible to approximate the subscale variables
within each element as: L -
E=17.C": P (Rl,h)
(21)
u =Ty, P (Rap)

where 7, and 7. are the stabilization parameters that, for this problem, will be computed
as:
hLg

Ty = Cy and T = c¢ (22)

Lo
In the last expression, ¢, and ce are arbitrary positive numbers; p is a mechanical param-
eter of the problem, usually chosen as twice the shear modulus of the material G; h is
the representative size of the finite element mesh and Lg is a characteristic length of the
problem. To complete the stabilization method, an appropriate projection operator has
to be selected in order to be able to compute the subscale variables.

2.4.1 ASGS

In the Algebraic Subgrid Scale Stabilization method [7], the projection operator is taken
as the identity, that is:

€ =71 (—ep + Viuy)
P=] = (23)
u=1,(V-on+f)

Back-substituting in the system of equations tested against the finite element functions
and rearranging:

—(1—7-6)/97,1:(C:sh+(1—75)/ﬂ'7h:(CIVS’Uh

+Tu/’7h:C:VS(V-ah+f):0 Vv, € Gy, (24)
Q

/ Voo [C: (1= 72) en + 7o Viup —e,)] = F(up) Von € Vi
Q

Now, integrating again by parts in the first equation and taking ~;, = 0 on 0f2, the final
system of equations reads:

(177:‘)/9'7h:(c:(5hv5uh)

[V (€] [V ot S =0 € Gy )
/ Vv : C: [(1 — 1) en + 17 Viuy, —ep] = F(vy) Yo, €'V,
Q

The first term in the first equation represents a projection (smoothing) of the strain
field obtained by differentiation of the discrete displacement field. The second additional



term is given by the displacement subscale that, in turn, depends on the residual of the
strong form of the equilibrium equation. The second equation is related to the balance of
momentum. Defining the stabilized total strain field as:

Estab = (1 — ) ep + 7 Vi, (26)

the system of equations (25) reads:

—(1—T€)/§2’)’hZCZ(Eh—VSuh)

i [ V(€] [V oo+ £ =0 vy <Gy (27)

/ Vivy, : C: (estap — €p) = F(vp) VYo, €V
Q

2.4.2 OSGS

In the Orthogonal Subgrid Scale Stabilization [7], the projection operator selected to solve
the unresolvable scale variables is the orthogonal projector

Py (X)=1(X)- P, (X) (28)

where Pj, represents the projection over the finite element mesh. It represents the L?
projection of X, or least square fitting, on the finite element space [13]. It is performed
taking advantage of the orthogonality condition

/(XHX):T]hZO vy, € Vy, or Gy (29)
Q

where X is the projected value of X on the mesh nodes. Substituting in (21), the
subscale variables w and € can be approximated as:

E=71.C 1 :[Ry— P, (Ryp)
(30)
=1y [Rop— Py (Rap)]

with the residuals Ry, R defined in (19). First of all, as P, (ep,) = €5, the strain
subscale is given by

E= Te [(—Eh + Vsuh) — Ph (—Eh + Vsuh)] = Te [Vsuh — Ph (Vsuh)] (31)
Now, comparing the equations (13) and (29), the following substitution is done:
/*yh:(C:Ph(Vsuh):/fyh:(C:sh (32)
Q Q
For the displacement subscale, assuming that Py, (f) = f, it can be written:
uw="1,[V-0on— P, (V- 0o})] (33)
Back-substituting in the set of equations of the problem, it reads:
—(1— TE)/Q’)/h :C: (e, — Viup)+
+Tu/'yh:(C:VS[V-a'h—Ph(V-ah)]zo Vv, € Gy, (34)
Q
/ Vivy, : C: [(1 — Ts) ep + 17 Viuy — €p] = F(’Uh) Vv, € Vy,
Q
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Integrating by parts the second equation and rearranging, the final set of equations is:

-1 —TE)/Q")’h :C: (ep — Viuy)+

[V €] [Voon = Pu(Voon] =0 e Cr oo

/ Vivy, : C: (estap — €p) = F(vp) Vo, €V
Q

The set of equations with OSGS stabilization resembles the one for the ASGS, except for
the second term in the first equation. In order to compute the projection of stresses at
each time step, we can recall expression (29), and write

/Q(HU—V'O';L):nh:O v, € Gy, (36)

and, with the additional projection equation, it reads:

—(1—7'5)/9’yh:(C:(eh—Vsuh)
—TU/Q[V-((CZ’Y;L)]'[V'C"h_Ho’]:O VY € Gy

(37)
/ Vs’Uh :C: [estab — Ep] = F(’Uh) Yvy, € Vy,
Q

/Q(HU—V-O';L):nh:O vn,, € Gy,

The OSGS scheme is less diffusive than the ASGS scheme [24]. However, this comes at
the price of solving an additional equation: in the implementation details it is shown how
this problem can be circumvented.

3 Implementation details

In the presented formulation, the presence of the non-linear plastic strains e, = €, (o)

requires an iterative procedure to deal with the nonlinearity of the system. Iterative

solution schemes, such as Picard or Newton-Raphson methods, need to be introduced.

Constitutive laws involving plasticity are usually written in terms of rate equations and,

consequently, the matrices involved in the resulting algebraic set of equations are tangent.

Hence, the use of the Newton-Raphson scheme will be considered in the following.
Consider the nonlinear multidimensional-multivariable problem

F(X)=0 (38)

where X = [e,u]” is the unknown vector. Such problem can be solved starting from a
Taylor approximation around the solution point at iteration i+ 1 in a particular time step
n+1:

Fi:rll ~ Fpyq + Jpp X (39)
where the Jacobian matrix J is defined as
oF
J=— 4
X (40)



Assuming that Fitll = 0, an iterative correction is computed as
. 1 . 71 .
0X" =~ [ ;z+1] Fii (41)
and the solution vector is updated as
Xi+1 — Xz + 5X7l+1 (42)

The Jacobian matrix can be found by differentiating the set of equation with respect to
the unknowns variables X = [e, u]T at iteration 7. The advantage of such method is a
quadratic convergence rate in the iteration at each time step.

3.1 ASGS implementation

In the case of the ASGS scheme, differentiating the system of equations at iteration i of
time step n + 1, the Jacobian matrix presents the mathematical structure:

w5 ]

n+l — D’T K’T (43)

n+1

where M is a mass-like projection matrix, G is a gradient matrix, D is a divergence
matrix and K is the stiffness matrix. The subscript 7 refers to the fact that those matrices
incorporate stabilization terms. Differentiating (25), within the hypothesis introduced in
equation (15) that the plastic strain depends only on e, the previous matrices read:

M,=—-(1-7) /Q N.ICN, - TU/Q(CBBT cpt (44)
G,=(1-1) /Q N.CB (45)

D, = /Q BT [CiH — 7.C] Ny, (46)

K,=r1 /Q BTCB (47)

where N and IN,, are the matrices of shape functions of the respective strain and displace-
ment fields and B is the matrix of the gradient of those shape functions. The resulting
algebraic system of equations is, in general, not symmetric. Note that disregarding the
terms due to plasticity, the system matrix is symmetric and it coincides with the one pre-
sented in Cervera et al. [17, 18]. Details on the differentiation of the plastic strain tensor
€, with respect to the problem unknown ej, are given in the Appendix A.

3.2 OSS implementation

The OSS implementation is identical to the ASGS implementation, except for the ad-
ditional projection of the nodal stresses. The projection equation gives some additional
terms in the Jacobian matrix when differentiating (37):

i

7 i+1

MT GT Dg 5Eh Rl,h
- DT KT 0 5uh == RQJL (48)
Dy 0 My |, Lo |, R Jpia

where (0ep,, duy, 0I1) are the iterative corrections for (e, up, ITy) in the Newton-Raphson
scheme. The added projection matrices are computed as:

Mg =-— / N.TN. (49)
Q

10



Dy = / BTN, (50)
Q

Alternatively to this procedure, a staggered scheme can be devised. First, the projection
of the stresses Iy, is computed at the beginning of the time step. Then, I} is used for the
solution of (ep,wp). With this substitution, the matrix depicted in (48) can be formally
condensed [13] and it becomes:

- (51)

M, - DLiM;'Dy G- ] [ sen ]”1 [ Ry ]
n+1

D. K, Suyp, - Ry p,

n+1 n+1

This scheme is preferred with respect to the monolithic one due to the reduced computation
time required.

4 Drucker-Prager Plasticity Model

The Drucker-Prager model is a pressure dependent plasticity model frequently used in
geomechanics. It has a singular point in correspondence of the maximum allowed mean
stress. In the following sections, this particular model is introduced and details on the
return mapping are given.

4.1 Definition of the space of admissible stresses

The Drucker-Prager plasticity model may be constructed as a linear combination of a J2
Von Mises plasticity model and a Pure Pressure plasticity model. The Von Mises yield
criterion states that a material reaches the elastic limit when the equivalent octaedral
stress is equal to a known uniaxial maximum admissible threshold:

flo,q) =/3Ja(a) = (q) =0 (52)

where ¢ is a stress-like hardening /softening variable. The value r? (¢) represents a limit in
the admissible stress with respect to the second invariant of the deviatoric tensor Ja(o).
The Pure Pressure yield criterion relates the hydrostatic pressure with a maximum ad-
missible threshold:

f(0.0) = ghlo) — " (a) =p— 1" (9) = 0 (53)

where the value 77 (q) represents a limit in the admissible pressure. In the Drucker-Prager
model, the angle of friction ¢ is introduced to relate the admissible deviatoric stresses to
the pressure as:

Fo0) = [VBh(a) (] +a | 3ale) (0 an@) 0 60
Plotting this yielding sufrace on the (p,.J2) plane, the result is a line with a slope equal
to tan(¢) (Figure 2). In the principal stress Haig-Westergaard space, the Drucker-Prager
yield surface appears as a symmetric cone with the axis coinciding with the hydrostatic
pressure and a circular trace on the octahedral plane (Figure 3). The parameter a = +1
controls the sign of the pressure part and the orientation of the admissible plane of stresses.
This means that the material may fail due to high tension states (a = 1) or due to high
compression states (a = —1). The point (ppin,0) in Figure 2 represents the vertex of the
cone, the minimum allowed mean stress state. In geotechnical engineering, the value of
a = 1 is usually assumed. Taking advantage of some trigonometric identities, it is possible
to rewrite the surface of failure explicitly as:

Fow) =p (V3R@) - @) +a( =) (h@) - @) =0 (9
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Figure 2: Drucker-Prager elastic domain in the (p, J2) plane

Figure 3: Drucker-Prager elastic domain in the principal stress Haig-Westergaard space

where p = 1/(1 + tan(¢)). In this work, the pressure threshold is taken as 77 = 0 to allow
a direct comparison between J2 incompressible plasticity and Drucker-Prager plasticity.
On the other side, the deviatoric stress threshold reads:

r(q) = oy — q(€) (56)

where ¢(&) is the hardening/softening function and ¢ is an internal strain-like parameter.
The function ¢(§) controls the value of the intersection between the yielding surface and
the deviatoric axis in Figure 2. In the linear softening case, the function 7% (¢) is:

1-4s ) f <E< v
rd(§): { Jy( ayg or (2;_5_ Hg (57)
0 for H—”S <¢é< o
whereas, in the case of exponential softening, 7% (¢) assumes the form:
—2H
rd (&) = oyexp < Sf) for 0<¢< (58)
Oy

12



Rewriting the invariants Jo(o) = 3 ||deve|| and I1(o) = 3 tro, the failure criteria takes

the form:

flo.0)=p (@ |dever]| = (o, — q<s>>> ta(l-pguo=0  (5)

4.2 Return mapping algorithm

Assuming associative plasticity and the existence of a plastic potential that coincides with
the definition of the admissible stress surface f(o,q), the evolution equations for the
plastic variables read:

. Of (o,
: B

where * is the plastic multiplier or plastic consistency parameter. Substituting the defini-
tion of the failure surface and differentiating:

. . . 3 devo a(l—
& = 9% floa) = 7[" 2 Tdeve] T (3 2y
(61)
§ = 40, f(oq9) = Ap
Additionally, the Karush-Kuhn-Tucker and consistency conditions hold:
720, f(e,9)<0, 7f(o,9)=0 (62)

it fle=0 = 420, f(e,9)<0 and f(o,9)=0  (63)
Given the last set of conditions, % is computed as [19]:

. (Oaf :C:é€)
YT Of . of 07 dq0f
0o~ 0o  0q d¢ Oq
The time derivative of the evolution equations of the plastic variables can be approxi-
mated introducing a Backward-Euler scheme with time steps of length At, considering

the [tn, tnt+1] span. Then, the discrete-in-time version of (61) reads:

(64)

n+1 n n n n
sl ogl A g ][5 deva™D  a(l—p),
P At At 2 Hdeva(”“)H 3
(65)
gntl) _ en) Antl) ()
A
The trial state is defined at step n + 1 with the plasticity variables frozen at step n:
(n+1) n
pitrial T 61(7 )
(66)
(n+1) n
trial = é( )
Therefore, the trial stresses are:
o) = C: (el —em)
(67)
drm’ = d"



1)

Plasticity occurs if ft(zz;l > 0. The trial yielding function is:

n+1) n+1) n+1 1 n+1
t(mjl - <\/7Hdev tm—gl - (O-?CJZ - qErijz_l )>> +a“(1 - p) <3tr0-1§ri—gl)> (68)

The change of plastic multiplier Ay("t1) = ~(+1) _ ~(") j5 computed with the discrete

counterpart of (64) as:

()
Aqll) = » D) (69)
(1-p)° K +3Gp? + defg

where K is the bulk modulus and G is the shear modulus of the material. Notice that
q (€Y implicitly depends on the value of Ay as shown in (65).
4.3 Constitutive Elasto-Plastic Tangent operator

The constitutive elasto-plastic tangent fourth order tensor can be written as a function of

4. Defining:
.@—8 .C.a +8qd£8q (70)

On one hand, the constitutive elastoplastic tensor in continuous form is [25]:

cep:c—((@:g‘{)z@:g‘{) (71)

On the other hand, considering the discrete Backward Euler time integration, the algo-
rithmic consistent constitutive elasto-plastic tensor can be computed as:

do (1)
(nt+1) _ 2%~
Cep qem i) (72)
Carrying out the differentiation, it yields:
n+1 _
ct = ¢
n+1 n+1)
[p2G\/>n£l t—:za)l - } [,02G\/711£l t—:zal + CL ) K1
g(n+1)
(n+1) (n+1)
(n+1) 3 [(]I - %1 ® 1) Ny rial ® nd,trial]
—A~ (2G) i)
2 |aeveiril |
(73)
where 2("+1) is the discrete counterpart of (70):
dg (€™ 1+ pA~((+1)
g(nJrl) — [(1 _p)2K+p23G:| _p3 q(5 pRTY ) (74)
d§
and nglﬁf;)l is the unit vector in the deviatoric stress direction:
ey __devopel)
d,trial — (n+1) (75)
Hdeva H
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Figure 4: Drucker-Prager domain in the (J2,p) plane with return mapping zones

4.4 Apex return mapping

The Drucker-Prager model presents a singular point in the yielding surface: the apex of
the cone. For the return mapping in those cases when this point is involved, an “ad-hoc”
procedure is necessary. In the literature, deBorst [26] and Peri¢ and de Souza Neto [27]
proposed some general methods to tackle this problem. In this case, a particular return
mapping algorithm is devised in order to have a scalar condition on the components of
Cauchy stress tensor.

Consider the yielding surface function in equation (59). The minimum value of the
admissible pressure defines the apex of the cone in Figure 4 and its value is:

ploy—q)
The part located outside the admissible stress space can be divided in two zones by consid-
ering the orthogonal line to the yielding surface passing through the apex (Figure 4). The
standard return mapping, described in the previous section, is used in the cases where the
trial stress state falls in the “Zone 1”7 domain. When the trial stress is in the complemen-
tary “Zone 2”7 of the cone, the differentiation of the yielding surface cannot be performed
since the normal vector to the yielding surface does not have a unique definition. However,
a family of sub-differentials of the yielding surface exists and the return mapping can be
performed, for example, by considering the principal components pressure p and deviatoric
stress deveo to satisfy some particular conditions.

In order to find the condition to discriminate the two situations, consider the return
mapping for the deviatoric components, i.e. along the vertical axis of Figure 4. Once the
variation of the plastic multiplier is known, the deviatoric components of the stress tensor
are updated with the new plastic strains as:

Hdeva("H)H = Hdevo'gf;ll)H - AW(”‘H)p\/gQG (77)
As the norms are positive definite, it follows that:
|develral|

78
T (78)

If this condition is verified, then the return mapping is made through the standard pro-
cedure described in the previous section. Otherwise, the return mapping will be made to
the apex of the Drucker-Prager cone.
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The stress at the apex point is:

fle,9) =0 and p=ppimw = |deve| =0 (79)
Calling nyyjq; = Ngper the unit vector that points from o4 to the vertex of the cone
(Pmin, 0), the plastic flow is:
€p = YMapex (80)
and in discrete form
s;”H) = 61(,") + Av(”ﬂ)ng;;l) (81)
The trial stress is
5/77’1;; ) = devo E;L:gll Tt pg};ll 1 (82)

and the stress after the return mapping reads:

U(n+1) = Pminl (83)
Therefore:
(n+1) (n+1)
n+1) _ _(n Piriai” — Pmin devatrial _ _(n n+1
51() )—EI(,)-F a EYie 5C —61(,)+A51(, ) (84)

Notice that the value of p,, depends on the value of the isotropic hardening ¢ = ¢(&).
Consequently, an iterative procedure is necessary in order to evaluate correctly the plastic
multiplier.

4.5 Apex Consistent Elasto-Plastic Tangent operator

In the case of return mapping to the apex, the consistent constitutive tensor is the null
fourth tensor. This means that once the stress state arrives at the vertex of the cone, it
will remain at the apex unless unloading or neutral loading occurs.

4.6 Softening behaviour

In a softening process, the energy dissipated by inelastic behaviour is linked with the
fracture energy G [28], defined by unit surface. When using a plastic model defined in
terms of stress and strain, the dissipated plastic energy %, is defined by unit volume. In
the discrete FE setting, these two definitions are related through a characteristic length
lcp, connected to the mesh resolution:

=1 (85)

Wy=0:ép=0é,=ar(€)E (86)

where & is the equivalent Drucker-Prager stress:

= p@ |dever| + (1~ p)a tro tan (6) = p (o, —q) =7 (&) (87)

and £, is the rate of equivalent plastic strain:

&= legll =4 [p\@ +a(l —p>] (88)
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and, finally, « is a scaling factor depending on the friction angle,

3 1—p
=4/=-+— 89
a 5 T 5 (89)
In both the linear and exponential softening cases, where 7 (§) is defined respectively
by (57) and (58), the total plastic work is calculated then as:

t=oco {=00 . o 2
ho= | A= [ Tar©é=ag (90)
t=0 £=0 2Hg

and this represent the area underlying the r — ¢ curve. Now, comparing expressions (85)
and (90), the parameter Hg can be computed as:

2

oy _
9"y~ gl 01
Tenl slen (91)

Hg =«
The parameter Hg depends only on material properties, whereas l., depends on the res-
olution of the discretization. As pointed out by Cervera et al. [18], the size of the strain
concentration band depends on the finite element technology. For instance, irreducible
finite elements provide a concentration band within a single element span, due to the
discontinuous strain field. On the contrary, in the € — « mixed FE formulation, with inter-
elemental continuous strain, the slip line spans two elements. The characteristic length
lcp is taken accordingly.

4.7 Plastic dissipation rate

The condition of positive rate of dissipation
Wy=0:6,>0 Ve (92)

has to hold in both classical and apex return mappings in order to have a thermodynam-
ically consistent model. In the first case, since 0 < p < 1 and the initial stress threshold
oy > 0, it holds:

Wy = poyy >0 Ve (93)
In the return of the apex case, a continuous expression is not available, but, using (83)
and (84) the incremental dissipation takes the form:

A = L i1l = 0 (94)

p 3K min * Pmin

which is positive by construction.

5 Numerical Examples

The objective of the following numerical examples is to highlight the benefits of a stress-
accurate finite element method, such as the proposed /v mixed FEM, in order to capture
softening behavior and failure due to the formation of strain localization lines. In all the
examples, the convergence tolerance used for the iterative Newton-Raphson procedure is
107°. Computations have been realized using an enhanced version of COMET-Coupled
mechanical and thermal analysis [29], developed by the authors at the International Center
of Numerical Methods in Engineering (CIMNE) in Barcelona, Spain. The geometrical
models have been created using GiD, a pre and post-processing software, also developed
by CIMNE.
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5.1 Prandtl’s punch problem with J2 plasticity

In this first example, the relative performance of the displacement-pressure formulation
u/p and the strain-displacement formulation € /u in the 2D Prandtl’s punch test is assessed.
Incompressible J2 plasticity (¢ = 0°) is assumed. The problem consists of a foundation
loading a semi-infinite soil domain. A portion of 10 by 5 meters of soil is modeled, with a
2 meters wide loading zone. Due to symmetry conditions, only one half of the domain has
been meshed. The geometry of the problem is shown in Figure 5. The load is given by an
imposed vertical displacement of 0.2 meters in the downward direction. Young’s modulus
is 10 M Pa and Poisson’s ratio is 0.4. The maximum tensile strength is 10 kPa, whereas a
fracture energy of 200 J/m? is considered for the strain softening case. All cases are run
with 400 time steps and an unstructured mesh of 4340 triangular P1-P1 elements (typical
size of h = 0.25).

| L

Figure 5: Geometry for Prandtl’s punch problem

In Figures 7(a) and 7(b), the norm of displacement field obtained with both formula-
tions at the end of the loading is shown. The results computed with the two formulations
are very similar. This is due to the fact that both formulations have the same order of
convergence rate in the displacement field. The equivalent plastic strain is presented in
Figures 7(d) and 7(e). It can be seen that, even if the displacements do not present sub-
stantial difference, the plastic strain field differs for the two formulations, not in the path of
the slip line but rather in the quality of the description of the shear band. In fact, the €/u
solution presents a continuous distribution of strains whereas the u/p formulation yields
a element-wise constant but inter-element discontinuous field. Principal strain vectors are
shown in Figures 7(g) and 7(h). Here, the largest differences between the solution of the
two formulations can be observed. In the u/p formulation, the strain tensor is computed
summing the volumetric part of the deformation, computed starting from the pressure
field, and the deviatoric one, given by differentiation of the displacement field. Clearly,
the latter one is mesh dependent across the slip line and this fact biases the orientation of
the principal axes of strain. Although the overall behaviour is correct and the solution is
the expected one, some sharp changes in the direction of vectors are observed locally in the
u/p solution. Contrariwise, in the £/u solution strain is a continuous variable throughout
the domain. This was noted already for the irreducible formulation against the mixed
one by Cervera et al. [18]. This discrepancy explains the slightly difference in post peak
behaviours of the u/p and e/u formulations presented in the reaction-displacement plot in
Figure 6.

For the sake of comparison, Figures 8(a) and 8(c) show displacement and plastic strain
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contours for the same problem, obtained using standard irreducible formulation. The
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