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CHAPTER 1| 21
General Introduction

1.1. Volatile Organic Compounds

Compostos Organics Volatils

The air that we breathe is a mixture of gases
sustained by the gravity which envelops the
Earth creating the atmosphere. This air is
composed by a combination of nitrogen
(78%), oxygen (21%), water vapor (variable
between 0-7%) and other substances (1%)
such as ozone, carbon dioxide, hydrogen
and other noble gases like krypton and
argon. The atmosphere is a dynamic layer
that continuously interacts with the human
beings: all the living elements presents in
the surface of the Earth, including plants
and animals, interchange gases with the
atmosphere by processes like respiration (in
animals and plants) and photosynthesis (in
plants) originating the “Carbon cycle” (Fig. 7).

Volatile Organic Compounds (VOCs) belong
to the 1% of other substances which constitute
the atmosphere, and they come from
gaseous interchanges of animals and plants.
Their principal characteristic is their volatility:
once they are released in the atmosphere,
they have a short life from minutes to hours
or days depending on the compound and on
the atmospheric composition (Table 7).

I aire que respirem és una barreja de gasos
que estan sostinguts per la gravetat, 1 que
envolten la Terra formant 'atmosfera. Aquest
aire esta compost per una combinacié de
nitrogen (78%), oxigen (21%), vapor d’aigua
(variable entre 0 i 7%) 1 altres substancies
(1%) com per exemple 0z6, dioxid de carboni,
hidrogen 1 altres gasos nobles com el cript6 i
'argd. I’atmosfera és una capa dinamica que
interactua continuament amb els elements
vius: tots els elements vius presents a la
superficie de la Terra, incloent-hi animals i
plantes, intercanvien gasos amb I'atmosfera
per processos com ara la respiraci6 (en animals
1 plantes) i la fotosintesi (en plantes) originant
el cicle del Carboni (Fig.1).

Els Compostos Organics Volatils (COVs)
pertanyen a aquest 1% d’altres substancies
que formen latmosfera, i que provenen
d’intercanvis de gasos entre animals i plantes.
La seva principal caracteristica és la seva
volatilitat: un cop son alliberats a 'atmosfera,
tenen un perfode de vida curt que va des de
minuts fins a hores o dies en depenent del
compost i de la composicié atmosferica (Taula

).
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Fig.1 - The Global Carbon cycle
El Cicle Global del Carboni

(Font: IPCC 2007)
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Fig.2 - Estimation of BYOC global emission per font and type of compound
Estimaci¢ de 'emissio global de COVBs per font i tipus de compost

(Font: Guenther et a/ 1995)

Table 1 - Mean estimated life for the main monoterpenes present in the troposphere due to their reaction with different radicals
Taula 1 - Vida mitjana estimada pels principals monoterpens presents a la troposfera degut a la seva reaccié amb

diferents radicals
(Font: Seinfeld and Pandlis 1998)

Compound OH 0, NO,
Isoprene 1.7h 1.3d 0.8h
a-pinene 3.4h 4.6h 2h
B-pinene 2.3h 1.1d 49h

Camphene 35h 18d 1.5d
2-carene 2.3h 1.7h 36 min
3-carene 2.1h 10h 1.1h
Limonene 1.1h 1.9h 53 min

Terpinolene 49 min 17 min 7 min




VOC may have either antropic or biotic origin.
Antropic VOC sources come mainly from
industrial activities such as painting, shoe
or iron and steel industries, evaporation of
organic solvents, cars or even smoke from
cigarettes. These sources have historically
been the ones that have worried us, and have
been the center of most studies, leaving apart
other possible natural sources. However,
there are big amounts coming from natural
sources, such as vegetation, oceans and
superficial continental water, soils, sediments,
microbial decomposition of organic matter,
geological pools of hydrocarbons and
volcanoes (Fehsenfeld et al 1992). In 1960,
Went suggested that the “blue hazes” which
appear over forests in summer may be
the result of photochemical reactions from
biogenic VOCs. Moreover, he made the first
estimation of biogenic VOCs (BVOCs), which
was of 175 Tg year'. Later on, Guenther et
al (1995) made an estimation of BVOC in a
global level of 1150 Tg year' (Fig.2). Forests
contribute with more than 70% of the emission
from all those sources.

BVOCs include different families  of
compounds: isoprenoids, alkanes, alkenes,
alcohols, esters, carbonils and acids
(Kesselmeier and Staudt 1999). Isoprenoids
constitute a heterogenic group of products,
which have very different structures and
functions. Some plants, especially the
ones belonging to the families Coniferae,
Laminaceae, Labiatae, Compositae and
Rutaceae are capable of synthesizing big
amounts of isoprenoids. Chapman and
Hall (1996) described more than 29,000
compounds with isoprenoid character.

All the isoprenoids are formed by a basic
structural unit, isoprene (C,H,, Table 1), which
repeats itself. Thus, is possible to classify
isoprenoids depending on the number
of Carbons that they have: hemiterpenes
(C,), monoterpenes (C,)), sesquiterpenes
(C,,), diterpenes (C,), triterpenes (C,),
tetraterpenes (C, ), and politerpenes (>C,)).

Isoprenoids can also be classified into
primary and secondary metabolites: primary
metabolites are the ones indispensables for
plant growing and developing while secondary
metabolites are not indispensables for the
plant’s live, but they are also important for the
plant’s response to the environment (Newman
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Els COVs poden tenir tan origen antropic
com biotic. Les fonts d’origen antropic dels
COVs provenen principalment d’activitats
industrials, com lindustria de la pintura, del
calcat o la del ferro i acer; d’evaporacié de
dissolvents organics, dels cotxes o fins i tot del
fum de les cigarretes. Aquestes fonts han estat
les que historicament més ens han preocupat, i
han estat el centre d’atencié de la majoria dels
estudis, deixant de banda altres possibles fonts,
com les d’origen natural. No obstant, hi ha
una gran quantitat de compostos provinents
de fonts naturals, com la vegetacié, oceans i
aiglies superficials continentals, sol, sediments,
descomposicié microbiana de la materia
organica, contenidors geologics d’hidrocarburs
i volcans (Fehsenfeld et al 1992). A T'any 1960
Went va suggerir que les “boirines blaves”
que apareixen sobre els boscos a I'estiu son el
resultat de diverses reaccions fotoquimiques
dels COVs biogenics. A més, va fer la primera
estimacié de COVs biogenics (COVBs), que
va ser de 175 Tg any'. Més tard, Guenther
et al (1995) van fer una estimacié de COVBs
a nivell global de 1,150 Tg any' (Fig2). Els
boscos contribueixen amb més dun 70% de
Pemissié d’entre totes les fonts.

Els COVBs inclouen diferents families de
compostos: isoprenoides, alcans, alquens,
alcohols, esters, carbonils i acids (Kesselmeier
i Staudt 1999). Els isoprenoides constitueixen
un grup molt heterogeni de productes, que
tenen estructures i funcions molt diferents
entre ells. Algunes plantes, especialment les
pertanyents a les families coniferes, laminacies,
labiades, compostes i rutacies tenen la capacitat
de sintetitzar grans quantitats d’isoprenoides.
Chapman 1 Hall (1996) van descriure més de
29,000 compostos amb caracter isoprenoide.

Tots els isoprenoides estan formats per una
unitat estructural basica, l'isopre (C.H,, Taula
I), que es va repetint. Per consegiient, és
possible classificar els isoprenoides en funcié
del nimero de Carbons que tinguin. D’aquesta
manera tenim: hemiterpens (C,), monoterpens
(C,), sesquiterpens (C ), diterpens (C,),
triterpens (C, ), tetraterpens (C, ) i politerpens
>C,).

Els isoprenoides també es poden classificar en
metabolits primaris i secundaris: els metabolits
primaris sén aquells indispensables per al
creixement i desenvolupament de la planta,
mentre que els metabolits secundaris no sén

CHANGES IN TERPENE PRODUCTION AND EMISSION IN RESPONSE TO CLIMATE CHANGE AND EUTROPHICATION



24 | CAPITOL 1
Introduccié general

Table 2 - Non-methane organic compounds emitted by vegetation, along with their molecular weight, Bowling point and Chemicals structure. (From
Asensio 2007)

Taula 2 - Compostos organics no-metanics emesos per la vegetacio, junt amb el seu pes molecular, punt d’ebullicid i estructura
quimica (de Asensio 2007)

Molecular weight Chemical
Compound name Chemical formula 9 Boiling point (K) emica
(g mol”) structure
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Limonene C,H 136.24 448
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Terpineole C. H 136.24 459

10" 16

|

a-Humulene C,.H 204.35 396

15" 24

a—Phellandrene C,H 136.24 446

10° 16

QOcimene C,H 136.24 373

10° 16




and Chappel 1999). Primary metabolites
include sterols, carotenoids and diverse
hormones, and secondary metabolites
include  monoterpenes,  sesquiterpenes
and diterpenes. A list of the main principal
terpenes along with their main physical and
structural characteristic is shown on Table 2.

The present PhD dissertation is focused
in the study of mono and sesquiterpenes,
commonly called “volatile terpenes”,
including their formation inside the plant and
their emission to the air.

VOCs environmental aspects

VOCs take part in the atmospheric chemistry
and in different processes related to
climatology, which are summarized following
(Sabillon 2001):

e The existence of VOCs in a Nitrogen
oxides (NO) high-concentrated
atmosphere facilitates the formation of
tropospheric ozone.

e VOCs control the concentration of
hydroxyl ions (OHY) in the atmosphere.
The terpene photooxidation could be the
main source of tropospheric CO which
influences the OH- concentration in the
atmosphere.

e VOCs are related to the formation of
organic nitrates. They can react with NO,
and transport them to long distances.

e The oxidation of some biogenic
hydrocarbons can originate organic
aerosols which are the responsible of the
formation of smog.

e  Monoterpenes can react with water
vapor present in the air and create soft
organic acids, which can be deposited

with the rain and affect the soil chemistry.
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indispensables per la vida de la planta tot i que
sén importants per la resposta de la planta al
medi (Newman i Chappel 1999). Els metabolits
primaris inclouen esterols, carotenoids i
diverses hormones, i els metabolits secundaris

inclouen monoterpens, sesquiterpens i
diterpens. A la Taula 2 es mostra un llistat dels

principals terpens junt amb les seves principals
caracteristiques fisiques 1 estructurals.

Aquesta tesi doctoral esta centrada en I'estudi
dels mono i sesquiterpens, correntment
anomenats “terpens volatils”, incloent des de
la seva formaci6 a I'interior de la planta fins a
la seva emissio a laire.

Aspectes mediambientals dels COVs

Els COVs prenen part en la quimica de
I'atmosfera i en diferents processos relacionats
amb la climatologia, com sén: (Sabillon 2001):

® [lexistencia de COVs en una
atmosfera amb alta concentracio d’oxids
de nitrogen (NOX) facilita la formacié
d’0z6 troposferic.

® FHls COVs controlen la concentracio
d’ions hidroxil (OH) a I'atmosfera. La
fotooxidacio6 dels terpens podria ser la font
principal de CO troposferic que influéncia
la concentracié de OH ™ a 'atmosfera.

® Els COVs estan lligats a la formacié
de nitrats organics. Poden reaccionar
amb els NO_ i transportar-los a llargues
distancies.

® [’oxidaci6 d’alguns hidrocarburs
biogenics pot originar aerosols organics
que son els responsables de la formacio
de I'smog fotoquimic.

® Els monoterpens poden reaccionar
amb el vapor d’aigua present a laire i
crear acids organics debils, que es poden
dipositar amb la pluja i afectar a la quimica
del sol.

CHANGES IN TERPENE PRODUCTION AND EMISSION IN RESPONSE TO CLIMATE CHANGE AND EUTROPHICATION
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VOCs biological aspects

The reason why plants produce and emit
VOCs is still uncertain. Many hypotheses
have been proposed, such as:

e Plant physiology: the production of
isoprenoids is supposed to provide a
protection of possible damages on the
cell membranes. Those damages could
be caused by extreme conditions such
as drought stress, high temperatures,
oxidative stress or high irradiation
(Sharkey and Singsaas 1995, Loreto
and Velikova 2001, Pefnuelas and Llusia
2003).

e FEcological interactions: different
studies have proposed hypotheses about
the function of those compounds in the
interaction between the different agents
of the trophic chain.

e  Attract pollinators and predators of
its herbivores (Croteau 1987, Pichersky
and Gershenzon 2002, Penuelas and
Llusia 2004, Moreira et al 2008)

e Communication between plants
(Penuelas et al 1995, Shulaev 1997)

e  Disturbance of the flowering period in
neighbour plants (Terry et al 1995)

e |mportance on forest fires. Some
VOCs (including monoterpenes) have
been detected durinig wood combustion
(Ciccoli et al 2001, Alessio et al 2004).

Aspectes biologics dels COVs

La raé per la qual les plantes produeixen i
emeten COVs no esta del tot clara. Tot i aixo,
s’han proposat diverses hipotesis, qu e
son:

® TFisiologia de la planta: la produccié
d’isoprenoides  suposadament — aporta
proteccié en front a possibles danys a
les membranes cellulars. Aquests danys
podrien ser causats per condicions
extremes com ara estrés hidric, altes
temperatures, estres oxidatiu o alta
irradiaci6 (Sharkey i Singsaas 1995, Loreto
1 Velikova 2001, Pefiuelas 1 Llusia 2003).

® Interaccions ecologiques: diversos
estudis han proposat hipotesis sobre
la funcié d’aquests compostos en la
interacci6 entre diferents agents biologics
de la cadena trofica.

®  Atracci6 de pol-linitzadors i predadors

dels seus herbivors (Croteau 1987,
Pichersky 1 Gershenzon 2002, Pefiuelas i
Llusia 2004, Moreira et al 2008)

® Comunicaci6 entre plantes (Pefiuelas
et al 1995, Shulaev 1997)

®  Alteracié del periode de floracié de
plantes veines (Terry et al 1995)

® Importancia dins dels incendis
forestals. S’han detectat alguns COVs
(incloent-hi els monoterpens) durant la
combusti6é de la fusta (Ciccoli et al 2001,
Alessio et al 2004).
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1.2. Factors which determine terpene
synthesis and emission

Factors que determinen la sintesi

| emissiO de terpens

Terpene biosynthesis cycle

The biosynthesis of terpenes is divided
in 3 steps (Fig.3): first step consists of
biosynthesis of isopentenil biphosphate (IPP),
which is the basic structure of the terpene
composition. IPP has two different formation
pathways: classic pathway, also called
mevalonic acid pathway (MVA), located in the
citosol and in the endoplasmatic reticle, and
the alternative Rohmer pathway, also called
methileritritophosphate pathway (MEP) or
1-deoxi-D-xylusole pathway (DOX), located in
the chloroplast (Kreuzwieser et al 1999, Owen
and Penuelas 2005).

Second step consists of the biosynthesis
of prenilphosphates of different lengths.
They will be the starting point of different
ramifications that will conduct to the synthesis
of isoprenoids. The 3 prenilphosphates that
are synthesized are: geranildiphosphate

El cicle de la biosintesi dels terpens

La biosintesi dels terpens es divideix en 3
etapes (Fig3): la primera etapa consisteix
en la formacié de isopentenil bifosfat (IPP),
que és lestructura basica de la composicid
dels terpens. I’IPP té dos vies de formacio:
la via classica, o via del acid mevalonic
(MVA), localitzada al citosol 1 al reticle
endoplasmatic, 1 la via alternativa de Rohmer,
també anomenada via del metileritritofosfat
(MEP) o via de 1-deoxi-D-xilulosa (DOX)
que esta localitzada al cloroplast (Kreuzwieser
et al 1999, Owen 1 Penuelas 2005).

La segona etapa consisteix en la biosintesi de
prenilfosfats de diferents llargades. Aquests,
seran el puntd’origen de diferents ramificacions
que portaran a la sintesi d’isoprenoides. Els
tres prenilfosfats que es sintetitzen son:
geranildifosfat (GPP, C ), farnersildifosfat

CHANGES IN TERPENE PRODUCTION AND EMISSION IN RESPONSE TO CLIMATE CHANGE AND EUTROPHICATION
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(GPE C,,), farnesildiphosphate (FPP, C,,) and
geranilgeranildiphosphate (GGPF, C,).

Third step consists of the synthesis of diverse
compounds: monoterpenes are synthesized
from  GPP; sesquiterpenes, esterols,
brasinoesteroids, ubiquinone, dolicol and
prenilated proteins are synthesized from FPP;
and carotenes, chlorophylls, plastoquinone,

(GPP, C,)) i geranilgeranildifosfat (GGPP, C, ).

La tercera etapa consisteix en la sintesi de
diversos compostos: a partir del GPP es
sintetitzen els monoterpens, a partir del FPP
es sintetitzen els sesquiterpens, esterols,
brasinoesteroides, ubiquinona, dolicol i les
proteines prenilades, i a partit del GGPP
es sintetitzen els carotens, clorofilles,

Cytosol and endoplasmic
reticulum

(C15-, C30- and poly-terpenes)

i

T T
:I‘-E—I_

PP \,i

s

L

Plastids e.g. chloroplasts
{C5-, C10-, C20- and C40-terpenes)

il

IPP isomerase

Fig.3 - BVOC biosynthesis
Biosintesi dels BYOCs
(Font: Owen and Periuelas 2005)




giberelins and other prenilated proteins are
synthesised from GGPP (Lichtenthaler et al
1997, Sharkey et al 2001).

Terpene storage in plants: storing
species vs non-storing species

Storing species present specialized organs
located inside or outside the leaves, where
they can accumulate the terpenes once they
have been produced. Some examples are the
resin ducts of the pines, the resin exudates
of firs, the glandules in the trichomes of the
mints or the storing cavities of the eucalypts
(Gershenzon and Croteau 1991). Some
examples of plants with storing organs are
the conifers, Cistus albidus L. or Bupleurum
fruticosum L. (Loreto et al 1996, Llusia and
Penuelas 2000).
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plastoquinona, giberelines i d’altres proteines
prenilades (Lichtenthaler et al 1997, Sharkey
et al 2001).

Emmagatzematge de terpens a les
plantes: espécies acumuladores vs no
acumuladores

Les espécies acumuladores tenen organs
especialitzats localitzats dins o fora de les
seves fulles, on hi poden emmagatzemar els
terpens un cop produits. Alguns exemples
d’organs d’emmagatzematge son els conductes
resinifers dels pins, els exsudats de resina dels
avets, les glandules als tricomes de les mentes,
o les cavitats de magatzem dels eucaliptus
(Gershenzon i Croteau 1991). Alguns exemples
de plantes acumuladores sén les coniferes,
Cistus albidus 1.. o bé Bupleurum fruticosum
L. (Loreto et al 1996, Llusia i Pefiuelas 2000)

Labdates Mentha sp

Ol sacs

Citrus species

Dak species

Luercus dex

Fig.4 - Storing organs on different species

Organs d’emmagatzematge algunes especies

(Font: Lange and Croteau 1999)

On the contrary, other species do not have
that kind of storing organs; those plants
emit the terpenes once they have produced
them. Some examples of non-storing species
are Quercus ilex L., Quercus coccifera L.,
Arbutus unedo L. and Erica arborea L (Llusia
and Penuelas 2000).

Per contra, hi ha especies que no tenen aquests
organs d’emmagatzematge; aquestes plantes
emeten els terpens un cop els han produit.
Alguns exemples de plantes no acumuladores
son Quercus ilex L., Quercus coccifera L.,
Arbutus unedo L. i Erica arborea L. (Llusia i
Penuelas 2000).

CHANGES IN TERPENE PRODUCTION AND EMISSION IN RESPONSE TO CLIMATE CHANGE AND EUTROPHICATION
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Mechanisms of terpene emission

Plant terpene emissions depend on:
the source inside the plant, the diffusion
pathway, the volatility of the compounds and
the environmental conditions (Tingey et al
1991). The emission rate will be more or less
dependant on these factors depending on
the existence of storing organs on the plant:
non-storing species will be more dependant
than storing species as species with storing

Mecanismes demissid de terpens

I’emissi6 de terpens per part de les plantes
depén de: la font a Iinterior de la planta, la
via de difusio, la volatilitat del compost i les
condicions ambientals (Tingey et al 1991). La
tassa d’emissié sera més o menys depenent
d’aquests factors segons si la planta té organs
d’emmagatzematge o no: les especies no
acumuladores seran més depenents que les
especies acumuladores ja que les espécies amb

MONOTERPENE EMISSION

- - - . - .
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Epidermis
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Resin Duct Trichoma
Pines Mints
Fig.5 - Monoterpene emission
Emissié de monoterpens
(Font: Fall 1999)
L Surface

]
I
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CICE g BT

Stoma

ite
Fig.6 - Emission pathways of a gas from inside to outside the leaf

Vies d’emissio d’un gas des de l'interior d’una fulla cap a I'exterior

(Font: Fall 1999)

organs have an extra conductance factor
than non-storing species (Fig.5).

Monoterpenes that have been produced
inside the leaf can be released to the open air

organs d’emmagatzematge tenen un factor de
conductancia afegit respecte a les espécies no
acumuladores (Fig.5).

Els monoterpens produits a Iinterior de la
fulla poden ser alliberats a l'aire lliure per tres



through three different ways: stomata, cuticle
and through wound sites (Fig.6).

It is not always clear whether emission rates
and stomatal conductance (g,) are related,
as sometimes they are not. Fall and Monson
(1992) postulated that isoprene emission
rates are independent of the aperture/
occlusion of the stomata. However, Penuelas
and Llusia (1999) showed that emission
rates from the non-storing species Quercus
ilex significantly correlated with the stomatal
conductance. Consequently, emission rates
of non-storing species depend more on
stomatal conductance than storing species
due to the fact that they have to immediately
emit the compounds after their production.

Emission through cuticle diffusionis originated
from a pressure gradient that is created
pecause of the different concentrations of the
compounds. This kind of emissions would
e more important in storing species which
present higher concentrations than non-
storing species due to their storing organs.

Emission rates will depend on the size of
those storing organs (if any) and on the
relative humidity of the air (RH): the higher the
RH the greater emission rates, because of the
increase of the cuticle permeability regarding
the rest of the compounds.

Plants can emit terpenes to the environment
through wounds directly or indirectly by
evaporation of volatile compounds coming
from the material that the plant uses to sane
the wound. This type of emission has to
be taken into account especially when we
perform terpene sampling of storing species:
if a leaf is damaged when placing the cuvette
or when manipulating the plant, a big amount
of compounds should be released through the
wound and that emission could contaminate
the sampling. For this reason, we have to take
extra-care when sampling storing species.
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vies diferents: estomes, cuticula i a través de
ferides (Fig.0).

No esta clar del tot que la tassa d’emissio i la
conductancia estomatica (g) estiguin sempre
relacionades, ja que de vegades no ho estan.
Fall 1 Monson (1992) van postular que la
tassa d’emissié de lisopre és independent de
I’obertura/oclusié dels estomes. Per contra,
PenuelasiLlusia (1999) van mostrar que la tassa
d’emissio de 'especie no acumuladora Quercus
ilex esta significativament correlacionada amb
la conductancia estomatica. Aixi doncs, la
tassa d’emissié en especies no acumuladores
depen més de la conductancia estomatica que
no en especies acumuladores donat que les
primeres tenen que emetre immediatament els
compostos just després de produir-los.

I’emissié mitjancant difusié cuticular s’origina
perungradientdepressionscreatperlesdiferents
concentracions dels compostos. Aquest tipus
d’emissions seran més importants en especies
acumuladores que tenen concentracions més
grans que les no acumuladores degut als organs
d’emmagatzematge.

La tassa d’emissié dependra de la mida dels
organs d’emmagatzematge (si és que n’hi ha) i
de la humitat relativa de l'aire (HR): com més
HR, més gran sera la tassa d’emissio, degut
a Paugment de la permeabilitat de la cuticula
respecte a la resta dels compostos.

Les plantes poden emetre terpens al medi
directament a través de ferides, o indirectament
per evaporacié6 dels compostos volatils
provinents del material que la planta utilitza
per curar la ferida. Aquest tipus d’emissi6 s’ha
considerar sobre tot quan fem mesures de
terpens en especies acumuladores: si es danya
una fulla a ’hora de situar la pinga de mostreig
o durant la manipulacié de la planta, aquesta
alliberara una gran quantitat de compostos a
través de la ferida, i aquesta emissié ens podria
contaminar la mostra. Per aquesta rad, tenim
que ser molt precisos durant els mostrejos en
especies acumuladores.
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1.3. Influence of environmental variables
In the production and emission of VOCs

Influencia de les variables ambientals sobre la
produccio i emissio de COVs

VOCs production and emission can be
altered by the environmental conditions where
the plant grows. The main environmental
variables that can influence are temperature
and light.

In both storing and non-storing species,
VOC emission rates are directly related to
temperature following an exponential curve

(Fig.7).

Light specially influences on non-storing
species. Light stimulates photosynthesis
through the activation of the enzyme Rubisco,
and consequently, the production of VOCs
increases. If the plant has storing organs,
emission rates would be less related to the
production, and more related to the size of
the storing pools (Fig.8).

The dependance of tempertaure on terpene
emission rates in storing species is modelled

La producci6 1 emissié de COVs pot variar en
funcio de les condicions ambientals on creix la
planta. Les principals variables ambientals que
poden influir sén la temperatura i llum.

Tant en especies acumuladores com en no
acumuladores, la tassa d’emissié de COV's esta
directament relacionada amb la temperatura,
seguint una corba exponencial (Fig.7).

La llum influeix especialment a les espécies no
acumuladores. Aquesta, estimula la fotosintesi
mitjangant D'activacié6 de I'enzim Rubisco, i
d’aquesta manera incrementa la produccié de
COVs.Silaplanta té organs d’emmagatzematge,
la tassa d’emissié estara menys relacionada
amb la produccid, i més relacionada amb la
mida dels organs d’emmagatzematge (Fig.8).

La dependéncia de la tassa d’emissié amb la
temperatura en espécies acumuladores es
modelitza mitjangantla equacié 1 (Tingey 1980,
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Fig.7a - Isoprene emission rate dependence temperatura curves
Corbes de dependencia de la tassa d’emissié de I'isopré amb la temperatura
(Font: Fall 1999)
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Fig.7b - Isoprene emission rate dependence with light curve
Corba de dependencia de la tassa d’emissié de I'isopre amb la llum
(Font: Fall 1999)

Fig.8 - Light effect on VOC production and emission
Influéncia de la llum en la produccié i emissié de COVs



by equation 1 (Tingey 1980, Guenther et
al 1993), where E is the basal emission for
each species, B is an empirical coefficient
whose value is 0.09 based on a review of
measurements (Guenther et al 1993), and T
is the leaf temperature at standard conditions
(30 °C).

For non-storing species, we use the model
described by Guenther et al (1995) for
isoprene emissions, which consider both
light and temperature (equations 2, 3, 4),
where C, is the light correction factor and C;
the temperature correction factor, a=0.0027
and k=1.066 are the empirical coefficients
describingthelight-dependenceand f=95,000
J mol', d=230,000 J mol" are the empirical
coefficients describing the temperature
dependence, T is the temperature optimum
of monoterpene emission (314 K), and R is
the gas constant (8.314 J K' mol).
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Guenther et al 1993), on E és 'emissi6 base
per cada especie, B és un coeficient empiric
amb valor 0.09, basat en una recopilacio
bibliografica de valors mesurats (Guenther et
al 1993), 1 T, és la temperatura de la fulla en
condicions estandard (30 °C).

Per a les especies no acumuladores, s’utilitza el
model descrit per Guenther et al (1995) per a
les emissions d’isopre, que considera tan la llum
com la temperatura (equacions 2, 3,4),on C, és
el factor de correcci6 de lallum, i C_ és el factor
de correcci6 de la temperatura, 0=0.0027 1 k
=1.066 s6n coeficients empirics que descriuen
la dependencia de la llum i 95,000 J mol” i
d=230,000 ] mol" sén coeficients empirics que
descriuen la dependencia de la temperatura,
T ésla temperatura optima per a 'emissi6 de
monoterpens (314 K) i R és la constant dels
gasos (8.314 ] K''mol™).

E = EO _eﬂ(T_Ts)
E=E,-C,-C,
c - 2kQ
J1+a’Q?
f(T-Tg)
g RTsT
G =
1+e FT

(1)

@

®)

4)

Those models are suitable for the particular
scenarios in which were formulated, but they
have to be adapted to different scenarios
by parameterisation. Nevertheless, there
could be other environmental variables that
influence VOCs such as CO, concentration
(Constable et al 1999) or ozone concentration
(Li et al 2009).

Aquests models son valids pels escenaris
particulars pels que es van formular, perd
es poden adaptar a altres escenaris diferents
mitjancant una parametritzacié del model.
Tot i aixo, podrien haver-hi altres variables
ambientals que influenciéssin als COVs com
ara la concentraci6 de CO, (Constable et al
1999) o la concentracié d’0z6 (Li et al 2009).
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1.4. Influence of global change on the
production and emission of VOCs

Influencia del canvi global sobre la
produccio | emissio de COVs

Global change

The term global change is referred to the
changes that have been produced in different
basic functioning-processes of the Earth due
to human activity. Man has been living on the
Earth surface during millions of years, but
during the last century and especially due
to industrial revolution, their activities have
increased their effects on the environment.

According to the last intergovernmental panel
of climate change (IPCC 2007) temperatures
have increased and precipitations have
decreased in the Mediterranean region, and
an increase of 0.4 °C is expected for the next
two decades (Fig.9). As a consequence of
that increase, plant phenology has also been
altered: some plants have advanced their
growing season (Pefiuelas and Filella 2001).

Canvi global

El terme canvi global es refereix als canvis que
s’han produit en diferents processos basics de
funcionament de la Terra degut a Dactivitat
humana. ’home ha viscut a la superficie
de la Terra durant milions d’anys; tot i aixo,
durant I'dltim segle, i especialment a partir
de la revolucié industrial, les seves activitats
han incrementat el seu efecte sobre el medi
ambient.

Segons el panel intergovernamental del canvi
climatic (IPCC 2007) les temperatures han
augmentat i les precipitacions han disminuit a
la regié mediterrania, i s’espera un augment de
0.4 °C per a les proximes dues decades (Fig.9).
Com a consequencia d’aquest increment, la
fenologia de les plantes també s’ha vist alterada:
algunes plantes han avancat el seu periode de
creixement (Pefiuelas i Filella 2001).
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SIPCC 2007: WG1-AR4

Fig.9a - Precipitation projections
Projeccions de precipitacié
(Font: IPCC 2007)
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Fig.9b - Temperature projections
Projeccions de temperatura

(Font: IPCC 2007)

Despite the fact that climate change is the
most known effect of global change, there
are other effects important as well, such
as increase of CO, and eutrophication of
ecosystems. Those effects can affect the
plants, and consequently the production and
emission of BVOCS (Fig.10).

Drought and warming

Plant responses to drought and warming
are variable and depend on each plant: the
most plastic plants will be capable to adapt
their physiology to stress, while the more
exigent plants will end up disappearing
overridden by other plants in a lower position
in the succession line. Some studies show
how drought limits photosynthesis through
stomatal conductance: some plants close

Tot 1 que el canvi climatic és efecte més
conegut del canvi global, hi ha d’altres
efectes que també s’han de tenir en compte,
com ara augment de CO, i leutrofitzaci6
dels ecosistemes. Aquests efectes poden
afectar les plantes, i per consegiient, la
produccié 1 emissi6 de COVBs (Fig.10).

Sequera i escalfament

Les respostes de les plantes a la sequera i a
I'escalfament son diverses i depenen de cada
planta: les plantes més plastiques tindran la
capacitat d’adaptar la seva fisiologia a I'estres,
mentre que les plantes més exigents acabaran
desapareixent 1 essent suplantades per altres
plantes que es troben en una posicié inferior
a la linia de successié. Alguns estudis mostren
que la sequera pot limitar la fotosintesi a través
de la conductancia estomatica: algunes plantes



their stomata under drought conditions
(Sharkey 1990, Chaves 1991, Ort et al 1994,
Cornic and Massacci 1996).

Among the abiotic factors affecting plant
terpene emission rates, temperature is
outstanding (Tingey et al 1980, Guenther et
al 1993, Staudt and Seufert 1995, Loreto et
al 19964, b, Penuelas and Llusia 1999, Llusia
and Pefuelas 2000). Warming increases
the production and emission rates of most
terpenes exponentially up to maximum by
enhancing the synthesis enzymatic activities,
raising the terpene vapour pressure, and
decreasingtheresistance of emission pathway
(Tingey etal1991, Loreto et al1996a). A further
2-3 °C rise in the mean global temperature,
which is predicted to occur early this century
(IPCC 2007), could increase BVOC global
emissions by an additional 30-45% (Penuelas
and Llusia 2003, Penuelas and Staudt 2010).

Mediterranean ecosystems are water-limited
(Sardans and Penuelas 2004). Water-stress
usually increases terpene concentrations
in many storing and non-storing species
(Kainulainen et al 1992, Llusia and Pefuelas
1998, Loreto et al2001), and usually increases
terpene emission rates (Loreto et al 1998,
Pefuelas and Llusia 1999).
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tanquen els seus estomes en condicions de
sequera (Sharkey 1990, Chaves 1991, Ozt et al
1994, Cornic 1 Massacci 19906).

D’entre els factors abiotics que afecten a la
tassa d’emissio de les plantes, el més important
és la temperatura (Tingey et al 1980, Guenther
et al 1993, Staudt i Seufert 1995, Loreto et
al 1996a, b, Pefiuelas i Llusia 1999, Llusia i
Pefiuelas 2000). L’escalfament incrementa la
producci6 1 la tassa d’emissions de la majoria
dels terpens de forma exponencial fins a un
maxim, ja que potencia l'activitat de sintesi
dels enzims, incrementant la pressié de vapor
dels terpens i fent disminuir la resistencia de
la via d’emissié (Tingey et al 1991, Loreto et
al 1996a). Un futur increment de 2-3 °C en
la mitjana global de temperatures, que és el
que s’ha previst que passi durant aquest segle
(IPCC 2007), podria incrementar les emissions
globals de COVBs fins un 30-45% (Pefiuelas i
Llusia 2003, Pefiuelas i Staudt 2010).

Els ecosistemes mediterranis estan limitats per
I'aigua (Sardans i Pefiuelas 2004). L’estres hidric
normalment incrementa les concentracions de
terpens, tant en especies acumuladores com
en no acumuladores (Kainulainen et al 1992,
Llusia 1 Pefiuelas 1998, Loreto et al 2001), i
normalment incrementa la tassa d’emissié de
terpens (Loreto et al 1998, Penuelas i Llusia
1999).
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Eutrophication of ecosystems

In general, Mediterranean ecosystems are
considered to be poor in nutrients (Mooney
and Dunn 1970, Ellis and Kummerow 1989):
mediterranean soils often suffer from nutrient
deficiencies (Specht 1973, Kruger 1979,
Terradas 2001, Sardans et al 2006). However,
there has been an increase of nitrogen
and phosphorus availability during the last
decades, and their cycles have been altered
(Pefiuelas and Filella 2001b, Roda et al 2002,
Sardans and Penuelas 2004, Sardans et al
2006). Total atmospheric deposition was
estimated at 15-22 kg N ha' year’, most of it
being retained within the studied broadleaved
evergreen forests. Ecosystem N availability is
thus likely to be increasing in these forests
(Roda et al2002). N availability has increased
last decades due to anthropogenic sources
such as fertilizers, combustion of fossil fuels
and cattle residuals (Vitousek et al 1997). P
concentrations have increased mostly due to
agricultural practices (Rubaek et al 2000).

Our ecosystems are more eutrophicated
than some years ago: the inputs of
nutrients (and especially of nitrates) have
increased progressively in the last years.

Eutrofitzacid dels ecosistemes

Els ecosistemes mediterranis normalment
estan considerats com ecosistemes pobres
en nutrients (Mooney i Dunn 1970, Ellis
1 Kummerow 1989): els sols mediterranis
normalment sofreixen deficiéncies de nutrients
(Specht 1973, Kruger 1979, Terradas 2001,
Sardans et al 20006). No obstant, en les darreres
decades ha un incrementat la disponibilitat de
nitrogen 1 fosfor, i els seus cicles respectius
s’han vist alterats (Pefuelas 1 Filella 2001b,
Roda et al 2002, Sardans i Pefiuelas 2004,
Sardans et al 20006). La deposicié atmosferica
total s’ha estimat en 15-22 kg N ha' any”, la
majoria de la qual resta retinguda als boscos de
planifolis (Roda et al 2002). La disponibilitat
de nitrogen ha augmentat en les darreres
decades a causa de les fonts antropogeniques
com so6n els fertilitzants, la combustié de
combustibles solids i els residus ramaders
(Vitousek et al 1997). Les concentracions de
fosfor han incrementat principalment degut a
les practiques agricoles (Ruback et al 2000).

Els nostres ecosistemes estan més eutrofitzats
que fa uns anys: les entrades de nutrients
(i especialment les de nitrats) han crescut
progressivament els darrers anys. Una gran

Fig.11 - Temporal evolution of the slurry producction in Catalonia, from 1999 to 2007
Evolucid temporal de la produccié de purins a Catalunya des de 1999 fins a 2007
(Font: Agéncia Catalana de Residus website)



A big contribution to this increase is due to
the increase of slurries in agriculture in an
indiscriminate way (Fig.17).

Apart from slurries, other factors which are
consequence of climate change such as
temperatureincrease or droughtalsoinfluence
this phenomenon: heating increases the
mineralization (nitrates) and drought makes
nutrients unavailable for plants and facilitates
system loses when there are rains.

The global nitrogen cycle has now reached the
point in which more nitrogen is fixed annually
by human-driven processes (fertilizers,
combustion of fossil fuels, and waste from
stock raising) than by natural processes
(Vitousek et al 1997, Roda et al 2002). Along
with nitrogen, phosphorus is also a frequent
limiting factor in Mediterranean ecosystems
(Sardans et al 2006). Similarly to nitrogen,
phosphorus input to ecosystems, especially
aquatic ones, has increased in last decades
(Rubaek et al 2000). Nutrient supplies have
often been shown to be an important factor
in growth, structure and distribution of
mediterranean communities (Kruger 1979,
Henkin et al 1998). And as a result of these
increases in nitrogen and phosphorus,
nitrogen and phosphorus foliar concentrations
have increased in some Mediterranean
species in the last few decades (Penuelas
and Filella 2001).

Some theories have stated that these
eutrophication of the ecosystem could
alter the secondary metabolite production
of the plants: The carbon/nutrient balance
hypothesis (CNBH) (Bryant et al 1983)
predicts that when a resource, such as
nitrogen, is abundant, a plant will allocate
proportionately less carbon toward carbon
based secondary compounds (reserve and
defence) and more toward growth (Lerdau
et al 1995, Penuelas and Estiarte 1998).
Similar hypotheses can be developed for
the availability of other resources such as
CO,, phosphorus or water (Pefuelas and
Estiarte 1998). The growth differentiation
balance hypothesis (Lorio 1986) recognizes
that all secondary metabolites have an
ontogenetically determined phenology and
that their synthesis is emphasized during
periods of plant differentiation. Growth
dominates during favorable conditions, and
differentiation is at a maximum only when
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part d’aquest creixement es deu a 'augment
indiscriminat de I'ds de purins en agricultura
(Fig.11).

A banda dels purins, també influencien
en aquest fenomen altres factors que son
consequencia del canvi climatic com 'augment
de la temperatura o la sequera: 'escalfament fa
créixer la mineralitzacio (nitrats) 1la sequera fa
que els nutrients no estiguin disponibles per
les plantes 1 facilita perdues del sistema quan
hi ha pluges.

El cicle global del nitrogen ha arribat a un
punt en que cada any es fixa més nitrogen per
processos humans (fertilitzants, combustié de
combustibles fossils, 1 residus per 'augment
d’estocs) que no per processos naturals
(Vitousek et al 1997, Roda et al 2002). Junt
amb el nitrogen, el fosfor és sovint un factor
limitant en els ecosistemes mediterranis
(Sardans et al 2006). Analogament al
nitrogen, 'entrada de fosfor als ecosistemes,
especialment en els aquatics, ha crescut en
les darreres decades (Rubaek et al 2000). Les
aportacions de nutrients sovint s’han descrit
com a factors importants en el creixement,
estructura 1 distribucié de les comunitats
mediterranies (Kruger 1979, Henkin et al
1998). Com a resultat d’aquests increments
de nitrogen 1 fosfor, les concentracions foliars
d’aquests dos elements també han crescut en
algunes especies de caire mediterrani en les
darreres décades (Pefiuelas 1 Filella 2001).

Algunes teories han postulat que aquesta
eutrofitzacié del ecosistema podria alterar la
produccié dels metabolits secundaris de les
plantes: la hipotesi del balan¢ de carboni /
nutrients (CNBH) (Bryant et al 1983) postula
que quan un recurs, com ara el nitrogen, és
abundant, la planta assignara proporcionalment
menys carboni a la produccié de compostos
carbonics secundaris (reserva / defensa) i més
al creixement (Lerdau et al 1995, Pefiuelas i
Estiarte 1998). D’aquesta manera, es poden
formular hipotesis similars per la disponibilitat
d’altres recursos com el CO,, el fosfor o 'aigua
(PefiuelasiEstiarte 1998). La hipotesidel balang
de diferenciaci6é del creixement (Lotrio 1986)
reconeix que els metabolits secundaris tenen
una fenologia ontologicament predeterminada
1 que la seva sintesi s’emfatitza durant els
periodes de diferenciacié de la planta. El
creixement domina quan hi ha condicions
favorables, i la diferenciacié és maxima només
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conditions are suboptimal for growth. This
could be more evident in tree species with
predeterminated growth such as pine trees.
The optimal allocation model (Tuomi et al
1991) predicts decreasing investment in
defence with increasing resource availability,
because reduced costs of tissue production
could compensate higher risks of herbivore
predation. The plant stress hypothesis
(Mattson and Haack 1987) states that
environmental stresses on plants decrease
plant resistance to insect herbivory by altering
whole-plant source-sink resource allocation
schedules and foliar chemistry, thus changing
food palatability. Since phosphorylated
compounds such as isopentenyl diphosphate
and dimethylallyl diphosphate are immediate
precursors of isoprene it is likely that also P
availability influence isoprenoid emission
rates.

quan les condicions sén suboptimes per al
creixement. Aixo podria ser més evident
en espccies arbories amb un creixement
predeterminat com podrien ser els pins. El
model d’assignaci6 optima (Tuomi et al 1991)
prediu que s’inverteix menys en defensa quan
més recurs disponible hi ha, perqué els baixos
costos de producci6 de teixits compensarien
el risc de predacié per part d’herbivors. La
hipotesi de 'estres de la planta (Mattson i Haack
1987) postula que els estressos ambientals
disminueixen la resistencia de la planta a 'atac
d’insectes herbivors mitjancant una alteracid
del patro de distribucio de les fonts de recursos
globals de la planta i de la quimica foliar,
canviant aix{ la palatabilitat del menjar. Donat
que alguns compostos fosforilats com el
isopentenil difosfat 1 el dimetilalil difosfat son
precursors immediats de I'isopre és probable
que la disponibilitat de fosfor influeixi en la
tassa d’emissié d’isoprenoides.
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1.5. Description of the main studied
species: Quercus ilex, Pinus
halepensis, Pinus pinaster and

Arabidopsis thaliana

Descripcio de les principals especies
estudiades: Quercus /lex, Finus halepernsrs,
Pinus pinaster, | Arabidops/s thaliana

Quercus ilex L.

Quercus ilexis a tree species which can reach
25 m high. The leaf shape is variable, the adult
leaves are entire, 4-8 cm long and 1-3 cm
broad, while those on the lower branches of
young trees are often larger (to 10 cm long),
and are toothed or somewhat spiny. The
flowers are catkins, produced in the spring;
the fruit is an acorn, which matures in about
six months (Fig.12).

Mediterranean Holm oak is considered one of
the species with higher terpene emission rates

Quercus ilex L.

Quercus ilex és una especie arboria que pot
arribar fins als 25 m d’alcada. La forma de la
fulla és variable, les fulles adultes sén enteres,
de llargada 4-8 cm i 1-3 cm d’amplada, mentre
que les que estan a branques baixes d’arbres
joves sovint sén més llargues (fins a 10 cm),
son dentades 1 una mica espinoses. Les flors
apareixen en aments a la primavera; el fruit és
la gla, que madura al voltant d’uns sis mesos

(Fig 12).

I’alzina mediterrania esta considerada com
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Fig.12 - 2-year potted Quercus ffex seedlings, in the experimental fields of the Universitat Autbnoma de Barcelona

Plancons de Quecus ilex de dos anys en contenidors, als camps experimentals de la Universitat Autbnoma de Barcelona
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Fig.13a - Distribution of Quercus ifex in Spain
Distribucié de Quercus /lex a Espanya
(Font: www.anthos.es)
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Fig.13b - Distribution of Quercus /lex in Catalonia
Distribucié de Quecus ilex a Catalunya
(Font: Mapa de cobertes del Sol de
Catalunya, versié 3)

(Kesselmeier and Staudt 1999, Llusia and
Penuelas 2000). The main emitted terpenes
are monoterpenes, being the most common
a-pinene, B-pinene, sabinene and myrcene
(Llusia and Penuelas 2000). The most emitted
compound is usually a-pinene, which can
reach until 40% of the total emission rates
(Loreto et al 1996a).

Pinus halepensis Mill.
Pinus halepensis (Fig.14) is a tree which can

reach 20-25 m high. Its leaves, flexibles and
light green colored, of 6-12 (15) cm length,

una de les especies amb una major tassa
d’emissié de terpens (Kesselmeier i Staudt
1999, Llusia i Pefiuelas 2000). Els principals
terpens que emet son monoterpens, 1 els més
comuns sén: o-piné, B-piné, sabiné i mircé
(Llusia i Pefiuelas 2000). El principal compost
emes ¢és Pa-piné, el qual pot arribar fins a un
40% de la tassa d’emissi6 (Loreto et al 1996a).

Pinus halepensis Mill.

Pinus halepensis (Fig.14) és un arbre que pot
créixer fins a 20-25 m d’alcada. Les seves
tulles, flexibles 1 de color verd clar, de 6-12 (15)
cm de llargada, estan normalment disposades




are usually disposed in groups of 2 leaves,
rarely from 3to 5 leaves. The cones are narrow
conic, 5-12 cm long and 2-3 cm broad at the
pbase when closed, green at first, ripening
glossy red-brown when 24 months old. The
seeds are 5-6 mm long, with a 20 mm wing,
and are wind-dispersed.

P halepensis is a ftree that can grow
indifferently of the soil type, which appears
in xerophytic forests, brushes and machias
in the Mediterranean area, ranging from sea
level to 1000 m. It is drought resistant and
can grow in areas with precipitations from
250 to 800 mm (Gil et al 1996). In the Iberian
Peninsula appears mainly in the eastern half
and in the Balearic Islands. In Catalonia is
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en grups de 2, rarament de 3 a 5. Les seves
pinyes tenen forma conica, de 5-12 cm de llarg
12-3 cm d’ample a la base quan estan tancades,
verdes al comencgament, i viren cap a un roig-
marronenc quan tenen 24 mesos. Les llavors
fan 5-6 mm de llarg, amb un ala de 20 mm, 1
son dispersades pel vent.

P halepensis és un arbre que pot créixer amb
indiferencia del tipus de sol, i normalment
apareix en boscos xerofitics, matollars i maquies
a I’area mediterrania, des del nivell del mar fins
als 1000 m d’alcada. Es resistent a la sequera i
pot créixer en arees amb precipitacions entre
200 1 800 mm (Gil et al 1996). A la Peninsula
Iberica apareix majoritariament a la meitat est
i a les illes Balears. A Catalunya, és present en

Fig.14 - Two-year potted Pinus halepensis seedlings, in the experimental fields of the Universitat Autonoma de
Barcelona (april 2004)
Plangons de 2 anys de Pinus halepensis en contenidor, als camps experimentals de la Universitat Autonoma de Barcelona
(abril 2004)
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Fig.15a - Distribution of Pinus halepens’ss in Spain
Distribucié de P halepensis a Espanya
(Font: www.anthos.es)
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Fig.15b - Distribution of Pinus halepensis in Catalonia
Distribucié de P halepensis a Catalunya
(Font: Mapa de cobertes del Sol de Catalunya, versio 3)
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present in 9.82% of the surface (IFN 2000). Its
distribution in Spain and Catalonia is shown
in Figs.15 a, b.

Regarding terpene emission rates, despite
the fact that P halepensis has not been
considered a high-emitter species (Owen
et al 2002) there are several studies which
show emission rates are dominated by
a-pinene and myrcene (Llusia and Penuelas
2000, Owen et al 2002), which represent an
important percentage of the total emission
amount.

Pinus pinaster Alit.

Pinus pinaster (Fig.16) is a medium-size tree,
reaching 20-35 m tall. The bark is orange-red,
thick and deeply fissured at the base of the
trunk, somewhat thinner in the upper crown.
The leaves (‘needles’) are in pairs, very stout
(2 mm broad), 12-22 cm long, and bluish-
green to distinctly yellowish-green. The cones
are conic, 10-20 cm long and 4-6 cm broad at
the base when closed, green at first, ripening
glossy red-brown when 24 months old. They
open slowly over the next few years, or after
being heated by a forest fire, to release the
seeds, opening to 8-12 cm broad. The seeds
are 8-10 mm long, with a 20-25 mm wing, and
are wind-dispersed.

P pinaster prefers non-carbonated soils,
and usually lives in mediterranean lands with
certain influence of maritime climate, ranging
from sea level to 1000 m. Maritime pine is a
heliofitic species, which usually appears in
brushes and in forests with low density of
trees, sometimes can form secondary pine
forests. This species is characteristic of the
occidental half of the Mediterranean region
and from Atlantic zones of the south of France,
Spain and Portugal (Fig.17a, b, ©).

Maritime pine has been widely chosen as
forestation species in Galicia (NW Spain)
since the XVIII" century. Despite being partly
replaced in the last decades by species with
higher productions like Pinus radiata and
Eucalyptus globulus, P pinaster is still the
most important forest tree species in Galicia
(DGCN 2000).

Regarding terpene emission rates, P
pinaster is considered a low-emitting species
(Kesselmeier and Staudt 1999). Terpene

un 9.82% de la superficie (IFN 2000). La seva
distribuci6 a Espanya i Catalunya es mostra a
les Figs.15 a,b.

Pel que fa a 'emissio de terpens, tot i que P
halepensis no esta considerat com un gran
emissor de terpens (Owen et al 2002), hi ha
diversos estudis en els que es mostra que la
seva tassa d’emissié esta dominada per o-piné
1 mircé (Llusia i Pefiuelas 2000, Owen et al
2002), els quals representen un percentatge
important de 'emissio total.

Pinus pinaster Ait.

Pinus pinaster (Fig.16) ¢és un arbre de mida
mitjana que pot arribar fins als 20-35 m
d’algada. L’escorga és vermellosa-ataronjada,
gruixuda i molt fisurada a la base del tronc, i
menys a la part de la copa. Les fulles (acicules)
estan disposades en parelles, gruixudes (2
mm d’ample), de 12-22 cm de llargada, i
blau-grogues a groc-verdes. Les pinyes son
coniques, 10-20 cm de llarg i 4-6 cm d’ample
a la base quan estan tancades, verdes a 'inici, i
viren cap a un roig-marronenc quan tenen 24
mesos. Aquestes s’obriran gradualment durant
els proxims anys o bé si hi ha un incendi
forestal, alliberant les seves llavors. Les llavors
fan 8-10 mm de llargada, amb una ala de 20-25
mm, i es dispersen pel vent.

P pinaster prefereix sols no carbonatats, i
normalment viu a zones mediterranies amb
certa influéncia de clima maritim, des del nivell
del mar fins a 1000 m d’al¢ada. El pi maritim
és una especie heliofila, i normalment apareix
en matollars i en boscos amb baixa densitat
d’arbres, de vegades també forma pinedes
secundaries. Aquesta especie és caracteristica
de la meitat occidental de la regié mediterrania
i de zones atlantiques del sud de Franga,
Espanya i Portugal (Figl7 a,b, c).

El pi maritim s’ha triat molt sovint com a
especie per a reforestacié a Galicia (NW
Espanya) des del segle XVIIIL. Tot i que ha
estat parcialment substituit a les darreres
decades per especies més productores com
el Pinus radiata o I'Eucalyptus globulus, P
pinaster encara ¢és una de les especies forestals
més importants a Galicia (DGCN 2000).

Pel que fa la tassa d’emissions, P pinaster
esta considerat com una especie amb baixes



CHAPTER 1| 47
General Introduction

L

Fig.16 - Pinus pinaster in pots in the experimental
station of Lourizan (Pontevedra), july 2006
Pinus pinasteren contenidors a 'estacio experimental
de Lourizan (Pontevedra), juliol de 2006.
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Fig.17b - Distribution of Pinus pinasterdistribution in Catalonia
Distribucié de Pinus pinaster a Catalunya
(Font: Mapa de cobertes del Sol de Catalunya, versio 3)
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Fig.17a - Distribution of Pinus pinasterin Spain

Distribucié de Pinus pinaster a Espanya
(Font: www.anthos.es)
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Fig.17c - Distribution of Pinus pinasterdistribution in Galicia
Distribucié de Pinus pinaster a Galicia
(Font: www.anthos.es)

emission rates are dominated by a-pinene
and B—pinene, which represent an important
percentage of the total emission amount
(Simon et al 2005).

Arabidopsis thaliana

Arabidopsis thaliana (Fig.18) is a small
flowering plant native to Europe, Asia, and
northwestern Africa (Figs9 a, b). A. thaliana
is a spring annual with a relatively short life
cycle, and is popular as a model organism in

emissions (Kesselmeier and Staudt 1999). La
tassa d’emissions esta dominada per o-piné i
B-piné, els quals representen un percentatge

important de la tassa d’emissio total (Simon et
al 2005).

Arabidopsis thaliana

Arabidopsis thaliana (Fig.18) ¢s una planta
petita nativa d’Europa, Asia i del nord-oest
d’Africa (Figs.9 a, b). A. thaliana és una planta
anual amb un cicle de vida relativament curt,
1 és popular perque s’ha utilitzat sovint com a
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Fig.18 - Arabidops’s thaliana at the final stage of its vegetative period. Universitat Autonoma de Barcelona, July 2008
Arabidops’s thaliana a la fase final del seu periode vegetatiu. Universitat Autbnoma de Barcelona, juliol 2008.
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Fig.19a - Distriburion of Arabidopsis thaliana in Spain
Distribucié de Arabidopsis thaliana a Espanya
(Font: www.anthos.es)
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Fig.19b - Distribution of Arabidopsis thaliana in Catalonia
Distribucié de Arabidops/s thaliana a Catalunya
(Font: www.anthos.es)

plant biology and genetics. Its genome is one
of the smallest plant genomes and was the
first plant genome to be sequenced.

Regarding emission rates, it is known that
its flowers are terpene-emitters, and traces
of terpene emissions have also been found
on its leaves (Chen et al 2003, Aharoni et al
2006).

organisme model en biologia d’espécies i en
genctica. El seu genoma és un dels genomes
més petits de les plantes, i va ser el primer
genoma vegetal que es va seqiienciar.

Pel que fa a la tassa d’emissions, es sap que
les flors emeten terpens, i s’han trobat indicis
d’emissi6 de terpens a les seves fulles (Chen et
al 2003, Aharoni et al 2000).




CHAPTER 11 49
General Introduction

1.6. Objectives
Objectius

General objectives

The general objectives of this PhD thesis
were to study the effect of some of the most
prominent global change components,
climate change (mostly drought as major factor
in our region) and eutrophication (increase
of nutrient availability in the environment) on
terpene production (chapter 2) and emission
(chapters 3.1 and 3.2). We aimed to study
such effects in both storing and non-storing
species. Moreover, we aimed to study if there
is a genotypic effect (chapters 4.1 and 4.2)
on the terpene production and emission (Fig.
20). These general objectives are common to
all chapters. In addition, the specific aims of
each chapter are listed below. To accomplish
these aims we have conducted three field-
lab experiments in increasingly controlled

Objectius generals

Els objectius generals d’aquesta tesi doctoral
van ser estudiar lefecte d’alguns dels
components més prominents del canvi global,
el canvi dimatic (majoritariament sequera, qué
¢és el factor més important a la nostra regio)
i eutrofitzacié (augment de la disponibilitat de
nutrients al medi) en la produccié (capitol 2) i
emissié (capitols 3.1 i 3.2). El nostre objectiu
va ser estudiar aquests efectes tant en especies
acumuladores com en no acumuladores.
A més, també varem voler estudiar si hi
ha un efecte del genotip (capitols 4.1 i 4.2) a
la producci6é i emissié6 de terpens (Fig.20).
Aquests objectius generals sén comuns a tots
els capitols. Aixi mateix, a continuacié es citen
els objectius especifics per a cada capitol.
Per complir aquests objectius hem realitzat
tres experiments en camp i laboratori, en
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Climate change

Eutrophication
effect

effect

VOC production

VOC emission

Fig.20 - PhD chapter scheme

Esquema dels diferents capitols de la tesi doctoral.

conditions in order to reduce the variability
produced by the environment.

Specific objectives

Chapter 2 - Drought, warming and soil
fertilization effects on leaf volatile terpene
concentrations in Pinus halepensis and
Quercus ilex

The aim of the present work was to conduct
a controlled study of the interaction between
temperature, water stress and nutrient
doses on monoterpene content of foliage.
The objective was to contribute to a better
understanding  of increasing  drought,
eutrophication and temperature on terpene
concentrations in a terpene-storing (P
halepensis Mill.) and in a non-storing (Q.
ilex L.) Mediterranean species. We aimed to
answer the following research questions:

condicions controlades creixents per a reduir
la variabilitat produida per 'ambient.

Objectius especifics

Capitol 2 - Efectes de la sequera, escalfament i
fertilitzacié del sol sobre les concentracions de
terpens volatils a les fulles de Pinus halepensis
i Quercus ilex

L’objectiu d’aquest treball va ser realitzar
un estudi controlat de la interaccié entre la
temperatura, estrés hidric i diferents dosis
de nutrients als continguts de monoterpens
de les fulles. Aquest objectiu va contribuir
a entendre millor efecte d’una sequera
creixent, eutrofitzacié 1 temperatura sobre
les concentracions de terpens en una espécie
acumuladora (P. halepensis Mill) i en una no
acumuladora (Q. ilex L.). Ens varem fer les
segiients questions de recerca:

1. What is the effect of drought,
warming and fertilization on leaf
terpene production?

2. Are there differences in the leaf
terpene production pattern and
quantities in storing and non-
storing species?

1. Quin és lefecte de la sequera,
escalfament i fertilitzacié en la
producci6 de terpens de la fulla?

2. Hi ha diferencies al patré de
producci6 de terpens i en quantitats
en especies acumuladores 1 no
acumuladores?




Chapter 3.1 - Different sensitivity of terpene
emissions to drought and fertilization in
terpene storing Pinus halepensis and in non
storing Quercus ilex

In this work we studied and compared the
terpene emission rates of these two dominant
species of the Mediterranean ecosystems:
P halepensis (a terpene-storing species)
and Q. ilex (a terpene nonstoring species)
in response to increasing water stress
and fertilization (nitrogen and phosphorus
addition) along a spring-summer growth
period. Our aim was to estimate the changes
in terpene emissions that can be expected in
the next decades if projected climate change
and increased ecosystems fertilization occur.
Hence, we aimed to answer the following
research questions:
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Capitol 3.1 - Diferent sensibilitat de les emissions
de terpens a la sequera i fertilitzacié en Pespecie
acumuladora Pinus halepensis i en la no
acumuladora Quercus ilex

En aquest treball varem estudiar i comparar les
tasses d’emissié de terpens de dues espécies
dominants en ecosistemes mediterranis:
P halepensis (una especie acumuladora de
terpens) 1 Q. ilex (una espécie no acumuladora
de terpens) en resposta a un estreés hidric
creixent i a fertilitzacié (addicié de nitrogen
1 fosfor) al llarg del perfode de creixement
primavera-estiu. El nostre objectiu va ser
estimar els canvis en la tassa d’emissié de
terpens que es poden esperar a les proximes
decades si les previsions de canvi climatic i
augment de fertilitzaci6 dels ecosistemes es fan
realitat. Aix{ doncs, ens varem fer les segiients
questions de recerca:

1. What are the effects of drought and
fertilization on leaf terpene emission
rates?

2. Are there differences in the leaf
terpene emission pattern in storing
and non-storing species?

1. Quins so6n els efectes de la sequera i
la fertilitzacié a la tassa d’emissi6 de
terpens de la fulla?

2. Hi ha diferencies al patré d’emissio
de terpens de la fulla en especies
acumuladores i no acumuladores?

Chapter 3.2 - Instantaneous and historical
temperature effects on o-pinene emissions in
Pinus halepensis and Quercus ilex

In the present study, we focused on the
most emitted terpene for the previous
studied species, a-pinene, in order to
reduce the variability to the maximum. We
aimed to evaluate the relative importance of
instantaneous temperature and temperature
history in determining a-pinene emissions
in P halepensis and in Q. ilex L. Emissions
were monitored during the entire season
simultaneously  with  leaf  environmental
conditions and the correlations of emission
rates (E) and photosynthetic electron transport
(Joopaop ) With instantaneous temperatures
and with average temperature over different
number of days prior to measurements
were determined to assess the strength of
instantaneous and historical temperature
signals. We aimed to answer the following
research questions:

Capitol 3.2 - Efectes dela temperatura instantania
i historica en les emissions d’o-piné en Pinus
halepensis i Quercus ilex

En aquest estudi ens varem centrar en el
terpé més emes als estudis previs, que és
Pa-piné, per a reduir la variabilitat al maxim.
Varem voler estudiar d’importancia relativa
de la temperatura instantania i de I’historic
de temperatures a les emissions d’o-piné
en P halepensis 1 Q. ilex. Les emissions es
van mesurar durant una estacio sencera junt
amb les condicions ambientals de la fulla, i
es van determinar les correlacions de la tassa
d’emissiéo (E) 1 del transport fotosintetic
d’electrons (J.,.,) amb les temperatures
instantanies 1 amb la mitjana de temperatura
dels dies anteriors al mostreig per veure la forca
de la temperatura instantania en comparacio
amb la temperatura historica. Ens varem fer
les segtients qliestions de recerca:
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1. Are there differences in the
temperature dependence of
a-pinene of emission rates and
photosynthetic electron transport in
storing and non-storing species?

2. a) Does the historic temperature
(mean temperature of previous
days) affect emission rates and
photosynthetic electron transport?

b) Are there any differences
between storing and non-storing
species?

1. Hi ha diferencies en la dependéncia
a la temperatura de la tassa
d’emissio del o-piné 1 del transport
fotosintetic d’electrons en especies
acumuladores 1 no acumuladores?

2. a) Hi ha un efecte de la temperatura
historica (mitjana de la temperatura
dels dies anteriors) sobre la tassa
d’emissio i el transport fotosintetic
d’electrons?

b) Hi ha diferéncies entre especies
acumuladores i no acumuladores?

Chapter 4.1 - Effects of phosphorus
availability and genetic variation of leaf
terpene contents and emission rates in Pinus
pinaster seedlings susceptible and resistant
to the pine weevil Hylobius abietis

The aim of this study was to analyze the effect
of phosphorus fertilization on total terpene
emission rates and on terpene concentrations
in half-sib families of P pinaster seedlings
cultivated under controlled conditions,
previously found to be resistant or susceptible
to the large pine weevil in field conditions.
We aimed to answer the following research
questions:

Capitol 4.1 - Efectes de la disponibilitat de fosfor
i de la variaci6 genética sobre la produccié i la
tassa d’emissi6 de terpens foliars de plangons de
Pinus pinaster susceptibles i resistents al corc del
pi Hylobius abietis

L’objectiu d’aquest estudi va ser analitzar
Pefecte de la fertilitzacié amb fosfor sobre
la tassa d’emissié de terpens i sobre les
concentracions de terpens en families de
mitjos-germans de P pinaster cultivades sota
condicions controlades, 1 que préviament s’ha
vist que eren resistents o susceptibles a 'atac
del corc del pi en condicions de camp. Ens
varem fer les seglients qiiestions de recerca:

1. What is the effect of phosphorus
deficiency on plant physiology?

2. Are there differences between
families on plant physiology?

3. What is the pattern of leaf terpene
production and emission in P
pinaster?

4. What is the effect of phosphorus
deficiency on terpene production?

5. What is the effect of phosphorus
deficiency on terpene emission
rates?

6. Are there differences between
families regarding the terpene
production?

7. Are there differences between
families regarding the terpene
emission rates?

1. Quin és lefecte de la deficiencia
de fosfor sobre la fisiologia de la
planta?

2. Hi ha diferencies entre families pel
que fa a la fisiologia de la planta?

3. Quin és el patré de produccid i
emissi6 de terpens foliars en P
pinaster?

4. Quin és 'efecte de la deficiencia de
fosfor en la producci6 de terpens?

5. Quin és Pefecte de la deficiencia
de fosfor en la tassa d’emissié de
terpens?

6. Hi ha diferéncies entre families pel
que fa a la produccio de terpens?

7. Hi ha diferencies entre families
pel que fa a la tassa d’emissié de
terpens?




Chapter 4.2 - Investigating the photosynthesis
and terpene-content strategies of two
different genotypes of Arabidopsis thaliana
(wild-type and CoxIV-FANES I transgenic)

We aimed to test the hypothesis that the A.
thaliana genotype which is modified to emit
nerolidol from mitochondrial synthesis will
show other differences in terpene production,
and physiology in leaves and roots. We aimed
to answer the following research questions:
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Capitol 4.2 - Investigacié de les estrategies
fotosintétiques i de produccié de terpens de
dos genotips diferents de Arabidopsis thaliana
(genotip salvatge, i genotip transgenic CoxIV-
FANESI)

Varem voler testar la hipotesi que el genotip
modificat per emetre nerolidol a partir de la
sintesi mitocondrial d’A. thaliana mostraria
diferéncies en la produccié de terpens i en la
fisiologia de les fulles i arrels. Ens varem fer les
segiients questions de recerca:

1. Are there differences between
wyld-type and transgenic plants
regarding the plant physiology?

2. What is the pattern of leaf terpene
production in A. thaliana?

3. Are there differences between
genotypes of A. thaliana regarding
leaf terpene production?

4. What is the pattern of root terpene
production in A. thaliana’?

5. Are there differences between
genotypes of A. thaliana regarding
root terpene production?

1. Hi ha diferéncies entre el genotip
salvatge i el transgenic pel que faala
fisiologia de la planta?

2. Quin és el patré de produccié de
terpens foliars a A. thaliana?

3. Hi ha diferencies entre genotips de
A. thaliana pel que fa a la produccié
de terpens foliars?

4. Quin és el patré de produccié de
terpens a les arrels a A. thaliana?

5. Hi ha diferencies entre genotips de
A. thaliana pel que fa a la produccié
de terpens a les arrels?
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and soil fertilization effects on leaf
volatile terpene concentrations in
Pinus halepensis and Quercus ilex

Efectes de la sequera,
escalfament i fertilitzacio del sol
sobre les concentracions de
terpens volatils a les fulles de
Pinus halepensis i Quercus ilex

An edited version of this chapter is publised on: Acta Physiologiae Plantarum 31: 207-218 (2009)
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2.1. Abstract

The changes in foliar concentrations of volatile terpenes in response to water stress, fertilization
and temperature were analyzed in Pinus halepensis and Quercus ilex. The most abundant
terpenes found in both species were a-pinene and A3-carene. B-Pinene and myrcene were also
abundant in both species. P halepensis concentrations were much greater than those of Q. ilexin
agreement with the lack of storage in the latter species (15,205.60 = 1,140.04 vs 0.54 = 0.08 ug
g’ [d.m.]). The drought treatment (reduction to 1/3 of full watering) significantly increased the total
terpene concentrations in both species (54% in P halepensis and 119% in Q. ilex). The fertilization
treatment (addition of either 250 kg N ha' or 250 kg P ha™ or both) had no significant effects on
terpene foliar concentrations. Terpene concentrations increased from 0.25 ug g' [d.m.] at 30 °C
to 0.70ug g [d.m.] at 40 °C. in Q. ilex (the non storing species) and from 2,240 ug g™ [d.m.] at 30
°C to 15,621 ug g' [d.m.] at 40 °C in P halepensis (the storing species). Both species presented
negative relationship between terpene concentrations and Relative water contents (RWC). The
results of this study show that higher foliar terpene concentrations can be expected in the warmer
and drier conditions predicted for the next decades in the Mediterranean region.

Key words: fertilization, Pinus halepensis, Quercus ilex, temperature, Terpene concentration, water
stress.

Resum

Es van analitzar els canvis en les concentracions de terpens volatils en resposta a estres,
fertilitzacio 1 temperatura en Pinus halepensis i Quercus ilex. Els terpens més abundants que es
van trobar en ambdues espécies van ser o-piné i A’-caré. També s’hi van trobar B-piné i mircé
en abundancia. Les concentracions de P halepensis van ser molt més grans que les de Q. ilex, tal
1 com era d’esperar ja que aquesta segona és una especie no acumuladora (15,205.60 + 1,140.04
vs 0.54 £ 0.08 pg g [p.s.]). El tractament de sequera (reducci6 de la dosi complerta de rega 1/3)
va incrementar significativament les concentracions de terpens totals en ambdues especies (54%
a P halepensisi 119% a Q. ilex). El tractament de fertilitzacié (adicié de 250 kg N ha™ o 250 kg
P ha' o ambdues) no va tenir efectes significatius sobre les concentracions foliars de terpens.
Les concentracions de terpens van augmentar des de 0.25 pug g [p.s.] a 30 °C fins a 0.70 pg g
[p.s.] 240 °C. a Q. ilex (’especie no acumuladora) i des de 2,240 ug g [p.s.] 2 30 °C fins a 15,621
ug g [p.s.] 240 °C a P, halepensis ('especie acumuladora). Les dos espécies van presentar una
correlaci6 negativa entre les concentracions de terpens i el contingut relatiu d’aigua (CRA). Els
resultats d’aquest estudi mostren que es poden esperar concentracions més grans de terpens a
les fulles sota les prediccions de major escalfor i sequera que s’han fet per a la regié Mediterrania.

Paraules dau: fertilitzacio, Pinus halepensis, Quercus ilex, temperatura, Concentracioé de terpens,
estres hidric.
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2.2. Introduction

Plants produce Biogenic Volatile Organic Compounds (BVOCs) that include many groups
of compounds: isoprene, terpenes, alkanes, alkenes, alcohols, esters, carbonyls and acids
(Kreuzwieser et al 1999, Pefiuelas and Llusia 2001). The most abundant BVOCs are the volatile
isoprenoids. Terpenes can be stored in specialized structures (storing plants) or not (non-storing
plants). Storing plants have specialized storage organs such as resin ducts (in pines), resin blisters
(in firs), glandular trichomes (in mints), or leaf storage cavities (in eucalypts) (Gershenzon and
Croteau 1991). Plant terpene concentrations usually are approximately 1-2% of the dry weight,
but in some cases they may reach up to 15-20% of the dry weight of a plant (Ross and Sombrero
1991, Langenheim 1994). However, non-storing plants do not have these storing structures and
they emit the terpenes immediately after their production (Loreto et al 2001). In storing plants the
main functions of terpenes appears to be defence against pathogens and herbivores, and wound
healing. In non-storing plants the production of isoprenoids could be linked to thermotolerance
helping plants to conduct photosynthesis at high temperatures by avoiding cellular membranes
damages and alleviating oxidative stress (Sharkey et al2001, Pefiuelas and Llusia 2002). Moreover,
some recent studies report that BVOCs attract pollinators and herbivore predators, and mediate
communication between the plant and other organisms (Pefuelas et al 1995, Pefiuelas and Llusia
2003, 2004).

The production of terpenes can be affected by diverse factors, both biotic and abiotic (Pefuelas
and Llusia 2003).The most important ones are abiotic factors: temperature (Tingey et al 1980),
light (Banthorpe and Njar 1984), CO, concentrations (Pefiuelas and Llusia 1997), soil nutrient
availability (Schonwitz et al 1991), and water availability (Kainulainen et al 1992). Water availability,
soil nutrient and temperature are three factors directly linked with global change that are very
important in Mediterranean ecosystems (Penuelas and Llusia 2002, 2005, Sardans et al 2005,
Sardans and Penuelas 2007).

Global circulation and ecophysiological models project further warming and further aridification for
the next decades in the Mediterranean region due to the warming, and the consequent increased
evapotranspirations without increases in precipitations (Pinol et al 1998, Pefnuelas and Llusia
2002, 2005, IPCC 2007). Warming increases the production and emission rates of most terpenes
exponentially up to maximum by enhancing the synthesis enzymatic activities, raising the terpene
vapour pressure, and decreasing the resistance of emission pathway (Tingey et al 1991, Loreto et
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al 1996, Penuelas and Llusia 2001). Terpene concentrations have been generally found to increase
in drought conditions (Hodges and Lorio 1975, Kainulainen et al 1992, Llusia and Penuelas 1998,
Turtola et al 2003). However, terpene concentrations may be reduced when the water stress is
severe (Bertin and Staudt 1996, Llusia and Pefnuelas 1998).

Regarding nutrients, there has been an increase of Nitrogen and Phosphorus availability during
the last decades, and their cycles have been altered (Pefiuelas and Filella 2001, Roda et al 2002,
Sardans and Penuelas 2004, Sardans et al 2006). N availability has increased last decades due to
anthropogenic sources such as fertilizers, combustion of fossil fuels and cattle residuals (Vitousek
et al 1997). P concentrations have increased mostly due to agricultural practices (Rubaek et al
2000). Both trends are expected to continue in the next decades with the increasing population
and the increasing use of resources. The carbon/nutrient balance hypothesis (CNBH) (Bryant et
al 1983) and the growth differentiation balance hypothesis (GDBH) (Loomis and Croteau 1973,
Lorio 1986) both address how the relative availabilities of resources affect their allocation to the
production of new tissue and to the defence of existing tissues. The CNBH predicts that when a
resource, such as Nitrogen, is abundant, a plant will allocate proportionately less carbon toward
carbon based secondary compounds (reserve and defence) and more toward growth (Lerdau et
al 1995, Penuelas and Estiarte 1998). Similar hypotheses can be developed for the availability of
other resources such as CO,, Phosphorus or water (Penuelas and Estiarte 1998). However, in a
study of Eucalyptus spp, King et al (2004) found that neither water stress, measured using carbon
isotope ratios as an indicator, nor nutrient stress, measured as foliar nitrogen and phosphorus
content, accounted for observed variation in terpene content.

There are several reports in the literature studying the effects of temperature, drought and nutrients
on monoterpene contents in plant foliage (McKinnon et al 1998, Turtola et al 2003, King et al
2004, Rennenberg et al 2006), and Rennenberg et al (2006) reported a significant interaction
between drought and high temperature on VOC formation and nutrient uptake, but there are very
few studies investigating the effect of the interaction between these three factors.

The aim of the present work was to present, for the first time, a controlled study of the interaction
between temperature, water stress and nutrient doses on monoterpene content of foliage. The
results contribute to a better understanding of increasing drought, eutrophication and temperature
on terpene concentrations in a terpene-storing (Pinus halepensis Mill.) and in a non-storing
(Quercus ilex L.) Mediterranean species.
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2.3. Material and Methods

Study site

This experiment was carried out in a greenhouse (plastic tunnel 28 m long and 6 m wide) located
in the experimental fields at the Universitat Autonoma de Barcelona (Bellaterra, Barcelona, NE
Spain). This greenhouse is located 147 m above the sea level at the UTM coordinates 31T x
= 0425064 y = 459446. It prevents water incomings from rain, and maintains homogeneous
Mediterranean-like environmental conditions.

Experimental design

24 two-year-old plants of Pinus halepensis purchased in Apromi breeding ground (Juneda, Lleida,
Spain) and 24 two-year-old plants of Quercus ilex purchased in Forestal Catalana (Breda, Girona,
Spain) were grown in 2 | pots containing a mixture of peat (Sphagnum neutral peat, H-Terraplant-1,
Compo) and perlite (2:1) from June to August 2004. The peat contained approximately 160 mg
I" of N and 150 mg I" of P,O,. The treatments were distributed randomly in the greenhouse.
Previously, they were well watered and maintained in Mediterranean-like environmental conditions
until the beginning of the experiment.

Two dose treatments were applied: drought and fertilization. The drought treatment had two doses:
Control (C), | liter water per week and plant, and Drought (D), 0.33 liters water per week and plant,
half of the pines and oaks were subjected to drought treatment and the other half were control
plants. The fertilization treatment had four doses: control (O) without fertilization, 250 kg N ha™
Nitrogen (N), 250 kg P ha'' Phosphorus (P) and both 250 kg N ha' + 250 kg P ha™ (NP). Chemicals
used were NH,NO, for Nitrogen fertilization and Ca,(PO,), for Phosphorous fertilization (both from
Fluka, Buchs, Switzerland). The fertilization dose was distributed homogeneously during the two
and a half months of the experiment from June to August. Six plant replicates were conducted for
each treatment level.
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Sampling and Relative Water Contents analysis

In total, 6 sampling campaigns were conducted, one every 2 weeks from June to mid August.
One shoot per P halepensis and one leaf per Q. ilex and were cut and immediately put into liquid
Nitrogen. These samples were kept in a freezer (-30 °C) until their analysis. Sampled shoots and
leaves were always those submitted to direct radiation (sunlit parts of the plant). Sampled leaves
were one-year old well developed leaves.

Relative Water Content (RWC hereafter) was measured in each plant on each of the six sampling
dates. The sampling procedure followed the steps described by Barrs and Weatherley (1962):
fresh weight (FW) was obtained for 3-4 P halepensis needles and one Q. ilex leaf by the difference
between [tube +water+leaf] and [tube+water]. After at least 12 hours of moisturizing, the saturated
weight (SW) was obtained. Dry weight (DW) was obtained after 72 hours at 60°C until weight
constancy. The following formula was applied to obtain the RWC:

_ (FW -DW)
~ (SW-DW)

RWC

Leaf temperature was also calculated using an ADC-LCA4 (ADC Inc. Hoddesdon, Hertfordshire,
England) connected to a cuvette model PLCA4 (ADC Inc. Hoddesdon, Hertfordshire, England).

Laboratory analyses: terpene contens

Terpene extraction method from the frozen samples was different in P halepensis than in Q. ilex
(Llusia and Penuelas 1998). Three-four needles of P halepensis were introduced in a Teflon tube
with liquid Nitrogen and they were mechanically crushed with a Teflon embolus in order to extract
terpenes. 1 ml of pentane was added together with a non-terpenoid internal standard (0.1 ul of
dodecane). This sample was centrifuged 5 minutes at 5000 rpm and 5-10°C in order to separate
the liquid and solid phases. 3 ul of the extract were directly injected into a GC-MS (model Hewlett
Packard HP59822B, Palo Alto, California). Each Q. ilexleaf was introduced in a Teflon tube filled with
liquid Nitrogen and then placed into a glass of boiling water. When liquid Nitrogen disappeared,
volatile terpenes were liberated from the leaf, carried by a stream of Nitrogen and trapped in a
multibed cartridge (Carbotrap C (300 mg), Carbotrap B (200 mg) and Carbosieve S-Ill (125 mg)
from Supelco (Belmonte, Pa)). VOCs adsorbed in these cartridges were analyzed by GC-MS being
previously desorpted in a Thermal Desorbtion Unit (model 890/891, Supelco, INC, Bellefonte,
Pennsylvania) during 4 minutes to 250 °C using Helium as a carrier gas and injected into a 30
m x 0.25 mm x 0.25 um film thickness capillary column (Supelco HP-5, Crosslinked 5% pH Me
Silicone). Full scan method was used to perform the chromatography. After sample injection at 40
°C, temperature was increased at 30 °C min” up to 70 °C, and thereafter at 10 °C min"" up to 150
°C, where temperature was maintained for 5 min, and thereafter at 70 °C min™ up to 250 °C, which
was maintained for another 5 min. Helium flow was 1 ml min-'. For both species, 2 blank analyses
per day were also conducted.

The identification of terpenes was conducted by GC-MS and comparison with standards from
Fluka (Buchs, Switzerland), literature spectra and GCD Chemstation G1074A HP with the Wiley275
library. Terpene calibration curves (n=4 different terpene concentrations) were always significant
(RP>0.99) in the relationship between signal and terpene concentration. The most abundant
terpenes had very similar sensitivity (differences were less than 5%). Total terpene concentrations
were calculated as the sum of these main terpenes.

Leaf dry mass weight was determined after drying the residual vegetal material at 60 °C for 48
hours.
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P and N leaf concentrations

P and N leaf concentrations were measured once at the end of the sampling period. P concentrations
were analyzed by atomic emission spectroscopy with Inductive Coupled Plasma (ICP-AES).
Needles and leaves were crushed and dried at 60 °C during 48 hours. The ICP-AES analyses
were conducted after acid digestion (HNO,:HCIO,, 2:1, v/v) in a microwave Moulinex Optiquick
Duo Y92 using open fluorinated ethylene propylene flasks (Nalge Company, Rochester, UK). The
concentrations were determined in a Polyscan Thermo Jarrel ASH Model 61 E spectrophotometer
(Waltham, MA, USA).

N concentrations were analyzed by combustion followed by gas chromatography (GC) using a
NA2100 C.E. Instrument (Thermo Electron, Milano, ltaly). The sample was prepared weighting
between 1 and 2 mg of previously ground leaves in a tin small capsule and adding 2 mg of
Vanadium Pentoxid as an oxidant additive.

Statistical analyses

Repeated measures analyses of variance (RM-ANOVA) were conducted for total terpene
concentrations as dependent variable and the two treatments (drought and fertilization) as
independent variables. Differences between control and drought for the drought treatment and
between control and N, P NP for the fertilization treatment were compared with Fisher post-
hoc tests. Correlation analyses were conducted among the studied variables: leaf RWC, leaf
concentrations of Nitrogen and Phosphorus and leaf concentrations of terpenes. All these analyses
were conducted with the software package STATISTICA 6.0 (StatSoft Inc, Tulsa, USA).
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2.4. Results

RWC was reduced by drought treatment from 0.92 = 0.01 to 0.89 = 0.01 and from 0.88 = 0.01
to 0.86 = 0.01 for P halepensis and Q. ilex respectively (data not shown). The drought treatment
decreased the growth of the stem diameter of P halepensis (P<0.01) but not of Q. ilex (Fig. 1).
However, despite the fact that Q. ilex drought plants were not significantly different from the well
watered ones for the overall period of measures (all data), there were significant differences
(P<0.01) at the end of the experiment (6" measure, julian day 224). There was also a significant
effect (P<0.001) for the time course and for the interaction drought per time, since in both species
the drought effect became more significant with time course (Fig.7). There were no significant
differences in plant height between control and drought plants for both species. Nevertheless
there was a significant effect (P<0.001) on plant height for the time course in both species, P
halepensis and Q. ilex, and there was a significant interaction effect between drought and time
(P<0.001) for P halepensis. No significant effect of fertilization treatments was found neither on
stem diameter nor on plant diameter (data not shown).

No significant responses of leaf concentrations of Nitrogen and Phosphorus to fertilization treatment
were found neither in P halepensis nor in Q. ilex (Fig.2). However, drought treatment significatively
increased (P<0.001) N concentrations in P halepensis and tended to do it also in Q. ilex (Fig.2).
However, the drought treatment had no significant effect on Q. ilex N concentrations when NP and
N treatments were applied.

The main terpenes detected in both species were: a-pinene, B-pinene, B-myrcene, A-carene,
2-carene, camphene, sabinene, sabinene, B-phellandrene, limonene and B-ocymene (Table
7). There was a huge difference for total terpene concentrations corresponding to the species’
capacity or incapacity of storing terpenes in specialized organs between P halepensis and Q. ilex
(Fig.3): The average terpene concentration was 14,866 = 1,678 ug g' [d.m.] for P halepensis
needles and 0.39=+ 0.06 ug g [d.m.] for Q. ilex leaves.
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Drought significatively increased total terpene concentrations from 13,425.57 + 330.43 ug g-1
[d.m.]to21,127.45 = 3,656.47 ug g [d.m.] in non-fertilized plants of P halepensis (P<0.05, mean
of the overall period of measures, n=72, all data) (Fig.3) and from 0.324 = 0.0395ug g'[d.m.] to
0.749 + 0.141 ug g' [d.m.] in non-fertilized plants of Q. ilex (P<0.001, mean of the overall period
of measures, n=72, all data) (Fig.3). The drought effect of increasing terpene concentrations in the
control P halepensis plants is evident in P (P<0.05) and NP (not significant, but a trend, P<0.1)
fertilized plants, but N fertilization alone canceled this effect (Fig.3). This was not observed in Q.
ilex.

Fertilization treatments did not affect significantly terpene concentrations in any of the two studied
species (Fig.3). Moreover, only P halepensis showed significant differences for drought treatment
in control (O, P<0.1) and phosphorus (P £<0.05) fertilization treatment (Fig.3).

The most abundant terpenes in P halepensis and Q. ilex were a-pinene, B-pinene, B-myrcene and
N3-carene (Fig.4). For P halepensis plants, drought significantly increased a-pinene, p-myrcene
and A3-carene concentrations except when there was a nitrogen addition (Fig.4). These greater
concentrations of terpenes in droughted plants were especially significant in P halepensis plants
with Phosphorus addition, especially for the most abundant terpenes: a-pinene and A3-carene.
On the other hand, no differences were found between the fertilization treatments (Fig.4). Drought
treatment significatively increased B-pinene and A3-carene total concentrations in Q. ilex plants
(P<0.01 and P<0.05 respectively) (Fig.4). No differences were found between different fertilization
treatments.

Fig.1 - Stem diameter and plant height (cm) along the experiment (julian days) for P halepensis and Q./fex under control
and drought treatments. Vertical bars indicate standard errors of the mean (n=12). Statistical significance for the
overall effect of drought on stem diameter and plant height (repeated measurements ANOVA) is indicated inside
the panels. ** P<0.01, * P<0.05, + P<0.1
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Fig.2 - Leaf concentrations of Nitrogen (N) and Phosphorus (P) for the fertilization treatments (Control, N = Nitrogen,
P = Phosphorus, NP = Nitrogen + Phosphorus), for the two studied species, P halepensis and Q. /fex. Vertical
bars indicate standard errors of the mean (n=3) Statistical significance for the overall effect of drought on Leaf
concentrations of Nitrogen (N) and Phosphorus (P) (ANOVA) is indicated inside the panels. ** P<0.01 ,*
P<0.05, + P<0.1. Slashed line indicates the average values in Spain according to EC-UN/ECE-FBVA (1997)
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Fig.3 - Total terpene concentrations, for drought and fertilization treatments (Control, N = Nitrogen, P = Phosphorus,
NP = Nitrogen + Phosphorus), and for P halepensis and Q. /lex plants, expressed in ug g’ [d.m.]. Vertical bars
indicate standard errors of the mean (n=4 sampling dates means of 3 plant replicates each for P halepensis
and 3 sampling dates means of 3 plant replicates each for Q. /lex). Statistical significance for the overall effect
of drought on monoterpene concentrations (repeated measurements ANOVA) is indicated inside the panels. *
P<0.05, + P<0.1
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Drought, warming and soil fertilization effects on leaf volatile terpene concentrations in Pinus halepensis and Quercus ilex

CHAPTER 2

i-plnens
=
¥
-

A el
1 Depig

[epenens

&0
o4 D

Terpane concentrations (sgg” [4m])

[-nmyicena

Quevcus dox

1001 o

Deougite Poll 05

*

T4 4

.09+ 1
803 4
o4 D) 4
el Dk

10w 9

= & Y = |

[

i af off

1 deed o
1,2
1,0l o

Ll B

2 0r+1

Lol

Copught PoRDS Fariilinatons Decaght P01
*
~B ma ™ i
I I ‘ I = |I| . .hi j
Duoght 20008 Dol B0.0%
‘ +
A i | i 3 i -j
NF Codtal N F P
Fartikzahcn roatmanis

Fig.4 - Concentrations (ug g'[d.m.]) of the most abundant terpenes for drought and fertilization treatments (Control,
N = Nitrogen, P = Phosphorus, NP = Nitrogen + Phosphorus), in P halepensis and Q. /lex plants. Vertical bars
indicate standard errors of the mean (n=4 sampling dates means of 3 plant replicates each for P halepensis
and 3 sampling dates means of 3 plant replicates each for Q. /lex). Statistical significance for the overall effect
of drought on monoterpene concentrations (repeated measurements ANOVA) is indicated inside the panels. *
P<0.05, + P<0.1
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Drought treatment tended to increase total terpene concentrations in both species during the
experiment especially in Q. ilex which presented a significant interaction between drought and time
(P< 0.001, ANOVA) (Fig.5). This increase was independent from the fertilization treatment.

A negative correlation was found between total terpene concentrations and RWC for both
species P halepensis (RP=0.37, P<0.01) and Q. ilex (R*=0.37, P<0.01) (Fig.6). There were no
significant relations between total terpene concentrations and N (Fig.6) and P (data not shown)
leaf concentrations for P halepensis, but in Q. ilex plants total terpene concentrations increased
with leaf Nitrogen concentration (Fig.6). Q. ilex terpene concentrations of a-pinene, B-pinene,
B-myrcene and A3-carene also showed a tendency to increase with leaf Nitrogen concentration
(R?=0.15, 0.15 and 0.13 respectively, P<0.1, data not shown).
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Fig.5 - Total terpene concentrations expressed in ug g-1 [d.m.] along the experiment, for control and drought treatments
and for P halepensis and Q. /lex. Vertical bars indicate standard errors of the mean (n=23). Statistical significance
for the overall effect of drought on monoterpene concentrations (repeated measurements ANOVA) is indicated
inside the panels .* £<0.05, ** P<0.01, + P<0.1. Treatment started in 148 julian day
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2.5. Discussion

There was a large difference between terpene concentrations in P halepensis and Q. ilex species,
corresponding to a storing and a non storing species, respectively. Previous authors have also
reported the existence of concentrations of these compounds in P halepensis needles (Llusia and
Penuelas 2000, Llusia et al 2006), and in Q. ilex leaves (Loreto et al 2001, Penuelas and Llusia
2002, Llusia et al 2005). However, other studies have found that the most abundant terpenes in P
halepensis are different ones, for example limonene (Llusia and Pefuelas 2000). These differences
show once more the variable terpene content of different ecotypes and even individuals (Staudt et
al 2001). The existance of VOCs on leaves can be interpreted as physiological effects (protection
against oxidative and high temperature stress), ecological effects (VOCs as signals: pollination
attractors, herbivore deterrents) (Pefuelas and Llusia 2003) and environmental effects (VOCs
contribution to wild-fire, i.e., Alessio et al (2008) show correlation of VOC content and flammability
in P halepensis and Q. ilex).

Total terpene concentrations increased significantly under the experimental drought conditions in
the two studied species P halepensis and Q. ilex (P<0.05 and P<0.001, respectively). There was
no effect of drought in the N fertilized P halepensis plants (Fig.3), perhaps because of enhanced
synthesis of amino acids such as proline, which increases resistance to drought (Vendruscolo et
al2007). However, not all terpene compounds increased in drought, and these different responses
may be linked either to different effects of drought on particular terpene synthase enzymes, or to
possible different protective roles for different terpene compounds in the face of drought.

The effect of water-stress increasing monoterpene concentrations has been previously reported
by several authors in many storing and non-storing species (Hodges and Lorio 1975, Gershenzon
et al 1978, Kainulainen et al 1992, Llusia and Penuelas 1998, Loreto et al 2001, Delfine et al
2005). Drought-induced monoterpene concentration increases was also verified by the significant
negative correlations between terpene concentrations and relative water content (Fig.6). Moreover,
drought plants grew less than control plants in terms of plant height and stem diameter (Fig.7)
allowing for a larger fraction of carbon being allocated to monoterpenes formation instead of
allocating it to growth (Bradford and Hsiao 1982, Llusia and Penuelas 1998, Pefnuelas and Estiarte
1998). It seems that in typical drought-stress conditions of hot Mediterranean summer days
with decreased photosynthetic rates and stomatal conductances at midday, an important part
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of photosynthetic C fixation is still used for terpene production and emission (Yani et al 1993,
Pefuelas and Llusia 1999, Vallat et al 2005). Accumulation of monoterpenes in water-stressed
leaves may have ecological functions such as defence or storage (Penuelas and Estiarte 1998).
Drought induces oxidative stress in plants. Plants can reduce the damage caused by oxidative
stress with monoterpenes. Thus, plants with more compounds can fight better against oxidative
stress. For this reason, storage makes plants more resistant in front of oxidate stress in drought
conditions. For the same reason, the bigger the pool size, the higher capability of the plant to
respond to oxidative stress. Under stress conditions the build-up of secondary compounds like
terpenes could replace photorespiration in protection from photodamage (Pefiuelas and Llusia
2002). However, in the non-storing species Q. ilex, a decrease of monoterpene production could
be expected with drought, considering that Q. ilex monoterpene biosynthesis like isoprene is
directly dependent on the photosynthetic activity (Niinemets et al 2002). Net photosynthetic rates
and stomatal conductance decreased with drought (data not shown, (Blanch et a/2007)) Heat and
drought have a negative effect on photosynthesis by deactivating 1,5-bisphosphate carboxylase/
oxygenase (Rubisco) (Rennenberg et al 2006). However, Q. ilex monoterpene concentrations
increased with heat and drought. The response observed could be explained by the fact that
monoterpene production is less sensitive than photosynthetic activity to water stress (Bertin and
Staudt 1996), partly because the lack of terpene storage structures may be compensated by
an increase in the internal BVOCs concentrations in both lipid and aqueous phases of leaves
(Niinemets et al 2004). These results suggest that under heat and drought stress there may be
alternative unknown sources for monoterpene production as suggested in previous studies (Plaza
et al 2005, Ormeno et al 2007, Brilli et al 2007).

Terpene concentrations increased progressively during summer in Q. ilex following increasing
temperatures, and differences between control and drought plants became significant especially
in August, when temperature was higher, thus supporting the existence of an interaction between
drought and temperature (Fig.5). This fact indicates that concentrations of individual terpenes
are more sensitive to environmental changes in the non-storing species Q. ilex than in the storing
species P halepensis, as expected given the much lower concentrations.

There was not effect of fertilization on growth. The effect of fertilization on terpene concentrations
was not wholly clear (trends but not significant). Several previous studies have found no relation
between terpene concentrations and nutrient addition (Muzika et al 1989, Manninen et al 1998).
In the present experiment, P fertilization had no significant effect on its own, but when there was
P fertilization and drought effect which was highly significant in P halepensis plants for the total
terpene contents, and for the principal individual terpenes: a-pinene and As-carene. This effect
may be due to the fact that increasing drought decreases P availability (Sardans and Penuelas
2004). On the contrary, P fertilization had no significant effect on Q. ilex leaf terpene concentrations.

Q. ilex plants increased terpene concentrations with the increasing N leaf concentration (Fig.6)
resulting from the drought treatment (Fig.2). Higher nitrogen concentration in leaves might indicate
higher enzyme activity resulting in more terpene production in a species like Q. ilex which is
dependent on short-term production (Litvak et al 1996). No significant relationship was found
between foliar terpene concentrations and increasing nitrogen leaf concentrations in the terpene-
storing species P halepensis. The basal nutrient levels in the soil (not measured) and in the leaves
were probably high enough to make the response of growth and terpene concentrations not limited
by N and P Plants generally control their N and P uptake and will not take up much more than
their requirements (Barcel6 et al 1992). So adding nutrients to a growth medium (peat and perlite)
which already contains sufficient nutrients, is not likely to change N, P or terpene content. However,
the drought situation is likely to very much change the plants’ metabolism and requirements for
nutrients and terpenes. N and P leaf concentrations were in the range or slightly above the range
of values given by the European Commission-United Nations/Economic Commission for Europe
(1997) for P halepensis and Q. ilex in Spain (Fig.2).
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In summary, monoterpene concentrations were 54% higher for drought than for control plants
in P halepensis and 119% higher for drought than for control plants in Q. ilex. The fertilization
treatments conducted in this study had no significant effects on terpene foliar concentrations, but
the increased N foliar concentrations generated by the drought treatment were accompanied by
increased terpene concentrations in Q. ilex. Terpene concentrations in P halepensis and Q. ilex
increased with higher temperatures of summer. All together these results show that higher terpene
concentrations can be expected in the warmer and drier conditions projected for the next decades
in the Mediterranean region by climatic and ecophysiological models (Pefiuelas et al 2005, IPCC
2007).
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3.1.1. Abstract

We studied the effects of water stress, fertilization and time course on foliar volatile terpene emission
rates by Quercus ilex and Pinus halepensis in a garden experiment. The terpenes mostly emitted
by both species were a-pinene, B-pinene, B-myrcene and A%-carene. P halepensis emission rates
(average 31.45 pug g [d.m.] h') were similar to those of Q. ilex (average 31.71 ung g [d.m.]
h™). The effects of drought (reduction to 1/3 of full watering) and fertilization (250 kg N ha™, 250
kg P ha', or both) were different depending on the species: the drought treatment significantly
increased the terpene emissions from Q. ilex by 33% and the fertilization treatments reduced the
terpene emissions from P halepensis by 38%. Terpene emission rates increased with time course
in parallel to raising summer temperatures in P halepensis and Q. ilex, whose emission rates were
temperature related (r = 0.42 and r = 0.68 respectively) and light related (r = 0.32 and r = 0.57
respectively). There was a positive relationship for P halepensis, and a negative relationship for
Q. ilex, between emission rates and relative water contents. No relationship was found between
emission rates and N or P foliar concentrations. The results of this study show complex species-
specific responses with stronger and faster short term responses in terpene non-storing than in
storing species and indicate that terpene emissions may significantly change in the warmer, drier
and more fertilized conditions predicted for the next decades in the Mediterranean region.

Key words: VOC, monoterpene emission rates, Pinus halepensis, Quercus ilex, fertilization, drought
stress.

Resum

Varem estudiar els efectes de I'estres hidric, fertilitzacio i el pas del temps en la tassa d’emissions
de terpens volatils de Quercus ilex i Pinus halepensis, en un experiment en hivernacle. Els
terpens que més van emetre ambdues espécies van ser o-piné, B-piné, B-mircé i A’-caré. La tassa
d’emissions de P. halepensis (de mitjana 31.45 pg ¢! [p.s.] h') va ser similar a la de Q. ilex (de
mitjana 31.71 pg g [p.s.] h'). Els efectes de la sequera (reducci6 fins a 1/3 de la dosi de reg) i la
fertilitzaci6 (250 kg N ha', 250 kg P ha' o ambdues) van ser diferents depenent de I'espécie: el
tractament de sequera va incrementar significativament les emissions de terpens de Q. ilex en un
33% 1 la fertilitzacié va disminuir les emissions de P halepensis en un 38%. La tassa d’emissio
de terpens va augmentar amb el pas del temps conjuntament amb I'increment de temperatures
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de Iestiu tant en P halepensis com en Q. ilex, les emissions dels quals van estar correlacionades
tant amb la temperatura (r = 0.42 i r = 0.68 respectivament) com amb la llum (r = 0321 r =
0.57 respectivament). Hi va haver una correlacié positiva per a P halepensis i negativa per a Q.
ilex de la tassa d’emissié de terpens amb el contingut relatiu d’aigua. No es va trobar relacié
entre la tassa d’emissi6 de terpens i les concentracions foliars de N i P. Els resultats d’aquest
ens mostren respostes complexes especie-especifiques i respostes rapides a curt termini a les
especies no acumuladores de terpens en comparacié amb les espécies acumuladores, i indican
que les emissions de terpens probablement canviaran si les prediccions de més escalfor i sequera
per a 'area mediterrania en les proximes décades es fan realitat.

Paraules clau: COV,, tassa d’emissio de terpens, Pinus halepensis, Quercus ilex, fertilitzacio, estres
hidric
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3.1.2. Introduction

Volatile Organic Compunds (VOCs) have an important role in atmospheric chemistry (Singh and
Zimmerman 1992, Lerdau and Penuelas 1993) and particularly in the development of aerosols
and ozone (Andreae and Crutzen 1997). Went (1960) already recognized that foliar emissions of
VOCs could have a significant impact on tropospheric chemistry by influencing the processes that
control the formation of atmospheric haze.

For a number of years, much research effort has been invested in studying the importance of
VOCs emitted by natural sources and their role in photochemical formation of ozone (Chameides
et al 1988, Atkinson 2000). Plants produce and emit a wide range of VOCs (Fehsenfeld et al 1992).
Biogenic emissions have been estimated to globally exceed anthropogenic emissions (Guenther
et al 1995, Simpson et al 1995).

In Mediterranean forests Pinus halepensis Mill. and Quercus ilex L. are dominant tree species, and
they both emit terpenes (Llusia and Penuelas 1998, 2000). However, P halepensis stores terpenes
and Q. ilexdoes not (Llusia and Periuelas 1998). The pattern of terpene emission from plants that do
not store terpenes in specialized structures may be different from that of plants having specialized
structures for their storage (Lerdau 1991, Seufert et al 1995, Loreto ef al 1996a, Lerdau et al 1997,
Llusia and Penuelas 1999). In terpene-storing species, pool size in resin ducts and internal or
external glands affects the emission rates, and it can be expected that the short-term response
of terpene emission rates to photosynthetic photon flux density (PPFD) and photosynthetic rates
could be stronger and faster in nonstoring species than in storing species (Staudt and Seufert
1995).

Aleppo pine Pinus halepensis Mill. is considered a low emitting species (Owen et al 2002). P
halepensis emission rates are maximal in the middle of the day and become negligible during
the night (Simon et al 2005). VOC emissions from P halepensis are dominated by a-pinene and
myrcene which may represent 70% of the total emission (Llusia and Pefuelas 2000, Owen et
al 2002, Ormeno et al 2007). The remaining 30% of the terpene emissions is often constituted
by B-pinene, caryophyllene and a-caryophyllene (Llusia and Pefiuelas 2000). Only limited data
are available concerning the influence of the environment, particularly light and temperature, on
terpene emission rates (Penuelas and Llusia 1999a).
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Mediterranean evergreen oak Quercus ilex L. is among the heaviest terpene emitters (BEMA 1997,
Llusia and Pefuelas 2000). Leaves of Q. ilex emit large amounts of terpenes that can affect the
regional air quality and climate (Kesselmeier and Staudt 1999) and may contribute to changes in
the atmospheric composition (BEMA 1997). The principal terpenes emitted by Q. ilex are a-pinene,
B-pinene, sabinene and myrcene (Kesselmeier et al 1996, BEMA 1997, Llusia and Penuelas
2000). a-Pinene emissions in Q. ilex may represent about 40% of the total emission in this species
(Loreto et al 1996b). Q. ilex emission is light dependent (Staudt and Seufert 1995, Loreto et al
1996b, Penuelas and Llusia 1999b) and CO, dependent (Loreto et al 1996a, b, Pefuelas and
Llusia 1999a). The dependence on these factors suggests that a-pinene biosynthesis may be
related to photosynthesis and that the emission is controlled by the availability of photosynthesis
intermediates (Loreto et al 19964, b).

Mediterranean ecosystems are water-limited (Sardans and Penuelas 2004). Among the abiotic
factors affecting plant terpene emission rates, temperature is outstanding (Tingey et al 1980,
Guenther et al 1993, Staudt and Seufert 1995, Loreto et al 19964, b, Pefuelas and Llusia 1999a, b,
Llusia and Penuelas 2000). However, water availability plays a significant role too (Bertin and Staud
1996, Staud and Bertin 1998, Pefuelas and Llusia 1999b). Water availability in the Mediterranean
regions is likely to be reduced in the near future by the predicted increases of temperatures, and
the consequent increases of evapotranspiration rates (Pifol et al 1998, Pefuelas et al 2002, 2005).
As a consequence of this water reduction, terpene emissions are expected to increase except
when the drought is severe; in that case emissions are drastically reduced (Llusia and Penuelas
1998, 1999, Penuelas and Llusia 19993, b).

In general, Mediterranean ecosystems are considered to be poor in nutrients (Mooney and Dunn
1970, Ellis and Kummerow 1989): mediterranean soils often suffer from nutrient deficiencies
(Specht 1973, Kruger 1979, Terradas 2001, Sardans et al 2006). However, the global Nitrogen
cycle has now reached the point in which more N is fixed annually by human-driven processes
(fertilizers, combustion of fossil fuels, and waste from stock raising) than by natural processes
(Vitousek et al 1997, Roda et al 2002). Along with nitrogen, phosphorus is also a frequent limiting
factor in Mediterranean ecosystems (Zinke 1973, Sardans 1997, Henkin et al 1998, Hanley and
Fenner 2001, Sardans et al 2006). Similarly to N, P input to ecosystems, especially aquatic ones,
as increased in last decades (European Environment Agency 1998, Rubaek et al 2000). Nutrient
supplies have often been shown to be an important factor in growth, structure and distribution of
Mediterranean communities (Kruger 1979, Carreira et al 1992, Sardans 1997, Henkin et al 1998).
And as a result of these increases in N and P N and P foliar concentrations have increased in
some Mediterranean species in the last few decades (Pefiuelas and Filella 2001). The carbon-
nutrient balance theory predicts that any lack in nutrients will affect the production of secondary
metabolites (Gershenzon and Croteau 1991, Pefuelas and Estiarte 1998). When nutrient availability
is limited, growth rate is reduced, but photosynthesis remains constant due to carbon availability.
Concentrations of nitrogen-based compounds will decline, but accumulation of carbohydrate
will lead to the synthesis of terpenoids (Gershenzon 1994, Penuelas and Estiarte 1998). Past
studies indicate that basal emission rates are influenced apart from temperature and PPFD by
growth, CO,, water and nitrogen supply (Guenther et al 1993, Llusia and Periuelas 1999). Since
phosphorylated compounds such as isopentenyl diphosphate and dimethylallyl diphosphate are
immediate precursors of isoprene it is likely that also P availability influence isoprenoid emission
rates.

In this work we studied and compared the terpene emission rates of these two dominant species
of the Mediterranean ecosystems: P halepensis (a terpene-storing species) and Q. ilex (a
terpene nonstoring species) in response to increasing water stress and fertilization (Nitrogen and
Phosphorus addition) along a spring-summer growth period. Our aim was to estimate the changes
in terpene emissions that can be expected in the next decades if predicted climate change and
increased ecosystems fertilization occur.
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3.1.3. Material and Methods

Study site

This experiment was carried out in a greenhouse (plastic tunnel 28 m long and 6 m wide) located in
the experimental fields at the Universitat Autonoma de Barcelona (Bellaterra, Barcelona, NE Spain).
This greenhouse is located 147 m above the sea level at the UTM coordinates 31T x = 0425064
y = 459446. It prevents water incomings from rain, and maintains homogeneous Mediterranean-
like environmental conditions. Mediterranean conditions include a marked seasonality, with a long
summer, where the lowest precipitation rate and the highest annual irradiance coincide.

Experimental design

24 two-year-old plants of Pinus halepensis purchased in Apromi breeding ground (Juneda, Lleida,
Spain) and 24 two-year-old plants of Quercus ilex purchased in Forestal Catalana (Breda, Girona,
Spain) were grown in 2 | pots containing a mixture of peat (Sphagnum neutral peat, H-Terraplant-1,
Compo) and perlite (2:1) from June to mid August 2004. Previously, they were well watered and
maintained in Mediterranean-like environmental conditions until the beginning of the experiment.

Two treatments were applied simultaneously: drought and fertilization. The drought treatment had
two doses: Control (C) | liter water per week and plant and Drought (D) 0.33 liters water per week
and plant; so half of the pines and oaks were subjected to drought treatment and the other half
were control plants. The fertilization treatment had four doses: control (O) without fertilization, 250
kg N ha'Nitrogen (N), 250 kg P ha™' Phosphorus (P) and both 250 kg N ha™' + 250 kg P ha™' (NP).
Chemicals used were NH,NO, for Nitrogen fertilization and Ca,(PO,), for Phosphorous fertilization
(both from Fluka, Buchs, Switzerland). The fertilization dose was distributed homogeneously
during the two and a half months of the experiment from June to August. Six plant replicates per
treatment levels were monitored.
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Field measurements of growth, relative water content, photosynthetic rates,
soil moisture, stomatal conductance and sampling of emitted VOC

Diameter and height were measured in each each one of the six sampling dates.

Relative Water Content (RWC) was measured in each plant in each one of the six sampling dates.
For 3-4 needles per P halepensis and one leaf per Q. /ex, fresh weight (FW) was obtained by
difference between tube+water+leaf less tube+water. After at least 12 hours of moisturizing the
saturated weight (SW) was obtained. Drought weight (DW) was obtained after drying for 72 hours
at 60 °C. The following formula was applied to obtain the RWC:

(FW —DW)
(SW — DW)

RWC =

Soil moisture was measured in each plant pot along the experiment by using Time Domain
Reflectometry (TDR) (Tektronix 1502C, Beaverton, Oregon, US).

Measurements of net photosyntetic rates, stomatal conductance and VOCs emissions were
conducted every 15 days from June to mid-August, i.e. six sample time points. Measurements
were conducted on sunny cloudless days. The average PPFD of the measurements was 1,270
umol m2 h.

CO, exchange was measured using a non-dispersive infra-red gas analyzer (IRGA), model ADC-
LCA4 (ADC Inc. Hoddesdon, Hertfordshire, England) connected to a cuvette model PLC2P (ADC
Inc. Hoddesdon, Hertfordshire, England). CO, uptake (A) and stomatal conductance (g,) were
measured in sunlit shoots on 2 halepens/s and in sunlit leaves of (. /ex. Both shoots and leaves
were from the previous year. A and g, values were expressed on a projected leaf area basis
measured with Li-Cor 3100 Area Meter (Li-Cor Inc., Nebraska, USA).

In order to sample VOCs, a T-system was installed outside the cuvette of the IRGA-porometer.
Part of the air passed through cartridges filled with three different phases separated by plugs of
quartz wool: Carbotrap C (300 mg), Carbotrap B (200 mg) and Carbosieve S-lll (125 mg) from
Supelco (Belmonte, Pa) by using a pump at constant flow. The multibed glass cartridges were
11.5 cm long x 4 mm interior diameter, and were previously preheated 5 minutes to 300 °C in
order to activate the Carbon properties for terpene absorbance. The hydrophobic properties of the
tubes were supposed to minimize sample displacements by water. Inside the cartridges, terpenes
did not suffer chemical transformations as checked with standards (a-pinene, B-pinene and
limonene). Sampling time was 5 minutes and the pump flow was 500 ml min”'. One blank every
three samples was taken to substract the effect of “sticky-mononoterpenes” inside the cuvette.
The glass tubes (with trapped VOC) were stored in a portable refrigerator at 4 °C, and taken to the
adjacent laboratory. At the laboratory, the glass tubes were stored at -30 °C before analysis, for no
longer than 15 days.

Laboratory analyses: VOCs and P and N foliar concentrations

The identification and quantification of the VOCs trapped in the cartridges was done in a Gas
Chromatography-Mass Spectrometry (GC-MS, model Hewlett Packard HP59822B, Palo Alto,
California) linked to a thermal desorption unit (model 890/891, Supelco, INC, Bellefonte,
Pennsylvania).

VOCs were extracted from the cartridges in the thermal desorption unit by heating at 250°C during
2 minutes, and using Helium as a carrier gas (flow was 1ml min'") and then introduced into the
GC-MS. We used a 30 m x 0.25 mm x 0.25 um film thickness capillary column (Supelco HP-5,
Crosslinked 5% pH Me Silicone). Full scan method was used to perform the chromatography,
taking 22 minutes time. After sample injection at 40 °C, temperature was increased at 30 °C min‘!
up to 70 °C, and thereafter at 10 °C min"" up to 150 °C, where temperature was maintained for 5
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min, and thereafter at 70 °C min"" up to 250 °C, which was maintained for another 5 min. Helium
flow was 1 ml min-".

The identification of terpenes was conducted by GC-MS and comparison with standards from Fluka
(Buchs, Switzerland), literature spectra and GCD Chemstation G1074A HP with the Wiley275.L
library. To focus on terpenes, only compounds that had, between others, mass 93 were selected.

Terpene calibration curves (n=4 different terpene concentrations) were always significant (R?>0.99)
in the relationship between signal and terpene concentration. The most abundant terpenes had
very similar sensitivity (differences were less than 5%).

P concentrations were analyzed by atomic emission spectroscopy with Inductive Coupled
Plasma (ICP-AES). Needles and leaves were crushed and dried at 60°C during 48 hours. The
ICP-AES analyses were conducted after acid digestion (HNO_:HCIO,, 2:1, v/v) in a microwave
Moulinex Optiquick Duo Y92 using open fluorinated ethylene propylene flasks (Nalge Company,
Rochester, UK). The concentrations were determined in a Polyscan Thermo Jarrel ASH Model 61
E spectrophotometer (Waltham, MA, USA).

N concentrations were analyzed by combustion followed by gas chromatography (GC) using a
NA2100 C.E. Instrument (Thermo Electron, Milano, Italy). The sample was prepared weighting
between 1 and 2 mg of previously ground leaves in a tin small capsule and adding 2 mg of
Vanadium pentoxide as an oxidant additive.

Statistical analyses

Repeated measures analyses of variance (ANOVA) were conducted for total VOC emissions as
dependent variable and the two treatments (drought and fertilization) as independent variables.
Differences between particular levels of the treatments were assessed with post-hoc Fisher tests.
Correlation analyses were conducted among all the measured variables. All statistical analyses
were conducted with the software package STATISTICA 6.0 (StatSoft Inc, Tulsa, USA).

CHANGES IN TERPENE PRODUCTION AND EMISSION IN RESPONSE TO CLIMATE CHANGE AND EUTROPHICATION
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3.1.4. Results

Temperature ranged from 26 °C at the beginning of the experiment (spring) to 35 °C at the end
(summer) and Photon Flux Density averaged about 1,300 umol m# s during the spring-summer
period of study (Fig. 7).

The drought treatment reduced soil moisture in both species pots (Table 1), in 2 halepernsis from
0.19 to 0.06 and in Q. #ex from 0.20 to 0.04. Drought decreased height and diameter in both
species: P halepensis control plants increased 30% their height and 41% their diameter, while
droughted plants only increased them 17% and 19% respectively. Q. /ex control plants increased
11% their height and 25% their diameter, while droughted plants only increased them 10% and
14% respectively.

No significant responses of leaf concentrations of nitrogen and phosphorus to fertilization
treatment were found neither in 2 halepensis nor in Q. /lex. However, drought treatment increased
N concentrations in 2 halepensis and tended to do it also in Q. /ex (Table 1).

Net photosynthetic rates did not present differences among the different levels of the fertilization
treatment but were lower in the drought treatment (Fig. 2), especially in Q. /ex (P<0.001, ANOVA).
For both species, 7 halepensis and Q. /lex, the effect of time and its interaction with drought
treatment were significant (P<0.001, ANOVA). Net photosynthetic rates were higher in (. /ex (data
not shown) than in 72 Aalepensis during the studied period of summer (Fig.2). Drought decreased
stomatal conductance 42% in 2 halepensis and 28% in Q. /lex (Fig.2). Time and interaction between
drought and time significantly (P<0.001, ANOVA) affected stomatal conductance in both species
P halepensis and Q. /ex. Stomatal conductance values for Q. /ex were also higher than those of
P halepensis (Fig.2).

Total terpene emission rates were similar in both species, 2 halepensis (31 ng g [d.m.] h™) and
Q /lex (32 ug g [d.m.] h'") (Fig.3). P halepensis total terpene emission rates decreased by 38%
in fertilization treatments while drought treatment increased them by 33% in Q. /ex (Fig.3). Post-
hoc tests for 7 halepensis showed that there were no differences between any of the different
fertilization levels in fertilized plants (Fig.3). The effect of phosphorus fertilization decreasing total
terpene emission rates in 7 halepensis plants was significant on 30 June (P<0.1), 14 July (P<0.1)
and 28 July (P<0.05) (Fig.4).

CHANGES IN TERPENE PRODUCTION AND EMISSION IN RESPONSE TO CLIMATE CHANGE AND EUTROPHICATION
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Fig.1- Ambientvariables measured when sampling along the experiment: Temperature
(°C), and Photosynthetic Photon Flux Density (umol m? s). Arrows indicate
start of drought and fertilization treatments

Table 1 - Diameter and height increase, Relative Water Content (RWC) and soil moisture (SM) (mean + SE) for 2 halepensis
and Q. /fex plants for drought and control treatments (n = 24) (0 initial, f final). Different letters indicate significant
differences between treatments (P<0.05, t-Student)

ADiameter (cm)  AHeight (cm)  RWC, (% v/v)  RWC, (% v/v)  SM, (% V/V) SM; (% Vv/v)
Pinus halepensis
Control 0.42 = 0.03a 0.30 =0.03a 091 +0.02a 098 =0.01a 0.215=+0.011a 0.134 =0.011a
Drought ~ 0.19 = 0.02b 0.177 =0.08b 0.88 =0.04a 0.93 =0.01b  0.08 = 0.008b 0.043 + 0.003b
Quercus ilex
Control 0.25 + 0.13a 0.11 £0.07a 0.81 £0.03a 0.96 =0.01la 0.202 = 0.01a 0.164 + 0.012a
Drought 0.14 = 0.10b 0.09 £0.08b 0.87 £0.03a 092 +=0.02a 0.05 = 0.005b 0.027 = 0.002b
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Fig.4 - Total Emission Rates (ug g’ [d.m.] h') for Control and Phosphorus fertilized plants. Vertical bars indicate standard error
of the mean (n=3). Arrows indiicate starting of treatments. Repeated measures ANOVA significant variables are shown
in each panel. Asterisks indicate significant differences among watering doses (* £<0.05, + P<0.1, post-hoc Fisher
test, repeated measures ANOVA)

No differences between drought and control plants were observed in £ halepensis. In Q. /lex there
were higher emission rates in two sampling dates (Fig.5): 16 June (P<0.05, ANOVA) and 28 July
(P<0.05, ANOVA).

The most emitted terpenes in both species P halepensis and Q. ilex were the monoterpenes
a-pinene, B-pinene, B-myrcene, A%-carene, 2-carene, camphene, a-phellandrene, limonene and
B-ocymene and the sesquiterpenes sabinene, caryophyllene and a-caryophyllene. The emission
rates of those compounds are shown in Tables 2 and 3 and in Fig.6. Comparing both species,
a-pinene, B-myrcene and A3-carene emission rates were higher in 2 halepensss plants whereas
B-pinene was emitted at greater emission rates by Q. /ex (Tables 2, 3, Fig. 6). The fertilization
treatment had significant (P<0.05) effects on the emission rates of a-pinene, B-pinene and
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Fig.5 - Total Emission Rates (ug g’ [d.m.] h”") for control and water stressed plants. Vertical bars indicate standard
error of the mean (n=3). Repeated measures ANOVA significant variables are shown in each panel. Arrows
indicate starting of treatments. Asterisks indicate significant differences among watering doses (* £<0.05, +
P<0.1 post-hoc Fisher test)
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Fig.7 - Relations of total terpene emission rates (ug g’ [d.m.] h”") with leaf Relative Water Content, chamber temperature
and incident PPFD (Photosynthetic Photon Flux Density) for P halepensis and Q. /lex
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B-myrcene in 2 halepensis, and on A3-carene in Q. /lex (Fig.6). P halepensis plants fertilized with
Phosphorus addition (P and N+P) emitted lower amounts of a-pinene and B-pinene than the
control plants (22% and 28% respectively). Plants fertilized with both Nitrogen and Phosphorus (N,
P and N+P) emitted lower amounts of B-myrcene (48%) than control plants (Fig.6). For individual
terpenes, the irrigation increased a-pinene B-myrcene and A3-carene emission in (. /ex plants
(Fig.6).

A positive correlation was found between total terpene emission rates and RWC for 2 halepensis
(r=0.47, P<0.05) and a negative correlation was found in Q. /ex (r=0.65, P<0.01) (Fig.7).
Figs.4 and 5 show a significant effect of the time course on the emission rates. With increasing
temperatures in the summer there were increasing emissions especially in Q. //exand also, although
less evident, in 2 halepensis. The emission rates of 2 halepensis and especially of Q. /ex showed
thus a significant relation to temperature (r=0.42, P<0.0001 and r=0.68, P<0.0001 respectively)
(Fig.7). They were also significantly related to PPFD again specially in Q. /ex (r=0.32, P<0.01 and
r=0.57, P<0.0001 respectively) (Fig.7). No significant relationship was found for terpene emission
and N and P foliar concentrations (Fig.8), at least in the range of values of this study.
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3.1.5. Discussion

P halepensis normalized values with Guenther algorithm (Guenther et al 1993, 1995) at 30 °C
temperature and 1,000 umol m? s PPFD were on avarage 43.90 = 7.41 ug g"' [d.m.] h™" for
non-fertilized and well irrigated plants, more than reported in most studies for P halepensis.
Kesselmeyer and Staud (1999) found emissions below 1.0 ug g [d.m.] h'', Owen et al (1997)
found emissions between 5 and 10 ug g' [d.m.] h', Simon et al (2005) found mean emission
rates of 14.76 ug g' [d.m.] h'' and Pefuelas and Llusia (1999b) found emissions of 20 ug g’
[d.m.] h'. Despite the latter emissions were measured in an aerea geographically close to our
emissions, ours were higher. These could be due to the different environmental conditions since
emissions depend on temperature, light and physiological state of the plants among many other
factors (Street et al 1997, Pefuelas and Llusia 2001). Needle damage could have been involved in
P halepensis measurements, which are extremely delicate, however we took precautions to avoid
it as much as possible.

Q. ilex normalized values with Guenther algorithm (Guenther et al 1993, 1995) at 30 °C and 1,000
umol m2s'were onaverage 12.82 + 2.37 ug g [d.m.] h™ for non-fertilized and well irrigated plants.
These rates are within the range of emission factors previously reported for Q. ilex. Kesselmeyer
and Staud (1999) found emissions between 6 and 58 ug g [d.m.] h', Owen et al (1997) reported
emissions >10 pg g' [d.m.] h™" and Llusia and Penuelas (2000) found emissions of 11 ug g
[d.m.] h". The closest results are those of Pefiuelas and Llusia (1999a), probably because of the
geographical proximity of the experiment sites also in Catalonia.

The results showed larger emission rates of most volatile terpenes such as a-pinene and B-pinene
because measurements were done in summer. This agrees with Llusia and Pefuelas (2000). The
most volatile terpenes are more responsive to temperature than the least volatile terpenes that are
more responsive to PPFD and photosyntetic rates (Pefiuelas and Llusia 1999a).

The main terpenes emitted by P halepensis were a-pinene, B-pinene, B-myrcene and A3-carene.
These terpenes emissions have also been reported in previous studies (Llusia and Penfuelas
1999, 2000). However, other studies of P halepensis emissions have found high percentages of
other compounds such as limonene (Llusia and Peruelas 2000), B—trans-ocimene and linalool
(Simon et al 2005). The terpenes found in this study have also been reported in emissions of other
Mediterranean pines like Pinus pinea L. (Kesselmeier et al 1997, Owen et al 1997, Sabillon and
Cremades 2001) and Pinus sylvestris L. (Rinne et al 1999, Komenda et al 2003).
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The main terpenes emitted by Q. ilex were a-pinene, B-pinene, B-myrcene and A3-carene. These
terpenes emissions have also been reported in previous studies such as Kesselmeier et al (1996),
Loreto et al(1996 a, b), BEMA (1997) and Llusia and Pefuelas (1998, 1999, 2000). However, other
studies have found other compounds in Q. ilex emissions such as limonene, cineole, ocimene and
linalool (Street et al 1997).

It has been reported that under severe drought conditions terpene-storing species decrease their
terpene emissions (Llusia and Penuelas 2000). However, the drought treatment had no significant
global effect on P halepensis emission rates (Fig.3), probably because the drought treatment
was not severe enough for this species well adapted to summer drought. The drought treatment
resulted nevertheless in a range of relative water contents that presented a positive relationship
with emission rates (Fig.7). On the contrary, the drought treatment increased Q. ilex terpene
emission rates. Terpene emission rates were negatively correlated with relative water contents in
Q. ilex (Fig.7). This result coincides with former studies (Loreto et al 1998, Penuelas and Llusia
1999b). This different behaviour of the two species may be linked to P halepensis being a storing
species whose emissions are facilitated by higher humidity (Llusia and PefAuelas 1999) and being
Q. ilex a non-storing species that increases production and concentration with drought (Llusia and
Penuelas 1998). The production of terpenes has been linked to an increased water stress tolerance
in some species (Pefuelas and Llusia 2001). Stress protection of terpenes may be attributed
to their capacity to increase membrane fluidity and stability due to their lipophility and to their
antioxidant capacity similarly to what occurs with other isoprenoids (Pefuelas and Llusia 2002).

Terpene precursors contain high-energy phosphate bonds and require ATP and NADPH for their
synthesis. Hence, P can be a limiting factor in terpenoid biosynthesis. Increased application of
fertilizers has been shown to affect oil yield and composition in different plant species (Tiwari and
Banafar 1995, Dethier et al 1997). However, our fertilization treatments reduced emissions in P
halepensis (Fig.3), which fits better with the carbon/nutrient balance hypotheses stating that there
can be a decrease of carbon-based secondary compounds such as terpenoids as a consequence
of greater allocation of carbon to plant growth induced by higher nutrient availability (Pefiuelas and
Estiarte 1998). According with the carbon/nutrient balance hypotheses (CNBH) (Bryant et al 1983)
and the growth differentiation balance hypothesis (GDBH) (Loomis and Croteau 1973, Lorio 1986)
when a resource, such as Nitrogen or Phosphorus, is abundant, plants will allocate less carbon
toward carbon based secondary compounds and more toward growth. On the contrary, when
such a resource is scarce, a plant will allocate proportionately more of an abundant resource in
carbon based secondary compounds (Lerdau et al 1995, Periuelas and Estiarte 1998). Moreover,
because fertilization generally increases tree growth, resin duct density is lower in the N-fertilized
trees (Kyto et al 1999). For that reason, non-fertilized plants (control plants) would use more
resources to produce and emit carbon-based secondary metabolites, which fit well the results of
this study with lower emissions in fertilized plants in P halepensis. This result is in accordance with
Holopainen et al (1995), who reported that young pine seedlings growing at high availability of
Nitrogen have longer needles and reduced chemical defenses. This result also agrees with Waring
et al (1985) and with Margolis and Waring (1986) who found that nutrient deficient environments
produced a greater amount of structural carbohydrates, which are directly linked with terpene
production (Charlwood and Banthorpe 1978, Croteau 1984). However, the CNB and the GDB
hypotheses are not fully in accordance with the similar growth of fertilized and non fertilized plants
in our study. Since all the effects of the fertilization treatment were quite weak, future research is
clearly needed where wider ranges of fertilization and nutrient contents are tested to disentangle
fertilization effects on terpene emissions.

Emission rates also increased in both species with the increasing temperatures of summer: time
was a significant variable (Figs.4, 5) and there was a significant relationship with leaf temperature
(Fig.7). It is well known that terpene emissions depend on temperature (Guenther et al 1995,
Guenther 1997, Kesselmeier and Staudt 1999, Peruelas and Llusia2001, Llusia et a/2005). However,
the relationship was stronger in Q. /ex than in 2 halepensis, probably because P. halepensis data
had more variation than Q. /ex data. Although strong precaution taken in measurements seems
to preclude this possibility, needle damage might have been involved in the variability of the high
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emission rates found for 2 Aalepens/s. But in any case, emissions from the non-storing species
Q.ilex were more influenced by changes in RWC, temperature and light than those from the storing
species £ halepensis.

The results of this study show that terpene emission rates may significantly change with important
biological and environmental consequences (Pefuelas and Llusia 2003) if climate warming and
drought occur as predicted by IPCC and ecophysiological models such as GOTILWA (IPCC 2007,
Sabaté et al 2002, Pefuelas et al 2005), and if global fertilization (Vitosuek et al 1997) continues
as expected in the next decades. However, the species-specific terpene storing characteristics
and the complex responses found here, warrant much more research on this issue to arrive to
reliable predictions.
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Chapter 3.2. Instantaneous and
historical temperature effects
on Ol-pinene emissions in Pinus
halepensis and Quercus ilex

Efectes de la temperatura
instantania i historica en les
emissions d’a-piné en Pinus
halepensis i Quercus ilex

An edited version of this chapter is published in Journal of Environmental Biology 31 (2010)
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3.2.1. Abstract

We compared the role of instantaneous temperature and temperature history in the determination
of a-pinene emissions in Mediterranean conifer Pinus halepensis that stores monoterpenes in
resin ducts, and in Mediterranean broad-leaved evergreen Quercus ilex that lacks such specialized
storage structures. In both species, a-pinene emission rates (E) exhibited a significant exponential
correlation with leaf temperature, and the rates of photosynthetic electron transport (J, . .,) Started
to decrease after an optimum at approximately 35 °C. However, there was a dependence of £ on
mean temperature of previous days than on mean temperature of current day for P halepensis but
not for Q. ilex. J.., ., Showed a maximum relationship to mean temperature of previous 3 and 5
days for P halepensis and Q. ilex respectively, compared with the current day mean temperature.
We conclude that although the best correlation of emission rates were found for instantaneous
foliar temperatures, the effect of accumulated previous temperature conditions should also be

considered in models of monoterpene emission, especially for terpene storing species.

Key Words: acclimation, emission model, Quercus ilex, Pinus halepensis, previous climate effects.

Resum

Varem comparar els rols de la temperatura instantania i de la temperatura historica en la
determinacié de les emissions d’ a-piné a la conifera mediterrania Pinus halepensis que
emmagatzema monoterpens als conductes resinifers, i a la caducifolia Quercus ilex, que no
té aquestes estructures d’emmagatzematge especialitzades. En ambdues especies, la tassa
d’emissié d’o-piné (E) va mostrar una correlacié exponencial significativa amb la temperatura
de la fulla, i la tassa del transport fotosintetic d’electrons (/. ,,) decreixia després d’un optim
aproximadament a 35 °C. No obstant, E va mostrar una dependencia amb la temperatura mitjana
dels dies previs comparat amb la del mateix dia per a P halepensis, pero no per Q. ilex. ], .,
també va mostrar una correlacié amb la temperatura mitjana dels 3 i 5 dies previs per a P
halepensisi Q. ilex respectivament més alta que no amb la mitjana del dia de mostreig. Concloem
que tot i que les millors correlacions de la tassa d’emissié de terpens es van trobar per a les
temperatures foliars instantanies, ’efecte de la temperatura acumulada en els dies previs també
s’hauria de considerar als models d’emissions de monoterpens, especialment per a les espécies
acumuladores de terpens.

Paraules clau: aclimatacio, model d’emissions, Quercus ilex, Pinus halepensis, efectes del clima
previ.
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3.2.2. Introduction

Biogenic Volatile Organic Compounds (BVOCs) are produced and emitted by many plant species
and have a series of relevant physiological and ecological functions (Pefiuelas and Llusia, 2001,
2004). Emission of these compounds has also major consequences for ambient air quality. In
particular, these plant-generated compounds can react rapidly with anthropogenic and biogenic
trace components of atmosphere (e.g. OH radical, ozone and NO3 radical) and contribute to
tropospheric ozone and photochemical smog formation, thereby significantly curbing the quality
of ambient air (Fehsenfeld et al 1992, Chameides et al 1988, Atkinson 2000). In addition, BVOCs
might play an important role in altering the climate at regional and global scales (Penuelas and
Llusia 2003, Kulmala et al 2004, Tunved et al 2006). Because of potentially important role of BVOC
in tropospheric air quality and climate, there is continuous interest in developing BVOC emission
models to quantify plant-generated volatile flux over large areas (Guenther et al 1993, 1995, 2006,
Martin et al 2000, Niinemets et al 2002, Arneth et al 2007).

Some monoterpene-emitting species like needle-leaved conifers all across the world and many
odorous species in Mediterranean macchia have specialized tissues such as resin ducts or
glandular trichomes for storage of produced volatile isoprenoids. On the contrary, some other
strong monoterpene-emitting species like Mediterranean evergreen oaks such as Quercus ilex L.
do not have specific storage tissues for monoterpenes (Loreto et al 1996a, Llusia and Pefuelas
2000). These anatomical differences are important as the terpenoid emission from specialized
storage is expected to depend only on the diffusion from the storage pools, while in the species
lacking the storage pools, the emission is mainly driven by the immediate rate of synthesis (Fall
1999, Kesselmeier and Staudt 1999, Niinemets et al 2004).

The rate of terpene emission (E) strongly depends on environmental conditions, in particular,
on instantaneous leaf temperature (Tingey et al 1980, Kesselmeier and Staudt 1999, Atkinson
2000, Penuelas and Llusia, 2001, 2003). Typically, the emission rates depend exponentially on
temperature, and such an exponential dependence of emissions on instantaneous temperature has
been implemented in all terpene emission models. Currently, plant terpene emissions are mostly
predicted using Guenther et al. algorithm (G93 model (1993)). For species with specialized storage
structures, this model simulates the emission rates using a species-specific basal emission rate
(E,) and scaling the values of E, to different temperatures according to an exponential relationship
(the temperature correction factor). For monoterpene-emitting species lacking storage structures,
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isoprene emission algorithm (Guenther et al 1993) that uses additionally light as an emission driver
has been implemented (Bertin et al 1997, Ciccioli et al 1997).

Recently, complementary modeling approaches have been developed that use plant physiological
properties to predict emissions (Niinemets et al 1999, Martin et al 2000, Zimmer et al 2000). For
instance, the rate of monoterpene emission in species lacking specialized storage structures has
been predicted on the basis of photosynthetic electron transport rate (J,,. ,) ahd monoterpene
synthase activity (Niinemets et al 2002). Monoterpene synthase activity provided an estimate
of basal emissions analogous to EO (fraction of electrons in monoterpene synthesis on the
model), while J.,,, that depends on instantaneous environmental variables, temperature and
photosynthetic photon flux density, was used to scale the basal emissions to different temperature
and light conditions (Niinemets et al 2002). In other physiological models, the emission were also
linked to photosynthetic carbon metabolism in various ways (Niinemets et al 1999, Martin et al
2000, Zimmer et al 2000, Back et al 2005). It has been stated that such modeling approaches
allow consideration of stress effects on volatile isoprenoid emissions (Grote and Niinemets 2008).
For example, stress-dependent reductions in J_,, ., are suggested to explain the rapid decline in
monoterpene emissions in stressed plants (Niinemets et al 2002).

E, values were initially supposed to be constant and represent the inherent plant capacity for
production of a particular volatile compound (Winer et al 1992, Seufert et al 1995, Karlik and Winer
2001). However, it has become increasingly apparent that the basal emission rates can change
over time (Goldstein et al 1998, Llusia and Pefuelas 2000, Gray et al 2003, 2006, Kuhn et al 2004),
but the factors controlling such temporal modifications are still poorly understood. Furthermore,
the available emission algorithms have mainly focused on the influence of instantaneous leaf
temperature on the emission rates and J.,.,. However, many plant physiological processes
are known to strongly acclimate to previous leaf temperature environment (Yamori et al 2005,
HUve et al 2006, Bauerle et al 2007), and temperature history likely alters terpene emission rates
as well. Already Schurmann (1993) suggested that in some plants, the monoterpene emission
may involve distinct long-term kinetic mechanisms. It has been further suggested that isoprene
basal emission rate is altered by leaf thermal history (Sharkey et al 1999, Fuentes and Wang 1999,
Geron et al 2000, Lehning et al 2001, Petron et al 2001), but the way plant emissions adjust to leaf
temperature environment is not fully understood. While it has been suggested that leaves respond
to average temperature of previous days (Sharkey et al 1999, Fuentes and Wang 1999, Geron et
al 2000, Lehning et al 2001, Petron et al 2001), it is also not clear over what time period ambient
leaf temperatures alter leaf emissions. Given that the internal pool sizes are much larger in species
with specialized storage structures, it is expected that the emissions respond to longer historical
temperature signal in species with specialized storage structures than in species lacking such
storage structures in the foliage.

The aim of the present study was to evaluate the relative importance of instantaneous temperature
and temperature history in determining a-pinene emissions in monoterpene-storing Mediterranean
evergreen conifer Pinus halepensis Mill. and in Mediterranean evergreen broad-leaved species
Quercus ilex L. that lacks specialized monoterpene storage tissues. Emissions were monitored
during the entire season simultaneously with leaf environmental conditions and the correlations
of E and J.,,,,, With instantaneous temperatures and with average temperature over different
number of days prior to measurements were determined to assess the strength of instantaneous

and historical temperature signals.
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3.2.3. Material and Methods

Plant material

Full experimental details and the protocol for a-pinene emission measurements are provided in
Blanch et al (2007). In short: the experiment was conducted in the campus of the Universitat
Autonoma of Barcelona, Catalonia, Spain (41°29' N, 2°6’ E, elevation 147 m) throughout the
summer of 2004. Two-year-old potted (2 | pots) seedlings of Pinus halepensis (seedling source:
Apromi breeding ground, Juneda, Lleida, Spain) and Quercus ilex (seedling source: Forestal
Catalana, Breda, Girona, Spain) were used for the experiments. The plants were grown outside
under typical Mediterranean conditions in an open plastic tunnel. The plants were watered every
two days up to soil field capacity, giving an equivalent of 1 | of water per week and pot.

a-Pinene emission rates in Pinus halepensis and Quercus ilex were measured every 6 days over
the growing season. Instantaneous leaf temperatures and incident quantum flux densities were
measured during the emission measurements, while mean daily temperatures were obtained from
a climatic station in the locality of the study. The a-pinene emission measurements were conducted
at the leaf-level: one leaf of Q. ilex and one shoot of P halepensis were clamped in the cuvette,
the emission measurements were conducted using an ADC gas exchange system: we divided the
output flow tube using a T-system: a part of the flow went into a new tube, in which we placed a
three-bed carbon trap tube, and a pump at the end, so, the output air from the cuvette was forced
to pass through the carbon tube at a controlled flow (with the pump). In order to substract the
outgoing monoterpenes from the ingoing air stream and in order to consider the carry-over effect
of the cuvette we made one blank sample every 3 samples: we sampled one cartridge with the
cuvette closed without clamping any shoot or leaf. Moreover, we waited 10 minutes between each
sample with the cuvette opened in order to get the system ventilated.

Estimation of photosynthetic electron transport rate (J,,. »,)

The photosynthetic electron transport rate (J,,, ,,» 4mol m= s™') needed to achieve a rate of net
carbon assimilation A (umol m= s') was calculated as Brooks and Farquhar (1985, equation 1),

where R, is rate of mitochondrial respiration continuing in the light (umol m s™), I'* (umol mol
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') is the hypothetical CO* compensation point in the absence of R, (Laisk 1977), and Cis the
intercellular CO, concentration (umol mol).

R,is estimated from the proportionality between A and R, observed at 25 °C (R,=0.15 A). I'* at

_(A+R,)-(4-C,+8I")
C0,+0, C r

(1)

*

I =T, +0.0188(T - 25) +0.0036: (T — 25)* (2)

o

=N

3)

different leaf temperatures was estimated according to Lambers et al (1998), using equation 2,
where I'* . is constant (3.7 Pa).

Measurement of average temperature of previous days

Average temperature of days preceding the measurements Tn (n = 1-15) was calculated using
equation 3, where n is the number of days preceding the measurements, and T, is the average
daily air temperature corresponding to day d.

Statistical analyses

In both species, correlations between E and J,, . , and averages of temperature were calculated
with different number of days prior to measurements, starting with the mean temperature of
the day of sampling (7,) and ending with the mean temperature of the 15 days preceding the

measurements (T,,).

The effects of leaf temperature and mean temperature of previous days (7, Eg.4) on the
instantaneous a-pinene emission rates (E) were analyzed by exponential regressions. The effects
of leaf temperature and mean temperature of previous days (7 , Eq.4) on the rate of photosynthetic
electron transport (J..,,o,) Were analyzed by quadratic regressions (adjust to a 2 grade
polynomial).

All the statistical analyses were performed with R 2.7.2 for Windows (R Foundation for Statistical
Computing, Vienna, Austria).
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3.2.4. Results and Discussion

Emission rates and relationship

The emission rates of a-pinene in P halepensis range from 1.3 to 19.8 ug g h™ and those of Q.
ilex between 0.11 and 14.7 ug g' h''. E exhibited a significant positive exponential correlation
with leaf temperature during the measurements in both species, P halepensis (r=0.64, P<0.001)
and Q. ilex (r=0.57, P<0.001) (Fig.1). Jy,. o, Showed a significant quadratic correlation with leaf

temperature in P halepensis (r=0.59, P<0.01) but not in Q. ilex (Fig. 2).

The storing species P halepensis showed an increase of the correlation coefficient of a-pinene
emission rates with mean temperature of previous days when considering increasing number of
days, reaching the highest correlation coefficient with the mean temperature of the previous 13
days (T..,, Fig.3).

13’

The non-storing species Q. ilex did not show any improvement of the correlation coefficient
with previous days for E (Fig.3): on the contrary, the best correlation was found with the mean
temperature of the day of sampling (7., Fig.3, r=0.27, P<0.1).

The correlation coefficient of J_,, ., with mean temperature of previous days increased from the
first to the following previous days reaching a maximum at the mean temperature of the three
previous days for P halepensis (r=0.47, P<0.05) and at the mean temperature of the five previous

days for Q. ilex (Fig.4, r=0.39, P<0.1).

Previous studies have generally reported lower total monoterpene emission rates for P halepensis:
Alessio et al (2004) found emissions of a-pinene of 0.4 ug g [d.m.] h"', Ormeno et al (2007) found
emissions between 0.5 and 1.2 ug g' h', and PefAuelas and Llusia (1999) found emissions of 1.5
ug g’ [d.m.] h'. However, our data was collected in a Mediterranean ecosystem during the high
temperatures of the Mediterranean summer in a range between 30 and 44 °C. High precaution
was taken while conducting the measurements to avoid clamping damage of the needles.

Regarding the a-pinene emission rates of Q. ilex, our data (0.11 to 14.7 ug g h™') agrees with
previous studies. Alessio et al (2004) found emissions of 1.7 ug g [d.m.] h', Street et al (1997)
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Fig.1 - Relationships between a-pinene emission rates (£) and leaf temperature in evergreen conifer P halepensis
and evergreen broad-leaved tree Q. /fex. Each datapoint corresponds to a separate leaf. Data were fitted by
exponential regressions

found emissions between 2.5and 3 ug g™ [d.m.] h™', Owen et al (1997) reported a-pinene emissions
rates between 0.5and 20 ug g [d.m.] h""and Llusia and Pefuelas (2000) found maximum o-pinene
emissions of 5 ug g [d.m.] h™.

Both species, P halepensis and Q. ilex showed high correlation coefficients (r) of a-pinene emission
rates (E) with instant leaf temperature (0.64 and 0.59 respectively, Fig.1), as it was expected. It has
been widely reported that monoterpene emission rates depend exponentially on instantaneous
temperatures (Tingey et al 1980, Kesselmeier and Staudt 1999, Atkinson 2000, Pefiuelas and
Llusia 2003).

The Arrenhius-type curve describing the dependence of J.,, ,

on instant temperatures in both
species (Fig.2) indicates that the measurements were done around the maximum J,, ., of the
plant, which supports the high values of a-pinene emissions. Because of that, there were also
some measurements that were conducted above the maximum, and therefore those plants could

have suffered photoinhibition due to the high temperatures.

Terpene emissions in a terpene-storing species such as P halepensis are expected to rely mainly
on the extensive storage pools, and are thus, believed to be less sensitive to rapid modifications
in the rate of terpene synthesis, for instance, after changes in light (Tingey et al 1991, Guenther
et al 1993). The increase of the correlation coefficients of E from T, to T,, (Fig.3) indicates that the
pools of monoterpenes depend more on the historical temperature of previous days than of the
current day.

The emissions of a-pinene in non-storing species such as Q. ilex are on the contrary directly
dependent on the rate of terpene synthesis (Fall 1999), that can be altered by temperature, light
and water availability (Staudt and Seufert 1995, Kesselmeier et al 1996, Loreto et al 1996b).
Consequently, the emissions of non-storing species are more dependent on the temperature and
light conditions in the day of sampling than on the mean temperature of previous days (Fig.3).
These weaker correlation of E with historical temperature may reflect the importance of the initial
rapid change in the emission potentials as outlined by Hanson and Sharkey (2001).

In both species P halepensis and Q. ilex there was evidence of previous days adjustment in

Joossop that was completed after three and five days respectively (Fig.3). Given that J.,.,, may
partly control terpene emission rate through NADPH and ATP availability for terpene synthesis

(Niinemets et al 2002), such long-term changes may reflect coupled adjustment in J,., ., for
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Fig.2 - Relationships between the rate of photosynthetic electron transport (/.. .,) and leaf temperature in evergreen
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Data were fitted by quadratic regressions. J.,. », values are expressed per unit projected leaf area in both
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Fig.3 - Correlation coefficient (1) of a-pinene emission rate (£) with the historical average temperature (7.) while varying
the number of days for calculation in P halepensis and Q. /lex. The number of days ranged from 1 (mean
temperature of the day of sampling) until 15 (mean temperature of the preceding 15 days). The maximum values

correspond to 7., (r=0.29, £<0.1) for P halepensis and 7, (r=0.27, P<0.1) for Q. ilex.
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instance through anatomical adjustments such as modifications in chloroplast to total leaf surface
area ratio (Oguchi et al 2003, 2005) or modifications in nitrogen investment in the components of
photosynthetic machinery and in enzymes controlling terpene synthesis (e.g.Hikosaka et al 1999).
It has been observed that acclimation in the heat-stability of photosynthetic electron transport

takes between 5-7 days in deciduous trees (Huve et al 2006).

The best correlations of emission rates were found for instantaneous foliar temperatures, partly
explaining the success of simple empirical models based on temperature response such as the
Guenther model (Guenther et al 1993), but overall, these data also underscore the importance of
previous leaf temperature environment in determining monoterpene emission rate, in particular
in species with extensive foliar monoterpene reservoirs. There have been attempts to include
such adaptation responses in the volatile isoprenoid emission models (Guenther et al 2000), but
species-specific variation in the previous environmental signal and environmental signals of various
time length have, to our knowledge, not been considered. The effect of accumulated previous
day conditions should thus be considered and implemented in modeling of volatile isoprenoid

emissions.
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Fig.4 - Correlation coefficient (1) of the rate of photosynthetic electron transport (J,,. .,) with the historical average
temperature (7 ) while varying the number of days for calculation in 2 halepensis and Q. /lex. The number of days
ranged from 1 (mean temperature of the day of sampling) until 15 (mean temperature of the preceding 15 days).
The maximum values correspond to 7, (r=0.47, P<0.05) for £ halepensis and 7, (r=0.39, £<0.1) for Q. ilex
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4.1.1. Abstract

We studied the effects of phosphorus fertilization on foliar terpene concentrations and on foliar
volatile terpene emission rates in six half-sib families of Pinus pinaster Ait. seedlings. Half of them
appeared to be resistant to the attack of the pine weevil Hylobius abietis L., a generalist phloem
feeder, and the other half appeared to be susceptible to this insect. We hypothesized that P stress
could modify the terpene concentration in the needles and thus derive to altered terpene emission
patterns relevant to plant-insect signaling. The total concentrations and emission rates ranged
between 5,732 and 13,995 ug g' [d.m.] and between 2 and 22 ug g [d.m.] h™" respectively. The
storage and emission were dominated by the isomers a. and B-pinene (77.2 % and 84.2 % of the
total terpene amount respectively). P stress caused in both resistant and susceptible families an
increase of 31% of the foliar terpene concentrations with an associated 5-fold decrease of the
terpene emission rates in sensible seedling families. Those higher contents would indicate an
allocation of the “excess of carbon” generated due to growth being limited because of P scarcity,
to terpene emissions. The higher increase of terpene emission rates in fertilized plants of sensible
families could be related to plant-animal communication and could explain the pattern of weevil
damage observed in the field.

Keywords: Maritime pine, nutrient stress, plant resistance to insects, herbivory, plant-insect
interactions, large pine weevil, Galicia.

Resum

Varem estudiar els efectes de la fertilitzacié amb fosfor sobre les concentracions de terpens en
fulla i sobre la tassa d’emissions de volatils en fulla en sis families de plancons de Pinus pinaster
Ait. mitjos-germans. La meitat d’elles eren resistents a I’atac del corc del pi Hylobius abietis L.,
un generalista consumidor de floema, i I’altra meitat eren susceptibles a aquest insecte. Varem
hipotetitzar que 'estreés de P podria modificar a la concentracio de terpens de les fulles i per tant,
derivar en una alteraci6 del patré d’emissions que influeix en la comunicacié planta-insecte. Les
concentracions totals i la tassa d’emissions oscillaren entre 5,732 1 13,995 g ¢! [d.m.] i entre
2122 pg g' [dm.] h' respectivament. L’estres de P va provocar un increment d’un 31% de les
concentracions de terpens foliars en ambdues families, amb un decrement associat de 5 cops en
la tassa d’emissi6 de terpens. Aquests majors continguts indicarien una reassignacio del “excés de
carboni” generat a causa de la limitaci6 del creixement que causa la falta de P, cap a les emissions
de terpens. Les families sensibles van mostrar un increment més gran de la tassa d’emissions, fet
que podria estar relacionat amb la comunicacié planta-animal i aixo podria explicar el patrd del
dany observat a camp.

Paraules clau: Pi maritim, estrés de nutrients, resisténcia de la planta a insectes, herbivoria,
interaccions planta-insecte, corc del pi, Galicia.
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4.1.2. Introduction

Phosphorus has many roles in plant growth and metabolism. One of the principal functions of P is
energy transfer through the action of adenosine triphosphate (ATP). ATP and its derivatives, ADP
and AMP are involved in different aspects of energy transfer in all plant growing tissues. Apart from
this global function, P is also necessary for assembling nucleic acids (DNA and RNA), proteins,
enzymes and carbohydrates. It plays an essential role in photosynthesis and is involved in the
formation of sugars and starch. The various roles of P denote its relevance in many vital processes
such as the formation of seeds or the development of roots. It also speeds plant maturity and
helps the plant resist stresses (Urbano 1999).

Fertilization of young pine seedlings and the subsequent boosting of primary growth rates could,
however, could lead to increased susceptibility to pests and diseases due to altered allocation
patterns of energy to growth and defence, improved tissue quality for the insects, or both. In this
sense, in a field study, Zas et al (2006a, 2008) found that traditional silvicultural practices such as
P fertilization could lead to greater susceptibility to the pine weevil Hylobius abietis L. in seedlings
of Pinus pinaster Ait. and Pinus radiata D. Don, which may be at least partially explained by a
reduction in resistance (Moreira et al 2008). The pine weevil H. abietis is a generalist phloem-feeder
that constitute a major pest in conifer plantations all around Europe, where causes important
regeneration problems through feeding on the bark of the young pine seedlings (Leather et al
1999, Conord et al 2006). The susceptibility of P pinaster to this insect has been found to be under
strong genetic control, with some families were consistently more damaged than others (Zas et al
2005).

Greater nutrient availability could directly increase the nutritional value of the plant tissues and
thus increase the preference by the insects (Ayres and Lombardero 2000; Moreira et al 2009).
Phosphorus fertilization on P stressed pine seedlings may also diminish the allocation of energy to
constitutive and induced defences by favouring the growth rates. Several models of plant defence
suggest altered patterns of allocation to chemical defences in environments with increased nutrient
availability. The Carbon nutrient balance (Bryant et al 1983) stated that when growth is limited
by nutrients, plants allocate the “excess carbon” to the production of secondary metabolites.
The Growth differentiation balance (Lorio 1986) recognizes that all secondary metabolites have
an ontogenetically determined phenology and their synthesis is emphasized during periods of
plant differentiation. Growth dominates during favourable conditions, and differentiation is at a
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maximum only when conditions are suboptimal for growth. The Optimal allocation model (Tuomi et
al 1991) predicts decreasing investment in defence with increasing resource availability, because
the reduced costs of tissue production could compensate the higher risks of herbivore predation.
Greater P availability could also lead to a higher appearance of the fertilized plants to the insect.
Changes in leaf-contained organic compounds due to fertilization can be translated in changes
in the emitted carbon based secondary volatile compounds, as stated by “excess carbon”
hypotheses (Pefiuelas and Estiarte 1998), thus altering plant-animal interactions,.

Maritime pine (P pinaster) has been widely chosen for forestation in Galicia (NW Spain) since the
XVl century. Despite being partly replaced in the last decades by species with higher productions
like P radiata and Eucalyptus globulus, P pinaster is still the most important forest tree species in
Galicia. According to the last forest survey (DGCN 2000), Galicia contains more than 500,000 ha
of pure and mixed P pinaster stands, which represents around 44% of the total Galician wooded
area. The intensive silviculture applied to P pinaster stands in Galicia entails short rotations (15 to
45 years), in which there is an important extraction of nutrients from the system (Merino et al 2003).

Maritime pine plantations in Galicia commonly suffer important nutrient deficiencies (Martins et al
2009). These plantations are usually located on acid and sandy soils with low amounts of available
nutrients, especially P Moreover, the loss of nutrients through harvesting can lead to decreased
reserves of soil available nutrients (Dambrine et a/2000, Merino et al2003). Under these conditions,
P appears as one of the most limiting factors for growth in P pinaster stands in NW Spain (Martins
et al 2009).

The main objective of the present study is to determine the effect of P availability on the content and
emission rate of leaf volatile terpenes. We hypothesized that P availability could modify the terpene
concentration in the needles and the photosynthetic activity of P pinaster thus leading to altered
terpene emission patterns relevant to plant-insect signalling. To this end and with the additional
aims of studying the effect of genetic variation and the relationships with the resistance to pests,
we analyzed the effect of P fertilization on terpene concentrations and on terpene emission rates in
half-sib families of P pinaster seedlings cultivated under controlled conditions, previously found to
be resistant or susceptible to the large pine weevil in field conditions in Galicia forests.
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4.1.3. Material and Methods

Experimental design and plant material

We performed a two factorial experiment with different pine genetic entries and P fertilization
treatments under controlled conditions. The experimental layout was a randomized split-plot design
replicated in three blocks, with four phosphorus fertilization treatments acting as the whole factor
and six genetic entries as the split factor. In total, we sampled 72 pine seedlings, corresponding to
3 blocks (x 4 phosphorus fertilization treatments X 6 genetic entries nested into two susceptibility
groups, ‘susceptible’ and ‘resistant’ families.

P pinaster families belonged to six half-sibs families (open-pollinated, known mother trees), all
native from the coastal region of Galicia (NW Spain).Three families were previously recognized
to be susceptible to the attack by the pine weevil (H. abietis) in an extensive field study, while
the other three families appeared to be more resistant to this plague (Zas et al 2005). Damage
(debarked area by the pine weevil) to the susceptible families in that field study was more than
two-fold greater than that suffered by the resistant families (Zas et al 2005).

Plant material, greenhouse conditions and experimental fertilization

On 7 February 2006, P pinaster seeds were individually sown in 2 | pots containing perlite in a glass
greenhouse (36.5 m long and 15 m wide) with controlled temperature (10-22 °C at night and day,
respectively) and daily water irrigation.

On 15 March 2006, we started to apply the fertilization treatments by sub-irrigation (every two days)
with four different fertilization treatments. The complete balanced fertilizer (“P20") was prepared
according optimum requirements for maritime pine tree growth, containing 100 ppm of N, 20 ppm
of P 40 ppm of K, 10 ppm of Ca, 20 ppm of Mg, and the necessary amounts of micronutrients and
trace elements. The other fertilizer solutions (“P70”, “P5” and “P2") differed only in the concentration
of P which was reduced to 10, 5 and 2 ppm, respectively, in order to promote growth restrictions
through increasing P limitations. The pH values were adjusted to 6.5 in all the solutions. Fertilizer
solutions were replaced every two weeks. The experiment was carried out in the facilities of CIF
Lourizan (Pontevedra, NW Spain, UTM coordinates 29T 42°24’33"" N 8°39'47"'W).
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Photosynthetic activity and terpene emission collection

On 24-27 July 2006, measurements of net photosynthetic rates, stomatal conductance and terpene
emissions were conducted. These measurements were done at controlled standard conditions
(30°C and 1000 umol m*® h' PAR). CO, exchange was measured using a non-dispersive infra-
red gas analyzer (IRGA), model ADC-LCPro+ (ADC Inc. Hoddesdon, Hertfordshire, England)
connected to a conifer leaf chamber (ADC Inc. Hoddesdon, Hertfordshire, England). CO, uptake
(A) and stomatal conductance (g,) were measured in lateral shoots on P pinaster. A and gs values
were expressed on a projected leaf area basis measured with Li-Cor 3100 Area Meter (Li-Cor Inc.,
Nebraska, USA).

In order to sample terpene emissions, a T-system was installed outside the cuvette of the IRGA-
porometer. We used a calibrated air sampling pump at constant flow (Qmax, Supelco, Bellefonte,
Pennsylvania) to trap isoprenoids passing part of the air through cartridges (8 cm long and 0.3 cm
internal diameter) filled with terpene adsorbents Carbopack B, Carboxen 1003, and Carbopack
Y (Supelco, Bellefonte, Pennsylvania) separated by plugs of quartz wool. The sampling time was
5 min, and the flow varied between 470 and 500 ml min"' depending on the tubes’ adsorbent
and quartz wool packing. The hydrophobic properties of the tubes were supposed to minimize
sample displacement by water. In these tubes, terpenes did not suffer chemical transformations
as checked with standards (a-pinene, B-pinene, camphene, myrcene, p-cymene, limonene,
sabinene, camphor, and dodecane). Prior to use, these tubes were conditioned for 10 min at 350
°C with a stream of purified helium. The trapping and desorption efficiency of liquid and volatilized
standards such as a-pinene, B-pinene or limonene was practically 100%. In order to eliminate the
problem of memory effect of previous samples, blanks of 5-min air sampling without plants were
carried out immediately before and after each measurement. The glass tubes were stored in a
portable fridge at 4 °C and taken to the laboratory where they were stored at -28 °C until analysis
(within 24-48 h). There were no observable changes in terpene concentrations after storage of the
tubes as checked by analyzing replicate samples immediately and after 48-h storage. Emission
rate calculations were made on mass balance basis and by subtracting the control values (without
plants) from the values of samples with plants.

Seedling harvesting and nutrient analyses

On 1 August 2006, we measured height and basal diameter (mean of two measures). A composite
sample of primary needles from different parts of each tree was collected, deep frozen and
preserved at -80 °C into close-tight glass vials for the analysis of foliar terpene content. Then pine
were destructively sampled, and roots, stems and mature and young needles from each seedling
were carefully separated, dried during 72 h at 65 °C and weighed to the nearest 0.001 g. The
needle samples were finely grounded, labelled and preserved for nutrient analysis.

For the analysis of N and P content, 0.3 g of needles were digested in a mixture of selenous
sulphuric acid and hydrogen peroxide (Walinga et al 1995). Nitrogen was colorimetrically analyzed
in diluted aliquots of this digestion using a BioRad 680 microplate reader (California, USA) at A =
650 nm according the method proposed by Sims et al (1995). Phosphorus was analysed in the
same diluted aliquots by inductively coupled plasma optical emission spectroscopy (ICP-OES)
using a Perkin-Elmer Optima 4300DV (Massachusetts, USA) in the central laboratory facilities at
Universidade de Vigo — CACTI (www.uvigo.es/webs/cactiweb/). Nitrogen and P concentration
were expressed in mg g dried weight of tissue.

Terpene analysis
Tubeswithtrapped emitted monoterpenes wereinserted inan OPTIC3 injector (ATAS GL International

BV 5500 AA Veldhoven, The Netherlands) connected to a Hewlett Packard HP59822B GC-MS
(Palo Alto, CA, USA), where they were desorbed at 250 °C during 3 min. Terpenes were separated
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using a TRB-5 Fused Silica Capillary column, 30m x 0.25mm x 0.25um film thickness (Teknokroma,
Barcelona, Spain). After sample injection, the initial temperature (40 °C) was increased at 30 °C
min up to 60 °C, and thereafter at 10 °C min™ up to 150 °C maintained for 3 min, and thereafter
at 70 °C min"" up to 250 °C, which was maintained for another 5 min. Helium flow was 1 ml min-
'. The identification of terpenes was conducted by GC-MS and comparison with standards from
Fluka (Buchs, Switzerland), literature spectra and GCD Chemstation G1074A HP with the Wiley275
library. Terpene calibration curves (for 4 different terpene concentrations) were always significant
(RP>0.99). The most abundant terpenes had very similar sensitivity (differences were less than
5%). Terpene concentration was referred to needle dried weight [d.w.].

For extraction of resin terpenoids in the needles, three-four needles were grounded under liquid
nitrogen in Teflon tubes with a Teflon embolus. Then, we added 1 ml of pentane as extractant and
0.1 ul of dodecane, a non-terpenoid internal standard. Teflon tubes with pentane samples were
centrifuged in an ultrasonic bath for 5 minutes at 5000 rpm and 5-10 °C to separate the liquid and
solid phases. Pentane extracts were immediately recovered and transferred to chromatography
glass vials. After recovering the pentane extract, the mass of the needle pellet was determined
by oven-drying at 65 °C for 4 days. Terpenes in the extract were analyzed using a GC-MS (Palo
Alto, CA, USA) with a robotic sample processor (FOCUS) (ATAS GL International BV 5500 AA
Veldhoven, The Netherlands). Separation, quantification and identification were performed as
described above.

Statistical analyses

All traits were analyzed by the following model:

Y,=U+B+P+R+GR) +PGR) +PR+BR+BP+¢,

ikl

, where Yijkl is the variable of the trait, u is the overall mean, B, P R and G are the main fixed effects
of block, P fertilization, resistance group and genotype, and &, is the experimental error. Genotype
was nested within resistance types G(R). The B*P interaction was considered a random factor
for properly analyze the split plot design (Littell et al 2006). The MIXED procedure of SAS was
used. When main effects were significant, differences among treatment means were tested for
significance using the LSMEAN statement. The PROC GLM procedure of SAS was used for the
MANOVA analyses; Wilk's Lambda statistics were used.
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4.1.4. Results

Plant growth and needle nutrient concentrations

Fertilizer treatments strongly affected plant growth (F=20.82, P<0.001) and phosphorus
concentration in planttissues (F=141.39, P<0.001) (Table 7). Plants with complete fertilization (P20)
produced 2.5-fold greater biomass than plants with lower P fertilization (Fig.7). P concentration
in needles was strongly influenced by fertilization, showing increasing values accordingly to the
P fertilizers. Plants under balanced fertilization exhibited P concentrations 3-fold greater than P
stressed plants (Fig.7). The only treatment that drove P concentration in needles under critical
levels was P2; this treatment was therefore the one that generated the clearest P deficiency.

Nitrogen concentration in needles was only slightly greater, but significant (F=5.97, P<0.05) in
complete fertilization than in P stressed plants (Table 1, Fig.1).

Those families with a resistant behaviour at field showed slightly higher concentrations of P (F=7.79,
P<0.01) in leaf tissues than susceptible families, but no differences in terms of N concentrations
(F=3.16, P > 0.05) and total biomass (F= 2.73,P > 0.05) were detected (Table 1, Fig.1).

Photosynthesis (A), stomatal conductance (g ) and transpiration rates (£)

Fertilizer treatments decreased photosynthesis (F=4.48, P<0.05) and transpiration (F=6.12,
P<0.05) (Table 1, Fig.2): complete fertilization (P20) produced lower A and E than the lowest
fertilizer treatment P2 (Fig.2). However, these effects were different in resistant families than in
sensible families as revealed by the strong interaction P*R (Table 1) for A, g, and E .Sensible
families showed the lowest values of A and E at P10 treatment, and resistant families showed the
lowest values of A and E at P20 treatment.

Significant differences among families in photosynthesis (F=2.72, P<0.05) and stomatal
conductance (F=10.23, P<0.001) were found (Table 7).
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Fig.1 - Nitrogen and Phosphours concentrations in needles and total biomass, for different
P fertilizer treatments and resistance family groups. Vertical bars indicate standard
error of the mean (n=9). Different letters indicate significant statistical differences

among fertilizer levels
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Fig.2 - Net photosynthetic rates, stomatal conductance and transpiration rates for
different P fertilizer treatments and resistance family groups. Vertical bars
indicate standard error of the mean (n=9). Different letters indicate significant
statistical differences among fertilizer levels
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Fig 3. - Total Terpene Contents and Total Terpene Emission Rates for different fertilizer treatments and resistance family
groups. Vertical bars indicate standard error of the mean (n=9). Different letters indicate significant statistical
differences among fertilizer levels
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Table 2 - Individual and total terpene concentrations (n=68) and emission rates (n=70) for all families and all treatments.

Terpene concentration Terpene emission
ug g’ % ug g'h” %
cis-ocimene 14.66 0.16
o-pinene 4,203.48 46.65 4.33 46.80
camphene 63.36 0.70 0.34 3.70
B-pinene 2,757.90 30.60 3.46 37.45
myrcene 133.80 1.48 0.05 0.57
AS-carene 1,288.85 14.30 0.47 5.05
sabinene 296.44 3.29 0.06 0.67
B-phellandrene 0.25 2.69
terpinolene 30.39 0.34 0.04 0.39
o-fenchene 27.68 0.31
trans-caryophyllene 65.16 0.72
o-humulene 29.49 0.33
germacrene 50.92 0.57
limonene+B-phellandrene 0.17 1.80
other compounds 47.59 0.53 0.08 0.89

Table 3 - Summary of the Multivariance Analysis for Total Terpene Contents for P.
pinaster. B P R and G are the main effects of block, fertilization, resistance and
genotype. Genotype was nested in resistance G(R).

Manova hypothesis Wilk's Lambda P-value
Non-general P effects 0.15194675 0.0036
Non-general R effects 0.44274740 0.0060
Non-general G(R) effects 0.03232137 <.0001
Multivariance analysis 0.28185726 0.3472




CHAPTER 4.1{149
Effects of phosphorus availability and genetic variation of leaf terpene contents and emission rates in Pinus pinaster seedlings
susceptible and resistant to the pine weevil Hylobius abietis

Volatile terpenes

Several mono- and sesquiterpenes were found in both leaf concentrations and in terpene
emissions. The relative percentages of the different compounds in the total amount are shown in
Table 2. The isomers o and B-pinene dominate the accumulation (77.2 %) and emission (84.2 %)
of the total terpene amount. A3-carene is also present at high proportions accounting for 14.3% of
the concentrations, and 5% of the emission rates. The rest of the compounds appeared in smaller
percentages (Table 2).

The mean terpene concentration values ranged from an average of 7.9 ug g in P20to an average
of 12.6 ug g in P2 (Fig.3). The mean emission rates values were however fairly high, ranging from
25ugg'h' (P2 to 16 ug g’ h' (P20) (Fig.3)

MANOVA analysis for the contents of the individual compounds showed significant differences
among P treatments (A=0.15, P<0.01), resistance types (A=0.44, P<0.01) and genotypes
(A=0.03, P<0.0001), but there was not significant effect of P*R.Thus the different P treatments
influenced not only the individual compound concentrations but also the whole terpene profile of
our samples (Table 3).

Total terpene concentration significantly increased with P deficiency (F=4.25, P<0.05) (Table 1,
Fig.3). On the contrary, total terpene emission rates significantly decreased with P fertilization
(F=9.76, P<0.01) (Table 1, Fig.3). This effect was much higher in sensible than in resistant families
(P*R interaction F=5.32; P=0.0046; Fig.3).

There was a strong effect of family within resistance (F=26.78, P<0.0001) and of the interaction
P*G(R) (F=3.56, P=0.0028) for terpene emission rates evidencing that different families showed
different behaviours. Not all sensible families increased significantly their emission under high P
availability.
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4.1.5. Discussion

Terpene contents and emissions

The observed mean terpene concentrations inthe P pinaster leaves were lower than reported in other
studies for the same species (Arrabal et al 2005) or in other pine species (e.g. Blanch ef al 2009).
The mean terpene emission rates were, however, higher than the values reported in the available
literature (e.g. 0.2 ug g h' reported by Simon et al 1994). Those differences of our data compared
with literature values could be explained by the differences in the environmental conditions during
the measures, which were relatively warmer in our experiment (standard conditions 30 °C and
1000 umol m2 h' PAR) (Kesselemeier and Staudt 1999). The low concentration values in leaves
and the relatively high emission rates observed in the present study suggest that P pinaster tends
to emit the monoterpenes instead of keeping them in the terpene pools.

Our results, where a- and B-pinene were the 77.2% and 84.2% of the total emission rates and
concentrations respectively (Table2) agree with previous studies that have shown that a- and
B-pinene are the principal terpenes emitted (Simon et al 1994) and accumulated (Arrabal et al
2005, Ormeno et al 2009) by P pinaster. Apart from being the terpenes with higher concentrations,
a- and B-pinene have vapour pressures two to three times higher that the rest of the emitted
terpenes. As the reaction rate constants of those compounds, a- and B-pinene, with O,, OH-and
NO, are lower (Atkinson 1990), and as their mean estimated life is below 5 h (Seinfeld and Pandis
1998), they have a key role in the environmental chemistry.

Phosphorus and genetic effects on photosynthesis and terpene content
and emission

P concentration in leaves was above the P deficiency levels proposed for field studies (Bonneau

1995) in plants with P5, P10 and P20 fertilizer levels. That is, our fertilization ranged from high
levels to low levels, but always within the regular physiological margin. The fertilization treatment

CHANGES IN TERPENE PRODUCTION AND EMISSION IN RESPONSE TO CLIMATE CHANGE AND EUTROPHICATION



1562

CHAPTER 4.1
Effects of phosphorus availability and genetic variation of leaf terpene contents and emission rates in Pinus pinaster seedlings
susceptible and resistant to the pine weevil Hylobius abietis

was significantly effective: the higher the fertilization dose, the higher the concentration of P in
the plant, as previously reported (Keay et al 1968). Moreover, P fertilization also increased the
biomass of fertilized plants (Fig. 1) accordingly to the growth response to P fertilization observed
at field on P impoverished soils (Martins et al 2009). Curiously, photosynthesis rates, stomatal
conductance and transpiration showed a slight tendency to decrease with greater P doses the
days of measurement (Fig.3). Despite the fact that P plays an essential role in photosynthesis
and is involved in the formation of sugars and starch (Urbano 1999), previous authors have also
reported negative correlations between P fertilization and A (Loustau et al 1999, Cheaib et al 2005).
Warren and Adams (2002) suggested that the lack of photosynthetic response to P supply was the
result of a deficiency of N induced by high P supply. That deficiency of N in plants would decrease
the activity of the enzyme Rubisco, and consequently the photosynthetic parameters (A, g,) would
decrease. Since the biomass clearly increased with the fertilization, the higher photosynthetic rates
of P2 had to be limited in time.

Resistant and non-resistant families showed contrary responses to initial P deficiency. The
significant interaction fertilization x genotype (Table?) suggests some genetic variation in the
nutrient use efficiency among the studied genotypes. These differences may arise by different
nutrient use efficiency between them. This agrees with genetic differences in nutrient use efficiency
in response to fertilization reported in many tree species (i.e. Baligar et al 2001, Zas et al 2006b,
2008).

The most P-stressed conditions (doses P2 and P5) led to higher leaf terpene concentrations (Fig.3)
accompanying lower biomass accumulations. These higher terpene contents can be explained by
many of the theories based on the “excess carbon” hypothesis (Pefuelas and Estiarte 1998) such
as the Carbon-Nutrient Balance theory (Bryant et al 1983) and the Growth Differentiation theory
(Lorio 1986). These theories state that plants use resources to produce carbon based secondary
metabolites when they do not use those resources for growth (Pefiuelas and Estiarte 1998).

Higher amounts of terpenes were emitted in the less stressed conditions (doses P10 and P20) in
comparison with the most stressed conditions especially in sensible species (Fig.3)

The fact that sensible families emitted higher amounts of terpenes strengthens the theory that there
is a genetic component in the terpene production and emission patterns, similarly to the above
discussed genetic differences in nutrient use efficiency in response to fertilization. Moreover, the
fact that sensible families emitted higher amounts of terpenes could be related to plant-animal
communication: an increase of P could increase the attack of H. abietis at field through the
increase in the amount of a-pinene emitted since it attracts H. abietis (Moreira et al 2008). In fact,
the amount of debarked area in young seedlings at field has been found to increase with higher P
availability (Zas et al 2006b). The preference of pine weevil for sensible families could be explained
by the higher emission rates of those families under the most fertilized conditions (P70 and P20),
compared to resistant families (Fig.3).

In conclusion, higher phosphorus availability altered the plant physiology (higher biomass,
higher nutrient concentrations) decreased the accumulation of leaf terpenes and increased the
emission rates of terpenes in Pinus pinaster, a terpene storing species. There was a genetic effect,
and different responses in physiology and in terpene production and emission of pine families
depending on their susceptibility to weevil damage at field. The higher terpene emission rates of
susceptible families under high nutrient availability could explain the pattern of weevil damage
observed at field.
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4.2.1. Abstract

We investigated the hypotheses that an Arabidopsis genetically modified to emit nerolidol will
show other differences in terpene production, and physiology. To this end, photosynthetic rate,
electron transport rate, fluorescence, and volatile terpene concentrations were analyzed in leaves,
and volatile terpene concentrations in roots, of two genotypes of Arabidopsis thaliana (a wild-
type “WT”, and a transgenic line (CoxIV-FaNEST) with linalool/nerolidol synthase “TR”). For both
genotypes, we found low concentrations of a-pinene+p-ocimene, limonene and humulene in
leaves; and higher concentrations of a-pinene+B-ocimene, sabinene+p-pinene, B-myrcene,
limonene and humulene in roots. TR plants tended to have lower pools of terpene compounds in
their leaves, with lower photosynthesis rates, electron transport rates and stomatal conductance,
compared with WT plants. The maximal photochemical efficiency Fv/Fm was also significantly
lower in TR plants, indicating that these genotypes were more stressed than WT plants. However,
TR plants had higher root terpene concentrations. Thus TR plants appear to deflect the resources
towards root production of volatile terpenes in detriment to leaf production. We conclude that the
TR plants which are genetically modified to emit nerolidol showed significant differences in pools
of other terpenoids, and also showed significant differences in stress status and physiology.

Keywords: Arabidopsis thaliana, FaNES |, leaf terpene concentrations, root terpene concentrations,
genetic effect.

Resum

Varem investigar la hipotesi que una Arabidopsis gencticament modificada per a emetre nerolidol
mostraria diferéncies en la produccio de terpens i en la fisiologia. Per a tal fi, varem analitzar
la tassa fotosintctica, el transport d’electrons, la fluorescéncia i les concentracions de terpens
volatils a les fulles, i les concentracions de terpens volatils a les arrels de dos genotips diferents
d’Arabidopsis thaliana (un genotip salvatge “WT”, i una linia transgenica (CoxIV-FaNEST) amb
la sintasa linalool/nerolidol “TR”). Als dos genotips varem trobar concentracions baixes de
o-piné+fB-ocimené, limoné i humulé a les fulles, i concentracions altes de o-piné+fB-ocimené,
sabiné+B-piné, B-mircé, limoné i humulé a les arrels. Les plantes TR van tendir a tenir menors
acumulacions de terpens a les seves fulles, on la tassa fotosintetica, el transport d’electrons i la
conductancia estomatica van ser baixes en comparacié amb les plantes WT. LLa maxima eficiéncia
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del fotosistema II Fv/Fm també va ser significativament més baixa a les plantes TR, indicant
que aquest genotip patia més estrés que no les plantes WT. No obstant, les plantes TR van
presentar concentracions més grans de terpens a les arrels. D’aquesta manera sembla ser que els
recursos es desvien cap a la producci6 de terpens a les arrels en detriment de la produccié a les
fulles. Concloem que les plantes TR, que estan gencticament modificades per emetre nerolidol,
varen mostrar diferéncies significatives en les acumulacions de terpens, i també varen mostrar
diferencies significatives en Pestat d’estres 1 en la fisiologia.

Paraulesclau: Arabidopsis thaliana, FaNES I, concentracions de terpens ales fulles, concentracions
de terpens a les arrels, efecte genetic.
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4.2.2. Introduction

Plants produce a variety of VOCs of which the most representative and abundant group is
isoprenoids (Kesselmeier and Staudt 1999). Mono and sesquiterpenes are C, and C,, isoprenoid
compounds that can be produced in the chloroplasts (MEP pathway) and in the cytosol (MVA
pathway) (Kreuzwieser et al 1999, Owen and Penuelas 2005). The physiological function of these
isoprenoids is to avoid damages in cellular membranes when the plants are under physiological
stresses, for example, water stress, high temperatures, oxidative stress and high irraditation
(Sharkey and Singsaas 1995, Loreto and Velikova 2001, Pefuelas and Llusia 2003, Pefuelas and
Munné-Bosch 2005). Mono and sesquiterpnes also have ecological functions; they are defensive
compounds in case of pathogens attack or herbivory (Croteau 1987, Pichersky and Gershenzon
2002) and they can act as pollinator attractants (Kesselmeier and Staudt 1999), and may also
play a role in allellopathy (Fischer et al 1994, Pefiuelas et al 1996). Terpenoids can have impact
on regional air quality reacting with anthropogenic and biogenic nitrogen oxides, contributing to
tropospheric ozone and photochemical smog formation (Chameides et al 1988).

Volatile isoprenoids are mostly produced and emitted by the aerial parts of the plant (leaves and
flowers). However, Janson et al (1993) suggested roots as a possible source of monoterpenes
in soil and recent studies also show that there is terpenoid production and emission in roots
(Asensio et al 2007). This has been supported by measurements of monoterpene emissions in
laboratory experiments from pine roots with qualitative and quantitative evidence of the existence
of monoterpenes in soils under pine trees (Lin et al 2007, Asensio et al 2008).

The commonly used model plant Arabidopsis thaliana does not emit isoprene (Loivamaeki et al
2007). However, A. thaliana is thought to have over 30 putative genes belonging to the terpene
synthases (TPSs), a multigene family (Aubourg et al 2002, Chen et al 2003). Most of these are
almost exclusively expressed in flowers (Chen et al 2003, Tholl et al 2005, Aharoni et al 2006), but
low terpene emissions from leaves (Chen et al 2003) and even from roots (namely, 1,8-cineole)
have been detected (Chen et al 2004).

Previous studies referring to A. thaliana terpene production focused in the emission of terpenoids
by its flowers (Chen et al 2003, Aharoni et al 2003). Although Chen et al (2003) pointed that there
are trace amounts of the monoterpenes limonene and B-myrcene within its leaves (Chen et al
2003), there is generally a lack of information regarding leaf or root production of terpenes in
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this species. However, Kappers (2005) developed a transgenic line (CoxIV-FaNEST) with linalool/
nerolidol synthase, targeted specifically to the mitochondria. By studying this transformed genotype
(TR) with a wild-type (WT) Arabidopsis, we aimed to the hypothese that the Arabidopsis genotype
which is modified to emit nerolidol from mitochondrial synthesis will show other differences in
terpene production, and physiology in leaves and roots.
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4.2.3. Material and Methods

Plant material and plant growth

We used Arabidopsis thaliana genotype Landsberg erecta (Ler-0) (WT) and the transgenic FaNES1
line (TR) from Iris Kappers (Wageningen University), which expresses a linalool/nerolidol synthase
gene. A. thaliana seedlings were placed for 4 days at 4 °C in Petri dishes, and were cultivated in
475 cm?® plastic pots filled with peat and perlite (2:1, v/v) in a controlled environment chamber (14
h photoperiod, 130-150 umol quanta m?s™, 21 °C air temperature).

The growth medium used was based on that optimized by Gibeaut et al (1997). The final
concentrations were 1.5 mM Ca(NO,),, 1.256 mM KNO,, 0.75 mM MgSQO,, 0.6 mM KH,PO,, 70 uM
Fe-diethylenetriamine pentaacetate, 50 uM KCI, 50 uM H,BO,, 10 uM MnSO,, 2 uM ZnSO,, 1.5 uM
CuS0O,, and 0.075 uM ammonium molybdate (chemicals were from Fluka, Buchs, Switzerland).

Plant measurements: basal rosette diameter, CO, exchange and chlorophyll
flourescence

The diameter of the basal rosette was measured in each plant throughout the experiment. CO,
exchange was measured at the end of the growing cycle using a portable non-dispersive infra-red
gas analyzer (IRGA), model ADC-LCi (ADC Inc. Hoddesdon, Hertfordshire, England) connected
to an Arabidopsis leaf chamber (ADC Inc. Hoddesdon, Hertfordshire, England). CO, uptake (A)
and stomatal conductance (g,) were measured in leaves of the basal rosette. A and g, values
were expressed on a projected leaf area basis measured with Li-Cor 3100 Area Meter (Li-Cor Inc.,
Nebraska, USA).

The maximum photochemical efficiency of PSII (Fv/Fm) and the apparent photosynthetic electron
transport rate (ETR) were measured at the end of the growing cycle with a PAM-2000 fluorometer
(Walz, Effeltrich, Germany). ETR was estimated as:

ETR :?:—IT-PPFD-O.84-O.5

m
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,where AF/F’_(actual photochemical efficiency of PSII) was calculated within the software, according
to Genty et al (1989), 0.84 is the coefficient of absorption of the leaves, and 0.5 is the fraction of
electron involved in the photoexcitation produced by one quanta, since two photosystems are
involved. Chlorophyll fluorescence was measured twice a day: after turning the lights on and after
7 hours of lighting. The maximum PSII photochemical efficiencies (Fv/Fm) were measured after
keeping leaves in the dark for at least 25 min.

Laboratory analyses: leaf and root terpene contents

For measurement of monoterpenes, leaves and roots were ground in liquid nitrogen and repeatedly
extracted (three times) with pentane, with a non-terpenoid internal standard (0.1 ul of dodecane).
Before chromatographical analysis, we centrifuged extracted leaves and roots with pentane at
10,000 rpm for 10 min. Extracts were then concentrated with a stream of nitrogen, because low
concentrations were expected.

Monoterpene separation and analyses were conducted in a GC-MS system (Hewlett Packard
HP59822B, Palo Alto, CA, USA). Extracts (3 ul) were injected in to the GC-MS system and passed
into a 30 m x 0.25 mm x 0.25 um film thickness capillary column (Supelco HP-5, Crosslinked 5%
pH Me Silicone). Full scan method was used to perform the chromatography. The GC oven was
programmed to start at 40 °C, then the temperature was increased at 30 °C min™ up to 70 °C, and
thereafter at 10 °C min™ up to 150 °C, when the temperature was maintained for 5 minutes, and
thereafter at 70 °C min™ up to 250 °C, which was maintained for another 5 min. Helium flow was 1
ml min"'. For both species, 2 blank analyses per day were also conducted.

The identification of terpenes was conducted by GC-MS and comparison with standards from
Fluka (Buchs, Switzerland), and GCD Chemstation G1074A HP with the Wiley275 library. An internal
standard dodecane was used to determine extraction efficiency. Dodecane did not co-elute with
any terpene. Calibrations was performed with the common terpenes a-pinene, A%-carene, B-pinene,
B-myrcene, p—-cymene, limonene and sabinene standards once every five analyses. The major
ions of each compound were used for quantification. Terpene calibration curves (n=4 different
terpene concentrations) were always significant (R?>0.99) in the relationship between signal and
terpene concentration. The most abundant terpenes had very similar sensitivity (differences were
less than 5%). Total terpene concentrations were calculated as the sum of these main terpenes.

Leaf dry mass weight was determined after drying the residual vegetal material at 60 °C until
constant weight.

Statistical analyses

Analysis of variance (ANOVA) with Fisher post hoc tests for all the studied dependent variables, and
Student’s t-tests were used to test the significance of differences in response between transformed
and wild type plants in each fertilization and drought treatment, using R 2.7.2 software for Windows
(R Foundation for Statistical Computing, Vienna, Austria). Differences were considered significant
at a probability level of P<0.05.
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4.2.4. Results

Growth: mean diameter of the basal rosette

The growing pattern was different in WT than in TR: at the end of the experiment TR plants reached
55.5 % bigger basal rossetes than WT plants. WT plants reached their maximum diameter half
way through the experiment, with very low increase during the two last weeks. During this time
plants increased from 4.1 to 4.5 cm. TR plants had bigger basal rosettes diameters that increased
continuously during the 4 weeks of the experiment. During the two last weeks of the experiments,
plants grew from 4.3 to 7.0 cm.

Net photosynthetic rates, stomatal conductance and fluorescence
measurements

Net photosynthetic rates (A) were 78.6% lower in TR plants than in WT plants (P<0.001; Fig.1).

Stomatal conductance (g,) tended to be lower in TR plants compared to WT plants (not significant
P=0.12, Fig.1). The apparent photosynthetic electron transport rate (ETR) was 30.8% lower (P<
0.001) in TR plants than in WT plants (Fig. 7). The maximum photochemical efficiency of PSIl (Fv/
Fm) was 25.5% lower (P<0.001) in TR plants than in WT plants (Fig. 7).

Leaf VOC contents

There was no significant difference in leaf terpene concentration between the two genotypes, but
there was a tendency for higher terpene concentrations in WT plants (Fig. 2). The main terpenes
produced in both genotypes were the monoterpenes a-pinene+B-ocimene and limonene and
the sesquiterpene humulene (Fig.3). Other terpene-like compounds were found: “terpene-like
compound 1" (possibly myrtenal), “terpene-like compound 2” (possibly B-ionone) and “terpene-
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Fig.1 - Net photosynthetic rates (wmol m?s™), stomatal conductance (mol m?s™), apparent photosynthetic
electron transport rate (wmol m? s) and Photochemical efficiency (Fv/Fm) for Wild type WT and
Trangenic TR A. thaliana plants. Statistical significance for the overall effect of genotype is indicated
inside the panels. Vertical bars indicate standard errors of the mean (WT n=50; TR n=42)
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like compound 3” (Fig.3). TR plants tended to produce lower amounts of terpenes than WT plants
(Fig.3). The “unknown 2” compound was not produced in TR plants (Fig.3).

Root VOC contents

TR plants produced significantly (P<0.001) higher (239%) concentrations of terpenes than WT
plants (Fig.4). The main terpenes produced in both genotypes were the monoterpenes a-pinene + 3-
ocimene, sabinene+B-pinene, B-myrcene and limonene and the sesquiterpene humulene (Fig.5).
Other terpenes were found: “unknown 3” and “unknown 4” (Fig.5).
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4.2.5. Discussion

Compounds detected in leaf and root extracts

Our results agree with and expand the previous results of Chen et al (2003) who found traces of
monoterpenes in leaves of Arabidopsis thaliana plants, such as B-caryophillene and thujopsene
(higher concentrations, but lower than 0.6 ng h™ plant™) or B-farnesene and B-chamigrene (lower
concentrations). There is clear evidence of terpene production in leaves and roots of both WT
and TR A. thaliana. For both genotypes, we found low concentrations of a-pinene+fp-ocimene
(WT 42.67 = 20.64 ng g', TR 10.55 + 2.45 ug g), limonene (WT 24.64 = 6.73 ug g"', TR 11.58
+ 2.81 ug g') and humulene (WT 10.64 = 5.76 ug g', TR 34.31 £ 7.65 png g") in leaves; and
higher concentrations of a-pinene+p-ocimene (WT 9.5 = 1.32 ug g', TR 21.58 = 3.61 ug g’),
sabinene+p-pinene (WT 32.16 = 3.66 ung g, TR 100.91 = 15.34 ug g'), p-myrcene (WT 0 = 0
ug g, TR 23.44 = 595 ug g'), limonene (WT 2.35 = 1.25 ng g', TR 16.75 + 2.56 pg g')and
humulene (WT 5.44 = 1.45 ng g, TR 2.97 = 1.34 ng g) in roots.

Aharoni et al (2003) found small amounts of linalool (from 0.02 to to 13.3 ug day ' plant™ depending
on the transgenic line) in the headspace of transformed Arabidopsis plants, with the FaNES1
gene expressed in the plastids, while Kappers et al (2005) expressed the FaNES1 gene in the
mitochondria and also observed nerolidol emissions from the transformed plants’ foliage. We did
not find linalool or nerolidol in the foliage and root extracts. We did not investigate floral emissions
because we removed the flowers to retard the senescence processes in the leaves (Meir et al
1994). It is possible that linalool might have been produced in leaves but released immediately
after production (similar to isoprene). Our extraction technique would not have captured such
compounds. It is also possible that no linalool or nerolidol was produced, as Kappers et al (2005)
detected no linalool emissions from any of their plants’ foliage, and no nerolidol in 25% of the
transformed plants.
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Effect of genotype

WT plants reached their maximum diameter before the TR plants. The TR plants’ diameters
increased gradually and consistently from the germination until the mature state. Kappers et al
(2005) also found that first- and second-generation TR plants showed some growth retardation of
the basal rosette, but both WT and TR plants flowered at approximately the same time.

The two genotypes used here had different morphology of the basal rosette. The WT had smaller
and higher number of leaves which were shed and replaced when they reached a certain size,
while the TR species had fewer leaves whose length increased constantly along the vegetative
cycle. Despite the fact that the two genotypes (WT and TR) are morphologically different, the
experimental plants were comparable in terms of health and phenology to satisfy the aims of the
experiment, providing two different genotypes of the same species, one of which was genetically
transformed.

TR plants showed lower photosynthetic activity and production in leaves than the WT plants.
Comparing our transformed and WT plants, we found that stomatal conductance (Fig.7) and
calculated electron transport rates (ETR) were lower in transformed plants than in WT, and this
appeared to result in lower photosynthesis rates (Fig.1). The mean ratio Fv/Fm was significantly
lower in transformed plants compared with WT, indicating that transformed plants were generally
more stressed (Butler and Kitajima 1975, Oxborough and Baker 1997). However, there was a
tendency for transformed plants to have lower foliar VOC concentrations than the WT plants, though
this difference was not significant. While root VOC concentrations are much higher in transformed
plants than in WT plants, it is not known if this is related in any way to the foliar biochemistry.
However, Basyuni et al (2009) found that leaf isoprenoid concentration generally declined while
root concentrations increased in salt-stressed mango plants. In our study, the same relationship of
lower leaf terpene content and higher root terpene content in the TR plants also reflects the higher
stress status in the TR plants, as indicated by the lower Fv/Fm vlaues.

However, it is clear that the genetic modification has effects throughout the plants, other than the
targeted effects.

Concluding remarks
We have shown that the Arabidopsis genotype which is modified to emit nerolidol from mitochondrial

synthesis shows other differences in terpene production, and physiology in leaves and roots.
These plants deflect the resources towards root production in detriment of the leaf production.
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5.1. Specific conclussions

Conclusions especifiques

The specific conclusions of each chapter-
study are the following ones:

Les conclusions especifiques de cada capitol-
estudi son les seglients:

Chapter 2 - Drought, warming and soil
fertilization effects on leaf volatile terpene
concentrations in Pinus halepensis and
Quercus ilex

Capitol 2 - Efectes de la sequera, escalfament i
fertilitzacié del sol sobre les concentracions de
terpens volatils a les fulles de Pinus halepensis
i Quercus ilex

1. The seedlings responded to drought
and warming (* results showed in
chapter 2.1):

a) Decreasing their growth inresponse
to drought. Both, P halepensis and Q.
ilex, had significantly smaller increase
in stem diameter and height than well-
watered plants.

b) Showing lower relative water
content (RWC) in response to drought.

c) (*) Decreasing net photosynthetic
rates and stomatal conductance in
both species in response to drought.

d) (*) Warming increased net
photosynthetic rates and stomatal
conductance in both species.

The fertilization treatment did not
show any significant pattern in the
physiology of fertilized plants.

1. Els plancons van respondre a la sequera
1alescalfament (* resultats provinents
del capitol 2.1):

a) Disminuint el seu creixement
com a resposta de la sequera. Tant
P halepensis com Q. ilex van tenir
diametres al coll de Parrel i alcades
significativament menors que les
plantes amb condicions hidriques
normals.

b) Mostrant un menor contingut
d’aigua relatiu (RWC) en resposta a la
sequera

¢) (*) Disminuint la tassa fotosintetica
neta i conductancia estomatica, en
ambdues espécies, com a resposta a la
sequera

d) (*) L’escalfament va incrementar
la tassa fotosintética neta 1 la
conductancia estomatica en ambdues
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in P
halepensis (storing species) were
the same than in Q. ilex (non-storing
species): o-pinene,  B-pinene,
B-myrcene and A3-carene. However,
evidently the concentrations in
storing species were extraordinarily
greater than in non-storing species.

3. Drought treatment tended to increase

total terpene concentrations in
both species during the experiment
especially in Q. ilex which presented
a significant interaction between
drought and warming. Fertilization
treatments did not affect significantly
terpene concentrations.

especies

El tractament de fertilitzacié no va
mostrar cap patré significatiu en la
fisiologia de les plantes en que se’ls va
aplicar fertilitzacio.

2. Els principals terpens que es van

trobar a P halepensis (especie
acumuladora) van ser els mateixos que
a Q. ilex (especie no acumuladora):
o-piné, B-piné, P-mirce, i A’-caré.
Obviament, les concentracions en
les especies acumuladores van ser
extraordinariament més grans que les
de les especies no acumuladores.

3. El tractament de sequera va tendir a

incrementar les concentracions totals
de terpens en ambdues especies al
llarg de lexperiment, especialment
a Q. ilex, que va presentar una
interacci6 significativa entre la sequera
i DPescalfament. Els tractaments
de fertilitzaci®6 no van afectar
significativament a les concentracions
de terpens.

Capitol 3.1 - Diferent sensibilitat de les emissions
de terpens a la sequera i fertilitzacié en Pespecie
acumuladora Pinus halepensis i en la no
acumuladora Quercus ilex

Chapter 3.1 - Different sensitivity of terpene
emissions to drought and fertilization in
terpene storing Pinus halepensis and in non
storing Quercus ilex

1. The main emitted compounds were 1. Els principals terpens que es van trobar

also the same in P halepensis
(storing species) than in Q. ilex
(non-storing  species): a-pinene,
b-pinene, b-myrcene and D3-carene.
Comparing both species, a-pinene,
b-myrcene and D3-carene emission
rates were higher in P halepensis
plants whereas b-pinene was emitted
at greater emission rates by Q. ilex.

2. The emitted amounts were similar in

both species.

a) Drought increased emissions of the
non-storing species Q. ilex, but there
was no effect on the storing species.

b)  Fertilization  decreased the
emission rates of the storing species
P halepensis, but there was no effect
on the non-storing species.

a P halepensis (especie acumuladora)
van ser els mateixos que a Q. ilex
(especie no acumuladora): o-piné,
B-piné, B-mirce i A’-caré. Comparant
les dues especies, les emissions de
o-piné, B-mirce i A’-caré van ser més
grans en P halepensis mentre que les
emissions de B-piné van ser-ho a Q.
ilex.

2. Les quantitats de terpens emeses van ser

3.

similars en ambdues especies.

a) La sequera va incrementar les
emissions a 'especie no acumuladora
Q. ilex, pero no hi va haver cap efecte
sobre 'especie acumuladora.

b) La fertilitzacié6 va fer disminuir
la tassa d’emissions de Despecie
acumuladora P halepensis perd no
va tenir cap efecte sobre I'especie no
acumuladora.
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Chapter 3.2 Instantaneous and historical
temperature effects on o-pinene emissions in
Pinus halepensis and Quercus ilex

Capitol 3.2 - Efectes dela temperatura instantania
i historica en les emissions d’o-piné en Pinus
halepensis i Quercus ilex

1. a) Emission rates (E) showed a
lineal dependence to instant leaf
temperatures for both storing and
non-storing species.

b) Photosynthetic electron transport
(Joopeop)  €Xhibited @  exponential
correlation with instant leaf
temperature in  storing species,
showing a maximum at 35 °C; but
no trends were found for non-storing
species.

2. Although the best correlation of
emission rates were found for
instantaneous foliar temperatures,
the effect of accumulated previous
temperature conditions should also
be considered:

a) There was a higher dependence of
E on mean temperature of previous
days than on mean temperature of
current day for storing species but not
for non-storing species.

b)  Jogpioe Showed a maximum
relationship to mean temperature of
previous 3 and 5 days for storing and

non-storing species respectively.

1. a) La tassa d’emissions (E) va mostrar
una dependéncia lineal amb la
temperatura foliar instantania tant a
I'especie acumuladora com a la no
acumuladora.

b) El transport fotosintetic d’electrons
Jeorsor) va mostrar una correlacio
exponencial amb la temperatura
instantania de la fulla en Pespécie
acumuladora, mostrant un maxim a 35
°C, pero no es van trobar tendencies a
I’especie no acumuladora.

2. Tot i que les correlacions van ser millors
amb la temperatura foliar instantania,
Iefecte acumulat de la temperatura
dels dies previs també s’hauria de
considerar:

a) Hi ha una més dependéncia I’E
amb la temperatura mitjana dels dies
previs que no de la mitjana diaria de
temperatura, a 'especie acumuladora,
pero no a la no acumuladora.

b)\ ]coz Lo, VA mostrar una correlago
maxima amb la temperatura dels 315
dies previs, per especies acumuladores
1 no acumuladores respectivament.

Chapter 4.1 Effects of phosphorus availability
and genetic variation of leaf terpene contents
and emission rates in Pinus pinaster seedlings
susceptible and resistant to the pine weevil
Hylobius abietis

Capitol 4.1 Efectes de la disponibilitat de fosfor
i de la variacié genética sobre la produccié i la
tassa d’emissi6 de terpens foliars de plangons de
Pinus pinaster susceptibles i resistents al corc del
pi Hylobius abietis

1. a) Plants with complete fertilization
produced 2.5-fold greater biomass
than plants with lower fertilization

b) Plants under balanced fertilization
exhibited P concentrations 3-fold
greater than P stressed plants

c) Nitrogen concentration in needles
was greater in complete fertilization
than in P stressed plants

d) Plants under complete fertilization
showed lower photosynthesis and
transpiration rates than the lowest

1. a) Les plantes amb fertilitzacid

complerta van produir 2,5 cops més
biomassa que les plantes amb menor
fertilitzacio.
b) Les plantes amb fertilitzacid
complerta van mostrar 3 cops més
concentracions de P que les plantes
amb menor fertilitzacio.

c) La concentracié de nitrogen a les
fulles va ser més gran a les plantes
amb fertilitzacié6 complerta que no a
les plantes amb deficit de nutrients.

d) Les plantes amb fertilitzacid
complerta van mostrar menors tasses
fotosintetiques 1 respiratories que les
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fertilization treatment.

a) Families with a resistant
behaviour at field showed slightly
higher concentrations of P in foliar
tissues than susceptible families,
but no differences in terms of N
concentrations and total biomass
were detected.

b) Different families had significant
differences in photosynthesis and
stomatal conductance: sensible
families showed the lowest values of
Aand E at low (10 ppm) fertilization,
and resistant families showed the
lowest values of A and E at high (20
ppm) fertilization

3. The isomers o and B-pinene dominated

the production and emission of the
total terpene amount. A3-carene was
also present with high percentage.

4. Terpene concentrations increased with

phosphorus deficiency.

5. Total terpene emission rates decreased

6.

with phosphorus fertilization.

Different families showed different
behaviours, but there was not a
pattern  distinguishing  between
resistant and sensible families.

Different families showed different
behaviours: the increase of terpene
emission rates with P deficiency was
much higher in sensible families than
in resistant families.

plantes amb deéficit de nutrients.

a) Les families amb un comportament
resistent a camp van mostrar
concentracions de P als teixits
foliars lleugerament majors que les
families susceptibles, pero no hi van
haver diferencies pel que fa a les
concentracions de N i a la biomassa
total.

b)Hi ~ van  haver  diferéncies
significatives entre families pel que fa a
la tassa fotosintetica i a la conductancia
estomatica: les families sensibles van
mostrar els valors més baixos de Ai E
a dosis baixes de fertilitzacié (10 ppm),
i les families resistents van mostrar els
valors més baixos de A1 E a dosis altes
de fertilitzacié (20 ppm).

Els isomers o i B-piné van dominar
la producci6 i la emissi6 del total de
terpenes. A’-caré també va ser-hi
present en un alt percentatge.

Les concentracions de terpens van
augmentar quan més deficiencia de
fosfor tenia la planta.

5. La tassa total d’emissions va disminuir

amb la fertilitzacié de fosfor.

Families diferents van presentar
comportaments diferents, pero no hi
va haver un patré clar.

Families diferents van presentar
comportaments diferents: 'augment
de la tassa d’emissi6 de terpens amb la
deficiencia de fosfor va ser molt més
gran a les families sensibles que a les
resistents.

and

Chapter 4.2 Investigating the photosynthesis

terpene-content strategies of two

different genotypes of Arabidopsis thaliana
(wild-type and CoxIV-FaNES1 transgenic)

Capitol 4.2 Investigaci6 de les estrategies
fotosintétiques i de produccié de terpens de
dos genotips diferents de Arabidopsis thaliana
(genotip salvatge, i genotip transgenic CoxIV-
FaNES])

a) The growing pattern was different
in WT than in TR: at the end of the
experiment TR plants reached bigger
basal rossetes than WT plants.
However, WT plants reached their
maximum diameter earlier than TR
plants.

b) Net photosynthetic rates (4), the
apparent photosynthetic  electron
transport rate (ETR) and the maximum
photochemical efficiency of PS Il (Fv/
Fm) were lower in TR plants than in

1.

a)El patré6 de creixement va ser
diferent a les families amb genotip
salvatge (WT) que a les families amb
genotip transgenic (TR): al final de
Iexperiment, les plantes TR van
formar rosetes basals més grans que
les de les plantes WT. No obstant, les
plantes WT van arribar al seu diametre
maxim de roseta basal abans que les
plantes TR.

b)La tassa neta de fotosintesi (A), la
tassa de transport aparent d’electrons
(ETR) 1 la eficiencia maxima del
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WT plants. Stomatal conductance PSIT (Fv/Fm) van ser inferiors a les
(9.) tended to be lower in TR plants plantes TR que a les plantes WT. La
compared to WT plants. conductancia estomatica (g) va tendir

a ser inferior a les plantes TR que a les

. plantes WT.
2. Leaves produce terpenes: The main .

terpenes produced in both genotypes 2. Les fulles producixen terpens: 6}5
were the monoterpenes a_pinene+ﬁ_ prlnclpals terpens prodults en ambdos
ocimene and limonene and the genotips  van - ser cls monoterpens
sesquiterpene humulene. o-piné+f-ocimé i limoné, i el

sesquiterpé humulé.

3. No hi van haver diferéncies significatives
a les concentracions foliars de terpens
entre els dos genotips, pero hi va haver
una tendéncia a que les plantes TR
produissin majors concentracions de
terpens.

3. There was no significant difference in
leaf terpene concentration between
the two genotypes, but there was
a tendency for higher terpene
concentrations in WT plants.

4. Les arrels també produeixen terpens: els
principals terpens produits en ambdos
genotips van ser els monoterpens

4. Roots produced terpenes as well: The
main terpenes produced in both

genotypes were the monoterpenes o-piné+P-ocimé, sabiné-+pB-piné,
a-pinene+p-ocimene, - sabinene+f- B-mircé i limoné, i el sesquiterpé
pinene, B-myrcene and limonene and humulé

the sesquiterpene humulene
5. Les plantes TR van produir majors

. concentracions de terpens a les arrels
5. TR plants produced higher root terpene que les plantes WT.

concentrations than WT plants.
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5.2. General conclussions

Conclusions generals

Mild drought produced an increase of the
production (content) of terpene and an
increase of the terpene emission rates in non
storing species. In storing species, drought
also increased the production of terpenes
but no the emission rates, as the compounds
remained in the storing organs instead of
being emitted.

The fertilization effect was not as clear as the
drought effect. We only found nutrient effect
on terpenes in storing species, where the
higher the nutrient availability (fertilization),
the lower the terpene emission rates. Leaf
terpene concentrations increased, but only in
the most controlled conditions experiments:
in experiments with more variability there were
tendencies to decrease (when fertilizing) but
they were not statistically significant.

Plant genotype plays an important role in the
terpene production and emission pattern:
we have found very significant differences
among families and transgenic clones of the
same species.

The results indicate that there is an effect of
drought and fertilization on terpene production
and emission rates and therefore if climate

La sequera moderada produeix un augment
de la produccié (contingut) de terpens i un
augment de la tassa d’emissié de terpens a
les espécies no acumuladores. A les espécies
acumuladores, la sequera també incrementa la
produccié de terpens pero no la tassa d’emissio,
ja que els compostos queda retinguts als organs
d’emmagatzematge en lloc de ser emesos.

L’efecte de la fertilitzacié no va ser tan clar
com lefecte de la sequera. Només vam
trobar efecte d’aquesta sobre els terpens de
les especies acumuladores, on una major
disponibilitat de nutrients  (fertilitzacio)
produia menors tasses d’emissié de terpens.
Les concentracions foliars de terpens van
augmentar, pero només als experiments
realitzats sota condicions controlades: als
experiments amb més variabilitat hi van haver
tendencies a disminuir (amb la fertilitzacio)
pero no van ser significatives estadisticament.

El genotip de la planta juga un paper important
en els patrons de produccié i emissio de
terpens: varem trobar diferéncies significatives
importants tant entre families com entre clons
transgenics de la mateixa especie.

Aquests resultats indiquen que hi ha un
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warming and drought occur as predicted by
IPCC (IPCC, 2007) and GOTILWA models
(Sabaté et al. 2002), and if eutrophication
continues as expected (Vitosuek 1997),
terpene emissions may significantly change
in the next decades with important biological
and environmental consequences (Pefiuelas
and Llusia 2003, Pefuelas and Staudt 2010).
However, the species-specific complex
responses found here, warrant much more
research on this issue to arrive to reliable
predictions.

efecte de la sequera i de la fertilitzacié sobre
les tasses de produccio 1 emissié de terpens, i
que si es fan realitat prediccions d’escalfament
1 sequera com les previstes pel IPCC (IPCC
2007) o pels models GOTILWA (Sabaté et al
2002), i que si la eutrofitzacié continua com
es previst (Vitosuek 1997), les emissions de
terpens canviaran significativament durant
la proxima decada, portant conseqiiencies
biologiques i ambientals importants (Pefiuelas
i Llusia 2003, Pefiuelas i Staudt 2010). No
obstant, la complexitat de respostes especie-
especifiques trobada aqui garanteix que fa falta
molta més recerca en aquest tema per poder
fer prediccions més certes.
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