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Abstract

This thesis investigates various aspects of systemic risk in financial networks. Chapter

1 explores the existence of a contagion channel to security returns given that banks are

connected via overlapping portfolios. Making use of a proprietary dataset on securi-

ties held by German banks, I identify the network induced through cross holdings and

find higher correlations among the returns on securities held by connected banks. This

contagion channel to security returns is stronger for banks which are large, highly lever-

aged and highly interconnected and especially at work during the recent financial crisis.

Chapter 2 establishes a model for bank credit risk interconnectedness based on CDS

data, in which defaults can be triggered by systematic global and country shocks as well

as idiosyncratic bank-specific shocks. Applying the framework to a sample of large Eu-

ropean financial institutions reveals that the credit risk network captures a substantial

amount of dependence in addition to what is explained by systematic factors. Chapter

3 analyzes the relation between market-based bank credit risk interconnectedness and

the associated balance sheet linkages via funding and securities holdings. Results sug-

gest that market-based measures of interdependence can serve well as risk monitoring

tools in the absence of disaggregated high-frequency bank fundamental data.

Resumen

Aquesta tesi investiga diversos aspectes del risc sistèmic en xarxes financeres. El

Caṕıtol 1 explora la existència d’un canal de contagi als rendiments dels actius ates

que els bancs estan connectats per portafolis superposats. Fent ús d’una base de dades

d’actius financers de bancs Alemanys, identifico la xarxa induida a través de partici-

pacions creuades i trobo correlacions altes entre els rendiments d’actius en poder de

bancs connectats. Aquest canal de contagi a rendiments d’actius és més fort per bancs
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que son més grans, altament endeutats i altament interconnectats, i es va intensificar

durant la recent crisi financera. El Caṕıtol 2 estableix un model d’interconectivitat

de risc de crèdit bancari basat en dades del CDS, en el que l’impagament pot ser

causat per shocks sistèmics locals o globals o per shocks espećıfics dels bancs. Apli-

cant aquest marc de referència a una mostra d’institucions financeres europees grans,

es revela que el risc de crèdit de xarxa captura una part substancial de la dependència,

a més del que és explicat per factors sistèmics. El Caṕıtol 3 analitza la relació en-

tre l’interconectivitat del risc de crèdit bancari de mercat i les connexions de balanç

de situaci associades via finançament i tinences de valors. Els resultats suggereixen

que les mesures d’interdependència basades en el mercat serveixen bé com a eines de

monitorització del risc en absència de dades bancàries fonamentals.
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Foreword

The recent financial crisis in the United States and Europe has forcefully shown the

importance of accurately measuring systemic risk in financial systems. One area of

active research focuses on detecting interconnections among banks through various

channels and measuring their importance from a systemic risk perspective. In the

presence of network structures, shocks that are originally small in size can amplify

and become relevant for the financial sector as a whole and the real economy. This

creates the need to identify different channels which can induce shock propagation and

to monitor these accordingly. This thesis consists of three self-contained chapters which

contribute to the field in different respects.

Chapter 1, titled “Fire Sale Spillovers in a Network Perspective”, analyzes the net-

work induced through cross-holdings of securities in the German banking sector. In

order to shed light on the existence of a resulting contagion channel to security prices, I

analyze correlation patterns of portfolio returns as a function of their holding structure.

For identification, I make use of a proprietary database containing quarterly securities

holdings of German financial institutions at the bank-security-time level between 2006

and 2014. I find that security returns in exclusively held parts of bank portfolios are

correlated in a lead-lag relationship given that portfolios contain overlapping elements.

A path analysis suggests that a likely underlying channel are sales of commonly held

securities following negative returns. This contagion channel to security returns is more

pronounced for banks which are large, highly leveraged and central to the asset common-

ality network. Furthermore, investigating the period surrounding fire sales in summer

2017, I find a potential occurrence of shift-contagion with return correlations increasing

comparably more for institutions with higher levels of portfolio overlap. These results

are important for systemic risk since they suggest that banks’ trading behavior in asset

commonality networks can increase correlations in security returns above fundamental
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levels, a factor which should be taken into account in banks’ portfolio choice.

Chapter 2 is co-authored with Christian Brownlees and Eulalia Nualart and titled

“Bank Credit Risk Networks: Evidence from the Eurozone”. This work proposes a

novel methodology to study credit risk interconnectedness in large panels of financial

institutions. Building upon the standard reduced form framework for credit risk, we

introduce a model for European financial institutions in which defaults can be triggered

by systematic global and country shocks as well as idiosyncratic bank specific shocks.

The idiosyncratic shocks are assumed to have a sparse conditional dependence struc-

ture called the bank credit risk network. We then develop an estimation strategy based

on Lasso regression that allows to detect and estimate network linkages from CDS

data. Applying this technique to analyze the interdependence of large European finan-

cial institutions between 2006 and 2013 shows that the credit risk network captures

a substantial amount of dependence in addition to what is explained by systematic

factors.

Chapter 3 is titled “Credit Risk Interconnectedness: What Does The Market Re-

ally Know?” and co-authored with Puriya Abbassi, Christian Brownlees and Natalia

Podlich. This chapter has been published as a separate article in the Journal of Fi-

nancial Stability, Volume 12, April 2017, Pages 1 - 12. In this work we analyze the

relation between the methodology established to estimate the bank credit risk network

from CDS data and the associated balance sheet linkages via funding and securities

holdings. For identification, we use a proprietary dataset that contains the funding po-

sitions of banks at the bank-to-bank level for 2006-13 in conjunction with investments

of banks at the security level and the credit register from Germany. We find asymme-

tries both cross-sectionally and over time: when banks face difficulties to raise funding,

the interbank lending affects market-based bank interconnectedness. Moreover, banks

with investments in securities related to troubled classes have a higher credit risk inter-

2



connectedness. Overall, results suggest that network measures based on market data

can serve well as risk monitoring tools in the absence of granular data.
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Chapter 1

FIRE-SALE SPILLOVERS IN A

NETWORK PERSPECTIVE

1.1 Introduction

The recent financial crisis has shown the relevance of contagion between different finan-

cial institutions. In the presence of network interconnections, shocks that are initially

small in size can amplify to have a large impact by being transmitted within the finan-

cial sector and eventually to the real economy. This poses the question of how contagion

between two institutions can occur, and to which extent it might destabilize an entire

financial system. The literature identifies two main channels for shock transmission:

lending in interbank markets and commonality in securities investments. While the

structure and potential for contagion through interbank markets has been researched

to a larger extent, we know less about interconnectedness arising from overlapping secu-

rity portfolios. At the same time, the potential for spillover effects and their impact on

the aggregate is largely dependent on the topology of the underlying network. Under-

standing the network structure of overlapping portfolios can therefore help to evaluate
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the current state of systemic risk in the financial system and its implications from both

a bank and security perspective.

In this work I take a new approach to shedding light on a contagion channel to

security returns arising in commonality networks by analyzing return correlations as a

function of their holding structure. I make use of a proprietary database which contains

security investments for all banks in the German financial system at a security-bank-

time level. This allows me to identify a commonality network between banks each

quarter at the level of single securities. With the help of this network, I then investigate

whether returns on exclusively-held parts of bank portfolios are related differently given

that the two banks are connected through other common securities holdings.

I find evidence consistent with the existence of a contagion channel to security

prices. That is, I find that returns on exclusively-held parts of bank portfolios are

correlated to a larger extent given that those banks hold overlapping securities. This

channel is more pronounced if banks are large, highly leveraged and located at the core

of the securities holdings network. Furthermore, this channel has been especially active

during the recent financial crisis. In order to identify a potential mechanism, I run a

path analysis and find that one path runs from negative portfolio returns at the bank

level, to higher sales of securities and lower portfolio returns at connected banks. Lastly,

I analyze the occurrence of what has been referred to as “shift contagion” by Forbes and

Rigobon (2001), defined as a systematic increase in the channel of shock propagation.

To test this, I run a difference-in-difference framework of the distance in banks’ portfolio

returns before and after the initiation of the financial crisis in Germany, for banks with

different levels of commonality in securities investments. I find that the distance in

portfolio returns of banks with higher portfolio overlap has decreased comparably more

after summer 2007, indicating a potential occurrence of shift contagion in this period.

This work relates mainly to two strands in the literature. Firstly, it is related to
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theoretical models of bank interconnectedness. On networks arising through interbank

markets, Allen and Gale (2000), Freixas, Parigi, and Rochet (2000), Iyer and Peydró

(2005), Babus (2007), Brusco and Castiglionesi (2007), Gai, Haldane, and Kapadia

(2011), Caballero and Simsek (2013), Hale, Kapan, and Minoiu (2013) and Suhua, Yun-

hong, and Gaiyan (2013) are important examples. Fire sales and resulting asset price

contagion have been researched, among others, by Kyle and Xiong (2001), Cifuentes,

Ferrucci, and Shin (2005), Pavlova and Rigobon (2008), Wagner (2010) and Caccioli,

Shrestha, Moore, and Farmer (2014). On different network structures in the bank-

ing sector and their resilience to contagion, Castiglionesi and Navarro (2007), Allen,

Babus, and Carletti (2012) and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015) are re-

cent examples. Secondly, it relates to empirical work on fire sales in asset commonality

networks. Important examples for asset price correlations induced by mutual funds are

Coval and Stafford (2007), Jotikasthira, Lundblad, and Ramadorai (2012) and Anton

and Polk (2012). Begalle, Martin, McAndrews, and McLaughlin (2016) investigate fire

sales in tri-party repo markets and Ellul, Jotikasthira, and Lundblad (2011) focus on

corporate bond markets. The potential for asset price contagion induced by the banking

sector has been shown by Cont and Wagalath (2014) as well as Greenwood, Landier,

and Thesmar (2015) and Duarte and Eisenbach (2015).

The remainder of the paper is organized as follows. Section 1.2 introduces the

dataset and variable definitions. Section 1.3 explains the model and estimation method-

ology. Section 1.4 presents empirical results. And Section 1.5 concludes.
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1.2 Data

The main proprietary database used for this project is obtained from Deutsche Bun-

desbank. For each bank in the German financial system, I have access to micro data

on security holdings each quarter, identifiable on a security-bank-time level. The se-

curity portfolios comprise fixed income securities, stocks and mutual fund shares and

are identified at the level of the ISIN (International Security Identification Number).

For each security, it contains additional information regarding the country of origin,

the type of issuer (financial, sovereign, corporate) and the security class. The sample

contains a total of 1800 banks for 36 quarters from 2006 - 2014. For each security in

their portfolio, banks report both the nominal amount of their holding and the current

value of the security (i.e. euro total) at the end of each quarter.

I enhance this database in three directions. Firstly, I collect the issuer of each under-

lying security from Bloomberg in order to identify holdings stemming from the same

issuing entity. Secondly, I collect a total return index for each security from Datas-

tream, which gives price quotes adjusted for dividend payouts and accrued interest.

And thirdly, I collect monthly balance sheet items such as total assets, equity, deposits

and lending to the real economy from the proprietary BISTA database at Deutsche

Bundesbank. The full sample of securities holdings consists of roughly four million

securities held by 1800 banks over 36 quarters.

I prune this data in a number of ways. Firstly, and most importantly, on the security

level I only consider the part of the security portfolio held for banks’ own trading

purposes, and not on behalf of customer accounts. Within banks’ trading accounts, I

only consider long positions in debt securities by non-financial issuers. This avoids a

network representation arising through cross-holdings of securities issued by neighboring

banks. I concentrate the analysis on securities which are traded, identified through

the intersection of being listed on Bloomberg and having a return index provided by

8



Datastream. This step is necessary to have reliable price data on securities used in

the analysis, and for effects to be driven by the impact of portfolio decisions on prices.

Furthermore, I take out all securities whose total holding in the banking system in a

given quarter is less than 1 Mil euros since those are less relevant from a contagion

point of view. On a bank level, I take out Landesbanken and mortgage banks, as well

as very small banks whose quarterly security portfolio is lower than 100 Mil Euros. On

a portfolio level, in each quarterly portfolio I take out securities whose percentage share

is less than 0.0002% of a bank’s portfolio, a step necessary for computational reasons.

The final sample contains data for 1.057 banks and 87.665 securities. This makes up

17.86% of the euro value of the entire holdings, where the largest restrictions are due

to the exclusion of securities held in customer accounts and those issued by financial

entities.

Securities in the sample are identified at the level of the ISIN, the International

Security Identification Number, which is allocated to each security at its issuance,

independent of the exchange where it is traded. An example for a security identified

by an ISIN would be a 3-months maturity bond issued by Volkswagen on 15.06.2013.

With respect to credit risk and price movements of the underlying securities, a natural

unit of concentration is the issuer, since developments in several securities issued by

one entity are driven by the underlying entity rather than idiosyncratic movements to

each security separately. For the remainder of the analysis, I therefore concentrate all

securities on the level of the issuer for establishing the asset commonality network of

banks. More precisely, I take the sum of the quantities of all securities issues by the

same entity in order to define the extent of portfolio overlap between two banks.
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1.2.1 Variable Definitions

Banks are indexed by i and j, and securities (on the level of the issuer) are indexed

by s. Denote the total security portfolio of bank i at time t as the set Sit. The total

security portfolio of a bank i is then decomposed into a part held by only bank i and

a part held in common with at least one other bank.

Sit = S̊it ∪ S̆it

where Sit is a bank’s total security portfolio, S̊it is the space of securities held only by

bank i and no other bank in the system at time t, and S̆it is the space of securities which

is held by bank i and at least one other bank at time t. I will use the notation S̆ijt for

the space of securities which is held in common by bank i and j at time t. Note that

S̆it ≤
∑

j 6=i S̆ijt since S̆ijt will potentially have overlapping elements again for different j.

Furthermore, note that due to the granular nature of the data, I can precisely identify

which securities are held by each bank in the sample in each quarter.

Portfolios Returns

I aim at investigating the correlation patterns between banks’ portfolio returns over

time, given that two banks have some extent of commonality in their portfolios. The

identification challenge here lies in the fact that, if two banks hold some securities in

common, correlations in their portfolio returns might be driven by assets contained

in both portfolios. To circumvent this, I exclude S̆it from the analysis and compute

portfolio returns on S̊it for each bank in the sample. The main variable for computing

portfolio returns is the total return index computed by Datastream. This return index

adjusts security prices for coupon payouts and accrued interest. For each security in

the sample, the total return index is calculated as

10



RIst = RIst−1
Pst + Ast + NCst + CPst

Pst−1 + Ast−1 + NCst−1

,

where RI is the total return, P is the clean price, A is accrued interest, NC is the next

coupon (where adjustment is made when a bond goes ex-dividend) and CP is the value

of any coupon received between t and t-1.

To capture market dynamics which drive all security prices simultaneously, I extract

the first principal component of returns. The first principal component is defined as the

eigenvector which maximally explains the variance of the system and commonly used

as a proxy for a market factor. I define the excess variation in security returns as the

residuals from an OLS regression on the first principal component.

∆εst = RIst − β∆PC(1)t

Note that the correlation between the first principal component extracted from security

returns and a more standard measure of movements in the market portfolio such as the

DAX index amounts to 76.47 %. The portfolio return for each bank R̊it is then defined

as a weighted portfolio of excess returns for all securities exclusively held by bank i at

time t

R̊it =
∑
s∈S̊it

ωist∆εst ,

where ωist is the portfolio weights of bank i for security s at time t.

One might argue that exclusively held portfolios are not representative subsamples

of the total portfolio of a bank, since the nature of securities held by only one bank is

different from securities held by a larger number of banks simultaneously. To address

this concern, I compute returns separately for exclusively held portfolios and total

portfolios of each bank. Figure 1.1 shows the time variation in said returns, calculated
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as a time-varying mean for the entire sample of banks.

Figure 1.1: Volume-weighted Returns on different Parts of Security
portfolios

This figure reports average volume-weighted returns on different parts of banks’ security portfolio,

calculated over the entire sample of banks at different points in time.

From the graphs we can see that the returns R̊it and Rit are tightly linked, hinting

towards securities contained in S̊jt differing solely in their holding structure. However,

note that restricting the analysis to exclusively held portfolios on the level of the issuer

leads to a further reduction in sample size, since those are not available for all banks.

The sample for the remainder of the analysis therefore consists of 937 banks.

Commonality Index

I define a security commonality network based on the overlap in banks’ security port-

folios S̆ijt. Banks i and j are connected at time t if and only if S̆ijt 6= 0.

In particular, for each bank pair ij in each quarter t I extract the security space

held in common S̆ijt. In order to measure the potential impact of contagion at the pair
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level, I compute for each bank i the share of its portfolio, which is made up by assets

held in common with bank j.

Ωijt =
S̆ijt
Sit

To take into account only interconnections that are relevant from a contagion point of

view, I round numbers lower than 5 % of the security portfolio to 0.1 For most of the

analysis, my interest lies in whether two banks have any overlap in their portfolios or

not, hence the variable considered is 1Ωijt 6=0. I will later analyze the bank-pair dimension

in a difference-in-difference setting, using the continuous value of the commonality index

as a treatment variable.

1Ωijt 6=0 gives rise to a network of banks’ security portfolios, which can be visualized

as follows.

Bank i

Bank j

Bank k

In this network, each bank is a vertex, while two banks having commonality in

their security investments will determine the existence of edges. An edge between

banks i and j exists at time t if they have some exposure to the same issuer at the

same time t, E = {(i, j, t) : S̆ijt 6= 0}, in other words 1Ωijt 6=0 = 1. In this example,

1Ωijt 6=0 = 1Ωjkt 6=0 = 1 whereas 1Ωikt 6=0 = 0. The degree of bank i at time t, defined

as the number of connections to other banks in the system, can then be calculated as

degit =
∑

j 6=i 1Ωijt 6=0. In the above example, degit = degkt = 1 whereas degjt = 2.

1All main results are robust to a truncation at 10 % or 15% instead.
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1.2.2 Descriptive Statistics

Descriptive statistics for the degree and commonality index are depicted in Table 1.1.

Table 1.1: Descriptive Statistics of Degree and Commonality Index

Mean Std Dev P10 P50 P90

Commonality Index 34.55 % 28.11 % 5.71 % 29.13 % 77.29 %
Degree 303.57 376.94 0 69 937

This table shows summary statistics for two variables: bank degree and commonality index Ωijt.

Summary statistics are calculated over the entire sample in the second quarter of 2007.

The average degree of banks in the sample is 303.57. This means that at any point in

time, a given bank holds overlapping portfolios at the level of the issuer with on average

304 other banks, or roughly one third of the sample. The degree varies considerably in

the cross-section, with banks being interconnected to between 0 and 937 other banks.

The strength of the interconnection, defined as the average portfolio share which is

made up by a single interconnection, amounts to 34.55%. That is, on average, 34.55 %

of bank i’s portfolio is also held by bank j at time t, taking into account a concentration

at the level of the securities’ issuer. Again, the commonality index varies considerably

in the cross-section, with common portfolio shares ranging between 5.71 % and 77.29

%.

In what follows, I plot the arising asset commonality network for all banks in the

sample. Each bank represents a single node and the color of nodes is chosen according to

bank size: light blue represents small banks by total assets, dark blue are large banks.

The size of the nodes is determined by the degree such that larger nodes represent

banks which are more interconnected in the asset commonality network. The algorithm

places more central nodes in the middle, less interconnected ones on in the periphery.

For visualization purposes, only linkages above the median are depicted in the graph.

Lastly, all banks which have 0 - 3 interconnections with other banks are dropped from
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the graph for data confidentiality reasons. The time period chosen for the graph is

the second quarter of 2007, the last quarter before the start of the financial crisis in

Germany.

Figure 1.2: Asset Commonality Network 06/2007 - Coloring by Bank Size

This figure shows the asset commonality network defined through overlap in security portfolios at

the level of the issuer in the second quarter of 2007. Nodes are colored according to bank size by total

assets: light blue represents small banks, dark blue are large banks. The node size is determined by the

degree and more central nodes are placed in the middle, less interconnected ones on in the periphery.

Only linkages above the median are shown and all banks with a degree of 0 - 3 are dropped from the

graph for data confidentiality reasons.
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Overall, the arising network structure is rather dense. We can see in the plot that

the asset commonality network among banks exhibits a strong core-periphery structure.

Furthermore, in terms of bank size, a bi-partite structure is arising, where large banks

are more interconnected with large banks, and small banks are more interconnected

with small banks.

This type of network structure has also been referred to as assortativity, that is a

bias towards node connections with similar characteristics, in this case related to bank

size. A second type of assortative mixing that has been frequently researched is related

to bank connectivity as expressed by their degree. Figure 1.3 contains the same network

representation of the second quarter of 2007, but the color of nodes is chosen according

to the degree of banks: dark blue represents highly interconnected banks by degree,

and light blue represents banks with few interconnections.

We can see that the security commonality network exhibits a strong pattern of as-

sortative mixing by degree. In a recent paper, Caccioli, Catanach, and Farmer (2012)

show that assortativity in node mixing can lead to higher network instability and in-

crease the probability of contagion. That is, in an assortative network by connectivity,

nodes that have low degrees are only connected among themselves, and can thus fail

easier in cascades following the default of one neighbor.

Looking at the degree distribution depicted in Figure 1.4, we can see that it follows

a power law. These situations in which only few banks have a large degree and many

banks have a small degree are also referred to as scale-free networks. Previous research

has shown that while scale free networks can reduce the probability of contagion, they

do not reduce its extent once a cascade of failures has started. On the contrary, if the

failing node is located at the center of the network, scale-free networks show higher

fragility.
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Figure 1.3: Asset Commonality Network 06/2007 - Coloring by Degree

This figure shows the asset commonality network defined through overlap in security portfolios at

the level of the issuer in the second quarter of 2007. Nodes are colored according to the degree: light

blue represents a low degree, dark blue represents a high degree. The node size is also determined

by the degree and more central nodes are placed in the middle, less interconnected ones on in the

periphery. Only linkages above the median are shown and all banks with a degree of 0 - 3 are dropped

from the graph for data confidentiality reasons.
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Figure 1.4: Degree Distribution 06/2007

This figure shows the degree distribution across all banks in the sample at the end of the second

quarter of 2007. The rather bin width is chosen to comply with confidentiality restrictions. The degree

of each bank is defined as the sum of its respective edges in the asset commonality network.
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1.3 Methodology

In this work, I use a panel regression framework to shed light on the existence of a fire

sales channel to security price correlations in an asset commonality network. I make use

of the information contained in bank portfolio returns and regress each bank’s return

on its exclusively held portfolio R̊it on both the average returns on exclusively held

portfolios of banks it is connected to and banks it is not connected to at time t − 1.

Note that due to the consideration of exclusively held portfolios, no security issuers are

contained in both the LHS and RHS variable.

In particular, denote by cit the number of banks that bank i is connected to at time

t, and by uit the number of banks it is not connected to through common portfolio

exposures (such that for every i at time t, N = uit + cit + 1 ). For purposes of notation,

I will return to the network illustration depicted in Section 3 where 1Ωijt 6=0 = 1 and

1Ωikt 6=0 = 0. Then I consider the regression model

R̊it = αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−1 + β2
1

ui

∑
(i,k,t)/∈E

R̊kt−1 + εit , (1.1)

where R̊it is the weighted return on bank i’s exclusively held portfolio at time t after

filtering out a common factor to all security returns. To account for time and cross-

sectional heterogeneity, I include both bank fixed effects αi and year fixed effects αt.

After investigating the general relation between banks’ exclusively held portfolios, I

am interested in seeing whether the channel operates differently in the cross-section. To

see this, I divide all banks in the sample in three subcategories according to bank size,

leverage, and their position in the asset commonality network. I then run a variant

of the baseline regression model in Equation 1.1 in which I interact banks’ portfolio

returns with indicator variables for different subsample categories. For the case of bank
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size defined by total assets, for example, I run the regression model

R̊it =αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−11TA1 + β2
1

c

∑
(i,j,t)∈E

R̊jt−11TA2

+ β3
1

c

∑
(i,j,t)∈E

R̊jt−11TA3 + β4
1

ui

∑
(i,k,t)/∈E

R̊kt−1 + εit ,

(1.2)

where R̊it is the return on the exclusively held portfolio of bank i at time t. 1TA1

indicates whether bank i belongs to the smallest category of banks according to total

assets. To account for time and cross-sectional heterogeneity, I include both bank-fixed

effects αi and year fixed effects αt. I run an analogous analysis to investigate whether

the channel has been operating differently during normal and crisis times.

Lastly, I analyze the database at the level of each bank-pair at time t, ijt, to

investigate whether shift-contagion has occurred at the onset of the financial crisis in

Germany. In this case, shift-contagion (defined as a significant increase in linkages)

corresponds to the correlation in asset prices increasing comparably more during the

respective period for banks with a higher overlap in their security portfolios. To shed

light on this, I use a difference-in-difference approach around the fire sales events taking

place in Germany in the late summer months of 2007. I use two pre-treatment periods

(Q1 and Q2 2007) and two post-treatment periods (Q3 and Q4 2007). My treatment

variable is the continuous value of the commonality index Ωijτ . Precisely, I run the

dyadic difference-in-difference model

|R̊it − R̊jt| = αij + δ01POST + δ11POST ∗ ΩijT + εijt ,

where |R̊it−R̊jt| is the distance between exclusively held portfolio returns of banks i and

j at time t, 1POST is an indicator for whether the observation lies in the post-treatment

period, αij is a pair fixed effect and ΩijT is the value of the commonality index in the

second quarter of 2007.
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1.4 Empirical Analysis

1.4.1 Baseline Specification

I begin by estimating the baseline regression model of Equation 1.1 introduced in Section

1.3. I consider different variants of the specification with respect to the inclusion of

fixed effects.

I hypothesize that excess returns on banks’ exclusively held portfolios should be

positively related given that two banks have common exposures in other parts of their

portfolios. If two banks do not have any commonality in their security investments,

then we should not see this effect. Table 1.2 contains the regression results for the

baseline regression model.

Table 1.2: Variants of Baseline Regression

(1) (2) (3) (4)
VARIABLES Exc Portfolioit Exc Portfolioit Exc Portfolioit Exc Portfolioit

Con Portfoliosit−1 0.0235*** .0234*** .0195*** .0182***
(.0026 ) (.0040) (.0042) (.0046)

Uncon Portfoliosit−1 -.0112*** -.0050 .0040 .0006
(.0021) (.0036) (.0039) (.0042)

F (β1 = β2) 58.79 14.78 8.56 4.14

Number of Observations 32384 32384 32384 32384
Adjusted R Squared 0.0011 0.0236 0.0742 0.0954

Bank Fixed Effects No No Yes Yes
Time Fixed Effects No Yes No Yes

Cluster robust standard errors in parenthesis
*** p<0.001, ** p<0.01, * p<0.05

This table shows coefficient estimates and standard errors for different variants of the baseline regression
model

R̊it = αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−1 + β2
1

ui

∑
(i,k,t)/∈E

R̊kt−1 + εit ,

where R̊it is the weighted return on bank i’s exclusively held portfolio at time t after filtering out a
common factor to all security returns. To account for time and cross-sectional heterogeneity, I include
both bank-fixed effects αi and year fixed effects αt.

I find that banks’ excess returns on exclusively held portfolios are positively related
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given that two banks have an overlap in their securities portfolios. The significance of

the coefficient is not affected by the inclusion of different fixed effects, and its magnitude

changes only slightly: an increase in the portfolio return of bank i by 1 percentage point

is related to an average increase in the portfolio return of bank j by 0.018 percentage

points. For two unconnected banks i and k, however, I do not find such effect after

controlling for fixed effects related to the time or bank dimension. In all specifications,

the difference in coefficients between both groups, connected and unconnected banks,

is statistically significant.

In the above specification, we might suspect that two banks which hold overlapping

portfolio exposures might be otherwise connected through alternative channels such as

loans and deposits, which could then drive results. To address this concern, I run an-

other variant of the baseline specification with additional control variables. Specifically,

I include variables to control for the asset side and the liability side of the balance sheet

of each bank i at time t− 1 in the regression framework. In particular, I run

R̊it =αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−1 + β2
1

ui

∑
(i,k,t)/∈E

R̊kt−1

+ β3NFLit + β4FLit + β5CRit

+ β6DEPit + β7WFit + β8EQit + εit ,

(1.3)

where NFLit is the logarithm of the value of bank i’s loans to the non-financial sector

at time t, FLit is the logarithm of the value of bank i’s loans to the financial sector at

time t, CRit is the logarithm of the value of bank i’s cash reserves at time t, DEPit is

the logarithm of the value of bank i’s deposits at time t, WFit is the logarithm of the

value of bank i’s wholesale funding at time t and EQit is the logarithm of the value of

bank i’s equity at time t. Results are shown in Table 1.3.

I find that the additional inclusion of variables capturing both the asset and the
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Table 1.3: Variants of Baseline Regression with Alternative Channels of
Interconnectedness

VARIABLES Exc Portfolioit Exc Portfolioit Exc Portfolioit

Con Portfoliosit−1 .0177*** 0179*** .0171***
(.0045 ) (.0045) (.0047)

Uncon Portfoliosit−1 1.09e-10 .0007 -.0018
(9.67e-11) (.0042) (.0043)

Loans to Fin. Sectorit−1 -1.96 e-11 2.16e-10
(1.25 e-10) (1.74e-10)

Loans to Non-Fin. Sectorit−1 -2.09e-13 -2.32e-11
(1.34e-10) (2.92e-10)

Cash Reservesit−1 -1.10e-08 5.58e-09
(1.75e-08) (2.48e-08)

Depositsit−1 -6.20e-10 2.43e-10
(1.20e-09) (1.55e-09)

Wholesale Fundingit−1 - 2.35e-11 -3.04e-10
(1.92e-10) (.2.27e-10)

Equityit−1 -1.30e-10 1.39e-09
(5.86e-10) (.9.69e-10)

F (β1 = β2) 3.88 4.01 4.54

Observations 32344 32345 32343
Adjusted R Squared 0.0951 0.0953 0.0732

Bank Fixed Effects Yes Yes Yes
Time Fixed Effects Yes Yes Yes

Cluster robust standard errors in parenthesis
*** p<0.001, ** p<0.01, * p<0.05

This table shows coefficient estimates and standard errors for different variants of the baseline regression
model with additional control variables

R̊it = αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−1 + β2
1

ui

∑
(i,k,t)/∈E

R̊kt−1 + β3NFLit + β4FLit + β5DEPit + εit ,

where NFLit is the logarithm of value of bank is loans to the non-financial sector at time t, FLit is
the logarithm of value of bank is loans to the financial sector at time t and DEPit is the logarithm of
value of bank is deposits at time t.
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liability side of banks’ balance sheets in the analysis does not have an effect on the

coefficients of interest, neither in terms of significance nor order of magnitude.

While clustering at the bank level is a natural specification for the analysis, I ac-

knowledge that the choice of standard errors has a significant effect on analysis out-

comes. I therefore run a last variant of the baseline regression with different standard

errors: Huber White standard errors and two-way clustered standard errors along both

bank and time. For comparison purposes, I report again the results of this regres-

sion with cluster-robust standard errors clustered at the bank level. Results for these

specifications are displayed in Table 1.4.

Table 1.4: Variants of Baseline Regression with Different Standard Er-
rors

(1) (2) (3)
VARIABLES Exc Portfolioit Exc Portfolioit Exc Portfolioit

Con Portfoliosit−1 .0181515*** .0181515*** .0181515***
(.0048354) (.0045572) (.0029874)

Uncon Portfoliosit−1 .0005877 .0005877 .0005877
(.0043757) (.0042277) (.0034385)

F (β1 = β2) 3.80 4.14 7.65

Number of Observations 32346 32346 32346
Adjusted R Squared 0.0928 0.0928 0.0928

Bank Fixed Effects Yes Yes Yes
Time Fixed Effects Yes Yes Yes
Clustering Dimension None Bank Bank-Time

Respective standard errors in parenthesis
*** p<0.001, ** p<0.01, * p<0.05

This table shows coefficient estimates and standard errors for different variants of the baseline regression
model with different standard errors

R̊it = αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−1 + β2
1

ui

∑
(i,k,t)/∈E

R̊kt−1 + εit ,

where R̊it is the weighted return on bank i’s exclusively held portfolio at time t after filtering out a

common factor to all security returns. To account for time and cross-sectional heterogeneity, I include

both bank fixed effects αi and year fixed effects αt.

I find that the choice of the clustering dimension does not alter significance levels
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of any of the coefficients. I conclude that my empirical findings are robust with respect

to the choice of standard errors used to carry out inference.

1.4.2 Extended Specification: Subsample Specific Effects

In order to capture subsample-specific effects, I consider an extension of the baseline

specification stated in Equation 1.2. I expect intrinsic bank characteristics to play an

important role in the transmission of shocks to security prices, and the network channel

to asset price correlations to operate differently for bank categories defined along various

dimensions. Regarding the influence of bank size and connectivity on network stability,

Caccioli et al. (2012) suggest the existence of two different regimes: with low average

connectivity, a bank’s position in the network plays a more important role than its size.

That is, in the presence of low connectivity, too-interconnected-to-fail takes the center

stage, leaving the probability of contagion highest for the most interconnected node. In

a regime of high average connectivity, the opposite is true: the probability for contagion

is most elevated following a failure of the largest bank in the system. Regarding the

influence of leverage, several theoretical models find a non-linear effect. Caccioli et al.

(2014) find a critical threshold below which financial networks are stable, and above

which instability increases with growing leverage. Similarly, Nier, Yang, Yorulmazer,

and Alentorn (2008) find that for high levels of equity, financial systems are immune to

contagion, whereas default risk sharply increases below a certain level of equity.

Following results from the theoretical literature, the first distinction I consider is

bank size defined by total assets. I expect that there might be non-linearities in the

network channel to asset price correlations depending on the size of the bank in question.

To investigate this, I run an extended specification of the baseline model as specified in

Equation 1.2 with bank size as defined by total assets. Results are shown in Table 1.5.

I find that banks’ returns on exclusively held portfolios are strongly interrelated
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Table 1.5: Subsample Specific Effects by Total Assets

VARIABLES Exc Portfolioit

Con Portfolioit−11TA1 .0128**
(.0045)

Con Portfolioit−11TA2 .0131**
( .0047)

Con Portfolioit−11TA3 .0299***
(.0053)

Uncon Portfolioit−1 .0003
(.0040)

F (β1 = β2 = β3) 11.26

Number of Observations 32346
Adjusted R Squared 0.0960

Time Fixed Effects Yes
Bank Fixed Effects Yes
Cluster robust standard errors in parenthesis

*** p<0.001, ** p<0.01, * p<0.05

This table reports coefficient estimates and standard errors for the regression model

R̊it =αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−11TA1 + β2
1

c

∑
(i,j,t)∈E

R̊jt−11TA2

+ β3
1

c

∑
(i,j,t)∈E

R̊jt−11TA3 + β4
1

ui

∑
(i,k,t)/∈E

R̊kt−1 + εit ,

where R̊it is the weighted return on bank i’s exclusively held portfolio at time t after filtering out a

common factor to all security returns. 1TA1 indicates whether bank i belongs to the smallest category

of banks according to total assets. To account for time and cross-sectional heterogeneity, I include

both bank-fixed effects αi and year fixed effects αt.
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given that their portfolios overlap, at all three categories of bank size. While significance

is unaffected by the choice of category, I however find that the magnitude of interrelation

differs according to bank size. For banks in the smallest category, an average increase of

excess portfolio returns of connected banks by 1 percentage point is associated with an

increase of 0.0128 percentage points. This effect is more than twice as large for banks

in the largest size category as defined by total assets: an average increase in portfolio

returns of connected banks by 1 percentage point is associated with an increase of

0.0299 percentage points.

The second distinction I analyze is the leverage ratio, as defined by total book equity

over total book assets. Again, I run an extended specification of the baseline model

with three equally sized categories of banks distinguished by book leverage. Results are

depicted in Table 1.6.

Similarly to before, I find that significance of the coefficient is unaffected by the

choice of category, but that its magnitude is roughly 1.5 times as large for banks that

are highly leveraged. Notice, however, that the t test does not reject the coefficients

being of equal magnitude.

Third, I run an extended specification where different categories of banks are defined

according to their position in the asset commonality network. As a distinguishing

variable I choose the degree of each bank, defined as the number of banks that bank i

is connected to at time t through overlapping securities holdings, degit =
∑

j 6=i 1Ωijt 6=0.

Results are shown in Table 1.7.

Again, I find that significance of the coefficient is unaffected by the choice of cat-

egory, but that its magnitude is more than twice as large for banks that are highly

interconnected. Results are aligned with predictions by theoretical models: security

price spillovers among connected portfolios are especially pronounced for banks which

are large, highly leveraged and at the center of the asset commonality network. In
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Table 1.6: Subsample Specific Effects by Leverage Ratio

VARIABLES Exc Portfolioit

Con Portfolioit−11LEV1 .0146**
(.0048)

Con Portfolioit−11LEV2 .0189***
(.0050)

Con Portfolioit−11LEV3 .0217***
(.0048)

Uncon Portfolioit−1 .0005
(.0040)

F (β1 = β2 = β3) 2.14

Number of Observations 32346
Adjusted R Squared 0.0955

Time Fixed Effects Yes
Bank Fixed Effects Yes
Cluster robust standard errors in parenthesis

*** p<0.001, ** p<0.01, * p<0.05

This table reports coefficient estimates and standard errors for the regression model

R̊it =αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−11LEV1 + β2
1

c

∑
(i,j,t)∈E

R̊jt−11LEV2

+ β3
1

c

∑
(i,j,t)∈E

R̊jt−11LEV3 + β4
1

ui

∑
(i,k,t)/∈E

R̊kt−1 + εit ,

where R̊it is the weighted return on bank i’s exclusively held portfolio at time t after filtering out a

common factor to all security returns. 1LEV1 indicates whether bank i belongs to the smallest category

of banks according to book leverage. To account for time and cross-sectional heterogeneity, I include

both bank-fixed effects αi and year fixed effects αt.
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Table 1.7: Subsample Specific Effects for Degree

VARIABLES Exc Portfolioit

Con Portfolioit−11DEG1 .0116*
(.0051)

Con Portfolioit−11DEG2 .0151**
(.0050)

Con Portfolioit−11DEG3 .0265***
(.0051)

Uncon Portfolioit−1 .0005
(.0042)

F (β1 = β2 = β3) 8.34

Number of Observations 32346
Adjusted R Squared 0.0957

Time Fixed Effects Yes
Bank Fixed Effects Yes
Security Type Controls Yes
Cluster robust standard errors in parenthesis

*** p<0.001, ** p<0.01, * p<0.05

This table reports coefficient estimates and standard errors for the regression model

R̊it =αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−11DEG1 + β2
1

c

∑
(i,j,t)∈E

R̊jt−11DEG2

+ β3
1

c

∑
(i,j,t)∈E

R̊jt−11DEG3 + β4
1

ui

∑
(i,k,t)/∈E

R̊kt−1 + εit ,

where R̊it is the weighted return on bank i’s exclusively held portfolio at time t after filtering out a

common factor to all security returns. 1DEG1 indicates whether bank i belongs to the smallest category

of banks according to their degree. To account for time and cross-sectional heterogeneity, I include

both bank-fixed effects αi and year fixed effects αt.
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terms of coefficient magnitude, I find the largest effect of the fire sales channel to se-

curity price correlations for banks which are largest by total assets, hinting towards a

too-big-to-fail regime. This result is in line with Caccioli et al. (2012) given that the

asset commonality network in my case is closer to their second regime, with average

connectivity among financial institutions being high.

After investigating differential effects at the level of single banks, I investigate

whether we can find a time-varying pattern for crisis versus normal times. To do

so, I define a crisis period to run from the third quarter of 2007 until the fourth quarter

or 2009. I then run an extended specification of the baseline model where observations

are split into two time periods. Precisely, I run

R̊it =αi + αi + β1
1

ci

∑
(i,j,t)∈E

R̊jt−11CRISIS

+ β2
1

c

∑
(i,j,t)∈E

R̊jt−1(1− 1CRISIS) + εit ,

(1.4)

where R̊it is the weighted return on bank i’s exclusively held portfolio at time t after

filtering out a common factor to all security returns and 1CRISIS indicates whether the

observation belongs to the financial crisis period as defined above. I expect the channel

to be stronger during the financial crisis period due to the impact of asset liquidity. In

the case of high market liquidity, one bank’s decision to sell off assets has a relatively

small impact, making asset prices insensitive. In illiquid markets, however, one sale can

cause large price movements. With market liquidity being procyclical, hence higher in

normal times and lower in crisis periods, we should see a higher impact of the network

channel to asset price correlations during crisis times. Results are shown in Table 1.8.

From the table we can see that the effect is significantly positive only during the

period of the financial crisis: an increase in the portfolio return of bank j by 1 percentage

point is related to an average increase in the portfolio return of bank i by 0.0194
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Table 1.8: Subsample Specific Effects for Crisis vs. Non-Crisis Periods

VARIABLES Exc Portfolioit

Con Portfolioit−11CRISIS .0194***
(.0046)

Con Portfolioit−1(1− 1CRISIS) -.0086
(.0107)

Uncon Portfolioit−1 .0002
(.0042)

F (β1 = β2 = β3) 7.36

Number of Observations 32346
Adjusted R Squared 0.0955

Time Fixed Effects Yes
Bank Fixed Effects Yes
Cluster robust standard errors in parenthesis

*** p<0.001, ** p<0.01, * p<0.05

This table reports coefficient estimates and standard errors for the regression model

R̊it =αi + αi + β1
1

ci

∑
(i,j,t)∈E

R̊jt−11CRISIS

+ β2
1

c

∑
(i,j,t)∈E

R̊jt−1(1− 1CRISIS) + β4
1

ui

∑
(i,k,t)/∈E

R̊kt−1 + εit ,

where R̊it is the weighted return on bank i’s exclusively held portfolio at time t after filtering out

a common factor to all security returns. 1CRISIS indicates whether the observation belongs to the

financial crisis period running from the third quarter of 2007 until the fourth quarter of 2009. To

account for time and cross-sectional heterogeneity, I include both bank-fixed effects αi and year fixed

effects αt.
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percentage points.

1.4.3 Path Analysis

Above results raise the question of the channel underlying asset price contagion among

banks holding overlapping portfolios. One potential channel has been brought forward

in Greenwood et al. (2015) and is related to sell-offs of securities contained in various

bank portfolios. In their model, banks sell assets after being hit by an adverse shock in

order to return to target leverage, which creates a negative impact on the price of these

assets given that they are not perfectly liquid. This, in turn, can affect the balance

sheets of banks holding the same asset. In order to investigate whether said channel

could potentially underlie the observed pattern, I run a path analysis of banks’ portfolio

returns and selling behavior. In particular, I compute for each bank the quantity of

assets sold from one quarter to the next as the sum of negative changes in their portfolio

holdings,

Bit =
∑

s∈Sit−1

∆qsit1∆qsit<0 ,

where qsit denotes the quantity of security s held by bank i at time t. Note that

portfolio sales are computed on the entire bank portfolio Sit, and not on exclusively

held portfolios S̊it.

I then run two types of analyses. In the first analysis, I use the above defined

variable in order to investigate whether the contagion channel to asset price correlations

is stronger at work for banks with higher portfolio sales. That is, I run the extended

specification defining categories according to the magnitude of Bit. In particular, I run
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R̊it =αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−11Bit=0 + β2
1

ci

∑
(i,j,t)∈E

R̊jt−11Bit<B̃t

+ β3
1

ci

∑
(i,j,t)∈E

R̊jt−11Bit≥B̃t + β4
1

ui

∑
(i,k,t)/∈E

R̊kt−1 + εit ,

where R̊it is the return on the exclusively held portfolio of bank i at time t. 1Bit=0

indicates that bank i did not sell any securities from time t− 1 to time t, and 1Bit<B̃t

and 1Bit≥B̃t indicate non-zero portfolio sales above or below the median with respect to

portfolio sales for all banks in the sample in the respective quarter. Results are shown

in Table 1.9.

We can see that banks with no portfolio sales do not show a correlation in portfolio

returns with their connected banks in the respective quarter. On the contrary, I find a

positive and significant effect given that banks sell parts of their security portfolios. This

effect is stronger given that portfolio sales are higher. These results are in line with

the hypothesis that observed return correlations could originate from banks’ trading

behavior related to securities potentially held in common with connected banks.

This motivates me to carry out a path analysis of portfolio sales Bit and portfolio

returns R̊it. If the channel outlined above is potentially underlying the results, we

should see the path run from low portfolio returns at time t − 2, to higher sales of

securities at time t− 1, to lower returns of connected banks at time t.

R̊it−2 Bit−1
1
ci

∑
E R̊jt
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Table 1.9: Subsample Specific Effects for Portfolio Sell-Offs

VARIABLES Exc Portfolioit

Con Portfolioit−11Bit=0 -.0030
(.0046)

Con Portfolioit−11Bit<B̃t .0188***
( .0045)

Con Portfolioit−11Bit≥B̃t .0212***
(.0049)

Uncon Portfolioit−1 -.0017
(.0038)

F (β1 = β2 = β3) 7.79

Number of Observations 32346
Adjusted R Squared 0.0944

Time Fixed Effects Yes
Bank Fixed Effects Yes
Cluster robust standard errors in parenthesis

*** p<0.001, ** p<0.01, * p<0.05

This table reports coefficient estimates and standard errors for the regression model

R̊it =αi + αt + β1
1

ci

∑
(i,j,t)∈E

R̊jt−11Bit=0 + β2
1

ci

∑
(i,j,t)∈E

R̊jt−11Bit<B̃t

+ β3
1

ci

∑
(i,j,t)∈E

R̊jt−11Bit≥B̃t
+ β4

1

ui

∑
(i,k,t)/∈E

R̊kt−1 + εit ,

where R̊it is the return on the exclusively held portfolio of bank i at time t. 1Bit=0 indicates that

bank i did not sell any securities from time t−1 to time t, and 1Bit<B̃t
and 1Bit≥B̃t

, indicate non-zero

portfolio sales above or below the median with respect to portfolio sales for all banks in the sample in

the respective quarter. To account for time and cross-sectional heterogeneity, I include both bank-fixed

effects αi and year fixed effects αt.
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Specifically, I run

Bit−1 = αi + αt + β1R̊it−2 + εit

1

ci

∑
(i,j,t)∈E

R̊jt1 = αi + αt + β2R̊it−2 + β3Bit−1 + εit ,
(1.5)

where R̊it is the return on the exclusively held portfolio of bank i at time t and Bit

indicates the magnitude of its portfolio sell-offs. Following previous findings, I restrict

the sample to banks for which Bit ≥ B̃t. Results are depicted in Table 1.10.

Table 1.10: Path Analysis

VARIABLES Portfolio Sell-Offsit Con Portfoliosit

Exc Portfolioit−2 -96001.54* .0155766*
(38974.52) (.0074349)

Portfolio Sell-Offsit -6.20e-12*
(3.03e-12)

Number of Observations 16721 15822
Adjusted R Squared 0.1579 0.2845

Time Fixed Effects Yes Yes
Bank Fixed Effects Yes Yes

Cluster robust standard errors in parenthesis
*** p<0.001, ** p<0.01, * p<0.05

This table reports coefficient estimates and standard errors for the regression model

Bit−1 = αi + αt + β1R̊it−2 + εit (1)

1

ci

∑
(i,j,t)∈E

R̊jt−1 = αi + αt + β1R̊it−2 + β2Bit−1 + εit , (2)

where R̊it is the return on the exclusively held portfolio of bank i at time t and Bit indicates the

magnitude of its portfolio sell-offs. To account for time and cross-sectional heterogeneity, I include

both bank-fixed effects αi and year fixed effects αt.

I find a negative and significant effect running from banks’ portfolio returns at

time t − 2 to their portfolio sales at time t − 1. This means that banks with lower

portfolio returns sell higher quantities of their security portfolios. In a second step, I

find a positive and significant effect running from banks’ portfolio sales to the portfolio

returns of connected banks. That is, I observe that if a bank sells a higher quantity
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of securities at time t− 1, portfolio returns at banks to which it is connected through

common security holdings at time t are lower. The results are in line with the model

established by Greenwood et al. (2015), such that their outlined mechanism could be a

potential channel driving the effects I observe.

1.4.4 Difference-in-Difference Analysis

Lastly, I run a difference-in-difference analysis to investigate the occurrence of what has

been referred to as shift-contagion during the financial crisis period. Shift-contagion is

characterized not only by a transfer of effects between different entities but also by a

significant increase in linkages during the respective period. In my specific case, shift-

contagion refers to a comparably higher increase in asset price correlations for bank

pairs with a higher overlap in their security portfolios.

The time period chosen for the difference-in-difference analysis is the outbreak of

the financial crisis with the burst of the United States housing bubble and the decline

in subprime lending in July and August 2007, leading to fire sales across the German

financial system. I chose this time period over the bankruptcy of US investment bank

Lehman Brothers in September 2008, since the latter occured at a period of high finan-

cial turmoil in general, making it more difficult to isolate specific effects. Precisely, I

use two pre-treatment periods, which are the first and second quarter of 2007, and two

post-treatment periods, which are the third and fourth quarter of 2007.

The outcome variable in the analysis is the absolute value of the difference in banks’

returns on their exclusively held portfolio at the level of the bank-pair, |R̊it − R̊jt|.

Note that the outcome variable is designed such that lower levels indicate a smaller

distance in two banks’ portfolio returns, corresponding to a higher level of asset price

correlations. The treatment variable is the continuous value of the commonality index

Ωijτ in the second quarter of 2007, where higher values indicate a higher level of overlap
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between banks’ security portfolios.

Results for the analysis are displayed in Table 1.11.

Table 1.11: Difference-in-Difference Regression

(1) (2) (3)
VARIABLES Return Distance ijt Return Distance ijt Return Distance ijt

Strength of Portfolio Overlap -.0010 *** -.0011* -.0011*
(.00002) (.0005) (.0005)

Pair Fixed Effect No Yes Yes
Time Fixed Effect No No Yes

Observations 3511952 3511952 3511952
Adjusted R Squared 0.0032 0.1353 0.2830

Cluster robust standard errors in parenthesis
*** p<0.001, ** p<0.01, * p<0.05

This table reports coefficient estimates and standard errors for the regression model

|R̊it − R̊jt| = αij + δ01POST + δ11POST ∗ ΩijT + εijt ,

where |R̊it − R̊jt| is the distance between exclusively held portfolio returns of banks i and j at time t,

1POST is an indicator for whether the observation lies in the post-treatment period, αij is a pair fixed

effect and Ωijτ is the value of the commonality index in the second quarter of 2007.

I find that the distance in returns on exclusively held portfolios has decreased sig-

nificantly more for banks with higher levels of portfolio overlap. An increase in the

commonality index by 0.1, that is an increase in the portfolio overlap of ten percent of

the total portfolio of bank i at time t, is accompanied by a decrease in the return dis-

tance by 0.0001. Expressed in standard deviations, an increase in the portfolio overlap

between two banks by one standard deviation is accompanied by a decrease in return

distance by 0.025 standard deviations. This magnitude of the coefficient is robust to

the inclusion of a pair fixed effect and a time fixed effect, and the significance decreases

only slightly.
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1.5 Conclusion

Network interconnections among financial institutions enhance the amount of insta-

bility which can be induced to a financial system by shocks which are initially small

in size. One example of links which can turn to be contagious in periods of financial

turmoil are overlaps in banks’ security portfolios through common holdings. The re-

sulting potential for contagion among said security portfolios is largely dependent on

the network topology, such that investigating its structure is a necessary exercise from

a systemic risk perspective.

In this work I make use of a proprietary database containing security investments

of all banks in the German financial system. This allows me to establish an asset

commonality network between banks each quarter at the level of the issuer of single

securities. I then investigate the topology of the resulting asset commonality network

and whether returns of separate bank portfolios show different correlation patterns

based on underlying connections.

Making use of banks’ exclusively held parts of their portfolios, which I define as

securities held by only one bank in the sample at a given point in time, I find evidence

pointing to a contagion channel to security prices in said portfolios. This channel is

more pronounced for banks that are large, highly leveraged and located at the core of

the commonality network. Through a path analysis I detect that a potential underlying

channel can be banks’ trading behavior following negative returns affecting institutions

with overlapping holdings. Lastly, I find evidence for the occurrence of shift-contagion

in the summer of 2007 using a difference-in-difference framework of the distance in

banks’ portfolio returns.

The results established in this paper are relevant from a systemic risk perspective.

They indicate a potential contagion channel to asset price correlations which increases

those above fundamental levels depending on the underlying holding structure. This,
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in turn, calls for close monitoring of the asset commonality network of banks, and its

potential to spread adverse shocks to the portfolios of single institutions through an

entire financial system.
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Chapter 2

BANK CREDIT RISK

NETWORKS: EVIDENCE FROM

THE EUROZONE

2.1 Introduction

One of the lessons learnt in Europe in recent years is the systemic relevance of the

financial sector and the potential risks of excessive interconnectedness. In Germany,

several banks suffered a sharp increase in their CDS prices in January 2009 following

financial turmoil at Commerzbank surrounding their takeover of Dresdner Bank. In

Italy, a scandal about secret derivative trading to conceal losses conducted by Monte

dei Paschi di Siena lead to a surge in CDS prices of the entire Italian banking sec-

tor in January 2013. In both cases, cross-border linkages with banks in the Eurozone

propagated the distress throughout Europe. As a result, several European countries

introduced costly rescue packages for banks perceived as “too big to fail” or “too inter-

connected to fail” in order to mitigate the crises in their banking sectors. In response
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to these events, current bank regulation focuses on systemically relevant institutions.

However, the detection of the network of credit risk interconnections between financial

institutions and the identification of highly interconnected firms is still to this date an

empirically challenging task.

The finance literature identifies two broad channels that induce dependence in the

default risk of financial institutions: common exposure to a systematic shock and de-

pendence between the idiosyncratic shocks of individual banks. As explained in Ang

and Longstaff (2013), the systematic channel is associated with both macroeconomic

or financial shocks. The effect of macroeconomic or financial shocks on the financial

system has been the scope of extensive research, such as Calomiris and Mason (2003),

Kritzman, Yuanzhen, Page, and Rigobon (2011) and Stein (2012). At the same time,

dependence can arise among the idiosyncratic shocks to banks, both through direct

and indirect connections. Direct counterparty exposures between banks stem from the

interbank market or obligations such as syndication and have been studied in Allen and

Gale (2000), Mistrulli (2011), Suhua et al. (2013) or Hale et al. (2013). Additionally,

banks can be linked indirectly when holding similar portfolios, as shown in Gai et al.

(2011), and Caballero and Simsek (2013).

Ang and Longstaff (2013) develop a credit risk model that focuses on systematic

shocks. The authors build upon the standard reduced form models for pricing credit

derivatives used in the finance literature (e.g. Duffie and Singleton, 1999) and propose

a multifactor affine model in which defaults of individual financial institutions can be

triggered by either systematic or idiosyncratic shocks. Dependence across the idiosyn-

cratic shocks of different institutions is however ruled out by assumption, and default

dependence only arises because of the systematic channel.

Despite the fundamental relevance of the systematic channel, in a study of forty

three financial crises Alfaro and Drehmann (2009) find that only half of them occurred
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before the macroeconomy experienced adverse economic shocks. This motivates us to

extend the Ang and Longstaff (2013) modelling approach by allowing for network type

dependence among the idiosyncratic shocks of individual banks. More specifically, we

assume that the idiosyncratic shocks have a sparse conditional dependence network

structure, which we call the bank credit risk network. The network is defined as an

undirected graph where vertices represent financial institutions and the presence of an

edge between vertices i and j denotes that the financial institutions i and j are not in-

dependent conditional on all other entities in the panel. We work under the assumption

that the network is sparse, which in this work means that each financial institution is

not connected with all other financial institution in the panel (i.e. the network is not

complete). In our framework, the conditional dependence network structure is entirely

characterized by the inverse covariance matrix (also known as concentration matrix) of

the idiosyncratic shocks. Exploiting well known results from the graphical literature

(Dempster, 1972), we have that in our model i and j are conditionally independent iff

the (i, j) entry of the inverse covariance matrix is zero. This implies that assuming that

the idiosyncratic shocks have a sparse conditional dependence network structure can

be more simply characterized by assuming that the inverse covariance matrix is sparse.

We develop an estimation strategy to recover the bank credit risk network from CDS

data. The systematic default intensity for each entity is identified as the one of the re-

spective sovereign. We begin by noting that standard pricing formulas for single-name

Credit Default Swap (CDS) contracts derived in Ang and Longstaff (2013) still apply

despite the network assumption. This allows to use standard procedures to bootstrap

risk neutral default intensities from CDS data. In a second step, we estimate the covari-

ance matrix of the idiosyncratic shocks as the covariance matrix of the idiosyncratic

risk neutral intensity first difference. Last, we apply a LASSO type regularization

algorithm to regularize the covariance (cf Yuan and Lin, 2007; Friedman, Hastie, and
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Tibshirani, 2011; Banerjee and Ghaoui, 2008). The procedure allows to simultaneously

estimate the elements of the concentration matrix of the idiosyncratic shocks and select

the non-zero entries. Our modelling approach has a number of highlights. Through

bootstrapping intensities rather than working with CDS spreads directly we can make

use of the entire term structure of CDS contracts, and interpret obtained partial corre-

lations as interconnections between the default probabilities of two entities rather than

their CDS prices. It is also important to emphasize that the bootstrapped intensity

adjusts for the yield curve, which indeed changed dramatically throughout the sample

period of our analysis. Overall, our estimation approach can be used to estimate the

bank credit risk network in large panels of financial institutions and can serve well as

a tool for measuring and monitoring interconnectedness.

We apply this methodology to study a sample of top financial institutions from

ten selected Eurozone countries in between 2006 and 2013. The sample includes two

dramatic periods for banks in the Eurozone: the financial crisis of 2007–2009 and the

European sovereign debt crisis of 2010–2012. A number of empirical findings emerge

from our analysis.

First of all, we find that the network channel captures a substantial amount of

cross sectional dependence. The important implication of this is that the probability of

joint defaults can be severely underestimated when one does not take into account the

network channel. Estimation results reveal that the channel is more relevant for core

countries. We interpret this as a consequence of the sovereign debt crisis. As the crisis

widens and credit risk increases, GIIPS banks become more tightly interrelated with

their respective sovereigns.

As far as the structure of the network is concerned, we find evidence of both intra-

and inter-country linkages between banks in Europe. The network reveals that the

most central banks are typically large financial institutions located in core Eurozone
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countries. In particular, the analysis shows that BNP Paribas and Deutsche Bank are

two of the most central institutions. Last, the network contains a small percentage

of links but it has a power law structure implying small world effects in credit risk

interdependence.

A rolling-window analysis shows that during crisis periods, heavily affected financial

institutions become hubs in the center of the bank credit risk network, with both a

high number and increased strength of connections. This is relevant from a contagion

perspective, since otherwise healthy institutions in core countries can be affected by

idiosyncratic shocks to troubled banks in the periphery. In crisis periods, these hub

institutions can quickly spread adverse shocks and lead to major downturns, such that

their identification and monitoring is crucial for the health of the financial system.

Finally, an out–of–sample validation exercise is used to evaluate our methodology.

We use our model to forecast the out–of-sample covariance matrix of idiosyncratic

intensities and contrast results with a number of alternative benchmarks. Results show

that our network based estimator provides the most accurate forecasts of credit risk

interdependence between banks.

This research is related to a number of contributions in the literature. First, this

work is related to the literature on credit risk through cds in finance and financial

econometrics which includes the work of Duffie and Singleton (1999), Lando (1998) and

Longstaff, Mithal, and Neis (2005). Second, our paper is related to the literature on

network estimation techniques. The list of contributions in this area is rapidly growing

and it includes, among others, the work of Billio, Getmanksi, Lo, and Pellizzon (2012),

Diebold and Yilmaz (2011), Hautsch, Schaumburg, and Schienle (2014), and Barigozzi

and Brownlees (2013).

The rest of the paper is structured as follows. Section 2.2 introduces the model

and the estimation procedure. Section 2.3 contains the empirical analysis of the paper.
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Concluding remarks follow in Section 2.4.

2.2 Methodology

We introduce a reduced form credit risk model in which default dependence among

financial entities arises through three channels: a global factor, a country factor and

a bank network channel. The model is a variant of standard affine multifactor models

used in the credit risk literature. The notation we adopt to describe the model is drawn

from Aı̈t-Sahalia, Laeven, and Pellizzon (2014).

2.2.1 Credit Risk Model

Global Credit Risk Factor

Credit events are modelled as jumps of a Poisson process with stochastic intensity.

The global shock is modelled as the jump of a Poisson process MG(t) with intensity

parameter λG that follows a standard square root process,

dλG(t) = aG(mG − λG(t))dt+ bG
√
λG(t)dWG(t) ,

where WG(t) denotes a Brownian motion.

Sovereign

We consider a panel of s different sovereigns, observed over n days. The default of

sovereign ` can be triggered by two different types of credit events: The first type is

a systematic global shock, affecting all sovereigns in the panel simultaneously. Con-

ditional on each global shock, the probability that sovereign ` defaults is denoted as

γ`,G ∈ (0, 1).

46



The second type is a country-specific shock that triggers default of the respective

sovereign with certainty. It is modelled as the jump of a Poisson process M`(t) with

intensity parameter λ` that follows a standard square root process,

dλ`(t) = a`(m` − λ`(t))dt+ b`
√
λ`(t)dW`(t) ,

where W`(t) denotes a Brownian motion independent of the one driving the global

intensity process WG(t).

Banks

We consider a panel of m financial entities each belonging to one of the s sovereigns,

and equally observed over a period of n days.

The default of institution i can now be triggered by three different types of credit

events: a systematic global shock, a systematic sovereign shock and an entity-specific

idiosyncratic shock.

The probability that entity i defaults following a systematic global shock is denoted

as γi,G ∈ (0, 1), while the probability of default following a systematic sovereign shock

is denoted as γi,` ∈ (0, 1).

The idiosyncratic shock of firm i is modelled as the first jump of a Poisson process

Ni(t) with intensity parameter ξi that follows a standard square root process,

dξi(t) = αi(µi − ξi(t))dt+
√
ξi(t)dBi(t) ,

where Bi(t) denotes an entity specific Brownian motion independent of the one driving

the systematic global intensity process WG(t) and the systematic sovereign intensity

process W`(t). Following an idiosyncratic shock, firm i defaults with certainty.

Also, we denote by Ft the natural σ-algebra generated by the Brownian motions
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Bi(t), WG(t) and W`(t).

The literature typically assumes that the Brownian motions Bi(t) driving the id-

iosyncratic shocks are independent, as, inter alia, in the model of Ang and Longstaff

(2013). In this model we work under the more general assumption that the Brown-

ian motions have a sparse conditional dependence network structure. The conditional

dependence network of the Brownian motions Bi(t) is defined as an undirected graph

N = (V , E), where V = 1, ...,m is the set of vertices and E ⊂ V × V is the set of edges.

If the Brownian motions Bi(t) and Bj(t) are conditionally independent given all others

then vertices i and j are not connected by an edge in the network (and vice versa), that

is

Bi(t) ⊥ Bj(t) | {Bk(t) : k 6= i, j} ⇔ (i, j) 6∈ E ,

where X ⊥ Y means that the random variables X and Y are independent. As it is well

known since at least Dempster (1972), the conditional dependence graphical structure

of the Brownian motions is entirely characterized by their inverse covariance matrix,

which is also known as concentration matrix. Let Σ = [σij] denote the instantaneous

covariance matrix of the Brownian motion vector B(t) = (B1(t), ..., Bm(t))′, that is,

B(t) ∼ N (0,Σt), and let K = [kij] denote its inverse. It can be shown that if i and j

are conditionally independent then kij is equal to zero (and vice versa). This implies

that the network structure of the Brownian motions is entirely encoded in the sparsity

structure of the concentration matrix K, that is,

E = {(i, j) : kij 6= 0} .

Thus, assuming that the Brownian motions have a sparse conditional dependence net-

work structure representation corresponds to assuming that the concentration matrix

K is sparse.
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It is straightforward to check that idiosyncratic intensity vector ξ(t) = (ξ1(t), ..., ξm(t))′

have the same network conditional dependence structure of the Brownian motion vector

B(t). The instantaneous covariance matrix Σξ(t) of the intensity vector ξ(t) is

(Σξ(t))ij =
√
ξi(t)ξj(t)σij.

The integrated covariance matrix Σ∗ξ of the intensity vector ξ(t) over the time interval

[0, n− 1], which measures the total covariation over the entire sample, is given by

(
Σ∗ξ
)
ij

= σij

∫ n−1

0

√
ξi(t)ξj(t) dt,

and the corresponding integrated concentration matrix is K∗ξ = (Σ∗ξ)
−1. It can be shown

that if K is sparse then K∗ξ is also sparse. Indeed, since the trajectories of the intensities

ξi are a.s. continuous, we can apply the mean value theorem for integrals, and we get

the existence of a point s ∈ (0, n− 1) such that

∫ n−1

0

√
ξi(t)ξj(t) dt = (n− 1)

√
ξi(s)ξj(s) a.s.

Therefore, we have that

Σ∗ξ = (n− 1)DsΣDs,

where Ds is the diagonal matrix with the vector (
√
ξ1(s), ...,

√
ξn(s)) on the diagonal.

In particular, the integrated concentration matrix can be written as

K∗ξ =
1

n− 1
D−1
s KD−1

s ,

which proves that if K is sparse so will be K∗ξ (almost surely). Observe that in our

argument we have also used the fact that ξi(s) > 0 almost surely.
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We define the bank credit risk network as the sparse conditional dependence depen-

dence network implied by the integrated concentration matrix K∗ξ of the idiosyncratic

intensity vector ξ(t). We use the partial correlations implied by the integrated con-

centration matrix K∗ξ as a measure of the strength of the relationship between the

idiosyncratic intensities. The partial correlation between entity i and j is defined as

ρij =
−k∗ij√
k∗iik

∗
jj

,

and measures the correlation between the idiosyncratic intensities of bank i and j

obtained after netting out the influence of the other intensities in the panel.

2.2.2 CDS Pricing

One of the key quantities of interest for credit derivative pricing is the Ft-conditional

probability of survival to a future time T for a financial entity. In our framework,

the probability that entity i has not defaulted by time T equals the probability that

no idiosyncratic shock occurs until time T times the probability that the entity does

not default following any of potentially many global shocks (with probability 1 − γi,G

each) and systematic shocks (with probability 1 − γi,` each). In terms of conditional
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probabilities, this writes as

pi(t, T )

= P (Ni(T )−Ni(t) = 0 | Ft)E
(
(1− γi,G)MG(T )−MG(t) | Ft

)
E
(
(1− γi,`)M`(T )−M`(t) | Ft

)
= E

(
exp

(
−
∫ T

t

ξi(s) ds

)
×
∞∑
g=0

1

g!
exp

(
−
∫ T

t

λG(s) ds

)(
(1− γi,G)

∫ T

t

λG(s) ds

)g

×
∞∑
j=0

1

j!
exp

(
−
∫ T

t

λ`(s) ds

)(
(1− γi,`)

∫ T

t

λ`(s) ds

)j ∣∣Ft)

= E

(
exp

(
−
∫ T

t

(γi,GλG(s) + γi,`λ`(s) + ξi(s)) ds

) ∣∣Ft) ,
where we are assuming that all computations are done under a risk-neutral probability

measure. It follows from the last equation that the standard reduced form framework

can be applied for valuing credit derivatives by setting the instantaneous probability

of default for entity i proportional to γi,GλG(s) + γi,`λ`(s) + ξi(s). Also notice that

in this modelling framework the instantaneous firm default intensity has a factor type

representation.

A Credit Default Swap (CDS) is a financial swap agreement through which the CDS

seller compensates the CDS buyer in case of a credit event (e.g. default). We denote

by ski t the CDS spread of entity i = 1, ...,m on day t with maturity k equal to 1, ..., 5

corresponding to the maturities of 2, 3, 5, 7 and 10 years. We assume the spread to

be paid continuously. Next to the CDS spread, we assume that there exists a risk-free

asset, and we denote the associated (continuously compounded) risk-free rate by rt

and the price at time t of the zero-coupon bond with maturity T by D(t, T ), so that

D(t, T ) = E
[
exp

(
−
∫ T
t
r(s)ds

) ∣∣ Ft]. We assume that the risk-less rate is independent

of all intensity processes.

The CDS contract consists on two legs, the spread leg and the protection leg. The
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value of the CDS spread leg at time t of entity i is given by

ski t

∫ T

t

D(t, s)E

[
exp

(
−
∫ s

t

(γi,GλG(u) + γi,`λ`(u) + ξi(u))du

) ∣∣ Ft] ds.
with T equal to t + 2, t + 3, t + 5, t + 7 and t + 10 for k equal respectively to 1, ..., 5.

The value at time t if the CDS protection leg of entity i is given by

CDS(protection leg)t = ω

∫ T

t

D(t, s)E

[
(γi,GλG(s) + γi,`λ`(s) + ξi(s))

× exp

(
−
∫ s

t

(γi,GλG(u) + γi,`λ`(u) + ξi(u))du

) ∣∣ Ft]ds, (2.1)

where 1−w is the recovery rate. To meet the no arbitrage condition, the protection leg

and the premium leg of a CDS contract must be equal, and we can get out the value

of premium payments,

ski t =
CDS(protection leg)t∫ T

t
D(t, s)EQ

[
exp

(
−
∫ s
t

(γi,GλG(u) + γi,`λ`(u) + ξi(u))du
) ∣∣ Ft] ds.

As shown in the Appendix, we can rewrite the CDS spread for each entity i as

ski t =
CDS(protection leg)t∫ T

t
D(t, s)F i,G

s,t (λG)F i,`
s,t (λ`)Gs,t(ξi)ds

, (2.2)

where

CDS(protection leg)t = ω

∫ T

t

D(t, s)

((
γi,GI

i,G
s,t (λG)F i,`

s,t (λ`)

+ γi,`I
i,`
s,t(λ`)F

i,G
s,t (λG)

)
Gs,t(ξi) + F i,G

s,t (λG)F i,`
s,t (λ`)Hs,t(ξi)

)
ds,

where λG = λG(t), λ` = λ`(t) and ξi = ξi(t), and the functions F,G, I,H are standard

and defined in the appendix. It is important to stress that despite the idiosyncratic
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shocks network dependence assumption the pricing of single–name CDS carries through

unaltered.

2.2.3 Estimation

We carry out inference on the bank credit risk network by combining standard estima-

tion techniques based on CDS prices (Duffie and Singleton, 1999; Ang and Longstaff,

2013; Aı̈t-Sahalia et al., 2014) together with LASSO type estimation (Tibshirani, 1996;

Friedman et al., 2011).

First, we estimate the bank credit risk model parameters αi, µi, σi for each bank in

the panel by minimizing the squared pricing errors between the model implied CDS

prices ŝki t and the observed CDS price ski t, that is

θ̂i = arg min
θi

n∑
t=1

5∑
k=1

(ski t − ŝki t)2 ,

where θi = (αi, µi, σi, γi)
′.

Note that the evaluation of this objective function requires performing a series of

intermediate optimizations. For a given value of θi we “bootstrap” the corresponding

idiosyncratic intensity ξi for each day. That is, for each day we find the ξi which

minimizes the squared CDS pricing error across all maturities keeping the value of the

parameters fixed to θi. This is not available in closed form but can be easily computed

by nonlinear least squares. Then, the value of the objective function is computed

as the sum the squared CDS pricing errors corresponding to θi and the sequence of

bootstrapped idiosyncratic intensities ξ. The CDS mispricing error objective function

is then minimized using a gradient based algorithm. As Ang and Longstaff (2013)

point out, note that ξ captures the level of the CDS term structure while the α, µ, σ

capture its shape. In order to estimate the bank credit risk model we need to identify
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the systematic intensity λ. This is identified with the intensity of the corresponding

sovereign of each bank and it is bootstrapped from the factor credit risk model using

sovereign CDS prices following the same estimation strategy used for the bank credit

risk model.

Next, we estimate the integrated covariance matrix Σ∗ξ using the bootstrapped id-

iosyncratic default intensity ξ̂(t) using the bank credit risk model estimates obtained in

the previous step. This is estimated using the idiosyncratic intensity realized covariance

matrix, that is

Σ̂∗ξ =
n∑
t=2

(ξ̂(t)− ξ̂(t− 1))(ξ̂(t)− ξ̂(t− 1))′ .

Realized covariance estimators have a long tradition in finance (cf Merton, 1980) in

the estimation of equity volatility, and have recently been rediscovered in the financial

econometrics literature (cf Andersen, Bollerslev, Diebold, and Labys, 2003) which has

thoroughly analysed the properties of these type of estimators.

Finally, we use the Graphical lasso procedure (glasso) to estimate the integrated

concentration matrix K∗ξ and the bank credit risk network. The estimator is defined as

K̂∗ξ = arg min
K∈Sn

{
tr(Σ̂ξK)− log det(K) + κ

∑
i 6=j

|kij|

}
, (2.3)

where κ ≥ 0 and Sn is the set of n×n symmetric positive definite matrices. We denote

by (k̂ij) the entries of the realized network estimator K̂∗ξ . The bank credit risk network

estimator is a shrinkage type estimator. If we set κ = 0 in (2.3), the estimator is equal

to the inverse realized covariance estimator (Σ̂∗ξ)
−1. If κ is positive, (2.3) becomes a

penalized objective function with penalty equal to the sum of the absolute values of

the non-diagonal entries in the estimator. The important feature of the absolute value

penalty is that for κ > 0 some of the entries of the realized network estimator are going

to be set to exact zeros. The highlight of this type of estimator is that it simultaneously
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estimates and selects the nonzero entries of K∗ξ . Numerically, Friedman et al. (2011)

show that minimizing the objective function in (2.3) is equivalent to carrying out a

series of LASSO regression. An appealing feature of this LASSO estimator is that it

is guaranteed to provide a sparse positive definite matrix estimate of the concentration

matrix. Moreover, the algorithm is suitable for the analysis of sparse large dimensional

systems containing, say, hundreds of series. Note that the estimator depends on the

choice of the tuning parameter κ which determines the sparsity of the K∗ξ which is

chosen in a data drive way using the BIC model selection criterion, which is widely

used in the literature (Yuan and Lin, 2007; Peng, Wang, Zhou, and Zhu, 2009).

2.3 Empirical Analysis

We use the methodology introduced in Section 2.2 to study the bank credit risk network

of our sample of Eurozone financial institutions. We carry out both static and dynamic

network analysis. The static analysis consists of estimating the network over the full

sample while in the dynamic analysis we use a rolling window estimation scheme to

obtain a time series of networks. Lastly, we carry out a forecasting exercise to assess if

our network methodology is able to produce accurate predictions of the future degree

of interdependence among the institutions in the panel.

2.3.1 Data

We consider a sample of large Eurozone financial institutions from January 1st, 2006

until December 31st, 2013. Note that, for simplicity, in what follows we refer to all of

our financial institutions as banks. We focus on financial firms headquartered in Austria

(AT), Belgium (BE), Germany (DE), Spain (ES), France (FR), Greece (GR), Ireland

(IE), Italy (IT), Netherlands (NL) and Portugal (PT). For each of these countries we
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select all financial institutions for which CDS data is available for the entire sample

period. The complete list of banks included in the sample is reported in Table 2.1.

For each bank in the sample we obtain daily mid-market spreads for one-year, two-

year, three-year, five-year, seven-year and ten-year CDS contracts. Additionally, we

include spreads for sovereign CDS contracts of the same maturity for all ten countries.

The data used in this study are obtained from Markit, who collects CDS quotes from

more than thirty market participants on a daily basis, and provides a composite spread

only if on a given date observations from at least two different participants are available.1

In order to calculate the values for zero-coupon bonds in the CDS pricing formulas, we

refer to the Nelson-Siegel-Svensson curves estimated by Deutsche Bundesbank with

daily frequency.

In the presentation of the empirical results we often consider four sub–periods cap-

turing different phases of the recent history of the Eurozone financial system. The first

period runs from January 1st, 2006 until August 1st, 2008 and is what we refer to as

the pre financial crisis period preceding the bankruptcy filing of Lehman Brothers on

September 15th, 2008. We let the pre financial crisis period end some weeks before the

actual filing for Chapter 11 protection to avoid including a period of anticipation in the

first subsample. The second period runs from August 1st, 2008 until April 1st, 2010

and is what we refer to as the financial crisis period. April 2010 is chosen as a breaking

point, since it coincides with the official filing for financial help by Greece on April

23rd. We take this as a starting point for our third subsample, which we refer to as the

sovereign debt crisis. This third period finishes on September 1st 2012, reflecting the

initiation of the legal framework for Outright Monetary Transactions by the ECB to

1We make use of CDS contracts for which the notional is denominated in Euro whenever available,
and enhance our sample with notional denominated in US dollars otherwise. Since the CDS spreads
themselves are denominated in basis points, we do not face the challenge of currency conversion.
Whenever both series are available, we can see that their correlation, both in levels and in first
differences, is close to one.
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face the European debt crisis. Our fourth subsample accordingly runs from September

2012 until the end of our sample period on December 31st, 2013.

2.3.2 Default Intensities

We begin by estimating the credit risk model introduced in Section 2.2 and boot-

strapping the risk–neutral default intensities of each sovereign and bank in the panel.

Figure 2.1 plots the bootstrapped sovereign/systematic risk–neutral default intensities,

divided into core (Austria, Belgium, France, Germany, Netherlands) and periphery

(Spain, Greece, Ireland, Italy, Portugal) countries.

Figure 2.1: Systematic Default Intensity

(a) Core (b) Periphery

This figure shows the time series of sovereign default intensities for core countries bootstrapped from

CDS prices of 1-year, 3-year, 5-year, 7-year and 10-year maturity and corresponding risk-neutral rates.

The intensity is measured in basis points.

The scale of the plot is such that an intensity level of one corresponds approximately

to a 1% probability of default over the next year. The time series profiles of the

sovereign default intensities are similar but there are clear differences in the levels of

the series for core and periphery countries. A principal component analysis on the first

differences of the sovereign intensities shows that the amount of variability explained by

the first principal component is 40%. The mean default intensity for core and periphery
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countries amounts to, respectively, 71 and 424 basis points. Note that through the

height of the sovereign debt crisis, CDS spreads for Greek sovereign debt increased up

to more than 23’000 basis points (or 230 percentage points) for 5-year CDS contracts,

implying an instantaneous default probability higher than 100% for the period from

September 21, 2011 to June 6, 2013.2 Figure 2.2 plots the bank idiosyncratic default

intensity 90% quantile range for each country.

The figure shows that there is a moderate degree of heterogeneity in the dynamics

of idiosyncratic intensities. In particular, we note that the period of maximum distress

for individual banks in core countries is in the financial crisis (with the exception of

Germany) while for periphery countries it is during the sovereign debt crisis. Again, a

principal component analysis on the first differences of the bank intensities shows that

the amount of variability explained by the first principal component is less than 20%.

2.3.3 Static Analysis

We estimate the bank credit risk network over the full sample and report the network

plot in Figure 2.3. The shrinkage parameter κ used to estimate the network is set to

obtain a degree of sparsity equal to 15%.3 The optimal level of κ chosen by the BIC

would have delivered a degree of sparsity of roughly 30%, which albeit being sparse is too

interconnected for visualization purposes. Furthermore, 50% of the partial correlations

selected by the BIC have a small economic magnitude (they are in between -0.06 and

0.03). To this extent, and in this section only, we set the shrinkage parameter κ to have

a degree of sparsity of 15% in order to visualize the network associated with the largest

partial correlations (in absolute value) only. The network layout algorithm4 chosen to

create the plot is such that the most interconnected banks in the network correspond

2In our analysis we truncate the default intensities at 100%.
3That is, the number of links in the network is 15% of the total possible number of linkages.
4We use the Fruchterman & Reingold (1991) force-direct graph drawing algorithm.
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Figure 2.2: Idiosyncratic Default Intensity

Austria Belgium Germany

Spain France Greece

Ireland Italy Netherlands

Portugal

This figure shows quantiles for instantaneous default intensities for all banks in a certain country boot-

strapped from CDS spreads of 1-year, 3-year, 5-year, 7-year and 10-year maturity and corresponding

risk-neutral rates. All intensities are measured in basis points.
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to the most central vertices in the plot. The vertex size is proportional to its degree

(that is, the number of connections to others) and the vertex color is set according to

the bank’s country of origin.

Figure 2.3: (Full Sample) Bank Credit Risk Network
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This figure shows the bank credit risk network obtained over the full sample period.

The analysis of the network provides interesting insights on the interdependence

structure of Eurozone financial institutions.

First, we use the partial correlation and degree distributions, which are reported in
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Figure 2.4, to summarize the global properties of the network. The partial correlation

distribution shows that all of the dependence in the network is positive. This facilitates

the interpretation of the graph in Figure 2.3 in that the presence of an edge always

signals that the idiosyncratic default intensity of a bank is positively related to the

one of its neighbours. Turning to the degree distribution, we note that there is strong

heterogeneity in the number of connections of the banks in the network, and that the

highest interconnected banks have a large proportion of linkages relative to the total.

These empirical regularities are interesting in that they are typical features of power

law networks, that is networks in which the degree distribution follows a power law.

Power law networks are popular in network analysis in that this class of graphs fits

well a large number of real world phenomena. One of the main characteristics of this

class of models is that they exhibit “small world effects”, that is the distance (i.e. the

smallest number of connecting edges) between any two nodes is proportional to the log

of the total number of vertices. Small world effects imply that even if the network is

large and sparse, all banks in the system are strongly interrelated. More specifically,

in our context small world effects imply a non–negligible probability of joint distress of

a substantial number of institutions following the idiosyncratic shock to an individual

entity.

A number of interesting country clustering patterns also emerge from the network.

To investigate these in more detail, in Table 2.2 we report the total number of linkages

among Eurozone countries in the network. The table shows that there is a high propor-

tion of within–country linkages: after controlling for the sovereign/systematic factor,

banks belonging to the same country still exhibit a high degree of interdependence.

This phenomenon is referred to as national fragmentation and has been documented

by, among others, Betz, Hautsch, Peltonen, and Schienle (2016a). These are particularly

high in the French and Italian banking systems where the proportion of within–country

62



Figure 2.4: Degree and Partial Correlation Distribution

(a) Degree Distribution (b) Partial Correlation Distribution

This figure shows histograms for the distribution of degree and partial correlation.

linkages is, respectively, 33.7% and 42.4%.

As far as between–country linkages are concerned, we observe that banks head-

quartered in France, Germany, Italy and Netherlands (in this order) have the highest

number of connections. It is interesting to note that the number of cross-border linkages

is correlated with banks’ international exposures. The comparison of the table with the

BIS statistics shows that the country ranking based on the number between–country

linkages essentially coincides with those based on the total foreign claims computed over

the entire sample period. Last, we study which banks are most central in the network

Table 2.2: Number of links

Austria Belgium Germany Spain France Greece Ireland Italy Netherlands Portugal Links

Austria 12.5 0.0 25.0 12.5 37.5 0.0 0.0 0.0 12.5 0.0 16
Belgium 0.0 0.0 16.7 0.0 61.1 0.0 0.0 0.0 22.2 0.0 18
Germany 3.9 2.9 17.6 8.8 30.4 0.0 0.0 13.7 16.7 5.9 102
Spain 3.4 0.0 15.3 16.9 25.4 0.0 0.0 20.3 10.2 8.5 59
France 3.5 6.4 18.0 8.7 33.7 0.0 0.6 9.9 14.5 4.7 172
Greece 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
Ireland 0.0 0.0 0.0 0.0 25.0 0.0 50.0 0.0 25.0 0.0 4
Italy 0.0 0.0 14.1 12.1 17.2 0.0 0.0 42.4 6.1 8.1 99
Netherlands 2.4 4.7 20.0 7.1 29.4 0.0 1.2 7.1 23.5 4.7 85
Portugal 0.0 0.0 18.2 15.2 24.2 0.0 0.0 24.2 12.1 6.1 33

This table shows the total number of links between any pair of countries for the full sample analysis

after applying shrinkage.
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using the page–rank algorithm and report rankings of the top ten banks in Table 2.3.

Inspection of the rankings reveals that size is an important determinant of inter-

connectedness: the most central banks in the network correspond to the largest banks

in the sample. Moreover, the most interconnected banks are typically headquartered

in core countries, especially in France and Germany. Central banks in the network can

be interpreted as yellow canaries of distress in the system, that is highly interdepen-

dent institutions whose distress coincides with distress in a large fraction of the entire

system.

Table 2.3: Centrality Analysis

1 France BNP Paribas
2 Germany Deutsche Bank
3 Netherlands Ing Bank NV
4 Germany Allianz AG
5 France Crédit Agricole
6 France Crédit Lyonnais
7 Germany Commerzbank
8 France AXA France
9 France Société Générale
10 Spain Banco Bilbao Vizcaya Argentaria S.A.

This table shows a ranking of the 10 most central banks by eigenvector centrality.

In order to get insights on the network estimation sensitivity, in Figure 2.5 we

report the so called trace plot. The trace plot shows the graph of the estimated partial

correlations as a function of the amount of shrinkage used in the estimation. The trace

plot shows that most of the partial correlations are positive irrespective of the degree of

shrinkage. We can find negative dependence only when very little shrinkage is applied

to the estimator and the magnitude of such negative correlation is small.

2.3.4 Time–Varying Analysis

In this section we carry out a time–varying analysis to study the evolution of the bank

credit risk network throughout the sample. The network time series is obtained by
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Figure 2.5: Trace plot

This figure shows the number and magnitude of links in the bank credit risk network as a function of

the shrinkage parameter, next to the values of the AIC criterion for determining the optimal amount

of shrinkage.

estimating the model at the end of each month from X to Y using the last two years of

observations available. The BIC is used to select the optimal amount of shrinkage.

Figure 2.6 shows the time series plot of the degree of network sparsity. Sparsity is on

average approximately 30% but it exhibits substantial time series variation throughout

the sample. In particular it peaks in correspondence of the demise of Lehman and

with the worsening of the sovereign debt crisis in Europe, and it falls at the end of

the financial crisis (before Greece files for bankruptcy) and with the beginning of the

Outright Monetary Transaction program of the ECB.

In order to quantify the amount of dependence captured by the factor and network
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Figure 2.6: Network Density

This figure shows the network density as a function of time.

components of the model, we define R2 type goodness of fit indices that we call factor

and network R2. The factor R2 of a bank is defined as the R2 of the regression of its

log–CDS spread difference on the log–CDS spread difference of its respective sovereign.

The network R2 of a bank is defined as the additional R2 obtained by adding as ex-

planatory variables of the previous regression all the log–CDS spread differences of all

the neighbouring banks detected in the bank credit risk network. The factor and net-

work R2 are computed on the basis on rolling estimates in order to have a time series

of values. Figure 2.7 shows the plot of the factor and network R2 averages by country.

The left and right panels show respectively the plots for the core and periphery coun-

tries. For core countries we note that the network channel is more relevant than the

factor one and that the time series profile of the R2s is roughly stable over time. On

the hand for periphery countries exhibit a rather different behaviour. At the beginning
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of the sample, the network channel dominates the factor. However, as the sovereign

debt crisis unwinds, banks progressively become more dependent with their respective

sovereign and the relevance of the interconnectedness with other banks declines. This

trend stops in the second half of 2012 in correspondence with the beginning of the

Outright Monetary Transactions program of the ECB. Overall, the plots convey that

both the factor and the network channel explain a significant amount of comovement

and exhibit different time series evolution throughout the sample.

Figure 2.7: Factor and Network R Squares

Core Periphery

Core Periphery

This figure shows the time-variation in factor and network R squares for core and periphery countries.

Figure 2.8 shows the plot of the eigenvector centrality index as a function of time for

two banks in our sample: Commerzbank and Monte dei Paschi di Siena. Commerzbank

was facing major difficulties in the times surrounding the acquisition of Dresdner Bank

starting from December 2008. In May 2009, Commerzbank received a liquidity injection
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by the government effectively constituting a partial nationalization of the bank. These

events are reflected in the the time-varying patter of Commerzbank eigenvector central-

ity where we see a sharp increase in December 2008 and a subsequent fall in mid 2009.

Monte dei Paschi di Siena in January 2013 news surrounding the scandal surrounding

derivative deals to conceal previous losses materialized leading to a large drop in stock

prices. Accordingly, the eigenvector centrality plot shows that the centrality of Monte

dei Paschi peaked around the same time.

Figure 2.8: Centrality

Commerzbank Monte Dei Paschi

This figure shows the time-variation in eigenvector centrality for Commerzbank (Germany) and Monte

dei Paschi di Siena (Italy) as a function of time.

2.3.5 Predictive Analysis

We carry out a predictive analysis to assess if the bank credit risk network methodol-

ogy provides advantages for forecasting. From an estimation perspective, the network

estimation methodology we propose can be interpreted as a regularization procedure of

a moderately large dimensional covariance matrix. As forcefully put forward, among

others, by Ledoit and Wolf (2004), precise estimation of a covariance matrix is chal-

lenging when the number of series considered is large, and in these cases covariance

regularization can provide substantial gains.
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The objective of the predictive exercise is to assess if the bank credit risk network

provides precise prediction of the future degree of idiosyncratic dependence among the

banks in the panel. We design our predictive evaluation exercise as follows. On the last

day of each month from X to December 2012, we compute the bank credit risk network

concentration matrix estimator K̂ξ (using the BIC to choose the shrinkage parameter

κ) as well as the realized covariance of the idiosyncratic shocks over the following 12

months, which we denote as Σ̂out
ξ . The network estimator is compared against two

alternatives: the inverse of the in–sample realized covariance estimator based on the

ξ differences; and the inverse realized covariance estimator with all its off–diagonal

entries truncated to zero. The loss function we use to measure the quality of different

concentration matrix estimators is the negative (predictive) log likelihood

L(K) = tr(Σ̂out
ξ K)− log det(K) .

Recall that because of the invariance property of the log–likelihood, evaluating the

covariance matrix or the covariance is the same.

We report the results of the predictive analysis in Figure 2.9 where we show the

negative predictive log–likelihood associated with three estimator on each month from

X to December 2012. The ranking between the different estimators is clear. The bank

credit risk network estimator provides more accurate predictions uniformly over the

entire out–of–sample period.

As it has been widely documented in the large dimensional covariance estimation

literature in finance (Ledoit and Wolf, 2004), adding some degree of regularization to

the covariance matrix, and, in particular in this case, truncating entries which are close

to zero reduces substantially the variability of the estimator. Thus overall, the bank

credit risk network methodology is not only useful to represent the dependence structure
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Figure 2.9: Out–Of–Sample Evaluation

This figure shows our of sample forecasts using three different covariance matrices: the proposed

network methodology (squares), diagonal (triangles) and unconstrained (circles).

of idiosyncratic shocks but it also provides more precise estimates of the covariance of

the idiosyncratic shocks when the conditional dependence structure of these shocks is

sufficiently sparse.

2.4 Conclusion

The recent financial crisis in Europe has forcefully shown the potential impact of high

levels of interconnectedness in the financial system and brought forward a renewed

interest in monitoring the current state of interconnections in the financial sector as

well as identifying its most central institutions. However, in the absence of regulatory

data, this remains a challenging task empirically.
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In this work we introduce a new approach to estimating interconnectedness through

extending the standard reduced form credit risk model commonly used in finance. In our

proposed model, interdependence in credit risk stems from two components: common

exposure to a systematic factor and pairwise dependence among idiosyncratic shocks.

We then use this methodology to study credit risk interdependence in a sample of fi-

nancial institutions located in ten selected Eurozone countries over an eight-year period

from 2006 to 2013.

We find that the network channel captures a substantial amount of interdependence

on top of what is explained by systematic factors. A cross-sectional analysis shows

that the network channel is more relevant in core countries, whereas systematic factors

dominate for periphery countries. This effect is potentially due to the outbreak of the

sovereign debt crisis which leads to a stronger connection between banks in periphery

countries and their respective sovereigns. We find evidence of linkages both intra-

and inter-country even after controlling for each respective sovereign. Furthermore,

the structure of the credit risk network is power law, implying that the number of

steps between any two institutions is small and adverse shocks can spread through the

network quickly.

A time-varying analysis reveals that affected financial institutions become hubs in

the credit risk network during crisis times. These hub institutions can spread negative

shocks within the network through an increased number as well as strength of linkages,

making their monitoring an important task for financial stability.

Our results have important implications from a systemic risk perspective. First, we

find that frequently used models which do not account for pairwise dependence can

severely underestimate the joint default probability of two institutions. By failing to

account for bilateral interconnections among banks, sources of pairwise interdependence

go unnoticed. Second, our time-varying analysis shows that the network position and
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potential for spreading contagion of single institutions can vary over time, creating the

need for constant monitoring of systemic importance which is not just defined by more

stable characteristics such as bank size.
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2.5 Appendix: Proofs

The characterization of the integrated partial correlation network is convenient for

estimation. The detection of the network structure among the entities is equivalent to

recovering the zeros of the concentration matrix from the data. Moreover, it is well

known that if we write Bi(t) as

Bi(t) =
∑
j 6=i

βijBj(t) + ui(t),

then ui(t) is independent of Bj(t) for all i 6= j if and only if

βij = ρij
√
kjj
kii
.

Moreover, for such defined βij,

u(t) ∼ N (0, Ut),

where U is the variance-covariance matrix with ij-th entry
kij
kiikjj

.

In order to simplify the exposition, we assume that t = 0 and T = t in (2.1). Then,

we are going to show that the functions in (2.2) are given by

F i,j(λj, t) = F j
1 (t) exp(F j

2 (t)λj), for j = G, `

G(ξi, t) = G1(t) exp(G2(t)ξi)

H(ξi, t) = (H1(t) +H2(t)ξi) exp(G2(t)ξi)

I i,j(λj, t) = (Ij1(t) + Ij2(t)λj) exp(F j
2 (t)λj), for j = G, `
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with

F j
1 (t) = exp

(
−ajmj(aj − ψi,j)t

b2
j

)(
νi,j − 1

νi,j − etψi,j

) 2ajmj

b2
j

F j
2 (t) =

aj − ψi,j
b2
j

− 2ψi,je
tψi,j

b2
j(νi,j − etψi,j)

G1(t) = exp

(
−αiµi(αi − Φi)t

Γ2
i

)(
θi − 1

θi − etΦi

) 2αiµi
Γ2
i

G2(t) =
α− Φi

Γ2
i

− 2Φie
tΦi

Γ2
i (θi − etΦi)

H1(t) =
αiµi
Φi

(eΦit − 1) exp

(
−αiµi(αi − Φi)t

Γ2
i

)(
θi − 1

θi − eΦit

) 2αiµi
Γ2
i

+1

H2(t) = exp

(
−αiµi(αi − Φi)t

Γ2
i

+ Φit

)(
θi − 1

θi − eΦit

) 2αiµi
Γ2
i

+2

Ij1(t) =
ajmj

ψi,j
(eψi,jt − 1) exp

(
−ajmj(aj − ψi,j)t

b2
j

)(
νi,j − 1

ν − eψi,jt

) 2ajmj

b2
j

+1

Ij2(t) = exp

(
−ajmj(aj − ψi,j)t

b2
j

+ ψi,jt

)(
νi,j − 1

νi,j − eψi,jt

) 2ajmj

b2
j

+2

and

ψi,j =
√
a2
j + 2γi,jb2

j

νi,j =
aj + ψi,j
aj − ψi,j

Φi =
√
α2
i + 2Γ2

i

θi =
αi + Φi

αi − Φi

Γ2
i =

∑
j,k 6=i

βijβikσjk +
1

kii
.

In order to prove this formulas, we rearrange the terms in (2.1), so that the it can
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be expressed as

CDS(protection leg)t = ω

∫ T

0

D(t)(
γi,GE

[
λG(t) exp

(
−
∫ t

0

γi,GλG(s)ds

)]
E

[
exp

(
−
∫ t

0

γi,`λ`(s)ds

)]
E

[
exp

(
−
∫ t

0

ξi(s)ds

)]
+ γi,`E

[
λ`(t) exp

(
−
∫ t

0

γi,`λ`(s)ds

)]
E

[
exp

(
−
∫ t

0

γi,GλG(s)ds

)]
E

[
exp

(
−
∫ t

0

ξi(s)ds

)]
+ E

[
exp

(
−
∫ t

0

γi,GλG(s)ds

)]
E

[
exp

(
−
∫ t

0

γi,`λ`(s)ds

)]
E

[
ξi(t) exp

(
−
∫ t

0

ξi(s)ds

)])
dt.

Solving F

Set

F (λ, t) = F i(λj, t) = E

[
exp

(
−
∫ t

0

γi,jλj(s)ds

)]
,

where λ := λ(0). Applying Itô’s formula to the discounted prices, which we also denote

by F (λ(t), t), we have that

dF = Ftdt+ (a(m− λ(t))dt+
√
λ(t)dW (t))Fλ +

1

2
b2λ(t)Fλλdt− γiλ(t)Fdt

where

Ft =
d

dt
F (λ(t), t), Fλ =

d

dλ
F (λ(t), t), Fλλ =

d2

dλ2
F (λ(t), t).

Since the discounted prices are martingales with respect to the risk-neutral measure,

we get that

b2

2
λ(t)Fλλ + a(m− λ(t))Fλ + Ft − γiλ(t)F = 0

subject to F (λ, 0) = 1.

In accordance with the CIR, we decompose

F (λ, t) = F1(t) exp(F2(t)λ).
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Then F1(t), F2(t) need to fulfill the Riccati equations

b2

2
F2(t)2 − aF2(t)− γi + F ′2(t) = 0

amF2(t) +
F ′1(t)

F1(t)
= 0

subject to F1(0) = 1 and F2(0) = 0. The solution is given by

F1(t) = exp

(
−am(a− ψi)t

b2

)(
νi − 1

νi − etψi

) 2am
b2

F2(t) =
a− ψi
b2

− 2ψie
tψi

b2(νi − etψi)

where

ψi =
√
a2 + 2γib2

νi =
a+ ψi
a− ψi

.

Solving I

Set

I(λ, t) = I i(λj, t) = E

[
λj(t) exp

(
−
∫ t

0

γi,jλj(s)ds

)]
.

Applying Itô’s formula to the discounted prices also denoted by I(λ(t), t), we get that

dI = Itdt+ (a(m− λ(t))dt+ b
√
λ(t)dW (t))Iλ +

1

2
b2λ(t)Iλλdt− γiλIdt.

Under the risk-neutral measure, the discounted prices are martingales, so we get

b2

2
λ(t)Iλλ + a(m− λ(t))Iλ + It − γiλ(t)I = 0
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subject to the boundary condition I(λ, 0) = λ.

Again, we decompose

I(λ, t) = (I1(t) + I2(t)λ) exp(F2(t)λ).

Then, we obtain the Riccati equations

(am+ b2)F2(t)− a+
I ′2(t)

I2(t)
= 0

amI2(t) + amI1(t)F2(t) + I ′1(t) = 0.

Substituting F2(t) and solving the equations using the initial conditions I1(0) = 0 and

I2(0) = 1, we get that the solution is given by

I1(t) =
am

ψi
(eψit − 1) exp

(
−am(a− ψi)t

b2

)(
νi − 1

ν − eψit

) 2am
b2

+1

I2(t) = exp

(
−am(a− ψi)t

b2
+ ψit

)(
νi − 1

νi − eψit

) 2am
b2

+2

.

Solving G

Recall that for each i = 1, ..., n

G(ξi, t) = E

[
exp

(
−
∫ t

0

ξi(s)ds

)]
,

where ξi := ξi(0). Applying Itô’s formula, we get that

dG = Gtdt+Gξidξi +
1

2
Gξiξi < dξi, dξi > .
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Therefore, the discounted prices satisfy

dG = Gtdt+ (αi(µi − ξi(t))dt+
√
ξi(t)dBi(t))Gξi +

Γ2
i

2
ξi(t)Gξiξidt− ξi(t)Gdt

where

Γ2
i =

∑
j,k 6=i

βijβikσjk +
1

kii
.

Under the risk-neutral measure, discounted prices G(ξi(t), t) are martingales, so it holds

that

Γ2
i

2
ξi(t)Gξiξi + αi(µi − ξi(t))Gξi +Gt − ξi(t)G = 0

subject to the boundary condition G(ξi, 0) = 1.

Again, we decompose

G(ξi, t) = G1(t) exp(G2(t)ξi).

Then, for the partial differential equation to be satisfied, G1(t), G2(t) need to fulfill the

Riccati equations

Γ2
i

2
G2

2(t)− αiG2(t) +G′2(t)− 1 = 0

αiµiG2(t) +
G′1(t)

G1(t)
= 0

subject to the initial conditions G1(0) = 1 and G2(0) = 0. Observe that these are the

same equations than for F1(t) and F2(t) with Γi = b, αi = a, µi = m and γi = 1. Hence,
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the solution is

G1(t) = exp

(
−αiµi(αi − Φi)t

Γ2
i

)(
θi − 1

θi − etΦi

) 2αiµi
Γ2
i

G2(t) =
α− Φi

Γ2
i

− 2Φie
tΦi

Γ2
i (θi − etΦi)

where

Φi =
√
α2
i + 2Γ2

i

θi =
αi + Φi

αi − Φi

.

Solving H

Recall that for each i = 1, ..., n

H(ξi, t) = E

[
ξi(t) exp

(
−
∫ t

0

ξi(s)ds

)]
.

Applying Itô’s formula to the discounted prices also denoted by H(ξi(t), t), we get that

dH = Htdt+Hξidξi +
1

2
Hξiξi < dξi, dξi > .

Hence,

dH = Htdt+ (α(µi − ξi(t))dt+
√
ξi(t)dBi(t))Hξi +

Γ2
i

2
Hξiξidt− ξiHdt.

Under the risk-neutral measure, the discounted prices H(ξi(t), t) are martingales, so we

need that

Γ2
i

2
ξi(t)Hξiξi + αi(µi + ξi(t))Hξi +Ht − ξi(t)H = 0
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subject to the boundary condition H(ξi, 0) = ξi.

Once again, we decompose

H(ξi, t) = (H1(t) +H2(t)ξi) exp(G2(t)ξi).

Then, for the partial differential equation to be satisfied, H1(t), H2(t) need to fulfill the

Riccati equations

H ′2(t)

H2(t)
− αi + (Γ2

i + αiµi)G2(t) = 0

H ′1(t) + αiµiH1(t)G2(t) + αiµiH2(t) = 0

subject to the initial conditions H1(0) = 0 and H2(0) = 1. Observe that these are the

same equations than the ones we have for G1(t) and G2(t) with again Γi = b, αi = a,

µi = m and γi = 1. Therefore, the solution is given by

H1(t) =
αiµi
Φi

(eΦit − 1) exp

(
−αiµi(αi − Φi)t

Γ2
i

)(
θi − 1

θi − eΦit

) 2αiµi
Γ2
i

+1

H2(t) = exp

(
−αiµi(αi − Φi)t

Γ2
i

+ Φit

)(
θi − 1

θi − eΦit

) 2αiµi
Γ2
i

+2

.
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Chapter 3

CREDIT RISK

INTERCONNECTEDNESS:

WHAT DOES THE MARKET

REALLY KNOW?

3.1 Introduction

The recent financial and sovereign debt crises in Europe have forcefully shown the

importance of bank interconnectedness for the stability of the financial system. In order

to measure bank interconnectedness empirically, a number of authors have recently

put forward network estimation techniques based on market information. 1 There is,

however, a challenge in the identification of the propagation channels of financial shocks,

as well as the quantification of their relevance. Market-based measures do not allow

1Contributions in this area include the work of Diebold and Yilmaz (2015), Billio, Gray, Lo, Merton,
and Pelizzon (2015), Zhang, Schwaab, and Lucas (2014), Betz, Hautsch, Peltonen, and Schienle (2016b)
and Brownlees, Hans, and Nualart (2016).
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for disentangling between the transmission of idiosyncratic shocks through the financial

system (contagion) and endogenous shocks initiated by excessive risk-taking, rational

revisions, or pure panics (Freixas, Laeven, and Peydro, 2015). Any identification of the

propagation channels requires granular datasets at disaggregated levels that are not

always available, even to supervisors and regulators. Thus, overall it is still unclear if

these market information-based measures capture actual bank balance sheet linkages

and risks, and, if yes, to which extent. The objective of this study is to shed light onto

this question by studying the relationship between market-based measures of credit risk

interconnectedness and actual common exposures of banks through their funding and

securities holdings (liability-asset structure).

On the theoretical front, there is a growing literature that analyzes how balance

sheet channels such as interbank lending, loan syndication or asset commonality induce

interconnectedness among banks and propagate distress (inter alia, research by Freixas

et al. (2000), Iyer and Peydró (2005), Gai et al. (2011), Greenwood et al. (2015),

Caballero and Simsek (2013), Duarte and Eisenbach (2015), Hale, Kapan, and Minoiu

(2016) and Suhua et al. (2013)). On the empirical side, there is a large literature which

focuses on measuring credit risk interconnectedness from market data (Kritzman et al.

(2011), Zhang et al. (2014), Barigozzi and Brownlees (2013), Podlich and Wedow (2014)

and Betz et al. (2016b)). However, it seems unclear why high frequency market data

should reflect bank fundamentals (actual balance sheet information), that - at best

- are only available annually. To the best of our knowledge, ours is the first study to

document that market-based measures of bank interconnectedness reflect actual balance

sheet information.

Despite the importance of this link both for policy and macro-finance, its quantifi-

cation has so far been elusive. This is due to the lack of exploitation of comprehensive

balance sheet data, such as detailed wholesale funding relations and individual port-

83



folio compositions. In this work we overcome this hurdle and analyze this question

by taking advantage of a unique proprietary dataset of the German banking sector

for 2006-13, which contains data on banks’ funding and asset allocations. Our study

investigates the link between market-based measurement of bank credit risk intercon-

nectedness stemming from CDS data and underlying balance sheet channels. In par-

ticular, our methodology allows us to assess empirically the relevance of the balance

sheet channels as drivers of credit risk interdependence. The contribution of this study

is two-fold. First, it sheds light on the relative quantitative importance of both direct

and indirect channels of interconnectedness for the market’s perception of bank credit

risk interdependence. Second, by assessing to what extent market-based measures of

interconnectedness reflect balance sheet exposures, we evaluate the use of such measures

of interdependence as risk monitoring tools in the absence of granular data.

The literature has established a number of direct and indirect channels which can

induce interdependence in bank credit risk. In the recent crises, the propagation of

distress can be traced back to the way banks managed their liquidity on both sides

of the balance sheet. Banks relied heavily on the short-term interbank money market

and thus became highly exposed to funding risk, which particularly unraveled in the

aftermath of Lehman’s failure. But also, the misjudgment of the quality of asset-

backed securities and the bias towards fixed-income products issued by periphery euro-

area member states made banks particularly vulnerable to the deteriorating market

liquidity of the underlying asset. Both the funding and market liquidity risk triggered a

liquidity spiral (Brunnermeier (2009) and Brunnermeier and Pedersen (2009)) with self-

enforcing dynamics for a given bank and the banking sector as a whole. This motivates

us to construct indices that focus on capturing these channels. The funding side of

banks’ balance sheets is identified through bilateral exposures in the wholesale funding

market, which has become an increasing source of funding risk with banks’ increased
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reliance on short-term funds. Asset allocations are decomposed into banks’ securities

investments and loans granted to the real economy. Note that interbank exposures

are an example of a direct channel, whereas the latter two are indirect balance sheet

channels of interconnectedness.

We measure market-based interconnectedness between banks using idiosyncratic

partial correlations, which are a natural choice for our analysis. The idiosyncratic

partial correlation between two banks is defined as their correlation after netting out

the influence of (i) common systematic factors and (ii) all remaining entities in the

panel. While simple correlation between two banks might be spurious and could be

driven by common dependence with a third party, partial correlation does not suffer

from this drawback as it nets out the influence of all remaining entities. In order to

focus on credit risk dependence, we construct our partial correlation index based on

banks’ idiosyncratic default intensities implied by CDS prices, building upon Ang and

Longstaff (2013) and Brownlees et al. (2016). For simplicity, we call our market–based

measure of bank interconnectedness based on idiosyncratic partial correlations simply

as realized interconnectedness.

Two main results emerge from the analysis. First, we find that realized interconnect-

edness strongly reflects both direct (wholesale funding market) and indirect channels

(securities management and credit supply) and is influenced by banks’ liquidity man-

agement on both sides of the balance sheet. On the funding side, we find that bank

pairs in the case of which both counterparties have higher Tier 1 capital-weighted inter-

bank exposure show higher realized interconnectedness. On the asset allocation side,

we document that both banks’ exposure to the real economy and their securities invest-

ments, have an impact on realized network connections. Bank pairs with more similar

lending practices to the real economy show up as more interconnected. Moreover, we

find higher realized interconnections among bank pairs with higher exposures to risky
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securities.

Second, we show that the relation between realized interconnectedness and the bal-

ance sheet positions exhibits asymmetries both cross-sectionally and over time. We

find that interbank lending is a relevant driver of realized interconnectedness during

crisis times. On the asset allocation side, we show that banks’ securities investments

have asymmetric effects in the cross-section: bank pairs with higher exposures to the

troubled security classes show up as more interconnected. On the contrary, commonal-

ity in securities investments related to crisis-unaffected security classes does not induce

higher dependency.

This work relates mainly to two different strands in the literature. First, it is re-

lated to literature on balance sheet channels of bank interconnectedness. Important

examples on direct channels such as interbank lending include Iyer and Peydró (2005),

Dasgupta (2004), Freixas et al. (2000), Fourel, Héam, Salakhova, and Tavolaro (2013),

Memmel and Sachs (2013) and Ippolito, Peydró, Polo, and Sette (2016). On the rel-

evance of indirect sources of interconnectedness, Allen and Carletti (2009) as well as

Duarte and Eisenbach (2015) are recent examples. Furthermore, Nier, Yang, Yorul-

mazer, and Alentorn (2010) relate bank interconnectedness to bank-specific balance

sheet information. Secondly, it is related to empirical papers estimating systemic risk

and bank interconnectedness from market data. Contributions in this area include the

work of Adrian and Brunnermeier (2016), Acharya, Pedersen, Philippon, and Richard-

son (2016), Diebold and Yilmaz (2016), Zhang et al. (2014), Billio et al. (2015), Betz

et al. (2016b), Diebold and Yilmaz (2015), Brownlees et al. (2016), Cetina, Paddrik,

and Rajan (2016) and Constantina, Peltonen, and Sarlin (2016).

The remainder of the paper is organized as follows. Section 3.2 introduces the

dataset and variable definitions. Section 3.3 explains the model and estimation method-

ology. Section 3.4 presents empirical results and Section 3.5 concludes. A detailed
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description of the network estimation technique we use can be found in Appendix 3.6.

3.2 Data

The sample consists of 78 bilateral bank connections stemming from a database of 13

large German banks between January 2006 and December 2013. The sample of banks

included in the analysis is the one of large German banks for which reliable CDS data

is available over the entire sample period. Overall, our sample covers nearly 60 % of

assets of the German banking sector.

We combine different data sources to construct the dataset used in this paper:

Markit pricing data on CDS contracts as well as the Deutsche Bundesbank credit reg-

ister, borrowers statistics, security holdings statistics and banking statistics.

From Markit pricing data we obtain daily mid-market spreads for one-year, two-year,

three-year, five-year, seven-year and ten-year senior CDS contracts. The sample con-

sists of quotes contributed by more than 30 dealers for all trading days. Markit CDS

spread quotes are one of the most widely used sources of CDS data in the literature

(Mayordomo, Peña, and Schwartz, 2014).

The Deutsche Bundesbank credit register contains data on large exposures of banks to

individual borrowers. The institutions are required to report if their exposures to an

individual borrower or the sum of exposures to borrowers belonging to one borrower

unit exceeds the threshold of 1.5 million euro. In our analysis, we use interbank loans.

The credit register applies a broad definition of loan including traditional loans, bonds,

off-balance sheet positions and exposures from derivative positions (excluding trading

book positions). The quarterly reporting is pair-wise, such that for each observation

we are able to uniquely identify both the borrower and the lender.2

2Since a typical interbank loan is relatively large, we think that the threshold of 1.5 million euro
does not cause a bias.
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The Deutsche Bundesbank borrowers statistics are used to extract banks’ domestic

lending practices to the German real economy. This is a database to which banks re-

port outstanding loan amounts to all German borrowers itemized across 23 industries

on a quarterly basis.

We gather data on bank portfolios from the Deutsche Bundesbank securities holdings

statistics, which contain detailed quarterly information on all securities holdings of Ger-

man banks in terms of volume (i.e. euro total) excluding derivatives. This data is very

fine-grained so that we can identify securities at the ISIN level. For the purpose of our

analysis, we eliminate those observations from the sample where a bank holds securities

for its customers and those observations where the holder is equivalent to the issuer. A

major portion of banks’ portfolios consists of different types of bonds including floating

rate notes, Pfandbriefe (covered bonds), government bonds and other bonds.

Lastly, we collect data on banks’ Core Tier 1 ratio, equity, leverage ratio (calculated

as total assets over Core Tier 1 capital) and risk-weighted assets from the Deutsche

Bundesbank banking statistics.

In carrying out the analysis, we convert all variables to weekly frequency. One of

the challenges we are facing is the mixed frequency in the original data: the banking

network is computed at daily frequency, while all explanatory variables are only avail-

able quarterly. Therefore, we decide to run regressions on a basis of weekly data. For

converting the bank credit risk network to weekly frequency, we take the average of the

values for all trading days within a week obtained through the rolling analysis, and date

them to the respective Friday. In order to increase the frequency of the explanatory

variables to weekly, we perform one-dimensional linear interpolation separately for each

bank pair.

We carry out the analysis both in a baseline specification over the full sample period

and an extended specification with subsample-specific coefficients. For the extended
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specification we consider four subperiods in line with important macroeconomic and

financial events. We define a pre-crisis period to run from the beginning of our sample

until July 31st, 2008. This period length is chosen such that it ends roughly six weeks

before the failure of investment bank Lehman Brothers, in order to take out any antici-

pation effects from the sample. The banking crisis period is defined to run from August

1st, 2008 until March 31st, 2010, so that it ends with the Greek claim to a sovereign

bailout scheme by the IMF on April 10th, 2010. The sovereign debt crisis period runs

accordingly from April 1st, 2010 until August 31st, 2012. Its end is assumed to be

the announcement of Outright Monetary Transactions by the ECB on September 6th,

2012. The last period, which we carefully dub “post-crisis” then runs from September

1st, 2012 until the end of our sample.

3.2.1 Variable Definitions

Realized Bank Interconnectedness

In this work we define interconnectedness among banks on the basis of standard reduced

form credit risk models used in the finance literature. More precisely, we draw upon

the Ang and Longstaff (2013) credit risk model. In this model the default intensity of

a financial entity is decomposed into a common systematic factor and an entity-specific

idiosyncratic component. We associate interconnectedness between banks with the

partial correlation among those idiosyncratic intensity components. In this context,

partial correlation measures linear dependence between two banks conditional on all

other institutions in the panel, and thus captures pair-wise relations and is not affected

by spurious effects.

We make use of CDS data to back out partial correlations implied by market prices.

We provide a detailed description of the estimation approach in Appendix 3.6 and
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summarize here the main steps here. First, we identify the systematic default intensity

as that of the German sovereign. Making use of the full term structure of CDS prices

and corresponding risk-neutral rates, we apply a standard bootstrapping algorithm to

obtain instantaneous default intensity for all banks in the sample as well as the German

sovereign, which we denote respectively as λi t and λf t. We obtain idiosyncratic default

intensities for each bank as the residuals of the regression of the bank default intensity

λi t on the systematic default intensity λf t (in first differences). Finally, we estimate

partial correlation among the idiosyncratic intensities as the residuals of the first step.

We call this realized interconnectedness and denote it ρi j.

Partial correlations are estimated daily on a rolling basis. The window length used

throughout the paper amounts to 500 trading days, roughly equaling 2 years of data.

The partial correlation obtained from the rolling procedures are denoted by ρi j t.

Table 3.1 summarizes CDS spreads for all banks in the sample, from which we back

out individual instantaneous default intensities. Figure 3.1 shows the term structure

of sovereign CDS spreads for Germany, which we use to identify the systematic default

intensity. Figure 3.2 shows the risk-neutral default intensity for the German sovereign

resulting from the bootstrapping procedure.
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Table 3.1: Summary statistics of bank CDS spreads

Mean Std. Dev. Min. Median Max.
Bank A 66.77 42.42 5.93 69.27 192.08
Bank B 100.81 72.15 5.62 103.5 346.07
Bank C 104.84 84.5 7.97 84.54 364.12
Bank D 89.36 59.55 8.92 92.51 317.8
Bank E 89.91 49.04 10.25 103.31 189.63
Bank F 69.97 41.72 7.92 69.9 155.8
Bank G 154.29 104.35 7 167.16 445.19
Bank H 102.79 64.47 7.29 119.19 259.97
Bank I 120.65 87.98 5.69 112.95 361.54
Bank J 101.39 71.38 5.91 113.06 355.33
Bank K 103.21 69.45 5.95 116.33 302.56
Bank L 48.55 26.04 5.63 50.93 125.64
Bank M 99.38 68.91 5.77 109.97 334.66

Figure 3.1: Term structure of 1-year, 5-year and 10-year CDS spreads
for German sovereign
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Figure 3.2: CDS-implied default intensity of German sovereign
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Interbank Exposure

We construct an interbank exposure index using interbank lending data from the

Deutsche Bundesbank credit register. As suggested in, for example, e.g. Upper (2011)

we calculate interbank lending over capital as

IBijt =
1

2

(
IBLi→jt
CT1capit

+
IBLj→it
CT1capjt

)

where IBLi→jt denotes the amount of interbank lending from bank i to bank j at time

t and CT1capit is the Core Tier 1 capital of bank i at time t. We take the average of

both interbank positions weighted by capital since, in case of a default on interbank

positions, both sides are affected, for the lender the position constitutes a credit risk

which can potentially wipe out part of his capital in case of default. For the borrower,

however, this constitutes a funding risk: in case of default the corresponding position

has to be substituted by another interbank relation.

Similarity in Lending Practice

The second channel assessed in this paper is similarity in lending practices of two banks.

For obtaining a measure of pair-wise distance, we rely on the methodology proposed

in Cai, Saunders, and Steffen (2016). Their measure is constructed in such a way

that a lower distance between two banks implies greater similarity in terms of their

lending portfolios. Categories in the lending register are defined along two dimensions:

borrower type and loan type. We compute portfolio weights for each bank according

to the defined categories.3 Denote by wilt the relative portfolio weight of bank i in loan

3Examples of borrower types distinguished in the database are enterprises and self-employed private
individuals or salaried individuals and other private individuals. Loans granted to the enterprises and
self-employed individuals category are then further distinguished into industries such as agriculture,
forestry, fishery and aquaculture or wholesale, retail trade and repair of motor vehicles and motorcycles.
Loan types include, e.g., acceptance credit and credit for housing construction.
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category l at time t. Let L be the total number of loan categories defined, and notice

that for bank i we have that
∑L

l=1wilt = 1 at each time t. Then the distance between

two banks i and j at time t is defined as

LDijt =

√√√√ L∑
l=1

(wilt − wjlt)2

For interpretation purposes, we standardize the distance variable to be between 0 and

1, where 0 refers to the lowest distance between two banks in our sample.

Commonality in Securities Investments

Next we construct an index measuring commonality in securities investments on the

basis of the Deutsche Bundesbank securities holdings register. We decompose com-

monality into “safe” and “troubled” security classes. We consider securities issued in

Germany as safe and, because of the time period of this analysis, securities issued in

Greece, Ireland, Italy, Portugal and Spain as troubled. We define safe exposures for the

(i, j)–th pair at time t as

SEijt = log(Dit) log(Djt).

where Dit denotes the total monetary value of bank i’s exposures to securities issued

in Germany at time t, and analogously troubled exposures as

TEijt = log(GIIPSit) log(GIIPSjt).

where GIIPSijt is the sum of bank i’s exposures to Greece, Ireland, Italy, Portugal and

Spain at time t. In the case that at least one of the counterparties does not have any

exposures to said securities, this value is replaced by zero. This specification allows us

to relate the impact of commonality in securities investments to specific security classes
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over different time periods for each bank pair.

3.3 Methodology

We use a regression framework to analyze the relation between realized interconnect-

edness and the balance sheet channels. In particular, we regress partial correlations on

indices capturing the various balance sheet channels, together with a set of controls and

fixed effects. The peculiarity of our regression exercise is that the data has a paired

structure. This type of regression often appears in social network or trade flows analysis

and is commonly referred to as “dyadic regression” (cf Krackhardt, 1988). Inference

on the dyadic regression model parameters is carried out here by standard OLS while

computation of the robust standard errors requires appropriate clustering that takes

into account the special correlation structure of the model.

More precisely, we consider the dyadic regression model

ρijt = αi + αj + αt + β0 + β1IBijt + β2LDijt + β3TEijt + β4SEijt + γ′zij,t−1 + εijt , (3.1)

where IBijt denotes the interbank exposure, LDijt is the measure of distance in lending

practice, and TEijt and SEijt correspond to pair-wise security class exposures, respec-

tively. To account for time and cross-sectional heterogeneity, we include both bank-fixed

effects αi, αj and time-fixed effects αt. The vector zij,t−1 contains control variables.

Controls are constructed as the pairwise product of a set of bank characteristics: (log)

banks’ equity, (log) risk-weighted assets, Core Tier 1 capital ratio and the leverage ratio

total book equity over total book assets plus off-balance sheet exposures. In the anal-

ysis, control variables are lagged by one period. Table 3.2 contains summary statistics

of the variables used to construct the controls.
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Table 3.2: Summary statistics of bank balance sheet data

Mean Std. Dev. 10% Quantile Median 90% Quantile
Core Tier 1 Capital Ratio 9.54 2.57 6.28 9.19 12.94
Core Tier 1 Capital 12005.19 2313.97 8614.27 13448.45 14914.86
Equity 16256.97 2100.42 13519.12 17045.22 19006.38
Risk-weighted Assets 127140.59 23959.46 97678.19 135479.37 158233.81
Leverage Ratio 36.51 5.75 29.46 37.05 44.42

Because of the dyadic structure of the panel in our model, the error term is correlated

across observations that have an element in common. More specifically, the error term

is assumed to be zero mean, uncorrelated with the explanatory variables, and have

nonzero correlation only with the errors which either have i and j in common, that is,

E(εij tεkl t|xij t, xkl t) = 0 unless i = k or i = l or j = k or j = l,

where xij t denotes a vector containing the regressors of Equation (3.1). In order to

take into account the correlation pattern of the dyadic regression, standard errors are

clustered along both dimensions of the pair.

In order to capture sub-sample-specific effects, we also consider a variation of the

baseline model in (3.1) in which we interact the channels with indicator variables for

the different subsample periods. This specification allows the various balance sheet

channels to have different impacts in each phase of the crisis. For instance, for the

interbank lending channel we consider the specification

ρijt = αi+αj+αt+β0+β1IBijt1pre+β2IBijt1ban+β3IBijt1sov+β4IBijt1post+γ
′zij,t−1+εijt ,

(3.2)

where 1pre, 1ban, 1sov and 1post are dummy variables equal to 1 if the observation

lies within the defined subsample period, and 0 otherwise. We define analogously the

interacted specifications for LDijt, SEijt and TEijt.
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3.4 Empirical Results

3.4.1 Baseline Specification

We begin by estimating the baseline dyadic regression model of Equation (3.1) intro-

duced in the previous section. We consider different variants of the specification. Table

3.3 contains the regression results.

The first channel we investigate are bilateral exposures in the interbank market.

We hypothesize that interbank lending between two banks can lead to higher realized

interconnectedness in credit risk if and only if the exposure is large relative to the

lender’s Core Tier 1 capital. Quantile statistics for interbank lending over Core Tier 1

capital are shown in Table 3.4. In our sample, the average interbank loan between two

banks amounts to 0.19 % of the lender’s Core Tier 1 capital.

Table 3.3 shows the result for the baseline regression model. We find that higher

amounts of interbank exposure between two banks are related to higher realized in-

terconnectedness, given that we include both time and bank-fixed effects. In the first

specification which does not control for time, we do not find any significant effect. The

magnitude of the coefficient changes only slightly for different variants: with both time-

and bank-fixed effects and including a set of control variables, we find that an increase

of interbank lending weighted by Core Tier 1 capital by one percentage point is related

to a 4.518 percentage point increase in partial correlations.

In order to detect non-linear effects of different magnitudes of interbank lending,

we divide the variable into four regions: the 1st region contains values of bilateral

interbank lending lower than 0.1 % of the lender’s Core Tier 1 Capital, which captures

approx. the lower 40 % of the distribution. The second region contains all values that

lie between 0.1 and 0.3 % of the lender’s Core Tier 1 capital, which captures another

40 % of the distribution. The two highest regions divide the remaining 20 %, such that
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Table 3.4: Quantile Statistics for Explanatory Variables

Quantile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Interbank Lending 0.0499 % 0.0710 % 0.0889 % 0.1077 % 0.1432 % 0.1612 % 0.2039 % 0.2596 % 0.3949 %
Lending Distance 0.051 0.095 0.144 0.194 0.247 0.312 0.379 0.445 0.552
Security Holdings Germany 0 0 0 0 3.157 3.769 4.201 4.471 4.998
Security Holdings GIIPS 0 0 0 0 2.268 2.847 3.324 3.663 4.279

This table shows quantiles statistics for confidential explanatory variables: Interbank Lending, Lending

Distance, Troubled Exposures and Safe Exposures. The value of 0 for the lower quantiles of pair-wise

exposures refers to cases in which at least one of the counterparties does not have any exposures to

the respective securities.

region 3 contains all values between 0.3 and 0.4 % of the lender’s Core Tier 1 capital,

and the fourth region contains all values above.4 Results for the effects of the four

different regions of interbank exposures are displayed in Table 3.5. The specification

again includes both time- and bank-fixed effects and the set of control variables.

Table 3.5 shows that the positive relation between interbank exposures and real-

ized interconnectedness is highly significant in all four regions. In terms of magnitude

of the coefficients, the effect is strongest in the lowest region: a percentage point in-

crease in interbank lending weighted by Core Tier 1 capital leads to relatively higher

interconnectedness when interbank exposures between the counterparties are initially

low.

The second channel we investigate is similarity in lending practice. We hypothesize

that two banks with more similar lending practices have a higher common exposure to

specific risk factors and should therefore be perceived as more interconnected by the

market. Quantile statistics for the distance variable are depicted in Table 3.4.

Recall that the distance measure is constructed such that a higher value per dyad

indicates less similar lending practices to the real economy, hence we expect the co-

efficient to have a negative sign. Table 3.3 confirms this hypothesis: two banks with

less similar lending practices show lower realized interconnectedness, and the coefficient

4Our results are robust to changes in the way we define the regions.
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Table 3.5: Differential effects for regions of Interbank Lending

VARIABLES ρ

IB Lending 1st Region 39.83*
(16.92)

IB Lending 2nd Region 18.16*
(7.942)

IB Lending 3rd Region 20.76***
(5.701)

IB Lending 4th Region 5.033*
(2.073)

Number of Banks 13
Observations 20779
Adj. R-squared 0.173

Control Variables Yes
Bank Fixed Effects Yes
Time Fixed Effects Yes
Two-way cluster robust standard errors in parenthesis

*** p<0.001, ** p<0.01, * p<0.05, + p<0.10

This table reports coefficient estimates and standard errors for the regression model

ρijt = αi + αj + αt + β0 + β1IBijt1IB1 + β2IBijt1IB2 + β3IBijt1IB3 + β4IBijt1IB4 + γ′zij,t−1 + εijt

Interbank Lending is the average interbank exposure between two banks weighted by the lender’s Core

Tier 1 capital. The binary variable 1IB1 is equal to one if the observation lies in the first region of

Interbank Lending as defined in Section 3.4. 1IB2, 1IB3 and 1IB4 are defined analogously.
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is significant at the 5 % level. An increase of 1 percentage point in lending distance

is associated with a decrease in partial correlations of 0.06 percentage points. The

magnitude remains largely unchanged and significance increases when enhancing the

specification with both bank fixed effects and control variables.

For detecting non-linear effects in the cross-section, we again divide the variable

into four different regions. Since there is no intuitive interpretation of specific values,

we make use of quartiles for determining cutoff points. Results are depicted in Table

3.6.

Table 3.6: Differential effects for quartiles of Distance in Lending
Practice

VARIABLES ρ

Lend. Distance 1st Quartile -0.452***
(0.136)

Lend. Distance 2nd Quartile -0.219**
(0.0753)

Lend. Distance 3rd Quartile -0.165***
(0.0379)

Lend. Distance 4th Quartile -0.0991**
(0.0324)

Number of Banks 13
Observations 20779
Adj. R-squared 0.160

Control Variables Yes
Bank Fixed Effects Yes
Time Fixed Effects Yes
Two-way cluster robust standard errors in parenthesis

*** p<0.001, ** p<0.01, * p<0.05, + p<0.10

This table reports coefficient estimates and standard errors for the regression model

ρijt = αi + αj + αt + β0 + β1LDijt1LD1 + β2LDijt1LD2 + β3LDijt1LD3 + β4LDijt1LD4 + γ′zij,t−1 + εijt

Lending Distance is the standardized Euclidean distance between two banks’ lending composition to

the real economy. The binary variable 1LD1 is equal to one if the observation lies in the first quartile

of the Lending Distance variable. 1LD2, 1LD3 and 1LD4 are defined analogously.

The negative relation between distance in lending practice and realized intercon-
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nectedness is highly significant at any value of the distance variable. The magnitude

of the coefficient varies strongly in the cross-section and is highest when the distance

between two banks is very small: within the lowest quartile, a percentage point decrease

in the lending distance between two banks is associated with a 0.4 percentage point

increase in partial correlations.

The third channel we investigate are common exposures to similar securities. Recall

that, as explained in Section 3.2.1, we decompose pair-wise common securities holdings

into two different categories: “troubled exposures” proxied by securities issued in one of

the GIIPS countries, and “safe exposures” proxied by securities issued in Germany. We

hypothesize that two banks with higher common exposures should have higher credit

risk interconnectedness. Disentangling the “troubled” and the “safe” securities allows

us to additionally investigate whether those have different effects on realized intercon-

nectedness. Quantile statistics for exposures to Germany and the GIIPS countries are

shown in Table 3.4.

Again, results for the relation between commonality in securities investments and

results interconnectedness are depicted in Table 3.3. Results confirm our hypothesis:

two banks with higher exposures to securities issued in one of the GIIPS countries are

perceived as more interconnected by the market, and this effect is significant at the 1 %

level. Note that the commonality variable is calculated as a pair-wise log: a percentage

increase in exposures to the GIIPS countries for one of the banks is associated with

a 0.444 percentage point increase in partial correlations in the first variant, keeping

exposures of the counterparty stable. This coefficient increases slightly in magnitude

when adding control variables and time fixed effects and significance increases. We

do not find any significant effect for exposures to securities issues in Germany. We

conclude that the market perceives stronger links between banks with higher common

holdings given that these are related to troubled exposures.
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Last, we divide exposures to securities issued in one of the GIIPS countries into

four different regions again defined by quartiles, and let coefficients vary among those.

Results are shown in Table 3.7.

Table 3.7: Differential effects for quartiles for Troubled Exposures

VARIABLES ρ

Troubled Exp. 1st Quartile 0
(0)

Troubled Exp. 2nd Quartile 0.00757
(0.00894)

Troubled Exp. 3rd Quartile 0.00171
(0.00305)

Troubled Exp. 4th Quartile 0.00958***
(0.00186)

Number of Banks 13
Observations 20779
Adj. R-squared 0.158

Control Variables Yes
Bank Fixed Effects Yes
Time Fixed Effects Yes
Two-way cluster robust standard errors in parenthesis

*** p<0.001, ** p<0.01, * p<0.05, + p<0.10

This table reports coefficient estimates and standard errors for the regression model

ρijt = αi + αj + αt + β0 + β1TEijt1TE1 + β2TEijt1TE2 + β3TEijt1TE3 + β4TEijt1TE4 + γ′zij,t−1 + εijt

Troubled Exposures are defined as the product of two banks’ log exposures to assets issued in GIIPS

countries. The binary variable 1TE1 is equal to one if the observation lies in the first quartile of the

Troubled Exposures variable. 1TE2, 1TE3 and 1TE4 are defined analogously.

The relation between pair-wise holdings of troubled exposures and realized intercon-

nectedness is significant only in the highest quartile: two banks are perceived as more

interconnected if and only if their common exposures to troubled security classes are

large. Note that the value of zero in the first quartile stems from pairs where at least

one bank does not have any exposures to securities issued in one of the GIIPS countries.

An increase in securities holdings of GIIPS countries of one of the counterparties by 1

percent is associated with a 0.96 percentage point increase in partial correlation.
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While two-way clustering along both dimensions in the pair is a natural approach to

the peculiar correlation structure of our model, we acknowledge that the small number

of clusters (K=13) might lead to an over-rejection of the null hypothesis in some cases.

Thus, we run the third variant of the baseline regression with both bank- and time

fixed effects as well as a set of control variables with two different kinds of standard

errors: Huber-White standard errors and cluster-robust standard errors with clusters

at the pair level. For comparison purposes, we report again the results of this regression

with standard errors clustered along both dimensions of the dyad. Results for these

specifications are displayed in Table 3.8.

We can see that Hubert-White standard errors are considerably smaller for all vari-

ables, whereas standard errors increase slightly when clustering at the pair level. Using

simple Hubert-White standard errors should lead to overly small standard errors and

narrow confidence intervals and hence overestimate the significance of the coefficients.

On the other hand, clustering at the pair level underestimates the correlation structure

of the model, since we do not allow for standard errors to be correlated across pairs

containing common elements. The standard errors, and thus significance levels, of the

coefficients we obtain with our default approach are in the middle of these two cases.

The significance of interbank lending varies substantially with the choice of standard

errors. The variable has a highly significant effect using Hubert-White standard errors,

while significance vanishes when clustering standard errors at the pair level. For simi-

larity in lending practices and exposures to troubled securities we find significant effects

irrespective of the clustering of standard errors.

In a second robustness check of our results we run another variant of the baseline

specification with both time and pair fixed effects for ruling out omitted variable bias

at the pair level. Results are displayed in Table 3.9.

Note that this variant controls for all observable and unobservable characteristics
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of within-bank relationships. The coefficient thus picks up only the time-varying part

of variation at the pair-level within the same pair and measures whether, controlling

for the average pairwise level of realized interconnectedness, we find differential effects

associated to our set of explanatory variables. Similarity in lending practice between

two banks remains significant at the 5% level with a slight increase in magnitude of

the coefficient: controlling for all within-pair characteristics, an increase in the distance

between two banks by one percentage point is associated with a decrease in partial

correlations by 0.077 percentage points. Pair-wise exposures to securities issued in the

GIIPS countries are related to an increase in realized interconnectedness, and this effect

is significant at the 1% level. Note that, also here, the coefficient changes only slightly

in magnitude. In contrast, we do not find any significant result for interbank lending

once we take out all within-pair variation. This result is due to the stable nature of

interbank lending, where the relation comes at the individual pair level without much

variation over time.

Focusing on the time-varying part of variation within the same pair, we find a signif-

icant positive effect for pairwise exposures to securities issued in Germany: two banks

with higher pairwise exposures are perceived as less interconnected by the market. This

assigns a stabilizing role of common exposures to non-troubled securities: two banks

which have safer security portfolios individually are also perceived as less interconnected

in terms of credit risk. This is in line with the results of Brownlees et al. (2016) who

find that perceived interconnectedness increases with the extent of “troubledness” of

individual banks, and is thus lower for safer individuals.

To shed light on the robustness of results to using different standard errors, we again

run the specification with Hubert-White standard errors and standard errors clustered

at the pair level in addition. Results for three variants are displayed in Table 3.10.

Similarly to previous results, significance levels we obtain with two-way clustering
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along both dimensions of the pair lie in between the ones resulting from Hubert-White

standard errors and clustering on the pair level.

3.4.2 Extended Specification: Subsample Specific Effects

In order to capture subsample-specific effects, we consider an extension of the baseline

specification stated in Equation (3.2). We expect channels to have different impacts

depending on the subperiod. Results for the analysis are shown in Table 3.11.

Interbank lending is strongly related to market-perceived interconnectedness start-

ing with the banking crisis period: a percentage point increase of interbank exposure

weighted by capital is associated with a 5.956 percentage point increase in partial corre-

lation between two entities, and this effect is significant at the 1% level. The coefficient

on interbank lending remains largely stable in the two following periods, as already

indicated by the results in Table 3.9. Results are intuitive: starting with the banking

crisis period, options for banks to obtain outside funding were largely limited, with

higher information asymmetry, lower confidence in the financial system and deterio-

rating financing conditions. As shown in, for example, Bolton, Freixas, Gambacorta,

and Mistrulli (2016) and Braeuning and Fecht (2016), interbank positions, which are

typically long-term relationships, become an important source of funding for banks in

troublesome times thanks to informational advantages. Furthermore, when banks are

financially constrained, bilateral interbank positions become harder to substitute in

case of a default on the obligation. This positive effect of interbank lending on realized

interconnectedness continues to hold good for the remainder of the sample period.

The time pattern greatly differs for similarity in lending practices to the real econ-

omy. Both in the pre-crisis and in the banking crisis period, we find a negative effect:

two banks with less similar lending practices are perceived as less interconnected by

the market, and this is significant at the 1 % level. In the pre-crisis period, during
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Table 3.11: Differential effects in subsample periods

(1) (2) (3) (4) (5)
VARIABLES ρ ρ ρ ρ ρ

IBpre -0.213 2.110
(2.047) (1.425)

IBban 5.956* 6.760***
(2.402) (1.304)

IBsov 5.111** 5.288**
(1.927) (1.614)

IBpost 7.318** 8.154***
(2.800) (1.511)

LDpre -0.136*** -0.137**
(0.0294) (0.0419)

LDban -0.0845** -0.0818*
(0.0279) (0.0334)

LDsov -0.0407 -0.0465
(0.0354) (0.0413)

LDpost -0.0116 -0.0270
(0.0526) (0.0563)

TEpre 0.00566*** 0.00888***
(0.00138) (0.00217)

TEban 0.00502* 0.00609*
(0.00255) (0.00269)

TEsov 0.00911*** 0.00500*
(0.00225) (0.00211)

TEpost 0.00453+ -0.000689
(0.00270) (0.00500)

SEpre -0.00996** -0.00871+
(0.00308) (0.00443)

SEban -0.00403 -0.00303
(0.00577) (0.00599)

SEsov 0.00410 0.00479
(0.00356) (0.00585)

SEpost 0.000842 0.00425
(0.00309) (0.00305)

Number of Banks 13 13 13 13 13
Observations 20779 20779 20779 20779 20779
Adj. R-squared 0.157 0.162 0.157 0.161 0.188

Control Variables Yes Yes Yes Yes Yes
Bank Fixed Effects Yes Yes Yes Yes Yes
Time Fixed Effects Yes Yes Yes Yes Yes

Two-way cluster robust standard errors in parenthesis
*** p<0.001, ** p<0.01, * p<0.05, + p<0.10

This table shows coeffient estimates and standard errors for a variant of the baseline regression model
with sub-sample specific effects. For the example of Interbank Lending,

ρijt = αi + αj + αt + β0 + β1IBijt1pre + β2IBijt1ban + β3IBijt1sov + β4IBijt1post + γ′zij,t−1 + εijt

The binary variables 1pre,1ban,1sov,1post indicate whether the observation lies in the specific sub-

sample period pre-crisis, banking crisis, sovereign debt crisis or post crisis. The regression model is

specified for Lending Distance, Troubled Exposures and Safe Exposures analogously. Standard errors

are based on two-dimensional clustering along both banks contained in the dyad.110



calm times, a percentage point increase in the distance between two banks is associ-

ated with a 13.6 percentage point drop in partial correlation. In the banking crisis

period the magnitude of the coefficient approximately halves. With the beginning of

the sovereign debt crisis period, significance of the effect vanishes. We conclude that, as

overall turmoil in financial system increases, other factors such as interbank lending and

commonality in securities investments become more important in the view of market

participants and dominate the effect of similar lending practices to the real economy.

Last, we investigate the effect of commonality in securities investments related to

troubled and safe securities. In the pre-crisis period, we find opposing significant coef-

ficients for both security classes: higher pair-wise exposures to troubled securities are

related to higher realized interconnectedness, whereas higher exposures to safe secu-

rity classes are associated with lower realized interconnectedness. This points towards

market participants perceiving troubled securities as a potential source of contagion,

whereas safe securities should induce stability in financial markets and hence lead to

lower interconnectedness in credit risk.

For safe security classes, this effect vanishes with the start of the banking crisis. We

conclude that, during turmoil in financial markets, the definition of safe security classes

becomes unclear, and market participants do not perceive any type of common holdings

as inducing stability. Note that these results are in line with Table 3.11 where we find

a significant negative effect for exposures to non-troubled securities when focusing on

the time-varying part of variation within the same pair.

For troubled securities, we see a second, quantitatively stronger effect emerging

during the sovereign debt crisis: following the Greek filing for sovereign bailout, market

participants perceive a strong relation between exposures to securities issued in any

of the GIIPS countries and realized interconnectedness: an increase in said holdings

by one of the counterparties by 1% is associated with a 0.9 percentage point increase
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in partial correlations, and this effect is significant at the 0.1 % level. We conclude

that this strong effect is related to the greater riskiness which was induced by holdings

of securities issued in the GIIPS countries specifically during this period when these

securities were most troubled.

3.5 Conclusion

The identification and quantification of the systemic component of financial risk re-

quires an in-depth understanding of the channels through which shocks can spread and

amplify, thereby jeopardizing the stability of a financial system. Our understanding of

these links as a whole is, however, hampered by the absent comprehension of the key

determinants of financial institutions’ interconnections. This has been due to the lack

of comprehensive datasets that are sufficient for analyses of this kind. The contribu-

tion of this paper is to study the relationship between market information-based credit

risk interconnectedness and actual common exposures of banks through their actual

funding and securities holding (liability-asset structure). We measure empirical bank

interconnectedness of a partial correlation measure that relies solely on market-based

information proposed in Brownlees et al. (2016).

Two main results emerge from our analysis. First, we find that realized intercon-

nectedness strongly reflects both bank exposure vis-a-vis the wholesale funding market

and assets associated with securities investments and credit supply. We find that bank

pairs where both counterparties have higher Core Tier 1 capital-weighted interbank

exposure show higher realized interconnectedness. On the asset allocation side, we doc-

ument that both banks’ exposure to the real economy and their securities investments

have an impact on realized network connections. Bank pairs with more similar lending

practices to the real economy show up as more interconnected. Moreover, we find higher
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realized interconnections among bank pairs with higher exposures to risky securities.

Second, we show that the relation between realized interconnectedness and the bal-

ance sheet positions exhibits asymmetries both cross-sectionally and over time. We find

that interbank lending is a relevant driver of realized interconnectedness during crisis

times as other sources of financing become hard to obtain. On the asset allocation

side, we show that banks’ securities investments have asymmetric effects in the cross-

section: bank pairs with higher exposures to the troubled security classes show up as

more interconnected. On the contrary, commonality in securities investments related

to crisis-unaffected security classes does not induce higher dependency.

These results show that banks’ wholesale funding exposure, securities investment

and credit supply affect the interdependency in bank credit risk. Moreover, they show

that market information-based measures of interdependence can serve well as risk mon-

itoring tools in the absence of disaggregated high-frequency bank fundamental data.
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3.6 Appendix: Estimating the Bank Credit Risk

Network

We follow Ang and Longstaff (2013) in modelling credit events as jumps of a Poisson

process with stochastic intensity, and consider two different types of credit events which

can trigger default.

The first event is a systematic shock which affects all entities in the economy, mod-

elled as the jump of a Poisson process M(t) with stochastic intensity λ that follows a

standard square root process,

dλ(t) = a(m− λ(t))dt+ b
√
λ(t)dW (t)

where W (t) denotes a Brownian motion. Following a systematic shock, entity i will

default with conditional probability γi,

γi = Prob(defaulti| systematic default) ,

The second event is an idiosyncratic triggering default of entity i with certainty,

modelled accordingly as the first jump of a Poisson process Ni(t) with stochastic inten-

sity ξi that follows a standard square root process,

dξi(t) = αi(µi − ξi(t))dt+
√
ξi(t)dBi(t) with i = 1, ..., n ,

where again Bi(t) denotes an entity specific Brownian motion with Bi ⊥ Wi∀i.

For entities 1, ..., n, the Brownian motions (B1(t), ..., Bn(t))′ are assumed to be cor-

related with covariance matrix Σt. Following a well established result by () the condi-
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tional independence network can be fully characterized by the sparsity structure of Kt,

the inverse of Σt: two entities i and j are conditionally independent if and only if the

i− j − th entry kij = 0.

The probability that an entity has not defaulted by time t is

P (no defaulti occurs by time t) = exp

(
−
∫ t

0

(γiλ(s) + ξi(s))ds

)

We refer to λi(s) = γiλ(s) + ξi(s) as the marginal default intensity of entity i. We

can now use the standard framework for valuing credit derivatives as established in

Duffie and Singleton (1999) setting the default probability equal to the marginal default

intensity for each entity. Following this, we can express the protection leg of a CDS

contract as

CDSproi = EQ
(∫ T

0

exp

[
−
∫ t

0

(r(s) + γiλ(s) + ξi(s))(1− ω)ds

]
dt

)

and its premium leg as

CDSprei = EQ
(
si

∫ T

0

exp

[
−
∫ t

0

(r(s) + γiλ(s) + ξi(s))ds

]
dt

)

where si is the CDS spread and 1− ω is the recovery fraction. For no arbitrage, those

two must be equal, and we get

si =
ωEQ

(∫ T
0
D(t)(γiλ(t) + ξi(t)) exp

[
−
∫ t

0
(γiλ(s) + ξi(s))ds

]
dt
)

EQ
(∫ T

0
D(t) exp

[
−
∫ t

0
(γiλ(s) + ξi(s))ds

]
dt
)

where D(t) = EQ
(

exp−
∫ t

0
r(s)ds

)
The estimation then proceeds as follows: For each institution i, we identify the

systematic intensity as the default intensity of Germany. Applying a bootstrapping
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algorithm to make use of the full term structure of CDS spreads, we back out systematic

default intensity λ and n marginal default intensities λi. In order to filter out the

systematic component, idiosyncratic intensity differences are estimated as the residual

of the regression of marginal intensity differences ∆λ̂i on systematic intensity differences

∆λ̂. The interconnectedness measured used in this work is the partial correlation among

banks obtained from the residuals of this regression.
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