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ABSTRACT 

The demand of wind energy has considerably increased during the last decades. In order to 

fulfil this great energy demand, wind energy conversion systems (WECS) are designed to manage 

higher power ratings. Currently, the most attractive power converter topology in commercial 

WECS is the conventional two-level back-to-back voltage-source converter (2L-B2B). However, the 

2L-B2B topology could have difficulties to achieve an acceptable performance with the available 

switching devices for the largest WECS, even though having the cost advantage. Instead, 

multilevel converters increase the power without increasing neither current nor blocking voltage 

of the power semiconductors, enabling a cost-effective design for the largest WECS using the 

available switching devices. Within the multilevel converters, the 3L-NPC topology offers high 

penetration in the market of large WECS. However, one of its major drawbacks is that the power 

loss is unevenly distributed among the switching devices. Therefore, the 3L-NPC output power 

capability is limited by the thermal performance of the most stressed switching device, which 

depends on the operating point. The 3L-ANPC topology was proposed in order to improve the 

power loss distribution among the power semiconductors. The 3L-ANPC provides a controllable 

path for the neutral current. Hence, the 3L-ANPC is able to offer certain freedom to distribute the 

power loss among the power semiconductors. As a consequence, and compared to the 3L-NPC, 

the thermal performance is more uniform and the output power capability increases. However, 

there is still room for improvement.  

In light of the previous discussion, the proposed thesis defines enhanced design guidelines 

for the dc-ac grid-connected 3L-ANPC power converter, focused on improving its reliability and 

electrical performance, and following the trend of the current state of the art to define a feasible 

solution for the next generation of WECS. The thesis contributions are based on defining an 

enhanced power device configuration and a novel commutation sequence, avoiding concentrating 

both significant conduction and switching losses on a single power semiconductor device. This 

allows then selecting the most appropriate device for each converter position, which leads to a 

better converter efficiency and to a more uniform power loss distribution and thermal 

performance. This also leads to a higher converter power rating, and it is expected to improve the 

converter reliability. 





NOMENCLATURE 

Acronyms and Abbreviations 

ANPC Active neutral-point-clamped 

B2B Back-to-back 

DFIG Doubly-fed induction generator 

HVDC High-voltage direct-current 

IGBT Insulated-gate bipolar transistor 

LUT Leg under test 

MAC Multilevel active-clamped 

MMC Modular multilevel converter 

MOSFET Metal-oxide-semiconductor field-effect transistor 

NPC Neutral-point-clamped 

NPP Neutral-point-pilot 

PMSG Permanent-magnet synchronous generator 

PWM Pulse-width modulation 

rms Root mean square 

Si Silicon 

SiC Silicon Carbide 

WECS Wind energy conversion system 

ZVS Zero Voltage Switching 
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Symbols 

Topology parameters 

n Number of levels of the topology 

i𝑘  ; 𝑘 𝜖 {1, 2, … , 𝑛}  Input terminals of the topology 

 

Time and Frequency 

𝑡 Time 

𝑓n Grid frequency 

𝑓sw Switching frequency 

𝑇d Delay time 

 

Passives values 

𝑅 Resistance 

𝑅dis Discharging resistor 

𝐿  Inductance 

𝐶  Capacitance 

 

Voltage 

𝑉aux  Auxiliary leg rms voltage with reference to the neutral point 

𝑉test  Leg under test rms voltage with reference to the neutral point 

𝑣C  Capacitor voltage 

𝑉L Inductor rms voltage 

𝑉l−n,pk Phase-to-neutral peak voltage 

𝑉dc  dc-link voltage 
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𝑉CE  IGBT collector-emitter voltage during on-state 

𝑉F  Diode forward voltage during on-state 

∆𝑉dc Allowed transient dc-link capacitor over-voltage 

 

Current 

𝑖out Leg output current 

𝑖test Current of leg under test 

𝐼ph,max Maximum inverter rms phase current for a maximum junction 

temperature 

 

Power 

𝑃cond  Conduction power loss 

𝑃gen  Generated active power 

𝑃in  Converter input power 

𝑃leg Converter leg power loss 

𝑃out  Converter output power 

𝑃sw Switching power loss 

𝑃loss Global converter power loss 

 

Temperature 

∆𝑇j,max Maximum device junction temperature variation 

𝑇a Ambient temperature 

𝑇h Heatsink temperature 
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[𝑇j − 𝑇a]max Maximum device junction temperature increase above ambient 

temperature 

𝑇j,T Junction temperature of switch T 

𝑇j,D Junction temperature of diode D 

 

Angle 

∆𝛼 Phase shift between the voltage of leg under test and the voltage 

of auxiliary leg 

 

Converter parameters 

m Modulation index (𝑉l−n,pk 𝑉dc/2⁄ ) 

𝑚aux Modulation index of auxiliary leg 

𝑚test Modulation index of leg under test 

pf Power factor 

𝑠T Control signal of switch T 

 

Thermal impedance 

𝑍th(j−c),T Junction-to-case thermal impedance of switch T 

𝑍th(j−c),D Junction-to-case thermal impedance of diode D 

𝑍th(c−h),T Case-to-heatsink thermal impedance of switch T 

𝑍th(c−h),D Case-to-heatsink thermal impedance of diode D 

𝑍th(h−a) Heatsink-to-ambient thermal impedance 
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Switching energy 

ESW_IGBT Energy loss in one IGBT turn on and one turn off  

ESW_DIODE  Energy loss in one diode turn off 

 

Weibull wind distribution 

c Weibull scale parameter 

𝑓weibull Amount of time in per unit of each wind speed 

k Weibull shape parameter 

𝑣wind Wind speed 

 





CHAPTER 1 

INTRODUCTION 

Abstract – This opening chapter presents a brief wind energy overview, detailing the most used wind 

energy conversion system (WECS) configurations and the evolution of power electronics in wind power. Then, 

the thesis objective is defined and the thesis outline is presented.  

1.1. Wind Energy Overview  

Wind turbines were invented some centuries ago but wind power did not play a significant 

role in that period [1]. In fact, the start of modern wind turbines was in 1957 by the pioneering and 

innovative Gedser wind turbine (200 kW) [2]. The Gedser wind turbine was working 11 years 

without any remarkable maintenance. Currently, it is located in the Danish Electricity Museum in 

Bjerringbro (Denmark). 

In the early 1970s, the energy supply crisis and the popular opposition to nuclear power 

created a stronger interest in wind energy [3]. Since then, a large number of developments in wind 

energy and a great increase in installed wind turbines have been experienced. Thus, in 1994 the 

installed capacity of wind turbines worldwide was about 3.5 GW [1] and at the end of 2015 it was 

more than 430 GW [4]. Fig. 1.1 shows the annual global cumulative installed wind power capacity 

from 2000 to 2015 which clearly shows a growing trend. This great increase has led wind energy to 

become the fastest developing renewable energy technology [5]. 

Fig. 1.2 shows the top 10 countries cumulative wind energy capacity in December 2015. 

The top 3 countries with more installed wind capacity at the end of 2015 are China (145.362 GW), 

USA (74.471 GW) and Germany (44.947 GW).  

 

Fig. 1.1.  Annual global cumulative installed wind power capacity from 2000 to 2015 [4].  
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Fig. 1.3 shows the cumulative wind energy market forecast by region for 2016-2020. Asia is 

the continent with more expected installed wind capacity followed by Europe and America. Asia 

and America show a centralized wind energy distribution, focused on China and USA, respectively. 

Instead, Europe shows a decentralized wind energy distribution with significant MW installed in 

several countries. A growth trend is clear in all regions. However, the growth in Asia is forecasted 

to be considerably higher than in the other regions. Europe and North America will increase in a 

similar way and other regions will start to have a significant production such as Latin America, 

Pacific, and Middle East and Africa. 

In order to fulfil this great energy demand, WECS are expected to be increasingly larger, 

especially for offshore applications. Thus, some current investigations are being focused on the 

design of up to 10 MW WECS [6], [7]. However, a more powerful WECS requires a higher tower with 

higher blade diameter, in order to increase the yielded energy. This makes the transportation and 

 

 

Fig. 1.2.  Top 10 countries cumulative wind energy capacity in December 2015 [4]. 

 

Fig. 1.3.  Cumulative wind energy market forecast by region for 2016-2020 [4]. 
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maintenance to the remote locations where wind farms are located extremely complicated. WECS 

are also being installed in offshore locations where the potential wind energy is grossly high. For 

example, the potential wind energy in the seas of the European Union with water depths of up to 

50 m is easily several times larger than the total European electricity consumption [8]. Fig. 1.4 shows 

the global cumulative offshore wind installations from 2011 to 2015. Compared to the remarkable 

fast increase of onshore installations, these developments seem to be insignificant. However, they 

must be understood as trial balloon installations. In fact, offshore wind energy is supposed to play 

an important role in the future. In Europe, there are several GW offshore projects in various stages 

of planning [8].  

The main downside of offshore wind energy is the high installation and transportation cost 

and the reduced accessibility. The transportation must be performed with specialized ships and the 

construction requires usually foundation under the sea. Besides this, the maintenance actions can 

be very expensive since accessing to offshore locations is limited, and a failure can take long time 

to be repaired. Therefore, the offshore WECS must be extremely reliable in order to increase the 

availability and make the investment profitable.  

1.2. Wind Energy Conversion System Configurations 

The WECS configuration is a widely reviewed issue in articles and investigations [2], [5], [9]-

[13]. There are mainly three dominant WECS configurations to connect to the ac grid such as Fig. 

1.5 shows, which are introduced in the following. 

 

 

Fig. 1.4.  Annual cumulative installed offshore wind power capacity for 2011-2015 [4]. 
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1.2.1. Constant-Speed WECS 

During the 1980s and 1990s, most wind turbine manufacturers mainly built constant-speed 

wind turbines with power levels up to 1.5 MW. The constant-speed system consists of a multistage 

gearbox and a squirrel cage induction generator directly connected to the grid. Normally, a 

capacitor bank for reactive power compensation is also used. This configuration is shown in Fig. 

1.5(a). 

The main advantage of this configuration is the cost and simplicity. However, the yielded 

energy is not optimal and may require an expensive mechanical design to absorb high mechanical 

stress. The following improvements have been introduced to increase the global power production: 

1. The use of induction generators with two windings with different number of poles, so 

that the wind turbine can operate at two different constant speeds to improve the 

yielded energy and reduce audible noise [9]. 

 

Fig. 1.5.  WECS configurations. (a) Constant-speed WECS. (b) Doubly-fed induction generator WECS. (c) 

Full power converter WECS. 

(a) 

(b) 

(c) 
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2. The use of wound rotor induction generators with a variable rotor resistance. This 

resistance in the circuit can be adjusted by an electronic control system, which allows 

varying the generator speed in a limited range. However, the connection requires 

brushes and slip rings, which is a drawback due to the high required maintenance [5]. 

 

On the other hand, the direct connection of the induction generator to the power system 

produces transients with very high inrush currents, which could cause disturbances in the grid. 

Thus, a soft-starter is normally implemented in these WECS in order to limit the high inrush 

currents.  

1.2.2. Doubly-Fed Induction Generator (DFIG) WECS 

After 1996, many manufacturers changed to a variable speed system with a DFIG for wind 

turbines with power levels above roughly 1.5 MW. This system consists of a multistage gearbox, a 

DFIG and a power electronic converter feeding the rotor winding as Fig. 1.5(b) shows. 

The converter power rating is around 30% of the wind turbine rated power, which enables 

a speed range from roughly 70% to 120% of the synchronous speed, enough to ensure a proper 

energy yield. 

Compared to the constant-speed system, this system provides a better performance on 

audible noise, mechanical stress, power quality, and yielded energy. However, the main drawback 

is that it requires significant maintenance due to rotor brushes, slips rings, and gearbox issues. On 

the other hand, according to the recent literature [6], [14], [15], grid codes are becoming stricter 

and, with this trend, DFIG WECS could have some difficulties to fulfil the future grid codes. 

1.2.3. Full-Power Converter WECS 

Since 1992, some manufacturers have also used a gearless or geared generator directly 

connected to the grid by means of a full-power electronic converter as depicted in Fig. 1.5(c). In 

recent years, full-power converter WECS have had a great increase. A clear advantage of this 

configuration is the complete isolation between the generator and the grid, so that the strictest 

grid codes can be fulfilled. There are three types of generators in full-power converter WECS: 

 Gearless (or direct drive) low-speed synchronous generator  

 Medium-speed synchronous generator with a single or two-stage gearbox. 

 High-speed induction or synchronous generator with a three-stage gearbox. 
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The recent literature focuses on low-speed gearless or medium-speed gearbox with 

permanent-magnet synchronous generators (PMSG) [5]. Originally, the synchronous generator was 

mainly based on electrical excitation since permanent-magnets were too expensive. The rotor was 

provided with a dc excitation using slip rings, brushes and a rectifier, increasing the power losses. 

Later, when the price of permanent-magnets decreased, the focus shifted to PMSG, whose 

advantages, according to [11], are: 

 Higher efficiency and yielded energy. 

 No additional power supply for the magnet field excitation. 

 Higher reliability due to the absence of mechanical components such as slip rings. 

 Higher power-to-weight ratio. 

 

The main advantage of gearless WECS with synchronous generator and full power converter 

is the increase of reliability, avoiding the gearbox maintenance and failures and reducing the 

number of WECS parts. However, the main drawback is the design of a low-speed high-torque 

synchronous generator, since it is considerably heavy, expensive and large [9].  

1.2.4. Trends in WECS Configuration 

Fig. 1.6 shows the European market shares of WECS configuration in terms of power in 2010 

[16]. The constant-speed WECS is the least dominating configuration and it is disappearing [9]. The 

market is clearly dominated by DFIG WECS with a 55% of the cumulative wind power. However, 

full-power converter WECS with low-speed gearless PMSG or medium-speed PMSG with gearbox 

are becoming an attractive solution for wind power generation, since the performance of 

permanent-magnets is improving, the cost of permanent-magnets is decreasing, and WECS 

reliability and availability could be enhanced compared to DFIG WECS [5] [11].  

 

Fig. 1.6.  European market shares of WECS configuration in terms of power in 2010 [16].  
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On other hand, the trend in the last decades has been to increase the use of power 

electronics in wind power. As observed in Fig. 1.7, it has drastically evolved from the simple soft 

starter for the constant-speed WECS with almost no power processing to the interesting full-power 

converters processing the whole power, and passing by the rotor resistance control for constant-

speed WECS and the rotor power control for DFIG WECS. Thus, improving and optimizing the power 

converter performance in terms of efficiency, robustness, reliability, and availability must be one 

of the highest priorities for the future WECS.  

1.3. Power Converter Overview 

The most attractive ac-ac power converter solution in commercial market of WECS is 

currently the conventional two-level back-to-back voltage-source converter (2L-B2B) (Fig. 1.8) [17]. 

It is due to the fact that the 2L-B2B converter benefits from an extensive and well-established 

knowledge and it is based on a relatively simple structure with very few components, all 

contributing to a well-proven and reliable performance.  

However, taking into consideration that the power rating of the WECS is increasing (even 

up to 10 MW), the 2L-B2B converters may suffer from large switching losses and low efficiency. The 

power rating of 2L-B2B converters can be increased through: 

 

Fig. 1.7.  Use of power electronics in wind power from 1980 to present [12]. 

 

Fig. 1.8.  Conventional two level back to back voltage source converter. 
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 A current increase: it requires connecting in parallel several power semiconductors to 

withstand high-current values. It does not directly affect the reliability, but it reduces 

the global efficiency since the power losses of the resistive components are proportional 

to the squared current, and so for a given power rating, the higher the current is, the 

lower the global efficiency is. Moreover, the cabling can be a physical challenge in case 

of high-current levels. For these reasons, it is not recommendable to increase power by 

increasing current. 

 A voltage increase: it requires either using power semiconductors from an upper voltage 

class or connecting in series several power semiconductors to withstand high voltage 

values. However, upper voltage class power semiconductors entail higher cost, higher 

switching timing, lower switching frequency and heavier, bigger and more expensive 

grid filter. On the other hand, the series connection could seriously affect to the system 

reliability since a uniform blocking voltage distribution among the power 

semiconductors must be guaranteed, even during transitions. 

Therefore, it is very difficult for a single 2L-B2B topology to achieve acceptable performance 

with the available switching devices for the largest WECS, even though having the cost advantage 

[13]. Instead, multilevel converters enable a power increase without increasing neither current nor 

blocking voltage of the power semiconductors. Thus, multilevel converters are interesting and 

popular candidates in WECS above 3 MW in order to get a cost-effective design. In fact, according 

to some researchers, it is time for the multilevel converters to take the lead since it is becoming a 

mature and well-known technology [15], [18]. 

1.3.1. Multilevel Converter Concept 

The essence of the multilevel concept is to use multiple voltage levels in the power 

conversion process. Fig. 1.9 shows a functional schematic of a converter leg with different number 

of levels. Fig. 1.9(a) corresponds to the conventional 2L case, Fig. 1.9(b) corresponds to the 3L case 

and Fig. 1.9(c) to an n-level case. 

The immediate advantage of the multilevel converters is that the switching devices must 

not withstand the full dc-link voltage, and so it is possible to either use lower-voltage-rated power 

semiconductors with the same dc-link voltage or use the same power semiconductors with higher 

dc-link voltage. Hence, increasing the output power with the available power semiconductors is 

conceivable using multilevel converters. 
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Fig. 1.9.  Functional schematic of a converter leg with different number of levels. (a) Two levels. (b) Three 

levels. (c) n levels. 

1.3.2. Comparison of 2L versus 3L Power Converters 

In the following, a qualitative comparison between the global performance of 2L and 3L 

converters is presented, supported by previous investigations [19], [20].  

Besides enabling larger output power, the 3L converter has additional advantages: 

 Efficiency: For the same output power and dc-link voltage, the 3L converter shows a 

better global efficiency than the 2L converter since lower-voltage-rated semiconductors 

can be used. The main advantage of the lower-voltage-rated semiconductors resides in 

the reduction of the switching losses by a factor between 3 and 5 for contiguous 

semiconductor classes [19]. Instead, there is no great advantage in conduction losses. 

Thus, the higher the switching frequency is, the higher the efficiency increase of the 3L 

converter compared to the 2L case is. 

 ac filter: The higher the number of levels is, the lower the total harmonic distortion is. 

Fig. 1.10 shows a comparison of the output phase voltage waveform with reference to 

the midpoint of the dc-link of a 2L converter (Fig. 1.10(a)) and 3L converter (Fig. 1.10(b)). 

The harmonic distortion in the 3L converter is clearly lower. This implies a great saving 

in cost, weight and size of the ac filter.  

(a) (b) (c) 



18            CONTRIBUTIONS TO THE DESIGN AND OPERATION OF A MULTILEVEL-ACTIVE-CLAMPED DC-AC GRID-CONNECTED 

POWER CONVERTER FOR WIND ENERGY CONVERSION SYSTEMS 

 

 

 Common mode voltage: The 3L converter produces a much smaller common-mode 

voltage. The value depends on the operating point and modulation strategy. For the 

conventional sinusoidal pulse width modulation, a reduction of the common-mode 

voltage of roughly 25%–30% can be achieved by the 3L converter [19]. 

 dv/dt filter: Transient over-voltages caused by the pulse-width modulation switching 

operation are a major concern for generators connected with long cables. The generator 

can suffer a full reflection and the voltage pulse amplitude would approximately double. 

With a 3L converter, the maximum voltage pulse is reduced a 50% compared to the 2L 

converter. Moreover, as the switching losses are lower in a 3L converter, the dv/dt could 

be reduced further by increasing the switching time, and so this issue would be even 

more mitigated. A potential avoidance of the dv/dt filter could justify the increased 

switching losses. 

In terms of cost and reliability, the 3L converter could seem less reliable and more expensive 

than the 2L converter, because of the higher number of switching devices. However, on one hand, 

the thermal performance of the 3L converters could lead to lower device temperatures due to lower 

switching losses, providing a higher reliability. On the other hand, the higher cost of switching 

devices could be compensated by a reduced ac and dv/dt filter and a more inexpensive cooling 

system. That is to say, it is not clear if the 3L converter is more expensive and less reliable than a 2L 

converter. There are several reasons that can lead 3L converters to present lower cost and higher 

reliability in spite of having more switching devices. 

 

Fig. 1.10.  Comparison of output phase voltage waveforms with reference to the midpoint of the dc-link. 

(a) Two level inverter. (b) Three level inverter. 

(a) (b) 
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Multilevel converters have mainly been focused on high power or medium voltage 

applications, but thanks to their great advantages, they are also starting to be competitive in low-

voltage applications [19].  

1.3.3. Multilevel Converter Topologies 

For completeness and better understanding of the advances in multilevel technology, it is 

necessary to cover classic multilevel converter topologies, which are: 

 Cascaded H-bridge. 

 Flying capacitor. 

 Diode clamped. 

In the following sections, these three classic multilevel topologies are reviewed.  

1.3.3.1. Cascaded H-Bridge Topology 

Multilevel converter technology started in the late 1960s with the introduction of the 

multilevel stepped voltage waveform using series-connected H-bridges, which is also known as the 

cascaded H-bridge topology [21]. Fig. 1.11 presents this topology. Fig. 1.11(a) depicts two series-

connected H-bridges, which generates five output levels and Fig. 1.11(b) depicts the general case 

with n H-bridge inverters, which generates 2n+1 levels.  

 

Fig. 1.11.  Cascaded H-bridge topology. (a) Two H-bridges leg topology. (b) n H-bridges leg topology. 

(a) (b) 
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The cascaded H-bridge topology is well suited for high-power applications because of the 

modular structure, which enables higher voltage operation with classic low-voltage semiconductors 

[15]. However, the main drawback in WECS applications of this topology is that it requires an 

isolated and independent dc-source for each cell. 

1.3.3.2. Flying Capacitor Topology 

The cascaded H-bridge topology was closely followed by the development of a flying 

capacitor topology the same year [22]. Fig. 1.12 presents this topology. Fig. 1.12(a) corresponds to 

the 3L case and Fig. 1.12(b) to the 5L case. 

The flying capacitor topology has found less industrial penetration compared to the other 

two classic multilevel topologies. It is mainly due to the following drawbacks [14], [15]: 

 High switching frequencies are required to keep the capacitors properly balanced. 

 Initial charging process of the flying capacitor voltages is required. 

 The flying capacitors are a limiting factor for the converter lifetime. 

 

Fig. 1.12.  Flying capacitor multilevel topology. (a) Three-level leg topology. (b) Five-level leg topology. 

(a) (b) 
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1.3.3.3. Diode-Clamped Topology 

In the late 1970s, the multilevel diode-clamped concept was introduced [23]. Then, this 

concept evolved into the three-level neutral-point-clamped (3L-NPC) topology [24]. Fig. 1.13 shows 

the diode-clamped topology. Fig. 1.13(a) corresponds to the 3L case and Fig. 1.13(b) corresponds 

to the 5L case.  

Among the multilevel topologies, the 3L-NPC is the most widely used in high power 

applications [25]. It is mainly thanks to its simple implementation and proper performance 

compared to other topologies.  

However, the NPC has the next two technical drawbacks: 

1. The voltage values of the dc-link capacitors have to be balanced, but with the use of 

conventional modulation strategies, voltage balancing cannot be guaranteed for 

certain operating conditions. This has been an important problem of the NPC topology 

for a long time [26]. Nevertheless, researchers have proposed different solutions 

modifying the control and modulation strategies [27]-[33] and currently this problem 

could be considered as solved. 

2. The power losses are unevenly distributed among the switching devices. Thus, the NPC 

output power capability is limited by the thermal performance of the most stressed 

switching device, which depends on the operating point. There is a great deal of 

literature about this issue [6], [7], [12]-[14], [25], [34]-[44]. Unfortunately, this 

drawback cannot be avoided since it is an intrinsic issue in the NPC topology. However, 

some investigations have focused on mitigating this downside through the proposal of 

specific modulation methods under low-voltage ride-through conditions that lead to a 

more uniform thermal performance in a 3L-NPC [45]. 

1.3.3.4. Recent ac-ac Multilevel Converter Topologies for WECS  

A large number of investigations have focused on proposing and analyzing new ac-ac power 

converter topologies for WECS which are reviewed in the following [14], [46]. 

1.3.3.4.1. Three-Level H-Bridge (3L-HB) Topology 

3L-HB consists of two H-bridges per phase, one per converter side, sharing the dc-link 

capacitor, as Fig. 1.14 depicts. The main upsides of 3L-HB are as follows: 
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 Isolated dc-sources are not required. 

 Three levels per phase voltage are achieved with very few power semiconductors. 

 The topology is based on very well-known and mature technology (2L converters). 

However, the topology requires an open winding transformer and generator, and so double 

cable length is required, which increases the cost. 

1.3.3.4.2. Five-Level H-Bridge (5L-HB) Topology 

5L-HB consists of two H-bridges per phase, one per converter side, sharing the dc-link 

capacitor, and based on 3L-NPC converter, as Fig. 1.15 depicts. Thus, this topology is a hybrid 

configuration between the 3L-HB and the 3L-NPC. The main advantage is that five levels are 

achieved but the number of power semiconductors considerably increases. Moreover, this topology 

preserves the disadvantages from both 3L-NPC and 3L-HB: 

 

Fig. 1.13.  Diode-clamped multilevel topology. (a) Three-level leg topology. (b) Five-level leg topology. 

 

Fig. 1.14.  Three-level H Bridge (3L-HB). 

(a) (b) 
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 Open winding transformer is required in the grid side, which is more expensive and bulky 

than standard transformers. 

 Open winding generator is also required. 

 Double cable length is required, increasing the cost. 

 The voltage balancing of the dc-link capacitors must be controlled by a proper 

modulation strategy and control. 

 The power losses are unevenly distributed among the switching devices, limiting the 

converter output power capability.  

1.3.3.4.3. Three-Level NPC + Five-Level H-Bridge (3L-NPC + 5L-HB) Topology 

This topology was developed since the power quality requirements in a WECS are much 

stricter in the grid side than in the generator side. Therefore, a 3L-NPC is selected for the generator 

side and a 5L-HB for the grid side (Fig. 1.16), in order to adapt the topology to the unsymmetrical 

power quality requirements. The total harmonic distortion of the grid side is lower since five output 

levels are achievable. Moreover, this topology avoids requiring an open winding generator and 

double cable length in the generator side.  

 

Fig. 1.15.  Five-level H Bridge (5L-HB). 

 

Fig. 1.16.  Three-level NPC + Five-level H Bridge (3L-NPC + 5L-HB). 

Generator side Grid side 
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1.3.3.4.4. Neutral Point Pilot (NPP) Topology 

The NPP concept was first introduced in 1977 [47]. Instead of clamping the neutral point 

through diodes, it is done by bidirectional switches, as depicted in Fig. 1.17. This provides a 

controllable current path for the neutral point connection. In the upper and lower parts of the 

converter leg, two switches in series can be placed in order to get higher voltage rating. However, 

this topology does not offer freedom to distribute the switching power losses among the power 

semiconductors. 

1.3.3.4.5. Modular Multilevel Topology  

Another multilevel converter that has recently found industrial application is the modular 

multilevel converter (MMC), especially in dc-ac conversion applications, and particularly for High-

Voltage Direct-Current (HVDC) systems [15]. This topology is quite recent since it was developed in 

the early 2000s. Basically, the MMC is composed of several series-connected cells, typically 

consisting of a 2L half bridge and a capacitor, as Fig. 1.18 depicts. The phase leg is divided into two 

equal arms, each including an inductor.  

The two switching devices of a cell are controlled by complementary signals. They can either 

bypass or connect the cell capacitor. However, an appropriate voltage balance control is necessary 

to keep each capacitor at the desired voltage level. 

The attractive feature of this topology is its modularity and scalability to easily reach 

medium and high-voltage levels, as well as greatly improving the power quality compared to the 

classic series connection of power switches in a 2L converter configuration used in HVDC.  

 

Fig. 1.17.  Three-level Neutral Point Pilot (NPP) topology. 
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Fig. 1.18.  Modular multilevel converter (half bridge). 

1.3.3.4.6. Active Neutral-Point-Clamped (ANPC) Topology 

This topology was proposed in 2005 [34] in order to solve one of the major drawbacks of 

the NPC: the uneven power losses distribution among the power semiconductors. The 3L-ANPC 

replaces the clamping diodes by switching devices with antiparallel diodes to provide a controllable 

path for the neutral current (Fig. 1.19). Hence, 3L-ANPC is able to offer certain freedom to control 

the loss distribution among the power semiconductors of the converter. Thanks to that, the thermal 

performance is more uniform and the output power capability is enhanced, compared to the 

conventional 3L-NPC. Several investigations have focused on analyzing the 3L-ANPC advantages and 

performance [25], [34]-[43], [48].  

 

Fig. 1.19.  Three-level Active-Neutral-Point-Clamped (3L-ANPC) topology. 
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A hybrid topology combining the 3L-ANPC with a flying capacitor topology has been 

proposed to extend the number of output voltage levels [15]. However, the flying capacitors require 

an initial charging process, a voltage balancing strategy, and can reduce the system reliability, 

leading to low power converter lifetime. Therefore, [49] introduces an extension of the 3L-ANPC 

topology to any number of levels without flying capacitors. This generalized topology, known as 

multilevel active-clamped (MAC) topology is shown in Fig. 1.20. The leg consists of one output 

terminal and n input terminals where n is the number of converter levels. A capacitor or dc-voltage 

source is connected across every two adjacent input terminals, being the dc-voltage of each of 

those components typically the same (Vdc/(n-1)).  

1.4. Power Converter Reliability in WECS 

The current availability of onshore wind turbines is approximately 98-99 % due to a 

frequent service and fast repair in case of failure. However, this cannot be maintained in offshore 

 

Fig. 1.20.  Multilevel active-clamped converter leg topology (n-level leg) [49]. 
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applications due to reduced accessibility [50]. Offshore wind farms have a difficult and limited 

access, which leads to a high maintenance cost after a failure [6], [7] and [51]. Therefore, reliability 

must be seriously considered and will become a critical design criterion for the next generation of 

wind power converters [13], since the power converter plays a significant role in the most common 

WECS failures. In fact, a 17.5% of the WECS failures and the 14.3% of the WECS downtime are due 

to problems with the power converter according to [52].  

The most critical point in the power converter reliability is the thermal performance of the 

power semiconductors [7], [12]. The thermal performance is determined by the maximum junction 

temperature and the maximum junction temperature variation. Analysis of power converter 

failures conclude that more than one third is due to failures in the power devices, and a 55% of the 

power devices failures is due to the thermal performance [53] and [54], as Fig. 1.21 shows. 

Therefore, minimizing the thermal stress of the power semiconductors is an interesting challenge 

for future WECS.  

Regarding the power converter reliability, 3L-NPC is not the most suitable topology due to 

the uneven power losses distribution among the switching devices, leading to mediocre thermal 

performance. Moreover, this issue does not only affect the power converter reliability, but also its 

power capability. Thus, some investigations [25], [34]-[43] have focused on the 3L-ANPC instead of 

the 3L-NPC in order to enhance the reliability and output power of the power converter. The results 

of these investigations confirm that either the output power capability can be increased between 

20 and 30% or the switching frequency can be increased around 85% thanks to a more uniform 

thermal performance among the power semiconductors. Furthermore, the 3L-ANPC also improves 

 

Fig. 1.21.  (a) Sources of power converter failures. (b) Causes of power devices failures. [54]. 

(a) (b) 
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the converter fault-tolerant capability compared to the 3L-NPC [42], [55]. Thus, the 3L-ANPC seems 

to be the natural evolution of the 3L-NPC for the next generation of WECS. 

1.5. 3L-ANPC Operating Principle 

As mentioned before, the 3L-ANPC offers certain freedom to distribute the power losses 

among the power semiconductors. In the 3L-ANPC, the possible paths to connect to the neutral 

point are doubled compared to the conventional 3L-NPC, as Fig. 1.22 depicts. Fig. 1.22(a) shows the 

paths to connect to the neutral point for the 3L-NPC and Fig. 1.22(b) for the 3L-ANPC. As can be 

seen, 3L-NPC only has one path to connect to the neutral point for a positive current and another 

one for a negative current. Instead, the 3L-ANPC has two paths to connect to the neutral point for 

a positive current and two more for a negative current. Thus, 3L-ANPC requires an operating 

principle to define which path must be taken to connect to the neutral point during the switching 

transitions. The main 3L-ANPC operating principles are reviewed in the following.  

1.5.1. Active Loss Balancing [34] 

Active loss balancing is based on the online calculation of the junction temperatures of each 

power semiconductor. A power loss model and a thermal model must be defined and implemented 

in the power converter control. From phase currents, dc-link voltage and cooling water 

temperature, the power converter control is able to estimate the junction temperature of each 

power semiconductor. Accordingly, the connection to the neutral point is performed through the 

path with the coldest power semiconductor, in order to avoid heating even more the most stressed 

devices. However, real time junction temperature estimation requires a very fast digital controller 

and a considerably complex implementation.  

 

Fig. 1.22.  Paths to connect to the neutral point. (a) 3L-NPC. (b) 3L-ANPC. 

(a) (b) 
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1.5.2. Feed-Forward Loss Balancing [36] 

Feed-forward loss balancing is based on the offline calculation of the junction temperatures 

of each power semiconductor. The aim is the same as the active loss balancing operating principle, 

but the junction temperatures for all relevant operating points are calculated offline by computer 

simulations instead of real time calculation. Thus, the implementation is much simpler since the 

optimal ratios among the paths to connect to the neutral point are stored in a look-up table 

depending on the modulation index and power factor. However, the main drawback of this 

operating principle is that it is not suitable for fast transients, abnormal load conditions, and non-

expected operating points. 

1.5.3. Multilevel active-clamped operating principle [49] 

This operating principle, defined for a topology with any number of levels, consists on 

enabling all possible parallel current paths to connect to the inner dc-link points. In a 3L-ANPC 

topology, the two possible paths to connect to the neutral point are enabled. That is, four switching 

devices are turned on when a connection to the neutral point is required, as shown in Fig. 1.23. This 

leads to a reduction of the conduction losses, since the equivalent resistance of the connection to 

the neutral point is lower than in the case with only one path enabled. 

Fig. 1.24 shows the switching states in the particular case of a 3L converter leg. The 

uncircled switches are off-state devices. The circled switches are on-state devices. The solid-line 

circled switches connect the output terminal to the desired input terminal conducting the output 

current. The dotted-line circled switches do not conduct any significant current and simply clamp 

 

Fig. 1.23.  Neutral point connection with the multilevel 

active-clamped operating principle (iout > 0). 
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the blocking voltage of the off-state devices. Fig. 1.24(a) depicts the connection to the positive 

voltage level in which T1, T2, and T3 are on-state devices. However, T3 does not conduct any 

significant current and just ensures a proper blocking voltage distribution between T1 and T2. Fig. 

1.24(b) depicts the connection to the neutral point in which T2, T3, T2, and T3 are on-state devices 

in order to minimize the conduction power losses. Fig. 1.24(c) depicts the connection to the 

negative voltage level in which T1, T2, and T3 are on state devices. However, T3 does not conduct 

any significant current and just ensures a proper blocking voltage distribution between T1 and T2.  

On the other hand, the timing of the switching transitions can be adjusted to distribute 

some switching losses among the devices. For example, the switching steps for the transition from 

positive voltage level to the neutral point are: 

1. T1 turn off 

2. T2 and T3 turn on 

If iout < 0, switching losses will mainly concentrate on the first device turning on. Adjusting 

the timing of the control signals for T2 and T3, switching losses can be concentrated on either T2 or 

T3. 

Similarly, the switching steps for the transition from the neutral point to the positive voltage 

level are: 

1. T2 and T3 turn off 

2. T1 turn on 

 

Fig. 1.24.  Switching states of a 3L-ANPC converter leg using the multilevel active-clamped operating 

principle. (a) Connection to the positive voltage level. (b) Connection to the neutral point. (c) Connection 

to the negative voltage level. 

(a) (b) (c) 

iout iout iout 
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If iout < 0, switching losses will mainly concentrate on the last device turning off. Adjusting 

the timing of the control signals for T2 and T3, switching losses can be concentrated on either T2 or 

T3. 

An analogous timing adjustment can be done for the transitions between the neutral point 

and the negative voltage level, allowing the distribution of some switching losses among T2 and T3. 

This topology will be the subject of study of the present thesis. 

1.6. Thesis objective 

Following the trend of the current state of the art to define a feasible solution for the next 

generation of a WECS, the general objective of the proposed thesis is to determine enhanced design 

guidelines for dc-ac grid-connected 3L-ANPC power converter, focused on improving its reliability 

and electrical performance.  

More specifically, the goals can be listed as follows: 

 Propose hardware design guidelines for the dc-ac grid-connected 3L-ANPC power 

converter within WECS operating range to improve the converter thermal performance 

and electrical performance. These design guidelines will primarily consist on selecting 

the most suitable semiconductor device or combination of devices for each position in 

the power converter. 

 Define the most suitable switching pattern for the proposed 3L-ANPC power converter 

to distribute evenly the power losses among the devices, leading to a better reliability 

and electrical performance. The switching pattern determines the timing of all gate 

signals. 

 Exhaustive analysis of the proposed 3L-ANPC, comparing the power loss and thermal 

performance to the conventional 3L-NPC and 3L-ANPC topologies. 

 Experimental verification of the previous contributions for the specific case of a three-

level power converter. 

 Extend the previous contributions to multilevel active-clamped converters with any 

number of levels. 
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1.7. Thesis outline 

The thesis is organized as follows. 

Chapter 2 defines the proposed hardware contributions for a dc-ac grid connected 3L-ANPC 

power converter within WECS operating range to improve the converter reliability and electrical 

performance. In this chapter, the definition of the typical WECS operating range and the detailed 

explanation of the electro-thermal model are also introduced. The electro-thermal model has been 

used to obtain simulation results for the development of the present thesis. 

Chapter 3 contains the contributions to the switching pattern for the proposed dc-ac grid 

connected 3L-ANPC power converter to distribute evenly the power losses among the devices, 

leading to a better reliability and electrical performance.  

Chapter 4 focuses on the development of a prototype to validate the previous contributions 

through experiments. Additionally, the used electro-thermal model is also validated by comparison 

to the experimental results, and a silicon area analysis of the proposed 3L-ANPC power converter 

compared to the conventional solutions is performed. 

Chapter 5 extends the proposed contributions for the specific case of a three-level power 

converter to the generic case of an n-level power converter.  

The thesis is concluded in Chapter 6, in which possible future extensions of the work 

accomplished are proposed. 



 

 

CHAPTER 2 

ENHANCED POWER DEVICE CONFIGURATION AND OPERATION OF A GRID-

CONNECTED INVERTER FOR WIND ENERGY CONVERSION SYSTEMS 

Abstract  This chapter presents new design guidelines for a dc-ac grid-connected 3L-ANPC 

inverter to force that each device mainly withstands either switching or conduction power losses. Then, the 

most suitable device is selected for each position, enabling a significant improvement in power loss 

distribution, thermal performance, converter efficiency and output power capability. A 2 MW WECS is 

simulated, reaching a reduction of around 25% in power losses, a reduction of 50% in maximum junction 

temperature increase above ambient temperature, a reduction of 75% in maximum junction temperature 

variation, and an increase of around 85% in converter output power rating, compared to the conventional 

3L-NPC and the 3L-ANPC. 

2.1. Introduction 

Multilevel converters enable a cost-effective design and they are becoming popular 

candidates for the largest WECS. In fact, the 3L-NPC topology has high penetration in the market 

of large WECS. However, it offers an uneven power loss distribution, which limits the output 

power capability. Instead, the 3L-ANPC replaces the clamping diodes by switching devices with 

antiparallel diodes to provide a controllable path for the neutral-point current. Hence, the 3L-

ANPC is able to offer certain freedom to distribute the power losses among the power 

semiconductors. This chapter presents novel 3L-ANPC design and operation guidelines to improve 

the converter output power capability, efficiency, and thermal performance, within a typical 

operation range of a grid-connected dc-ac converter for WECS. The proposed contributions are 

verified by simulation of a three-phase grid-connected inverter for a 2 MW WECS.  

This chapter is organized as follows. Section 2.2 presents the selected 3L-ANPC operating 

principle and details the switching transitions. Section 2.3 defines new design guidelines for the 

power device configuration and operation. Section 2.4 presents the considered WECS operating 

points. Section 2.5 introduces the electro-thermal model used for simulation. This model is also 

used in the following chapters. Section 2.6 verifies the proposed contributions by simulation of a 

three-phase grid-connected inverter for a 2 MW WECS. Finally, Section 2.7 outlines the 

conclusions. 



34            CONTRIBUTIONS TO THE DESIGN AND OPERATION OF A MULTILEVEL-ACTIVE-CLAMPED DC-AC GRID-CONNECTED 

POWER CONVERTER FOR WIND ENERGY CONVERSION SYSTEMS 

 

 

2.2. 3L-ANPC Operating Principle 

The selected 3L-ANPC operating principle is the multilevel active-clamped, introduced in 

[49]. Fig. 2.1 presents the corresponding three switching states for the 3L-ANPC inverter to 

connect the output terminal to the three possible dc-link points. The uncircled switches are off-

state devices. The circled switches are on-state devices. The solid-line circled switches connect the 

output terminal to the desired input terminal and conduct the output current (iout), depicted in 

red. The dotted-line circled switches simply clamp the blocking voltage of the off-state devices. In 

Fig. 2.1(b), it can be observed that the connection of the output terminal to the neutral point 

presents two paths to conduct the output current, which leads to a reduction of the conduction 

losses compared to the conventional approach of applying only one path.  

Each transition between adjacent switching states (between SS1 and SS2 or between SS2 

and SS3) requires changing the state of three switches. Depending on the direction of the current 

flow and the specific switching transition, switching losses will concentrate on the last switch 

turned off or on the first switch turned on (and associated diodes turning off). Table 2.1 

summarizes the different cases. Thus, whenever losses have to be concentrated in switch pairs T2-

T3 or T2-T3, by properly delaying one of the control signals in the switch pair, switching losses will 

be concentrated on only one of the switches in the pair. For example, delaying one of the control 

signals of T2 or T3 in the transition from SS3 to SS2 with iout > 0, switching losses will be 

concentrated on the first switch turned on, releasing from switching losses the last switch turned 

on since no significant voltage is blocked during switching. As an additional example, delaying one 

of the control signals of T2 or T3 in the transition from SS2 to SS1 with iout < 0, switching losses will 

concentrate on the last switch turned off, releasing from switching losses the first switch turned 

off since no significant voltage is blocked during switching. 

   

(a) (b) (c) 

Fig. 2.1.  ANPC leg switching states. (a) SS1. (b) SS2. (c) SS3. 
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Case iout Switching transition Devices concentrating 
switching losses 

1 + SS1 SS2 T1 

2 + SS2 SS1 T1 + D2 + D3 

3 + SS2 SS3 T2-T3 

4 + SS3 SS2 T2-T3 + D1 

5  SS1 SS2 T2-T3 + D1 

6  SS2 SS1 T2-T3 

7  SS2 SS3 T1 + D2 + D3 

8  SS3 SS2 T1 

Table 2.1.  Devices concentrating switching losses under the possible switching transitions. 

2.3. Proposed 3L-ANPC Design Guidelines 

For a given voltage rating, the design of power semiconductor devices involves trade-offs. 

Low conduction losses can be achieved at the expense of degrading the switching performance, 

and vice versa. This leads to the availability of devices optimized for conduction (cond_opt), 

devices optimized for switching (sw_opt) and standard devices trading the conduction and 

switching performance (standard).  

If a power device within a converter topology suffers both significant conduction and 

switching power losses, the most reasonable choice is to select a standard device. However, the 

resulting conduction power losses would increase compared to a device optimized for conduction, 

and the resulting switching losses would increase compared to a device optimized for switching, 

leading to a low conversion efficiency. In addition, this device could be a potential candidate to be 

the most stressed device in the topology, limiting the converter power rating. 

In light of the previous discussion, a design and operation of the 3L-ANPC leg allowing 

each device in the topology to mainly withstand only conduction or switching losses, would allow 

selecting an optimized device for the intended operation, leading to increased converter 

efficiency and power rating. This is the goal of the following proposed operation and design 

guidelines. 
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The operation of a dc-ac grid-connected inverter for WECS usually requires high 

modulation indexes, because the dc-link voltage level is not much higher than the grid peak 

voltage. This implies that the inverter legs are connected to dc-link points ‘p’ and ‘n’ longer than 

to neutral point ‘o’. This leads to substantial conduction losses in devices T2 and T2 and low 

conduction losses in T3 and T3. Therefore, using the freedom to distribute some switching losses 

on certain devices provided by the topology, it is proposed to concentrate the switching losses on 

T3 and T3, through adding proper delays to the corresponding control signals. This will leave T2 

and T2 to only withstand conduction losses, while T3 and T3 mainly withstand switching losses.  

Devices T1 and T1 will suffer significant conduction losses under high modulation indexes. 

In addition, they also suffer significant switching losses which are unavoidable because the 

selected operating principle does not allow deviating these losses to other devices. Therefore, as 

shown in Fig. 2.2, it is proposed to double the number of devices in these two positions. Then, 

through a suitable gate control signal pattern for T1a and T1b, it is possible to force that T1a mainly 

withstands switching losses, while device T1b mainly withstands conduction losses.  

With the above design guidelines, no device withstands both significant conduction and 

switching losses and the device selection can be performed according to Table 2.2 (only half of 

the leg topology is specified due to symmetry). The D1 workload is not significant since the power 

factor is typically close to unity in WECS application. Devices optimized for switching could be 

based on SiC. 

  

 

Fig. 2.2.  Proposed 3L-ANPC converter leg. 
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Device reference Device type 

T1a Sw_opt 

T1b Cond_opt 

D1 Standard 

T2 Cond_opt 

D2 Cond_opt 

T3 Sw_opt 

D3 Sw_opt 

Table 2.2.  Optimal power semiconductor selection 

under the proposed design guidelines. 

According to Table 2.2, device T1a is optimized for switching and device T1b is optimized for 

conduction. Fig. 2.3(a) shows a proposed gate control signal pattern of this pair of devices with 

reference to the original gate control signal of device T1 (sT1). Device T1b control signal (sT1b) is 

approximately equal to the original device T1 control signal. Instead, device T1a control signal (sT1a) 

turns on a small time prior to a switching transition of device T1b, and turns off slightly later. This 

leads device T1a to mainly withstand switching losses, while device T1b mainly withstands 

conduction losses. If the conduction performance of T1a is considerably worse than T1b and device 

T1a is not critical from a thermal point of view, a simpler alternative control strategy is depicted in 

Fig. 2.3(b). This way, again, device T1a would mainly withstand switching losses while device T1b 

would mainly withstand conduction losses. In addition, overall conduction losses would be slightly 

lower than using the gate pattern depicted in Fig. 2.3(a).  

2.4. WECS Operating Points  

WECS power curve defines the generated power as a function of the wind speed. From a 

certain cut-in wind speed, around 3 m/s, the WECS starts the power generation. As the wind 

speed increases, the generated power also increases. However, from certain wind speed, around 

12 m/s, WECS reaches the rated power rating and the power generation is limited by controlling 

the blade angles. Fig 2.4 shows a typical WECS power curve, depicting the per unit active power as 

a function of the wind speed.  
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Fig. 2.4.  WECS active power as a function of wind speed. 

 

The Weibull distribution, which is widely used for wind applications [56]-[60], defines the 

probability for each wind speed. The Weibull distribution is defined in (2.1), where fweibull is the per 

unit amount of time for each wind speed, k is the shape parameter and c is the scale parameter. 

For the development of this thesis, k = 2.5 and c = 10 have been selected. Fig 2.5 depicts the used 

Weibull distribution, according to the selected parameters. 
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Fig. 2.3.  Gate control signals of devices T1a and T1b with reference to the original gate control signal of 

device T1 (s = 1: ON; s = 0: OFF). (a) Gate control signal pattern 1. (b) Gate control signal pattern 2. 
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Fig. 2.5.  Weibull distribution (k = 2.5 and c = 10). 

Combining the WECS power curve and the Weibull distribution, the list of WECS operating 

points with their corresponding weight is represented in Table 2.3. All simulation studies will 

consider all the operating points and weights of Table 2.3, which allows having an accurate and 

complete view of the WECS behavior.  

The dc-ac grid-connected inverter for WECS is designed to operate with high modulation 

indexes. It allows optimizing the size of the dc-link and the voltage rating of the semiconductors. 

Moreover, a unity power factor is desired in order to optimize the power generation. However, 

the operating power factor is reduced under grid over-voltage and under-voltage conditions to 

compensate the grid voltage fluctuations. Therefore, it is assumed that for each operating point 
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3 0.02 0.04 

4 0.05 0.059 

5 0.1 0.076 

6 0.17 0.091 

7 0.28 0.1 

8 0.42 0.103 

9 0.59 0.102 

10 0.76 0.095 

11 0.94 0.084 

12-25 1 0.25 

Table 2.3.  List of WECS operating points with their corresponding weight. 
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specified in Table 2.3, the converter operates at rated grid voltage with unity power factor for 

50% of the time, at maximum grid voltage with minimum power factor for 25% of the time, and at 

minimum grid voltage with minimum power factor for the remaining 25% of the time.  

2.5. Electro-Thermal Model 

A converter electro-thermal model has been developed in PLECS [61] and it computes the 

instantaneous junction temperature of each power semiconductor, from the device power loss 

information and ambient temperature. The model is also used for simulation results in the 

following chapters and it is verified in chapter 4 by comparison to experimental results. 

2.5.1. Power Loss Model 

The model computes both conduction and switching power losses of each power 

semiconductor from datasheet information at a junction temperature of 125 ℃. Therefore, the 

model does not include the dependence of power losses with the junction temperature.  

Conduction losses are calculated as the device forward voltage drop (as a function of the 

forward current) times the forward current. Switching loss is linearly scaled according to the ratio 

of the semiconductor blocking voltage and forward current to the corresponding loss information 

value provided in the datasheet. A proper amount of points is taken to properly approximate the 

datasheet data, considering linear interpolation. Thus, the switching transitions are considered 

instantaneous and the loss energy is taken from a look-up table depending on the forward current 

and the blocking voltage in the switching event. Finally, diode turn-on loss is neglected. 

2.5.2. Thermal Model 

The thermal model computes the instantaneous junction temperature of each power 

semiconductor from the power losses and the ambient temperature (Ta).  

A single heatsink per converter leg is assumed. Fig. 2.6 shows the converter thermal 

model for one leg. The thermal impedance from junction to case (Zth(j-c),T for the switch and Zth(j-c),D 

for the diode) is defined by a Foster model of four elements in the datasheet. The thermal 

impedance from case to heatsink (Zth(c-h),T for the switch and Zth(c-h),D for the diode) is defined from 

datasheet information and consists of a thermal resistance in parallel with a relatively high 

thermal capacitance, forcing almost constant case temperature in steady state. The thermal 
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impedance from heatsink to ambient (Zth(h-a)) is defined according to the recommended values of 

IPOSIM (online software developed by Infineon [62]) for a typical water-cooled heatsink for the 

selected power modules. It consists of a thermal resistance in parallel with a very high thermal 

capacitance, forcing constant heatsink temperature in steady state. The considered thermal 

resistance from heatsink to ambient is 2.67 K/kW.  

The heatsink temperature (Th) is calculated from the total leg power losses (Pleg) as 

𝑇h = 𝑇a + 𝑃leg · 𝑍th(h−a)                                                        (2.2) 

Finally, junction temperatures (Tj,T for the switch and Tj,D for the diode) are calculated 

from the junction to case and case to heatsink thermal impedances, the heatsink temperature 

and the respective total power losses of each power semiconductor (PT for a switching device and 

PD for a diode) as 

[
𝑇j,T

𝑇j,D
] = [𝑇h] + [

𝑃T · (𝑍th(j−c),T + 𝑍th(c−h),T)

𝑃D · (𝑍th(j−c),D + 𝑍th(c−h),D)
]                                  (2.3) 

2.6. Simulation Results 

This section compares the performance of a conventional 3L-NPC, a conventional 3L-

ANPC, and the proposed 3L-ANPC designs through a simulation in a 2 MW WECS based on a 

 

Fig. 2.6.  Converter leg thermal model with detail for a switch and a diode. 
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three-level three-phase grid-connected inverter. The electro-thermal model detailed in the 

previous section is used to simulate the WECS behavior. The main system parameters are 

summarized in Table 2.4.  

In the three designs compared (conventional 3L-NPC, conventional 3L-ANPC, and 

proposed 3L-ANPC) the same operating principle [49] and modulation strategy [30] are used to 

produce a fair comparison. The selected pulse width modulation strategy guarantees capacitor 

voltage balancing in every switching cycle for all possible converter operating conditions, which 

allows a significant reduction of the dc-link capacitance. Table 2.5 presents the commercial 

devices selected for each converter position in each design. The selected power modules are 

commercial 1200 V IGBTs with antiparallel diode from Infineon [62]. The conventional 3L-NPC and 

3L-ANPC designs use a module (FZ1800R12HE4_B9) with balanced conduction and switching 

characteristics, while the proposed 3L-ANPC design uses two modules, one with good switching 

performance (FZ800R12KS4_B2) and another one with good conduction performance 

(FZ3600R12HP4). 

  
Parameter Value 

Rated active power 2 MW 

dc-link voltage 1500 V 

Rated grid line-to-line voltage 900 Vrms 

Grid voltage fluctuation  10% 

Rated grid current 1300 Arms 

Rated converter grid-side power factor 1 

Minimum converter grid-side power factor 0.87 

Grid frequency 50 Hz 

Switching frequency 2.5 kHz 

Ambient temperature 50 ℃ 

Table 2.4.  Main WECS inverter parameters. 
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Device Conventional 3L-NPC  Conventional 3L-ANPC  Proposed 3L-ANPC 

T1a  --------- --------- FZ800R12KS4_B2 

T1b + D1 FZ1800R12HE4_B9 FZ1800R12HE4_B9 FZ3600R12HP4 

T2 + D2 FZ1800R12HE4_B9 FZ1800R12HE4_B9 FZ3600R12HP4 

T3 + D3 FZ1800R12HE4_B9 

(diode only) 

FZ1800R12HE4_B9 FZ800R12KS4_B2 

Table 2.5.  Commercial devices selected for each design. 

Table 2.6 illustrates the switching and conduction performance of the selected devices, 

according to datasheet information. The comparison for the three devices is referred to the 

particular case of a junction temperature of 125 ℃ and 1500 A. VCE and VF indicate the conduction 

performance, and correspond to the voltage drop during on-state for IGBT and diode, 

respectively. ESW_IGBT and ESW_DIODE indicate the switching performance, and correspond to the 

whole switching energy during turn on and turn off for the IGBT and the switching energy during 

turn off for the diode (diode turn on losses are neglected). As can be observed, the standard 

device FZ1800R12HE4_B9 offers a trade-off performance between the device optimized to switch 

and the device optimized to conduct. Therefore, switching power losses of FZ1800R12HE4_B9 are 

lower than the switching power losses of FZ3600R12HP4, which is a device optimized to conduct, 

but higher compared to the switching power losses of FZ800R12KS4_B2, which is a device 

optimized to switch. The opposite is observed when comparing the conduction power losses.  

 

Device VCE (V)  ESW_IGBT (mJ)  VF (V) ESW_DIODE (mJ) 

FZ1800R12HE4_B9 1.85 499 1.6 137 

FZ800R12KS4_B2 5.4 325 2.15 76 

FZ3600R12HP4 1.3 569 1.12 192 

Table 2.6.  Switching and conduction performance figures of the selected devices. 
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Fig. 2.7 presents a comparison of the three designs in terms of device conduction power 

loss (Pcond), device switching power loss (Psw), device total power loss (Ploss), converter leg power 

loss (Pleg), maximum device junction temperature increase above ambient temperature ([Tj 

Ta]max), and maximum device junction temperature variation (Tj,max). The results of Fig. 2.7(a)-(d) 

represent average values over all WECS operating points. The results in Fig. 2.7(e)-(f) are obtained 

in the worst operating point, corresponding to rated power at grid under-voltage conditions. Due 

to the leg symmetry, only the results corresponding to the power semiconductors from the upper 

half of the converter leg are presented. Position 1 is the most critical position in the conventional 

designs, since it suffers from both high conduction and high switching losses, leading to a high 

junction temperature. However, the proposed 3L-ANPC design, by splitting switching and 

conduction losses of position 1 into T1a and T1b, achieves a better loss distribution and thermal 

performance. Power loss is not only more evenly distributed, but it is also reduced. Both switching 

and conduction power loss are reduced because switching losses are mainly produced by devices 

optimized to switch, and conduction losses are produced by devices optimized to conduct. The 

thermal performance is also highly improved compared to the conventional 3L-NPC and 3L-ANPC 

designs. Large reductions in maximum junction temperature and maximum junction temperature 

variation are achieved. In addition, a uniform thermal performance is achieved, which might lead 

to an improvement in power converter reliability, since high junction temperatures and high 

junction temperature variations can reduce the power semiconductor life time.  

Fig 2.8 depicts the maximum inverter phase rms current for a maximum junction 

temperature of 125 ℃ (Iph,max), for the three designs under analysis. By using the proposed 3L-

ANPC, the converter output power capability significantly increases, since the maximum phase 

current is almost doubled compared to the conventional designs. 

Fig. 2.9 summarizes the improvements of the proposed 3L-ANPC design compared to the 

conventional designs with regard to several performance factors. The proposed 3L-ANPC design 

enables significant improvements in all analyzed aspects. Switching power loss is reduced around 

35%. The penetration of SiC technology in high power applications could produce even higher 

switching power loss reduction. Conduction power loss is reduced around 20%, leading to a total 

power loss reduction of 25%. As for the thermal performance, both maximum junction 

temperature increase above ambient temperature and maximum junction temperature variation 

are reduced around 50% and 75%, respectively, which greatly reduces the global thermal stress 
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and enables a higher reliability. Moreover, the proposed design also leads to an increase in output 

power capability of around 85%. 

  

(a) (d) 

  

(b) (e) 

  

(c) (f) 

Fig. 2.7.  Comparison among the conventional 3L-NPC, the conventional 3L-ANPC, and the proposed 3L-ANPC 

designs applied to a grid-connected inverter for a 2 MW WECS. (a) Device conduction power loss. (b) Device 

switching power loss. (c) Device total power loss. (d) Converter leg power loss. (e) Maximum device junction 

temperature increase above ambient temperature. (f) Maximum device junction temperature variation. 
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Fig. 2.8.  Maximum inverter phase current comparison. 

 

Fig. 2.9.  Improvements of the proposed 3L-ANPC design with reference to the conventional 3L-NPC and 3L-

ANPC designs. 
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power semiconductor devices withstands both significant conduction and switching losses. This 
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the converter reliability will also improve. The advantages of the proposed converter 

configuration and operation have been evaluated through simulation in a 2 MW inverter for 

WECS, reaching a reduction of around 25% in total converter semiconductor power loss, a 

reduction of around 50% in the maximum junction temperature increase above ambient 

temperature, a reduction of around 75% in the maximum junction temperature variation, and an 

increase of around 85% in the converter power rating, compared to conventional 3L-NPC and 3L-

ANPC designs. The advantages could be even higher if power semiconductor manufacturers 

offered devices with enhanced optimizations to switch and to conduct. 

 





CHAPTER 3 

NOVEL COMMUTATION SEQUENCE TO SPLIT SWITCHING AND CONDUCTION 

LOSSES 

Abstract  Using the enhanced power device configuration proposed in chapter 2, certain devices 

optimized to conduct still suffer some switching losses under particular switching transitions of the 

conventional commutation sequence. Therefore, this chapter proposes a novel commutation sequence for a 

3L-ANPC inverter leg to totally split the switching and conduction losses in different power devices. A 2 MW 

WECS is simulated, reaching a reduction of around 16% in total switching losses. In addition, an enhanced 

thermal performance is achieved, reducing the maximum junction temperature increase above ambient 

temperature, on average for all devices, around 4%. The thermal advantages are considerably higher in 

certain devices, reaching maximum reductions of around 17% in the maximum junction temperature 

increase above ambient temperature and about 40% in the maximum device junction temperature variation. 

All reductions are with reference to the conventional commutation sequence. 

3.1. Introduction 

In the previous chapter, an enhanced power device configuration for the 3L-ANPC design 

and operation has been proposed. The proposed contributions enable high improvements in 

converter output power capability, efficiency, and thermal performance, within a typical 

operation range of a dc-ac grid-connected converter for WECS. The contributions were based on 

forcing that each device mainly withstands switching or conduction losses, which produces a 

better power loss distribution among the devices. However, using the proposed guidelines with 

the basic 3L-ANPC operating principle, some switching losses are still focused on devices 

optimized to conduct. This chapter proposes a novel commutation sequence for the 3L-ANPC 

inverter with the aim of splitting totally the switching and conduction losses in different power 

devices. It enables an optimal semiconductor device selection for each position, and allows 

reaching higher converter efficiency and enhanced thermal performance. 

This chapter is organized as follows. Section 3.2 presents the power loss distribution for the 

basic 3L-ANPC operating principle. Section 3.3 introduces the proposed novel commutation 

sequence. Section 3.4 verifies the proposed commutation sequence through simulation of a 2 

MW WECS based on a three-phase grid-connected 3L-ANPC inverter, using the electro-thermal 

model and WECS behavior defined in chapter 2. Finally, Section 3.5 outlines the conclusions. 
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3.2. 3L-ANPC Power Loss Distribution 

The multilevel active-clamped operating principle, introduced in [49], was presented in 

the previous chapter for the specific case of three-levels. Fig. 3.1 depicts the corresponding three 

switching states to connect the output terminal to the three possible dc-link points. The 

connection of the output terminal to the neutral point presents two parallel paths to conduct the 

output current, which leads to a reduction of the conduction losses compared to the conventional 

approach of applying only one path. 

Each transition between adjacent switching states (between SS1 and SS2 or between SS2 

and SS3) requires changing the state of three switches. Depending on the direction of the current 

flow and the specific switching transition, switching losses will concentrate on the last switch 

turned off or on the first switch turned on (and associated diodes turning off). As mentioned in 

the previous chapter, the switching losses on switch pairs T2-T3 or T2-T3 will concentrate on only 

one of the switches in the pair, by properly delaying one of the control signals in the switch pair. 

According to the proposed enhanced power device configuration, switching losses are focused on 

T3 and T3, releasing from switching losses T2 and T2. Thus, it is proposed to populate T2 and T2 

with devices optimized to conduct since no switching power losses are expected. However, 

switching losses are concentrated on D2 and D2 under certain switching transitions. Table 3.1 

outlines the different switching cases under the basic operating principle applied to the enhanced 

power device configuration introduced in the previous chapter (Fig. 2.2). As can be observed, in 

the switching transition from SS2 to SS1 with iout > 0 and the switching transition from SS2 to SS3 

with iout < 0, switching power losses are focused on D2 and D2, respectively. These diodes are 

   

(a) (b) (c) 

Fig. 3.1.  ANPC leg switching states. (a) SS1. (b) SS2. (c) SS3. 
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optimized to conduct, and so the switching losses will be higher compared to a device optimized 

to switch, which increases the total converter losses and deteriorates the thermal performance. 

Fig. 3.2 depicts in detail the basic commutation sequence in the particular transition from 

SS2 to SS1 with iout > 0, which corresponds to the case 2 of Table 3.1. The switching transition uses 

the gate pattern defined in Fig. 2.3(a), but the gate pattern defined in Fig. 2.3(b) could also be 

used. The on-state devices are depicted with dotted blue circles and the output current with a 

solid red line. The switching transition starts in SS2 (Fig. 3.2(a)) where T2, T2, T3 and T3 are on-

state devices and the output current flows through T2, T3, D2, and D3. In this particular switching 

transition, T2 and T3 are turned off and T1a is turned on. T2 is turned off some delay before the T3 

turn off, in order to focus the turn off switching loss on T3, which is a device optimized to switch. 

However, for iout > 0, the current continues flowing through the antiparallel diodes D3 and D2, and 

when T1a is turned on, both diodes suffer turn-off switching losses. The commutation sequence 

from SS2 to SS3 would be analogous, and both diodes D3 and D2 would suffer turn-off switching 

losses with iout < 0. The diodes D2 and D2 are devices optimized to conduct. Thus, switching power 

losses should not occur in these devices. Next section presents a novel commutation sequence, 

which totally releases D2 and D2 from switching losses. 

  

Case iout Switching transition Devices concentrating 
turn on switching losses 

Devices concentrating 
turn off switching losses 

1 + SS1  SS2 - T1a 

2 + SS2  SS1 T1a D2 and D3 

3 + SS2  SS3 - T3  

4 + SS3  SS2 T3 D1 

5  SS1  SS2 T3 D1 

6  SS2  SS1 - T3  

7  SS2  SS3 T1a D2 and D3 

8  SS3  SS2 - T1a 

Table 3.1.  Devices withstanding switching losses under the 3L-ANPC basic operating principle. 
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(a) (d) 

  
(b) (e) 

  
(c) (f) 

Fig. 3.2.  Basic commutation sequence in the particular transition from SS2 to SS1. The commutation 

sequence from SS2 to SS3 would be analogous. The output leg current (iout) is assumed to be positive. (a) SS2. 

(b) T2 turns off. (c) T3 turns off. (d) T1a turns on causing turn-on losses on T1a and turn-off losses on D2 and 

D3. (e) T1b turns on. (f) T1a turns off to finally reach SS1. 
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3.3. Proposed Commutation Sequence 

As mentioned before, D2 and D2 suffer switching losses in some switching transitions if 

the basic commutation sequence is applied. These diodes are optimized to conduct. Thus, 

switching losses will be higher compared to a device optimized to switch. The proposed 

commutation sequence aims to release D2 and D2 from experiencing switching losses, leading to 

an enhanced performance. Neglecting the diode turn on losses, D2 suffers switching losses in the 

transition from SS2 to SS1 with iout > 0 and D2 in the transition from SS2 to SS3 with iout < 0. 

Therefore, the novel commutation strategy focuses on these transitions, although for simplicity it 

is extended to all transitions starting at SS2. The remaining transitions are kept as defined in the 

basic operating principle.  

Fig. 3.3 depicts the proposed commutation sequence in the particular transition from SS2 

to SS1 with iout > 0. The switching transition uses the gate pattern defined in Fig. 2.3(a), but the 

gate pattern defined in Fig. 2.3(b) could also be used. The main idea is to disable the redundant 

paths to connect the output terminal to the neutral point by turning off the proper devices before 

the commutation starts. Thus, in Fig. 3.3(b), T3 turns off to stop the current flow through D2. This 

step does not cause extra switching losses since T3 turns off under no significant voltage. In Fig. 

3.3(c)-(g), the switching transition continues according to the basic operating principle, applying 

the proper delays to concentrate the switching losses on T1a and D3 (in case iout > 0) or on T3 (in 

case iout < 0). Finally, in Fig. 3.3(h), T3 is turned on in order to ensure a proper blocking voltage 

distribution among T2 and T1a-T1b. The commutation sequence for the transition from SS2 to SS3 

would be analogous. Table 3.2 presents a detailed power loss analysis of the switching transition 

from SS2 to SS1 with iout > 0 and from SS2 to SS3 with iout < 0. Both previous switching transitions 

produce switching losses on D2 and D2 if the basic operating principle is applied. However, 

applying the proposed commutation sequence, switching losses are totally concentrated on D3, 

D3, T1a, and T1a. This allows selecting devices optimized to switch in those positions and diodes 

optimized to conduct in D2 and D2, which leads to an overall reduction in power losses and a 

significant improvement in thermal performance.  
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(a) (e) 

  

(b) (f) 

  
(c) (g) 

  
(d) (h) 

Fig. 3.3.  Proposed commutation sequence in the particular transition from SS2 to SS1. The commutation 

sequence from SS2 to SS3 would be analogous. The output leg current (iout) is assumed to be positive. (a) SS2. 

(b) T3 turns off. (c) T2 turns off. (d) T3 turns off. (e) T1a turns on causing turn-on losses on T1a and turn-off 

losses on D3. (f) T1b turns on. (g) T1a turns off. (h) T3 turns on to finally reach SS3. 
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Switching 

transition 

Step Action ON state Conduction 

losses 

Turn on 

switching 

losses 

Turn off 

switching 

losses 

 

 

 

 

SS2 to SS1 

(iout > 0) 

0 - T2, T2, T3, T3 T2, T3, D2, D3 - - 

1 T3 turn off T2, T2, T3 T2, D3 - - 

2 T2 turn off T2, T3 T2, D3 - - 

3 T3 turn off T2 T2, D3 - - 

4 T1a turn on T1a, T2 T1a, T2 T1a D3 

5 T1b turn on T1a, T1b, T2 T1a, T1b, T2 - - 

6 T1a turn off T1b, T2 T1b, T2 - - 

7 T3 turn on T1b, T2, T3 T1b, T2 - - 

 

 

 

SS2 to SS3 

(iout < 0) 

0 - T2, T2, T3, T3 T2, T3, D2, D3 - - 

1 T3 turn off T2, T2, T3 T2, D3 - - 

2 T2 turn off T2, T3 T2, D3 - - 

3 T3 turn off T2 T2, D3 - - 

4 T1a turn on T1a, T2 T1a, T2 T1a D3 

5 T1b turn on T1a, T1b, T2 T1a, T1b, T2 - - 

6 T1a turn off T1b, T2 T1b, T2 - - 

7 T3 turn on T1b, T2, T3 T1b, T2 - - 

Table 3.2.  Power loss analysis in the proposed commutation sequences. 

Finally, Table 3.3 depicts the devices withstanding switching losses under all possible 

switching transitions in the 3L-ANPC using the proposed commutation sequence. All switching 

losses in the converter leg are focused on positions 1a and 3 (and the symmetric positions), which 

are positions populated with devices optimized to switch. Therefore, using the novel 

commutation sequence, all switching losses in the converter leg are concentrated on devices 

optimized to switch, and devices optimized to conduct are totally released from switching power 

losses.  
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Case iout Switching transition Devices concentrating 
turn on switching losses 

Devices concentrating 
turn off switching losses 

1 + SS1  SS2 - T1a 

2 + SS2  SS1 T1a D3 

3 + SS2  SS3 - T3  

4 + SS3  SS2 T3 D1 

5  SS1  SS2 T3 D1 

6  SS2  SS1 - T3   

7  SS2  SS3 T1a D3 

8  SS3  SS2 - T1a 

Table 3.3.  Devices withstanding switching losses under the 3L-ANPC proposed operating principle. 

3.4. Simulation Results 

This section compares the performance of the original and the proposed commutation 

sequence through a simulation in a 2 MW WECS three-level three-phase grid-connected inverter. 

The electro-thermal model detailed in chapter 2 is used to simulate the WECS behavior. The main 

system parameters are summarized in Table 3.4.  

Both commutation sequences assume the same operating principle [49] and modulation 

strategy [30] to produce a fair comparison. The selected pulse width modulation strategy 

guarantees capacitor voltage balancing in every switching cycle for all possible converter 

operating conditions, which allows a significant reduction of the dc-link capacitance. Table 3.5 

presents the commercial devices selected for each converter position. The selected power 

modules are commercial 1200 V IGBTs with antiparallel diode from Infineon [62]. The converter 

uses two modules, one with good switching performance (FZ800R12KS4_B2) and another one 

with good conduction performance (FZ3600R12HP4). 

Table 3.6 illustrates the switching and conduction performance of the selected devices, 

according to datasheet information. The information for both devices is referred to the particular 

case of a junction temperature of 125 ℃ and 1500 A. VCE and VF indicate the conduction 

performance, and correspond to the voltage drop during on-state for IGBT and diode, 
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respectively. ESW_IGBT and ESW_DIODE indicate the switching performance, and correspond to the 

whole switching energy during turn on and turn off for the IGBT and the switching energy during 

turn off for the diode (diode turn on losses are neglected). As can be observed, FZ800R12KS4_B2 

offers reduced switching losses in exchange for having high conduction losses. Instead, 

FZ3600R12HP4 offers reduced conduction losses and high switching losses. Therefore, combining 

the best of both devices, the global performance could be highly enhanced. 

Parameter Value 

Rated active power 2 MW 

dc-link voltage 1500 V 

Rated grid line-to-line voltage 900 Vrms 

Grid voltage fluctuation  10% 

Rated grid current 1300 Arms 

Rated converter grid-side power factor 1 

Minimum converter grid-side power factor 0.87 

Grid frequency 50 Hz 

Switching frequency 2.5 kHz 

Ambient temperature 50 ℃ 

Table 3.4.  Main WECS inverter parameters. 

Device Semiconductor reference  

T1a  FZ800R12KS4_B2 

T1b + D1 FZ3600R12HP4 

T2 + D2 FZ3600R12HP4 

T3 + D3 FZ800R12KS4_B2 

Table 3.5.  Commercial devices selected for each position. 
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Device VCE (V)  ESW_IGBT (mJ)  VF (V) ESW_DIODE (mJ) 

FZ800R12KS4_B2 5.4 325 2.15 76 

FZ3600R12HP4 1.3 569 1.12 192 

Table 3.6.  Switching and conduction performance figures of the selected devices. 

Fig. 3.4 presents a comparison of the original and the proposed commutation sequence in 

terms of device conduction power loss (Pcond), device switching power loss (Psw), device total 

power loss (Ploss), converter leg power loss (Pleg), maximum device junction temperature increase 

above ambient temperature ([Tj Ta]max) and maximum device junction temperature variation 

(Tj,max). The results of Fig. 3.4(a)-(d) represent average values over all WECS operating points. The 

results in Fig. 3.4(e)-(f) are obtained in the worst operating point, corresponding to rated power at 

grid under-voltage conditions. Due to the leg topology and operation symmetry, only the results 

corresponding to the power semiconductors from the upper half of the converter leg are 

presented. Fig. 3.5 summarizes the improvements of the proposed commutation sequence 

compared to the original commutation sequence with regard to several performance factors. The 

main advantage of the proposed commutation sequence is to release entirely D2 and D2 from 

switching losses. This advantage comes at the expense of increasing the switching losses of D3 and 

D3, but this increase is small because these diodes are optimized to switch. Overall, about a 16% 

reduction in total leg switching losses and about a 6% reduction in total semiconductor power loss 

is achieved. The conduction power losses are essentially the same in both cases. The thermal 

performance is also enhanced with the proposed commutation sequence. The maximum junction 

temperature increase above ambient temperature is reduced, on average for all devices, around 

4%. This is due to the reduction in total power losses and the use of a shared heatsink for a whole 

converter leg. The most improved device is D2, in which the maximum junction temperature 

increase above the ambient temperature is reduced around 17%. The maximum device junction 

temperature variation does not change except for D2, in which it is reduced more than 40%, and 

D3, in which it is very slightly increased. 
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(a) (d) 

 

 

(b) (e) 

 

 

(c) (f) 

Fig. 3.4.  Comparison of the performance obtained with the proposed commutation sequence and the original 

commutation sequence in a three-phase 3L-ANPC grid-connected inverter for a 2 MW WECS. (a) Device conduction 

power loss. (b) Device switching power loss. (c) Device total power loss. (d) Converter leg power loss. (e) Maximum 

device junction temperature increase above ambient temperature. (f) Maximum device junction temperature 

variation.  
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Fig. 3.5.  Improvements of the proposed commutation sequence with reference to the original commutation 

sequence. 

3.5. Conclusion 

A novel commutation sequence for a 3L-ANPC inverter has been presented to force that 

each semiconductor device mainly withstands either switching or conduction losses. This enables 

the selection of optimized devices for each position and leads to an improved converter loss 

distribution, thermal performance, efficiency, and output power capability. In particular, the 

proposed commutation sequence releases two diodes (D2 and D2) from switching losses, 

compared to the original commutation sequence. Simulation results show a reduction of around 

16% in total leg switching losses and an enhanced thermal performance, reducing the maximum 

junction temperature increase above ambient temperature, on average for all devices, around 

4%. Moreover, in the particular case of D2 and D2, a reduction of around 17% in the maximum 

junction temperature increase above ambient temperature and about 40% in the maximum 

device junction temperature variation are achieved. 
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CHAPTER 4 

EXPERIMENTAL VALIDATION 

Abstract  Previous chapters have proposed contributions to the design and operation the 3L-

ANPC. These contributions have been validated by simulation, using the electro-thermal model detailed in 

chapter 2. This chapter is focused on experimentally validating the performance of the proposed 3L-ANPC, 

through a comparison of the power loss and thermal performance with regard to the conventional designs. 

The experimental results confirm that the proposed 3L-ANPC offers a power loss reduction up to 30%, 

compared to conventional designs, and the novel commutation sequence offers a power loss reduction up to 

9%, compared to the basic commutation sequence. The thermal performance is also greatly improved, 

reaching a reduction of the maximum individual device heatsink temperature above ambient temperature 

up to 50%, which enables higher converter output power capability and could lead to enhanced power 

converter reliability. Moreover, the electro-thermal model is also validated by experimental results, reaching 

a maximum deviation error of only 12% in power loss and 20% in heatsink temperature. 

4.1. Introduction 

In the previous chapters, an enhanced power device configuration and a novel 

commutation sequence for the 3L-ANPC have been proposed. The contributions improve the 

converter output power capability, efficiency, and thermal performance, within the typical 

operation range of a grid-connected dc-ac converter for WECS. Both contributions have been 

validated through simulation in a 2 MW WECS. A scaled prototype has been developed in order to 

experimentally verify the proposed contributions. The electro-thermal model is also validated by 

comparison to the experimental results.  

This chapter is organized as follows. Section 4.2 presents the developed prototypes. One 

prototype is based on the proposed topology and design guidelines. The other prototypes are 

based on conventional topologies and designs. The test bench used to characterize the leg 

performance is also presented. This test bench is used to obtain power loss measures for each 

converter design, which are detailed in section 4.3, and also to analyze the thermal performance, 

which is detailed in section 4.4. Then, section 4.5 discusses the silicon area usage of the proposed 

3L-ANPC with reference to conventional designs. Finally, section 4.6 outlines the conclusions. 
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4.2. Leg Prototypes and Leg Characterization Test Bench 

Three leg prototypes (one leg of the conventional 3L-NPC, one leg of the conventional 3L-

ANPC, and one leg of the proposed 3L-ANPC) have been designed and implemented in order to 

perform an experimental loss and thermal performance comparison. The legs are tested under 

variable operating conditions in a leg characterization test bench, designed for this purpose. The 

test bench is based on the opposition method introduced in [63]. This methodology allows easily 

testing a power converter leg under controlled operating conditions, using few electrical and 

electronic equipment. The test bench schematic is depicted in Fig. 4.1.  

The test bench consists of two power converter legs, connected through an inductor. 

Both power converter legs share a dc power supply. One of the legs is the so-called leg under test 

(LUT), and it is the leg under analysis. The other leg, called auxiliary leg, forces a proper output 

voltage to reach the desired test current. The auxiliary leg is a conventional 3L-NPC converter leg, 

designed to offer a robust performance under all possible operating points. Therefore, it is 

populated with high current-rating power semiconductors and low thermal resistance heatsinks. 

In Fig. 4.1, the LUT is depicted as the proposed 3L-ANPC, but during experimentation this leg is 

also replaced by the conventional 3L-NPC and 3L-ANPC. The operation conditions of the LUT are 

defined by the phase shift between the test voltage and current, the modulation index of the LUT 

(mtest) and the test current (itest). With this information and the inductance value (L), the voltage to 

be produced by the auxiliary leg is calculated using a phasor diagram. As an example, Fig. 4.2 

 

Fig. 4.1.  Leg characterization test bench schematic. 
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shows the particular case of power factor equal to unity in the LUT. The LUT rms voltage with 

reference to the neutral point (Vtest) is calculated from mtest. The inductance rms voltage (VL) is 

calculated from L, itest and the output frequency (fn). Finally, the auxiliary leg rms voltage with 

reference to the neutral point (Vaux) is deduced, obtaining the required parameters to operate the 

auxiliary leg: modulation index of the auxiliary leg (maux) and phase shift between the test voltage 

and auxiliary voltage (Δα). 

The three different leg prototypes (conventional 3L-NPC, conventional 3L-ANPC, and 

proposed 3L-ANPC) have been tested using the same operating principle [49] and modulation 

strategy [30] to produce a fair comparison. The selected pulse width modulation strategy is 

designed for three-phase converters and guarantees capacitor voltage balancing in every 

switching cycle for all possible converter operating conditions, which allows a significant 

reduction of the dc-link capacitance. Instead, the auxiliary leg is controlled by a sinusoidal pulse 

width modulation with the addition of the same common mode voltage present in the LUT, to 

cancel its effect on the generation of the test current. Fig. 4.3 depicts the voltage of both legs and 

the test current operating at Vdc = 600 V and itest = 8 Arms. As Fig. 4.3 depicts, the voltage of the 

LUT commutates among the three dc-link voltage levels in the same switching cycle, due to the 

selected modulation strategy. Instead, the voltage of the auxiliary leg always commutates 

between neutral point and either positive or negative dc-link voltage level.  

  

 

Fig. 4.2.  Calculation of auxiliary leg operating parameters for the particular case of power factor equal to 

unity in the LUT. 
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itest 

vaux 

vtest 

All three leg prototypes use power devices based on the same package (PG-TO220). Each 

power device has its own heatsink to be able to estimate each device power loss through its 

temperature. The heatsink offers a 9 K/W thermal resistance, which ensures not to exceed 125 ℃ 

in the junction temperature of any device under any of the planned experimental operating 

points. However, the devices of the auxiliary leg use a 4.7 K/W thermal resistance heatsink in 

order to offer a more robust and reliable performance. The use of air forced cooling is not 

considered. The switching devices are selected without antiparallel diode, in order to allow an 

individual analysis of the performance of each power device. Table 4.1 presents the commercial 

devices selected for each converter position in all designs. The selected power devices are 

commercial 600 V IGBTs from Infineon [62]. The conventional 3L-NPC and 3L-ANPC designs use an 

IGBT (IGP15N60T) and diode (IDP15E60) with balanced conduction and switching characteristics, 

while the proposed 3L-ANPC design uses four different devices: a SiC diode (IDH12SG60C) and a 

high-speed IGBT (IGP20N60H3) with good switching performance, and a high-current diode 

(IDP45E60) and IGBT (IGP50N60T) with good conduction performance. D1 could also be populated 

with a standard device since the workload is not significant within the planned operating 

conditions, but it has been populated with IDP45E60 for simplicity. The auxiliary leg is fully 

populated with the high-current devices with good conduction performance used in the proposed 

3L-ANPC.  

 

Fig. 4.3.  Prototype operation at Vdc = 600 V and itest =8 Arms.  
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Device Conventional 3L-NPC  Conventional 3L-ANPC  Proposed 3L-ANPC Auxiliary leg 

T1a  --------- --------- IGP20N60H3 --------- 

T1b  IGP15N60T IGP15N60T IGP50N60T IGP50N60T 

D1 IDP15E60 IDP15E60 IDP45E60 IDP45E60 

T2 IGP15N60T IGP15N60T IGP50N60T IGP50N60T 

D2 IDP15E60 IDP15E60 IDP45E60 IDP45E60 

T3 --------- IGP15N60T IGP20N60H3 --------- 

D3 IDP15E60 IDP15E60 IDH12SG60C IDP45E60 

Table 4.1.  Commercial devices selected for each design. 

Table 4.2 analyses the switching and conduction performance of the selected devices, 

according to datasheet information. The values are obtained at 15 A and a junction temperature 

of 125 ℃ for diodes and 175 ℃ for IGBTs. As can be observed, the standard devices IGP15N60T 

and IDP15E60 offer a trade-off performance between the devices optimized to switch and the 

devices optimized to conduct. Therefore, switching power losses of IGP15N60T and IDP15E60 are 

lower than the switching power losses of IGP50N60T and IDP45E60, which are devices optimized 

to conduct, but higher compared to the switching power losses of IGP20N60H3 and IDH12SG60C, 

which are devices optimized to switch. The reverse effect is observed regarding conduction power 

losses.  

Device VCE (V)  ESW_IGBT (mJ)  VF (V) ESW_DIODE (mJ) 

IGP15N60T 1.75 0.82 ---- ---- 

IGP20N60H3 2 0.65 ---- ---- 

IGP50N60T 1.1 1.22 ---- ---- 

IDP15E60 ---- ---- 1.45 0.206 

IDH12SG60C ---- ---- 3.1 0.00386 

IDP45E60 ---- ---- 1.05 0.262 

Table 4.2.  Switching and conduction performance figures of the selected devices. 
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In the proposed 3L-ANPC, T1a concentrates switching losses and T1b conduction losses. 

However, for simplicity, both power devices conduct in parallel during the connection to the 

positive point of the dc-link. This does not have a significant effect in power loss, since the 

conduction performance of the IGP20N60H3 is much worse than the conduction performance of 

IGP50N60T. The same behavior applies to T4a and T4b. 

With the aim to produce a fair comparison among converter designs, the gate resistor 

value indicated in each device datasheet for the determination of switching losses has been used, 

since this value is assumed to provide the best switching performance. Table 4.3 depicts the 

selected gate resistor for each device. 

Table 4.4 depicts the experimental operating points. The dc-link voltage is defined at 600 

V. The test current is defined at 8 Arms. Then, two values of the switching frequency (20 kHz and 

30 kHz) and two values of the power factor (1 and 0.8) are considered, in order to study the 

power converter performance within a typical operation range of a dc-ac grid-connected 

converter for WECS. 

 
Parameter Operating 

point 1 (OP1) 

Operating 

point 2 (OP2) 

Operating 

point 3 (OP3) 

Operating 

point 4 (OP4) 

dc-link voltage (V) 600 600 600 600 

Test current (Arms) 8 8 8 8 

Grid frequency (Hz) 50 50 50 50 

Modulation index 0.8 0.8 0.8 0.8 

Power factor 1 0.8 1 0.8 

Switching frequency (kHz) 20 20 30 30 

Table 4.4.  Experimental operating points. 

Device Gate resistor (Ω) 

IGP50N60T 7 

IGP20N60H3 14.6 

IGP15N60T 15 

Table 4.3.  Selected gate resistor for each device. 
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The capacitance of the dc-link has been designed in order to ensure a low overshot in the 

dc-link voltage during the system turn-off transient. Under the developed experimental setup, the 

inductive load energy is transferred to the dc-link capacitors during the turn-off transient, 

according to (4.1). C is the capacitance value per dc-link level and ΔVdc is the dc-link capacitor 

over-voltage. The design considers a dc-link capacitor over-voltage of 5 V under the worst case, 

which is rated dc-link voltage and maximum peak current. The capacitance value per level is 190 

µF, consisting of a 180 µF electrolytic capacitor in parallel with a 10 µF polypropylene capacitor.  

1

2
· 𝐿 · 𝑖𝑡𝑒𝑠𝑡

2 = 2 · (
1

2
· 𝐶 · (

𝑉𝑑𝑐
2

+ ∆𝑉𝑑𝑐)
2

−
1

2
· 𝐶 · (

𝑉𝑑𝑐
2
)
2

) (4.1) 

The discharging resistor of the dc-link capacitors (Rdis) is designed to reduce the capacitor 

voltage (vC) to less than 10 V in 15 seconds at a dc-link voltage of 600 V, according to (4.2). The 

discharging resistor value is 20 kΩ and the resistor power dissipation is 4.5 W.  

𝑣𝐶(𝑡) = (
𝑉𝑑𝑐
2
) · 𝑒

(−
𝑡

𝑅𝑑𝑖𝑠·𝐶
)
 (4.2) 

Each power converter leg has been developed in an independent electronic board. Fig. 

4.4 shows the power converter leg of the proposed 3L-ANPC. The design concentrates all power 

devices in the middle of the electronic board, in order to allow analyzing the power devices 

heatsink temperatures easily. The commercial dual driver 2SC0435T2D0-17 from Power 

Integrations [64] has been used. The same electronic board is used to implement the 

conventional designs, replacing and/or dismantling certain power devices. Fig 4.5 depicts the 

power device layout used for each power converter leg during experimentation.  

 

Fig. 4.4.  Electronic board design for the proposed 3L-ANPC power converter leg. 
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(a) (b) (c) 

Fig. 4.5.  Power device layout. (a) Conventional 3L-NPC. (b) Conventional 3L-ANPC. (c) Proposed 3L-ANPC. 

Fig 4.6 shows the complete experimental setup to test the converter leg. The leg 

characterization test bench is controlled by a dSPACE control platform [65]. The LUT is placed on 

top of the auxiliary leg in order to provide a clear thermal view of the LUT power devices. Fig. 4.7 

shows the inductive load, which consists of six inductances connected in series. The total 

inductance is 8.76 mH with 198 mΩ series resistance.  

 

 

1. dc power supply control panel 

2. dSPACE control panel 

3. dSPACE control hardware 

4. Oscilloscope 

5. Thermal image 

6. Thermal camera 

7. Drivers power supply 

8. Leg under test and auxiliary leg 

9. Inductive load 

10. dc power supply 

Fig. 4.6.  Experimental setup. 
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Fig. 4.7.  Inductive load. 

4.3. Leg Power Loss 

The power loss of the three leg prototypes has been experimentally measured at the four 

operating points outlined in Table 4.4. The LUT power loss is calculated as (see Fig. 4.1) 

𝑃𝑙𝑜𝑠𝑠 = 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 (4.3) 

Where 

𝑃𝑖𝑛 = 𝑣1 ·< 𝑖1 > +𝑣2 ·< 𝑖2 > (4.4) 

𝑃𝑜𝑢𝑡 =< 𝑣𝑡𝑒𝑠𝑡 · 𝑖𝑡𝑒𝑠𝑡 > (4.5) 

And < > denotes average values over the line cycles. vtest is the LUT voltage with reference 

to the neutral point. 

Fig. 4.8 depicts the leg power loss of the conventional 3L-NPC, the conventional 3L-ANPC 

and the proposed 3L-ANPC under all four operating points. As can be observed, the power loss is 

highly reduced with the proposed 3L-ANPC in all cases. This high reduction is due to the fact that 

all switching power losses are concentrated on devices optimized to switch, and all conduction 

losses are concentrated on devices optimized to conduct. For the case of 30 kHz, the power loss 

reduction is even higher since more switching losses are concentrated on devices optimized to 

switch, unlike conventional designs in which standard devices are concentrating the switching loss 

increase. The contributions offer higher power loss reduction for power factors close to unity. In a 

dc-ac grid-connected inverter with power factor close to unity, most current is flowing through 

switching devices, offering fully controllable paths to split switching and conduction losses in 

different devices. On the other hand, the current flows a longer time through diodes when the 

power factor decreases, reducing the degree to focus switching losses on certain devices. 
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Fig. 4.9 depicts the power loss reduction of the proposed 3L-ANPC with reference to the 

conventional designs. Using the proposed enhanced power device configuration combined with 

the proposed novel commutation sequence, the power loss is reduced about 25% compared to 

conventional designs, reaching reductions higher than 30% under certain conditions. 

 

 

Fig. 4.9.  Proposed 3L-ANPC leg power loss reduction with reference to conventional designs. 
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Fig. 4.8.  Leg power loss comparison of the different converter topologies studied. 
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Fig. 4.10 depicts the deviation error of the simulated power loss with reference to the 

experimental results. Thus, a negative deviation error means that the experimental value is higher 

than the obtained value through simulation. The maximum deviation with conventional designs is 

around 3% and it is around 12% with the proposed design, which validates the power loss model. 

From this point, the enhanced power device configuration with the original commutation 

sequence is considered as the proposed 3L-ANPC-1, and the enhanced power device 

configuration with the proposed commutation sequence is considered as the proposed 3L-ANPC-

2. 

Fig. 4.11 compares the power loss of the proposed 3L-ANPC-1 and the proposed 3L-ANPC-

2. Using the novel commutation sequence, all switching losses are concentrated on devices 

optimized to switch. Instead, with the original commutation sequence, some switching losses are 

concentrated on devices optimized to conduct, which increases the total power losses. Therefore, 

the proposed 3L-ANPC-2 offers lower total power losses under all experimental operating points. 

The reduction is higher with higher switching frequencies, since a higher amount of switching 

losses are concentrated on devices optimized to conduct under the proposed 3L-ANPC-1. 

 

Fig. 4.10.  Deviation error of simulated leg power loss with reference to experimental results. 
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Fig. 4.11.  Effect of the proposed commutation sequence in the leg power loss. 

Finally, Fig. 4.12 shows the power loss reduction of the proposed commutation sequence 

with reference to the original commutation sequence. By using the novel commutation sequence, 

the total amount of power losses can be reduced around a 5%. This percentage could be higher 

operating with higher switching frequencies, reaching around 9% at 30 kHz and power factor 

equal to unity. 

 

Fig. 4.12.  Proposed commutation sequence power loss reduction with reference 

to the original commutation sequence. 
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4.4. Thermal Performance 

In this section, the thermal performance of the proposed 3L-ANPC and the conventional 

designs are analyzed. The thermal camera U5855A TrueIR Thermal Imager from Keysight 

Technologies [66] is used. The heatsink temperature allows a fair comparison, since all power 

devices use the same package and heatsink. The temperature measurement has been verified by 

the measure of an external PT100. The ambient temperature during the experimentation was 22 

℃. The procedure for the thermal measurements is to keep the operating point during five 

minutes, and then take a thermal picture of the power devices. After that, the power devices are 

kept with no operation and no forced refrigeration during another five minutes, in order to reach 

again the ambient temperature. Then, the next operating point is introduced during five minutes, 

taking a new thermal picture at the end of this time. This procedure is repeated until all 

experimental points have been measured in all different converter topologies.  

In the following, the thermal pictures of all measurements are depicted. The small 

discrepancies between the upper and lower half of the converter leg are assumed to be due to 

the test current distortion and the components tolerances (power devices, drivers, thermal 

camera or heatsinks). To facilitate the comparison, the same scale from 15 ℃ to 95 ℃ has been 

used in all pictures. Due to the leg topology and operation symmetry, only the results 

corresponding to the power semiconductors from the upper half of the converter leg are 

analyzed. 

Fig. 4.13 depicts the thermal pictures of the conventional designs, the proposed 3L-ANPC-

1 and the proposed 3L-ANPC-2 operating at fsw = 20 kHz and pf = 1. The power device layout is 

depicted in Fig. 4.5. Both conventional designs have some power devices suffering high 

temperatures, which might reduce the power device life, affecting the reliability of the system. As 

the number of power devices is increased, the thermal performance is more uniform, leading to 

more reliable operating conditions for the power devices. T1 and T2 are very critical devices in the 

conventional 3L-NPC, since they suffer from high conduction and switching losses. The 

performance of T1 continues being critical operating under the conventional 3L-ANPC, because 

the applied operating principle does not improve the power losses distribution in this position. 

However, in the conventional 3L-ANPC, the performance of T2 is clearly improved since the 

switching losses are focused on position 3 under the selected operating principle, and the 

conduction losses for the neutral point connection are lower due to the use of parallel paths. 

Finally, in the proposed 3L-ANPC, the conduction and switching losses are distributed in different 
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devices, and so the thermal performance is much more uniform. Moreover, the proposed 

commutation sequence releases D2 and D2 from switching losses, which leads to lower 

temperatures in these diodes in Fig. 4.13(d) compared to Fig. 4. 13(c). This temperature reduction 

of D2 and D2, enabled by the use of the novel commutation sequence, is also observed in the 

remaining operating points.  

Table 4.5 summarizes the highest heatsink temperature of each power device operating 

at fsw = 20 kHz and pf = 1, highlighting in red the maximum temperature reached for each 

converter topology. 

Fig. 4.14 depicts the thermal pictures of the conventional designs, the proposed 3L-ANPC-

1 and the proposed 3L-ANPC-2 operating at fsw = 20 kHz and pf = 0.8. The temperature of D1 has 

increased in all pictures compared to the scenario with pf = 1. Similar to the previous operating 

point, both conventional designs have some power devices suffering high temperatures, which 

might reduce the power device life, affecting the reliability of the system. A higher number of 

power devices again leads to a more uniform thermal performance. Although T1 and T2 are slightly 

released from thermal stress due to the lower power factor, these positions continue being the 

most critical in the conventional designs. However, the temperature of T2 in the conventional 3L-

ANPC is reduced compared to the conventional 3L-NPC. Finally, in the proposed 3L-ANPC, the 

thermal performance is much more uniform, avoiding concentrating high power losses in a single 

device. 

Table 4.6 summarizes the highest heatsink temperature of each power device operating 

at fsw = 20 kHz and pf = 0.8, highlighting in red the maximum temperature reached for each 

converter topology. 

Fig. 4.15 depicts the thermal pictures of the conventional designs, the proposed 3L-ANPC-

1 and the proposed 3L-ANPC-2 operating at fsw = 30 kHz and pf = 1. With a higher switching 

frequency, the thermal performance of both conventional designs is more uneven, reaching 

higher temperatures in some devices, affecting the reliability of the system. In the conventional 

designs, T1 reaches a higher temperature since the switching losses have been increased. The 

thermal stress of T1 is clearly dangerous for the reliability of the system. Moreover, T1 is limiting 

the output power capability of the converter. Instead, in the proposed 3L-ANPC, the power loss is 

evenly distributed among the power devices, and so the output power capability could be greatly 

increased. The effect of the proposed commutation sequence operating at 30 kHz is even higher, 
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since higher switching losses are focused on devices optimized to switch. Therefore, the 

temperatures of D2 and D2 in the proposed 3L-ANPC-2 show a higher reduction compared to the 

proposed 3L-ANPC-1. 

Table 4.7 summarizes the highest heatsink temperature of each power device operating 

at fsw = 30 kHz and pf = 1, highlighting in red the maximum temperature reached for each 

converter topology. 

Fig. 4.16 depicts the thermal pictures of the conventional designs, the proposed 3L-ANPC-

1 and the proposed 3L-ANPC-2 operating at fsw = 30 kHz and pf = 0.8. The temperature of D1 has 

increased in all pictures compared to the scenario with pf = 1. The thermal performance of both 

conventional designs continues being uneven, and high temperatures are reached in some 

devices. T1 continues limiting the output power capability of the converter and putting at risk the 

reliability of the system. In the proposed 3L-ANPC, the power losses are uniformly distributed 

among the devices, avoiding focusing high power losses on a single device, and enabling a more 

uniform thermal performance. The output power of the proposed converter could be greatly 

increased.  

Table 4.8 summarizes the highest heatsink temperature of each power device operating 

at fsw = 30 kHz and pf = 0.8, highlighting in red the maximum temperature reached for each 

converter topology. 

Fig. 4.17 analyzes the deviation error of the simulated heatsink temperatures for each 

design with reference to the experimental results. Thus, a negative deviation error means that the 

experimental value is higher than the obtained value through simulation. The average error is 

around 8%, reaching a maximum deviation error of 20% under certain operating conditions. It can 

be concluded that the electro-thermal model is fairly accurate to capture the prototype 

performance trends. 
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(a) (c) 

  
(b) (d) 

Fig. 4.13.  Thermal performance analysis operating at OP1. (a) Conventional 3L-NPC. (b) Conventional 3L-

ANPC. (c) Proposed 3L-ANPC-1. (d) Proposed 3L-ANPC-2. 

Device Conventional 3L-NPC Conventional 3L-
ANPC 

Proposed 3L-ANPC-1 Proposed 3L-ANPC-2 

T1a 74.9 78 43.2 39.8 

T1a 74.2 77.8 42.4 39.2 

T1b - - 46.4 45.9 

T1b - - 48.1 47.5 

T2 76.9 61.7 53.6 53.4 

T2 71.8 60.7 52.4 51.6 

T3 - 39.2 31.1 32 

T3 - 37.4 31.5 30.8 

D1 26.1 28.3 24.8 25.5 

D1 25.1 28.4 24.7 25.8 

D2 25.2 37.2 33.6 29.1 

D2 24.7 37.6 32.6 28.8 

D3 48 37.3 31.3 31.7 

D3 45.8 37.6 30.4 30.5 

Table 4.5.  Measured heatsink temperature (℃) of each power device operating at OP1. 

95 ℃ 15 ℃ 
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Device Conventional 3L-NPC Conventional 3L-
ANPC 

Proposed 3L-ANPC-1 Proposed 3L-ANPC-2 

T1a 69.3 73.4 41 39 

T1a 71.2 75.4 43.5 38.6 

T1b - - 44.8 46.2 

T1b - - 46.3 44.6 

T2 76.3 59.2 51.4 52.7 

T2 72.9 60.4 54.1 51.5 

T3 - 41.5 34.6 33.6 

T3 - 38.2 34.1 33.5 

D1 28.8 33.7 27.6 27.4 

D1 27.1 33.4 28 28.7 

D2 27.2 40.3 36.5 31.3 

D2 26.5 38.7 34.2 30.5 

D3 46.6 36.3 30.6 31.3 

D3 45.1 37.2 31.2 31.6 

Table 4.6.  Measured heatsink temperature (℃) of each power device operating at OP2. 

 

  
(a) (c) 

  
(b) (d) 

Fig. 4.14.  Thermal performance analysis operating at OP2. (a) Conventional 3L-NPC. (b) Conventional 3L-

ANPC. (c)  Proposed 3L-ANPC-1. (d) Proposed 3L-ANPC-2. 

95 ℃ 15 ℃ 
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(a) (c) 

  
(b) (d) 

Fig. 4.15.  Thermal performance analysis operating at OP3. (a) Conventional 3L-NPC. (b) Conventional 3L-

ANPC. (c) Proposed 3L-ANPC-1. (d) Proposed 3L-ANPC-2. 

Device Conventional 3L-NPC Conventional 3L-
ANPC 

Proposed 3L-ANPC-1 Proposed 3L-ANPC-2 

T1a 88.7 87.9 50.6 46.5 

T1a 87.2 88.6 51.1 48 

T1b - - 51.3 50.5 

T1b - - 49.4 50.2 

T2 78.3 63.5 55.2 55.4 

T2 71.3 62.4 53.5 55.2 

T3 - 39.6 31.6 31.9 

T3 - 36.4 32.2 32.2 

D1 26.5 28.8 24.8 25.4 

D1 27.8 28.9 24.2 25.3 

D2 25.8 39.3 35.1 29.4 

D2 27 39.6 33.7 28.8 

D3 52.1 38.4 31.1 32.6 

D3 49 38.6 30.6 32.3 

Table 4.7.  Measured heatsink temperature (℃) of each power device operating at OP3. 

95 ℃ 15 ℃ 
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(a)  (c) 

 

 
(b) (d) 

Fig. 4.16.  Thermal performance analysis operating at OP4. (a) Conventional 3L-NPC. (b) Conventional 3L-

ANPC. (c) Proposed 3L-ANPC-1. (d) Proposed 3L-ANPC-2. 

Device Conventional 3L-NPC Conventional 3L-
ANPC 

Proposed 3L-ANPC-1 Proposed 3L-ANPC-2 

T1a 82.1 83.3 47.8 45.4 

T1a 86.1 85 52.6 47.2 

T1b - - 47.8 48.8 

T1b - - 49.4 49.4 

T2 79.8 61.3 53.7 54.2 

T2 76.2 61.1 55.8 55.7 

T3 - 44 36.1 35.5 

T3 - 40.1 35.4 35.6 

D1 30.5 32.7 28.3 27.7 

D1 29.2 32.1 28.6 27.3 

D2 28.2 41.5 38.6 31.7 

D2 28.1 40.1 35 30.5 

D3 50.6 37.2 30.6 31.7 

D3 49.9 37.8 31.4 32.5 

Table 4.8.  Measured heatsink temperature (℃) of each power device operating at OP4. 

95 ℃ 15 ℃ 
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(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

Fig. 4.17.  Deviation error of simulated heatsink temperature for each power device with reference to 

experimental results. (a) Operation at OP1. (b) Operation at OP2. (c) Operation at OP3. (d) Operation at 

OP4. 
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However, analyzing the temperature measurements in detail, an unexpected temperature 

increase is detected in T1b and T1b (power devices optimized to conduct) in the proposed 3L-ANPC 

when the switching frequency is increased. This is due to the non-idealities in the turn-off of T1b 

and T1b. In order to avoid turn-off switching losses in T1b, the procedure to turn off T1a and T1b 

when they are conducting the test current is: 

1. Turn off T1b. 

2. Wait some delay (Td). 

3. Turn off T1a. 

In principle, this procedure focuses switching losses on T1a, and releases T1b from 

switching losses, because T1b turns off with a very low collector-emitter voltage (T1a is still in on-

state). However, when T1a is turned off and the voltage across both devices increases to the 

blocking voltage level, some unexpected switching losses are encountered in T1b. This switching 

loss is due to the fact that T1b only has a limited time available (Td) for recombination of the 

internal carriers. If Td increases, switching losses in T1b decrease. However, conduction losses on 

T1a increase since it conducts longer time without the help of T1b. From laboratory tests, it was 

found that a good trade-off value is Td = 1 µs. This issue has been widely discussed in the 

literature [67]-[73]. Fig. 4.18 depicts the T1a and T1b turn off for two different Td values (Td = 200 ns 

and Td = 1 µs) operating at Vdc = 600 V and itest = 8 Arms. In point 1 of Fig. 4.18, the current flowing 

through T1b goes to zero since this device is turned off, but the collector-emitter voltage does not 

change since T1a is still in on-state. After the delay Td, in point 2 of Fig. 4.18, the collector-emitter 

voltage of T1a and T1b increase to the blocking voltage value since T1a is turned off. In this instant, 

some current flows through T1b. Part of this current is used to charge the internal capacitance of 

the power device, but the remaining part causes switching losses on T1b, since it is used to 

recombine internal carriers. As observed, the higher Td is, the lower the current flowing through 

T1b at T1a turn-off. 
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(a) 

 

 (b) 

Fig. 4.18.  T1a and T1b turn off. Channel 1: T1a collector-emitter voltage. Channel 2: T1b collector-emitter 

voltage. Channel 3: T1b collector current. Channel 4: test current through LUT. (a) Td = 200 ns. (b) Td = 1 µs.  

Fig.4.19 presents the reduction of the maximum heatsink temperature increase above 

ambient temperature of the proposed 3L-ANPC with reference to conventional designs. All 

reductions are, at least, around 45%. Higher reduction can be reached at higher switching 

frequencies.  
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Fig. 4.19.  Reduction of the maximum heatsink temperature increase above ambient temperature with 

reference to conventional designs. 

In the previous thermal pictures, an improvement of the thermal performance of D2 and 

D2 has been observed due to the use of the proposed commutation sequence. Hovewer, part of 

the switching power losses released in these diodes are trasnferred to D3 and D3. Fig. 4.20 

analyzes the thermal effect of the novel commutation sequence, depicting the temperatures of 

D2, D2, D3, and D3 under all operating points. The temperatures of D2 and D2 experience a clear 

reduction because these diodes (optimized to conduct) are released from switching losses. 

Instead, as expected, the temperatures of D3 and D3 experience a slightly increase, since higher 

switching losses are focused on these devices. However, as has been previously verified, the use 

of the proposed commutation sequence enables a global reduction in power loss and an 

improvement in global thermal performance.  

4.5. Silicon Area 

This section compares the silicon area used in the proposed 3L-ANPC to conventional 

designs. The proposed 3L-ANPC requires a higher number of power devices, increasing the total 

silicon area. However, it also features a higher output power capability. Fig 4.21 depicts the open 

power devices used in the experimentation, and Table 4.9 presents the measured silicon area. 
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(a) (b) 

  
(c) (d) 

Fig. 4.20.  Thermal analysis in the affected diodes for the novel commutation sequence. (a) Operation at 

OP1. (b) Operation at OP2. (c) Operation at OP3. (d) Operation at OP4. 

  

(a) (b) 

Fig. 4.21.  Open power devices used in the experimentation. (a) IGBTs (b) Diodes 
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Device Length (mm) Width (mm) Area (mm2) 

IGP15N60T 2.65 2.65 7.02 

IGP20N60H3 3.2 3.2 10.24 

IGP50N60T 6.6 3.85 25.41 

IDP15E60 2.3 2.3 5.29 

IDH12SG60C 1.3 1.3 1.69 

IDP45E60 3.6 3.6 12.96 

Table 4.9.  Silicon area of the power devices used in the experimentation. 

Table 4.10 shows the total leg silicon area of each design and the increase ratio with 

reference to the conventional 3L-NPC. Standards diodes are considered in D1. The conventional 

3L-ANPC only needs two extra switching devices, and the total area is close to the value of the 

conventional 3L-NPC. Instead, the area of the proposed 3L-ANPC is much higher than the 

conventional designs, since it requires several extra power devices. However, this result is very 

dependent on the selected devices. 

The electro-thermal model presented in chapter 2 has been used to calculate the 

maximum leg output current per each converter design. This maximum output current is the one 

forcing any device to reach the maximum safe operating junction temperature or junction 

temperature variation. An individual heatsink per device is considered. Table 4.11 shows the 

simulation parameters. 

Table 4.12 presents the maximum rms output current and the maximum rms output 

current per Si area of each converter design under the defined simulation parameters. The 

proposed 3L-ANPC offers a higher maximum output current per Si area compared to conventional 

designs under the simulated operating conditions. 

Converter 
topology 

Total area (mm2) Increase ratio with 
reference to 3L-NPC 

3L-NPC 59.83 1 

3L-ANPC 73.87 1.23 

Proposed 
3L-ANPC 

182.48 3.05 

Table 4.10.  Total leg silicon area of each converter design. 
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Parameter Value 

Switching frequency 28 kHz 

Heatsink thermal resistance 2 K/W 

Maximum acceptable junction 
temperature variation 

50 ℃ 

Maximum acceptable junction 
temperature 

175 ℃ 

Modulation index 1 

Power factor 1 

Ambient temperature 25 ℃ 

dc-link voltage 600 V 

Grid frequency 50 Hz 

Table 4.11.  Simulation parameters. 

 

Converter design Maximum output 
current (Arms) 

Maximum output 
current per Si area 

(Arms/mm2) 

3L-NPC 17.1 0.286 

3L-ANPC 17.18 0.233 

Proposed 3L-ANPC 55.07 0.302 

Table 4.12.  Maximum output current and maximum output current per Si area. 

4.6. Conclusions 

This chapter has presented the experimental validation of the expected performance of 

the enhanced power semiconductor device configuration and the novel commutation sequence 

introduced in previous chapters. These contributions lead to use a higher number of power 

devices compared to conventional designs, in order to split switching and conduction losses on 

certain power converter positions. As a consequence, the converter power rating can be 

substantially increased, and it is expected that the converter reliability will also improve. The 

experimental results of the developed prototypes, based on 600 V power devices, validate the 

developed electro-thermal model, with maximum deviation errors of only 12% in power loss and 
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20% in heatsink temperatures. According to the experimental results, the proposed 3L-ANPC 

offers a power loss reduction up to 30%, compared to conventional designs, and the proposed 

commutation sequence offers a power loss reduction up to 9%, compared to the original 

commutation sequence. The thermal performance is also greatly improved, reaching a reduction 

of the maximum heatsink temperature increase above ambient temperature up to 50%, which 

could lead to an enhanced reliability. The advantages could be even higher if power 

semiconductor manufacturers offered devices with enhanced optimizations to switch and to 

conduct. 





CHAPTER 5 

HYBRID POWER DEVICE CONFIGURATION OF N-LEVEL ACTIVE-CLAMPED 

INVERTER FOR WIND ENERGY CONVERSION SYSTEMS 

Abstract  This chapter proposes an extension to any number of levels for the enhanced power device 

configuration presented in chapter 2 and the novel commutation sequence presented in chapter 3. Thus, a 

hybrid power semiconductor configuration for n-level active-clamped inverters for WECS is proposed. The 

design and operation guidelines seek that each device mainly withstands either switching or conduction 

losses, which enables an optimized device selection for each position, leading to an improved electrical and 

thermal performance. A 3 MW four-level three-phase grid-connected active-clamped inverter based on the 

proposed hybrid power device configuration is simulated in the typical WECS operating range. The 

simulation results show a reduction of around 25% in total power loss, a reduction of around 40% in the 

maximum junction temperature increase above ambient temperature, a reduction higher than 60% in the 

maximum junction temperature variation, and an increase of around 50% in the output power capability, 

compared to a converter with a standard device configuration. 

 Introduction 

The 3L-ANPC topology enables an enhanced power loss distribution to overcome the 

limitations of the 3L-NPC. Several extensions of the 3L-ANPC topology to a higher number of 

levels have been proposed in the literature. Some of these extensions involve the introduction of 

flying capacitors in the multilevel leg topology. However, the introduction of these capacitors 

increases the leg volume and could affect the power converter reliability since it is a component 

with a non-negligible failure ratio. Moreover, these additional capacitors need to be charged and 

balanced during operation. Instead, an extension of the 3L-ANPC topology to any number of 

levels, without the need of additional capacitors, has been presented in [49]. However, the 

optimal power semiconductor device selection for each position within the leg topology is not 

analyzed. This chapter focuses on analyzing and proposing a general hybrid power semiconductor 

device configuration for the multilevel active-clamped topology, within a typical operation range 

of a dc-ac grid-connected converter for WECS. 

This chapter is organized as follows. Section 5.2 presents the multilevel active-clamped 

topology and the basic operating principle. Sections 5.3 and 5.4 discuss the extension to n-levels 

of the proposed power device configuration and commutation sequence, respectively. Section 5.5 
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analyses the performance of a four-level three-phase grid-connected active-clamped inverter for 

a 3 MW WECS through simulation. Finally, Section 5.6 outlines the conclusions. 

 Multilevel Active-Clamped Topology and Basic Operating Principle 

The multilevel active-clamped leg topology, depicted in Fig. 5.1 for the generic case of n-

levels, consists on a pyramidal connection of controlled switching semiconductor devices with 

antiparallel diodes. This topology allows increasing one level by adding (n-1)·2 switches, where n 

is the new number of levels. 

Fig. 5.2 depicts the topology for the particular four-level case. The leg output terminal (o) 

can be connected to any of the input terminals (i1, i2, i3, i4) through the definition of appropriate 

switching states. Fig. 5.2 presents the switching states to connect the leg output terminal to input 

terminals i1, i2, i3, and i4, respectively. The uncircled switches are off-state devices. The circled 

switches are on-state devices. The solid-circled switches connect the leg output terminal to the 

 

Fig. 5.1.  Multilevel active-clamped topology for the generic case of n-levels. 
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desired input terminal and conduct the leg output current (iout), depicted in red. The dotted-

circled switches do not conduct any significant current and simply ensure a proper blocking 

voltage of the off-state devices. As can be observed, in the connection to the inner dc-link points 

i2 and i3, the corresponding switching states enable the flow of the output current through parallel 

current paths, which reduces the overall conduction losses compared to the case in which only 

one path is enabled. By properly adjusting the sequence of events in the switching transitions, 

switching losses can be concentrated in certain devices. Therefore, the topology offers some 

freedom to distribute the switching losses among the power semiconductors.  

  

(a) (b) 

  

(c) (d) 

Fig. 5.2.  Switching states of a four-level active-clamped leg. (a) SS1: connection to node i1. (b) SS2: 

connection to node i2. (c) SS3: connection to node i3. (d) SS4: connection to node i4. 
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Each transition between adjacent switching states (between SS1 and SS2, between SS2 and 

SS3 or between SS3 and SS4) requires changing the state of four switches. Depending on the 

direction of the current flow and the specific switching transition, switching losses will 

concentrate on the last switch turned off or on the first switch turned on (and associated diodes 

turning off). Table 5.1 summarizes the different cases. For example, delaying the control signal of 

either T15, T23 or T31 in the transition from SS3 to SS4 with iout > 0, switching losses will be 

concentrated on this switch when it turns off. The first two switches turned off will not experience 

switching losses since they turn off with zero voltage. As an additional example, advancing the 

control signal of either T12, T22 or T32 in the transition from SS1 to SS2 with iout < 0, switching losses 

will be concentrated on this switch when it turns on. The last two switches turned on will not 

experience switching losses since they turn on with zero voltage. 

Case iout Switching transition Devices concentrating 
turn on switching losses 

Devices concentrating 
turn off switching losses 

1 + SS1 SS2 - T11 

2 + SS2 SS1 T11 D12-D22-D32 

3 + SS2 SS3 - T13-T21 

4 + SS3 SS2 T13-T21 D14-D24 

5 + SS3 SS4 - T15-T23-T31 

6 + SS4 SS3 T15-T23-T31 D16 

7  SS1 SS2 T12-T22-T32 D11 

8  SS2 SS1 - T12-T22-T32 

9  SS2 SS3 T14-T24 D13-D21 

10  SS3 SS2 - T14-T24 

11  SS3 SS4 T16 D15-D23-D31 

12  SS4 SS3 - T16 

Table 5.1.  Devices concentrating switching losses under the possible switching transitions. 
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 Hybrid Power Semiconductor Configuration 

As mentioned in previous chapters, for a given voltage rating, the design of power 

semiconductor devices involves trade-offs. Low conduction losses can be achieved at the expense 

of degrading the switching performance, and vice versa. This leads to the availability of devices 

optimized for conduction (cond_opt), devices optimized for switching (sw_opt) and standard 

devices trading the conduction and switching performance (standard). If a power device within a 

converter topology suffers both significant conduction and switching losses, the most reasonable 

choice is to select a standard device. However, the resulting conduction power losses would 

increase compared to a device optimized for conduction, and the resulting switching losses would 

increase compared to a device optimized for switching, leading to a low conversion efficiency. In 

addition, this device could be a potential candidate to be the most stressed device in the 

topology, limiting the converter power rating.  

In light of the previous discussion, a design and operation of the multilevel active-clamped 

converter allowing each device in the topology to mainly withstand only conduction or switching 

losses, would allow selecting an optimized device for the intended operation, leading to increased 

converter efficiency and power rating. This is the goal of the following design and operation 

guidelines, which are presented for the general n-level case. In the following, the case under 

study will be a three-phase dc-ac converter built upon three n-level active-clamped legs, 

operating in inverter mode with a fairly high modulation index and with a power factor fairly close 

to unity, which corresponds to the typical WECS operating conditions.  

Analyzing the multilevel active-clamped topology under the WECS operating conditions, 

devices S1,2, S1,3,…, S1,n1 will then mainly experience switching losses, because for high modulation 

indexes the duty ratio of connection to the inner dc-link input terminals will be small and because 

the output current flows in these positions through parallel paths. Thus, taking advantage of the 

freedom provided by the topology to distribute switching losses on certain devices, switching 

losses are concentrated in the pole of devices closest to the dc-link (S1,1, S1,2,…, S1,n1) through 

adding proper delays to the corresponding control signals. Therefore, a sw_opt device is the best 

option to populate these positions. Nevertheless, besides significant switching losses, devices S1,1 

and S1,n1 will also experience significant conduction losses, because for high modulation indexes, 

the duty ratio of connection to the external dc-link input terminals is high, with only one path for 

the output current to flow. Therefore, as shown in Fig. 5.3, it is proposed to double the number of 
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devices in this position. The operation of the converter can be then adjusted so that device S1,1a 

only withstands switching losses, and device S1,1b only withstands conduction losses. All remaining 

devices (highlighted with red-dashed squares and blue-dotted squares in Fig. 5.3) will only 

experience conduction losses. Therefore, a cond_opt device would be the most suitable for these 

positions. However, the blue-dotted squared devices in Fig. 5.3 will experience low conduction 

losses since these devices only conduct during the connection to the inner dc-link input terminals, 

with small duty ratios and the existence of several parallel paths for the output current to flow. 

Therefore, they could be populated by standard/inexpensive devices without too much penalty in 

the overall converter conduction losses. With the above design guidelines, no device withstands 

both significant conduction and switching losses, which enables selecting an optimized device for 

each position. Devices optimized for switching could be based on SiC. 

 Enhanced Commutation Sequence 

Using the basic multilevel active-clamped operating principle and the proposed hybrid 

 

Fig. 5.3.  Proposed power semiconductor device configuration for an n-level active-clamped leg. 
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power device configuration, most of switching power loss is focused on the pole of devices closest 

to the dc-link. However, some diodes out of this pole suffer from switching power losses under 

certain switching transitions. This section proposes a novel commutation sequence to focus the 

whole switching losses on the pole closest to the dc-link. The discussion starts in a six-level 

scenario, and it is then extended to n-levels. Fig. 5.4 depicts a six-level multilevel active-clamped 

converter leg.  

Each transition between adjacent switching states requires changing the state of six 

switches. For example, in the switching transition from SS3 (Fig. 5.4(a)) to SS4 (Fig. 5.4(b)), the 

switching steps are: 

1. S15, S23 and S31 turn off 

2. S16, S26 and S36 turn on 

In this particular transition, when iout < 0, the current is initially flowing through the 

antiparallel diode of switches S15, S23, and S31. When these switches are turned off, the current 

continues flowing through the antiparallel diodes. Then, when S16, S26, and S36 are turned on, the 

  

(a) (b) 

Fig. 5.4.  Six-level active-clamped converter leg. (a) SS3: connection to node i3. 

(b) SS4: connection to node i4. 
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antiparallel diodes of switches S15, S23, and S31 suffer turn off switching losses. To improve this 

situation, it is proposed to turn off S14 and S22 before starting the switching transition. By doing 

this, once S15, S23, and S31 are turned off, D15 will be the only antiparallel diode conducting current. 

Thus, during the switching transition, all switching losses are focused on the pole closest to the 

dc-link. Once the transition has finished, S14 and S22 should be turned on again in order to ensure a 

proper blocking voltage of the off-state devices. 

Another case would be the switching transition from SS4 (Fig. 5.4(b)) to SS3 (Fig. 5.4(a)). The 

switching steps are: 

1. S16, S26 and S36 turn off 

2. S15, S23 and S31 turn on 

In this transition, when iout > 0, the current flows through the antiparallel diodes of switches 

S16, S26, and S36 until switches S15, S23, and S31 turn on. Therefore, the antiparallel diodes of 

switches S16, S26, and S36 suffer from turn off switching losses. However, turning off S17 and S27 

before starting the switching transition allows focusing the whole switching losses on D16. An 

analogous process occurs in the switching transitions in which these diodes turn on. However, 

diode turn on switching losses can be neglected with regard to the total amount of leg switching 

losses.  

In the light of the previous analysis of specific cases, a general rule can be induced to 

improve the commutation sequence: 

a) For switching transitions from SSx to SSx+1, the devices in (5.1) should be turned off at 

the beginning and then turned on at the end. 

b) For switching transitions from SSx+1 to SSx, the devices in (5.2) should be turned off at 

the beginning and then turned on at the end. 

S𝑘,2·(𝑥−𝑘) , 𝑘 ∈ {1,2, … , 𝑥 − 1} (5.1) 

S𝑘,2𝑥+1 , 𝑘 ∈ {1,2, … , 𝑛 − 𝑥 − 1} (5.2) 

Applying this switching pattern, all switching losses are focused in the pole closest to the 

dc-link, which is populated by devices optimized to switch. Therefore, inner devices are released 

from switching power losses, suffering only from low conduction losses due to the parallel paths 

available for the connection to the inner dc-link points. 
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 Simulation Results for a Four-Level Active-Clamped Inverter 

A simulation of a four-level three-phase grid-connected active-clamped inverter for a 3 

MW WECS has been performed. The performance of the proposed hybrid power semiconductor 

device configuration is compared to the standard device configuration. The main system 

parameters are summarized in Table 5.2. In both cases, the same operating principle [49] and 

modulation strategy [30] are applied to produce a fair comparison. The selected power modules 

are commercial 1200 V IGBTs with antiparallel diode from Infineon [62]. Table 5.3 presents the 

commercial devices selected for each converter position in each design. The standard power 

semiconductor device configuration uses a module with balanced conduction and switching 

characteristics (FZ1800R12HE4_B9), while the proposed hybrid power semiconductor device 

configuration employs two modules, one with good switching performance (FZ800R12KS4_B2) 

and another one with good conduction performance (FZ3600R12HP4). The two inner positions 

(S22 and S23, with reference to Fig. 5.5) have been populated with the device with good conduction 

performance. However, these positions suffer low conduction power losses and they could also 

be populated with standard or inexpensive devices. The switching and conduction performance of 

the selected devices has been previously presented in Table 2.6. 

 

 Parameter Value 

Rated active power 3 MW 

dc-link voltage 2250 V 

Rated grid line-to-line voltage 1320 Vrms 

Grid voltage fluctuation  10% 

Rated grid current 1300 Arms 

Rated converter grid-side power factor 1 

Minimum converter grid-side power factor 0.87 

Grid frequency 50 Hz 

Switching frequency 2.5 kHz 

Ambient temperature 50 ℃ 

Table 5.2.  Main WECS inverter parameters. 
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Device Conventional Four-Level 

Active-Clamped  

Proposed Four-Level Active-

Clamped 

S11a  --------- FZ800R12KS4_B2 

S11b FZ1800R12HE4_B9 FZ3600R12HP4 (IGBT only) 

S12 FZ1800R12HE4_B9 FZ800R12KS4_B2 

S13 FZ1800R12HE4_B9 FZ800R12KS4_B2 

S21 FZ1800R12HE4_B9 FZ3600R12HP4 

S22 FZ1800R12HE4_B9 FZ3600R12HP4 

S31 FZ1800R12HE4_B9 FZ3600R12HP4 

Table 5.3.  Selected commercial devices for each design. 

 

Fig. 5.5.  Four-level active-clamped converter leg. 

Fig. 5.6 presents a comparison between the standard and the proposed hybrid power 

semiconductor device configuration in terms of device conduction power loss (Pcond), device 

switching power loss (Psw), device total power loss (Ploss), converter leg power loss (Pleg), maximum 

device junction temperature increase above ambient temperature ([Tj Ta]max) and maximum 
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device junction temperature variation (Tj,max). The results of Fig. 5.6(a)-(d) represent average 

values over all WECS operating points. The results in Fig. 5.6(e)-(f) are obtained in the worst 

operating point, corresponding to rated power at grid under-voltage conditions. Due to the leg 

symmetry, only the results corresponding to the power semiconductors from the upper half of 

the converter leg are presented. S11 is the most critical device in the standard configuration, since 

it suffers from both high switching and high conduction losses, leading to a considerable high 

junction temperature. However, the proposed hybrid configuration, by splitting switching and 

conduction losses of S11 into S11a and S11b, is able to achieve a better loss and thermal stress 

distribution among devices. The simulation results corroborate that the inner positions (S22 and 

S23) withstand small conduction power loss. Converter power loss is not only more evenly 

distributed among devices, but it is also reduced. Both switching and conduction power loss are 

reduced because switching losses are produced by devices optimized to switch and conduction 

losses are mainly produced by devices optimized to conduct. The thermal performance is also 

improved. Large reductions in maximum junction temperature increase above ambient 

temperature and maximum junction temperature variation are achieved. In addition, the thermal 

stress is much more uniformly distributed among the devices, which might lead to an 

improvement in converter reliability, since high junction temperatures and high junction 

temperature variations can reduce the power semiconductor life time.  

Fig 5.7 depicts the maximum inverter phase rms current for a maximum junction 

temperature of 125 ℃ (Iph,max). Thanks to the proposed configuration, the converter output power 

capability is also highly improved. 

Fig. 5.8 summarizes the improvements of the proposed hybrid configuration with 

reference to the standard configuration in terms of several performance factors. The proposed 

hybrid configuration enables significant improvements in all analyzed aspects. Switching power 

loss is reduced around 35%. The penetration of SiC technology in high power applications could 

produce even higher switching power loss reduction. Conduction power loss is reduced around 

20%, leading to a total power loss reduction of 25%. As for the thermal performance, both the 

maximum junction temperature increase above ambient temperature and the maximum junction 

temperature variation are reduced around 40% and 60%, respectively. The proposed 

configuration greatly reduces the global thermal stress, enabling more reliable operating 

conditions for the power semiconductors. In addition, the proposed configuration also leads to an 

increase in converter output power capability of around 50%. 
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(a) (d) 

  

(b) (e) 

 
 

(c) (f) 

Fig. 5.6.  Comparison between the standard and the proposed hybrid power semiconductor device 

configuration of a four-level three-phase grid-connected active-clamped inverter for a 3 MW WECS. (a) 

Device conduction power loss. (b) Device switching power loss. (c) Device total power loss. (d) Converter leg 

power loss. (e) Maximum device junction temperature increase above ambient temperature. (f) Maximum 

device junction temperature variation. 
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Fig. 5.7.  Analysis of the improvements of the proposed hybrid power semiconductor device configuration 

with reference to the standard configuration. 

 Conclusions 

This chapter has extended the proposed hybrid power semiconductor device 

configuration for a multilevel active-clamped inverter with any number of levels. Through a minor 

modification of the converter topology and the definition of a proper converter operating 

strategy, it can be guaranteed that none of the power semiconductor devices within a converter 

leg withstands both significant conduction and significant switching losses. This allows selecting 

optimized devices for each converter position, which leads to a higher converter efficiency and to 

a more uniform power loss distribution and thermal stress. As a consequence, the converter 

power rating can be substantially increased, and it is expected that the converter reliability will 

also improve. The simulation results of a four-level three-phase grid-connected active-clamped 

inverter for a 3 MW WECS show a reduction of around 25% in total converter semiconductor 
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power loss, a reduction of around 40% in the maximum junction temperature increase above 

ambient temperature, a reduction higher than 60% in the maximum junction temperature 

variation, and an increase of around 50% in the converter power rating, compared to a converter 

with a standard device configuration. The advantages could be even higher if power 

semiconductor manufacturers offered devices with enhanced optimizations to switch and to 

conduct. 



CHAPTER 6 

CONCLUSION 

Abstract  This chapter summarizes the thesis contributions and conclusions, and proposes the 

possible future research work. 

6.1. Contributions and Conclusions 

This thesis has focused on defining new design guidelines for the 3L-ANPC power 

converter within a WECS operating range to improve the electrical performance and converter 

reliability. To achieve this goal, the strategy has been to force that none of the leg power 

semiconductor devices withstands both significant conduction and significant switching losses. 

This allows then selecting the most appropriate device for each converter position, which leads to 

a better converter efficiency and to a more uniform loss distribution and thermal performance. As 

a consequence, the converter power rating can be substantially increased, and the converter 

reliability is expected to improve. 

 

The segregation of conduction and switching losses has been achieved through: 

 

 A modification of the leg topology, consisting on adding an additional device in 

parallel for each of the two critical leg positions. 

 A selection of a proper set of leg switching states. 

 The proposal of a novel commutation sequence to transition between switching 

states. 

 

The previous design guidelines have been extended to the case of a multilevel active-

clamped inverter with any number of levels. 

 

An exhaustive analysis of the power converter loss and thermal performance has been 

performed in the proposed 3L-ANPC design and the conventional 3L-NPC and 3L-ANPC designs. 

The improvements have been verified and quantified through simulation, using an electro-

thermal model, and through experiments, using scaled prototypes based on 600 V power devices. 
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The improvements have been also verified in a four-level active-clamped inverter configuration 

through simulation. 

 

The advantages observed could be even higher if power semiconductor manufacturers 

offered devices with enhanced optimizations to switch and to conduct. 

 

These research contributions have already led to the publication of two conference 

papers [74] and [75]. Besides, a journal paper proposal has been submitted for publication in the 

IEEE Transactions on Industrial Electronics. 

6.2. Future Research Work 

Among the many possible future extensions of the research reported here, we would like 

to highlight the following: 

 

 Study the optimal design and operation guidelines for the generator-side converter of 

WECS. 

 Perform the experiments with a wider range of power semiconductor devices. A limited 

range of devices has been considered in the present thesis. On the other hand, some 

limitations have been detected in the experiments to distribute the switching and 

conduction losses among certain power converter positions, due to the long internal 

carrier recombination time required during ZVS turn off by the selected IGBTs. Exploring 

different power device technologies, configurations, and ratings could lead to a more 

suitable power device selection, improving the results. 

 Design optimum modulation strategies for the proposed converter configuration in terms 

of efficiency, harmonic content, and thermal performance. 

 Perform a reliability analysis of the proposed converter configuration and operation 

guidelines in comparison to conventional designs. This would include a converter leg 

degradation analysis through an accelerated power cycling. 

 Improve the leg characterization test bench to provide tighter and extended control of 

the test current. 
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