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i. Abstract 
Biomolecular simulations have been widely used in the study of protein-ligand 
interactions. Comprehending the mechanisms involved in the prediction of 
binding affinities has a significant repercussion in the pharmaceutical industry. 
Notwithstanding the intrinsic difficulty of sampling the phase space, hardware 
and methodological developments make computer simulations a promising 
candidate in the resolution of biophysically relevant problems. In this context, the 
objective of the thesis is the development of a protocol that introduces a more 
efficient study of protein-ligand interactions, in view to disseminate PELE, a 
Monte Carlo sampling procedure, in drug discovery pipelines. Our main focus 
has been overcoming the sampling limitations caused by the ruggedness of the 
energy landscape, applying our protocol to perform atomistically detailed analyses 
in nuclear hormone receptors, G-protein coupled receptors, tyrosinases, and 
prolyl oligopeptidases, in collaboration with a pharmaceutical company and 
several experimental laboratories. Overall, we hope that the methodologies 
presented herein help streamline the drug design process. 
 
Keywords: PELE, Monte Carlo, Markov State Models, protein-ligand binding, 
binding free energy, nuclear hormone receptors, G-protein coupled receptors, 
tryorisnases, prolyl oligopeptidases 
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iv. Motivation  
When we suffer an illness, we are prescribed a treatment. If it is not successful, 
the physician changes the medication looking for the one that fits us the best. 
This is an impressively common problem; out of the ten highest-grossing drugs 
in United States1, none of them improved over the baseline condition to more 
than 25% of the population2. The situation can be dramatic depending on the 
illness. See for example the first one in the list: schizophrenia. Patients need to be 
treated more precisely, taking into account their individuality. In parallel, drugs 
need to respond to this new requirement and need to be more specific and 
efficient.  
 

 
Figure 1. Efficacy of the ten highest-grossing drugs in the US in 2013. Source: Ref. 2 

 
Computational tools have been gaining popularity lately in drug development due 
to their potential reducing costs and timelines. Also, they have been seen as a 
great complement for experimental assays, especially because they can give 
atomistic detail of the process under study. This has attracted the attention of 
pharmaceutical companies, motivating, for example, the collaboration of Sanofi 
and Schrödinger for up to $120M3 or the acquisition of Nimbus by Gilead 
Sciences for $400M, with the possibility of adding up to $1,200M depending on 
milestone results4. 
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Hardware developments are one of the causes of this new interest. One of the 
paradigms is D.E. Shaw’s Anton supercomputer5, an especially designed 
supercomputer for running molecular simulations. It broke the millisecond 
simulation time, a timescale at which many interesting biological functions occur. 
We have also seen other examples, such as the MDGRAPE6 or Blue Waters7 
supercomputers. On the other hand, these successes are sustained by major 
methodological improvements, which have been developed in conjunction. For 
example, force fields permit an increasingly more accurate description, or 
enhanced sampling techniques permit a better covering of the energy landscape. 
An excellent example of this conjunction is the Folding@home project8, 
developed in Pande’s group. Instead of running few but very long simulations, 
they use a collaborative distributed protocol to run many shorter ones, which are 
combined with the Markov state model (MSM)9 methodology to build a unique 
mathematical model. With this approach, they have also reached the millisecond 
aggregated time in protein folding simulations10 (video: https://goo.gl/Agthrw).  
Following the same idea, the De Fabritiis’ group has been able to reconstruct the 
ligand binding process11 using GPU-enhanced simulations on GPUGRID12. 
The aim of this dissertation is studying protein-ligand interactions. We aim to 
develop a protocol based on molecular simulations, in view to be used in an 
industrial drug design context. More specifically, our objective is improving lead 
optimization by accurately computing the free energy of association of protein 
receptors with small molecules, known as ligands. Among the current challenges 
in the field that are described below in this section, our main focus has been 
overcoming the sampling limitations caused by the ruggedness of the energy 
landscape.  
With this in mind, the objectives are divided in three parts. First, we built a 
competitive sampling program, PELE (Protein Energy Landscape Exploration), a 
professional tool upon which we established the rest of procedures. PELE was 
written with reliability, efficiency, and maintainability in mind. This means that it 
permits the easy addition of leading algorithms while being consistent with the 
previous behavior. Then, we present our proposal to compute binding free 
energy differences. The procedure uses a combination of PELE, given its 
competitive sampling advantage, with MSMs, which serve to quantify the 
exploration. We show its applicability in current industrial problems, in 
collaboration with the pharmaceutical company AstraZeneca. Finally, we present 
an adaptive procedure that represents a significant improvement in sampling. 
With this technique we are able to map binding mechanisms in occluded binding 
sites in the order of minutes, taking into account protein and ligand flexibility. 
These developments open the door to a much faster, while accurate, screening of 
compounds.  
 
Hopefully, in the following years we will see improvements in the drug design 
process that will be translated to more efficient and precise medicines, helping to 
erase the discouraging scenario drawn at the beginning. We firmly believe that 
computational tools will play a significant role. 
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1 
Introduction 
In this section, we frame the thesis in the state of the art of molecular simulations 
in order contextualize the techniques presented in the results section. We first 
overview de dynamic nature of proteins, which evidences the need of using 
computational tools that can capture it. We then outline the main biomolecule 
mathematical models, and the main simulation methods: molecular dynamics and 
Monte Carlo. We pay particular emphasis to PELE, the simulation program of 
choice. Finally, we frame MSMs, the methodology that we use to quantify the 
energy landscape. The list of resulting publications is shown in section ii, and is 
referenced throughout the rest of the thesis.  

Proteins 
Proteins are extraordinary molecular machines shaped by evolution and are 
responsible for most biological functions in our bodies. For example, 
hemoglobin transports oxygen to the cells, the G-Protein Coupled Receptors 
(GPCRs) are transmembrane proteins that emit signals upon stimuli, ATP 
synthase synthesizes ATP, or alcohol dehydrogenase is a catalyzer involved in 
the oxidation of alcohol. The list (sequence) of amino acids that forms a given 
protein is its primary structure and encodes its function. The protein is locally 
folded into a secondary structure (e.g. alpha helix or beta sheet being the most 
common ones), which is packed into a 3D structure known as the tertiary 
structure. Often, proteins are composed of non-covalently bound subunits, 
which may be different (heterodimer) or similar (homodimer), and is called the 
quaternary structure. In this thesis we will study their interactions with small 
molecules, namely ligands, having a particular interest in their binding process. 

 
Figure 2. Protein structure and binding mechanisms. Panel (a): Primary, secondary, tertiary and 
quaternary structure of proliferating cell nuclear antigen. Source: https://goo.gl/Jnterg. Panel (b): 
Induced-fit and conformational selection binding mechanisms. Source: Ref. 13. 
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Proteins as dynamic entities 
Originally, proteins were considered as rigid objects, and their shape was linked 
to their action. This concept dates back to 1894 when Fisher14 proposed the idea 
of the lock-and-key binding mechanism. In this rather simple model, the protein 
undergoes through minor conformational changes upon binding, and the ligand 
binds into a complementary protein pocket. According to a study carried out in 
Orozco’s and Aloy’s lab in 201115, where they analyzed 2090 different complex 
transitions from unbound to bound, this mechanism could explain about two-
thirds of bindings. In 1958, Koshland incorporated the idea of protein-ligand 
interactions mutually altering their shape upon binding, with an induced-fit 
mechanism16. It was not until 50 years later when a third model was proposed to 
play a role in ligand recognition, namely the conformational-selection13. It states that 
proteins coexist in different conformations, but there is a shift of population 
towards the ones that accommodate the ligand better. 
Historically, it has been difficult to conceive proteins as dynamic entities. One of 
the main factors could be that we have traditionally obtained their structural 
information using X-ray crystallography. In 1958, Kendrew and coworkers 
determined the first protein crystal, myoglobin, and, today, X-rays account for 
more than hundred thousand solved structures, the 90% of the Protein Data 
Bank (source: https://goo.gl/Cuhwo6). It is a very powerful technique, able to 
determine atomic positions from the diffraction pattern with a high resolution for 
an extensive range of system sizes. However, its main limitation is that the 
complex under study must be in a crystal lattice, and some essential proteins are 
tough to crystallize, such as those in the cell membrane or intrinsically disordered 
proteins17. Also, crystals only give a static average picture. In a beautiful simile, 
Orellana compares in her Ph.D. thesis18 the unfruitful attempts of painters to 
capture the galloping of a horse before the invention of cameras with scientists 
inferring protein dynamics from crystallographic structures, seen as resting 
horses. 
 

 
Figure 3. Crystal structures of the NHR family with the endogenous ligand: progesterone receptor 
(PR; yellow), estrogen receptor α (green), androgen receptor (cyan), glucocorticoid receptor 
(orange) and mineralocorticoid receptor (ice blue). Panels (a) and (b) show two different 
perspectives. Adapted from publication 4. 
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Still, X-ray structures contain implicit information on plasticity. For example, 
while some parts of complexes may be solved with atomistic accuracy, other 
components, such as flexible loops, may not. This can be seen with the atomic B-
factor descriptor, which accounts for (harmonic) dispersions around the average 
position. Another approach to study protein plasticity with X-rays is the use of 
the same (or similar) protein crystallized under different conditions, for example 
with different ligands or cofactors. In the current thesis, we present two articles 
where we combined this technique with principal component analysis (PCA): in 
the first, to study a conserved plasticity in the nuclear hormone receptor (NHR) 
family19 (publication 2), and in the second, to enhance the sampling of protein 
flexibility in atomistic simulations20 (publication 4, Fig. 3). 
Since it solved the first protein structure in the mid 80’s21, nuclear magnetic 
resonance (NMR) spectroscopy22 became an alternative to X-ray diffraction, 
providing more evidence of protein flexibility. Its principal advantage over 
crystallography is that it allows the study protein dynamics in solution, in addition 
to atomic positions. It permits to obtain dynamics of fast events, such as side 
chain torsional rotations in picoseconds, and slow ones, such as larger collective 
motions in seconds (or even days). However, despite different attempts to study 
larger complexes23, its main drawback is the limitation on complex size (roughly 
50-60kDa). 
A third technique that is gaining popularity in the last decade is the cryo-electron 
microscopy (EM or cryo-EM)24 (Fig. 4b). Proteins are placed in a thin layer in 
their native environment, and they are frozen using a cryogenic bath to be 
posteriorly studied with an electron microscope. In 2015, Rubinstein’s lab 
published an amazing video of a eukaryotic vacuolar H+-ATPase pumping 
protons out of a cell25, which is used to control the pH in intracellular 
compartments (video: https://goo.gl/WMgnxe). The video is derived from three 
different snapshots with resolutions of 6.9Å, 7.6Å and 8.3Å, respectively. The 
relatively low resolutions that can be obtained with EM is caused by the alteration 
of molecules because of high-energy electrons26. However, high-resolution 
structures have already been solved, such as β-galactosidase27, suggesting that 
these limitations may be overcome in the future. 
 

 
Figure 4. Evolution of available structures in the Protein Data Bank for the three most important 
experimental techniques in the 1975-2016 period. Panel (a): Total number of structures for each 
technique, shown in logarithmic scale in the inset box. There is approximately one order of 
magnitude difference between the three main experimental techniques. Panel (b): Yearly new 
available structures in logarithmic scale. Interestingly, EM has been gaining popularity in the last 
decade and solved a similar amount of structures than NMR in 2016. Data source: 
https://goo.gl/Cuhwo6. 
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The number of available structures in the Protein Data Bank has been growing 
almost exponentially over the last decades (Fig. 4a), which has allowed a much 
richer understanding of biological processes. One of the causes is the impressive 
development of experimental techniques, and future improvements will certainly 
answer many open questions and let reformulating new ones. However, 
experiments have important limitations, and computational modeling can be a 
great asset to complement their shortcomings, giving, for example, a detailed 
atomistic description of the dynamic processes under study at a variety of 
timescales28. At the time of writing this thesis, Pande and colleagues published an 
excellent example of this complementation29. They studied the induced changes 
upon binding for different ligands with protein kinase C, a membrane-associated 
protein. These ligands induce different activities on receptors, and experimental 
tools only provide partial knowledge due to the inherent problems determining 
its membrane activated structures. Using experimental structures as a starting 
point, computational tools have elucidated the full binding process and its 
consequences, observing different stable complex positionings in the membrane 
due to ligand-membrane and ligand-water interactions. The particular details may 
be valuable in the design of new drugs.  
Overall, one of the main mindset changes in the last 50 years is the conception of 
proteins as dynamic entities. There is nowadays enough evidence that proteins 
are dynamic, and they cannot be adequately understood otherwise30–32. For 
example, in the binding process, the protein might undergo conformational 
changes, namely with the induced-fit and/or the conformational selection mechanisms. 
Thus, if we want to understand the binding mechanism, the in silico methods that 
we use must be precise, and able to handle flexibility accurately. In this thesis, we 
develop and use such a technique to study protein-ligand interactions. 
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Biomolecular Modeling 
In order to run computational simulations and study biophysical processes, we 
first need to build a theoretical model of biomolecules. Depending on the 
process under study, different approaches may be taken. When electrons are 
necessary in the description, such as in chemical reactions, quantum mechanics 
are used, but when they might not be explicitly accounted for, such as in ligand 
association or protein folding, classical physics are preferred. In this subsection, 
we briefly review some of the main representations. 
 
Quantum Modeling 
Quantum Mechanics (QM) based methods are grounded on a quantum 
description at an electronic level. They give the most accurate system description 
but at a large computational cost. For this reason, QM is usually limited to study 
processes that cannot be adequately explained with classical physics, such as 
chemical reactions (e.g. involving bond formation/breaking) or interactions 
involving charge delocalization. As discussed below, these procedures have been 
applied in a drug design context, motivated by the accurate treatment of protein-
ligand interactions33. Also, despite not being directly treated in this thesis, the 
study of electron transfer34 is of particular interest in our research group and has 
been used in the (rational) design of enzymes, for example in peroxidases35 or 
laccases36,37. 
A first family of quantum methods is based on the resolution of the Schrödinger 
equation. Since it cannot be solved exactly for most practical systems, different 
simplifications and approximations are carried out. For example, the first 
simplification is only to consider the time-independence of the Hamiltonian, 
which yields the time-independent Schrödinger equation: 

where ! is the Hamiltonian, Ψ is the wavefunction and E its associated energy. 
The Born-Oppenheimer approximation allows separating nucleic and electronic 
degrees of freedom by considering that the masses of the nuclei are much larger 
than the masses of the electrons. Also, relativistic corrections are usually not 
considered. In the Hartree-Fock method38, the N-electronic wavefunction is 
approximated with the product of single electron wavefunctions, and the electron 
repulsion is taken into account implicitly with a mean-field. Iteratively, an ansatz 
wavefunction is proposed, which modifies the mean-field, and a new solution 
that takes it into account can be proposed. The procedure is repeated until self-
consistency is achieved, taking advantage of the variational principle in quantum 
mechanics, which states that the ground state wavefunction will give the lowest 
possible energy. Post-Hartree-Fock38 methods include explicit electron 
correlation with higher order corrections in perturbation theory, which accounts, 
for example, for dispersion corrections at an increased computational cost. 
The previous techniques are coined as ab initio, “from first principles” in Latin, 
given that no parameterized data is used. A second family is the semi-empirical 
methods, where calculations are speeded up with the use of parameters, coming 
from either ab initio calculations or experimental data. Whereas the computational 
time difference between quantum and classical methods calculations is of about 

 !Ψ = !Ψ , (1) 



18     

six orders of magnitude, with semi-empirical methods the difference is reduced 
to three, which broadens it applicability39, but limits its accuracy. 
Density functional theory (DFT) encompasses a different family of techniques. 
Instead of solving Eq. (1) and finding the wavefunction that describes the system 
(a 3N-dimensional function, being N the system size), these methods rely on the 
Hohenberg-Kohn theorems40 to find the electron probability density (a 3-
dimensional function). These theorems define an energy function that is 
minimized in the ground state, the latter depending solely on the electron density. 
The electron density is found using variational principles at a lower 
computational cost than Post-Hartree-Fock methods.  
While these methods provide accurate quantum mechanical descriptions, they are 
impractical for calculations involving many atoms. Instead, hybrid methods such 
as Quantum Mechanics/Molecular Mechanics (QM/MM)41 provide a better 
trade-off between accuracy and speed. In these, the system is divided into two 
parts: one using QM, typically the active site, and the rest with molecular 
mechanics. The treatment of the frontier between both regions is a challenge, and 
different proposals have been made. In this thesis, we used the B3LYP42/6-31 
G**+ functionals implemented in Jaguar43 to perform quantum calculations on 
ligands to obtain their restrained electrostatic potential charges in the binding 
environment, combined with a classical description for the protein.  
The previous families of quantum mechanical methods have been used in the 
framework of binding free energy calculations. Recently, Ryde and So ̈derhjelm 
wrote an excellent and detailed review on the topic33. The rationale behind its use 
is the rigorous treatment of protein-ligand interactions, especially in cases where 
charge delocalization is important, which is usually not considered using classical 
methods (see the following subsection). Nonetheless, accurate free energy 
estimations rely on sufficient sampling, and the elevated computational cost of 
quantum calculations is a severe limitation. In view to speeding them up, QM is 
often combined with MM; for example, using a quantum energetical description 
with the sampling provided by classical methods. Even so, free energy 
calculations are still most of the time restricted to end-point approaches (such as 
Molecular Mechanics/Poisson Boltzmann Surface Area, MM/PBSA, or 
Molecular Mechanics/Generalized Born Surface Area, MM/GBSA) or even 
single-structure calculations with only a few examples on more strict 
methodologies (such as umbrella sampling). By examining blind-test 
competitions, Ryde and So ̈derhjelm conclude that, despite major advances, 
nowadays quantum calculations do not suppose an advantage over classical ones 
regarding accuracy. They expose three different possible causes: the lack of 
sampling, the use of implicit solvents, or less error cancellation in quantum 
calculations with respect to classical ones.  
 
Classical Modeling  
Classical molecular mechanics (also known as MM models) ignores electrons and 
uses a heuristic Hamiltonian to represent biomolecules as a set of interacting 
spheres that are governed by classical physics. These spheres may correspond to 
atom nuclei in high-resolution all-atom representations, or larger groups, such as 
residues or side-chains, in coarse-grained ones. The model is thus greatly 
simplified compared to those provided by QM, with a subsequent reduction of 
its computational cost that expands its applications. For example, most ligand 
association studies or rigorous free energy calculations have been performed 
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using MM methodologies. However, as we mentioned before, the simplification 
of the electronic degrees of freedom makes this approach unsuitable to study 
changes in the electron distribution, where QM or QM/MM techniques are 
preferred. 
We owe to Shneior Lifson the basic formulation, known as Force Field (FF), at 
the birth of molecular simulations44. FFs consist of a parameterized energy 
function fitted to QM and/or experimental data, and aim to be general and 
transferable to describe different (but related) systems, which makes them 
appropriate for predictions45. This is achieved by assigning the same parameters 
to atoms with similar characteristics (e.g. atomic number, formal charge, bond 
order…), labeled with different atom types (complete list for std. AMBER: 
https://goo.gl/HA2gJp). However, transferability may not apply when the atoms 
to parameterize have not been in the training set, as may happen with ligands. 
For this reason, there have been efforts to generalize FF to small molecules, such 
as GAFF46, CGenFF47, GAAMP48 or OPLS349: 
Popular FF choices for biomolecules include OPLS50, AMBER51, CHARMM52 or 
GROMOS53. Their energy function is divided into two parts: the bonded and the 
non-bonded interactions. The bonded interactions account for covalent bonds 
and angular bends with harmonic potentials, and torsions with Fourier 
expansions. The non-bonded interactions consist of electrostatic and Lennard-
Jones potential terms. We illustrate the Hamiltonian with the OPLS200550 FF: 

 

 

(2) 

where Ki are parameters representing the rigidity of bond length, angle bending 
and energy barriers in torsions, for i=r,θ,ϕ, respectively. Bond distances 
correspond to r and angles to θ, with subscript “eq” for the equilibrium values (in 
isolation, when no other forces are present). The indices n and δn correspond to 
the periodicity and phase of the torsion angle ϕ, where the summation includes 
improper torsions to enforce planarity. In the non-bonded terms, the factor fij is 
0 if the i-th and j-th atoms are separated by a distance of one or two bonds, 0.5 if 
they are separated by 3 bonds, and 1 otherwise. In the first non-bonded term, the 
Coulombic interaction, charges are denoted with q, the Coulombic factor with ke 
and the distance between the i-th and j-th atoms with rij. The second term is the 
Lennard-Jones potential, and the parameters εij and σij characterize its depth and 
average distance. It characterizes the repulsive forces of the Pauli exclusion 
principle and the London dispersion forces that result from mutually induced 
dielectrics in atoms. The FF function is continuous and permits analytical second 
derivatives, so forces and Hessian can be derived to perform force calculations 
and minimizations, respectively. 
Computationally speaking, the non-bonded are the most expensive interactions, 
because they involve the calculation of atom pairs. Especially problematic is the 
electrostatic interaction due to its slow distance decay: the potential decays with r, 
but the number of interacting particles grows with rd-1, and simply assuming a 
cutoff may drive to artifacts. Fortunately, there are several workarounds to avoid 
the calculation of all atom pairs54. Explicit solvent molecules (see below) are often 
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simulated with periodic boundary conditions, and a common choice to compute 
long-range interactions is the particle mesh Ewald55, where the contributions 
within a cutoff are calculated in the direct space, and those beyond the cutoff in 
the reciprocal space, where they converge, using fast Fourier transform. Another 
option when periodic boundary conditions are not present is the Fast Multipole 
Method, which is based on the expansion of distant charges as a multipole series, 
that are converted to local field expansions with which distant particles interact56. 
One of the main inaccuracies of classical FFs is the overlook of polarization, 
where partial charges do not vary according to the diverse charge environments 
and represent only a mean-field view. Actually, heterogeneous surroundings may 
induce different charge distribution on molecules, and accurate modeling ought 
to reflect them. There are different approaches to account for polarization, such 
as the Drude or the induced dipole model, which have been shown to yield 
accurate predictions of binding free energies57,58. The main drawback is that 
dealing with polarization efficiently, from a computational point of view, is still 
an open challenge59.  

 
Figure 5. In panels (a,b,c) SPC, TIP4P and ST2 explicit water models, with 3, 4 and 5 interaction 
sites, respectively. Sources: panel (a) Ref. 60, and panel (c) Ref. 61. 
 
The modeling of the solvent, protein’s aqueous environment, deserves special 
attention. In MM, it may be represented either explicitly or implicitly. The explicit 
molecular representation permits studying its local properties, i.e. the effects of 
particular water molecules, such as in the bridging of interactions through 
hydrogen bonds or water clusters in cavities. Importantly, water is characterized 
by its ability as a donor and acceptor of hydrogen bonds, which can be (to some 
extent) explained with electrostatic attraction and electronic repulsion62, and is 
responsible for its extended networks63. Despite the apparent simplicity, the large 
number of available representations serves as a measure of the difficulty of its 
modeling62,64. Those include models with charges in the nuclei (e.g. SPC60, Fig. 5a), 
in fictitious interaction sites (e.g. TIP4P65, ST261, Fig. 5b and 5c), polarizable (e.g. 
TTM3-F66, DPP267, AMOEBA68), and molecules can be either rigid or flexible. 
These are fitted to reproduce experimental data, such as the density, radial 
distribution, diffusion coefficient, heat of vaporization or dielectric permittivity, 
just to name a few.  
An alternative with a reduced computational cost is the implicit solvation, where 
the solvent is modeled with a continuous field that accounts for a thermal 
average interaction. It needs fewer calculations than the explicit representation, 
not only because of the smaller number of particles, but also because its behavior 
is already averaged out, and the relaxation time is instantaneous. In addition, the 
lack of steric clashes eases the design of stochastic algorithms and enhances the 



    21 

search in algorithms based on equations of motion. Its major shortcoming, 
however, is that it cannot explain effects where local fluctuations are important, 
for example the formation of solvent-solute hydrogen bonds or in the 
distribution of waters within cavities. 
Implicit models are often based on the assumption that the solvation free energy 
can be split into two terms: 

 ∆Gsol = ∆Gpol + ∆Gnp (3) 

The polar term is the reversible work to build the electrostatic interactions, and 
the non-polar is often split into a cavitation term that is reversible work to create 
the cavity in the solvent (to host the solute), and a van der Waals term, which 
accounts for dispersion and repulsion forces69. 
The ∆Gpol is computed obtaining the electrostatic potential with the Poison-
Boltzmann (PB) equation: 

  (4) 

where ! is the dielectric constant, ! is the electrostatic potential, and ! is the 
charge density. There are different approximations to the solution (see Ref. 69 
for an exhaustive review), and a popular choice is the Generalized Born70 (GB). 
The GB model uses the first term of the multipole expansion (Born 
approximation) and assumes that charges are distributed in the center of cavities 
(atom nuclei) with an internal dielectric !!" and an effective Born radius, α. The 
latter depends on the particular molecular conformation: it corresponds to the 
van der Waals radius for atoms in isolation, and it becomes much larger for 
buried atoms. The ∆Gpol is then written as the sum of Coulomb interactions in 
vacuum and the Born term (Eq. 3 to 5 in Ref. 70). 
Following the GB approximation, in our software, PELE, we employ a variable 
dielectric model (VDGBNP)71. The motivation is the following. In non-
polarizable FFs, such as OPLS2005, the parameterization of groups is carried out 
within neutral environments, which do not account for larger polarizations that 
may arise in the interaction with charged groups (e.g. in hydrogen bonds and or 
salt bridges). Thus, we empirically correct the dielectric values depending on the 
charge of the involved atoms (e.g. from !!"=1 for non-charged side chains or 
backbone atoms, up to !!"=4 for side chain atoms in lysine). This approach has 
been shown to improve the performance of side chain and loop predictions71.  
All in all, the polar contribution can be written as: 

 
 

(5) 

where !!"(!")is the variable dielectric, !!"#$ is the solvent dielectric, and q is the 
charge. The exponential factor, !!!!!! , improves the agreement with PB in the 
presence of ion screening, which extends the use of VDGBNP to charged 
polymers such as DNA chains72. Finally, the smoothing term, fGB, is defined as: 

 
 

(6) 

When the distance between atoms, rij, is small, fGB!≈ !!!! , and when it is large, 
fGB!≈!rij .  
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In GB surface area models (GB/SA), the ∆Gnp term is approximated to a linear 
function of the atomic solvent-accessible surface area (SASA): 

 
 

(7) 

where the summation runs over all atoms, ϒ is a proportionality factor, and S is a 
switching function depending on the Born radii and is intended to represent the 
van der Waals interactions between the solvent and solute. VDGBNP uses Eq. 7 
to account for the non-polar interaction, using the parameterization of Gallicchio 
and coworkers, which has been fit to experimental hydration free energy values 
of small organic molecules73. 
The latest release of VDGBNP, VSGB 2.0, adds ideas from docking scoring 
functions. Several empirical corrections have been added to Eq. 5 to reproduce 
more accurately hydrogen bonds, π-π packings, and self-interactions of Asn, Gln, 
Ser and Thr side chains with their own backbone, which, according to the 
authors, cannot be correctly reproduced with solely single point charge 
electrostatics and van der Waals effects74. The non-polar dependency on the 
SASA has been replaced by an all atom-pair sum that favors the packing, favoring 
dispersion interactions rather than penalizing hydrophobic solute contacts. 
Altogether provides a more accurate physical description with an improved 
energy estimation, which, in our experience, is reflected in the better correlation 
with experimental free energy values of MM/GBSA implemented in different 
versions of Maestro75 (results not shown). 
In the variable dielectric models, the Born radii are estimated with the 
contribution of each atom to the SASA, which involves surface element 
evaluations for each (neighboring) atom pair76. A faster alternative replaces the 
surface evaluation for a van der Waals volume integration using a parameterized 
set. Based on this idea, Hawkins and colleagues proposed the HTC model77. The 
volume integration is carried out with a pairwise-descreening approximation 
(assuming no van der Waals radii overlap), and a set of parameters was derived to 
reproduce the Born radii for small molecules. However, the assumption of no 
overlaps results in a poor estimation for deeply buried atoms. Later, the so-called 
OBC model corrected the functional form for the Born radii to show better 
agreement with PB for buried atoms, permitting its use with large 
macromolecules78. In our OBC implementation in PELE, following TINKER’s79 
approach, we avoid the calculation of the SASA using the non-polar term of the 
ACE model (Eq. 2 in Ref. 80), which results in a considerable speedup with 
respect to VDGBNP. 
 
The combination of Eq. 2 and Eq. 3 (the corresponding approximation of either 
VDGBNP or OBC) constitutes the Hamiltonian that we used to perform the 
present dissertation on protein-ligand interactions. The theoretical model is a 
tradeoff between accuracy and speed. It permits a sufficiently accurate description 
in a reasonably short computational time, from the point of view of lead 
optimization in drug design. The Hamiltonian provides the energy for each 
specific set of molecular coordinates. In the following section, we will overview 
the two main techniques to obtain the sampling. 
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Molecular Simulations 
Molecular simulations aim to mimic biomolecules computationally to elucidate 
biophysical/biochemical processes, such as protein-ligand association. They aim 
to generate atomistically detailed information of events occurring in vitro or in vivo. 
For example, appealing videos may be obtained, often used in “look and see” 
studies, where computers can be thought as computational microscopes. More 
importantly, molecular simulations can provide an ensemble of conformations 
that permits obtaining quantitative information, such as the binding free energy. 
In this section, we will overview the two most popular approaches to study ligand 
binding: classical Molecular Dynamics (MD) and Monte Carlo (MC) methods. 
We will devote particular emphasis to PELE, our in-house MC algorithm, which 
we used to perform the sampling. 
 
Molecular Dynamics 
Classical MD is based on the iterative numerical resolution of Newton’s 
equations of motion and is the most common approach to simulate protein-
ligand dynamics. MD is also often used to describe equilibrium properties such as 
free energy differences or to explore the energy landscape, usually in combination 
with other techniques such as simulated tempering81 or replica exchange82. 
The starting coordinates are usually obtained with either experimental techniques 
(see Proteins section) or homology modeling83. Then, the system is initialized to 
the simulation conditions with a progressive heating to the temperature and 
pressure (or volume) of interest. After the preparation, an iterative integration 
process is repeated until the desired simulation length is achieved, which is 
outlined in the following lines. In the beginning, the Hamiltonian is evaluated, 
which consists of a FF with either an implicit or an explicit solvation. Then, the 
forces that act on each atom nuclei are computed taking the Hamiltonian’s 
gradient. Finally, the equations of motion are integrated using a small time step. It 
is crucial to use a small time step in order to bound the integration error, which 
may otherwise result in the violation of conservation laws, such as the energy in 
the NVE ensemble. The limiting factor is atomic motions, being stretching 
motions involving hydrogens the fastest ones due to its small mass, and restricts 
the time step to 1 fs. Algorithms such as SHAKE84 constrain hydrogen bonds 
and allow the use of time steps of 2 fs. Vibrations can be further reduced with 
the use of dummy atoms, where hydrogen mass is transferred to their respective 
bonded heavy atoms, which extends the time step to 4 fs85. Also, different 
ensembles can be simulated, such as NVE forbidding heat exchange with the 
environment, NVT with the addition of a thermostat, or NPT with the addition 
of a thermostat and a barostat. The outcome of the procedure is the evolution of 
the positions over time, the trajectory.  
The ergodic hypothesis is assumed. Taking averages at different times in the 
trajectory becomes equivalent to taking ensemble averages, and trajectories thus 
represent the conformational ensemble86. In this sense, MD experiments are 
similar to those in the laboratory: after an initial preparation in the desired 
conditions, measures are obtained at different times, which will suffer from 
statistical fluctuations. The final measure is an average with a certain uncertainty 
that can be arbitrarily reduced by taking more measures (i.e. running longer 
simulations). Note that slight modifications of the initial conditions will result in 
completely uncorrelated trajectories after a certain simulation time (Lyapunov 
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instability)54. These trajectories are different from a numerical point of view, but 
similar from a statistical perspective, as a consequence of the ergodic hypothesis. 
This phenomenon makes software testing harder, as launching two simulations 
under the same initial conditions in two machines with different library 
implementations or different number of decimal floating points produces two 
numerically different trajectories, and checking for statistical equivalence is not 
straightforward (see Michael Shirt’s proposal in the next paragraph). A common 
solution is the use of the same testing environment, for example with virtual 
machines.  
Because of maybe erroneous approximations (e.g. too much integration error, too 
short cutoffs, inaccurate thermostats…) or potential bugs in the software, 
algorithms should be validated. For example, the total energy should be 
conserved in the NVE ensemble, the instantaneous pressure and temperature in 
the NPT, velocities should sample the Maxwell-Boltzmann distribution in 
simulations with thermostat... Michael Shirts proposed a more sophisticated 
validation test that can be performed with the program “checkensemble” 
(https://goo.gl/0ngROX). It measures the likelihood that a particular simulation 
protocol follows the Boltzmann distribution, and that deviations from it are 
caused by statistical fluctuations87. This is achieved by comparing the ratio of 
Boltzmann weights for the same value of an extensive property (e.g. potential 
energy) and two different values of a parameter (e.g. temperature) such that its 
dependence on an intrinsic system characteristic (e.g. density of states) cancels out 
and the ratio has a linear dependence on the user-selected parameter. For 
example, by analyzing 20 ns simulations of 900 TIP3P65 water molecules at two 
different temperatures, Shirts found out that the Berendsen thermostat88 fails 
considerably to sample the Boltzmann distribution in the NVT ensemble. 
 
Monte Carlo 
The origin of MC dates back to the post-World War II period in Los Alamos 
National Laboratory. While playing Canfield Solitaire, Stanislaw Ulam was 
thinking on the probability of drawing a successful card combination. After an 
initial struggle with the combinatorial problem, he envisioned the calculation of 
probabilities with a much simpler approach. He would use a counting scheme 
instead, repeating the game one hundred times and obtaining statistical sampling. 
This perfectly captures the spirit of MC, named after Ulam’s uncle by Nicholas 
Metropolis, who would not hesitate to borrow money to go to the casino in 
Monte Carlo. Ulam and John von Neumann rapidly saw its potential and took 
advantage of the advent of the first electronic computer, ENIAC, to predict 
neutron chain reactions in nuclear fission. Shortly after, it would be applied in a 
broader range of problems that could not be solved with theoretical approaches. 
A detailed historical review of this exciting period is presented in a special issue 
of Los Alamos Science devoted to Ulam89 (https://goo.gl/7LhfgM). Nowadays 
MC is a general term that comprises a broad spectrum of methodologies that use 
statistical sampling to perform numerical calculations in computer simulations. 
From the point of view of biomolecular modeling, it often regards those that 
make use of Markov chains to perform Boltzmann sampling, known as Markov 
Chain Monte Carlo (MCMC), but can be used to perform low energy 
conformation searches90,91. 
In protein-ligand binding simulations, the high dimensionality of the phase space 
does not allow the direct calculation of the partition function, so the absolute 
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probability distribution is unknown. Nonetheless, we do know the relative 
probabilities between any pair of states i (initial) and n (new): 

 
 

(8) 

where π is the probability, ß is the inverse temperature, and E is the internal 
energy. Then, our strategy will be to perform a random walk respecting their 
relative probabilities, which will concentrate the sampling in regions that have a 
significant statistical weight92. 
In order to derive the transition probabilities, pin, we use the fact that once the 
system is in the stationary state, the Boltzmann distribution, transition 
probabilities should not destroy it. In other words, the average flux leaving a state 
i must be equal to the flux coming from any other state to it, which is known as 
the (global) balance condition:  

 
 

(9) 

Imposing the more strict pairwise cancelation of terms yields the sufficient but 
not necessary condition of equilibrium known as detailed balance: 

  (10) 

One can easily find cases where detailed balance is not fulfilled despite the 
stationary distribution is reached. The system in Fig. 6a is one of them; it is in 
equilibrium, as it does not have any sink or sources of flux, but pairwise fluxes 
are not canceled out, and therefore detailed balance is not satisfied. However, 
detailed balance is still encouraged because it eases the design of algorithms and it 
ensures the elimination of any possible systematic error that would not be 
removed with more sampling54. 
 

 
Figure 6. Three-state systems and their stationary transition fluxes represented as arrows, which 
are assumed of equal magnitude. Despite being in equilibrium, the system in panel (a) satisfies 
global balance, but not detailed balance. The system in panel (b) is in equilibrium and fulfills both 
global and detailed balance. 
 

The transition probability, pin, is given by the probability to propose that 
transition, αin, times the probability to accept it, acceptancein: 

  (11) 

Combining Eq. 8, 10 and 11, we obtain: 

 
 

(12) 
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A choice that satisfies Eq. 12 is an extension of the Metropolis criterion93: 

 

 

(13) 

Starting in an initial configuration, i, we propose a new state, n. Then, we generate 
a random number between 0 and 1. The transition is accepted if the number is 
smaller than the acceptance criterion (Eq. 13); otherwise, it is rejected and the 
procedure starts back from state i. Note that if there is no bias in the proposal, 
such as in purely random proposals, α will be symmetrical, and αni/αin=1. 
A major difference to MD is that transitions do not need to have a physical 
meaning. This results, at least theoretically, in a more efficient exploration of the 
phase space, as energies can be merely crossed rather than surmounted by 
thermal fluctuations. For example, let us imagine the exploration of an energy 
landscape with two states at r=A and r=B separated by an energy barrier, where r 
is a generic coordinate (Fig. 7a). Using MD, we would need to wait for thermal 
fluctuations to drive the crossing from r=A towards r=B, which takes an 
exponential time of the barrier height. On the contrary, in MC we could simply 
propose a displacement ∆r=B-A and reach it in a single step. In publication 5, we 
show a real case application in a cross-docking study. We used Glide94 to dock 
the ligand from PDB ID:3KBA into the PR protein with PDB ID:1A28. Glide 
succeeded to find the deeply buried binding site but failed to reproduce the 
binding pose, where the ligand was rotated 180º with respect to the native (Fig. 
7b). Using an MC that allowed proposals with large rotations, we were able to 
recover the experimental pose in a single MC step, despite the large energy 
barrier due to the limited binding pocket volume. 
 

 
Figure 7. Energy barrier crossing. Panel (a): schematic representation of energy barrier crossing in 
MD and MC. In the y-axis we represent the energy and in the x-axis a generic coordinate r with 
two minima in r=A and r=B. MD surmounts energy barriers with thermal fluctuations 
(continuous line), whereas MC can simply move from r=A to r=B (dashed line). Panel (b): MC 
barrier traversing in cross docking. We show the native structure (atom-type colored ligand and 
white cartoon protein), the wrongly docked ligand structure (red, flipped 180º), and the resulting 
after an MC exploration (dark blue). Source: publication 5. 
 

A second key difference with MD is the absence of an absolute time step 
between transitions. This can be inferred from the previous energy barrier model, 
where the crossing time is one step regardless of the barrier height. However, 
there is an underlying concept of the dynamics, as suggested by Rey and 
Skolnick95. They discuss that one could arguably construct transition proposals 
that capture the main traits of a process under study, and therefore, their 
fundamental dynamics. Consequently, the total number of MC steps would be 
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related to the real time. They prove their argument showing identical folding 
pathways of a α-helical hairpin using an MC protocol and Brownian dynamics. 
Shakhnovich and coworkers later used a similar analogy with master-equation 
formalism to state that MC provides a kinetic coarse-grained picture of the 
dynamics, which they used to predict folding kinetics96,97. Another example is 
kinetic MC98, which uses a similar rationale as Markov State Models (MSM, see 
Markov State Model section). The energy landscape is seen as a collection of 
energy basins separated by barriers. When the residence time is long enough, the 
system eventually forgets its history and can be modeled as a Markov process 
with transition rates characterizing the jumps between adjacent basins. If these 
can be fully determined, one can build an MC procedure indistinguishable from 
MD. In our toy model, if we want to study the energy barrier crossing, we can 
propose displacements ∆r ≪  B-A and get an insight of its height, and 
consequently, its dynamics. Similarly, in a mechanistic study of ligand binding, we 
can assign small ligand displacements (translations and rotations) avoiding 
unphysical jumps over protein backbone or side chain, being 1 or 2 Å a sound 
choice for translations (~van der Waals radii). With these examples we have 
shown evidence of the connection with dynamics. However, we should 
emphasize that the analogy is heuristic, and, in general, there is not a 
correspondence with an absolute time; for example, different choices of ∆r or 
ligand perturbations will result in different kinetics. 
 
The biggest challenge of MC in biophysics is the inherent difficulty of generating 
uncorrelated protein-ligand poses with a significant statistical weight because only 
a reduced fraction of the possible perturbations are energetically favorable. The 
inherent flexibility of both protein and ligand is one of the causes. Internal 
coordinates take into account the coordinated movement of atoms with torsions 
and suppose a significant advantage over Cartersians99–101. However, random 
moves easily lead to clashes (e.g. see a single backbone dihedral rotation), and 
proposals are typically reduced to local variations of the initial structure102–104. 
Still, we should remark that their extensive exploration has allowed precise free 
energy estimations105,106. In order to improve the success rate, the cooperative 
movement of a larger number of degrees of freedom, such as whole protein 
domains107, should be taken into account to enhance the exploration. Following 
this idea, PELE utilizes protein structure prediction algorithms and can introduce 
larger conformational changes.  
 
PELE 
The major contribution of PELE108 is the addition of protein structure prediction 
algorithms in the MC proposals, which allows an efficient traversal of energy 
barriers. Importantly, this enables exhaustive protein-ligand sampling, 
reproducing the conformational selection and induced-fit binding mechanisms. 
Some of its applications comprise studies of ligand migration109–111, induced-fit 
ligand docking36,37,112–114 and free energy calculations19,20,115,116. PELE has been 
extensively used throughout the thesis to perform protein-ligand sampling. 
In MC algorithms, an energy increase of a few kcals/mol can dramatically reduce 
the acceptance rate. For example, an increment of 10 kcal/mol yields an average 
acceptance of only 4·10-6 % at physiological temperature (Eq. 13). Such a 
difference can be obtained with only a few degrees of freedom; the bonded 
coefficients of Eq. 2 have the following orders of magnitude: Kr~102 
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kcal/(mol·Å), Kθ~10-102 kcal/(mol·degree) and Kϕ~1-10 kcal/mol. They give an 
idea of: 1) the importance of coordinated movements, since neglecting a few 
terms easily results in a rejection, and 2) the severe ruggedness the energy 
landscape. With this scenario, (at least) two strategies could be followed. In the 
first one, we could try to overcome energy barriers with a random approach of 
small variations of the initial structure in order to run a large number of 
proposals in a given wall-clock time. In a second strategy, to which PELE 
belongs, we spend computational time to carefully plan MC proposals in order to 
enhance the acceptance whilst making more uncorrelated proposals. PELE 
iterations are composed of two main blocks: perturbation and relaxation. In the 
perturbation, all degrees of freedom are modified in a coordinated fashion, and in 
the relaxation, the overall structure is locally relaxed to avoid drastic energy 
increases and to enhance the exploration (see basin-hopping methods below). 
Overall, each PELE step roughly takes around one minute in a single Mare 
Nostrum III computing core (SandyBridge-EP 2.6GHz). 
Originally, PELE only supported OPLS2005 and the implicit solvents SGBNP76 
and VDGBNP71 (see Biomolecular modeling section). OPLS2005 is derived from 
the original OPLS-AA117 and includes ligand support and torsional corrections 
from Refs. 50 and 118. PELE was posteriorly rewritten into C++ and integrated: 
AMBER99119; AMBER99SB, which includes supplementary backbone torsional 
dihedral corrections120; AMBER99SBBSC0, which also contains support for 
nucleic acids121; and the OBC implicit solvent. Besides, the code was parallelized 
using CUDA and OpenMP, reducing further the wall-clock time. 

Algorithm 
At the beginning of the simulation, the complex is initialized. Then, we repeat the 
MC procedure either until convergence is reached (in sampling simulations) or 
the desired conformation is found (in search simulations). The MC step is 
divided into two main stages, perturbation and relaxation. The first is composed 
of a ligand and a normal mode protein perturbation and the second of a side 
chain prediction and a minimization (Fig. 8). Then, the proposal is accepted or 
rejected according to the Metropolis criterion. Optionally in search simulations, 
trajectories are allowed to communicate between steps, after the Metropolis 
criterion, to drive the simulation towards a goal. 
 
Initialization. This phase is devoted to building the complex and involves 
constructing the topology and assigning the FF parameters and rotamer libraries. 
These are already pre-calculated for proteins, RNA and DNA, but should be 
computed for heteroatoms. In an automatic preparation procedure112, we identify 
the atom type with hetgrp_ffgen from the Schrödinger suite and flexible bonds and 
rings with MacroModel122. We can use the default ones, or use QSite123 or Jaguar43 
in the Schrödinger suite to compute quantum charges, for example in the binding 
site. Then, a rigid core, which acts as a protein backbone, is assigned to minimize 
the longest flexible functional group. Throughout the code, flexible groups are 
treated in the same way as protein side chains and are also optimized in the side 
chain prediction. During the execution, each rotatable bond is linked to a 
pseudo-rotamer library that comprehends all possible dihedrals for a given 
resolution (e.g. a library with a resolution of 10º contains: 0º, 10º, 20º, … , 350º). 
The list of all non-clashing combinations constitutes the rotamer library and is 
built with an efficient tree algorithm based on dead-end elimination. This rotamer 
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library solely aims to represent ligand flexibility and remove steric overlaps rather 
than representing a set of common conformations, as opposed to protein 
rotamer libraries124. Also, note that it may become prohibitive for long flexible 
groups. For example, a group with five rotatable bonds described with a 
resolution of 10º results in over 60 million possible rotamers, whereas the library 
for lysine, with the same number of rotatable bonds, contains around 24 
thousand. A workaround to reduce the size is lowering either the resolution or 
the number of rotatable bonds to be optimized in the side chain prediction (these 
would still be considered as flexible in the rest of the code).  
 

 
Figure 8. Schematic representation of a PELE step. (Image author: Ryoji Takahashi) 
 

Ligand perturbation. The ligand is randomly translated and rotated. If there are 
clashes, we identify the type of steric overlap, and if it involves a flexible group, 
we try to relieve it with random combinations of rotamers. On the contrary, if it 
only implicates core (rigid) groups the movement is discarded and we try a new 
random translation and rotation. The result of the procedure is a non-clashing 
random conformation. 
When studying binding mechanisms, we try to capture the associated 
conformational changes (e.g. domain movements, side chain bond rotations, 
hydrogen bond formation…) using small ligand translations (~1-2Å) and 
rotations (~20º-60º). In search studies, where we are only interested in the final 
pose, we use arbitrarily large values instead, and also, the whole ligand 
perturbation is repeated several times with the same initial conformation (~5-10), 
selecting the lowest energy pose for the next phase.  
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Normal mode perturbation. The protein is perturbed following a normal mode 
analysis (NMA)125 procedure, the anisotropic network model (ANM)126, where the 
low-frequency modes have been shown to describe global motions accurately127 
and provide an “extremely correct picture” of protein dynamics128. We lately 
included an internal coordinate NMA (IC-NMA)129 protocol, but the integration 
in PELE is still in progress, and currently it only supports proteins. Both 
methods are thoroughly discussed in Victor Gil’s Ph.D. thesis130. 
We model protein motions with the fluctuations around an equilibrium position 
of a coarse-grained elastic network. In the ANM, the elastic network connects 
neighboring Cα’s with harmonic potentials, which are centered at an equilibrium 
distance (e.g. experimental result) and have a constant force constant, k. In our 
implementation131, these k are chosen depending on the Cα-Cα distance, r, as it 
improves the correlation with experimental B-factors132. As derived in 
literature125, displacements are described by normal modes, and their frequencies 
are computed diagonalizing the Hessian matrix.  
Cα displacement proposals are computed as a random linear combination of the 
lowest frequency normal modes (~6 modes). The sense of the movement is 
randomly chosen, and the magnitude of the displacement is ~1 Å. Transferring 
the coarse-grained proposal to the complete all-atom model is not direct. In our 
workaround we include harmonic restraints in each Cα’s towards the proposed 
positions, followed by the application of a minimization procedure. As a result, 
the protein is perturbed in the chosen direction while keeping the covalent 
structure of the molecule.  
The IC-NMA model describes protein motions with backbone dihedrals rather 
than with Cα Cartesian coordinates129. Each residue is divided into two subunits, 
and all those neighboring subunits are connected with an elastic network of 
harmonic potentials. In an analogous procedure to the Cartesian coordinate 
ANM (from now on, simply ANM), rotational displacements are found 
diagonalizing the Hessian matrix.  
The sense of the rotation is chosen randomly, and the maximum angle is typically 
~5º. As opposed to the ANM, applying the coarse-grained proposal is 
straightforward. However, little backbone dihedral rotations may easily result in 
steric clashes, and special care must be taken with packed side chains. Therefore, 
torsional rotations are applied in an iterative procedure of small increments, and 
side chains are able to readapt in-between. Importantly, it does not require of 
backbone minimizations, which has significant implications in the sampling, as 
discussed below. Also, IC-NMA takes a better account of the collective behavior 
of proteins, which results in lower energy increments in the perturbation 
compared to ANM. Once it is fully integrated into PELE, it will allow removing 
minimizations, a faster protein-ligand sampling and a better coverage of the 
protein conformational space, as we show in Ref. 129. 
 
Side Chain Prediction71,133,134. The resulting structure after the perturbation needs to 
be refined. For example, hydrogen bonds, salt bridges, and π-π stackingsa may 
have been broken or may be potentially formed, in other cases, soft steric clashes 
need to be released, and flexible groups need to accommodate to the new 

                                                
a These are poorly captured by classical FF unless correction terms are added, 
such as in VSGB 2.0 (see Biomolecule Modeling section). 
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scenario. Also, transient openings may be crucial for the binding, as we discuss in 
publication 5 in the binding of tiotropium to an M3 muscarinic acetylcholine 
receptor. The side chain prediction is responsible for such task.  
The underlying idea of the side chain prediction algorithm is that performance is 
only slightly degraded by breaking down the hard combinatorial problem of all 
possible conformations of all flexible groups into a much easier linear one, where 
the prediction is made with discretized proposals, a list of pre-selected rotamers, 
applied group by group whilst keeping the rest fixed135,136. 
We predict the conformation of all those flexible groups that either lay in the 
vicinity of the ligand (~6Å) or have undergone a large energy increase in the 
previous perturbation step.  In the first place, if the starting dihedral 
conformation is not in the rotamer library, it is added. Then, initial 
conformations are optionally randomized, and, in an iterative procedure that 
continues until convergence (or until an upper limit of iterations is reached), 
single side chain predictions are sequentially performed maintaining the rest of 
groups fixed. 
We now outline the single side chain prediction. The energy is calculated for all 
non-clashing rotamers. Then, starting from the lowest energy rotamer, known as 
the representative, we build clusters in an incremental procedure, adding 
iteratively all those that are close to any cluster element. Once a cluster is 
finished, if there are unassigned rotamers, the process is repeated starting a new 
cluster with the remaining lowest energy rotamer. Typically 1-3 clusters are 
generated (Fig. 9). Finally, the Boltzmann contribution is calculated for each 
cluster and the predicted rotamer is the representative of the cluster with the 
largest Boltzmann weight. The final pose is discretized according to the 
resolution of our library and needs to be refined to describe the continuous 
energy landscape accurately. Smoothly varying libraries would already account for 
this fine-tuning137,138. 

 
Figure 9. Rotamers represent the possible dihedral conformations (x-axis), and the energy (y-axis) 
is evaluated for all those that do not have steric overlaps (white background). Rotamers are 
clustered according to dihedral similarity (red circles), and the prediction corresponds to the 
representative of the cluster with largest Boltzmann weight. 

 
Minimization. In this phase, the resulting structure is minimized with a multiscale 
truncated Newton (TN)139, which is based on the TNPACK implementation140 
and responds to the necessity of quick energy minimizations. Specifically, it is 
two times faster than the original TNPACK and about one order of magnitude 
faster than standard procedures such as the conjugate gradient141. This speedup is 
achieved dividing the interactions into short and long-range. The long-range 
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interactions are assumed to change more slowly than the short ones and are thus 
updated less frequently. For example, we only compute the long-range energy 
gradient about 1 to 3 times per minimization whereas the short-range is 
computed up to 65 times. The corresponding long-range energy contribution is 
estimated with a first order Taylor expansion around the last updated position, 
assuming its Hessian (second derivatives) to be 0. Born radii are recomputed 
periodically in a similar fashion and presumed constant throughout the rest of the 
minimization.  
The multiscale minimization continues either until a maximum number of 
iterations is reached, or the root-mean-square gradient (RMSG) or the energy 
difference between iterations fall below a threshold value. In this thesis we solely 
use the RMSG to tune the convergence criterion. 
 
Communication (after the Metropolis criterion). In PELE, rather than characterizing the 
energy landscape with a unique long simulation, we use an ensemble of tens or 
hundreds of trajectories to reduce the wall-clock time. In the particular case of 
search simulations, we can characterize the search goal with a reaction coordinate 
and exploit the communication between trajectories to concentrate the sampling 
in the region of interest. In this optional phase, the trajectories that are far from 
the goal according to a user-defined criterion are spawned to the pose with the 
best reaction coordinate, which generally speeds up the search but has two 
important flaws. First, it may impose a severe bias towards the best pose and the 
exploration may easily become trapped in metastable minima. Secondly, it is not a 
valid sampling procedure and can only be used in search simulations, as 
thermodynamic information, such as free energies, cannot be extracted. In this 
thesis, we introduce an iterative sampling procedure of adaptive simulations that 
successfully addresses these two issues (publication 5). 
 



    33 

Binding free energy  
Having summarized the sampling protocols, we proceed to overview an 
important thermodynamic concept that helps us characterize the protein-ligand 
binding process: the absolute binding free energy. Zhou and Gilson wrote an 
excellent and didactic summary on non-covalent binding thermodynamics142, and 
the reader may refer to it for a deeper analysis. Posteriorly in this section, we 
present some experimental and computational techniques to carry out its 
calculation. 
 
Absolute binding free energy 
Let us consider a 3-species solute with concentrations Ci, with i = P, L, PL, 
standing for protein, ligand, and complex, respectively. It can be shown that the 
free energy change upon binding at constant pressure can be expressed as: 

 
 

(14) 

where kb is the Boltzmann constant, T the temperature, and Ka the binding 
constant.  
Ka is a relevant thermodynamic magnitude that corresponds to the ratio of 
species concentrations at equilibrium, ∆Gb = 0. Ka is the inverse of the 
dissociation constant. The latter is commonly used in experiments, and is equal to 
the (non-complexed) ligand concentration when the protein and complex 
concentration are the same. Therefore, the lower the dissociation constant, the 
higher is the affinity between the protein and the ligand. 
The binding free energy can be also written as: 

 ∆Gb = ∆H – T∆S (15) 

where ∆H is the enthalpy change and ∆S the entropy change. Consequently, 
minimizing the enthalpy and maximizing the entropy upon binding can optimize 
the protein-ligand binding affinity. The enthalpy change is typically associated 
with electrostatic and van der Waals interactions and usually favors the binding, 
for example with hydrogen bond or salt bridge formations. This term favors 
ligands with stronger interactions in the binding pose compared to the bulk 
solvent. On the other side, the entropy change is related to the loss (e.g. ligand 
translational or rotational entropy) or gain (e.g. water release143 or backbone low-
frequency vibrations144) of degrees of freedom. For example, because they suffer 
a minor entropy loss, rigid ligands are often found to bind more tightly than 
flexible ones145. Docking programs (see below) sometimes overlook entropy in 
the characterization of poses, but it may be a strong component, such as in HIV 
protease inhibitors146 (Fig. 10). 
In view to compare affinity measures from different sources147 (e.g. computational 
or experimental), we use a concentration-independent measure. Specifically, we 
work with the absolute binding free energy, which is the free energy change in 
standard conditions when the three species have a standard concentration Co (= 
1M): 

  (16) 
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In an abuse of the language, the absolute binding free energy is often referred in 
the literature as the binding free energy, ∆Gb, or ∆G, and in this work, we follow 
the convention unless otherwise stated. 

 
Figure 10. Free energies, enthalpies and –T∆S for five HIV protease inhibitors. The entropic term 
may be much stronger than the enthalpic one, and it should not be overlooked. Source: Ref. 148. 

 
Experimental estimations 
There are several different experimental techniques to measure thermodynamic 
properties of protein and ligand association. These measures serve as a reference 
to test our computational estimations. In this subsection, we review some of 
them. 
Isothermal titration calorimetry149,150 (ITC) is a gold standard because it allows 
measuring Ka, ∆G, ∆H and ∆S at the same time. In this technique, the ligand is 
titrated into a protein solution, generating or absorbing heat. This heat variation 
is measured by the calorimeter while maintaining a constant temperature. Then, 
these data are fitted to obtain Ka and ∆H. Finally, ∆G and ∆S are found by means 
of Eq. 14 and 15. ITC has many advantages, such as its precision or its capability 
to study the association in their native aqueous environment. Regarding its 
precision, in a blind experiment involving 17 groups151, it was found that the 
errors in Ka and ∆H were in the order of ~24% when comparing among different 
groups. Note that this translates in much smaller errors in ∆G due to the 
logarithm. This value is much larger than the experimental error provided by the 
individual laboratories and is most likely due to an underestimation of the 
concentration error. ITC also has some inconveniences. For instance, it is hard to 
distinguish the heat exchange from the binding from that coming from other 
interactions152 or it may be difficult to assess binding free energies for ∆G>-5 
kcal/mol, due to the significant signal to noise ratio153. 
Surface plasmon resonance154,155 (SPR) is an optical method that is based on 
measuring the refraction index change near a metal surface, e.g. gold, and can 
measure binding kinetics in addition to affinities. One binding partner, which acts 
as bait, is kept fixed on a sensor, whereas the other is micro-flowed over the 
surface and binding events are detected as changes in the reflected angle. As the 
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bait starts to be exposed to the flow, the refraction index steadily changes, and 
the association rate index can be measured. Once equilibrium is reached we can 
obtain the binding affinity, and when the surface ceases to be exposed to the 
flow, the dissociation rate can be measured. 
A third method is fluorescent polarization156,157 (FP) and is based on the idea that 
when a fluorescent ligand is excited by polarized light, its emission becomes more 
rapidly unpolarized in unbound ligands than in bound ones. FP has many 
advantages, for example the reasonable costs compared to ITC or SPR, the 
relatively easy automatization makes it suitable for high-throughput screening 
(HTS), it does not require of large samples to obtain measures, or it provides 
non-destructive measurements. Notwithstanding FP can also provide enthalpy 
and entropy measures, they are less reliable than those of ITC. This technique 
requires fluorescent ligands, so it may be necessary to obtain a conjugate 
fluorophore, which is not guaranteed to interact equivalently with the receptor.  
 
We would like to emphasize that we should be cautious when comparing 
computational and experimental results. In the first place, both experimental and 
computational measures should be converted to absolute binding free energies. 
Also, both measures may not have been taken under the same conditions, which 
is a possible source of error according to David Mobley158. Computer 
experiments take place in idealized conditions that may not hold in experiments. 
For diverse reasons, such as experimental costs, experimental values are often 
given in terms of IC50, which is converted to affinity values in a process 
involving the Cheng-Prusoff equation, and this may be more or less accurate 
depending on the conditions159. Altogether, although they are our gold standard, 
comparison with experimental values is not straightforward, and care must be 
taken. 
 
Computational estimations 
We already saw that computational tools are a great asset since they can 
complement experiments. Moreover, they would have a greater impact if they 
could be used to make predictions160. For example, the goal of structure-based 
drug design is to use structural information to obtain high-affinity ligands that 
bind to a specific site in a given receptor, and obtaining accurate binding free 
energies is crucial for that. However, estimating binding free energies with 
computational methods is an open challenge. In the SAMPL5 blind contest161, 
the best prediction obtained a root-mean-square error of 2 kcal/mol in a host-
guest system. Host-guest systems provide a simplified picture of the protein-
ligand complexes and are easier to sample. For this reason, notwithstanding some 
very precise calculations have been reported162, the error is (in general) not 
expected to be lower in the real case prospective applications. As overviewed 
above, the ruggedness of the high-dimensional energy landscape is one cause 
behind this difficulty. As pointed out by Gilson and Zhou in a different and also 
outstanding review163, an additional reason is the small value that results from the 
subtraction of large numbers: the complexed and uncomplexed protein and 
ligand energies, which are involved in the binding free energy estimation. 
Depending on the tradeoff between speed and accuracy, there is a broad 
spectrum of computational techniques that goes from fast procedures that are 
capable of screening a large number of compounds with a reduced precision, to 
those that are able to reach a greater accuracy at a more expensive cost.  
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In one side of the spectrum we find docking methods164, which are able to screen 
large libraries of compounds in drug design165. Some common docking programs 
are AutoDock Vina166, DOCK167, Glide94 and rDock168. These aim to find the 
best binding pose and generally provide a reduced collection of promising poses 
ranked with a scoring function that represents the free energy169. The scoring 
function can be based on different principles, and may be for example force-
field-based, empirical or knowledge-based (or a consensus between them); the 
accuracy and speed will motivate its choice. Aside from the accuracy, a significant 
drawback is the typically limited conception of flexibility for the sake of speed. 
Two common alternatives to overcome this limitation are ensemble docking170, 
where the ligand is docked to an ensemble of previously generated receptors 
rather than to a single static protein, or the use of normal modes to sample 
protein flexibility171,172. PELE has also been widely used as a docking program173 
and utilizes the latter approach, which has allowed gaining a distinctive 
recognition in the CSAR14 contest174. However, we should emphasize that 
considering protein and ligand flexibility imposes a major penalty in execution 
time, and thus PELE is not suitable for the virtual screening of large libraries. 
A different compromise is that of end-point free energy methods, such as the 
Linear Interaction Energy (LIE) method175, MM/PBSA176 or MM/GBSA177. 
Rather than using a reduced number of docked poses, these methods rely on 
sampling to provide free energy estimations. More specifically, they sample the 
end points, namely the bound complex and optionally the unbound protein and 
ligand. Focusing on the more popular MM/PBSA and MM/GBSA, their free 
energy estimation is given by: 

 G = Ebond + EvdW + Eelec + Gsol – TS (17) 

where, Ebond accounts for the bonded interactions (bond, angle, torsions), EvdW for 
van der Waals terms, Eelec for electrostatics, Gsol for solvation free energy, and -TS 
for the entropy contribution.  
Different implementations are available, and a common choice involves the use 
of a single snapshot to obtain the complex, protein and ligand contributions, as it 
has been shown to perform better due to the lack of exhaustive sampling178. In 
this case, ∆G can be written as:  

 ∆G = !GPL – GP – GL ! PL (18) 

In PELE we perform single-point (unaveraged) evaluations of Eq. 18 neglecting 
entropic terms in order to score poses on the fly, and is often found in our 
publications under the name of “binding energy”. We use it to discriminate the 
best binder at an inexpensive cost but for more accurate results MSM is preferred 
(see below).   
Entropy is often overlooked in Eq. 18, which explains the common large 
overestimations in the free energy179. The underlying reason is that it is a 
computationally expensive term, difficult to converge180, and it is not clear 
whether it improves results177. In publication 1 we use Eq. 18 including 
approximate entropic terms to study the binding of a substrate and inhibitor in a 
prolyl oligopeptidase (POP). Aside from translational, rotational and quantum 
mechanical vibrational terms181, we account for protein and ligand flexibility loss 
upon binding employing rotamers.  
The other end of the spectrum encompasses rigorous free energy methods, also 
known as pathway methods. The latter may be physical, such as in steered MD182, 
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or non-physical, such as in alchemical transformations183. They require the 
sampling of the whole pathway and therefore have a more expensive associated 
cost, especially because molecular simulations tend to get trapped in long-lived 
metastable minima184,185. For this reason, methodologies that make use of physical 
pathways are usually found in combination with biased sampling techniques and 
these may require the definition of reaction coordinates. Some examples are 
umbrella sampling186–188, metadynamics189–191, steered MD182,192 combined with 
Jarzynski’s non-equilibrium equality193 or adaptive force bias194.  
Alchemical transformations are often used to compute the relative binding 
energy between ligands (i.e. ∆∆G), and are based on the progressive 
transmutation of a ligand into another one using overlapping windows. To our 
knowledge, it is currently the most precise technique and a remarkable example is 
the FEP+ software of Schrödinger, which has shown typical deviations of less 
than 1 kcal/mol in 330 transformations in a retrospective study, and 1 kcal/mol 
in a prospective study162. Its main caveat is the sampling problem associated for 
example with large energy barriers separating bound conformations or large 
chemical transmutations between ligands195,196. 
Finally, the sampling difficulties mentioned earlier motivated alternatives to 
thermodynamics-based sampling methods such as mining minima197 of Gilson 
and colleagues or the conformational factorization198 of Wales and coworkers, 
which are based on the evaluation of local minima contributions.  
In this thesis, we present a methodology that represents a compromise between 
rigorous free energy calculations and end-point methods. Specifically, we used a 
combination of PELE and MSM to describe the energy landscape and estimate 
binding free energies. As we saw, PELE provides a considerable speedup 
compared to standard thermodynamics-based methods that reproduce protein 
and ligand flexibility (e.g. MD or rigorous MC). However, there is no free lunch, 
and the price that we have to pay is the unfulfillment of detailed balance, which 
may have an impact in our free energy estimations. In publication 6 we explain 
the technique that we used to assess the effects of minimizations. Also, we 
developed a protocol of adaptive simulations based on reinforcement learning199 
in order to overcome these sampling limitations and is presented in publication 5.  
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Markov State Models 
MSM9 are mathematical models constructed from molecular simulation data that 
approximate long-timescale dynamics to Markov chains. MSMs require the 
process under study to be divided into long-lived states so that the Markovian 
assumption is valid, i.e. the transition probabilities are memoryless and solely 
depend on the current state, which is a reasonable assumption in protein-ligand 
association. This technique projects complex behaviors onto a simplified model 
and is, therefore, a suitable method to gain insight into the large amounts of data 
required to study biophysical processes. As opposed to other techniques, this 
projection is done a posteriori and does not influence the dynamics. Note that this 
projection emerges from the system, and does not need of human intervention200. 
Common applications of MSMs are the study of protein folding184,201–203 or 
protein-ligand binding11,115,204–206. In this thesis, we use MSMs to characterize 
binding mechanisms and thermodynamic properties of protein-ligand binding, 
such as binding free energies, as it is one of the main objectives. Notwithstanding 
they have been mostly used with MD, we use MSMs to describe PELE 
explorations, bearing in mind the limitations of not sampling with a real time (see 
MC section for more details). 
 

 
Figure 11. Folding pathway of NTL9(1-39). The arrow thickness is proportional 

to the flux, whereas the circle size to its free energy. Source: Ref. 10. 
 
Molecular simulations are often involved in qualitative (“look and see”) studies, 
such as in the observation of rare events. Markov modeling is a suitable approach 
to quantify them and assess for example whether certain features have statistical 
significance or not. Importantly, the exploration does not need to proceed from a 
unique and long trajectory and individual simulations only need to characterize 
locally the Markov chain. Hence, events that take place in long timescales can be 
described using much shorter simulations207. A major consequence is that it 
provides a game-changing protocol to plan simulations, as can be seen in 
collaborative projects such as Folding@home8 or GPUGRID12, or in the use of 
the cloud platform Google Exacycle208. Remarkably, this allowed reaching the 
microsecond milestone10. Also, it opened the door to adaptive sampling, where 
simulation starting points are adaptively chosen according to certain criteria, such 
as minimizing the model uncertainty209,210 or according to the cluster residence 
time211, and provide substantial speedups compared to non-adaptive simulations. 
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Sampling is still a caveat for Markov models; despite only needing local 
equilibrium, obtaining sufficient statistics to estimate local transition probabilities 
may be a challenge in long-timescale processes, as it may be protein-ligand 
dissociation. For this reason, it is convenient to discretize the slowest process, for 
example with the aid of time-independent component analysis (tICA)212, or 
discretizing the binding pathway, as we propose in publication 4.  
 
Construction, validation, and analysis 
In this subsection we outline the process of MSM building and validation (Fig. 
12), for a more in-depth analysis, the reader may refer elsewhere9. There are 
currently two main software projects to ease the building, validation, and analysis 
of MSMs: MSMBuilder213 and pyEMMA214. In publications 2, 3, and 4, we used 
EMMA 1.3215, while in publication 6 we upgraded to pyEMMA. 
 

 
Figure 12. An illustrative example of MSMs. Panel (a): Four-well energy potential. Panel (b): The 
Markov model’s eigenvectors approximate to the real dynamics’ eigenfunctions. Panel (c): The 
MSM timescales converge to the true relaxation timescales, and the convergence rate depends for 
example on the discretization. Panel (d): Outline of the MSM construction: Trajectories are 
projected onto a discretized space, from which the transition matrix can be estimated. Its largest 
eigenvalues and eigenvectors approximate to the real dynamics. Adapted from Ref. 216. 

 
The first step involves running the simulations until sufficient statistics are 
gathered and convergence is reached. With PELE, we typically use hundreds of 
processors during 24-48h. We assess convergence studying the variation of the 
free energy estimation115 or with a metric based on the relative entropy (see SI in 
publication 4). 
Then, the conformational space is partitioned into a set of non-overlapping 
states, defined according to a metric that must be defined a priori, and the 
dynamics are projected onto it. At this point, tICA may be used to reduce the 
dimensionality and provide the slowest collective coordinates automatically. In 



40     

our case, we employ the ligand center of mass or a ligand atom’s coordinates and 
use a geometrical clustering. In particular, we use the k-means clustering method 
and choose the number of clusters according to a convergence criterion that 
ensures a correct discretization (publication 6), typically in the range of hundreds. 
Finally, the space is partitioned into microstates using a Voronoi tessellation, and 
the real trajectory is projected onto it. The discretized trajectory describes the 
ligand center of mass evolution throughout the simulation in the reduced cluster 
space. 
Generally, the probability transition between clusters does not satisfy the Markov 
assumption, and, as shown by Prinz and colleagues200, the discretization error can 
be reduced with either a better partition of the slow process or a sufficiently long 
lag time (Fig. 13). Tentative transition matrices are estimated for different lag 
times, and we choose a lag time for which the implied timescales have 
converged. The lag time determines the sequential discretization (temporal/steps 
in the case of MD/MC). An MSM that is estimated at a certain lag time is not 
suitable to study processes that decay faster than that, and thus the lag time must 
be much smaller than the implied timescales of interest. The lag time may be 
reduced improving the discretization to reduce intra-cluster barriers217 (Fig. 13). 
 

 
Figure 13. Illustration of the lag time. An energy potential surface (solid line) and the state 
boundaries (dashed line) are sketched. Panel (a): In a state composed of a single energy well, 
transition probabilities will depend on history in short timescales, for example, it will be more 
likely to jump to the left state rather than to the right state when coming from the left one. After 
a certain time, the system relaxes in the energy well and satisfies the Markov assumption 
(becomes memoryless). Panel (b): The lag time will increase with internal energy barriers, as the 
system has to surmount them in order to become memoryless.  

 
At this point, the transition matrix is estimated from the counting matrix, which 
counts for all transitions between any pair of states at a given lag time. Before 
proceeding with the analysis, the model is validated with the Chapman-
Kolmogorov test as described in Ref. 200, which assesses the consistency of the 
MSM with the original data. More specifically, it tests whether the estimated 
transition probabilities between groups of microstates, typically metastable states, 
agree with the observed values at different times within the statistical uncertainty. 
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If the model does not pass the test, i.e. it is not Markovian, it is often due to a 
poor discretization or a too short lag time.  
Different analysis can be conducted on the model. A fundamental value in this 
thesis is the stationary distribution, π, obtained with the normalized first left 
eigenvector of the transition matrix. In our model, this value corresponds to the 
probability of finding the ligand’s center of mass (or, alternatively, a ligand’s atom 
coordinates) in a given microstate, averaging out the rest of coordinates in the 
phase space (that is, all possible protein and ligand, and eventual ion or water 
conformations). The potential of mean force186 (PMF), W, which we use to 
compute free energy differences, is defined in our reaction coordinate, r, as: 

 W(r) = - kbT ln(p(r)) (19) 

where kb is the Boltzmann constant, T is the temperature and p(r) is the average 
probability distribution along r, the ligand’s center of mass coordinates. As 
discussed earlier, the computational free energy estimation needs to be converted 
to the standard binding free energy in order to be compared with experiments, 
and we followed the procedure described in Refs. 11 and 115, which is an 
extension of the one-dimensional PMF described in Ref. 188. 
The number of microstates is often too large and makes the binding mechanism 
analysis difficult. For this reason, kinetically similar microstates are lumped 
together into macrostates (Fig. 11). The number of macrostates is a user-defined 
value that depends on the characteristics of the system under study and the 
desired level of detail217. In this thesis, we used the Perron cluster cluster 
analysis218 (PCCA) implemented in EMMA, which uses the right eigenvectors to 
lump together microstates, assuming that kinetically close microstates have 
similar eigenvector values. Some analyses that we performed were computing 
transition probabilities between macrostates, using transition path theory207 to 
study fluxes the bulk and the binding pose (publication 4), and computing 
macrostate probabilities (publication 3). 
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2 
Objectives 
The previous section exposed some advanced computational techniques to study 
protein-ligand binding. These methodologies reach the compromise of accurately 
describing atomistic interactions while still being able to reproduce protein 
plasticity. However, as we showed, they often face restrictions in their application 
to drug design. The main objective of this thesis has been the development of 
computational methodologies to overcome some of these limitations and the 
subsequent application to real-case situations. This goal has been developed in 
collaboration with a pharmaceutical company and experimental research 
laboratories.  
 
The specific objectives are: 

1. Development of PELE 
Competitive state-of-the-art computational tools must be able to take 
advantage of cutting-edge algorithms. The first version of PELE lacked of 
tests, and the different software components were not entirely independent, 
which hampered the reliability and maintainability. For this reason, the first 
objective was rewriting PELE and obtaining a competitive program. The 
main purpose of the recoding was extending its support to include new 
algorithms, a graphical interface, and machine-learning libraries or to take 
advantage of the multi-core paradigm, just to name a few. This is an 
indispensable objective to accomplish objectives 2 and 3, and led to 
Publications 2, 3, 4, 5, 7 and 8. 

 

2. Establishing a protocol to study protein-ligand binding 
The study of protein-ligand binding is one of the biggest open challenges in 
biomolecular modeling and has significant implications in drug design. 
Sampling a representative ensemble of the energy landscape is essential for 
reliable binding affinity estimations, and the major drawback of 
computational tools is the inherent complexity of traversing the energy 
landscape efficiently. Also, accurately describing binding mechanisms with 
unbiased and atomistic simulations remains an open challenge for receptors 
with occluded binding sites due to the long associated timescales. 

The objective is to establish a protocol using PELE in combination with 
MSM to build a potential of mean force describing protein-ligand interactions 
and study binding mechanisms. Results are shown in publications 7, 1, 2 and 
3.  
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3. Development of a procedure to overcome the sampling 
limitations associated to metastability 
As described in the introduction, the use of PELE enhances the 
conformational exploration compared to other methods such as MD, but still 
suffers from metastability-related problems. This objective involves 
improving the sampling, in order to provide a more efficient management of 
computational resources. In publication 5, we address this issue with a 
procedure based on an adaptive reinforcement learning protocol combined 
with PELE, and in publication 6 we apply it to speed up free energy 
estimations. 
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3 
Results 
In this section we include the results derived from this thesis. The supporting 
information is found in the appendices. 

Publication 1 - Unveiling prolyl oligopeptidase ligand 
migration by comprehensive computational techniques 
Authors: Martin Kotev, Daniel Lecina, Teresa Tarragó, Ernest Giralt, Victor 
Guallar 
Journal: Biophysical Journal, 108, 116–125 (2015) 
 
Summary: 
In this publication we study the ligand migration of the inhibitor Z-pro-prolinal 
in prolyl oligopeptidase (POP). POP is a large protease that presents a deeply 
buried active site; for this reason it is a challenging system for standard sampling 
techniques and PELE was used instead. Upon the observation of multiple 
binding events, we found that ligand entrance is produced through the pore in 
the ß-propeller domain. Furthermore, we modeled the binding of an 
undecapeptide substrate and the release of a dipeptide product by means of a 
biased protocol. The dissociation occurs through a flexible 18-amino acid 
residues loop, a different path to the one followed by the substrate. 
 
Author contribution: 
My tasks involved helping in the overall ligand migration simulations, the entropy 
change estimation upon binding and writing the corresponding section of the 
manuscript. 
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Article

Unveiling Prolyl Oligopeptidase Ligand Migration by Comprehensive
Computational Techniques

Martin Kotev,1 Daniel Lecina,1 Teresa Tarragó,2 Ernest Giralt,2,3,* and Vı́ctor Guallar1,4,*
1Joint BSC-CRG-IRB Research Program in Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain; 2Institute for
Research in Biomedicine (IRB Barcelona), Barcelona, Spain; 3Department of Organic Chemistry, University of Barcelona (UB), Barcelona,
Spain; and 4Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

ABSTRACT Prolyl oligopeptidase (POP) is a large 80 kDa protease, which cleaves oligopeptides at the C-terminal side of pro-
line residues and constitutes an important pharmaceutical target. Despite the existence of several crystallographic structures,
there is an open debate about migration (entrance and exit) pathways for ligands, and their coupling with protein dynamics.
Recent studies have shown the capabilities of molecular dynamics and classical force fields in describing spontaneous binding
events and nonbiased ligand migration pathways. Due to POP’s size and to the buried nature of its active site, an exhaustive
sampling by means of conventional long enough molecular dynamics trajectories is still a nearly impossible task. Such a level
of sampling, however, is possible with the breakthrough protein energy landscape exploration technique. Here, we present an
exhaustive sampling of POP with a known inhibitor, Z-pro-prolinal. In >3000 trajectories Z-pro-prolinal explores all the acces-
sible surface area, showing multiple entrance events into the large internal cavity through the pore in the b-propeller domain.
Moreover, we modeled a natural substrate binding and product release by predicting the entrance of an undecapeptide sub-
strate, followed by manual active site cleavage and nonbiased exit of one of the products (a dipeptide). The product exit shows
preference from a flexible 18-amino acid residues loop, pointing to an overall mechanism where entrance and exit occur in
different sites.

INTRODUCTION

Prolyl oligopeptidase (POP; EC 3.4.21.26) (also known
as prolyl endopeptidase, PREP, or postproline cleaving
enzyme) is a serine protease that cleaves postproline bonds
in short peptides (1). POP inhibitors might be valuable com-
pounds in a variety of clinical conditions of the brain, such
as the cognitive disturbances present in schizophrenia and
bipolar affective disorder, as indicated by their neuroprotec-
tive and cognition-enhancing effects in experiments with
animals (2). For these reasons, a plethora of POP inhibitors
have been developed during the last 10 years for treatment
of several central nervous system disorders (3,4). Two basic
groups of inhibitors have been proposed: forming a covalent
bond with the catalytic serine and noncovalent ones. Both of
them dock at the same specific proline pocket, the main dif-
ference being the presence or lack of chemical groups
capable of covalently binding to Ser-554. The development
of POP inhibitors, however, has been based almost exclu-
sively on modification of the canonical peptidomimetic
compound Z-prolyl-prolinal (ZPP) that fits into the POP
active site. This strategy does not take into account other
possible POP binding surfaces such as surfaces involved
in the entry of substrates and/or exit of products, which
may trigger the discovery of innovative peptide scaffolds

with biological activity. In addition to its enzymatic role,
POP interacts with several proteins, a-synuclein being one
of the most relevant. POP accelerates aggregation of a-syn-
uclein in vitro, a process that can be reversed by specific
inhibitors (5,6). Moreover, nuclear magnetic resonance
spectroscopy studies have revealed that POP is a highly dy-
namic protein and that active site inhibition shifts this
conformational equilibrium toward a less dynamic form
(7). POP structural fluctuations and its importance for sub-
strate/inhibitor delivery, however, is centering particular
attention (8,9).

The crystal structures of POP indicate two domains, a
catalytic one bearing the Ser-His-Asp triad and the so-called
b-propeller domain, which covers a huge cavity around the
catalytic center (1). Ligand access to this catalytic center,
however, is under debate. Two main entry/exit areas have
been investigated since release of the first crystal structures
of porcine POP 16 years ago. The first one is a pore in the b-
propeller domain, whereas the other is a ~18-residue flexible
loop (some authors call it loop A (10)) standing close to
the active site. The diameter of the pore (distance between
two approximately opposite a-carbons) is around 11–13 Å
(Fig. 1). This means that appropriate conformational orien-
tations of some side chains in the area could open a passage
for some inhibitors or small peptides. Two lysine side chains
and two glutamic acid ones form salt bridges, which,
together with a few hydrogen bonds reduce the propeller
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pore (Protein Data Base (PDB) entry 1QFS). Some experi-
mental data shows forming of a disulfide bridge to block
this pore but in this case the bridge is created aside and
does not cover the central part of the pore (11). The mobility
of the flexible loop, on the other side, has been suggested by
trypsin cleavage assays (10). Recent experimental studies,
however, question its involvement in ligand delivery. In
the work of Szeltner and co-workers (10) a heptadecapep-
tide is better cleaved from a mutated POP containing a
loop covalently locked by a disulfide bridge to the catalytic
domain.

Of importance, there is an additional crystal structure
from the bacterium Aeromonas punctata (12) where the
two domains present a large opening, pointing to a clear
entrance into the active site. In fact the domains are almost
separated and only held by two covalent bonds—the hinge
between the domains. However, there is no mammalian
crystal structure showing such conformation, neither is there
clear experimental proof of this opening (10). Furthermore,
a porcine POP crystal structure, 99% similar to the human
one, shows clear differences to the bacterial one in the non-
covalent forces keeping together the two domains (12).
Other studies also suggest that local conformational changes
related to some flexible loops but not the entire domains
could be responsible for the access to the active site of
POP (13).

Computational studies have also addressed POP’s dy-
namics and its possible ligand migration pathways. Molec-
ular dynamics (MD) simulations showed significant loop
opening and exposure to the bulk solvent (13). Some authors
in their previous study have used steered MD and umbrella
sampling simulations to force the inhibitor ZPP exiting from
the active site (8). In this work, the inhibitor was pulled in
two possible directions: the loop one and to the b-propeller
pore. Results show that the exit of ZPP is energetically more
favorable through the loop region (8). Docking results and
subsequent MD simulations from a docked pose of an inhib-
itor in the b-propeller pore have shown that the ligand can
reduce some distance traveling toward the active site, which
depicts potentiality of b-propeller in ingesting a ligand (9).
None of the published simulations have shown indications

for the interdomain opening. All of them reveal stable
closed POP structures during the simulations except for
some loop motions (13).

Using special purpose machines or graphical processors
units, a nonbiased search accessing microsecond timescale
simulations has recently been performed on small or
medium systems (14,15). These computational approaches
represent a significant computational cost, being still pro-
hibitive when dealing with complex systems (buried active
sites) such as POP. To address this issue we have used pro-
tein energy landscape exploration (PELE), a novel computa-
tional technique capable of exploring the nonbiased ligand
diffusion and proteins dynamics (16). PELE combines a
Monte Carlo stochastic approach with protein structure pre-
diction algorithms, and it is capable of accurately reproduc-
ing long-timescale processes in a 1–2 order of magnitude
faster manner than MD (17–20). Such a technological devel-
opment, together with the use of the supercomputer Mare
Nostrum, has allowed us to run 3000 trajectories, for an
extensive exploration of ZPP interaction with both mamma-
lian and bacterial POP. Our results indicate that entrance
happens mainly through the bottom pore, with only smaller
molecules being able to enter through the bacterial opened
loop. Furthermore, we simulated the catalytic process of
entering an 11-amino acid residue peptide as a substrate
and the exiting of one of the two products. This full catalytic
event indicates entrance through the b-propeller pore and
exit of the cleaved small peptide through the loop area.

MATERIALS AND METHODS

System preparation

Initial coordinates for the closed POP structures were taken from the PDB
entries 1QFS (mammalian porcine) (1) and 3IVM (bacterial A. punctata)
(12). Semiopen bacterial POP coordinates were obtained from the PDB
structure 3IUQ (12). Hydrogen atoms and titratable side chains were opti-
mized with the Protein Preparation Wizard tool from Schrödinger (21) at
physiological pH. The covalent bond with the ligand was broken (with
the corresponding hydrogen additions) to assure the free exploration. The
second ligand in PDB 3IVM was removed. Two missing flexible fragments
(residues 194–201 and 654–660) of the 3IUQ PDB entry were recovered
and filled with the Prime software (21).

FIGURE 1 (A) Side view of the flexible loop
(underlined in red) with a bound ZPP inhibitor
(green). The arrow points to the b-propeller pore.
(B) Bottom view showing also the pore distance
between two a-carbons (red circles). (C) Structure
and maximum width of ZPP. (D) All eight starting
positions of ZPP (in green) for the entrance simu-
lations and their approximate distance (purple) in
Å to the center of the pore (purple bead). To see
this figure in color, go online.
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PELE

The PELE algorithm is based on a consecutive iteration of three main steps:
a ligand and protein (backbone) perturbation, a side-chain sampling, and a
minimization (22,23). Thus, the procedure begins by a ligand perturbation
involving a random translation and rotation of the ligand. In the case of the
protein, the perturbation is based on the a-carbons anisotropic network
model (ANM) (24); all atoms are displaced by a minimization where the
a-carbons are forced to follow a randomly picked low eigenvector (within
the lowest six modes) obtained in the ANM approach. In particular, three
consecutive perturbations of 1.5 Å in the same mode (and direction) were
used before randomly picking a new mode. The ANM network model
used identical springs connecting all a-carbons within a 15 Å cutoff (addi-
tional details on the ANM setup can be found in (20). The algorithm defines
the most excited side chains with the largest changes in energy after the
ANM move and these are included in the next step, the side-chain predic-
tion. Here, PELE proceeds by optimizing all side chains local to the ligand
in a defined distance (6 Å) together with the hot side chains determined in
the ANM step (22,23). The last procedure involves the minimization of the
entire system, keeping the a-carbon with a weak constraint after the ANM
move. These steps compose a move that is accepted (a new local minimum)
or rejected based on a Metropolis criterion, forming a stochastic trajectory.
PELE runs were carried out at a temperature of 1000! K. As emphasized in
our original work (16,20), this high Metropolis temperature does not corre-
spond to a real thermal bath, the effective temperature being significantly
lower. PELE uses an OPLS (optimized potentials for liquid simulations)
all-atom force field (OPLS-AA) (25) with an implicit surface generalized
Born (SGB) continuum solvent model (26).

PELE’s combination of random perturbations and protein structure pre-
diction algorithms results in an effective exploration of the protein energy
landscape, capable of reproducing large conformational changes associated
with ligand migration (16–20). The method provides MD quality results
(20) at a significantly faster rate. When compared to docking techniques,
it provides a good induced fit description, allowing the docking in difficult
cases (apo, cross-docking, etc.) (19). Moreover, when combined with Mar-
kov state models, PELE provides absolute binding free energies in a similar
fashion to extensive (and more expensive) MD techniques (17).

PELE entrance/exit protocols

For ZPP, rotations and translations alternate between two different values:
small ones using 30! rotation and 0.75 Å translation, and big ones with 60!

and 1.50 Å, which were independently and randomly switched (with 50%
overall probability). Two different ANM options were used for sampling
the protein backbone. First type includes a random switch among the first
(lowest) six calculated modes. The second type, aiming to bias the protein
opening, used a dominant ANMmode describing the movement of opening
and closing of the two domains.

For the entrance simulations, the ligand was placed at eight different
random positions in the protein surface (see Fig. 1 D for the exact initial
ligand positions). When studying the exit pathways, the ligand was chosen
always to start from the active site in an equivalent position to the crystal-
lographic structures.

Entropy corrections

Entropy loss estimates for the bound complex (respect to the solution value)
were divided in the following contributions: translational, rotational,
conformational, and vibrational. Translational, rotational, and vibrational
entropies were obtained using the standard ideal gas approximation
(for example as described in the Gaussian thermochemistry site, http://
www.gaussian.com/g_whitepap/thermo.htm). Conformational entropy
was obtained by screening all available dihedral conformations for the
ligand and the neighboring protein side chains (in direct contact,

<2 Å): DSconf ¼ kB ln (UC / UPUL), where UC is the available dihedrals
for the complex, UL for the isolated ligand and UP for the isolated protein.

Loop prediction

Loop prediction calculations were executed with the Prime package from
Schrödinger software (21). The protocol includes a default sampling algo-
rithm and ultra extended loop refinement method, specifically designed to
overcome sampling problems with long loops (>10 residues). Side-chain
refinement was limited to residues with a side-chain heavy atom within
7.5 Å of any b-carbon from the loop. Energy cutoff for the final minimiza-
tion refinement was varied to 20 kcal/mol (default is 10 kcal/mol). The loop
prediction included residues 190–208 for the porcine POP and residues
190–205 for the bacterial one.

MD

MD simulations were performed using the Desmond MD program (27,28).
The bound ZPP structure (PDB entry 1QFS) was solvated in an ortho-
rhombic box of 19 012 water molecules, and 66 sodium and 49 chloride
ions were added to neutralize and create a 0.14 M solution of NaCl. We
used the OPLS-AA force field and the simple point charge water model.
The default relaxation protocol in Desmond was used, followed by a
70 ns production run in the NPT ensemble using the Nose-Hoover thermo-
stat and the Martyna-Tobias-Klein barostat (29,30). The smooth particle
mesh Ewald method was used for the long-range interactions.

RESULTS

Loop prediction calculations and MD simulations

Loop prediction calculations obtained with the Prime soft-
ware indicate preference for the closed state. For both
porcine and bacterial, the first loop pose corresponds to a
structure in close agreement with the crystallographic
closed one with 0.5 Å and 0.9 Å a-carbon root mean-square
deviation (RMSD), respectively. Higher energy poses, how-
ever, introduce some degree of opening. In porcine, we find
the most open structure as the fifth pose, with an energy in-
crease of 9.1 kcal/mol, shown in Fig. 2 A in black. Easier
opening is observed in the bacterial POP simulations. In
this case, the second result by score, shown in Fig. 2 A in
red, represents the most opened loop geometry, with an en-
ergy increase of only 2.3 kcal/mol. In both porcine and bac-
terial POP the loop is involved in interactions with another
small flexible part of b-propeller domain. This is the loop
constructed by residues 215–222 for the porcine and the
same one for the bacterial analog (residues 212–219). The
two most open structures were chosen as our initial models
for the open state simulations in PELE (called porcine open
and bacterial open, see Table 1).

The analysis of the MD simulations for the porcine struc-
ture also indicates some degree of loop opening. The loop
starts the opening at ~10 ns of the simulations and after
passing through a semiopen conformation tends to partially
close again. Together with loop motion toward opening,
ZPP starts moving in a direction showing partial exiting
through the loop with the phenyl ring as a leading residue.
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The maximum open loop snapshot along the MD simula-
tion, occurring at the 45 ns, is shown in Fig. 2 B in green.
This opening is also clear when inspecting the evolution
of the solvent accessible surface area for the main residues
involved in the loop structure, as shown in Fig. 2 C. Interest-
ingly, many of the structures from Prime’s loop predictions
have RMSD differences from MD snapshots lower than 1 Å
(Fig. 2 B).

PELE explorations

The summary of PELE simulations exploring the entrance
and exit pathways for the ZPP ligand in both porcine and
bacterial POP is shown in Table 1. As a reminder, to model
the open state, we used the most opened loop structures
shown in Fig. 2 A (obtained with loop prediction
techniques).

ZPP entrance pathway

As seen in Table 1, out of the 400 simulations for each sys-
tem we obtain approximately the same number of entrances
by the b-propeller pore in all of them (referred to as bottom
pathway in Table 1). As indicated in the Materials and
Methods, ZPP initial positions were randomly placed in
the protein surface (Fig. 1 D). The remaining nonentering
trajectories present structures where the ligand is associated

with the surface (with some minor excursions into the bulk
solvent). Furthermore, within each simulation the ligand
explores a large fraction of the protein surface (see, for
example, Fig. 3 or Movie S1 in the Supporting Material).
In Fig. 3 we show a cross-section image where we display
the ZPP ligand with blue beads (protein not shown) for
the 50,000 snapshots along the porcine closed simulation.
Clearly, we observe how the ligand covers the protein sur-
face getting inside through the bottom entrance. In ~60%
of these entrance events, ZPP enters the b-propeller pore
by the hydrophobic phenyl moiety (Fig. 4 A). From the pro-
tein site, the most displaced blade of the b-propeller, after
overlapping with the crystal structure, is the one bearing
His-180 (Fig. 4 B). Two other blades, ones bearing Glu-
134 and Lys-82, also show significant displacement. In the
remainder 40% entrance events ZPP enters by the proline
moiety, showing similar displacement of the blades. These
three blade changes (marked with stars on Fig. 4 B), how-
ever, do not enlarge the pore significantly, and they seem
to be induced by internal protein adjustments rather than
by interaction with ZPP; analogous changes are seen with
and without inhibitor.

FIGURE 2 (A) Comparison of loop shapes from porcine (thin black tube) and bacterial (thin red tube) POP crystal structures, with PDB entries 1QFS and
3IVM, against most open structures from loop prediction calculations in the same colors but thicker tubes. (B) The 45 ns MD snapshot (green) is compared to
the loop predicted structure (black). ZPP’s position in the active site is underlined in red licorice. (C) Time evolution of SASA for residues 200–207, 590–594,
and 641–644. Data were updated every 50 ps. To see this figure in color, go online.

TABLE 1 Entrance and exit pathways simulations

PELE experiment ENTRANCE simulations EXIT simulations

Protein structure Pathway/successful/total number of trajectories
Porcine closed bottoma/12/400 bottom/5/400
Porcine open bottom/13/400 bottom/5/400
Bacterial closed bottom/13/400 bottom/1/400
Bacterial open bottom/14/400b loop/10/400c

loop/7/400b bottom/1/400c

aBottom refers to the b-propeller pore.
b,cSame set of trajectories.

FIGURE 3 Cross section of POP from the side depicting the large cavity
(enclosed in red dashed curve) and the ZPP surface exploration and bottom
entrance. ZPP is presented with blue beads and the protein is omitted. To
see this figure in color, go online.
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Our simulations indicate that the number of bottom en-
trances in both species is independent of the nature of the
loop. Moreover, the mammalian POP does not show any
ligand entrance by the loop even when starting by the
open state. The bacterial one, however, shows seven en-
trances by the loop pathway when starting the simulation
with the open state, the only instance where we observe
entrance through the loop pathway.

ZPP exit pathway

Statistics on exit simulations, where the ligand starts in its
active site position, show significantly different results
from the entrance ones. In all cases the bottom exit was
less probable than the entrance. Furthermore, contrary to
the entrance, the exit through the bottom shows different re-
sults between porcine and bacterial, five events for porcine
and only one for bacterial. Nevertheless, the exit through
the bottom is still independent of the loop state.

Fig. 5 shows an entrance (green) and an exit (red) bottom
trajectory for the closed porcine state. Fig. 5 A displays the
ligand RMSD (to the bound x-ray crystal) along the PELE
trajectory and the protein-ligand interaction energy. The
entrance trajectory has initial high RMSD and interaction
energies, decreasing accordingly along the entrance
pathway. As expected, the opposite behavior is seen for
the exit trajectory: an increase in RMSD and interaction
energy. We should notice here that ZPP is a covalent inhib-
itor and that RMSD values are obtained in comparison to
the bound crystal. The best binding ligand poses adopts an
analogous crystal orientation but missing the last ~1–2 Å
translation of the covalent bound formation, giving an over-
all RMSD ~5 Å. The ligand exits the bottom at approxi-
mately the 650 step, where we see an important barrier
(~6 kcal/mol) in interaction energy. We want to note once
more that the entrance trajectory starts significantly apart
from the bottom pore.

Entropic contributions for ZPP at the bound state indicate
a 31.2 kcal/mol correction to the binding free energy (!TDS
term), obtained from 11.1, 15.0, 1.9, and 4.2 contributions
from the translational, rotational, vibrational, and configura-
tional entropy terms, respectively. This number, together
with the PELE interaction energy, indicates an overall favor-
able binding event for ZPP in the noncovalent initial stage of

the binding process. Moreover, we want to point to the nice
correlation between the interaction energy and the RMSD in
the last approach to the active site (lower right green and left
red corners in the bottom panel of Fig. 5 A), indicating bio-
logical relevance for these pathways.

The most interesting aspect of the exit simulations, how-
ever, is the presence of 10 exit events through the loop
pathway in the bacterial open state, see Fig. 6 A. Fig. 6 B
shows a representative orientation of ZPP when crossing
the loop, with the phenyl leading the pathway. In most of
the cases exiting was observed with the participation of
five residues, Trp-579, Phe-174, Tyr-233, Arg-232, and
Tyr-190. Interestingly, this orientation adopted by the ligand
is similar to the one observed in our MD simulation of
porcine POP as a response of loop semiopening (Fig. 6 B).

Porcine POP interdomain opening

PELE can simulate protein motion according to the
displacement of a-carbon-based ANM (24), an elastic
model capable of describing large conformational changes.
Inspection of the lowest six ANM modes showed that either
the first or the second mode (depending on the initial struc-
ture) is associated with the interdomain opening direction.
Thus, we forced PELE to sample this opening mode as
the main ANM mode in porcine POP. Although open struc-
tures (similar to the open bacterial crystal) were produced
when following (forcing) this mode, all of our attempts,
including extreme temperatures, were unsuccessful in stabi-
lizing them; the open structures spontaneously revert back
to the closed one when not forcing the opening sampling
mode.

Undecapeptide (substrate) entering and dipeptide (product)
exiting simulations

Taking into account the results on ZPP, we modeled the
entrance of a 11-residue peptide through the b-propeller
pore in porcine POP. We also wanted to simulate the pep-
tide cleavage in two products and the exit of the smaller
(and more mobile) one in the presence of the other product
in POP’s cavity. For this purpose the Phe-Gly-Cys-Gly-
Ala-Ser-Ala-Gly-Pro-Ala-Gly peptide, with two residues
after the Pro cleavage point, was built. To facilitate the
experiment the smaller product peptide (exiting part of

FIGURE 4 (A) Snapshot of entering ZPP
through the b-propeller pore of porcine POP
(surface presentation). (B) Bottom view of the
entrance, gray cartoon, with an overlapped crystal
structure (PDB entry 1QFS) shown in red cartoon.
Black, green, and blue stars indicate bigger
changes in the blades bearing His-180, Glu-134,
and Lys-82. To see this figure in color, go online.
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the simulations) was chosen to be a dipeptide (Ala-Gly).
The undecapeptide was placed around the bottom pore
and guided to the a-carbon of the catalytic Ser-554 using
the spawning algorithm in PELE. This algorithm aims to
reduce the distance between two atoms (the a-carbons of
Ser-554 and the substrate Pro) by random perturbation of
the ligand and by using a tolerance distance window, 3 Å
in our simulation. Every time the trajectory has a distance
value larger (by the tolerance value) than the best regis-
tered distance, it will abandon the search and start with
the best coordinates. Obviously, the best registered distance
is updated when a shorter distance is found. Applying such
protocol, the substrate cannot move further away, and ex-
plores freely, in a reduced window, possible structures
that will reduce the desired distance. In this way, we can

model difficult cases like the entrance of a large substrate
by the bottom pore.

Fig. 7 shows the interaction energy profile and the Ser-
554-Pro distance along the guided entrance process. As
mentioned previously, we should keep in mind that this
value reflects only internal energies which, due to the pep-
tide size (forming numerous hydrogen bonds), are signifi-
cantly larger. Rotational, vibrational, and translational
entropic corrections amount for ~34 kcal/mol. Conforma-
tional entropy is out of our reach due to the presence of
30 rotatable bonds. Nevertheless, it was recently estimated
to be on the order of ~60 kcal/mol for a nine-residue flexible
peptide, giving rise to a total corrections on the order of
~94 kcal/mol (31). As seen in Fig. 7, no significant energy
barrier is observed along the initial entrance process, in

FIGURE 5 (A) Ligand interaction energy profile for a representative ZPP’s entrance (green) and exit (red) trajectories. (B) Superposition of same trajec-
tories (with same colors scheme) on one POP structure. ZPP positions along the trajectories are shown with beads, the flexible loop in yellow tube, and the
initial inhibitor position in yellow licorice. To see this figure in color, go online.

FIGURE 6 (A) A representative ZPP exit simu-
lation for the open-loop (shown in green) bacterial
POP. ZPP is shown in red beads. (B) A detailed
view of the exit through the open loop and partici-
pating residues (in green). ZPP in blue corresponds
to a superimposed structure from a MD snapshot in
porcine POP. To see this figure in color, go online.
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agreement with a smooth reduction in the guiding distance.
Thus, it seems like the big internal cavity can accommodate
and easily allow the passage of large peptides. Around step
150 (Fig. 7) and after reaching a low Ser-554-Pro distance,
we observe a significant side-chain rearrangement, giving
rise to a better fitting (lower interaction energies) in the
active site pocket. In particular, it involves mainly residues
Phe-476 and Trp-595, two main actors in the active site pro-
line pocket (as seen in the crystals 1QFS and 1E8N), where
we observe changes from a closed state (Fig. 7 D, yellow) to
an open one (Fig. 7 D, atom type color) to better accommo-
date the pyrrolidine proline ring.

When the proline a-carbon reached ~4 Å from the hy-
droxyl oxygen of Ser-554 (part of the catalytic triad) we
cleaved the substrate into two peptide fragments. At this
point, we repeated the nonbiased exit simulations for the
small dipeptide product as performed with ZPP. We used
the open loop state and we ensured that the remaining
nine-residue product peptide was not blocking the bottom
pore, facilitating the possible exit of the two-residue prod-
uct fragment along both pathways. Of importance, and con-
trary to the results with ZPP, from a total of 400
trajectories, we observe now 38 exits along the loop
pathway, with only seven events through the bottom. Movie
S2 from the full process is deposited in the Supporting Ma-
terial. We should emphasize that in this simulation only the
two-residue fragment is perturbed (asked to leave) in
PELE’s simulation, and that it does it in the presence of
a bulkier nine-residue fragment, which remains the entire
time in the POP’s cavity. An additional (and last) simula-
tion was performed after removing (by deleting it) the non-
apeptide from the POP’s cavity. Thus, here the small
product was let free to explore all internal volume before
leaving the protein. In this case, we observed 19 exits
through the loop opening and 29 through the bottom
from a total number of 400 trajectories.

The dipeptide exit through the loop happens mostly from
two different areas associated with a larger opening around
residues Leu-206 and Thr-204 and a smaller one around
Thr-202 (Fig. 8 B). Both combined, could result into an
opening similar to the one predicted for bacterial POP
(Fig. 2, red). For this small dipeptide product, five exit tra-
jectories cross another loop (some authors call it loop B
(13)), involving catalytic domain residues 578–604; three
of them involve close interactions to Tyr-589. In only one
trajectory, ZPP exits around residue Pro-74 between the
hinge keeping together the catalytic and b-propeller do-
mains (exits 578–604 and through the hinge are not shown
on Fig. 8). Exiting around loop 578–604 shows another po-
tential flexible part of POP. Finally, analogous to ZPP,
entropic contributions for the dipeptide product gave
25.5 kcal/mol, which added to an ~10 kcal/mol interaction
energy in the solvent gave a total exothermic energy profile
for product release.

DISCUSSION

The loop prediction results, both using Prime and MD, indi-
cate that the loop in the mammalian POP has significant
mobility, confirming previous experimental and computa-
tional results (10,13). The excellent agreement of the pre-
dicted structures with the experimental ones, 0.5 Å and
0.9 Å a-carbon RMSD with porcine and bacterial crystals,
respectively, indicates the quality of Prime’s algorithm in
sampling long loops and gives credit to the open structure
predictions. Moreover, we observe a large degree of over-
lapping between the loop prediction techniques and the
MD results for the semiopen loops. Thus, one would expect
that being able to run a longer MD we would observe a
larger opening of the loop, similar to the one predicted by
Prime. Moreover, a similar argument could be expected
for domain opening. Our mammalian simulations do not

FIGURE 7 (A) Entering snapshot of the undeca-
peptide (C-terminus shown) and the residues form-
ing the entrance. (B) Average distance (angstroms)
between the carbonyl carbon of the undecapeptide
proline and the oxygen atom of POP’s Ser-554 for
all entering trajectories. (C) Average binding en-
ergy profile for the entering trajectories (in kcal/
mol). (D) Details of Phe-476 rearrangement to
accommodate the pyrrolidine proline ring. To see
this figure in color, go online.
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present significant interdomain conformational change as
the one present in the bacterial crystals. Inspection of the in-
terdomain contacts seems to confirm larger difficulty in
opening mammalian POP. Normal mode analysis, however,
still indicates that the lowest modes describe domain-
domain movement. Thus, one could expect that consider-
ably larger MD simulations could introduce partially
opened structures.

In previous experimental work, it showed not only the
mobility of this loop but also the important contributions
to the substrate enter/exit mechanisms, i.e., lower activity
of a porcine POP mutant lacking this loop (10). The largest
predicted opening in porcine POP is, however, not as signif-
icant as the one observed in bacterial POP. Nevertheless, the
exit of the two-residue product during the simulation of the
undecapeptide substrate seems to indicate that the loop
opening is enough for some small product release (see
below).

Our simulations indicate a clear preference for the bottom
entrance. Only for the bacterial opened state do we observe
partial entrance by the loop pathway, yet the statistics for
this state show higher occurrence for the bottom entering
(Table 1). We should keep in mind that simulations were
performed with a relatively small molecule size (compared
to average POP size substrates) like ZPP. Thus, for larger
peptides one would expect even a larger contribution of bot-
tom entrances.

The entrance by the bottom pore is in agreement with
recent umbrella sampling simulations (8) where the authors
monitor the energy profile when forcing exit pathways. In
another study, using MD from a docked inhibitor in the
bottom of the large internal cavity, the authors show spon-

taneous migration of the ligand toward the active site re-
gion (9). Along the different entrances through the
bottom pore, we find nine residues (Glu-134, His-180,
Leu-240, Ser-241, Asp-242, Asp-243, Gln-388, Lys-389,
and Lys-390) having contacts closer than 4 Å with ZPP
atoms. One could expect that mutations that introduce
bulkier side chains in some of these positions would result
in a weaker inhibitory activity (with possibly a large alter-
ation of binding kinetics) of ZPP. Within our statistical lim-
itations, our results indicate no orientation preference along
the b-propeller pore entrance for small inhibitors. Further-
more, such size molecules do easily rotate and translate in
the POP’s internal huge cavity. Bigger peptide substrates,
however, might need some guiding to pass preferably
with its C-terminus. The amount of Lys side chains around
the bottom pore (Lys-81, 82, 84, 157, 162, 183, 389,
390) could be this guiding tool (some of them shown in
Fig. 7 A).

Although the bottom entrance in bacterial POP has
similar probability to the mammalian one, exiting by the
same pathway is severely more restricted (Table 1). A close
look at both structures reveals clear differences in the pore
residues. Mammalian Lys-81 and Lys-389, are replaced by
the bulkier Arg-83 and His-377. Similarly, Asp-242 in
porcine is replaced by a longer Glu-240. More importantly,
Arg-135 replaces Glu-134. We observe, in ~50% of cases
where ZPP is in close proximity to exit by the pore, how
Arg-135 blocks ZPP passage by interacting with Glu-240
and Asp-237 (Fig. 9). In the reverse (entrance) cases, how-
ever, the inhibitor molecule has more mobility and interacts
closely with the pore, leading to bigger changes (including
Arg-135) and to more successful entry trials—total number

FIGURE 8 (A) Ligand interaction energy and RMSD profiles for the bottom (red, exiting at ~30 Å of ligand RMSD) and loop (green, exiting at ~15 Å of
ligand RMSD) exit pathways for the Ala-Gly product. (B) Representative exit snapshots along the exit pathways (same color scheme). In purple licorice, we
underline some residues from the loop (in yellow) where the dipeptide exits POP’s cavity. To see this figure in color, go online.
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of 27 pore entrances to only two exits for the bottom
pathway of bacterial POP (Table 1).

Our results correlate the larger degree of loop opening in
bacterial POP with the appearance of exit events through it.
Along the exit pathway, the hydrophobic interactions of
ZPP’s proline with Phe-174 and Tyr-233 closely resemble
the interactions of the inhibitor in the active site (for
example with residues Phe-476 and Trp-595 in porcine
POP). In addition, the orientation of ZPP when exiting,
Fig. 6 B, agrees with the one adopted when entering: the
proline moiety finding first this hydrophobic cavity. Orienta-
tions of the side chains of Phe-174 and Tyr-233 change
dynamically through both processes, adopting conforma-
tions that consecutively interact with the phenyl or proline
rings in ZPP. Additional residues showing large motion in
some exiting trajectories are Tyr-190 (also located in
porcine POP) and Arg-232.

In an attempt to model the entire process, we diffused an
11-residue peptide from the bottom pore to the porcine
active site. The substrate reached the active site with a
smooth energy profile, agreeing with the preference
observed in ZPP for the bottom entrance. Interestingly, af-
ter the cleavage and forming the two-residue product we
observe a preference for the dipeptide exiting through the
loop pathway. This difference could come not only because
of the partial shielding of the bottom pore from the
remainder nonapeptide, but also because of the size of
the leaving ligand. We studied this hypothesis with an
additional 400 simulations where we removed the nona-
peptide. The 19/29 ratio for loop/bottom exits shows
higher occurrence through the bottom pore, although the
loop one still participates in 40% of the successful cases.
This means that the option for exiting products through
the bottom pore will be further impeded with the presence
of a large molecule (i.e., our modeled nonapeptide prod-
uct) in the POP cavity or even totally obstructed. Of
significant importance in this case is the conformation of
the N-terminus of the substrate and which part of the

POP b-propeller domain has been occupied. Our 11-resi-
due peptide simulations show that the tail of the peptide
prefers extended conformations covering the area close
to the bottom. Extensive preliminary active site search
and docking calculation by us, showed good interactions
in proximity of the b-propeller pore. These observations
seem to agree with the only crystal structure with a bigger
substrate—a bulky octapeptide in porcine POP, PDB entry
1E8N (32). In this crystal, the N-terminus is pointing to-
ward the bottom, whereas the C-terminus is not well
resolved. Thus, all together this indicates that longer pep-
tide will obstruct the bottom passage and drive the prod-
ucts release through the loop opening.

Our binding energy and entropy estimates indicate large
compensation effects. Although this topic has been under
debate, numerous recent calorimetric studies seem to sup-
port its importance (33,34). We have studied three pep-
tide-like substrates with large flexibility and entropy loss
upon binding, in agreement with recent observations
(31). Interestingly, the polar large cavity in POP seems
to have evolved to compensate for this reduction in
mobility by increasing the number of protein-ligand inter-
actions. This is clear when inspecting the binding energy
plots where we observe a sudden large increase (in abso-
lute value) once the ligand enters the cavity (see, for
example, Fig.7 C at steps ~50). Due to the large errors
in entropy calculations, however, any attempt to obtain ac-
curate binding free energies should use more sophisticated
methods; our binding energies are only of qualitative
nature.

In addition to the large polar cavity, our PELE and MD
simulations show a hydrophobic pocket (similar to the one
for proline in the active site of POP) buried and uncovered
by the loop motions, which could be a trigger mechanism
for peptide release. Thus, product exit seems to follow three
steps: initial ligand binding to the predocking site followed
by a larger opening of the loop, which pulls out the products
in the same direction and then exit through it. This mecha-
nism would agree with the experimental results showing that
mutants lacking a flexible loop convert POP to an inefficient
enzyme (10).

In summary, our extensive computational analysis reveals
a clear preference for ligand entrance through the b-propel-
ler pore. Exit conditions, however, seem to be more specific
of the species, degree of loop opening, and nature of the sub-
strate. Overall, cleavage of a small peptide at the active site
seems to be correlated with its exit along the loop. This loop
is shown to be very flexible in our simulations; modeling
domain-domain opening in mammalian POP (if present)
will require considerably longer simulations.

SUPPORTING MATERIAL

Two movies are available at http://www.biophysj.org/biophysj/
supplemental/S0006-3495(14)04666-9.

FIGURE 9 Bottom view of the b-propeller (white ribbons) of bacterial
POP showing Arg-135 blocking the center of the pore by interacting with
Glu-240 and Asp-378. ZPP is shown with yellow licorice. To see this figure
in color, go online.
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Summary: 
In this work, we studied the flexibility of NHRs. In particular, we solved X-ray 
structures of glucocorticoid (GR) and mineralocorticoid receptors (MR) to 
identify a conserved plasticity at the helix 6-7 region. To support the idea that it 
constitutes an integral part of the binding event, we launched entrance, exit, and 
refinement simulations. NHRs present deeply buried binding sites, and the study 
of ligand migration is currently out of reach for standard all-atom unbiased 
procedures. For this reason, PELE was used for the sampling in this study. We 
developed a procedure of confined sampling around the shared entrance point 
(~10-15Å) and we were able to compute the binding free energy difference 
between dexamethasone and desisobutyrylciclesonide (dibC), both complexed 
with MR. Residence time measures correlate with the magnitude of structural 
rearrangements in both structures. All in all, we show that nature has conserved 
the capacity to open up this region, which impose different evolutionary 
constraints across the steroid receptors. 
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My task in this publication was the analysis with MSM of 400 unbiased MC 
trajectories for the MR with dexamethasone and dibC. The analysis included 
computing the binding free energies in addition to the potential of mean force. 
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SUMMARY

Steroid receptor drugs have been available for more
than half a century, but details of the ligand binding
mechanism have remained elusive. We solved X-ray
structures of the glucocorticoid and mineralocorti-
coid receptors to identify a conserved plasticity at
the helix 6–7 region that extends the ligand binding
pocket toward the receptor surface. Since none of
the endogenous ligands exploit this region, we hy-
pothesized that it constitutes an integral part of the
binding event. Extensive all-atom unbiased ligand
exit and entrance simulations corroborate a ligand
binding pathway that gives the observed structural
plasticity a key functional role. Kinetic measurements
reveal that the receptor residence timecorrelateswith
structural rearrangements observed in both struc-
tures and simulations. Ultimately, our findings reveal
why nature has conserved the capacity to open up
this region, and highlight how differences in the de-
tails of the ligand entry process result in differential
evolutionary constraints across the steroid receptors.

INTRODUCTION

Biological functions originate from, and are maintained by, a
combination of genomic drift and selection. The traditional
method to derive evolutionary relationships is to compare pri-
mary sequences, tertiary structures, and protein function. How-
ever, while changes in the amino acid sequence and placement
of key residues provide useful insights into lineage, this only pro-
vides the basic framework for mechanistic detail. A more com-
plete functional understanding requires protein plasticity to be
considered. Moreover, comparing protein flexibility of related
systems adds an important dimension when exploring evolu-
tionary trajectories (Bhabha et al., 2013).

The steroid receptor family consists of five closely related re-
ceptors: the mineralocorticoid receptor (MR), the glucocorticoid
receptor (GR), the androgen receptor (AR), the progesterone re-
ceptor (PR), and the estrogen receptors (ERa and ERb) (Fig-
ure 1A). All these receptors bind cholesterol derivatives and
play a critical role in fundamental biological processes, ranging
from pregnancy to early development, the stress response, and
electrolyte homeostasis (Evans, 1988; Mangelsdorf et al., 1995).
Continual pharmaceutical efforts have resulted in several effica-
cious drugs across the family (Cole, 2006; Gravez et al., 2013;
Shelley et al., 2008; Sitruk-Ware and Nath, 2010; Alexander
et al., 2013). However, target class-related side effects limit
the prescription of these drugs for many indications, and the
scope for further improvement is considered to be high (Bertoc-
chio et al., 2011). The receptors share a common architecture
with three separate domains: the N-terminal domain (NTD),
the DNA binding domain, and the ligand binding domain
(LBD). Besides recognizing the ligand pharmacophore, the
LBD also contains the activation function 2 (AF-2), which is
important for transmitting ligand binding information and
partially driving the co-regulator interaction fingerprint (Grone-
meyer et al., 2004). In the resting state, the receptors are asso-
ciated with chaperone proteins in the cytoplasm. Ligand activa-
tion leads to a partial release of chaperone proteins, followed
almost always by nuclear translocation. In the nucleus, the re-
ceptors dimerize and form ligand and context-specific protein
complexes, resulting in activation and/or repression of gene
transcription.
All steroid receptor LBD structures exhibit the typical three-

layered a-helical fold that fully encloses the various compounds
in the ligand binding pocket (Bledsoe et al., 2002; Williams and
Sigler, 1998; Fagart et al., 2005; Matias et al., 2000) (Figure 1B).
When overlaying the steroid receptors, the largest structural
difference in proximity to the ligand is located in the region
where helices 3, 7, and 11 meet (Li et al., 2005). Figure 1C
shows a detailed comparison of GR with its paralog MR. An out-
ward tilt of the helix 6–7 (H6-H7) interface in GR results in an
expanded ligand binding pocket, and the most potent GR li-
gands contain large substituents extending in this direction
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(17a). Despite the smaller pocket in MR, several ligands with
bulky 17a substituents on the steroidal D-ring, such as desisobu-
tyrylciclesonide (dibC, the active metabolite of the prodrug
ciclesonide), are more potent in the MR binding assay than the
endogenous agonist aldosterone.
Plasticity in the H6-H7 region has been reported for ERa, AR,

and PR (Andrieu et al., 2015; Nettles et al., 2007; Kohn et al.,
2012), and appears to be a conserved feature across the nuclear
receptor superfamily (Soisson et al., 2008; Hughes et al., 2012).
To build a detailed understanding for how the differences in re-
ceptor design influence the H6-H7 rearrangements, we deter-
mined the X-ray structures of both MR and GR in complex with
dexamethasone and dibC (Figure 1D). The structures revealed
that when binding a ligand with a large 17a substituent, MR is
fully capable of adopting an open structural conformation, and
that the nature of these rearrangements is clearly distinct from
analogous changes in GR.Why has nature preserved the capac-
ity to open up this region across the steroid receptor family, even
though it is not exploited by the endogenous ligands? Our hy-
pothesis is that the observed plasticity is an integral part of the
ligand entry mechanism.
To test this hypothesis, we performed comprehensive all-atom

unbiased simulations. In these studies, we linked the observed
plasticity in the H6-H7 region to the ligand binding mechanism.
While the simulations clearly identified a common binding
trajectory for the two receptors, they also highlighted detailed
differences in the entry and exit processes. By employing
surface plasmon resonance (SPR) and single-molecule micro-
scopy (SMM), we showed that these differences correlate with
distinct ligand-receptor residence times. Finally, we performed
a bioinformatics analysis whereby we confirmed that GR has
relaxed evolutionary constraints on the H6-H7 amino acid
sequence relative all other steroid receptors. The link to the
ligand binding utility provides a functional understanding for
these observations.

Figure 1. Evolutionary Relationship of the
Steroid Receptors with Structural Compari-
son of GR- and MR-LBD
(A) Evolutionary relationship of the steroid hormone

receptors (ERa, ERb, MR, GR, PR, and AR). Decimal

numbers = distance; integers = bootstrap value.

(B) GR (yellow) in complex with dexamethasone

(magenta) overlaid on MR (light blue) in complex

with dexamethasone (magenta). The AF-2 surface is

located where helices 3, 4, and 12 meet.

(C) Details near the region where helices 3, 7, and 11

meet.

(D) The chemical structures of dexamethasone and

dibC. The steroidal A, B, C, and D rings and posi-

tions 3 and 17 are marked on the dexamethasone

structure.

RESULTS

A Conserved Plasticity
Dexamethasone was originally developed
as a GR-specific agonist (Alexander
et al., 2013) and was used to determine
the first GR-LBD structure (Bledsoe et al.,

2002). However, dexamethasone was later shown to also be a
potent MR ligand in a functional reporter gene assay (Rupprecht
et al., 1993). The X-ray structure of MR in complex with dexa-
methasone (MR:Dexa, Figure 2A) is similar to the corresponding
GR:Dexa structure (normalized root-mean-square deviation
[RMSD] of 0.37 Å for 100 Ca atoms) (Table 1). However, exam-
ining the region where helices 3, 7, and 11 meet confirms that
the 17a subpocket is considerably smaller in the MR structure
than in the GR structure (Figure 1C). This is reflected in the total
volume of the MR:Dexa ligand binding pocket, which is approx-
imately 543 Å3 compared with 572 Å3 in the GR:Dexa structure
(Figure S1).
It has been proposed that structural differences in the loop

between helices 6 and 7 are primarily due to replacement of
Ser843MR by Pro637GR, which alters the geometrical constraints
of this region and allows GR to adopt a more open conformation
(Li et al., 2005). However, despite the limited size of the MR sub-
pocket, dibC has higher affinity than aldosterone in the scintilla-
tion proximity assay using tritiated aldosterone and MR-LBD
fusion protein (Ki for dibC is 0.18 nM compared with 1.0 nM for
aldosterone, Figure S2). To study the structural flexibility associ-
ated with large 17a substituents, we determined the complex
structures of MR:dibC and GR:dibC (Table 1).
The structure of MR:dibC superimposes well on the MR:Dexa

structure (normalized RMSD 0.28 Å for 100 Ca atoms). dibC is
placed in a nearly identical position as dexamethasone in the
binding pocket, with all polar interactions conserved (Figure 2B).
In addition, the AF-2 surface remains virtually unchanged, with
key interactions to the NCOA1 peptide intact. However, while
these two receptor conformations are closely related, dibC in-
duces a large rearrangement of the H6-H7 loop region, essen-
tially extending the ligand binding pocket toward the receptor
surface (Figure 3A). Specifically, side chains of Ser843MR,
Met845MR, and Cys849MR in the MR:Dexa complex occupy
the same volume as the cyclohexyl motif of dibC, forcing the
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receptor to adopt a new conformation (Figure 3B). This leads to
a repositioning of helix 6 and an extension of helix 7. While
Ser843MR was previously buried within the protein and
engaged in a hydrogen bond to the backbone nitrogen of
Met845MR, it is now exposed to the solvent, forming the new
start of helix 7 (Figure 3A). Recent data suggest that phosphor-
ylation of this residue affects both ligand binding and receptor
translocation into the nucleus (Shibata et al., 2013). The
structural changes observed here explain how the receptor
may use the local plasticity to make Ser843MR available for
modification.

The size of the 17a pocket in the MR:dibC complex increases
significantly (total ligand binding pocket volume 714 Å3, Fig-
ure S1), and the superposition on the GR:Dexa structure shows
that this region now adopts a more closely related structural
state (Figure 3C). Finally, while GR in complex with dibC (Fig-
ure 3D) expands the 17a pocket (total ligand binding pocket vol-
ume 661 Å3, Figure S1) relative to the GR:Dexa structure, it does
not alter any of the secondary structural elements. Instead, the
H6-H7 region appears to be shifted in a rigid way in response
to cyclohexyl of dibC. While plasticity in the H6-H7 region seems

to be conserved across these two receptors, the details of the
ligand-driven rearrangements are different.
To quantify the flexibility in the H6-H7 region across the steroid

receptor family, we performed principal component analysis for
all X-ray structures from the PDB for each receptor. This allows
visualization of the variance between structures as a set of
normal modes. While the description of this variance will be
highly dependent on what regions of the binding pocket are ex-
ploited by the various ligands, the mode describing H6-H7 mo-
tion is one of the strong features (Figure S3). However, for MR
the H6-H7 motion is only prominent if we include the MR:dibC
structure from this work, emphasizing that theMR:dibC structure
describes a novel structural conformation.

Modeling Nonbiased Entry and Exit Pathways
Spontaneous ligand binding events have been investigated us-
ing molecular dynamics in both exposed (Buch et al., 2011)
and partially exposed binding sites (Dror et al., 2011). However,
nuclear receptors have fully occluded binding pockets that likely
require significant rearrangements for ligand entry. Therefore,
we decided to use protein energy landscape exploration
(PELE) (Borrelli et al., 2005), an alternative approach that uses
Monte Carlo algorithms with structural prediction for efficient
sampling of the protein-ligand energy landscape. For ligand
escape simulations, the MR and GR X-ray complex structures
were used as the starting position. For ligand binding studies,
the ligand was randomly placed in the bulk solvent and allowed
to freely migrate. All simulations were completed in the presence
and absence of a co-factor peptide at the AF-2 site (NCOA1 res-
idues 1,430–1,441 forMR andNCOA2 residues 741–753 for GR).
In addition, both the wild-type protein sequences and the spe-
cific mutants present in the X-ray structures were used.

Ligand Dissociation
For all permutations of both MR and GR, we performed three
separate exit simulations, observing only one exit trajectory
perforating the surfacewhere helices 3, 7, and 11meet. Figure 4A
illustrates the MR:Dexa exit pathway simulation with the array of
dexamethasone positions superimposed on the initial MR struc-
ture. Notably, ligand motion is coupled with significant rear-
rangement of the protein backbone along themigration pathway.
In particular, the loop connecting helices 6 and 7 is shifted out-
ward to accommodate ligand release (Figure 4B). Interestingly,
the simulated protein movements mimic the differences be-
tween the MR:Dexa and MR:dibC structures shown in light and
dark blue, respectively. Root-mean-square fluctuations (RMSF)
along the exit trajectory (Figure 4C) clearly show that the move-
ments of the H6-H7 region are considerably larger than for the
rest of the protein.
Figure 5 shows the corresponding simulation for GR:Dexa

(equivalent simulations for MR:dibC and GR:dibC resulted in
the same exit trajectory). Based on the complete set of ligand
dissociation simulations it is apparent that both MR and GR
have the same ligand unbinding pathway. In addition, while
ligand exit is associated with similar protein motions, the fluctu-
ations in the H6-H7 region are significantly larger for MR than for
GR (Figure 5C). This is in agreement with the idea that GR would
require smaller rearrangements, because the receptor is more
open to begin with.

Figure 2. Comparison of the Complex Structures of MR:Dexa and
MR:dibC
(A) Stereo view of the 2mFo-dFc density map of the MR:Dexa ligand binding

pocket.

(B) The structure of MR (light blue) in complex with dexamethasone (magenta)

superimposed on MR (dark blue) in complex with dibC (white). The steroid

template overlays nearly perfectly (RMSD 0.28 Å) with all hydrophilic in-

teractions conserved.
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Ligand Association
To investigate ligand entry, we randomly placed dexamethasone
in the bulk solvent and released it to freely probe the protein sur-
face. For each receptor we performed five runs with 64 indepen-
dent trajectories over 48 hr. Each run yielded one to two trajec-
tories whereby the ligand entered the binding pocket. In all runs
the ligand is free tomovewithout anypredefined searchdirection.
Figure 6A shows the evolution of the ligand heavy atom RMSD

to the crystallographic complex for one of theMR:Dexa runs. It is
clear that most of the trajectories explore the receptor surface
with some excursions into the bulk solvent. However, the blue
and red trajectories enter the ligand binding pocket at steps
!50 and !210, respectively. While the entry along the blue tra-
jectory is relatively fast, the red demonstrates the unbiased
nature of the simulation, probing a large portion of the receptor
surface before finding the entrance pathway. Figure 6B shows
representative ligand centers of mass along these trajectories
superimposed on the initial protein structure, with the entry to
the binding pocket denoted by a surface representation. The
corresponding ligand entry simulation for GR is shown in Fig-
ure S4. In keeping with the ligand escape simulations for all

runs in both systems, trajectories entering the ligand binding
pocket pierce the protein surface at the H3-H7-H11 junction.
The MR:Dexa binding event is demonstrated in greater detail in
the Movie S1.
While the mutants used in the X-ray structures did not influ-

ence the simulations significantly, removal of co-factor peptide
at the AF-2 resulted in larger fluctuations in both helix 12 and
the H3-H7-H11 junction along the exit and entrance trajectories.
However, the ligand entry pathway remained unchanged. The
presence of co-regulator peptide has been shown to affect the
ligand binding kinetics (Pfaff and Fletterick, 2010).

Active-Site Ligand Refinement and Binding Free Energy
Once the entrance path to the MR binding pocket had been
located, we refined the free search with local enhanced sampling
to obtain a precise pose for the best binder. This procedure does
not add any bias in the ligand search direction, but limits the
sampling to the region around the entrance point (typically 10–
15 Å). Figure 7A shows the interaction energy profile plotted
against the ligand heavy atom RMSD to the crystallographic
complex for the MR:Dexa refining process (400 trajectories).

Table 1. Data Collection and Refinement Statistics

MR:Dexa MR:dibC GR:Dexa GR:dibC

Data Collectiona

PDB ID 4UDA 4UDB 4UDC 4UDD

Space group P212121 P41212 P3221 P3221

a, b, c (Å) 73.00, 81.40, 45.23 75.92, 75.92, 117.00 84.66, 84.66, 105.91 87.20, 87.20, 102.89

a, b, g (") 90.00, 90.00, 90.00 90.00, 90.00, 90.00 90.00, 90.00, 120.00 90.00, 90.00, 120.00

Resolution (Å) 40.7–2.03 (2.17–2.03) 48.79–2.36 (2.55–2.36) 31.81–2.50 (2.67–2.50) 40.14–1.80 (1.85–1.80)

Rsym (Rmerge) 0.06 (0.50) 0.13 (1.30) 0.08 (0.55) 0.08 (1.05)

I/sI 13.10 (2.30) 15.10 (1.90) 8.80 (1.60) 7.40 (0.70)

Completeness (%) 83.9 (83.7) 100.0 (100.0) 99.6 (99.5) 99.9 (100.0)

Redundancy 3.3 (2.5) 12.6 (11.7) 4.1 (4.2) 3.5 (3.6)

Refinement

Resolution (Å) 2.03 2.36 2.50 1.80

No. of reflections 15,085 14,672 15,559 42,339

Rwork/Rfree 0.185/0.240 0.182/0.218 0.210/0.253 0.213/0.224

No. of atoms

Protein 2,080 2,118 2,133 2,184

Ligand/ion 34 49 64 146

Water 101 60 83 250

B factors

Protein 30.14 53.25 49.72 33.25

Ligand/ion 22.12 44.16 34.51 23.55

Water 36.03 56.86 46.23 46.95

RMSD

Bond lengths (Å) 0.010 0.010 0.010 0.010

Bond angles (") 1.01 1.04 1.12 1.06

MolProbity score

Clashscore 2 1 1 1

Ramachandran outliers (%) 0 0 0.4 0

Side-chain outliers (%) 1.7 1.7 2.5 0.8
aValues in parentheses represent highest-resolution shell.
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The lowest binding energies are derived from poses located
within 0.75 Å RMSD of the X-ray ligand conformation. The sam-
pling places dexamethasone in the accurate orientation with the
A-ring 3-keto moiety pointing toward the Arg817MR-Gln776MR

pair from helices 5 and 3, and the D-ring hydroxyacetyl ap-
proaching the Asn770MR on the N-terminal half of helix 3 (Fig-
ure 7B). Studying the protein-ligand interaction energy plot in
more detail (Figure 7A), it is interesting that the surface explora-
tion exhibits local minima near RMSDof 12 Å. In the crystal struc-
ture of GR:Dexa and GR:dibC, this site is occupied by a steroid-
like CHAPS molecule that is part of the protein formulation
(Figure S5). In addition, for MR a nonsteroidal antagonist has
been observed at this position (Hasui et al., 2011). As such, the

Figure 3. Comparison of the Complex Struc-
tures of MR:Dexa, MR:dibC, GR:Dexa, and
GR:dibC
(A) MR (light blue) in complex with dexamethasone

(magenta) overlaid on MR (dark blue) in complex

with dibC (white).

(B) The cyclohexyl motif of dibC comes into direct

conflict with residues from H7 (MR:Dexa), enforcing

a new structural state.

(C) MR (dark blue) in complex with dibC (white)

superimposed on GR (yellow) in complex with

dexamethasone (magenta).

(D) GR (yellow) in complex with dexamethasone

(magenta) overlaid on GR (orange) in complex with

dibC (white).

Figure 4. Ligand Exit Pathway for the
MR:Dexa Complex
(A) The ligand center of mass is highlighted as blue

beads. The ligand atoms are shown as transparent

space fill.

(B) Detail of the backbone rearrangement along the

exit pathway. The MR:Dexa and MR:dibC X-ray

structures are shown in light and dark blue,

respectively, with dexamethasone in the binding

pocket in magenta. Three protein cartoon snap-

shots and one pose of dexamethasone as it passes

through the receptor surface from the exit simula-

tions are shown in green.

(C) Ca RMSF relative the average structure along

the MR:Dexa exit pathway plotted for each residue.

The dotted line denotes the average RMSF across

the LBD. Helices 6 and 7 are marked with green

shading.

region may correspond to a peripheral
binding site at the H3-H7-H11 junction,
and the energy barrier located at the 11-
to 12-Å segment in Figure 7A reflects the
energy cost associated with the surface-
crossing event through the entry channel.

The fast performance of PELE, together
with the local restriction in the refinement

exploration, facilitates running hundreds of trajectories. Based
upon Markov state model (MSM) analysis (Takahashi et al.,
2014), we used these data to calculate the binding free energies
for MR:Dexa and MR:dibC. While absolute values might be
slightly shifted due to the absence of an exhaustive surface/
bulk exploration, relative values should be in reasonable agree-
ment, because both ligands share entry point and binding site.
Figure 7C shows a 2D projection of the potential mean field
(PMF) obtained for MR:Dexa along the 400 refinement trajec-
tories. The red area corresponds to the bulk exploration,
whereas the global minimum, shown in blue, corresponds to
ligand positions matching the experimental structure (Figures
7A and 7B). Integration of the PMF volume at the active site,
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where we observe a smooth function (as opposed to the bulk
solvent or entrance pathway), converges to a binding free energy
of !7.5 kcal/mol for dexamethasone and !9.3 kcal/mol for
dibC. The difference in binding free energy of 1.8 kcal/mol is in
quantitative agreement with the experimental difference of
2.09 kcal/mol (derived from theKi values of 6.3 nM for dexameth-
asone and 0.18 nM for dibC).

Residence Time Measurements
The ligand entry and exit mechanism establishes a functional
role for helices 6 and 7 as a gatekeeper. In addition, the simula-
tions revealed that the structural rearrangements required for
ligand entry and exit are significantly different for GR and MR.
As a consequence, the ligand binding kinetics should differ for
the two receptors. Using both SPR and SMM (Gunnarsson
et al., 2015), we measured the residence time of both dexameth-
asone and dibC by monitoring the time-resolved change in re-
ceptor binding to a surface-immobilized co-regulator peptide
upon addition of >10-fold concentration excess of a reference
compound (Figure S6). The data from all experiments are sum-
marized in Table 2. In all instances, koff is larger for GR than for
MR, hence the residence time is longer in MR. This is in agree-

Figure 5. Ligand Exit Pathway for the
GR:Dexa Complex
(A) The ligand center of mass is highlighted as blue

beads. The ligand atoms are shown as transparent

space fill.

(B) Detail of the backbone rearrangement along the

exit pathway. The GR:Dexa and GR:dibC X-ray

structures are shown in light yellow and orange,

respectively. Three snapshots from the exit simu-

lations are shown in green, and dexamethasone in

the binding pocket is shown for reference in

magenta.

(C) CaRMSF relative the average structure along the

GR:Dexa exit pathway where helices 6 and 7 are

marked with green shading.

Figure 6. Unbiased Simulation of Dexa-
methasone Entering the MR Binding Pocket
(A) Each line represents the ligand heavy atom

RMSD to the ligand from the crystallographic

structure for a single trajectory. Two of the trajec-

tories represented by blue and red lines enter the

ligand binding pocket at steps 52 and 214,

respectively.

(B) The ligand center of mass for the two trajec-

tories that enter the binding pocket are shown as

blue and red spheres. The region where the ligands

enter the binding pocket is emphasized as a sur-

face with two ligands from the simulations shown in

full stick representation.

ment with the observations that MR
requires a larger rearrangement of the
H6-H7 region compared with GR (Figures
4 and 5). In addition, dexamethasone has
a larger koff than dibC, reflecting the fact

that dibC is a bulkier ligand. Finally, while the different measure-
mentmethods result in the same pattern for bothGR andMRand
dexamethasone and dibC, providing confidence to the analysis,
the systematically larger off rates using SMM likely reflect the
temperature difference at which the experiments were conduct-
ed (20"C for SMM and 10"C for SPR).

Differential Selection Pressure
Studies on the evolution of GR from the ancestral corticoid re-
ceptor revealed that GR has accumulated a number of mutations
on and in the proximity of helix 7 that prevents reversal of evolu-
tion (Bridgham et al., 2009). As our findings suggest that there is
an intimate link to the ligand binding function, we decided to
investigate the evolutionary consequences across thewhole ste-
roid receptor family. To explore this, sequence clusters for each
receptor were downloaded from OrthoDB (Waterhouse et al.,
2013). The sequences for each receptor were aligned using
ClustalX version 2.0 (Larkin et al., 2007) and the pairwise species
overlap with GR was selected for each receptor. Each residue
position was then assigned a variability score based on the num-
ber of different amino acids at that position across the various
species. All receptor sequences were overlaid on the GR
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potential peripheral binding site. While it requires further charac-
terization, the function of such a site on the surface of the recep-
tor could serve to capture the ligands and increase the chances
for productive binding events.
It is firmly established that steroid receptors depend on a num-

ber of chaperone and co-chaperone proteins for correct folding
that is capable of high-affinity hormone binding (Grad and Pic-
ard, 2007). Although the ligand entry function is likely to have
evolved before the synergies with chaperone proteins, these
proteins will nevertheless limit the access to the receptors and
thereby form boundary conditions for any ligand entry hypothe-
sis. Mutation and peptide competition studies suggest that
Hsp90 interacts at the AF-2 surface (Ricketson et al., 2007;
Fang et al., 2006). In addition, co-chaperones have been map-
ped to interact with regions surrounding the C-terminal end of
H1 and the N-terminal end of H3 (Caamaño et al., 1998), and
with the loop that connects them (Cluning et al., 2013). Neither
of these areas overlap with the entry site proposed here. Howev-
er, previous studies have shown that the chaperone complex
promotes the ligand binding process (Grad and Picard, 2007).
Interestingly, the simulations whereby we removed the co-regu-
lator peptides resulted in greater fluctuations in both the H3-H7-
H11 junction and H12. These results suggest that the presence
of chaperone proteins at remote sites can allosterically influence
the ligand entry process proposed here.

Figure 8. Evolutionary Conservation of the
LBD for the Steroid Receptors
The graphs show normalized amino acid variability

score for pairwise comparisons of MR (A), PR (B),

AR (C), ERa (D), and ERb (E) in blue versus GR in

red plotted against the GR amino acid sequence.

The variability score was average normalized and

smoothed using a five-amino-acid sliding window.

Helices 1–12 are annotated using vertical bars

(green: H6–7; blue: H10–11; gray: all others). High

variability scores indicate less conservation.

While the dibC complex structures
show that both corticoid receptors can
adopt an open conformation, they also
highlight that the plasticity in the H6-H7
region is different. For MR, the challenge
from a large 17a substituent results in a
complete rearrangement of the H6-H7
structure. In contrast, GR responds with
a rigid shift of the region. A closer inspec-
tion of the simulations revealed ensuing
differences as MR require larger rear-
rangements in the gatekeeper residues
for productive ligand binding and unbind-
ing. This is in agreement with the kinetic
measurements revealing that both dexa-
methasone and dibC exhibit longer re-
ceptor residence times in MR than in
GR. However, these observations do not
necessarily result in differences in ligand
affinity per se, as both ligand entry and
exit will be governed by the same plas-

ticity, potentially affecting on and off rates equally. Nevertheless,
it is important to note that ligand binding and unbinding are
asymmetric events. While ligand binding occurs with the recep-
tor in the chaperone complex in the cytoplasm, unbinding will
likely occur in the different protein complex. As such, it is
tempting to speculate that the relative stabilization of the open
versus the closed conformation may differ for the two states.
This could increase the apparent ligand affinity and potentially
add another layer of differentiation. To resolve this, detailed
structural information on the relevant protein complexes would
be required.
The distinct receptor blueprints also appear to have evolu-

tionary consequences. By comparing the amino acid sequence
for different species across all steroid receptors, we found that
GR exhibits a higher mutational frequency in the H6-H7 region.
We propose that as GR evolved a cortisol selectivity profile,
the change in the dynamic profile of the H6-H7 region, through
the Ser106AncCR to Pro637GR mutation, altered the boundary
conditions for the ligand entry mechanism. While for MR, resi-
dues need to be compatible with two distinct structural states
during ligand entry, for GR the equivalent residues will be
exposed to the solvent throughout the process. As a result the
selection pressure was relaxed for specific positions in this re-
gion for GR, which explains why subsequent mutations could
build.
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The tremendous growth in the number of available X-ray struc-
tures from increasingly more advanced protein classes and
complexes provides a plethora of snapshots of molecular mech-
anisms in action. However, to bridge the gap to detailed mecha-
nistic insights and to establish evolutionary relationships, orthog-
onal data from biochemical experiments and in silico modeling
are required. By combining information from several X-ray struc-
tures, extensive simulations, kineticmeasurements, andbioinfor-
matics analyses, we have uncovered the ligand binding mecha-
nism into the occluded binding pocket of steroid hormone
receptors. Ligand binding to the steroid receptors marks the first
step in a chain of events that in the end triggers both broad
genomic and nongenomic mechanisms. Understanding the de-
tails of ligand association and dissociation may facilitate the
rational design of molecules that exploit the plasticity of the entry
and exit processes to a greater extent. This could yield ligands
with differentmodes of action, such as antagonists that block nu-
clear translocation or agonists with extended receptor occu-
pancy and a prolonged pharmacological response.

EXPERIMENTAL PROCEDURES

Protein Expression, Purification, Crystallization, Structure
Determination, and Analyses
The detailed protocols are described in the Supplemental Experimental Proce-

dures. For structure, the following protein constructs were used: GR:Dexa,

GR-LBD (amino acids 500–777) N517D, F602S, C638D; GR:dibC, GR-LBD

(amino acids 500–777) N517D, V571M F602S, C638D; MR:Dexa, MR-LBD

(amino acids 735–984) C808S, C910S; MR:dibC, MR-LBD (amino acids

735–984) C808S, S810L, C910S. For the kinetic measurements, the following

constructs were used: GR, GR-LBD (NR3C1; amino acids 529–777); MR, MR-

LBD (amino acids 712–984) C808S.

Mineralocorticoid Receptor Ligand Competition Binding Assay
A scintillation proximity-based radioligand binding assay was used tomeasure

the ligand displacement of aldosterone to human MR-LDB. The detailed pro-

tocol is presented in the Supplemental Experimental Procedures.

PELE Simulations
Systems Setup

Initial coordinates for GR and MR were obtained from the crystals presented

here. Three different receptor models were prepared: (1) the crystallographic

structures, (2) the wild-type receptors generated by reverting the crystallo-

graphic mutations with the Schrödinger package (Schrödinger, 2013), and

(3) the wild-type receptors in absence of the peptide co-factor. All structures

were preprocessed with the protein preparation wizard (Madhavi Sastry

et al., 2013) available in the Schrödinger package, adding hydrogen atoms

and optimizing the hydrogen bond network, followed by a final visual

inspection.

PELE Sampling

PELE combines a Monte Carlo approach with protein structure prediction

methods, allowing exploration of long-timescale atomic biophysical pro-

cesses (Borrelli et al., 2005; Cossins et al., 2012). Three main steps define

the algorithm: (1) protein backbone and ligand perturbation, (2) specific side-

chain sampling, and (3) global minimization (for more details see, for example,

Kotev et al., 2015). The program uses anOPLS (Optimized Potentials for Liquid

Simulations) all-atom force field with an implicit SGB (surface-generalized

Born) continuum solvent model.

Ligand Exit Simulations
From the crystallographically prepared models, the exit protocol included

random ligand’s translations of 0.8 Å and rotation of 0.2 radians. The backbone

perturbation included the lowest six anisotropic network model modes with

maximum displacements of each a carbon up to 1 Å. A spawning criteria of

4 Å was used: any ligand whose center of mass is 4 Å behind the structure

with the center of mass farthest coordinates (with respect to the initial posi-

tion), in any direction, will abandon its position and continue the execution

with the coordinates from the leading (farthest) one. Thus, all processors

search collectively, with no bias in direction, for an effective escape path. Sim-

ulations were finished after the ligand’s solvent-accessible area was larger

than 0.5, with typical simulations times of 10–20 CPU hr.

Ligand Entrance Simulations
Starting from 20 conformations where the ligand is randomly distributed over

the protein surface, free search simulations were performed with runs of 64 in-

dependent simulations (no spawning criteria were used) for 48 CPU hr. Ligand

perturbation included equally probable translations of 3.0 Å/1.0 Å and rotation

of 0.25/0.05 radians. Ligand displacement direction was randomly updated

every six steps, thus ensuring that trajectories explored the entire surface.

Furthermore, keeping the perturbation direction for six steps is necessary to

observe entrance events in difficult cases.

Residence Time Determination
Residence time measurements of GR/MR:dexamethasone and dibC were

determined using SMM and SPR (Biacore). In brief, GR/MR was preequili-

brated with dexamethasone/dibC. Directly after addition of budesonide/

aldosterone, the rate of receptor binding to the surface-immobilized co-factor

peptide, caused by the ligand-induced change in affinity, was monitored

continuously over !15 min with SMM or by consecutive injection cycles (typi-

cally six) in SPR. See the Supplemental Information for details on surface prep-

aration and experimental procedures. The dissociation rate was determined

by exponential fits to the change in binding rate as a function of time.

Sequence Homology Analysis
Sequence clusters for each receptor were downloaded from the OrthoDB

database (Waterhouse et al., 2013) by searching for the human ENS gene ID

and selecting the vertebrate subset. For each receptor, sequences with a

length two SDs below average length or that contained more than 100 ‘‘X’’ (un-

known amino acids) were removed. The sequences for each receptor were

aligned using ClustalX version 2.0 (Larkin et al., 2007), then further filtered to

only keep sequences with an intact H6-H7 region (maximum 1 indel or ‘‘X’’

and R50% identity to the human H6-H7 region; sequences with large indels

in H6-H7 were removed followed by realignment and refiltering to correct for

alignment errors around indels). The filtered sets were scored using custom

perl scripts; for each position in the alignment, a variability score was calcu-

lated by counting the number of different types of amino acids (i.e. if a position

contained 5F, 3Y, and 9L, then the score is 3). To remove bias stemming from

the inclusion of sequences from different species across the various receptors,

we generated subsets wherein the same species were included for pairs of GR

with either of (MR, PR, AR, ERa, ERb). The paired subsets were realigned for

each receptor, and the resulting alignments were analyzed and scored as pre-

viously described. Finally, the scores were normalized (variability score minus

average variability score for LBD) and smoothed using a sliding window of five

amino acids, and plotted against the GR protein sequence.

Phylogenetic Analysis of the Human LBD Region
Human sequences for the studied nuclear receptors (AR, ERa, ERb, GR, MR,

and PR) were extracted from the aforementioned dataset. Sequences were

trimmed so that only the LBD region remained, aligned using ClustalX, and

manually edited based on the structure (minor adjustments). The tree was

calculated using ClustalX (bootstrap 1,000 iterations) and visualized using

NJplot version 2.3 (Perrière and Gouy, 1996).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures and one movie and can be found with this article online at

http://dx.doi.org/10.1016/j.str.2015.09.012.
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Geschwindner, S. (2015). Drug discovery at the single molecule level: inhibi-

tion-in-solution assay of membrane-reconstituted b-secretase using single-

molecule imaging. Anal. Chem. 87, 4100–4103.

Hasui, T., Matsunaga, N., Ora, T., Ohyabu, N., Nishigaki, N., Imura, Y., Igata,

Y., Matsui, H., Motoyaji, T., Tanaka, T., et al. (2011). Identification of benzox-

azin-3-one derivatives as novel, potent, and selective nonsteroidal mineralo-

corticoid receptor antagonists. J. Med. Chem. 54, 8616–8631.

Hughes, T.S., Chalmers, M.J., Novick, S., Kuruvilla, D.S., Chang, M.R.,

Kamenecak, T.M., Rance, M., Johnson, B.A., Burris, T.P., Griffin, P.R., et al.

(2012). Ligand and receptor dynamics contribute to the mechanism of graded

PPARg agonism. Structure 20, 139–150.

Kohn, J.A., Deshpande, K., and Ortlund, E.A. (2012). Deciphering modern

glucocorticoid cross-pharmacology using ancestral corticosteroid receptors.

J. Biol. Chem. 287, 16267–16275.
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Summary: 
In this study we show for the first time the inhibition mechanisms of kojic acid 
(KA) and hydroquinone (HQ) in a tyrosinase, combining experimental and 
computational techniques. Experimental techniques consisted of crystallization, 
binding constant analysis and kinetic experiments, whereas in-silico tools involved 
running sets of unbiased all-atom simulations for both inhibitors and a posterior 
MSM analysis. Our findings suggest that KA acts as a mixed inhibitor; when it is 
bound in the active site, it is not accessible to substrate molecules, but when it is 
in the peripheral binding site, it restricts the entrance and efflux, and impedes 
reaching the maximum catalytic velocity. On the contrary, HQ can act both as a 
substrate and an inhibitor, suggested by its binding heterogeneity. 
 
Author contribution: 
On one side, my tasks were running and analyzing all the simulations by means of 
MSM, and on the other side, writing the manuscript.  
 
 



70     



1Scientific RepoRts | 6:34993 | DOI: 10.1038/srep34993

www.nature.com/scientificreports

The unravelling of the complex 
pattern of tyrosinase inhibition
Batel Deri1,*, Margarita Kanteev1,*, Mor Goldfeder1, Daniel Lecina2, Victor Guallar2,3, 
Noam Adir4 & Ayelet Fishman1

Tyrosinases are responsible for melanin formation in all life domains. Tyrosinase inhibitors are used 
for the prevention of severe skin diseases, in skin-whitening creams and to avoid fruit browning, 
however continued use of many such inhibitors is considered unsafe. In this study we provide conclusive 
evidence of the inhibition mechanism of two well studied tyrosinase inhibitors, KA (kojic acid) and 
HQ (hydroquinone), which are extensively used in hyperpigmentation treatment. KA is reported in 
the literature with contradicting inhibition mechanisms, while HQ is described as both a tyrosinase 
inhibitor and a substrate. By visualization of KA and HQ in the active site of TyrBm crystals, together 
with molecular modeling, binding constant analysis and kinetic experiments, we have elucidated their 
mechanisms of inhibition, which was ambiguous for both inhibitors. We confirm that while KA acts as a 
mixed inhibitor, HQ can act both as a TyrBm substrate and as an inhibitor.

Tyrosinases belong to the type 3 copper-containing protein family together with hemocynanins that serve as oxy-
gen carriers1,2, and catechol oxidases that are strict diphenolases3,4. The two copper ions in the conserved active 
site, CuA and CuB, are coordinated by six histidine residues5–7. Tyrosinases hydroxylate monophenols to form 
ortho-diphenols (monophenolase activity) and subsequently oxidize the o-diphenols to o-quinones (diphenolase 
activity). Melanin is formed rapidly by the spontaneous polymerization of the quinones5,8. Monophenols can 
react only with the oxy state of tyrosinase, which represents about 15% of the enzyme molecules in solution9. In 
the presence of o-diphenols such as L-dopa (L-3,4-dihydroxyphenylalanine), both the oxy and met forms react 
enabling the production of o-quinones4,9.

Disorder in melanin formation has been found to cause a variety of skin diseases in humans such as hyperpig-
mentation, lentigo, vitiligo and skin cancer10. Furthermore, appearance of brown pigments in fruits and vegeta-
bles due to tyrosinase activity is a leading cause for postharvest losses9. Therefore, tyrosinase inhibitors are highly 
warranted by the pharmaceutical, cosmetics and food industries11–15.

Kojic acid (KA), a fungal metabolite, is the most widely used skin-whitening agent with possible side effects 
being dermatitis, sensitization and erythema9,16. Animal experiments suggested possible tumor promotion and 
weak carcinogenicity, and thus concentrations of 1% are recommended for safe human use17. Numerous contra-
dicting mechanisms are described in the literature for KA as either a competitive or mixed inhibitor for mush-
room tyrosinase18–20, possibly by chelating copper in the active site18,20–22. Previously, KA was found bound at the 
entrance to the active site of TyrBm (tyrosinase from Bacillus megaterium), suggesting one significant intermedi-
ate binding site. However, the full mechanism of KA inhibition still remains unclear22.

Hydroquinone (HQ), another well-studied whitening agent, has been used clinically in leading cosmetic 
hyperpigmentation treatment23, however, it was also found to cause serious problems by generating reactive oxy-
gen species leading to oxidative damage of lipids and permanent loss of melanocytes. Subsequently, HQ has 
been banned for the general use by the European Committee and can be prescribed by dermatologists only13,16. 
Previous studies suggested that HQ is a competitive inhibitor of tyrosinase24,25, while others demonstrated the 
potency of HQ as a tyrosinase substrate26,27. Garcia-Canovas and co-workers suggested that the enzymatic activity 
is not evident since HQ is not able to transform met-tyrosinase to the oxy-form26, and that the transformation 
may be substantial by addition of an o-diphenol or H2O2

26,28. However, to date, no structural data is available in 
order to elucidate the orientation of HQ in the active site of tyrosinase.
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Most mechanistic studies on tyrosinase inhibitors use KA or HQ as the comparative benchmark compound. 
Therefore, in depth analysis of their mechanism and inhibition mode are crucial for further development of 
potent inhibitors.

In this study, we elucidate the inhibition mechanism of these inhibitors by crystal structure determination of 
TyrBm with bound KA and HQ in the active site, along with biochemical characterizations, binding constants 
determination and molecular modeling.

Results
Inhibition mode of TyrBm activity. The most widely used and effective tyrosinase inhibitors, HQ and 
KA9,29, were tested for their inhibitory effect on TyrBm. Overall, our results clearly show that KA and HQ have 
different inhibition modes on TyrBm monophenolase (L-tyrosine) and diphenolase (L-dopa) activities. While 
KA displays a mixed inhibition mode on both activities (Fig. 1 and Table 1), HQ is a competitive inhibitor of 
monophenols, and shows no inhibition of diphenols (Fig. 2 and Table 1), in contrast to previous reports that define 
HQ as a competitive inhibitor for both activities24,25. Our kinetic study showed no inhibition by HQ in the pres-
ence of L-dopa since with rising concentrations of HQ, Km values decreased (Fig. 2b and Supplementary Fig. S1a).

The IC50 values representing inhibitor concentrations in which TyrBm activity was reduced by 50% were 
obtained from dose-response curves (Supplementary Fig. S2). The IC50 values for KA and HQ on the monophe-
nol were 26.8 and 32.0 µ M respectively, while the IC50 value for KA on the diphenol was 52 µ M (Table 1). Similar 
results were obtained in previous reports for mushroom tyrosinase, with values for KA inhibition on monophe-
nols and diphenols of 5.7 and 30.1 µ M, respectively30,31, and the value for HQ inhibition on monophenols of 
33.5 µ M32. Since we observed that HQ does not inhibit tyrosinase in the presence of L-dopa, the value of IC50 was 
not determined. García-Canovas and co-workers suggested that HQ is a tyrosinase substrate and not an inhib-
itor although activity is not evident under conventional conditions since HQ cannot transform met-tyrosinase 
into oxy-tyrosinase26. However, in the presence of an o-diphenol (e.g. L-dopa) or H2O2, oxy-tyrosinase is gen-
erated and HQ becomes a substrate which is hydroxylated to 2-hydroxyhydroquinone and subsequently to 
2-hydroxy-p-benzoquinone (HPB) that can be measured spectrophotometrically26. Our spectrophotomet-
ric measurements confirm their results, since with the addition of H2O2 or L-dopa, product formation by 
TyrBm increased in the presence of HQ (Supplementary Fig. S1). Furthermore, the same trend was observed 

Figure 1. Lineweaver–Burk plots for the inhibition of TyrBm by KA. (a) L-tyrosine (0.03–1.4 mM) in the 
presence of KA concentrations (mM): (a ● ) 0, (b× ) 0.025, (c ▲ ) 0.05, (d ♦ ) 0.075, (e ■ ) 0.1 and (b) L-dopa (0.15–
2.0 mM) in the presence of KA concentrations (mM): (a ● ) 0, (b× ) 0.025, (c ▲ ) 0.04, (d ♦ ) 0.05, (e ■ ) 0.075, (f -) 
0.1. All measurements were performed in heptaplicates.

Substrate Km (mM)
Vmax (µmole 
min−1 mg−1)

kcat 
(s−1) IC50 (µM) KI (µM) KIS (µM)

Inhibition 
mode

KA
L-tyrosine 0.04 ±  0.007 9.7 ±  0.4 5.7 26.8 ±  0.8 1.1 ±  0. 3 61 ±  20 mixed

L-dopa 0.18 ±  0.03 34 ±  1 20.1 52± 3 3.5 ±  0. 6 150 ±  12 mixed
HQ L-tyrosine 0.07 ±  0.01 9.0 ±  0.5 5.3 32 ±  2 40 ±  10 — competitive

Table 1.  Kinetic and inhibition constants of TyrBm by KA and HQ. Data was extracted from Figs 1, 2 and 
Supplementary Fig. S1. Each value represents the mean ±  SD of five independent experiments.
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by direct measurement of TyrBm activity through recording of the oxygen consumption during the reaction 
(Supplementary Fig. S3). The activity of TyrBm in the presence of L-dopa and HQ was 8% higher than with 
L-dopa alone for oxygen consumption measurements, and 17% higher as determined by absorbance readings.

In addition, when an activity test was performed for several hours with HQ as a sole substrate in comparison 
to a control without enzyme, low activity was visually observed, even without the addition of H2O2 or L-dopa, and 
a light brown color was detected after 3 hours of incubation (the control remained colorless). Moreover, the low 
inhibitory effect of HQ was also evident in another kinetic study with mushroom tyrosinase that exhibited an IC50 
value 80-fold higher when L-dopa was used, in comparison to L-tyrosine24. Since HQ requires a reducing agent in 
order to become a TyrBm substrate, the kinetic parameters of the monophenolase activity were determined in the 
presence of H2O2. The Km and Vmax values were 0.27 mM and 19 µ mole min−1 mg−1, respectively, which are similar 
to the kinetic parameters of L-dopa (Table 2). A similar Km value of 0.25 mM was reported by García-Canovas and 
co-workers for Agaricus bisporus tyrosinase26.

Effects of KA and HQ on the kinetic parameters of TyrBm. The kinetic constants of TyrBm monophe-
nolase and diphenolase activities were determined for L-tyrosine and L-dopa (Table 2). The values obtained in 
the presence of KA and HQ were calculated from Lineweaver–Burk plots (Figs 1 and 2; Table 1). With rising con-
centrations of KA, the Km values of the monophenolase activity increased and the Vmax values decreased, an indi-
cation of a mixed mode of inhibition, with an inhibition constant KI of 1.1 µ M and KIS of 61 µ M. The apparent Km 
and Vmax were 0.04 mM and 9.7 µ mole min−1 mg−1, respectively (Table 1). When increasing concentrations of KA 
were added in the presence of L-dopa as the substrate, a similar mode of mixed inhibition was observed, with KI 
of 3.5 µ M and KIS of 150 µ M, similar to previous studies that reported KI values of 3.4, 5 and 4.7 µ M for mushroom 
tyrosinase18,19,33. The apparent Km and Vmax of the diphenolase reaction were 0.18 mM and 34 µ mole min−1 mg−1, 
respectively (Table 1). The mixed inhibition mode implies that KA binding is not limited to the active site. In a 
previous study we have already experimentally demonstrated that a peripheral KA binding site exists in TyrBm22.

Increasing concentrations of HQ in the presence of L-tyrosine, resulted in an increase in the Km value while 
the Vmax remained constant, an indication of a competitive inhibition mode on the monophenolase activity, with 
a KI of 40 µ M and apparent Km and Vmax values of 0.07 mM and 9.0 µ mole min−1 mg−1, respectively (Fig. 2a and 
Table 1). A similar inhibition mechanism was also reported by Chawla et al., with KI of 83 µ M for mushroom 
tyrosinase25.

Figure 2. Lineweaver–Burk plots for the inhibition of TyrBm by HQ. (a) L-tyrosine (0.03–1.4 mM) in the 
presence of HQ concentrations (mM): (a ● ) 0, (b× ) 0.025, (c ▲ ) 0.075, (d ♦ ) 0.5 and (b) L-dopa (0.15–2.0 mM) 
in the presence of HQ concentrations (mM): (a ■ ) 0, (b ● ) 0.025, (c ▲ ) 0.05, (d× ) 0.075, (e ♦ ) 0.1. All 
measurements were performed in heptaplicates.

Substrate Km (mM) Vmax (µmole min−1 mg−1) kcat (s−1) kcat/Km (s−1 mM−1)
L-tyrosine 0.082 ±  0.006 3.62 ±  0.06 2.1 25.6
L-dopa 0.24 ±  0.02 30.3 ±  0.6 17.8 74.2
HQ 0.27 ±  0.05 19 ±  1 11.3 41.9

Table 2.  Kinetic constants of TyrBm on its natural substrates and HQ. Data was extracted from Figs 1, 2 and 
Supplementary Fig. S1. Each value represents the mean ±  SD of five independent experiments.
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Binding affinity of L-tyrosine vs. inhibitors. In order to obtain a clearer understanding of the fashion 
by which substrates and inhibitors bind to tyrosinase, we have determined dissociation constants (KD) between 
TyrBm and its substrates or inhibitors using MicroScale Thermophoresis34. Surprisingly, such KD values had not 
been previously measured. These experiments were performed by titrating fluorescently-labeled TyrBm with 
increasing concentrations of KA, HQ or L-tyrosine as the unlabeled ligands. According to the thermophoretic data 
points obtained with increasing concentrations of the ligands, the dissociation constants were evaluated. The KD 
values of the TyrBm-KA, TyrBm-HQ and TyrBm-L-tyrosine interactions were determined as 377, 9 and 0.1 µ M,  
respectively (Table 3 and Supplementary Fig. S4). According to these results, L-tyrosine, the natural substrate, 
showed the highest affinity to TyrBm in comparison with KA and HQ. While HQ showed a dissociation constant 
90-fold higher than L-tyrosine, KA exhibited a value of nearly 4000-fold higher than the natural substrate.

Structure of TyrBm with KA in the active site. In addition to the peripheral binding site of KA (PDB 
3NQ1), we have recently determined the structures of TyrBm with L-tyrosine, L-dopa and the substrate analog 
p-tyrosol35, all found within the active site. We present here the crystal structure of TyrBm with KA bound in the 
active site at 2.6 Å resolution (Fig. 3, Supplementary Fig. S5 and Table 4). The possible movement of KA within the 
active site can be envisioned from Fig. 3a in which KA is shown in two positions: the peripheral site we reported 
earlier22, and in the active site. At the entrance to the active site, KA is stabilized by interactions with Phe197, 
Pro201, Asn205, and Arg209 (Fig. 3b)22. In the active site, KA is stabilized by π -π  interactions with His208 that 
coordinates CuB, similar to tyrosinase substrates (Fig. 3c), as presented by Goldfeder et al. and suggested in other 
studies35–37. The hydroxyl group of KA is oriented towards CuA with a distance of 3.3 Å, while the distance of the 
carbonyl group to CuA is 5.5 Å. These results are supported by a recent docking study of Lima et al.18, and contra-
dict a previously proposed inhibition mechanism of KA by copper chelation20–22.

In silico simulations of KA and HQ in the active site. TyrBm structure with KA at the entrance to the 
active site was used as an initial model to run an extensive non-biased ligand migration simulations with PELE 
(Protein Energy Landscape Exploration) in a constrained sphere of 20 Å (from the initial ligand center of mass)38. 
By means of 128 processors and 24 hours, ~200,000 different ligand conformations were obtained that allowed 
to evaluate the absolute binding free energy (∆ G) by Markov State Models (MSM) analysis39. Briefly, MSM first 
involves clustering all conformations (a total number of 100 clusters were used) in metastable states and building 
the transition matrix between them. The obtained clusters overlap mostly with the two positions of KA, at the 
peripheral site and in the active site (Fig. 4). Integration of these cluster centers (with respect to the bulk solvent) 
allowed determining the binding free energy for the active site structure of − 5.5 kcal/mol, whereas the surface 
bound complex was only of − 1.4 kcal/mol. Therefore, the transition from the surface bound complex to the active 
site is exothermic and likely to occur.

An analogous simulation was also performed for HQ. In contrast to KA, HQ showed a significant larger 
mobility in the active site, where multiple orientations are frequently visited. This is clearly seen when ana-
lyzing the metastable states (after MSM clustering) accessible within 1 kcal/mol from the best-bound minima 
(Supplementary Fig. S6). While KA presents mainly two orientations (that occupy similar volume), HQ adopts 
multiple orientations exploring a larger area of the active site. Interestingly, for HQ we found structures (within 
the lowest 1 kcal/mol) involving the peripheral site, which for KA is about 4.1 kcal/mol above the best-bound 
minima (Fig. 4).

Structure of TyrBm with HQ in the active site. The kinetic measurements with HQ indicated that it is 
a poor substrate of TyrBm under natural conditions, and a good substrate in conditions favoring oxy-tyrosinase. 
In order to trap HQ in the active site of TyrBm, mature crystals were soaked with zinc instead of copper ions 
to prevent enzymatic activity22,35,40. We have obtained two different structures of TyrBm with HQ bound in the 
active site (Supplementary Figs S7 and S8) at 2.2 Å resolution (Table 4). The HQ hydroxyl group is oriented 
towards ZnA, and its benzyl ring is stabilized through hydrophobic interactions with His208, similar to tyrosine 
substrates (Fig. 5a)35. HQ was observed to bind in three different orientations in total in the active site of TyrBm 
(orientations 1, 2 and 3) (Fig. 5, Supplementary Figs S7 and S8). It seems that HQ binding is rather flexible in the 
active site, agreeing with the in silico simulations shown above, and does not have one specific orientation in con-
trast to L-tyrosine and L-dopa (Fig. 5)35. In orientation 1, a polar interaction between HQ and Asn205 is observed 
(Fig. 5b). In orientation 2, the HQ molecule is oriented similarly to tyrosinase substrates (and KA) in the active 
site, supporting our kinetic experiments showing that HQ can act as a TyrBm substrate (Fig. 5a). In addition, 
when TyrBm crystals were soaked with copper and HQ for 16 hours, the crystals turned brown, in comparison to 
crystals that were soaked with zinc that did not show a change in color (data not shown). Brown TyrBm crystals 
indicate on substrate oxidation as was previously shown by Sendovski et al. and provide additional confirmation 
on the role of HQ as a substrate of TyrBm22.

TyrBm ligand KD (µM)
KA 377 ±  4
HQ 9 ±  1
L-tyrosine 0.10 ±  0.03

Table 3.  Dissociation constants of TyrBm-ligand complexes. Each value represents the mean ±  SD.
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Discussion
Disorders in melanin formation have been linked to various skin diseases in humans such as hyperpigmentation 
and skin cancer. KA and HQ, are frequently used as inhibitors of tyrosinase, and have been used as skin-whitening 
agents in leading cosmetic hyperpigmentation treatment9,13,14,16. Over the past few years, numerous docking 
studies and molecular dynamic simulations were performed in an attempt to elucidate the binding modes of 

Figure 3. Structures of KA bound to TyrBm. (a) KA is observed inside the active site (purple) and at the 
entrance to the active site (green) (3NQ1). Copper ions are presented as brown spheres. (b) KA at the entrance 
to the active site (green) (3NQ1) is stabilized by second shell residues (light brown sticks). (c) Superposition 
with TyrBm structures contain KA (purple) and L-dopa (orange, 4P6S) oriented through hydrophobic 
interactions with His208. All the structures presented in this work were generated using PyMOL.

Structure name (PDB code) TyrBm:KA (5I38) TyrBm:HQA (5I3A) TyrBm:HQB (5I3B)
Data collection 
 Space group P212121 P212121 P212121

Cell dimensions
 a, b, c (Å) 70.24, 74.97, 121.70 69.62, 74.38, 120.78 69.62, 74.42, 119.69
 α, β, γ (°) 90, 90, 90 90, 90, 90 90, 90, 90
 Resolution (Å) 51.26–2.5 35.54–2.2 33.43–2.2
 Rmerge*,† 0.12(0.25) 0.082(0.387) 0.08(0.326)
 I/σI* 9.7(5.9) 18.2(6.2) 15.4(5.8)
 Completeness* 90.4(99.3) 99.9(100) 99.8(99.9)
 Redundancy* 6.2(5.8) 12.6(13.1) 6.6(6.9)
Refinement
 Resolution (Å) 51.26–2.5 35.54–2.2 33.43–2.2
 No. of reflections 127,679 558,159 214,516
 Rwork/Rfree‡ 20.81/23.77 20.11/22.72 18.84/21.69
No. of atoms
 Protein 4,687 4,697 4,696
 Ligand/ion 36 33 33
 Water 84 226 272
B-factors (Å) 
 Protein 32.05 35.02 32.75
 Ligand/ion 33.51 39.86 29.39
 Water 30.74 37.73 35.42
Root mean square deviations
 Bond length (Å) 0.004 0.007 0.006
 Bond angle (°) 0.59 0.88 0.80

Table 4.  Data collection and refinement statistics. *Values in parentheses are for the last shell. †Rmerge =   
∑ hkl∑ i |Ii(hkl)−〈 I(hkl)〉 |/∑ hkl∑ iIi(hkl), where I is the observed intensity, and < I>  is the mean value of I. ‡R/
Rfree =  ∑ hkl||Fobs|−|Fcalc||/∑ hkl|Fobs| where R and Rfree are calculated using the test reflections respectively. The test 
reflections (5%) were held aside and not used during the entire refinement process.
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tyrosinase inhibitors. In this work we demonstrate for the first time the true binding orientations of KA and HQ 
in the active site of TyrBm which explain the biochemical characterization.

Previously, we had determined a crystal structure of TyrBm with KA bound at the entrance to the active site22. 
Here, by modifying our protocol for ligand binding in crystal, we have visualized the structure of TyrBm with 
KA bound in the active site similar to tyrosinase substrates (Fig. 3c). This position of KA might lead to the false 
assumption of competitive inhibition mechanism. However, the two orientations of KA, which are demonstrated 
by crystallography and in silico simulations (Figs 3 and 4), support the mixed inhibition mechanism, which is 
confirmed by our kinetic experiments (Fig. 1 and Table 1).

In contrast to previous studies18–20, in this work we unequivocally display mixed inhibition mode of KA on 
both monophenolase and diphenolase activities and undermine the hypothesis regarding copper chelation by 
KA. Since the KIS value is significantly greater than KI for the oxidation of both L-tyrosine and L-dopa (Table 1), 
KA is able to bind more strongly to the free enzyme than to the enzyme–substrate complex (at the peripheral 

Figure 4. KA’s center of mass cluster analysis along the PELE simulation. Clusters are presented as spheres 
and colors indicate the potential of mean field ∆ G. Absolute standard binding free energies (with volume 
corrections) are shown for the active site and the surface bound minima, along with the ligand crystallographic 
complexes (cyan sticks). The two copper ions are presented as brown spheres.

Figure 5. Structures of HQ bound in the active site of TyrBm. (a) Superposition with TyrBm structures 
contain HQ in orientation 2 (green) and L-tyrosine (blue, 4P6R), which forms a hydrogen bond with Arg209. 
Zinc ions are presented as grey spheres. (b) HQ, in orientation 1 (teal), forms a hydrogen bond with Asn205 His 
residues are in white.
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site). We suggest that when KA is bound strongly in the active site, the binding pocket is not accessible to sub-
strate molecules, subsequently TyrBm is not active. However, when KA is oriented at the entrance of the active 
site, it restricts substrate entrance and product efflux, consequently, TyrBm cannot reach its maximum velocity 
(Table 1). Tropolone, another tyrosinase inhibitor that has been studied, was also found at the entrance of the 
active site of mushroom tyrosinase and exhibited mixed inhibition mode similar to KA41,42. It is quite possible, 
that KA may also bind to this site or has a different peripheral binding site yet to be elucidated. Together with the 
fact that KA showed a dissociation constant 3-orders of magnitude higher than L-tyrosine, these findings support 
the existence of a significant intermediate binding site in TyrBm and explains the mechanism of mixed inhibition.

Numerous studies have raised questions regarding the behavior of HQ as a tyrosinase inhibitor26,27, and most 
of them characterized HQ as a competitive inhibitor24,43–45. Our results support this inhibition mode of HQ on 
L-tyrosine (Fig. 2a and Table 1). On the other hand, other studies demonstrated the potency of HQ as a tyrosinase 
substrate26,27. Stratford and co-workers suggested that HQ is neither a substrate nor an inhibitor of tyrosinase27 
while del Mar García-Molina et al. suggested that HQ is a tyrosinase substrate with a poor activity due to the ina-
bility to transform met-tyrosinase to oxy-tyrosinase on its own26. The transformation is achieved by addition of an 
o-diphenol (such as L-dopa) or H2O2, which promotes the activity on HQ26,28. Our results corroborate this argu-
ment, since in the presence of H2O2 or L-dopa, TyrBm was indeed active on HQ as measured by two unrelated 
methods (Fig. 2b and Supplementary Figs S1 and S3). These findings led us to determine the kinetic constants of 
TyrBm with HQ as a substrate, which resulted in a similar Km value for HQ and L-dopa, and a Vmax value higher 
than that of L-tyrosine (Table 2).

Additional conclusive evidence for the action of TyrBm on HQ lies in the formation of brown crystals soaked 
in HQ that indicate on substrate oxidation as was previously shown by Sendovski et al. with L-tyrosine22. We 
assume that small amounts of oxy-TyrBm molecules present in the crystals enabled the activity on HQ within 
16 hours that resulted in brown pigmentation9.

In order to elucidate the inhibition mechanism of HQ, we solved two crystal structures of TyrBm with HQ in 
the active site. It was discovered that HQ is bound less strongly than L-tyrosine (Table 3), and its binding heter-
ogeneity is evident from the several different orientations observed in the active site (Fig. 5 and Supplementary 
Fig. S7). It is presumed that the polar amine and carboxyl groups of L-tyrosine and L-dopa, which are not present 
in HQ, help to stabilize the substrates through polar interactions with Arg209 in a productive mode (Fig. 5a)35. 
In orientation 1, a hydrogen bond between HQ and Asn205 was observed (Fig. 5b). Asn205 was suggested to be 
crucial for tyrosinase activity through the activation of a conserved water molecule35,46. The interaction of Asn205 
with HQ might prevent this activation, and thus inhibit tyrosinase activity18,47,48. Furthermore, in the structures 
of TyrBm with KA at the entrance of the active site this interaction was also found to be important for KA stabi-
lization22. Thus, we propose that the polar bond between Asn205 and the hydroxyl group of HQ indicates on an 
inhibitory effect on TyrBm. In contrast, in orientation 2, HQ is positioned similarly to L-tyrosine in the active 
site (Fig. 5a), supporting the role of HQ as TyrBm substrate. The flexibility of HQ in the active site of TyrBm was 
also demonstrated by our PELE simulations, which provided visualization of the numerous energetically feasible 
orientations of HQ in the active site. Whereas for KA it takes some time and energy to go from the peripheral 
docking site to the inner active site, for HQ there is constant interconversion between the two of them suggesting 
that the pre-docking site is very transient.

It seems that the combination of both the orientation of HQ in the active site and the oxidative state of tyrosi-
nase will define the behavior of HQ.

Methods
Expression, purification and crystallization of tyrosinase from B. megaterium. The gene encod-
ing tyrosinase from Bacillus megaterium (TyrBm) was cloned into Escherichia coli BL21, purified and crystallized 
as previously described49,50.

Tyrosinase inhibition assay. Tyrosinase inhibitory activity was determined spectrophotometrically in 
96-well plates with a final volume of 200 µ l. First, 50 mM PBS buffer pH 7.4 and 0.01 mM CuSO4 were mixed with 
6 µ g ml−1 of purified enzyme. Then, the mixture was incubated at 40 °C for 2 minutes. Finally, various concentra-
tions of inhibitor were mixed with 1.2 mM L-tyrosine or 2 mM L-dopa and were added to the pre-incubated mix-
ture. KA was studied in the range of 0.025–0.1 mM and HQ in the range of 0.025–0.5 mM. The reaction mixture 
was then monitored for L-dopachrome formation (ε  =  3600M−1 cm−1) by measuring the absorbance at 475 nm. 
Specific activity was calculated as the ratio of the conversion rate and the total protein content as determined by 
the Bradford analysis method (Bio-Rad, Israel). All measurements were performed in seven replicates. The inhib-
itor concentration necessary for 50% inhibition (IC50) was determined with respect to a control (no inhibitor).

Kinetic analysis of tyrosinase. The mode of inhibition and inhibition parameters, i.e. the Michaelis–
Menten constant (Km), maximal velocity (Vmax), turnover number (kcat) of TyrBm and the inhibition constants 
(KI, KIS) of each inhibitor were determined by Lineweaver–Burk plot analysis using various concentrations of 
L-tyrosine (0.03–1.4 mM) and L-dopa (0.15–2.0 mM) as substrates. The inhibitor concentrations were mentioned 
above. The inhibition kinetics module of Sigma Plot 13.0 software was used (Systat Software, Inc., Richmond, CA, 
USA). All measurements were performed in 5-replicates.

Tyrosinase activity assay on HQ as a substrate. TyrBm activity was determined by measuring the for-
mation of 2-hydroxy-p-benzoquinone (HPB) from HQ, in the presence of H2O2 or L-dopa. TyrBm activity was 
determined as explained in the inhibition assay above with varying concentrations of H2O2, ranging from 0 to 
90 mM, while maintaining the concentration of HQ constant. The formation of HBP was monitored by measuring 
the absorbance at 475 nm26.
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The values of Km, Vmax and kcat of TyrBm in the presence of HQ as a substrate were determined with the follow-
ing conditions: 50 mM PBS buffer pH 7.4, 0.01 mM CuSO4, 6 µ g ml−1 of purified enzyme, various concentrations 
of HQ (0.1–2.0 mM) in the presence of saturating concentration of hydrogen peroxide (100 mM)51.

For further verification of TyrBm activity on HQ, the activity was determined by recording the oxygen con-
sumption in the presence of L-dopa and HQ. Measurements were carried out using a Hansatech Oxygraph+  elec-
trode (Norfolk, UK) in a reaction volume of 1000 µ L. The reaction contained 4 µ g ml−1 of purified TyrBm, 50 mM 
PBS buffer pH 7.4, 0.01 mM CuSO4, 1 mM L-dopa and 0.1 mM HQ.

Dissociation constants using MicroScale Thermophoresis (MST). TyrBm was labeled fluorescently 
with a RED dye (NT-647-NHS) according to the manufacturer’s protocol (NanoTemper Technologies, Munich, 
Germany). Non-bound dye was removed by purification of the enzyme on a Sephadex G-25 column with buffers 
provided in the commercial kit. Then, serial dilutions of unlabeled binding partner samples (inhibitor or sub-
strate) were mixed with 0.377 µ M of dye-labeled TyrBm in 50 mM PBS buffer pH 7.4 and incubated for 5 minutes. 
Approximately 10 µ l of sample was loaded into hydrophilic monolith NT capillaries and the measurement was 
performed in a NanoTemper Monolith NT.015T instrument. The emission of the red fluorescence was recorded at 
a focused location of the capillary. In the same location, a microscopic temperature gradient was created using an 
infrared laser and the fluorescence depletion was measured. According to changes in the fluorescent thermopho-
resis signal and the concentrations of unlabeled inhibitor, the dissociation constant values were determined by the 
NanoTemper analysis software. The unlabeled binding partners tested for KD determination were KA (0–4 mM), 
HQ (0–1 mM) and L-tyrosine (0–2 mM).

Statistical analysis. All experiments were performed in duplicates or triplicates in order to ensure the 
reproducibility of the results. Statistical analysis was performed using Student’s t-test: *P <  0.05 compared with 
the control. Data is summarized as mean ±  SD.

Substrate binding in crystals. In order to trap ligands in the active site, mature crystals were soaked over-
night in 1 mM of either CuSO4 or ZnCl2 and subsequently in 10 mM of the appropriate ligand (KA and HQ) 
before crystal freezing.

Data collection and structure determination. X-ray diffraction data was collected at the European 
Synchrotron Radiation Facility, Grenoble, France, at beamlines ID14-4 and ID 29. All data were indexed, inte-
grated, scaled and merged using Mosflm and Scala52. The structures of TyrBm with bound inhibitors were solved 
by molecular replacement using Phaser53 and the coordinates of earlier determined TyrBm structure (PDB code 
4P6R). Refinement was performed using Phenix54 and Refmac555,56, coupled with rounds of manual model 
building, real-space refinement and structure validation performed using COOT57. Data collection, phasing and 
refinement statistics are presented in Table 3.

In silico simulations. Ligand migration sampling with Protein Energy Landscape Energy (PELE). PELE has 
widely been used to study ligand-protein interactions and protein dynamics at a fraction of the cost compared 
to other sampling methods such as molecular dynamics58–60. This algorithm is composed of a perturbation and a 
relaxation stage, and uses a mixture of random moves with protein structure prediction algorithms. The resulting 
structure is accepted or rejected following the Metropolis criterion.

Binding free energy with Markov State Models (MSM). MSM are coarse grain statistical models that allow 
extracting equilibrium properties such as the binding free energy61. In order to build our MSM, we split the 
conformational space using the Voronoi decomposition, clustering the ligand’s center of mass and using the 
cluster centers as seeds. Hence, each microstate will contain all possible ligand, protein and solvent arrangements 
compatible with having the ligand’s center of mass within the cell. In order to study the different metastable min-
ima, microstates are kinetically clustered utilizing Perron Cluster Analysis (PCCA+ ). The absolute binding free 
energy, ∆ G, is obtained integrating the potential of mean force (Gpmf) in the whole bound region39.
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Summary: 
In this work, we extended the binding mechanism study to all the members of 
the steroid nuclear hormone receptor family and their endogenous ligand. We 
found a shared entry path through the helix 3, 7, and 11 region, and identified 
two different folds of the helix 6-7 regions that had an impact in the number of 
observed binding events in unbiased simulations. We also saw that adding X-ray 
information into the protein perturbation promoted the plasticity of the helix 6-7 
regions, and thus enhanced the sampling of binding events compared to the 
anisotropic network model. These PCA-based modes in combination with a path 
sampling can be used to improve the convergence of MSM simulations. Our 
absolute binding free energy estimations were in very good agreement with 
experimental results. The binding mechanisms analysis highlighted the 
importance of a previously reported peripheral binding site, and reported the 
influence of ligand hydrophobicity into the transition of the peripheral binding 
site into the active binding site.  
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Exploring Binding Mechanisms in Nuclear Hormone
Receptors by Monte Carlo and X-ray-derived
Motions

Christoph Grebner,1,* Daniel Lecina,2 Victor Gil,2 Johan Ulander,1 Pia Hansson,3 Anita Dellsen,3

Christian Tyrchan,4 Karl Edman,3,* Anders Hogner,1 and Victor Guallar2,5,*
1Cardiovascular & Metabolic Disease (CVMD), AstraZeneca, Mölndal, Sweden; 2Joint BSC-CRG-IRB Research Program in Computational
Biology, Barcelona Supercomputing Center, Barcelona, Spain; 3Discovery Sciences, AstraZeneca, Mölndal, Sweden; 4Respiratory,
Inflammation, and Autoimmunity (RIA), AstraZeneca, Mölndal, Sweden; and 5Institució Catalana de Recerca i Estudis Avançats (ICREA),
Barcelona, Spain

ABSTRACT In this study, we performed an extensive exploration of the ligand entry mechanism for members of the steroid
nuclear hormone receptor family (androgen receptor, estrogen receptor a, glucocorticoid receptor, mineralocorticoid receptor,
and progesterone receptor) and their endogenous ligands. The exploration revealed a shared entry path through the helix 3, 7,
and 11 regions. Examination of the x-ray structures of the receptor-ligand complexes further showed two distinct folds of the
helix 6–7 region, classified as ‘‘open’’ and ‘‘closed’’, which could potentially affect ligand binding. To improve sampling of the helix
6–7 loop, we incorporated motion modes based on principal component analysis of existing crystal structures of the receptors
and applied them to the protein-ligand sampling. A detailed comparison with the anisotropic network model (an elastic network
model) highlights the importance of flexibility in the entrance region. While the binding (interaction) energy of individual simula-
tions can be used to score different ligands, extensive sampling further allows us to predict absolute binding free energies and
analyze reaction kinetics using Markov state models and Perron-cluster cluster analysis, respectively. The predicted relative
binding free energies for three ligands binding to the progesterone receptor are in very good agreement with experimental results
and the Perron-cluster cluster analysis highlighted the importance of a peripheral binding site. Our analysis revealed that the
flexibility of the helix 3, 7, and 11 regions represents the most important factor for ligand binding. Furthermore, the hydrophobicity
of the ligand influences the transition between the peripheral and the active binding site.

INTRODUCTION

Understanding the underlying processes in protein-ligand
binding events is a key parameter in computer-aided drug
design (1), often requiring a proper description of the
induced-fit (1–3) and/or the conformational ensembles
(1,3,4). Such analysis mandates a thorough study of the flex-
ibility and accessible conformational states of the proteins,
which could play a fundamental role in the biological func-
tion and response to modulators (1).

The intrinsic conformational flexibility specifically plays
a crucial role in the steroid nuclear hormone receptor family,
which belongs to the nuclear hormone receptor super fam-

ily. The family consists of five members: the androgen re-
ceptor (AR), estrogen receptor (ERa, b), glucocorticoid
receptor (GR), mineralocorticoid receptor (MR), and pro-
gesterone receptor (PR). All steroid receptors regulate
gene expression upon binding to cholesterol derivatives
(5) and are involved in various physiological functions
ranging from embryonic development to cell differentiation
or homeostasis. Due to their critical roles in diverse biolog-
ical processes, the receptors have received a lot of attention
from the pharmaceutical industry, which has resulted in
several medicines with application in diabetes (6,7), cancer
(8,9), heart diseases (10), or COPD and asthma (11,12).

The nuclear hormone receptors share a common architec-
ture with three separate domains: the variable N-terminal
domain, the highly conserved DNA binding domain, and
the ligand binding domain (LBD) (13). The endogenous li-
gands bindwithin the LBD, thereby triggering specific recep-
tor conformational changes that determine the biological
function of the complex. For instance, ligand binding
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allosterically controls the coregulator-binding site called
‘‘activation function-2’’, located at the surface of the LBD,
which allows the receptor to interact with transcriptional co-
factors (13).

The x-ray structures of the LBD for the five aligned ste-
roid receptors in complex with their endogenous ligands
(AR, testosterone; ERa, estradiol; GR, cortisol; MR, aldo-
sterone; and PR, progesterone) are shown in Fig. 1.

The general conserved structural motif of the LBD for all
steroid receptors encompasses 12 helices. It is built up by a
three-layered a-helical sandwich fold enveloping the ligand
binding pocket in between the helices (13), where the
endogenous ligands show similar binding modes in a fully
occluded binding pocket for all the receptors. The confor-
mations of the receptors’ LBD do overlay very well (the
overall backbone root mean square deviation (RMSD) for
the different receptors ranges from 1.0 to 1.8 Å; see Fig. 1).

Although the five receptors share the overall similar fold,
there are notable local variations in specific parts of the
x-ray structures including conformational differences in he-
lix 3, helix 6–7, and helix 11. Helix 3 has already been dis-
cussed for playing a role in ligand entry (14,15). The large
flexibility of the loop connecting helix 6 and helix 7 is of
special importance when studying ligand binding events,
due to its close vicinity to the ligand binding site. The plas-
ticity of this region as well as its integral part during ligand
entry was recently discussed in respect to MR and GR
ligand entry mechanisms (16).

In this study, we extend the investigation of protein flex-
ibility and ligand entry mechanism to the entire steroid re-
ceptor family. One key question unresolved so far is if all
steroid receptors share the same entry pathway. As in our
previous work (16), we use the state-of-the-art computa-
tional tool Protein Energy Landscape Exploration (PELE),

to efficiently sample the conformational space and pro-
tein-ligand binding events. This method (17) has been
shown to be accurate and efficient in locating the binding
site and ligand induced-fit mechanisms even for deeply
buried and complex binding pockets (16,18–21). To model
the binding event even more accurately, we tuned PELE
to incorporate experimentally observed receptor flexibility
using principal component analysis (PCA). Various x-ray
structures of the steroid receptors in complex with different
ligands indicate significant differences in the receptor con-
formations, which might aid in modeling the intrinsic plas-
ticity of the receptors upon ligand binding. Therefore, we
hypothesize that incorporation of the experimentally avail-
able information (e.g., PCA analysis of x-ray structures)
could improve sampling of backbone flexibility and simula-
tion of the ligand binding events.

Our results provide a detailed analysis of the ligands’ en-
try mechanism and the influence of different factors like
protein dynamics and conformational states. In addition,
for PR, the simulation results are further used to predict ab-
solute binding free energies of the three ligands progester-
one, cortisol, and aldosterone and to investigate the
reaction profiles and kinetics using Markov state modeling
(MSM) (22,23).

MATERIALS AND METHODS

PELE algorithm

PELE is a Monte Carlo (MC)-based technique that uses protein structure
prediction algorithms (17,24). Each MC move consists of three main steps,
i.e., ligand and protein perturbation; side chain sampling; and minimiza-
tion. Ligand perturbation is based on rotation and translation, whereas
the protein perturbation is based on an all-atom minimization with con-
strained displacements along the Ca-atoms following a set of given modes.

FIGURE 1 Overlay of the five steroid receptors
AR (cyan), ERa (green), GR (orange), MR (ice
blue), and PR (yellow) in complex with the endog-
enous ligand (testosterone, estradiol, cortisol, aldo-
sterone, and progesterone, respectively; chemical
structures of the hormones on the right side). Heli-
ces numbered according to Bourguet et al. (42). To
see this figure in color, go online.
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In the original PELE approach, the calculation of these modes is performed
employing the anisotropic network model (ANM) method (25,26). The
development of a new, to our knowledge, protein perturbation based on
x-ray structure information is described in this article. The side chain sam-
pling step includes all side chains for residues with at least one atom within
6 Å of the ligand’s heavy atoms. The last step involves a complete minimi-
zation of the system. The resulting structure is accepted or rejected by
applying a Metropolis criterion. In these simulations, an optimized-poten-
tials-for-liquid-simulations (OPLS-2005) (27) all-atom force field with an
Onufriev-Bashford-Case continuum solvent model (28) was used.

Structure preparation

All simulations for the investigated steroid receptor with the endogenous
ligand were started from the following x-ray structure Protein Data Bank
IDs: AR, 2Q7J; ERa, 1QKT; GR, 4P6X; MR, 2AA2; and PR, 1A28. Struc-
tures were prepared using the Protein Preparation Wizard (29) of Maestro
(30), adding hydrogen atoms, checking the protonation states of side chains
(at pH ¼ 7.0), and optimizing the hydrogen-bond network. The resulting
structures were checked by visual inspection. If necessary, loops were
closed using Prime (AR, C844–K845; MR, K909–N913). For all systems,
no coactivator peptide was included in the simulations (mirroring experi-
mental conditions).

Binding site exploration

Two different binding site exploration simulations were performed. First, a
complete space search was performed by placing the ligand in the bulk sol-
vent and using 400 independent trajectories (one trajectory per computing
core, using Intel Xeon CPU E5620 processors; Intel, Santa Clara, CA) for
48 h. Then, a local refinement search was performed, where the ligand was
manually placed at the surface in the proximity of the proposed entry, ~20 Å
away from the active site. Local search simulations were run using the same
number of trajectories for 24 h, where the ligand moves freely within a 20 Å
sphere around the central point of the binding site (defined by the center of
mass of the bound ligand).

Ligand perturbation depended on the ligand’s solvent-accessible surface
area (SASA, indicating the percentage [0:1] of the ligand’s surface avail-
able to the solvent). For SASA values <0.2, the translation was 0.75 Å
and rotation 0.1 rad; otherwise, translation was set to 2.0 Å and rotations
to 0.15 rad. Rotation was increased to 0.45 rad within 4 Å to the binding
site, allowing potential reorientations of the ligand. The number of steering
steps, i.e., the number of steps that the ligand perturbation direction is kept,
was eight, to enhance the entrance into cavities.

A combination of the six main modes (the lowest in ANM or those with
larger variance in PCA) was used for perturbing the protein backbone. The
main mode was mixed 50/50 with a random mixture of the five remaining
ones, which was updated every three steps. A maximal displacement for the
Ca-atoms constrained potential of 1.5 Å was used.

PELE results are analyzed by plots combining the binding energy and the
ligand heavy atom root RMSD from the bound x-ray structure; the binding
energy is computed as the internal energy difference between the complex
and the free receptor and ligand: EBind ¼ EAB " (EA þ EB), where the en-
ergy function takes into account solvation terms.

PELE settings for comparing ANM and PCA

Different backbone perturbation settings were used to compare the ANM
and PCA perturbation methods. The mode with highest amplitude for the
helix 6–7 movement was selected as the main mode (PCA, AR, ERa, as
mode 4; PR, GR, MR, as mode 2; ANM, AR, GR, as mode 5; ER, as
mode 2; MR, as mode 4; and PR, as mode 3). Because we aim at quantita-
tively discriminating the binding events for the two different techniques,

ligand translation was reduced to 0.5 and 1.5 Å with rotational steps of
0.05 and 0.15 rad (all variables equally distributed). Due to the smaller
ligand translation, the number of steering translation steps was sequentially
increased for each receptor until entries were found: AR, 9; AR with MR-
modes, 7; ERa, 1, GR, 9; MR, 7; and PR, 2. Simulations have been per-
formed for 500 MC steps using 264 processors.

PELE settings for calculating binding free
energies with MSM

Absolute binding free energy simulations involved 600 independent trajec-
tories for 24 h using the local restricted space described above. To improve
convergence, we used six different initial structures with SASA ~1.0, 0.8,
0.6, 0.4, 0.2, and 0.0 (bound complex), extracted from a binding trajectory;
we thus had 100 trajectories starting in each of the initial structures. To
avoid nonphysical transition between states, ligand translation and rotation
adopted the small values described above in PELE Settings for Comparing
ANM and PCA, and the number of steering steps was reduced to three.

PCA modes based on x-ray structures

PCA analysis was performed in a Python program (www.python.org) em-
ploying the ProDy library, version 1.5.1 (prody.csb.pitt.edu) (31). For
each system, the x-ray complex of the receptors with its endogenous ligand
was taken as the reference structure, and public structures (monomer A)
with a sequence identity of at least 98% and a maximum of one missing res-
idue (gap) were taken; all structures are listed in Table S1. Structures were
superimposed (Ca-atoms) to the reference structure using ProDy’s iterative
superposition algorithm. The ensemble was used for calculation of the
covariance matrix, which, after diagonalization, yielded the principal com-
ponents. These were saved using ProDy’s nmd file format (31). Only the
Ca-atoms were taken into account and gaps were treated with a weight
of 0.0.

PELE code was then modified to load modes externally from files in the
nmd-file format, replacing the ANM calculation step in PELE. This integra-
tion made it possible to use the same common code for both methods.

Binding affinities

Prediction with MSMs

The MSM method (23) is a powerful technique for describing the equilib-
rium properties of a system, based on the concept that conformational
changes can be modeled as Markov chains. To build them with our MC pro-
cedure, we used the following steps: First, we ran 600 unbiased PELE tra-
jectories during 24 h, starting from different conformations along the
binding pathway (as described above in PELE Settings for Calculating
Binding Free Energies with MSM). Afterwards, we divided the conforma-
tional space into 600 coarse-grained states (often called microstates), by
clustering the different ligand’s centers of mass using k-means. Then, the
transition probabilities and the stationary distribution were estimated at a
lag time that ensured Markovian behavior (i.e., memoryless), so that the
MSM framework was valid. The potential of mean force, Gpmf, was ob-
tained for the ith state by using Gpmf(i) ¼ "kBT $ log(pi), where kB is
the Boltzmann constant, T is the temperature, and pi is the stationary distri-
bution of the ith state. We obtained the binding free energy, DG, as seen in
Takahashi et al. (32).

One can extend the MSM analysis to study the binding mechanism. To do
so, it is convenient to lump the microstates into larger states (often called
metastable states, or macrostates), allowing us to further coarse-grain the
original MSM and obtain a simpler picture of the binding process. We
used Perron-cluster cluster analysis (PCCAþ) (33), implemented in the
software EMMA 1.3 (Free University of Berlin, Berlin, Germany) (34),
and lumped the original 600 clusters into seven metastable states. To
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highlight differences between ligands, we studied the transition probabili-
ties for the different metastable states, not counting internal cluster transi-
tions. Then, transition path theory (35) was used to study the main binding
pathways. We computed the normalized fluxes for all the main pathways
(i.e., with a flux >4%), and the committor probability, which is the proba-
bility of reaching the binding site from the different metastable states,
before going back to the bulk.

Fluorescence polarization ligand binding assays
(used for AR, ERa, GR, and PR)

Competition binding studies were performed using assay kits (PanVera,
Madison, WI) for AR, ERa, GR, and PR, and a PolarScreen Competitor
Assay kit (Life Technologies/Thermo Fisher Scientific, Carlsbad, CA) for
PR. The receptor and fluorophore in the different assays forms a complex
that gives a high polarization value, while the presence of a competitor pre-
vents the formation of a complex, resulting in a decrease of the polarization.
The shift in polarization value in the presence of test compound is used to
determine relative affinity for the receptor. The proteins used in the assay
kits were rat recombinant AR ligand binding domain (AR-LBD), human re-
combinant ERa, human recombinant GR, and human PR ligand-binding
domain (PR-LBD). Compounds dissolved in DMSO were tested in black
384-well low-volume, nonbinding-surface glass plates (Corning, Corning,
NY; PanVera AR and PR assays) or black 384-well small-volume, me-
dium-binding Greiner plates (PanVera ERa and GR assays) in five-point
concentration response, five-times dilution steps. In the Life Technologies
PR assay, compounds were tested in 10-point concentration response, 1/2
log serial dilution. In the PanVera AR, ERa, and PR assays 15 mL of either
AR-LBD/Fluormone AL Green, ERa/Fluormone EL Red, or PR-LBD/Flu-
ormone PL Red (Thermo Fisher Scientific, Carlsbad, CA) was added to
200 nL test or control compound already present in the well. This was fol-
lowed by a 4–6 h (AR), 1–5 h (ERa), or 1–6 h (PR) incubation in darkness
at room temperature (RT). Final assay concentrations were 1.3% DMSO,
12.5 nM AR-LBD/0.5 nM Fluormone AL Green, 7 nM ERa/0.5 nM Fluo-
rmone EL Red, or 18 nM PR-LBD/1 nM Fluormone PL Red (Thermo
Fisher Scientific). In the GR assay, 7 mL GR/Stabilizing peptide mix was
added to assay plates with 1 mL test or control compound followed by
7 mL Fluormone GS Red. Plates were incubated in darkness for 2 h at
RT. Final assay concentrations were 6.7% DMSO, 4 nM GR, 1! stabilizing
peptide, and 1 nM Fluormone GS Red.

In the Life Technologies PR assay (used for comparing to MSM results),
5 mL of PR Fluormone Red was added to assay plates with 50 nL test or
control compound, followed by 5 mL PR-LBD and a 2 h incubation in dark-
ness at RT. Final concentrations were 2 nM PR Fluormone Red/150 nM PR.
The PanVera assay plates were read on an Analyst AD plate reader (LJL
Biosystems, Sunnyvale, CA) with Ex 485/Em 530 (AR) or Ex 530/Em
590 (ERa, GR, and PR), while the Life Technologies PR assay plates
were read on a PHERAstar Plus (BMG Labtech, Ortenberg, Germany) us-
ing a fluorescence polarization (FP) optic module (540/590/590). Data from
PanVera assays was analyzed in the software ActivityBase (ID Business So-
lutions, Guildford, UK) and with the Life Technologies PR assay in Gene-
data Screener (Genedata, Basel, Switzerland). IC50 values were calculated
using a four-parameter logistic fit. Ki values for the Life Technologies PR
assay were calculated using the Cheng-Prusoff equation (Ki ¼ IC50/(1 þ
c(ligand)/Kd) with Kd(PR) ¼ 0.019 mM and c(ligand) ¼ 0.002 mM).

Scintillation proximity assay ligand-binding
assay (used for MR)

A 96-well format scintillation proximity assay (SPA) was used to identify
compounds that show binding to the human mineralocorticoid receptor
ligand binding domain (MR-LBD). The immobilization of the fusion pro-
tein to the scintillation beads was done via rabbit MBP (maltose-binding
protein) antibodies that were captured by the anti-rabbit SPA PVT (Polyvi-

nyltoluene) beads. The inhibition of the scintillation signal by displacement
of 3H-aldosterone with test compounds was measured on a MicroBeta
TriLux instrument (Wallac/PerkinElmer, Waltham, MA). Compounds
were tested in five-point concentration response (five-step dilution) and
the assay was run in 96-well Corning white/clear NBS plates. Assay buffer
contained 100 mM Tris pH 7.5, 0.1 mM EDTA, 20 mM NaMoO4, 10%
Glycerol, and 0.1 mM DTT. A MR/3H-aldosterone solution was prepared
by mixing 14.2 mg/mL MBP-tagged human MR-LBD coinfected with
p23 lysate (MBP-MR-LBD/p23) with 10.1 nM 3H-aldosterone (Amersham,
Little Chalfont, UK). To assay plates with 1 mL test or control compound
dissolved in DMSO (final concentration 1%), 50 mL of MR/3H-aldosterone
solution was added and incubated for 1 h on a shaker (<100 rpm). SPA im-
aging beads (Amersham) were dissolved to a concentration of 5 mg/mL and
mixed with 4 mg/mL anti-MBP antibody (Abcam, Cambridge, UK) in assay
buffer and 50 mL of the mix was added to assay plates. Plates were incu-
bated for 3–6 h at RT before being read on a MicroBeta TriLux instrument
(Wallac/PerkinElmer). The raw data output was analyzed in ActivityBase
(ID Business Solutions) using a four-parameter logistic fit to calculate
IC50 values.

RESULTS AND DISCUSSION

Exploiting experimental information: PCA of x-ray
structures

Exploration of ligand binding pathways in MR and GR re-
vealed an intrinsic plasticity of the helix 6–7 region (16).
Protein perturbation in PELE is based on the ANM method,
which should provide a good description of the intrinsic
overall protein motion using low-frequency modes. How-
ever, small local rearrangements, such as the ones often
derived from ligand-induced protein movement, might not
always be well represented by low-frequency modes
(25,26,36,37). In contrast to ANM, PCA provides the essen-
tial movements that describe the ensemble of (experimental)
structures (38–41). If the required flexibility is included in
the reference ensemble, in our case a large set of x-ray struc-
tures, this motion can be included by PCA modes. As can be
seen in Figs. 2 and S1, for all the systems the general shape
and magnitude of the displacement vectors are similar for
the main modes of ANM and PCA. There are, however,
key differences, especially in the helix 6–7 region high-
lighted in green. Further differences belong to helix 3
(760MR), helix 9–10 (915MR), and helix 11–12 (950MR).

To investigate the impact of experimentally derived mo-
tion modes, we applied PCA modes in PELE’s protein
perturbation step, and compared the results to those of using
standard ANM, as shown below in Influence of Protein Dy-
namics and Helix 6–7 Fold on the PELE Simulation.

Ligand binding site and ligand entry exploration

To address if all steroid receptors share the same entry
pathway, we investigated the ligand entry mechanisms of
their corresponding endogenous ligand (AR, testosterone;
ERa, estradiol; GR, cortisol; MR, aldosterone; PR, proges-
terone). In the unbiased search, where simulations explored
the complete protein surface (see Fig. 3 F, blue surface),
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entry events are only observed in the region where helices 3,
7, and 11 meet. This is in agreement with the previous
studies of ligand entry for GR and MR (16). For ERa,
GR, MR, and PR, a few trajectories completely enter the
binding site and result in structures close to the experimen-
tally observed structure. In contrast, a complete binding
event is not observed for AR, even though the ligand ex-
plores the entry region in a similar manner as the other
receptors.

To enhance the sampling of binding events and increase
the statistics, additional simulations were performed where
the search radius was restricted to a 20 Å radius around the
identified entry site. For all receptors, the endogenous ligand
enters the receptor at the same position between helices 3,
6–7, and 11, despite other potential entry pathways being
possible, such as through helix 11–12. Representative
entry paths are shown in Fig. 3. The covered search space
(Fig. 3 F, green surface) shows that although the whole pro-

tein surface is no longer explored, the exploration would still
allow different possible entry paths, e.g., through helix 11–
12; but this is not observed. As it can be seen in Figs. 4 and
S2, for each receptor the experimental ligand pose was
reproduced in the simulations (ligand heavy atom RMSD
values at %1.0 Å). In addition, the low RMSD structures
generally also possess the lowest ligand binding energy,
except for ERa, where the binding pose cannot be clearly
identified with the binding energy. It is interesting to note
that the ERa x-ray structure exhibits a specific helix-12
conformation that opens up the binding site (see below for
a more complete analysis of the fold difference), and could
potentially influence the binding energy. By employing the
enhanced sampling around the helix 3, 6–7, and 11 regions,
ligand entries are also observed for AR, analogous to the
other receptors. However, in keeping with the results of the
full protein exploration, AR shows fewer entry events than
any other receptor (see Table 1).

FIGURE 2 Visualization of the per-residue
displacement magnitude of the lowest six ANM
modes (left) and first six PCA modes (right) for
PR. (Green) Helix 6–7 loop region (residues
833–853 for MR). To see this figure in color, go
online.

FIGURE 3 Entry paths obtained from PELE
simulations. The spheres and surfaces represent
ligand center-of-mass position in the entry trajec-
tories. (A) AR, (B) MR, (C) ERa, (D) GR, and
(E) PR. (F) Covered search space in the binding
site exploration is shown as surface representation.
(Blue surface) Full receptor exploration; (green
surface) reduced local search space around the en-
try region. To see this figure in color, go online.
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Investigation of entry path and mechanism

While the entry pathways are consistent across all receptors,
simulations yield different numbers of binding events (see
Table 1). Furthermore, the PCA analysis reveals different
degrees of flexibility (see Figs. 2 and S1). To build an under-
standing of how the number of entry events is influenced by
the protein structure and dynamics, protein conformations
are compared in more detail, and results from PCA-based
simulations are directly compared to results from simula-
tions using ANM.

Conformational pairing of helix 6–7 loop

When studying the steroid hormone complex structures in
more detail, it is evident that the helix 6–7 loop differences
largely pair-up into two different folds (see Fig. 5). In AR
and MR, the helix 6–7 loop possesses a closed conformation
with respect to the openness of the entry site. This can be
defined by the distance between helix 11 and the helix
6–7 loop, in the range of 9–11 Å, which will be referred
to as the ‘‘closed fold’’. In contrast, the loop region is signif-
icantly more open in the PR and GR structures, in the ~15 Å
range, showing a partially unstructured helix 6. Further-
more, helix 7 is extended and longer than in AR and MR.
This will be referred to as the ‘‘open fold’’. ERa belongs
to the closed fold with respect to the distance of helix 6–7
and helix 11 (8 Å). However, helix 7 is slightly extended

and helix 6 is partially unfolded. Furthermore, helix 12
shows a completely different folding compared to the other
receptors, which makes the binding site intrinsically more
open. Looking at other x-ray structures of ERa, many of
them have no structural information about helix 12 at all,
pointing to a very flexible region, and few of these show a
structure similar to those of the other receptors.

Thus, the separation between closed and open folds de-
fines two structurally different gateways to the binding
pockets: the binding pockets of GR, PR, and also ERa
(due to the unfolded helix 12) should be easier to enter
than those of AR and MR. This trend is largely represented
in the number of entries highlighted in Table 1 as ERa and
PR show many more entries than AR and MR. However, the
influence of the fold of the receptors can only be directly
compared when the same ligand is used for entry studies,
thus eliminating effects coming from different molecular
properties of the ligands.

Therefore, we further performed ligand entry simulations
of progesterone to the five different receptors as being the
least hydrophilic compound and thus minimizing the effect
of polar interactions toward the receptors. The receptors
belonging to the closed fold (AR and MR) should show
fewer entries than the structures of the open fold (PR and
GR) as well as ERa (as helix 12 is unfolded). Looking at
the relative number of entries and sampled structures inside
the receptor binding site (Fig. 6 A), it can clearly be seen that
this trend is reproduced. When looking at the same ligand,
the ligand binding energy can be compared as well. The
correlation of the ligand binding energy to experimental
pIC50 values (Fig. 6 B) clearly shows that the binding en-
ergy obtained by PELE can be used to quickly score one
ligand for different receptors.

Influence of protein dynamics and helix 6–7 fold on the PELE
simulation

The use of PCA modes based on experimental x-ray struc-
tures allows us to include experimental information in the
simulation protocol and to sample the observed protein dy-
namics. Furthermore, it allows us to investigate the impor-
tance of different conformational flexibility in specific
regions being important for the entry mechanism, as ANM
and PCA modes can differ (as shown above). Therefore, re-
sults from simulations with PCA modes are compared to
those of simulations with ANM modes; Table 2 gives an
overview of the results of the simulations.

ERa shows significantly more flexibility at the entry re-
gion in the PCA modes than in the ANM modes. Although
helix 12 possesses a more open fold, which can intrinsically
facilitate the entry, simulations with PCA modes clearly
show more entrances than the ANM-based simulations.
Furthermore, the entrance occurs faster when using PCA
modes (fewer steps needed until entry).

For PR, the changes are expected to be larger as the dif-
ference between ANM and PCA is highest. Indeed, only a

FIGURE 4 Results for PELE simulations using PCA modes for PR. It
shows the correlation of the ligand heavy atom RMSD to the bound crystal
(in Ångstroms), and the binding energy (in kilocalorie per mole). Each co-
lor and symbol corresponds to an independent trajectory from the PELE
sampling. To see this figure in color, go online.

TABLE 1 Number of Trajectories

System AR MR ERa GR PR

Number of entry trajectories 2 5 19 13 14

Given for where the ligand entered the binding site in each set of 400
independent trajectories for free ligand binding-site exploration runs,
with reduced search space of 20 Å.
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few entries were observed when using ANM modes while
the ligand enters much more frequently in the PCA-based
simulations (around five times more often). For both AR
and MR, it was not possible to observe ligand entries with
ANM when using small ligand translational steps. On the
contrary, the PCA modes facilitate the entry. The effect is
very small for AR, which can be expected from comparing
the ANM and PCA modes where no significant flexibility is
present for the entry region.

As the protein structures of MR and AR are very similar,
but the PCA modes show significant differences (much
higher flexibility in the helix 6–7 region for MR, Fig. S1),
we applied the PCA-motion modes of MR to AR, thus arti-
ficially introducing the helix 6–7 flexibility observed in MR
into AR. Using these modes increases the number of entries
to values similar to those observed for MR, and allowed
much faster entries.

The difference of the ANM and PCA modes for GR is not
as high as, e.g., PR. Nevertheless, when using PCA modes
(with a steering of nine steps), many more entries can be
observed. Although GR possesses an already more open
conformation of the helix 6–7 loop, very few entries are
observed for ANM. This indicates that the open fold of helix
6–7 is not enough to allow ligand entry; proper treatment of
protein flexibility is required.

The results show that the employment of modes based on
PCA of experimental x-ray structures can clearly improve

the performance of the ligand-protein sampling if important
protein flexibility is included and covered by the mode set
used.

Binding free energies for PR

While PELE’s binding energy (computed as a protein-ligand
interaction energy) is very useful to discriminate poses
(Fig. 4) and compare receptors (Fig. 6 B), the extensive but
fast sampling obtained with PELE makes it possible to
further predict absolute binding free energies using MSM
(32). As a model system, we explored the binding free en-
ergies for progesterone, cortisol, and aldosterone to PR, as
PR provides the highest number of entries and thus is ex-
pected to show the best performance in MSM. The resulting
predicted values are compared to binding free energies
obtained from experimental Ki values (obtained by the Life
Technologies PR assay; see the Materials and Methods).
An overview of the absolute and relative binding free
energies is given in Table 3, and a graphical visualization
of the results in Fig. 7. While absolute values are slightly
reduced, possibly due to the limited solvent exploration
(see theMaterials andMethods), the relative binding free en-
ergies correlate very well, as all ligands share an entry point
and binding site in PR. Detailed results including implied
timescales, the Chapman-Kolmogorov test, and convergence
tests for MSM, can be found in the Supporting Material.

FIGURE 5 (A) Ligand binding pocket from the
crystal structures of the AR (cyan), ERa (green),
GR (orange), MR (ice blue), and PR (yellow) in
complex with the endogenous ligand (testosterone,
estradiol, cortisol, aldosterone, and progesterone,
respectively). Helices numbered according to
Bourguet et al. (42). (B) Close-up view of the helix
6 and 7 regions, showing the main differences be-
tween closed fold and open fold at AR (cyan) and
PR (yellow). To see this figure in color, go online.

FIGURE 6 Results for progesterone binding to
all five receptors. (A) Relative number of entries;
(B) correlation plot for PELE ligand binding (inter-
action) energy and pIC50 values. To see this figure
in color, go online.
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We should underline that in this study, to our knowledge,
we introduced a new approach to improve convergence.
First, we run a local exploration with larger ligand transla-
tions and rotation, aiming at finding a nonbiased binding
event. Then, we selected six representative snapshots
(covering the SASA space along the entrance event) and
performed an additional PELE exploration where we place
~100 processors in each initial structure. This MSM explo-
ration used small ligand translations and rotations, avoiding
nonphysical transitions between states. Overall, conver-
gence is significantly improved, allowing us to quantita-
tively score few ligands in a faster manner (convergence is
already achieved after ~12 h and 300 cores for this system).

Finally, we used PCCAþ to analyze the ligand binding
mechanisms. Fig. 8 shows the five main metastable states
that are common to all three ligands: the A (red) cluster in
the bulk solvent; the D (green), B (orange), and E (pink)
clusters in the receptor surface; and the C (blue) cluster
representative of the active site bound complex. Interest-
ingly, the B cluster is located at the surface entrance site,
and it largely resembles a peripheral binding site seen in a
crystal structure of GR occupied by a steroid-like molecule
that is part of the crystallization condition (16). Fig. 8 also
shows the transition probabilities between each metastable
state (excluding internal transitions) along the MSM simula-
tions for the three ligands. Clearly, all ligands enter the bind-
ing cavity by the B peripheral binding site. Also, there is a
clear correlation of the B/C (binding) transition probabil-
ity with the hydrophobicity of the ligand: 62% for progester-
one (the most hydrophobic ligand), 29% for aldosterone,
and only 0.1% for cortisol. In addition to the larger transi-
tion probability, we find the average residence time (MC
steps) for progesterone in site B, 212 steps, to be signifi-
cantly smaller than the values for aldosterone, 650 steps,
and cortisol, 410 steps, indicating an overall faster binding

mechanism for progesterone. Besides, the larger hydropho-
bicity of this ligand significantly increases transitions from
the bulk to the protein surface site E (a significantly apolar
site). In the other two (more polar) ligands, we observe more
transitions to the hydrophilic D site (with charged residues
such as Glu-126) and the dominance of transitions from
the bulk to the peripheral binding site. Finally, the overall
flux from the bulk solvent to the bound C state, together
with the committor probability for each state, is also
shown in Fig. S3, where we observe again the importance
of the E state in reaching the peripheral binding site for
progesterone.

CONCLUSION

In this study, we performed a comprehensive analysis of the
ligand entry mechanism in the steroid nuclear hormone re-
ceptor family. An initial full (receptor) exploration revealed
one shared entry path through the helix 3, 7, and 11 regions.
A refined exploration concentrating on the discovered entry
region allowed us to localize ligand conformations with
ligand heavy atom RMSD toward the x-ray structure of
<1.0 Å, which correlated well to the binding energy.
Furthermore, binding energies largely correlated with

TABLE 2 Percentage of Structures

AR AR (MR-modes) ERa GR MR PR

ANM — — 0.3% (219) 0.02% (196) — 0.2% (189)
PCA 0.1% (268) 0.3% (162) 0.8% (117) 0.3% (38) 0.4% (56) 1.0% (139)

This is relative to all sampled structures, with SASA < 0.1 (i.e., inside the entry site or binding pocket) and averaged number of accepted Monte Carlo steps
until entry, in parentheses, for ANM- or PCA-based protein motion modes (steering factors: AR, 9; AR with MR-modes, 7; ERa, 1; GR, 9; MR, 7; and PR, 2).

TABLE 3 Experimental and Predicted Binding Free Energies
for Ligand Binding to PR

[kcal/mol] Progesterone Aldosterone Cortisol

DG (exp) "10.0, "9.7 "8.9, "8.8 "7.2, "7.1
DG (MSM) "9.1 5 0.4 "8.4 5 0.4 "7.3 5 0.7
DDG (exp) 0.0 1.0 2.7
DDG (MSM) 0.0 0.7 5 0.6 1.8 5 0.8

Experimental results are calculated from (two different) Ki values obtained
with FP ligand binding assays, and calculated using the Cheng-Prusoff
equation at 294 K (Ki(PR-progesterone), 36, 64 nM; Ki(PR-aldosterone),
264, 233 nM; and Ki(PR-cortisol), 4939, 4060 nM). Results for MSM sim-
ulations are averaged using 600 trajectories and 600 clusters.

FIGURE 7 Clustering of the PELE trajectories used for MSM. Each
sphere represents one ligand cluster, colored according to its binding free
energy value. The image depicts aldosterone in complex to PR. To see
this figure in color, go online.
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experimental pIC50 values when comparing all five recep-
tors and one ligand (progesterone).

Our findings, however, reveal differences in the number
of entries for the different receptors. Analysis of the protein
conformations shows two distinct loop foldings of the helix
6–7 region that can be classified as open and closed. More-
over, in line with previous studies, we observe that ligand
entry in steroid nuclear hormone receptors is mainly driven
by the flexibility observed at the helix 3, 7, and 11 regions.
To better model the protein dynamics in these regions, we
performed a PCA analysis on the existing bound crystal
structures. Application of PCA-based motion modes can
clearly improve the sampling performance and description
of protein dynamics in cases where significant information
is present in the underlying x-ray structure ensemble.
The comparison of ANM and PCA modes, both quick
and computationally inexpensive, may reveal important
induced-fit movements of the protein. Therefore, the
employment of experimentally based modes represents a
reasonable and straightforward approach for exploiting
experimental information in protein-ligand sampling.

The extensive sampling provided by PELE allowed the
prediction of absolute binding free energies and binding
mechanism using MSM. The predicted relative binding
free energies for aldosterone, progesterone, and cortisol
binding to PR show a very good correlation to experimental
relative binding free energies and describes the correct trend
of the three ligands. PCCAþ revealed the importance of a
peripheral binding site and the hydrophobic nature of the
ligand. Overall, our study suggests the important combina-
tion of two factors: 1) the flexibility at the helix 3, 7, and
11 regions, necessary for the ligand to enter the binding
site cavity; and 2) the hydrophobic nature of the ligand,
increasing the transitions between the peripheral and the
active binding sites.

SUPPORTING MATERIAL

Six figures and one table are available at http://www.biophysj.org/biophysj/
supplemental/S0006-3495(17)30160-1.
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19. Kope!cná, J., I. Cabeza de Vaca, ., R. Sobotka. 2015. Porphyrin bind-
ing to Gun4 protein, facilitated by a flexible loop, controls metabolite
flow through the chlorophyll biosynthetic pathway. J. Biol. Chem.
290:28477–28488.

20. Kotev, M., D. Lecina, ., V. Guallar. 2015. Unveiling prolyl oligopep-
tidase ligand migration by comprehensive computational techniques.
Biophys. J. 108:116–125.

21. Carlson, H. A., R. D. Smith, ., J. B. Dunbar. 2016. CSAR 2014: a
benchmark exercise using unpublished data from pharma. J. Chem.
Inf. Model. 56:1063–1077.

22. Pande, V. S., K. Beauchamp, and G. R. Bowman. 2010. Everything you
wanted to know about Markov state models but were afraid to ask.
Methods. 52:99–105.

23. Bowman, G. R., V. S. Pande, and F. No"e. 2014. An Introduction to Mar-
kov State Models and Their Application to Long Timescale Molecular
Simulation. Springer, New York.

24. Madadkar-Sobhani, A., and V. Guallar. 2013. PELE web server: atom-
istic study of biomolecular systems at your fingertips. Nucleic Acids
Res. 41:W322–W328.

25. Atilgan, A. R., S. R. Durell, ., I. Bahar. 2001. Anisotropy of fluctua-
tion dynamics of proteins with an elastic network model. Biophys. J.
80:505–515.

26. Bahar, I., A. R. Atilgan, and B. Erman. 1997. Direct evaluation of ther-
mal fluctuations in proteins using a single-parameter harmonic poten-
tial. Fold. Des. 2:173–181.

27. Banks, J. L., H. S. Beard, ., R. M. Levy. 2005. Integrated modeling
program, applied chemical theory (IMPACT). J. Comput. Chem. 26:
1752–1780.

28. Onufriev, A., D. Bashford, and D. A. Case. 2004. Exploring protein
native states and large-scale conformational changes with a modified
generalized Born model. Proteins. 55:383–394.

29. Sastry, G. M., M. Adzhigirey, ., W. Sherman. 2013. Protein and
ligand preparation: parameters, protocols, and influence on virtual
screening enrichments. J. Comput. Aided Mol. Des. 27:221–234.

30. Schrödinger LLC. 2014. Maestro: Release 2014–2. Schrödinger, New
York.

31. Bakan, A., L. M. Meireles, and I. Bahar. 2011. ProDy: protein
dynamics inferred from theory and experiments. Bioinformatics.
27:1575–1577.

32. Takahashi, R., V. A. Gil, and V. Guallar. 2014. Monte Carlo free ligand
diffusion with Markov state model analysis and absolute binding free
energy calculations. J. Chem. Theory Comput. 10:282–288.

33. Deuflhard, P., and M. Weber. 2005. Robust Perron cluster analysis in
conformation dynamics. Linear Algebra Appl. 398:161–184.

34. Senne, M., B. Trendelkamp-Schroer, ., F. No"e. 2012. EMMA: a
software package for Markov model building and analysis. J. Chem.
Theory Comput. 8:2223–2238.

35. No"e, F., C. Sch€utte,., T. R. Weikl. 2009. Constructing the equilibrium
ensemble of folding pathways from short off-equilibrium simulations.
Proc. Natl. Acad. Sci. USA. 106:19011–19016.

36. Bakan, A., and I. Bahar. 2009. The intrinsic dynamics of enzymes plays
a dominant role in determining the structural changes induced upon in-
hibitor binding. Proc. Natl. Acad. Sci. USA. 106:14349–14354.

37. Xu, C., D. Tobi, and I. Bahar. 2003. Allosteric changes in protein struc-
ture computed by a simple mechanical model: hemoglobin T4R2
transition. J. Mol. Biol. 333:153–168.

38. Balsera, M. A., W. Wriggers, ., K. Schulten. 1996. Principal compo-
nent analysis and long time protein dynamics. J. Phys. Chem. 100:6.

39. Maisuradze, G. G., A. Liwo, and H. A. Scheraga. 2009. Principal
component analysis for protein folding dynamics. J. Mol. Biol. 385:
312–329.

40. Meireles, L., M. Gur,., I. Bahar. 2011. Pre-existing soft modes of mo-
tion uniquely defined by native contact topology facilitate ligand bind-
ing to proteins. Protein Sci. 20:1645–1658.

41. Peng, J., and Z. Zhang. 2014. Simulating large-scale conformational
changes of proteins by accelerating collective motions obtained
from principal component analysis. J. Chem. Theory Comput. 10:
3449–3458.

42. Bourguet, W., M. Ruff, ., D. Moras. 1995. Crystal structure of the
ligand-binding domain of the human nuclear receptor RXR-a. Nature.
375:377–382.

Grebner et al.

1156 Biophysical Journal 112, 1147–1156, March 28, 2017

http://refhub.elsevier.com/S0006-3495(17)30160-1/sref8
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref8
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref8
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref9
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref9
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref10
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref10
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref10
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref11
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref11
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref11
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref12
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref12
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref12
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref12
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref13
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref13
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref13
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref14
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref14
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref14
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref15
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref15
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref15
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref16
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref16
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref16
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref17
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref17
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref17
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref18
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref18
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref18
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref19
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref19
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref19
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref19
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref19
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref20
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref20
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref20
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref21
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref21
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref21
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref22
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref22
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref22
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref23
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref23
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref23
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref23
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref24
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref24
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref24
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref25
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref25
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref25
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref26
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref26
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref26
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref27
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref27
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref27
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref28
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref28
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref28
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref29
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref29
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref29
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref30
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref30
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref31
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref31
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref31
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref32
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref32
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref32
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref33
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref33
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref34
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref34
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref34
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref34
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref35
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref35
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref35
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref35
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref35
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref36
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref36
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref36
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref37
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref37
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref37
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref38
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref38
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref39
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref39
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref39
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref40
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref40
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref40
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref41
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref41
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref41
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref41
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref42
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref42
http://refhub.elsevier.com/S0006-3495(17)30160-1/sref42


 93 

 

Publication 5 - Adaptive simulations, towards 
interactive protein-ligand modeling 
Authors: Daniel Lecina, Joan Francesc Gilabert, Victor Guallar 
Journal: Scientific Reports (In Revision) 
 
Summary: 
In this work, we propose a novel procedure to overcome the sampling limitations 
caused by metastability. In particular, our methodology combines an adaptive 
machine learning protocol with PELE in the frame of modern multi-core 
computational resources, and is able to map complex binding mechanisms with 
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which suggests the potential of the technique in screening and lead optimization 
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Abstract 
Modeling the dynamic nature of protein-ligand binding with atomistic simulations is one of the 

main challenges in computational biophysics, with important implications in the drug design 

process. Although in the past few years hardware and software advances have significantly 

revamped the use of molecular simulations, we still lack a fast and accurate ab initio description 

of the binding mechanism in complex systems, available only for up-to-date techniques and 

requiring several hours or days of heavy computation. Such delay is one of the main limiting 

factors for a larger penetration of protein dynamics modeling in the pharmaceutical industry. 

Here we present a game-changing technology, opening up the way for fast reliable simulations 

of protein dynamics by combining an adaptive machine learning procedure with Monte Carlo 

sampling in the frame of modern multi-core computational resources. We show remarkable 

performance in mapping the protein-ligand energy landscape, being able to reproduce the full 

binding mechanism in less than half an hour, or the active site induced fit in less than 5 minutes. 

We exemplify our method by studying diverse complex targets, including nuclear hormone 

receptors and GPCRs, demonstrating the potential of using the new adaptive technique in 

screening and lead optimization studies.  

 
 
  



 
Accurately describing protein-ligand binding at a molecular level is one of the major 

challenges in biophysics, with important implications in applied and basic research in, for 
example, drug design and enzyme engineering. In order to achieve such a detailed knowledge, 
computer simulations and, in particular, molecular in silico tools are becoming increasingly 
popular1, 2. A clear trend, for example, is seen in the drug design industry: Sanofi signed a 
$120M deal with Schrödinger, a molecular modeling software company, in 2015. Similarly, 
Nimbus sold for $1,200M its therapeutic liver program (a computationally designed Acetyl-
CoA Carboxylase inhibitor) in 2016. Clearly, breakthrough technologies in molecular modeling 
have great potential in the pharmaceutical and biotechnology fields.  

Two main reasons are behind the revamp of molecular modeling: software and hardware 
developments, the combination of these two aspects providing a striking level of accuracy in 
predicting protein-ligand interactions1, 3, 4. A remarkable example constitutes the seminal work 
of Shaw’s group, where a thorough optimization of hardware and software allowed a complete 
ab initio molecular dynamics (MD) study on a kinase protein5, demonstrating that 
computational techniques are capable of predicting the protein-ligand binding pose and, 
importantly, to distinguish it from less stable arrangements by using atomic force fields. Similar 
efforts have been reported using accelerated MD through the use of graphic processing units 
(GPUs)6, metadynamics7, replica exchange8, etc. Moreover, these advances in sampling 
capabilities, when combined with an optimized force field for ligands, introduced significant 
improvements in ranking relative binding free energies 9. 

  Despite these achievements, accurate (dynamical) modelling still requires several hours or 
days of dedicated heavy computation, being such a delay one of the main limiting factors for a 
larger penetration of these techniques in industrial applications. Moreover, this computational 
cost severely limits examining the binding mechanism of complex cases, as seen recently in 
another study from Shaw’s group on GPCRs10. From a technical point, the conformational space 
has many degrees of freedom, and simulations often exhibit metastability: competing 
interactions result in a rugged energy landscape that obstructs the search, oversampling some 
regions whereas undersampling others11, 12. In MD techniques, where the exploration is driven 
by numerically integrating Newton's equations of motion, acceleration and biasing techniques 
aim at bypassing the highly correlated conformations in subsequent iterations13. In Monte Carlo 
(MC) algorithms, another main stream sampling method, stochastic proposals can, in theory, 
traverse the energy landscape more efficiently, but their performance is often hindered by the 
difficulty of generating uncorrelated protein-ligand poses with good acceptance probability14, 15. 
The Protein Energy Landscape Exploration (PELE) program16 addresses the problem by making 
use of protein structure prediction algorithms, which introduces larger conformational changes17 
and, importantly, allows mapping complex protein-ligand binding mechanisms18, 19, 20. This 
technique, for example, has been underlined as an impressive accomplishment in the last 
Community Structure-Activity Resource (CSAR) blind competition21. Nonetheless, PELE 
simulations still show some degree of metastability, requiring several hours for solving the 
binding mechanism in complex systems, restricting its use in a drug design screening setup. For 
introducing large impact, we should aim for fast (minutes) and accurate simulations, allowing a 
drug design team to obtain accurate protein-ligand structures interactively, opening the 
possibility to combine their knowledge and expert intuition with in silico techniques on-the-fly. 
In this work, we present such a breakthrough tool: Adaptive-PELE, a combination of PELE 
with an adaptive machine learning procedure. 

Of particular interest in our study are iterative methods making use of short simulations and 
deciding on-the-fly the most interesting regions to sample, such as adaptive sampling8, weighted 
ensemble22, the adaptive seeding method23, or the FAST24 technique. The latter method rewrites 
the conformational exploration in terms of the well-studied multi-armed bandit (MAB) 
problem25, taking advantage of the gradient existing in measurables, such as the solvent-
accessible surface area (SASA) or some energy components. We understand the ligand-protein 
exploration as an exploration-exploitation dilemma, since the phase space is highly dimensional 



and sufficient sampling of relevant regions, not only of a few metastable states, is necessary for 
an accurate characterization. The exploration is a learning process where we acquire knowledge 
of the energy landscape as the simulation progresses, and we decide to focus on the most 
rewarding regions. We serve of the MAB as a theoretical framework, since it has been 
successfully applied in a wide range of problems such as protein folding24, on-line advertising 
or news recommendation26.  

    Adaptive-PELE is based on an iterative procedure where each iteration, referred as an 
epoch, involves three different steps: exploration, clustering and spawning (or seeding). Its 
landscape exploration capabilities, confronted with standard PELE executions (non-adaptive 
trajectories), are shown in four different protein-ligand complexes: i) the trypsin—benzamidine 
(TRP system); ii) a progesterone nuclear hormone receptor with its endogenous ligand (PR 
system), iii) the M3 muscarinic acetylcholine class A G-protein coupled receptor (GPCR) with 
an inverse agonist (A-GPCR system); iv) the corticotropin-releasing factor, a class B GPCR 
with an antagonist ligand (B-GPCR system). Our results demonstrate that the new adaptive 
technique is capable of mapping the binding energy landscape for complex systems in less than 
half an hour, or the active site induced fit process in less than 5 minutes. 

 

 
 

Figure 1 | Protein-ligand complexes studied. (a) Trypsin with benzamidine as a ligand 
(TRP, PDB ID: 3PTB). (b) Progesterone nuclear hormone receptor with progesterone as a 
ligand (PR, PDB ID: 1A28). (c) Corticotropin-releasing factor GPCR with CP-376395 as a 



ligand (B-GPCR, PDB ID: 4KY5). (d) M3 muscarinic acetylcholine GPCR with tiotropium as a 
ligand (A-GPCR, PDB ID: 4DAJ). The initial structures for the protein-ligand exploration, with 
the ligand ~20 Å away from the binding site, are shown. The square inset in each panel depicts 
a 2D scheme of each ligand.   
 
 
Results 
 
Energy landscape exploration. We first show the protein-ligand energy landscape exploration 
capabilities of Adaptive-PELE and compare them to that of a standard (non-adaptive) 
procedure. The evolution of the ligand root mean square deviation (RMSD) to the native bound 
structure along the simulation (MC steps), and the protein-ligand binding energy against the 
same ligand RMSD is shown in Fig. 2. We plot here the results for the B-GPCR system, using 
512 trajectories (each trajectory runs in a computing core), but equivalent figures for the 
remaining systems are shown in the Supplementary Information. As seen in the RMSD 
evolution plots, both the adaptive (Fig. 2a) and standard (Fig. 2c) PELE methods succeed in 
sampling native-like conformations, with RMSD values ~1Å; analogous results are seen for all 
other systems (Supplementary Figs. 2 to 4). We should emphasize that the initial starting pose 
for the ligand is significantly away from the binding site (~ 20 Å, Fig. 1) and that there is no 
bias in the search: no information from the bound pose is used but for plotting purposes. Such a 
non-biased sampling performance, for example, has not been successful for MD techniques in 
complex systems such as the A-GPCR, only seeing binding to an extracellular site vestibule, 
approximately at 12 Å from the bound structure, when using 16 μs of standard MD10 or 1 μs of 
accelerated MD27. 

As we can see in Fig. 2a and 2b, the first phase of the adaptive simulation is devoted to 
explore the bulk and the vicinity of the initial pose. Significantly, as the adaptive epochs evolve 
few simulations enter deeper into the cavity, getting into an unexplored region. The MAB 
strategy uses this information to spawn several explorers there, increasing the possibilities of 
finding new unexplored areas. Towards the end of the sampling, we observe an almost complete 
shift of the explorers towards the binding site region. The standard PELE technique, however, 
keeps exploring the outer regions (Fig. 2c and 2d), with minimal excursions into the binding 
site, resulting in a much less efficient exploration (see below for a thorough comparison). A 
nice additional feature is that the exploration moves away from regions once they are 
sufficiently known, avoiding metastability. For example, the binding pose is found at around 
step 30, and the sampling is only kept there two more epochs, when exploration efforts are 
moved to more rewarding areas. 

A noteworthy common aspect in both techniques is that we can easily identify the native-like 
pose using the binding energy. The potential of using PELE’s binding energy, an all atom 
OPLS2005 protein-ligand interaction energy with an implicit solvent model, in pose 
discrimination was already shown in our initial induced-fit benchmark study28, being also the 
basis for our recent success in the CSAR blind competition. While this energy does not correlate 
with absolute experimental affinities (nor allows us to compare different ligands), it is very 
useful for pose discrimination; similar observations have emerged when using MD5. 
Importantly, introducing the adaptive procedure improves the binding energy landscape funnel 
shape, avoiding an unbalanced exploration of metastable regions, which eliminates the severe 
optimization on the energy by constantly minimizing over and over the same minimum. This 
can be seen, for example, when comparing the difference in “binding peaks” at 7.5 and 20 Å in 
Fig. 2b and 2d. 

 
 



 
 
Figure 2 | Energy landscape exploration of B-GPCR with 512 different explorers. (a,b) The 

RMSD variation along MC steps and the binding energy against the RMSD for the adaptive 

results. Each color code corresponds to a different epoch number, for a total of 12 adaptive 

iterations. (c,d) Analogous plots for the standard executions. Each color corresponds to a 

different trajectory (performed in a different computing core). Notice the change in scale in the 

X-axis between (a) and (c). 
 

Binding event observation - Binding time. The ligand finds native-like poses in ~35 MC steps 

when using the new adaptive approach (Fig 2a), the independent PELE simulation requiring 

approximately 10 more times, ~350 steps (Fig. 2c). While standard PELE already represents a 

significant advance over other sampling techniques (microsecond MD simulations with the 

Anton computer, for example, could not observe a binding event for A-GPCR
10

), the adaptive 

scheme introduces a remarkable speed up. As a rule of thumb, each MC PELE step takes around 

45 seconds on a SandyBridge-EP 2.6GHz computing core, and therefore, in this particular 

simulation the bound native structure can be predicted in under 30 minutes when using the 

adaptive approach.  

To quantitatively assess our new algorithm's performance, we estimated the binding times by 

averaging over ten separate runs, considering that a binding event occurred when the ligand 

RMSD with the native bound structure was less than 2.5 Å. In addition, we checked the 

scalability by using an increasing number of trajectories (computing cores), from 32 to 1024, 

summing up to a total computing time of a quarter of million CPU hours. Moreover, different 

MAB strategies (see the Methods section) were used for the adaptive simulations, including the 

inversely proportional and ε-greedy, guiding the exploration with two metrics: the protein-

ligand interaction energy, where the native structure does not need to be known, and the ligand 

RMSD to the native, a biased strategy that allows us to estimate a lower bound for the binding 

time. Notice that when using a small number of explorers some standard PELE simulations did 

not produce binding events in 3000 MC steps. In those cases, we assigned the binding time to 

3000 steps in order to set a lower bound for the comparison.  



 

 
Figure 3 | Binding times for all systems and MC techniques. (a) Number of steps for 
observing a binding event against the number of trajectories (processors) for the TRP system, 
using the standard PELE (in red) and the adaptive-PELE with the inversely proportional (in 
blue) and the ε-greedy guided strategies with binding energy (in green) and RMSD (in yellow). 
Actual data (MC steps) with their standard deviation for three different sets of processors is 
shown at the bottom table inset for the standard PELE and the inversely proportional adaptive-
PELE methods. (b, c, and d) Analogous plots for PR, B-GPRC, and A-GPCR. A complete list 
of all data is shown in Supplementary Information. 

 
We observe that in general the binding time decreases with the number of processors for all 

systems and methods (Fig. 3). In TRP, however, we approach a plateau for 256 processors; 
adding up more explorers only yields minor improvements. TRP is a relatively rigid protein not 
requiring structural rearrangements to bind benzamidine, and using 256 processors we almost 
reach the minimum possible binding time, given the ligand translation range per MC step and 
the starting position. In the remaining three (more difficult) systems, however, the binding time 
keeps decreasing in the whole range, since we need a more exhaustive protein sampling, and 
ligand movements need to couple to protein rearrangements.  



In agreement with the difficulties seen in MD simulations, the exploration in A-GPCR is 

especially poor for the standard PELE approach, not seeing a significant number of binding 

events with less than 128 trajectories. It is quite remarkable that by introducing the adaptive 

sampling we find the correct binding mode using 32 cores in only ~3 hours of simulation. The 

overall speed up achieved by adaptive-PELE for this system is approximately 40 times in the 

studied number of processors range, being at least one order of magnitude in the other two 

complex systems, PR and B-GPCR. As expected, TRP has the least speed up gain, since it is the 

least computationally demanding example. Importantly, for all studied systems the adaptive 

technique is capable of providing native-like poses in less than half an hour when a large 

number of computing cores is provided, a significant achievement. 

Interestingly, the different MAB strategies perform quite similarly. Guiding the seeding with 

the protein-ligand binding energy does not require previous knowledge of the binding site and, 

as emphasized above, it correlates nicely with the native-like pose (although it has been reported 

that sometimes the SASA has been shown to perform better
29

). In addition, if one has available 

the bound crystal structure, one can use the RMSD to guide the binding, which serves as an 

estimation of the binding time limit that we could achieve; a similar strategy could be obtained 

by simply knowing the binding site and using its distance to the ligand’s center of mass to guide 

the spawning. Surprisingly, when increasing the number of processors all these strategies yield 

similar results as our default option, the inversely proportional strategy, which seems to indicate 

that the choice of the reward function depending on the number of contacts (see Methods 

section) makes quite an optimal seeding.  

 

Mechanistic studies: protein conformation exploration. While we have shown that adaptive-

PELE can provide native-like poses in complex systems in a fast manner, it is important to 

show that it also provides the proper binding mechanism. We show here the analysis for two of 

the more difficult systems, PR and A-GPCR. 

PR. Recent crystallographic and computational studies in NHRs have underlined the 

conformational changes necessary for ligand delivery at the entry site: helices 3, 6, 7 and 11, 

along with the loops linked to them
19, 30

; with respect to this region, NHRs seem to adopt an 

open and a closed structure coupled to the ligand’s entrance. The PR receptor, in particular, has 

the largest plasticity in this region, as shown in the PCA analysis on all available NHRs bound 

crystal structures
30

. Such conformational change is well captured by the adaptive technique. As 

seen in Fig. 4, the protein starts in the closed conformation (shown in red) and achieves its 

largest opening when the ligand starts entering the cavity from the peripheral binding site 

(shown in white), to progressively close again towards the native pose as it gets deemed bound 

(shown in blue).  

 



 
Figure 4 | PR binding mechanism. Two different views of the ligand entrance and the 
plasticity upon progesterone binding in PR. (a) Different ligand snapshots along the binding 
with two protein structures highlighting the initial closed (red cartoon) and intermediate open 
states (white cartoon). (b) A closer zoom at the entrance region with the ligand shown in the 
native bound structure; same color-coding as in the (a) panel but for the ligand (shown with 
atom element colors).  

 
A-GPCR. GPCRs represent a great challenge for the modeling community. On top to the 

difficulties in obtaining atomistic models for these membrane proteins, we have the large 
plasticity of their extracellular domain (involved in ligand delivery and binding), and the buried 
nature of most of their binding sites. For A-GPCR, in particular, the extracellular loop 2 (ECL2) 
mobility has been reported to be involved in ligand binding, where a movement of L225 away 
from the orthosteric site permits a transient opening (rotation) of Y148 towards TM4, allowing 
tiotropium to bind, which closes again to form a lid in the binding pose10. As shown in Fig. 5a, 
in our simulations, we see a movement of L225 that is accompanied by a dihedral rotation of 
Y148 towards TM4, which allows binding. Once the ligand is bound, the tyrosine and the 
leucine move back to generate the binding pose. In Fig. 5b, we show the plasticity of these two 
residues, grouping all the involved cluster center side chain structures (in grey lines) into four 
main clusters using the k-medoids (in colored licorice) implemented in pyProCT31.  

 



Figure 5 | A-GPCR binding mechanism. (a) Different ligand snapshots showing the binding 
pathway from the initial structure (in red) to the bound pose (in blue), including Y148 and 
L225, which follow the same color-code. The white cartoon protein and the colored licorice 
ligand correspond to the bound crystal structure. (b) Side chain conformations for Y148 and 
L225, where the red licorice corresponds to the crystal structure. In grey lines, we show all the 
different conformations for those cluster centers along the adaptive process, and in colored 
licorice we show the resulting main conformations after a k-medoids clustering.  

 
 

Induced-Fit Docking 
Predicting the non-biased binding mechanism is certainly a fancy computational effort, showing 
the capabilities of molecular modeling techniques. It aids in understanding the molecular 
mechanism of action, potentially finding, for example, alternative binding sites that might be 
used for rational inhibitor design. Another set of important simulations comprises docking 
refinement. Today, structure based design efforts ranging from virtual screening to fine tuning 
lead optimization activities, are hampered by having to properly handle the induced fit 
mechanisms. In this sense cross- and apo-docking studies, a significant less demanding 
modeling effort, constitute a better example. As seen in recent benchmark studies28, 29, 32 (or in 
the CSAR exercise21), standard PELE is possibly the fastest technique providing accurate 
answers in cross- and apo-docking, requiring on the order of 30-60 minutes wall clock time 
using ~16/32 trajectories in average.  

By introducing the adaptive sampling technique, we can now improve the simulation time to 
only few MC steps, as shown in Fig. 6, where we show the refinement of a wrong docked pose 
for the PR system and the application in cross docking for the soluble epoxide hydrolase (sEH), 
a tough benchmark system recently studied with standard PELE32. Notice that easy induced fit 
cases, such as PR requiring only a flip of the ligand, can be accomplished in one MC step, not 
representing any improvement from standard PELE. In difficult cases, such as for sEH, the 
adaptive scheme provides again significant improvement over standard simulations, shown in 
Supplementary Fig. 5. For example, notice in Supplementary Fig. 5a how standard PELE shows 
early non-productive low RMSD explorations (grey line achieving RMSD ~5 Å). This type of 
behavior motivated the development of the adaptive protocol.  

Taking into account that the active site refinement MC steps require only 30 seconds (involving 
less protein perturbation and ligand translation, but more rotation), we can model the right pose 
in under 5 minutes using a modest computational cluster (32-64 processors), which allows 
refinement of a large number of docking poses or an interactive structural-guided optimization 
of a given lead.  

 
 



 
Figure 6 | Induced-fit docking studies. (a) PR system: protein structure from PDB ID:1A28 

and ligand structure from PDB ID:3KBA. (b) sHE system: protein structure from PDB 

ID:5AKE and ligand structure from PDB ID:5AM4. (c) sHE system: protein structure from 

PDB ID:5ALX and ligand structure from PDB ID:5AI5. In the upper panels we show the 

RMSD evolution along the simulation, in the middle ones the binding energy for the different 

RMSD values, and in the lower panels the native structure (atom-type colored), the lowest 

binding energy ligand structure (blue) and the starting ligand structure (red).  Notice that in 

panel (b) the initial docking structure is slightly outside the active site (shown in the inset). 

 
 
Discussion 
Breakthrough advances in software and hardware are shifting the development of complex 

design processes to computer modeling. Still, accurately modeling the protein-ligand structure 

requires several hours of heavy computation, even when using special purpose machines or 

large clusters of processors. We have introduced here a new method, combining a machine 

learning procedure with an all-atom molecular mechanics Monte Carlo technique, capable of 

providing non-biased accurate protein-ligand structures in minutes of CPU wall clock. This 

outstanding achievement opens the door for interactive usage, allowing to combine users’ 

expertise and intuition with in silico predictions. 

A nice feature of adaptive-PELE is its scalability with computational resources; adding more 

computing cores (more trajectories) significantly reduces the wall clock computing time. While 

interactive refinement of active site poses requires only few processors, addressing the full 

binding mechanism (from solvent to the active site) requires significant more resources. While 

accessibility to cheap HPC will certainly increase in the near future, access to large 

computational resources for researchers is already a reality. Most pharmaceutical and biotech 

companies account for in-house large computational clusters, with several thousands of 

computing cores. Moreover, cloud-computing access is drastically increasing while reducing its 

cost; an hour of 128 computing cores sells today for ~5$ in Amazon Cloud. If associated 

security issues were a key negative aspect in the past, this has been largely solved: more and 

more companies have now developed cloud solutions (Schrödinger, Openeye, etc.)  



In agreement with recent studies1, 2, 5 we show how all-atom molecular mechanics force fields 
are mature enough to sample and distinguish native like poses in complex protein-ligand 
systems, providing excellent means for elucidating the atomic detailed binding mechanism.  Our 
tests involved difficult protein-ligand systems, including diverse and pharmacological relevant 
targets, such as the PR receptor, and a GPCR receptor for which extensive MD simulations 
could not provide a native like pose.  

Overall, we have developed a computational breakthrough with remarkable performance in 
mapping the protein-ligand energy landscape, being able to reproduce the full binding 
mechanism in complex systems in less than half an hour, or the active site induced fit in less 
than 5 minutes. While standard PELE already shows a competitive advantage as a sampling 
technique29, 32, combining it with machine learning techniques and high performance computing, 
provides a solid modeling technique to the drug-design community, with potential of being 
interactively used in computer aided drug design. 

 

Methods 
The Adaptive Algorithm. The algorithm is composed of three main steps: sampling, clustering, and 
spawning, which run in an iterative approach. In the sampling phase, a swarm of trajectories, in this paper 
in the range from tens to one thousand, are independently run. Conformations are then clustered, and the 
final spawning step chooses the seeds for the next iteration. By stopping simulations and adaptively 
spawning them, we circumvent the problem of getting trapped due to metastability, avoiding the waste of 
computational resources in oversampled regions.  

Sampling. The sampling is usually the computational bottleneck of the process, so it is desired to use a 
method that can generate uncorrelated poses in a relatively short time. We chose PELE since it can 
introduce moderate conformational changes in few minutes, providing robust protein-ligand exploration, 
even for complex systems, within few hours of a mid-range computing cluster (~100 commodity 
computing cores)18, 19, 33. PELE is a two-stage MC algorithm that uses protein structure prediction 
procedures to generate proposals. In the first stage, the ligand is randomly moved, and the protein is 
perturbed using a normal mode analysis method based on an anisotropic network model (ANM)17. In the 
second one, the structure is relaxed with a side chain prediction and a minimization (with constraints on 
alpha carbons and the ligand center of mass), and the resulting proposal is accepted or rejected with the 
Metropolis criterion. 

We use rounds (epochs) of N simulations (trajectories) of length l, each one running on a computing 
core (using a MPI implementation). A larger N is expected to reduce the wall-clock time to see binding 
events, whereas l should be as small as possible to exploit the communication between explorers but long 
enough for new conformations to advance in the landscape exploration. While we use PELE in this work, 
one could use different sampling programs such as MD as well. 

Clustering. We used the leader algorithm34 based on the ligand RMSD, where each cluster has a central 
structure and a similarity RMSD threshold, so that a structure is said to belong to a cluster when its 
RMSD with the central structure is smaller than the threshold. The process is speeded up using the 
centroid distance as a lower bound for the RMSD (see Supplementary Information). When a structure 
does not belong to any existing cluster, it creates a new one being, in addition, the new cluster center. In 
the clustering process, the maximum number of comparisons is k·n, where k is the number of clusters, and 
n is the number of explored conformations in the current epoch, which ensures scalability upon increasing 
number of epochs and clusters. 

We assume that the ruggedness of the energy landscape grows with the number of protein-ligand 
contacts, so we make RMSD thresholds to decrease with them, ensuring a suitable discretization in 
regions that are more difficult to sample. This concentrates the sampling in interesting areas, and speeds 
up the clustering, as fewer clusters are built in the bulk.  

Spawning. In this phase, we select the seeding (initial) structures for the next sampling iteration with 
the goal of improving the search in poorly sampled regions, or to optimize a user-defined metric; the 
emphasis in one or another will motivate the selection of the spawning strategy. Naively following the 
path that optimizes a quantity (e.g. starting simulations from the structure with the lowest SASA or best 
interaction energy) is not a sound choice, since it will easily lead to cul-de-sacs. Using MAB as a 
framework, we implemented different schemes and reward functions, and analyzed two of them to 
understand the effect of a simple diffusive exploration in opposition to a semi-guided one. 

The first one, namely inversely proportional, aims to increase the knowledge of poorly sampled 
regions, especially if they are potentially metastable. Clusters are assigned a reward, r: 



 � =  (1) 

where ρ, is a designated density and C is the number of times it has been visited. We choose ρ according 
to the ratio of protein-ligand contacts, again assumed as a measure of possible metastability, aiming to 
ensure sufficient sampling in the regions that are harder to simulate. The 1/C factor guarantees that the 
ratio of populations between any two pairs of clusters tends to the ratio of densities in the long run (one if 
densities are equal). The number of trajectories that seed from a cluster is chosen to be proportional to its 
reward function, i.e. to the probability to be the best one, which is known as the Thompson sampling 
strategy35, 36. The procedure generates a metric-independent diffusion.  

The second strategy is a variant of the well-studied ε-greedy25, where a 1-ε fraction of explorers are 
using Thompson sampling with a metric, m, that we want to optimize, and the rest follow the inversely 
proportional scheme. Metrics are typically used in PELE to extract information and to drive the system 
towards some determined actions. They include, for example, the binding energy, the SASA of the ligand, 
distances between atoms, etc. Depending on whether we want to maximize or minimize m, r is 
respectively defined as: 
 = ,min − min (2) 
 = max − ,max, (3) 
where mi,max and mi,min are the maximum and minimum metric values within the i-th cluster respectively, 
and mmin and mmax are the overall metric minimum and maximum.  

 
Benchmark Systems 
We have chosen four systems with different levels of complexity: the trypsin-benzamidine, the PR 

nuclear hormone receptor with its endogenous ligand and two different GPCRs with a potent inverse 
agonist and an antagonist ligand respectively; these last three systems represent current pharmaceutical 
targets, allowing us to evaluate the viability of the protocol in real drug design processes.   

The binding of trypsin with benzamidine (PDB ID: 3PTB) has been widely used as a benchmark 
system6, 37, 38. It is the smallest and least flexible receptor and ligand, being the system that requires the 
least computational time.  

PR with its endogenous ligand (PDB ID: 1A28) belongs to the family of nuclear hormone receptors 
(NHR) and is an important pharmaceutical target. NHRs have been recently studied combining 
crystallography and PELE19, including studies with PR30, where it was found that protein plasticity was 
crucial for the ligand to enter the active site.  

We also tested two different GPCRs with two different ligands, tiotropium (PDB ID: 4DAJ) and CP-
376395 (PDB ID: 4K5Y). GPCRs are a class of transmembrane proteins involved in the signaling of a 
wide range of biological functions and key pharmaceutical targets. 4DAJ is an M3 muscarinic 
acetylcholine receptor belonging to class A GPCRs, for which extensive MD simulations have already 
been performed. Despite the use of the Anton supercomputer and of 16 μs of MD production time10, 
binding of tiotropium, a bronchodilator drug, into the orthosteric site could not be reported, only seeing 
binding to an extracellular site vestibule. 4K5Y is a class B GPCR, involved in the treatment of anxiety 
and depression, whose bent transmembrane helix (TM) 7 produces a pronounced V-shape allowing the 
ligand to enter deeper into the channel39. While no binding simulations have been reported to our 
knowledge, the conformational changes between the apo and the holo structures have been recently 
studied running 100ns MD simulations, with and without the antagonist ligand40. In addition, binding 
dissociation pathways have been studied with random acceleration molecular dynamics41. 

 
Setup 
System preparation 
In order to test the potential of the new methodology in exploring the binding mechanism, we started 

simulations with a model where the ligand is placed 20Å from the bound pose (see Fig. 1), and 
constrained its movements to a sphere of 15Å, the center of which was placed in the middle point 
between the native and initial configurations. Structures were prepared with Schrödinger's Protein 
Wizard42. Simulations were run with the OPLS2005 force field and the OBC implicit solvent43. Ligands’ 
atomic charges were parameterized with RESP quantum charges, obtained with Jaguar44 optimizations at 
the DFT-B3LYP and 6- 31G**+ level of theory. 

 
PELE control file 
The same parameters were used for both adaptive and non-adaptive runs. The ligand translation was set 

to be dependent on its (relative) solvent accessible surface area (SASA), being 3Å for SASA > 0.6 
whereas it otherwise ranged randomly from 0.75 to 1.5Å in the protein vicinity; the translation direction 
was kept for four consecutive steps. Ligand rotation was randomly set between 20º and 60º. For the 



protein backbone perturbation, performed with a probability of 0.25, the lowest six ANM normal modes 
were randomly mixed with a maximum displacement of 1.5 Å. The same PELE control file has been used 
for all systems with except for the alpha carbon constraints in the relaxation step: since it was reported 
that the lipid bilayer was found not to play a significant role in the binding in the GPCR40, we speeded up 
simulations removing the membrane and adding constraints of 5 kcal/mol/Å2 every 10-th alpha carbons in 
the TMs, setting it to 0.2 kcal/mol/Å2 in TRP and PR.  
 

Algorithm parameters 
Although a general set of parameters has been optimized and used in this work, users are encouraged to 

change them; limiting factors to consider are discussed in this section. 
In the sampling phase, we use exploration rounds of l=4 steps, which ensures epochs of less than four 

minutes with the current Marenostrum 3 processors at the Barcelona Supercomputing Center  
(SandyBridge-EP 2.6GHz processors). Protein conformational changes can already be captured with four 
steps, and longer simulations were leading to poorer performance. 

The number of protein-ligand contacts is used as a measure of the sampling complexity, as more 
contacts lead to more competing interactions and, thus, more energy barriers and metastability. We 
consider that a pair of protein (alpha carbons only) and ligand atoms are in contact if their distance is less 
than 8Å, following Ref. 23. In our implementation, we use as a parameter the ratio of the number of 
contacts per ligand heavy atom, c, since it is less system dependent, and regard those conformations with 
c > 1 as difficult to sample, which correspond to poses in the protein vicinity, and those with c <= 0.5 as 
easy, which correspond to largely solvent exposed poses.  

We tried three different combinations of cluster threshold and density values, and summarized in the 
table of Supplementary Fig 6. Clusters need to be small enough so that one can distinguish (relevant) 
different conformations. We select the thresholds with a function composed of linearly decreasing step 
functions in c, from 5Å in the solvent (c <= 0.5) to 2Å in the protein frame (c > 1). This ensures sufficient 
discretization in those regions that are difficult to sample, not spending too many resources in the bulk 
(Supplementary Fig. 6a). Using the same threshold everywhere, requires significant more sampling to 
reach native like poses (Supplementary Fig. 6b), since it introduces 3 times more clusters (Supplementary 
Fig. 6d). 

In the spawning, the density value is chosen inversely proportional to the cluster volume (1/V). We 
tried different density functions. For example, =1 allows seeing binding events, but it divides 
exploration efforts in the whole domain, as can be seen in (Supplementary Fig. 6c). 
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Publication 6 is in preparation, and we include as sections the main lines of work 
that will be added into it. 
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Effects of minimizations in sampling 
In this subsection, we analyze the effects of using minimizations in sampling and 
the consequent approximations to extract useful information to study protein-
ligand binding with PELE.  
PELE belongs to the basin-hopping219 methods, which combine stochastic moves 
and minimizations to perform energy landscape explorations. These have been 
extensively applied in global optimization problems220. One example is the Monte 
Carlo-plus-minimization221, developed by Li and Scheraga in 1987. It has been 
used for finding the lowest energy structures of small molecules, showing better 
conformations and convergence than simulated annealing222; for crystal structure 
prediction of rigid and flexible small organic molecules223; and for small molecule 
docking224. A second instance is the activation-relaxation technique of Mousseau 
and colleagues, which has been applied to Lennard-Jones clusters225, relaxation of 
glasses226, amyloid fibril formation227,228 and protein folding229,230. Finally, we 
especially underline the work of David Wales and coworkers, who have done 
exhaustive research on the field for over twenty years, establishing their 
theoretical underpinnings231. 

 
Figure 14. One-dimensional illustration of the transformed potential energy surface !(r ) (dashed 
line) and the original one, E(r) (solid line). In the example, !(r ) is built with a steepest-descent 
protocol, and local minima are partitioned in stationary points that correspond to maxima. 
Source: Ref. 219. 

 
In basin-hopping, the potential energy surface is mapped at each point, r , with a 
minimization: 

  (20) 

where ! is the mapped potential energy and E the original one. Importantly, the 
relative energy differences between minima and the global minimum are 
preserved219 (Fig. 14). A major consequence of the transformation is that the 
system can hop between basins more easily, as energy barriers between local 
minima are removed and thermodynamics are modified232. Note that there may 
exist barriers separating funnels, and this motivated the appearance of methods 
such as minima hopping233. The combination of the transformed energy 
landscape with protein structure prediction algorithms explains the great 
efficiency of PELE in search simulations: PELE has been able to reproduce the 
binding mechanism of challenging complexes on commodity computers 
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overnight, such as the nuclear hormone receptors19,20 or GPCRs234, where special 
purpose supercomputers or enhanced sampling methods have not succeded235,236.  
But as we anticipated, the use of minimizations has important implications in 
sampling. In particular, minimizations break detailed balance and information on 
vibrational entropy142 is lost. There are fortunately several workarounds to 
overcome this limitation. For example, the total density of states, Ω(E), and the 
partition function can be decomposed into a summation of all local minima, 
known as the superposition approximation231, and each local vibrational 
contribution can be approximated to harmonic terms198. Eventually, anharmonic 
corrections may be added237. In a different approach, basin-sampling238, these 
contributions are obtained sampling each local minimum. As opposed to the 
standard basin-hopping, where minimizations affect the proposal coordinates (it has 
been shown to perform better in global searches239), in basin-sampling 
minimizations are solely used to compute the proposal energy, and hence, 
detailed balance is satisfied. Still, vibrations within minima must still be recovered 
and are calculated using the Wang-Landau240 sampling algorithm, restraining the 
sampling to the different local minima.  
In PELE, current algorithmic limitations do not allow removing minimizations 
(e.g. see ANM), and we make the following approximations to recover detailed 
balance: 1) add harmonic constraints during minimizations to preserve stochastic 
proposals, and 2) choose a sufficiently loose convergence criterion in minimizations. 
Although these parameters, along with the temperature, have been fitted to 
reproduce experimental binding free energies, it is worth remarking that the 
approximations are heuristic and the Boltzmann distribution is not formally 
sampled. We illustrate the parameter choice first with a simplified harmonic 
potential model and then with different real-case examples.  
 
Harmonic potential model. In this example, the energy well is described with a one-
dimensional harmonic potential of force constant kh (Fig. 15).  
Following the basin-hopping procedure, the initial random sample xo is minimized 
until a certain criterion is met, for example until the RMSG falls below a 
threshold value, yielding a final proposal xf. Depending on xo, two situations may 

occur. First, those xo such that !"!" !!
≔ !′(!!) !≤  RMSG already meet the 

convergence criterion and are thus unaltered by minimizations, i.e. xf = xo (thick 
line in Fig. 15a). Note that the range of unaltered proposals [-xb, xb] such that 
E’(xb) = RMSG, will increase proportionally to RMSG/kh and in the limit of 
RMSG/kh  ≫ 1 we recover Boltzmann sampling. In the second case, the energy 
is minimized until E’(xf) !≤RMSG and the specific xf will depend on the 
minimization protocol. For example, minimizing the energy in small ∆x following 
the gradient yields xf ≈ xb.   
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Figure 15. Sampling of a one-dimensional energy minimum. Panel (a) depicts the harmonic 
potential with the energy in the y-axis and coordinate in the x-axis (thin line). x=xo corresponds to 
the random proposal, and x=xf to the resulting coordinate after the minimization. Those random 
proposals such that |xo|<xb=RMSG/kh are not affected by minimizations because they already 
meet the convergence criterion, i.e. xo=xf (thick line). Panel (b) shows the absolute value of the 
gradient (thick line). The RMSG limits the boundaries of unaltered proposals [-RMSG/kh, 
RMSG/kh] and by adding a harmonic constraint (thin line) we modify the gradient in such a way 
that |xf |> |xb|. 
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It may also happen that some coordinates become unreachable due to 
minimizations, acting the bottom of the energy basin as a “sink”. Adding a 
harmonic constraint to xo with force constant k avoids collapsing all proposals to 
the lowest energy range. This has two consequences: it preserves the sampling at 
the bottom of the energy basin, which has the largest contribution to the 
partition function, and extends the number of accessible states within the basin. 
For k ≫kh, we obtain xf ≈ xo, and the Boltzmann distribution is recovered.  
In real-case scenarios, the energy landscape is composed of energy wells with 
arbitrary shapes and curvatures, and it is hard to assess a priori the consequences 
of our approximations in free energy calculations. Below, we show the 
repercussions in free ligand diffusion examples, varying one parameter while 
keeping the other fixed in the fitted value. 
 
Minimization convergence. The RMSG is again used to tune the convergence of 
minimizations; typically we set it to 0.05 kcal/mol/Å and 0.1 kcal/mol/Å in the 
ANM and final minimizations, respectively. Criteria are slightly different, as the 
sole purpose of the latter minimization is recovering a continuous side chain 
dihedral description after the use of discrete rotamer libraries. Note that other 
basin-hopping studies on free energy calculations of protein-ligand association have 
used RMSG = 0.001 kcal/mol/Å198, a much stronger criterion. 
As we saw with the harmonic potential, the RMSG threshold has repercussions 
in detailed balance. For example, in the limit of RMSG→ ∞, minimizations are 
not applied, and detailed balance is fulfilled by construction. For finite values, we 
measure the magnitude of asymmetrical fluxes between states, with an eye on the 
future application to free energy calculations. First, we coarse grain the 
conformational space in clusters and compute the transition fluxes between any 
pair of states, i, and j: Fij(!) := πi pij(!), being π the cluster population, pij the 
transition matrix, and !!a lag time that ensures Markovianity in the coarse-grained 
space (see Markov State Models section). When detailed balance is satisfied, the 
flux matrix is symmetrical up to statistical fluctuations, which we assess with the 
ratio M(F): 

 

 

(21) 

We used the Frobenius norm241, and the dependence of M(F) on the lag time is 
implicit in the flux matrix. The value M(F)=0 corresponds to perfectly 
symmetrical matrices, whereas M(F)=1 corresponds to unidirectional fluxes, such 
as the example in Fig. 6a.  
 

RMSG 
(kcal/mol/Å) 0.001 0.01 0.05 0.1 1.0 

M(F) 0.465±0.009 0.320±0.008 0.201±0.003 0.21±0.01 0.211±0.004 

Table 1. M(F) for different RMSG values in free diffusions of CRA_10655 with a Urokinase-type 
plasminogen activator (PDB ID: 1O3P). For each value, we used 512 different trajectories of one 
day on SandyBridge-EP 2.6GHz cores (i.e. from ~1000 MC steps for RMSG=0.001 kcal/mol/Å 
to ~4000 MC steps for RMSG=1 kcal/mol/Å). Results are averaged over ten different 
clusterizations with 100 k-means clusters, bootstrapping the original data. 
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In Table 1, we show the results for five different sets of 512 free ligand diffusion 
simulations using RMSG = 0.001, 0.01, 0.05, 0.1 and 1.0 kcal/mol/Å in both 
ANM and final minimizations. As we loosen the convergence criterion, M(F) 
becomes smaller, showing that detailed balance is more closely satisfied, in 
agreement with the harmonic potential model. For example, the choice of RMSG 
= 0.05 kcal/mol/Å reduces the unsymmetrical fluxes more than one half 
compared to 0.001 kcal/mol/Å. The values in Table 1 are used as a rule of 
thumb to assess the quality of prospective simulations, but there is not a direct 
translation to free energy values. 

 
Harmonic constraints. Harmonic constraints are added to preserve stochastic MC 
proposals during minimizations. More precisely, all ligand heavy atoms and 
protein Cα’s are constrained after their respective perturbations with force 
constants k = 1 kcal/mol/Å2. It is worth emphasizing they are solely applied 
during minimizations and do not affect the Metropolis criterion.  
To select the appropriate k value, we chose a difficult scenario with numerous 
stabilizing interactions and study the effect of minimizations for different k’s. 
The interactions in the native pose of 5-iodo-2-(oxalylamino)-benzoic acid in a 
protein-tyrosine phosphatase (PDB ID: 1ECV) include (Fig. 16a): two salt 
bridges and six hydrogen bonds between three ligand oxygens and protein 
residues in the Cys215-Arg221 loop; a salt bridge between the ligand o-carboxylic 
acid group and Lys120, along with two possible additional hydrogen bonds with 
Tyr46 and Asp181; non-polar interactions with Ala217, Ile219, Val49… Overall, 
these favorable interactions make it a challenging system; the best interacting 
pose within our PELE simulations had an interaction energy of ~-140 kcal/mol. 
At the same time, it is a suitable test case because the ligand’s low weight and 
rigidity permit extensive sampling. 
 

 
Figure 16. Panel (a): Native interactions of 5-iodo-2-(oxalylamino)-benzoic acid in a protein-
tyrosine phosphatase (PDB ID: 1ECV). Adapted from Ref. 242. Panel (b): Distribution of ligand 
center of mass displacements over 104 PELE proposals for k=0, 1, 10 kcal/mol/Å, respectively. 
The initial structure is that of panel (a) and corresponds to a difficult scenario, where 
minimizations oppose to the stochastic movements due to strongly favorable interactions. Ligand 
translations are drawn 50/50 from two uniform distributions: (0.75Å, 1.25Å) or (1.5Å, 2.5Å), and 
have thus an average of 1.5Å. 

 
We launched three sets of 64 simulations for k=0, 1 and 10 kcal/mol/Å2 starting 
from the minimized crystal pose with the multiscale TN. We observed protein-
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ligand dissociation events for all three k values, which importantly excludes the 
idea of absorbing states, from which the simulation cannot escape, in 
energetically favorable poses due to minimizations. This is probably due to the 
severe ruggedness of the energy landscape, which impedes completely undoing 
stochastic displacements with the sole use of minimizations. 
To further analyze the effects of constraints, we modified PELE to output the 
ligand center of mass displacements for both accepted and rejected steps. In Fig. 
16b, we show that larger k values have a better preservation of stochastic 
proposals, in agreement with the toy model. For example, the most likely 
displacements are respectively ~0.2, 0.5 and 1.0 for each k value in increasing 
order. Finally, we decomposed ligand displacements within the different stages of 
a PELE step (Table 2), confirming that the ANM minimization has a stronger 
effect than the last one. This can be explained by its lower RMSG value (see 
above) and because the final minimization starts from a pose that has been 
already minimized. 
 

Algorithm Ligand 
Perturbation ANM Minimization Total 

Displacement 1.5 ± 0.5Å 1.2 ± 0.6Å 0.2 ± 0.2Å 0.8 ± 0.6Å 

Table 2. Average ligand center of mass displacements in the different stages of a PELE step for 
k=1 kcal/mol/Å2. Results were averaged out over 104 PELE step proposals. 
 

Temperature. Because of the modified thermodynamics, the basin-hopping 
Metropolis temperature, T, does not have a direct correspondence with that of 
the heat-reservoir. For example, in our simulations proteins maintain a compact 
shape and do not denaturate at T as high as 2000K. This effect has already been 
observed by Mosseau and coworkers227. The sampling temperature, 1000K, has 
also been fitted to reproduce binding free energies. 
Launching 127 simulations of 3-Phenylpropylamine with trypsin (PDB ID: 
1TNK) for different temperatures, we observe a maximum number of bound 
trajectories for T~1000-1500K (Table 3). Although at large temperatures the 
system is able to cross entrance barriers more easily (e.g. see MC acceptance), it 
also has a tendency to explore a larger portion of the conformational space. On 
the contrary, lower temperatures tend to get trapped in local minima and we are 
not able to reproduce as many binding events in the same computational time. 
 
 

T (K) 500 1000 1500 2000 

MC acceptance 15% 30% 50% 60% 

Bound trajectories 6 45 47 34 

Table 3. Acceptance and bound trajectories in 127 free ligands diffusions of 3-Phenylpropylamine 
with trypsin (PDB ID: 1TNK) for different temperatures. We regard as bound those trajectories 
that at some point reproduced the crystal structure, i.e. root-mean-squared deviation (RMSD) ≤ 
3Å. The acceptance increases with the sampling temperature and the number of bound 
trajectories. 
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MSM sampling 
Initial seeding points 
The convergence of a Markov model can be improved for example increasing the 
number of trajectories or their length. A third way is to enhance the sampling of 
certain regions. In a recent publication20 (publication 4), we observed that 
convergence is achieved faster when the simulation initial structures are 
distributed along the binding pathway. In this work we aim to quantify the gain 
and show that both approaches converge to the same distribution. To this end, 
we compare the convergence to a well-converged gold model in two scenarios: 1) 
when an ensemble of trajectories starts from a single region in the bulk solvent, 
or 2) when the ensemble is split in different points along the binding pathway. To 
generate the binding pathway, we use an adaptive procedure that is able to map 
difficult binding mechanisms very efficiently (publication 5). 
We assess the similarity of two Markov models with a measure based on the 
relative entropy, proposed by Pande and coworkers243:  

 
 

(22) 

where P is the reference transition matrix, Q is the test distribution, and π is the 
reference stationary distribution. Note that it requires a common definition of 
microstates and lag time. 
 

 
Figure 17. Relative entropy between a gold standard model and two different sampling schemes, 
in panel (a) all simulations start from the bulk solvent and in panel (b) in 100 points along the 
binding pathway. The second approach converges faster to the gold model. Each data point 
represents the average over 100 bootstrap iterations. 
 
The test system is CRA_10655 in a Urokinase-type plasminogen activator (PDB 
ID: 1O3P), since we are able to obtain a converged MSM using both sampling 
schemes. The sampling is obtained from 512 independent free ligand diffusions 
of 2000 steps, starting from the bulk solvent. The reference 100 microstates are 
constructed from all ligand C7 coordinates, using k-means. Finally, we measure D 
for an increasing number of trajectories and trajectory length using both sampling 

D(P∥Q) =
∑

i,j

πiPij log

(

Pij

Qij

)
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schemes. We see that the second one converges faster to the gold model (Fig. 
17). For example, the best achieved quality with the first scheme is log10(D) ≅-
0.9, which is obtained for 500 trajectories of 1000 steps, whereas the second is 
able to reach this quality with 200 trajectories of 500 steps, roughly 5 times less 
sampling. The second approach requires fewer trajectories to achieve the same 
convergence, since we proportionally see a larger number of binding events. 
Note that with this approach, data collection from occluded regions may start in 
the early stages of the simulations, as opposed to the first one, where binding 
events must occur first. For these reasons, the speedup is expected to be larger 
for receptors with more occluded binding sites, such as PR, and lower for 
systems with an easier binding mechanism, such as trypsin and benzamidine. 
 
Adaptive seeding points 
In Markov models, the evolution of a system is approximated with a transition 
matrix that accounts for conditional transition probabilities207. A major 
consequence is that simulations may be much shorter than the global process 
under study, as they only need to be long enough to characterize local transitions. 
This opens a way for sampling schemes that exploit this idea. An example is 
adaptive sampling, where Markov models aid the choice of seeding points and 
has been shown to dramatically improve sampling convergence209–211,244. Note that 
the quality of the model may not be guaranteed, especially in the first adaptive 
rounds due to poor sampling. Also, as pointed out by Zimmerman and 
Bowman245, adaptive sampling may sample less relevant conformations, and 
guiding the exploration towards a goal would make a better use of computational 
resources.  
We propose an iterative sampling scheme that: 1) solely uses Markov models for 
analytic purposes, and 2) focuses computational resources in rewarding regions. As 
seen in the previous section, choosing the seeding points along the binding 
pathway improves the convergence of the MSM, and the reward is hence chosen 
proportionally to the number of contacts. In order to balance the exploration, the 
reward is chosen inversely proportional to the cluster population (see publication 
5). In order to gather statistics for the Markov model, the epoch length must be 
longer than the lag time, and we use epochs two times longer.  
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Figure 18. Evolution of the absolute binding free energy estimation (in blue) for trypsin and 
benzamidine (PDB ID: 3PTB) using 50 different trajectories and epochs of 50 steps. The 
experimental value is shown in a thick red line and in a thin red the interval ± 1 kcal/mol. The 
estimation converges in 4 epochs (200 MC steps), and the experimental result is reproduced. 

 
To test the protocol, we use the adaptive simulations, and estimate the binding 
free energy at the end of each epoch. In the starting structure, the ligand is placed 
in the bulk solvent, and the exploration is limited to a sphere of radius 20Å, 
centered in the protein surface. In Fig. 18, we show results for trypsin with 
benzamidine, where it can be seen that convergence is reached after 4 epochs 
(~200 MC steps) using 50 processors. Additionally, the experimental result is 
correctly reproduced. 
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4 
Discussion 
In this section, we summarize the results and discuss their impact. 

Development of PELE 
The original version of PELE108,109 was written in procedural Fortran and made 
use of PLOP (Protein Local Optimization Program) functions for tasks such as 
energy calculation, minimization, and side chain prediction. PLOP is an academic 
protein-modeling program71,133,134,139 developed by Jacobson, Friesner, and 
collaborators with a commercial counterpart integrated into the Schrödinger suite 
under the PRIME package. PELE lacked of tests, and their different components 
were not entirely independent, which hampered the reliability and maintainability 
upon extension. This was a major concern, as competitive state-of-the-art 
computational tools must be able to take advantage of cutting-edge algorithms 
and techniques. For this reason, it was decided to rewrite the program from 
scratch, using the object-oriented programming paradigm. 
Importantly, this first goal is a requirement to achieve the rest of objectives. For 
this reason, prior and during the first stage of this thesis, the author took part in 
the rewriting of PELE full-time during three years, and occasionally thereafter. In 
the recoding, we fostered good practices of software development246,247. These 
involved testing, improving the readability, modularity, encapsulation, 
maintenance and version control, just to name a few. Testing is one of the 
fundamental pillars, as it ensures that behaviors are not unexpectedly altered and 
guarantees reproducibility. They should cover all the code, and contain unit and 
integration tests. Testing floating-point numbers is particularly challenging, 
especially in end-to-end tests (see the Lyapunov instability in the introduction), 
and virtual environments are a possible solution. The lack of readability 
hampers the development, and some examples of this are bad variable namings, 
dead or duplicated code, misleading or outdated comments. Modularity is a 
fundamental pillar of object-oriented programming that should be addressed in 
the design. Different software components are more easily testable when they are 
divided independently, and therefore, better maintainable and less error prone. 
Encapsulation is linked to modularity, and hides the implementation from the 
user, and also improves maintainability (e.g. the code does not depend on a 
particular implementation but on the interface) and promotes reusability. 
Version control is crucial to keep track of the changes and trace back potential 
bugs in the code. All in all, it is essential to follow good practices in software 
development in order to obtain reliable and maintainable programs.  
From a scientific point of view, the rewriting was also a turning point, and 
subsequent improvements involved the biomolecule model (e.g. FF or solvent) 
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and algorithms. Also, it is worth mentioning the efforts put in the development 
of a graphical user interface, which will ease simulation analysis and provide a 
more intuitive insight (Fig. 19). 
Originally, PELE only supported OPLS-AA FFs and two surface area implicit 
solvents, SGBNP and VDGBNP. In the new version, we included AMBER FFs 
and the OBC model, which for example allowed studies on DNA248. The OBC 
represents an overall speedup of roughly ~1.5x, as it does not require the 
calculation of atomic surfaces. Regarding further improvements, in our 
experience, all of our implicit solvent models have the tendency to collapse the 
protein and work should be done to address this situation. On the other hand, 
new energy models, such as VSGB 2.0, improve the energy function with 
empirical corrections based on docking scoring functions (see biomolecular 
modeling section), which we have seen to dramatically improve the prediction of 
MM/GBSA free energy estimations. Moreover, FFs are evolving to account for 
the induced polarizations caused by heterogeneous environments, and future 
work will certainly involve including some of them (see biomolecular modeling 
section).  
 

 
Figure 19. Panel (a): Screenshot of the beta version of the graphical user 
interface (courtesy of Jorge Estrada). Panel (b): Different plotting schemes and 
options will be available, for example highlighting the highest interacting ligand-
residue pairs. Source: Ref. 249. 
 
Regarding new algorithms, one of the biggest contributions has been the IC-
NMA129, to which the author participated helping in the coding and writing the 
manuscript (publication 8, not included). It seems a promising tool to reproduce 
protein flexibility; it leads to a better coverage of the conformational space and 
protein perturbations incur in lower energy increments because of the collective 
motions of internal coordinates. Moreover, as opposed to our ANM 
implementation, it does not require of minimizations, and will affect the 
sampling. The implications of this development in binding free energy 
calculations will certainly need to be assessed once the integration to support 
ligands is complete. In a different project, efforts are currently put to include a 
consensus scoring function that is based on machine learning protocols and is 
aimed to be applied in virtual screening scenarios. Other contributions have been 
the addition of atom pulling algorithms to reproduce atomic force microscopy 
experiments250. Altogether, porting the code to a C++ modular language has 
helped in adding all these features. 
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The author of this thesis has also worked implementing algorithms for the 
replacement of minimizations in sampling. It is ongoing work and results have 
not been included in the thesis, but are briefly summarized in this paragraph. The 
first case is the use of biased MC54, where one can enhance the acceptance ratio 
with a bias in the proposals (i.e. αin≠ αni, ∀i,j in Eq. 13 of the introduction). In the 
particular procedure known as force-biased MC251–253, one can construct 
proposals such that αni/αin!≈!eß(En-Ei) and the acceptance becomes one (or nearly 
one). We have successfully applied it to predict side chain conformations after 
mutations, where we computationally mutate one residue and expect to predict 
its crystal conformation. One such example is the mutation of Phe104 to Met104 in 
T4 Lysozyme (PDB ID: 1QTV to PDB ID: 1CV0, movie: 
https://goo.gl/or5mhw, the native protein is shown in orange, the initial 
conformation in blue licorice and in colored licorice the simulated side chain). 
Another test application has been protein-ligand sampling, as in the binding of 3-
Phenylpropylamine to trypsin (PDB ID: 1TNK, movie: https://goo.gl/QE7n7n 
where the native protein and ligand are shown in orange, the sampled ligand in 
colored licorice and the protein in white cartoon). A second method that 
attracted our attention was the non-equilibrium candidate Monte Carlo (NCMC) 
of Chodera and coworkers254. Monte Carlo proposals are obtained with a non-
equilibrium procedure and accepted with a criterion that preserves Boltzmann 
sampling. It is aimed to improve the statistical efficiency, being able to generate 
more uncorrelated poses in subsequent steps while keeping a reasonable 
acceptance. The rationale behind our application is the elimination of potential 
side chain clashes resulting after the IC-NMA perturbation. It has already been 
implemented, and we are currently in the validation process. 
 
We saw in the introduction that PELE has been used in many applications and is 
a recognized tool in the academic field. For example, in the CSAR 2014 blind 
docking contest it showed “an impressive success” cross-docking a set of ligands 
across an ensemble of different receptors174. In the forthcoming future, one of 
the objectives is having a major penetration in industrial drug design pipelines. 
For this reason, and in accordance with the following objectives of this thesis, we 
rewrote and extended PELE to build an efficient piece of software that can be 
easily maintained and extended with leading algorithms, according to the market 
needs.  

Establishing a protocol to study protein-ligand binding 
After accomplishing the first objective, we were able to establish a protocol of 
unbiased all-atom simulations with PELE to study protein-ligand binding 
combining it with MSM to quantify the exploration, in view to be used in drug 
discovery pipelines. Comprehending protein-ligand recognition is one of the 
biggest challenges in molecular modeling, involving a large computational cost 
associated with sampling lots degrees of freedom in a rugged energy landscape255. 
The wide range of different methodologies devoted to its study gives an idea of 
its relevance (and difficulty!)256, and quantifying the association with 
computational tools gives a competitive advantage in drug design, reducing time 
and costs257.  
PELE is used in the sampling phase due to its capacity in mapping protein-ligand 
binding in occluded binding sites, such as NHRs. As stated in the introduction, 
when using PELE, rather than using a single and long simulation, we often run 
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batches of 100s of simulations to characterize the energy landscape, which 
reduces the wall-clock time (we exploit this idea to perform collaborative 
explorations, see the discussion on the next objective below). On the other hand, 
MSM is a handful methodology to join all these independent simulations in a 
unique statistical model; one of the advantages is that individual simulations only 
need to characterize the energy landscape locally, and the global characterization 
can be extracted from the model. Also, with this approach we do not need to 
define reaction coordinates a priori, and they will be given by the MSM a posteriori 
in the analysis. Ryoji Takahashi, a former post-doc in our group, showed that the 
combination of PELE and MSM might be a suitable tool to study protein-ligand 
binding, correctly characterizing the association of four different small molecules 
related to benzamidine with trypsin115. Our objective has been establishing a 
protocol to study protein-ligand binding and developing a set of tools for 
routinely semi-automatic analysis. 
The early stages of this objective were devoted to acquiring insight into PELE 
applications, which was accomplished with the help of post-docs in our 
laboratory, James J. Valdes and Martin Kotev. In publication 1, we studied the 
ligand migration of the inhibitor Z-pro-prolinal in POP, along with an 
undecapeptide substrate and its release product. Using PELE, we could map the 
ligand migration and binding pathway in such a complex system in less than 48 
hours. In order to estimate the entropy loss upon binding, we used translational, 
rotational and vibrational terms258 combined with a rotatable bond screening to 
account for flexibility. We found a significant loss of entropy due to flexibility, in 
agreement with previous studies259, and observed an apparent entropy-enthalpy 
compensation260,261 upon binding, although words of caution have been issued 
lately on the topic262. The prohibitive costs hamper a routinely application of this 
technique, despite major approximations were made. 
Posteriorly, efforts were devoted to designing the sampling protocol. In the first 
place, we assessed the effects of bounding the exploration to a sphere centered in 
the entrance and observed that the absolute binding free energy estimation was 
not compromised, likely due to the absence of alternative binding pockets in the 
studied systems. More importantly, we evaluated the effects of minimizations in 
sampling, which are discussed in the results section, and obtain a parameter set to 
use in free energy estimations. We also developed a validation protocol that we 
kept improving throughout the Ph.D., and in Fig. 20 we show an example of a 
typical validation pipeline (to appear in publication 6). 
The binding of dexamethasone and dibC to MR is studied in publication 2. We 
should underline that application of PELE provides a full non-biased binding 
event for this challenging system, with a completely buried active site. We 
focused on the plasticity of the region where helices 3, 7 and 11 meet, being the 
helix 6-7 region the one with the largest mobility. The occluded nature of the 
binding site and the coupling of ligand displacements with backbone 
rearrangements make this system especially challenging. In order to obtain 
sufficient binding statistics, we placed the ligand in the peripheral binding site and 
perform simulations with a weak restrain that limited the exploration to a 10-15Å 
sphereb. With this technique we were not able to recover absolute binding free 

                                                
b These simulations took place during the validation period of the new PELE, 
and were thus performed with the original version, which did not have the option 
to limit ligand moves within a box with no harmonic constraints. 
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energies, probably to the limited solvent sampling, but relative energies, 
presumably due to the shared entrance point. 
In publication 3, we investigated the binding modes of KA and HQ in a 
tyrosinase to test the inhibition mechanism that was found experimentally. Given 
the lower complexity of the system compared to NHRs, we are able to obtain a 
converged MSM with 127 simulations during 24h (~2·105 data points) and obtain 
the absolute binding free energy of KA. With a metastable state analysis 
(clustering utilizing the PCCA algorithm in EMMA 1.3215), we found two distinct 
binding poses, with a relative energy difference of ~4kcal/mol between them. 
Compared to KA, HQ presents a greater heterogeneity of binding poses (Fig. 
21b), supporting experimental observations. We hypothesize that this is due to 
the lack of a carboxyl group that interacts with Arg209, which, in our results, 
stabilizes L-tyrosine (Fig. 5a in publication 3). 
 

 
Figure 20. The validation process of our protocol, exemplified with 512 free diffusions of 
CRA_10655 with a Urokinase-type plasminogen activator (PDB ID: 1O3P). In panel (a), we 
show the implied timescales for the four slowest decaying processes, which have reached the 
plateau at ! = 200 steps. In panel (b), we show the Chapman-Kolmogorov214 test for the 5 
metastable states built using the PCCA++ algorithm, where we can see that transition 
probabilities are estimated correctly. Panel (c) shows the evolution of ∆G for a different number 
of clusters (dots), with their uncertainty (red shadowed region). Panel (d) shows the averaged 
values of D20 (a measure to assess convergence that is based on the relative entropy) over 100 
different runs using bootstrap for a different number of trajectories and lengths. Isocost lines are 
shown. 

 
Publication 4 is devoted to studying the binding of all NHRs with their 
endogenous ligands, focusing in more detail in the PR with three different NHR 
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ligands: progesterone, aldosterone, and cortisol. Notwithstanding the use of 
PCA-based modes in PELE’s protein perturbation, obtaining sufficient sampling 
still remained elusive using unbiased diffusions from the bulk. For this reason, we 
selected six points along a binding pathway with different SASA values (0.0, 0.2, 
0.4, 0.6, 0.8, 1.0), and launched 100 simulations from each point during 24 hours 
(a total of 600 simulations of ~2500 steps) in a spherical box with radius 20Å 
centered in the peripheral binding site. Remarkably, with this technique, we were 
able to obtain absolute binding free energies in reasonable agreement with 
experiments. Aside from free energy estimations, we used MSMs to elucidate the 
binding mechanisms and observed that progesterone’s highest hydrophobicity 
seems to play a role in the binding. For this publication, we developed different 
tools and procedures to analyze MSMs. Among these, we automated the 
calculation of uncertainties using bootstrap or devised a protocol for 
convergence assessment. The latter uses a measure based on the relative entropy 
that is computed for a varying number of trajectories and trajectory length (see 
SI7 in publication 4). This assessment can be made on the fly so that simulations 
can be automatically stopped when a convergence threshold is reached. 

 
Figure 21. Different representations of Gpmf that are used in the thesis. In panel (a), we show a 
projection of Gpmf on the x and z-axis, used in publication 2. In panel (b) we show representative 
structures within 1 kcal/mol of the most likely pose (in blue), which is used in publication 3. In 
panel (c), we represent cluster centers as beads, with a color code representing the Gpmf value, 
utilized in publication 4. All figures are adapted from the corresponding publication. 
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In a thought-provoking opinion article158, David Mobley states that wrong 
binding free energy estimations can be usually traced back to three causes: 1) 
poor sampling, 2) wrong FFs or 3) different setups between experiments and 
simulations. According to his experience, he claims that in most cases where FFs 
are blamed for the inaccuracies, these can still be attributed to poor sampling. In 
our case, our protocol has a sampling advantage but we need to consider a fourth 
point, namely the deviations from the Boltzmann distribution due to 
minimizations. Throughout the thesis, we developed tools to perform a 
systematic analysis of convergence and also provide the basis to limit and 
evaluate the impact of minimizations on sampling, although further work should 
provide a more direct relationship with free energies. As anticipated, algorithmic 
improvements in PELE will certainly change the sampling protocol, yielding 
more reliable estimations but at a higher computational cost.  
With no doubt, the quality of the model affects the estimation. For instance, the 
use of quantum charges calculated in the binding pose improves results in our 
experience (not shown). In the last SAMPL blind prediction challenge161, it was 
seen that all-atom explicit solvent models consistently give better results than 
other approaches, which suggests the addition into PELE of algorithms such as 
the grand canonical Monte Carlo-based technique proposed by Ross and 
coworkers263. However, as pointed out by Mobley and Gilson in a recent paper196, 
we need of a community-accepted benchmark that permits a systematic analysis 
and validation of free energy packages and methods. According to the authors, it 
should include sampling challenges (e.g. side chain or backbone rearrangements), 
system challenges (e.g. varying protonation state upon binding) and FF challenges 
(e.g. cases where treating polarization is necessary). This would allow 
straightforward comparisons; users could choose the methodology that better fits 
their needs, whilst developers could more easily find the weaknesses of their 
procedures and improve them. 
We would like to give some final remarks in the contextualization of our binding 
free energy predictions. We have recently seen the appearance of methods such 
as FEP+ that have provided outstanding relative free energy estimations162. This 
methodology has been used to improve the force field parameterization in the 
new OPLS349, and future developments will certainly improve its performance. 
However, seeing the modest results of rigorous free energy methods on the 
SAMPL contest, we would like to raise a word of caution on our binding affinity 
estimations. The study on minimizations in PELE has allowed its successful 
application in challenging systems with a fair success. Nonetheless, given the 
approximate nature of our calculations, we should not expect better accuracies 
than those rigorous methods on blind tests. 
Overall, combining high-performance computing (HPC), PELE and MSMs we 
were able to study protein-ligand binding in real-case problems with industrial 
interest. An independent study of the pharmaceutical company AstraZeneca 
showed that PELE is a suitable tool for (industrial) drug design, due to its 
tradeoff between conformational sampling, accuracy, and speed264. In this thesis 
we have shown an ongoing collaboration with them in the study of NHRs, and 
will continue with another publication that is currently in preparation (publication 
6). In context with the late renewed interest in computational techniques in drug 
discovery, we expect PELE to have a deeper dissemination in the pharmaceutical 
industry in the following years. 
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Development of a procedure to overcome the sampling 
limitations associated to metastability 
One of the main drawbacks of the previous protocol is the sampling limitation 
associated to metastability. MC simulations can theoretically traverse the energy 
landscape efficiently, but in practice, proposals are typically reduced to small 
variations of the initial structure due to the difficulty of generating uncorrelated 
poses with a non-negligible acceptance. While the combination of protein 
structure prediction algorithms and minimizations in PELE provides an 
improved search, it still suffers sampling problems, as simulations tend to get 
trapped in energy wells (Fig. 22c). The main effect of metastability is the long 
computational time associated with an adequate sampling of the energy 
landscape, as too short times make results depend on the initial structure, and 
thus ergodicity does not hold.  
 

 
Figure 22. Energy landscape exploration of PR using 512 trajectories. Panels (a,b): RMSD and 
binding energy evolution for the adaptive PELE. The color code corresponds the epoch number. 
Panels (c,d): Analogous plots for standard PELE. The color code corresponds to the trajectory 
number. Source: publication 5. 

 
To improve these sampling limitations, in publication 5 we presented an adaptive 
procedure using reinforcement learning ideas. It represents a significant advance 
in our laboratory. Compared to standard PELE simulations, with this technique 
we are able to map binding events between 10 and 50 times faster in challenging 
systems, which translates in performing mechanistic studies using non-biased 
simulations in less than 30 minutes with current computational multi-cores (e.g. 
512 SandyBridge-EP 2.6GHz cores). The testing benchmark was composed of 
three complex systems with current application in the pharmaceutical industry. 
For example, one of them is the M3 muscarinic acetylcholine GPCR, where 16 µs 
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performed with the special purpose supercomputer ANTON235 or 1 µs with 
accelerated MD236 did not succeed to reproduce the binding of tiotropium. The 
adaptive exploration does not obey the Boltzmann distribution, and average 
measures cannot be extracted directly from them. However, transitions are 
unbiased within each epoch, and one could simply build a MSM to recover 
equilibrium properties, as stated by Zimmerman and Bowman245 (see below). 
Hence, this technique opens the door to an intense screening of compounds.  
We envision drug design as an iterative process where human expertise is 
combined with computational modeling to guide experiments. However, while 
fast docking methods have a limited conception of flexibility and cannot 
reproduce significant conformational rearrangements, the long execution times 
associated with (fully flexible) molecular simulations delay iterations to hours or 
days. The adaptive protocol dramatically reduces this delay, which not only 
makes PELE a more competitive tool to fit in real life industrial drug design 
settings but also possibly opens the way for human-computer interactive 
simulations when a large number of processors is available. Pharmaceutical 
companies usually possess large computational clusters, and the appearance of 
services such as Amazon has eased the access to HPC facilities. We believe that 
this sort of interactive interaction will become a routine in the near future. 
The adaptive protocol also represents a simplification of the simulation setup and 
facilitates the use of PELE to non-expert users. For example, in NHRs, the 
binding site is deeply buried, and we have shown that the protein undergoes 
backbone rearrangements in the association process. This makes it a challenging 
system, and only a small fraction of the trajectories that start from the bulk 
solvent find the binding pose (e.g. Fig. 22c). For this reason, in publications 1 and 
3 we use two kinds of simulations with different parameters to characterize the 
energy: a ligand migration simulation to study binding pathways, and a 
refinement simulation in the binding pocket to find the best binding pose. The 
adaptive protocol automatically balances the search and therefore only needs one 
simulation setup and makes the process transparent to the user at a fraction of 
the cost (e.g. Fig. 22a, 22b). 
The technique is implemented as an object-oriented Python program, and we 
followed the good practices of software development discussed for PELE 
(testing, version control, maintainability…). It has been written with extendibility 
in mind, for example, to add the option to use MD265–267 as a dynamics 
propagator. We also wrote a set of small programs to ease the simulation analysis, 
including metrics analysis (e.g. RMSD or binding energy evolution, binding energy 
correlation with RMSD…), clustering metrics extraction (e.g. evolution of the 
number of clusters, cluster representatives, population, transitions between 
clusters…) or building of binding pathways. 
Further algorithm improvements presented in this paragraph will be discussed in 
Joan Francesc Gilabert’s master thesis. One such example is the clustering. It is 
based on the ligand’s RMSD and does not consider the protein. We hypothesize 
that taking it into account with a contact map (a binary matrix with ligand atoms 
as rows and protein atoms as columns) may improve the binding times. A second 
example is the spawning point within clusters. In publication 5, we solely use the 
representative (central) cluster structure, but it is certainly not the optimal choice. 
For instance, clusters with an RMSD threshold of 5Å limit the minimum epoch 
length to ~4 MC steps, as it is not feasible to discover new states with shorter 
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epochs. The use of alternative spawning points may enable the use of shorter 
epochs and possibly faster binding times.   
In a publication 6, we show the application of adaptive PELE in binding free 
energy simulations. Choosing initial structures along the binding pathway 
provides better convergence compared to starting all the sampling from single 
pose in the bulk solvent, and adaptive simulations are efficient at building binding 
pathways. However, this idea can be taken one step further. Following the work 
of different research groups211,243,268, we built a sampling scheme to efficiently 
sample the energy landscape in view to construct MSMs. In Fig. 23, we show the 
evolution of the binding free energy estimation using the adaptive protocol, 
which shows converged binding free energy results for ~200 MC steps, using 50 
trajectories. As a matter of comparison, Takahashi115 used 600 trajectories of 
1000 MC steps to obtain a converged free energy value (note that in this case the 
exploration included the whole protein surface and the comparison is not fair). 
 

 
Figure 23. Evolution of the absolute binding free energy estimation (in blue) for trypsin and 
benzamidine (PDB ID: 3PTB) using 50 different trajectories and epochs of 50 steps. The 
experimental value is shown in a thick red line and in a thin red the interval ± 1 kcal/mol. The 
estimation converges in 4 epochs (200 MC steps), and the experimental result is reproduced. 
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5 
Conclusions 
The final conclusions of this work are the following: 
 

− The development of PELE resulted in a competitive cutting-edge 
software, integrating new algorithms and platforms, such as the OBC 
implicit solvent, the IC-NMA or the GUI, just to name a few. 
Importantly, the rest of the thesis is built upon it. 

− The application of PELE in complex receptors, such as the prolyl 
oligopeptidase or nuclear hormone receptors, allows describing binding 
mechanisms in a fast atomically detailed manner. 

− Computing the entropy variation upon binding requires a tremendous 
amount of computation, and despite major approximations, our proposed 
technique is not suitable for a routinely screening of compounds. 

− Combining PELE with Markov models allows quantifying binding 
mechanisms. Importantly, using a limited sampling region, we are able to 
find relative binding free energies in nuclear hormone receptors and 
tyrosinases. However, this still represents a significant computational 
effort. 

− The adaptive procedure represents a major improvement in our sampling 
protocol, and opens the door for an intensive screening of compounds. 

− Coupling the adaptive sampling procedure with PELE and Markov 
models seems a promising tool for faster binding free energy predictions. 

− Overall, due to its tradeoff between conformational sampling and speed, 
PELE is a suitable tool to study protein-ligand interactions. 
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 6 
Appendices 
Resum de la tesi 
Les simulacions biomoleculars han sigut àmpliament emprades en l’estudi 
d’interaccions proteïna-lligandc. Comprendre els mecanismes involucrats en la 
predicció d’afinitats d’unió tindria una repercussió molt significativa en la 
indústria farmacèutica, ja que els processos de disseny de fàrmacs reduirien els 
costos i temps associats. Malgrat les llargues escales temporals i la dificultat de 
mostrejar l’espai de fases associades a aquests processos biofísics, les millores 
metodològiques  i de hardware fan de les simulacions amb ordinador un candidat 
prometedor en la resolució de processos biofísics. En aquest context, l’objectiu 
de la tesi és el desenvolupament d’un protocol que permeti l’estudi d’interaccions 
proteïna-lligand amb vistes a ser aplicat en processos de disseny de fàrmacs. 
L’autor ha contribuït a la reescriptura de PELE, el nostre programa de mostreig 
que està basat en la tècnica de Monte Carlo. Durant aquest procés hem fet servir 
bones praxis de desenvolupament de software, com per exemple el testeig, la millora 
de la llegibilitat, modularitat, encapsulació, manteniment i el control de versions, 
per anomenar-ne unes quantes. L’objectiu ha sigut produir un programa fiable i 
de fàcil manteniment, donant certes garanties que el seu comportament no es 
vegi inesperadament alterat amb la seva extensió, de manera que els experiments 
(computacionals) siguin reproduïbles. Aquestes característiques tenen una 
importància cabdal en un programa competitiu, ja que necessita la incorporació 
d’algorismes d’última generació per a satisfer les necessitats de la indústria. Això 
fa que el desenvolupament de PELE hagi sigut indispensable per tal de proposar 
una metodologia amb impacte en l’àmbit farmacèutic, l’objectiu principal 
d’aquesta tesi. 
Hem demostrat que PELE és una eina capaç de reproduir mecanismes d’entrada 
de forma eficient i acurada. Una mostra n’és la publicació 1, on hem estudiat la 
migració de l’inhibidor Z-pro-prolinal en una prolyl oligopeptidasa, juntament 
amb el d’un pèptid d’onze residus i el producte de la reacció. Fent servir PELE, 
hem aconseguit caracteritzar la migració d’un sistema tan complex en menys de 
48 hores. Paral·lelament, hem estimat l’entropia perduda en la unió mitjançant 
termes de translació, rotació i vibracionals, en conjunció amb un cribratge 
d’enllaços rotables per a tenir en compte la flexibilitat del lligand i del receptor. 
Hem vist una pèrdua significativa de l’entropia degut a la flexibilitat, suggerint 
una certa compensació entàlpica-entròpica en el procés d’associació, malgrat ser 
subjecte de debat actualment.  
Un cops arribats a aquest punt, ens vam centrar en dissenyar el protocol per 
estudiar les interaccions proteïna-lligand. Aquest consisteix en combinar 
simulacions atomístiques de PELE, donada la seva capacitat per a reproduir 
                                                
c Molècula petita que s’uneix (es “lliga”) a una altra, en aquest cas una proteïna. 
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mecanismes d’unió en sistemes complexos com el detallat al paràgraf anterior, 
amb models de Markov, coneguts a la literatura com a Markov state Models (MSM), 
per tal de quantificar el paisatge energètic. En primer lloc, vàrem fer un estudi 
exhaustiu de l’efecte de les minimitzacions en el mostreig (detallat a la secció de 
resultats de la tesi), i vam avaluar l’error associat a mostrejar una part reduïda de 
la proteïna. Tanmateix, vàrem començar a establir un protocol de validació que 
hem anat perfeccionant al llarg del doctorat i que apareixerà en una publicació 
que es troba en preparació (publicació 6), i on a la Fig. 20 del cos principal de la 
tesi en podem veure un exemple. 
La primera aplicació d’aquesta metodologia va ser l’estudi de la unió de 
dexamethasone i de desisobutyrylciclesonide a un receptor de mineralocorticoides 
(publicació 2). La naturalesa del lloc d’unió, enterrat dins de la proteïna, i de 
l’acoblament dels moviments del lligand amb canvis conformacionals de la 
proteïna fan d’aquest un sistema molt complex de simular. Per tal d’obtenir 
estadística suficient, vam col·locar el lligand a l’entrada del canal d’unió, i vam 
limitar la seva exploració a una esfera d’uns 15Å. Amb aquesta tècnica, no vam 
aconseguir calcular l’energia lliure absoluta, però sí la relativa entre ambdós 
lligands. Aquest estudi es va realitzar en col·laboració amb un grup de recerca de 
l’empresa farmacèutica AstraZeneca.  
Seguidament, vam aplicar aquesta tècnica per a investigar els modes d’unió de 
KA (kojic acid) i de HQ (hydroquinone) en una tirosinasa, per tal de testejar 
mitjançant eines computacionals el mecanisme d’inhibició trobat 
experimentalment. En aquest estudi vam reproduir les energies d’enllaç absolutes 
per a KA i vam observar dues conformacions d’unió diferents amb una separació 
entre elles d’aproximadament 4kcal/mol. En canvi, vam observar més 
heterogeneïtat en les conformacions d’unió d’HQ, fet que corrobora les 
observacions experimentals. Presumim que és degut a la manca d’un grup 
carboxil que interactua amb Arg209, que, en els nostres resultats, estabilitza la L-
tirosina (Fig. 5a a la publicació 3).  
En la publicació 4, estudiem la unió de tots els receptors nuclears d’hormones i 
els seus respectius lligands endògens, focalitzant el nostre detall al receptor de 
progesterona amb tres lligands diferents: progesterona, aldosterona i cortisol. 
Malgrat que l’ús de modes normals de vibració basats en estructures 
experimentals amplifica el mostreig, no va ser suficient per tal d’obtenir resultats 
convergits d’energia lliure. Per aquesta raó, vam seleccionar sis punts al llarg d’un 
camí d’entrada i vam llançar 100 simulacions des de cadascun d’ells, durant 24 
hores (un total de 600 simulacions i uns 2500 passos de Monte Carlo).  Amb 
aquest procediment vam ser capaços d’estimar valors absoluts d’energia lliure 
equiparable als resultats experimentals. A més a més, vam fer servir MSMs per a 
descriure el mecanisme d’entrada i vam detectar que la hidrofobicitat de la 
progesterona pot tenir un rol en aquest mecanisme. En aquesta publicació, vam 
desenvolupar i millorar eines i procediments per analitzar models de Markov, 
com per exemple, per mesurar la convergència de les simulacions (SI publicació 
4) o per estimar incerteses. 
Com il·lustra el cas anterior, mostrejar l’espai conformacional és tot un repte a 
nivell computacional. Per això, a la publicació 5 fem una proposta de simulacions 
iteratives on el punt inicial varia de forma adaptativa i està basat en conceptes de 
reinforcement learning. Aquesta proposta representa una millora molt significativa al 
nostre grup de recerca. Per exemple, amb aquesta tècnica som capaços de 
reproduir mecanismes d’unió un ordre de magnitud més ràpid que amb el 
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protocol anterior. Com a conseqüència, som capaços de modelar mecanismes 
d’entrada en menys de 30 minuts quan disposem d’un nombre suficient de nuclis 
computacionals (per exemple, 512 nuclis SandyBridge-EP 2.6GHz). També hem 
mostrat que aquesta eina es pot fer servir pel càlcul d’energies lliures d’unió, fet 
que obre la porta a un cribratge molt més ràpid de compostos. 
En resum, hem vist que combinant high-performance computing, PELE i MSM, som 
capaços d’estudiar la unió de proteïna-lligand en casos d’interès farmacèutic. Amb 
el conjunt d’eines presentades en aquesta tesi esperem que PELE tingui una 
major disseminació a la indústria farmacèutica i contribuir d’aquesta forma a 
millorar el procés de disseny de fàrmacs. 
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Resum individual de cada publicació 
 
Resum de la primera publicació 
En aquesta publicació estudiem la migració de l’inhibidor Z-pro-prolinal en una 
prolyl oligopeptidase (POP). POP és una proteasa que presenta un centre actiu 
enterrat profundament; per aquesta raó és un sistema que suposa un repte per a 
mètodes de mostreig convencional i motiva l’ús de PELE. En l’observació de 
múltiples esdeveniments d’unió, vam trobar que l’entrada es produeix a través 
d’un porus al domini d’hèlices enrotllades (ß-propeller, en anglès). A més a més, 
vam modelar la unió d’un substrat, undecapèptid i l’alliberament d’un producte 
dipèptid mitjançant un protocol esbiaixat. La dissociació transcorre a través d’un 
loop flexible de 18 aminoàcids, un camí diferent al d’entrada. 
 
Resum de la segona publicació 
En aquest article s’ha estudiat la flexibilitat dels receptors nuclears d’hormones 
(NHRs, en anglès). En particular, s’ha resolt les estructures de raig X dels 
receptors de  glucocorticoides i mineralocorticoides (MR) per tal d’indentificar la 
pasticitat conservada a la regió de les hèlices 6-7. Amb la finalitat de donar suport 
a la idea que constitueixen una part integral de la unió, s’han llançat simulacions 
d’entrada, de sortida i de refinament. Els NHRs presenten lloc d’unió enterrats i 
l’estudi de la migració del lligand està actualment fora de l’abast dels 
procediments atomístics estàndards, no esbiaixats. Per aquesta raó, es va utilizar 
PELE per fer el mostreig d’aquest estudi. Es va desenvolupar un procediment de 
mostreig limitat al voltant del punt d’entrada compartit (~10-15Å) i es va poder 
calcular la diferència d’afinitat de l’energia lliure entre la dexamestasona i la 
desisobutyrylciclesonida (dibC), ambdues amb MR. El temps de residència 
correlaciona amb la magnitud de les reorganitzacions estructurals requerides. En 
definitiva, mostrem que la natura ha conservat la capacitat d’obrir aquesta regió, 
la qual imposa diferents restriccions evolutives en els diferents receptors 
d’esteroides.  
 
Resum de la tercera publicació 
En aquest estudi s’ha demostrat per primera vegada el mecanisme d’inhibició de 
l’àcid kòjic (KA) i de la hidroquinona (HQ) en una tirosinasa, combinant 
tècniques experimentals i computacionals. Les tècniques experimentals van 
consistir en cristal·litzacions, anàlisis de les constants d’unió i experiments 
cinètics. Les eines computacionals van involucrar el llançament de conjunts de 
simulacions atomístiques no esbiaixades per ambdós inhibidors, amb un posterior 
anàlisis amb models de Markov (Markov state models, MSM; en anglès). Els 
resultats mostren que el KA actua com a inhibidors mixt; quan aquest es troba al 
centre actiu, aquest no és accessible pel substrat, però quan està a la zona d’unió 
perifèrica, restringeix l’entrada i la sortida, i impedeix aconseguir la velocitat 
catalítica màxima. Al contrari, l’HQ pot actuar tant de substrat com d’inhibidor, 
suggerit per la seva heterogeneïtat d’unió. 
 
Resum de la quarta publicació 
En aquest article extenem l’estudi del mecanisme d’unió a tots els membres dels 
receptors nuclears d’hormones amb els seus lligands endògens. Vam trobar un 
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camí d’entrada comú a la zona de les hèlices 3, 7 i 11, i vam identificar dos 
plegaments diferents de la zona de les hèlices 6 i 7, que tenia repercussió en el 
nombre d’esdeveniments d’unió a les simulacions sense biaix. També vàrem 
veure que incorporant informació de rajos x a la pertorbació de la proteïna, 
promovíem la plasticitat de la zona de les hèlices 6 i 7, i per tant milloraven el 
mostreig dels esdeveniments d’unió, comparat amb el model de xarxa neuronal 
anisotròpica. Aquestes nous modes de vibració, en combinació amb un mostreig 
més exhaustiu del camí d’entrada es pot fer servir per millorar la convergència de 
les simulacions que involucren MSMs. Les nostres estimacions de les energies 
lliures d’unió estan molt d’acord als resultats experimentals. El mecanisme 
d’entrada va posar en rellevància la importància d’una zona d’unió perifèrica, i la 
influència de la hidrofobicitat en la transició de la zona perifèrica a la zona activa. 
 
Resum de la cinquena publicació 
En aquesta publicació proposem un nou procediment per millorar les limitacions 
de mostreig causades per la metastabilitat. En particular, la nostra metodologia 
combina un procediment d’aprenentatge automatitzat (machine learning, en 
anglès) amb PELE, en el marc de la supercomputació moderna, i és capaç de 
reproduir mecanismes d’unió complexes amb un guany d’un ordre de magnitud 
comparat amb execucions no adaptatives. La metodologia es va testejar amb 
sistemes complexos, on procediments estàndard no ho han aconseguit, com a 
receptors acoblats a proteïnes G (G-protein coupled receptor, GPCR; en anglès) i 
receptors nuclears d’hormones, que suggereix el potencial d’aquesta eina en 
estudis de cribratge i optimització de compostos. 
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Figure S1, Related to Figure 3. Comparison of the volume of the ligand binding 

pocket in MR and GR in complex to Dexa and dibC. (A) The structure of MR (light 

blue) in complex with dexamethasone (magenta) overlaid on MR (dark blue) in 

complex with dibC (white). Ligand binding pockets are shown for MR:Dexa in brown 

(total volume 543 Å3) and MR:dibC in gray (total volume 714 Å3). (B) The structure of 

GR (pale yellow) in complex with dexamethasone (magenta) overlaid on the GR 

structure (orange) in complex with dibC (white). Ligand binding pockets are shown for 

GR:Dexa in brown (total volume 572 Å3) and GR:dibC in gray (total volume 661 Å3). 

 

 

 

 

 

 

 

 

 



 

 

Figure S2, Related to Figure 7C. MR binding competition assay in the presence of 

dibC (triangle), aldosterone (circle), and dexamethasone (square). The 

corresponding IC50 values (mean ± SD, n=3) are: 0.7 ± 0.0 nM (dibC); 4.0 ± 0.2 nM  

(aldosterone); 26.0 ± 4.6 nM (dexamethasone). 

  



 

 

 

Figure S3, Related to Figure 3. Principal component analysis (PCA) for all X-ray 

structures of the steroid hormone receptors in the protein databank (PDB). The 

graphs show the amplitude of the top six modes from the PCA for MR (A), GR (B), 

PR (C), AR (D) and ER (E). The H6-H7 region which undergo the largest changes in 

the MR:dibC structure and the corresponding region in the other receptors are 

highlighted in green (MR: 837-848; GR: 631-642; PR: 786-797; AR: 772-783; and 

ER: 412-424). AR and MR exhibits the smallest variation in the H6-H7 region in the 

public domain structures. (F) The PCA of the MR public domain structures with 

MR:dibC added. In this analysis the mode describing the H6-H7 rearrangement 

becomes the dominant signal in the first mode. 

 

 

  



 

 Figure S4, Related to Figure 6. Unbiased simulation of dexamethasone entering 

GR. (A) Each line represents the ligand heavy atom RMSD to the crystallographic 

structure for the total 64 trajectories. One of the trajectories represented by blue line 

enter the ligand binding pocket at step ~310. (B) The ligand’s center of mass for the 

one trajectory that enter the binding pocket are shown as blue spheres. The region 

where the ligand enter the binding pocket is emphasized as a surface with the ligand 

shown in stick representation.  

  



 

 

Figure S5, Related to Figure 3. The peripheral binding site. The structure of of GR 

(yellow) in complex with dexamthasone (magenta) revealed that a CHAPS molecule 

(white) from the protein formulation is binding in between helices 7 and 11 about 12 

Å away from the ligand binding pocket. 

    



 

  

Figure S6, Related to Table 2. Residence time measurements of dexamethasone 

(blue diamonds) and dibC (red circles) bound to GR (A, B) and MR (C, D) using 

SMM (A, C) and SPR (B, D). Normalized change in receptor binding rate to 

surface-immobilized co-regulator peptide upon addition of >10-fold concentration 

excess of budesonide (GR) or aldosterone (MR). The extracted binding rates are 

fitted with                  (colored solid lines). SMM and SPR experiments were 

conducted 20 °C and 10 °C, respectively.  

 

 

 



 

 

Figure S7, Related to Figure 8. Variability score and structural arrangement  of 

amino acids in the H6-H7 region in GR. (A) The GR variability scores plotted against 

the amino acid positions of the H6-H7 region. Higher scores indicate more variation 

at that position across the various species; a score of 1 indicate completely 

conservation. (B) Placement of amino acids with high variability score in the H6-H7 

region in the GR:Dexa (yellow) and GR:dibC (orange) structures.  



 

Supplementary Movie, Related to Figure 4. Unbiased simulation of 

dexamethasone entry into MR obtained with the PELE (Protein Energy Landscape 

Exploration) software. The simulated protein is shown in green, the NCOA1 peptide 

cofactor in yellow and dexamethasone ligand shown in light green. At the 0:27 

timepoint, the MR:Dexa complex structure is overlaid onto the simulation for 

comparison with the protein in light blue and dexamethasone in magenta.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplemental experimental procedures 

 

Protein expression and purification for structure 

 

GR:Dexa 

The cDNA sequence encoding the human GR-LBD (amino acids 500-777) with the 

mutations N517D, F602S and C638D and an N-terminal 6-histidine tag followed by a 

thrombin cleavage site was cloned into a pFastBac-HTb vector (Life Technologies). 

Recombinant baculovirus was generated using the Bac-to-Bac expression system 

(Life Technologies) and High Five cells (Life Technologies) were infected followed by 

suspension culture in Express Five medium (Gibco) for 48h at 27qC, the last 24h in 

the presence of 10 PM dexamethasone, after which cells were collected by 

centrifugation. All protein purification steps were performed at 4°C. Cells were lysed 

in buffer A (50 mM Tris pH 8.0, 2.5 mM DTT, 1% CHAPS, 50 PM dexamethasone 

and 10% glycerol) supplemented with Complete EDTA-free protease inhibitor cocktail 

(Roche) followed by affinity purification using Ni-NTA beads (Qiagen). Protein was 

eluted in buffer A supplemented with 150 mM NaCl and 300 mM imidazole, and 

subjected to size exclusion chromatography using a HiLoad 26/60 Superdex 200 gel 

filtration column equilibrated in buffer A. Five-fold molar excess of a TIF2 peptide, 

KENALLRYLLDK (Innovagen) was added, the N-terminal 6-histidine tag was 

removed using thrombin-agarose (Sigma) and subsequently the free 6-histidine tag 

was removed. The protein was thereafter passed over a Q Sepharose fast-flow ion-

exchange column (GE Healthcare) equilibrated in buffer A and stored at −80 °C. 

Approximately 5.4 mg protein was obtained from 10 L High Five cells. 

 



 

GR:dibC 

A pFastBac (Invitrogen) construct encoding human GR-LBD (amino acids 500-777) 

with the mutations N517D, V571M, F602S and C638D and an N-terminal, thrombin 

cleavable 6-His tag was used to generate baculoviruses in Sf9 cells (Invitrogen). GR-

LBD encoding viruses were used to infect High Five cells (Invitrogen) at a density of 

2-3x10E6 cells/ml and a MOI of 3 in a Wave Bioreactor at 27oC. 24 hours post-

infection, dexamethasone was added to a final concentration of 10 μM. The cells 

were harvested by centrifugation 48 hours post-infection, washed in PBS and stored 

at -80°C until lysis. Cells were resuspended in lysis buffer (50 mM Tris-HCl pH 8.0, 

10% glycerol, 1% CHAPS, 2.5 mM DTT, Complete EDTA-free protease inhibitor 

cocktail (Roche) and 50 μM dexamethasone) and lysed by 5x1 min passes in a 

polytron homogeniser. The cell-lysate was clarified by centrifugation at 18500 g for 

90 minutes and batch-bound to Ni-NTA Superflow (Qiagen) for 1.5 hours at 4°C. The 

IMAC resin was packed in a column, washed with wash buffer (50 mM Tris pH8.0, 60 

mM NaCl, 30 mM imidazole, 10% glycerol, 1% CHAPS, 2.5 mM DTT and 50 μM 

dexamethasone) and GR-LBD was step eluted with elution buffer (50 mM Tris pH 

8.0, 30 mM NaCl, 300 mM imidazole, 10% glycerol, 1% CHAPS, 2.5 mM DTT and 50 

μM dexamethasone). The eluate was loaded on a HiLoad 26/60 Superdex 200 size 

exclusion column equilibrated in gel filtration buffer (50 mM Tris-HCl pH 8.0, 10% 

glycerol, 1% CHAPS, 2.5 mM DTT and 50 μM dexamethasone). GR containing 

fractions were pooled and a 3-fold excess of co-activator NR-box peptide 

(KENALLRYLLDK, human NCoA2, residues 740-751) was added. The His-tag was 

cleaved over night at 4o C with Thrombin-agarose (Sigma) and removed by negative 

IMAC using Ni-NTA. The protein was finally polished through Q Sepharose FF (GE 



 

Healthcare) equilibrated in gel filtration buffer, flash-frozen in liquid nitrogen and 

stored at -80oC. 

MR:Dexa and MR:dibC 

Human MR-LBD (amino acids 735-984) with the mutations C808S, C910S (and 

S810L in the case of dibC), an N-terminal, TEV cleavable 6-HN tag, and a C-terminal 

thrombin cleavable co-activator peptide PQAQQKSLLQQLLTE was cloned into 

pET24a(+). Escherichia coli BL21 StarTM (DE3) (Invitrogen) cells transfomed with 

the expression vector were grown in terrific broth at 37°C until OD600=0.5-1.0, 

chilled on ice for 30 minutes and 100 μM of dexamethasone (Alfa Aesar) or dibC was 

added. Cells were shaken at 16°C for 30 minutes before protein production was 

induced using 0.1 mM isopropyl β-D-thiogalactopyranoside (IPTG) for an additional 

24-48 hours. Cells were lysed in 30 mM Na-Hepes pH 7.5, 150 mM NaCl, 20 mM 

imidazole, 100 mM arginine-HCl, 10% glycerol, 1% CHAPS and 1 mM TCEP 

containing 20 μM of respective ligand, EDTA-free Complete protease inhibitor 

cocktail (Roche) and 0.05 g/ml of CelLytic™ Express (C1990, SIGMA), by rotation at 

room-temperature for 15 minutes. The lysate was cleared by centrifugation at 48000 

g for 20 minutes and loaded onto Ni-Sepharose FF (GE Healthcare) equilibrated in 

lysis buffer. After washing, protein was step eluted by the addition of one column 

volume (CV) of lysis buffer containing 0.5 M Arginine-HCl followed by 5 CV of elution 

buffer (30 mM Na-Hepes, pH 7.5, 150 mM NaCl, 500 mM imidazole, 500 mM 

arginine-HCl, 10% glycerol, 1% CHAPS, 1 mM TCEP and 20 μM of respective 

ligand). Size exclusion chromatography was performed on a HiLoad Superdex 200 

column (GE Healthcare) equilibrated in 20 mM Na-Hepes pH 6.7, 150 mM NaCl, 0.5 

M arginine-HCl, 10% glycerol, 0.1% CHAPS, 1 mM TCEP and 2 μM dexamethasone 

or dibC. Finally, MR-LBD co-expressed with dexamethasone was diluted 10x in 20 



 

mM Tris-HCl pH 8.0, 10 mM CaCl2 and 20 μM dexamethasone, cleaved with TEV 

protease and Thrombin CleanCleave Kit (SIGMA), purified by reverse IMAC on Ni-

Sepharose FF and concentrated to 15 mg/ml. MR-LBD co-expressed with dibC was 

diluted 15x in 10 mM Tris-HCl pH 8.5, 20 μM dibC and 1mM TCEP and concentrated 

to 7 mg/ml. 

Protein expression and purification for biophysical characterization 

GR  

Human GR-LBD (amino acids 529-777) was cloned into the pET24a vector 

(Novagen) featuring an N-terminal His6-tag and a TEV protease cleavage site. The 

expression vector was transformed into E. coli BL21(DE3) STAR, followed by 

expression in PASM-5052 autoinduction medium. 100 μM dexamethasone was 

added after the cell culture reached an OD of 0.6 followed by expression over 48 

hours at 16 °C. All purification buffers were degassed and contained 2 mM TCEP 

and 50 μM dexamethasone. The harvested cells were resuspended in lysis buffer (50 

mM Tris pH 8, 10% glycerol, 1% CHAPS) supplemented by protease inhibitors 

(Complete, Roche) and DNAse. Cells were lysed by sonication. The cleared lysate 

was applied to a nickel affinity column equilibrated with wash buffer (50 mM Tris pH 

8, 10% glycerol, 1% CHAPS, 60 mM NaCl) and eluted by a 300 mM imidazole 

gradient. Remaining impurities were removed by an additional superdex 200 

gelfiltration step using 50 mM Tris buffer at pH 9 as running buffer followed by 

storage at -80°C. 

MR 

Human MR-LBD (amino acids 712-984) with the mutation C808S and an N-terminal, 

TEV cleavable 6-HN tag was cloned and expressed in  the same way as the MR–

LBD proteins used for structure determination. The cells were lysed in 50 mM Tris-



 

HCl, pH 8.0, 500 mM NaCl, 100 mM arginine-HCl, 1% CHAPS, 20 mM imidazole, 

10% glycerol, 1mM TCEP, 50 μM dexamethasone, EDTA-free Complete protease 

inhibitor cocktail (Roche) and 0.05 g/ml of CelLytic™ Express (C1990, SIGMA). The 

lysate was cleared by centrifugation at 48000 g for 20 minutes and loaded onto a 

HisTrap HP column (GE Healthcare). The protein was gradient eluted with 50 mM 

Tris-HCl, pH 8.0, 500 mM NaCl, 500 mM arginine-HCl, 1% CHAPS, 0- 300 mM 

imidazole, 10% glycerol, 1mM TCEP, 50 μM dexamethasone. 

Crystallization  

GR:Dexa 

A tube with 1.0 mg of GR(500-777) N517D, F602S and C638D was thawed and 

washed three times in the concentrator tube with 3.5 ml of 10 mM Tris pH 8.5, 2.5 

mM DTT and 45μM dexamethasone. A fivefold molar excess of co-activator NR-box 

peptide (KENALLRYLLDKDD, human NCoA2, residues 740-753) was added and the 

complex was concentrated to 9 mg/ml.  

Crystals were grown at 4°C in hanging drops using 1 μl of protein and 1 μl of well 

solution (10% PEG8000, 10% ethylene glycol and 0.1 M Hepes pH 7.5). Crystals 

were frozen in liquid nitrogen with 20% ethylene glycol as cryo protectant prior to 

data collection.  

GR:dibC 

A tube with 5.0 mg’s of GR(500-777) N517D, V571M, F602S and C638D was thawed 

and concentrated to about 1.5 ml. The protein was washed three times in the 

concentrator tube with 10 ml of 10 mM Tris pH 8.5, and 2.5 mM DTT (buffer B) to 

remove excess of dexamethasone and thereafter diluted to a final volume of 6 ml. 

dibC was added to a final concentration of 0.25 mM to boost ligand exchange prior to 



 

dialysis. Dialysis was performed using two Slide-A-Lyzer dialysis cassettes in a 

beaker containing buffer B and 60 μM of dibC. Dialysis solution was exchanged after 

20, 28 and 46 hours before harvesting the sample. The protein was concentrated to 1 

ml and buffer was exchanged to fresh buffer B using a NAP10 column. A twofold 

molar excess of co-activator NR-box peptide (KENALLRYLLDKDD, human NCoA2, 

residues 740-753) was added and the complex was concentrated to 9 mg/ml.  

Crystals were grown at 4°C in hanging drops using 2 μl of protein and 1 μl of well 

solution (10% PEG8000, 20% ethylene glycol and 0.1 M Hepes pH 7.5). Crystals 

appeared as rod like crystals after 1-2 days but continued to grow for one to two 

weeks. Crystals were frozen in liquid nitrogen without any cryo protectant prior to 

data collection.  

MR:Dexa 

Crystals of MR(735-984) C808S and C910S co-expressed and purified with 

dexamethasone were grown by sitting drop vapor diffusion in 30% PEG4000, 0.1 M 

NaCl and 0.2 M Pipes pH 7.4. Crystals were cryo-protected in well solution 

supplemented with 20% glycerol and flash frozen in liquid nitrogen.  

MR:dibC 

Crystals of MR(735-984) C808S, C910S and S810L co-expressed and purified with 

dibC were grown by sitting drop vapor diffusion in 18% PEG4000, 0.14 M LiSO4, 85 

mM Tris pH 8.5 and 15% glycerol. Crystals were flash frozen in liquid nitrogen.  

 

Data collection and structure determination. 

The MR:Dexa data were collected using an Rigaku FRE rotating anode (wavelength 

1.54 Å). The GR:Dexa data were collected at the ID14:4 beam line at the ESRF 



 

(wavelength 0.94 Å). The MR:dibC and GR:dibC data were collected at the ID29 

beam line et the ESRF (wavelength 0.98 Å). All data sets were collected from a 

single crystal at 100K. The MR data sets were integrated with XDS (Kabsch et al., 

2010) and the GR data sets were integrated with Mosflm (Leslie et al., 2007). All data 

sets were merged with SCALA (Evans et al., 2006) from the CCP4 suite 

(Collaborative Computational Project., 1994). The MR and GR structures were solved 

with PHASER (McCoy et al., 2007) using PDB entry 2AA2 and 1M2Z as starting 

models, respectively. The structures were refined using the BUSTER (Bricogne et al., 

2011) and manual rebuilding using Coot (Emsley et al., 2004). The GR:Dexa 

structure had 1 (0.39%) Ramachandran outlier while the other structures did not have 

any outliers. All figures were prepared using PyMOL (www.pymol.org).  

 

Structural analysis 

Cavity volumes were calculated with fpocket 2.0 (Le Guilloux et al. 2009). For a 

higher accuracy, the default number of Monte Carlo steps was increased from 2500 

to 500000. The minimum size of alpha spheres was set to 3.5 Å to avoid connecting 

buried cavities (default value 3.0 Å). 

 

PCA analysis was performed using ProDy 1.5.1 (Bakan et al. 2011) For each 

receptor, all public available structures were included in the analysis and one 

structures was selected as the reference structure (MR:Dexa, GR:Dexa, 1E3G (AR), 

1A28 (PR), 1A52 (ER)). The sequence of monomer A from each protein was aligned 

to the sequence of the reference structure filtering out structures with less than 90% 

sequence identity and subsequently superimposed. The first six principal 



 

components were plotted against the residue number by calculating the length of the 

x,y,z-fluctuation vector for each c-alpha atom. 

 

Mineralocorticoid receptor ligand competition binding assay 

Human MR-LBD (729-984)  with an N-terminal maltose binding protein (MBP) tag 

was expressed using the Bac-to-Bac expression system (Life Technologies). High 

Five cells were co-infected with recombinant P23 co-chaperone baculovirus followed 

by suspension culture in Express Five medium (Gibco) for 48h at 27qC. Cells were 

lysed in lysis buffer (10 mM Tris-HCl pH 7.4, 0.5 mM EDTA, 2.5 mM DTT, 10% 

glycerol, 20 mM Na2MoO4 and Complete protease inhibitor (Roche)) followed by 

centrifugation. The supernatant was stored at -80°C. Compound binding was 

assessed using a ligand competition binding scintillation proximity assay (SPA). 

Compounds were incubated with MR-High Five cell lysate (7Pg/ml) and 5 nM 3H-

aldosterone (Perkin Elmer NET419250UC) in assay buffer (10 mM Tris-HCl, 0.5 mM 

EDTA, 20 mM Sodium molybdate dehydrate, 10 % Glycerol and 0.1 mM DTT) for 

one hour before addition of 2.5 mg/ml anti-rabbit SPA PS beads (Perkin Elmer 

RPNQ0299) and 2 µg/ml rabbit anti-MBP antibodies (Abcam ab9084) followed by 

incubation at room temperature for 8 hours before detection of signal using a 

LeadSeeker imaging system (GE Healthcare). Ki values where derived using the 

equation Ki = (IC50 - receptor Concentration/2) / (1 + ligand Conc/Km), where 

receptor concentration was set to zero, ligand concentration to 0.005 µM and Km-

value to 0.0016 µM. 

 

 

 



 

Biophysical characterization and residence time determination 

Residence time measurements of GR/MR:dexamethasone and dibC was determined 

using single molecule microscopy (SMM) and SPR (Biacore) by probing the time-

reolved change in receptor binding to surface-immobilized co-regulator peptides (GR: 

Biotin-PRGC1_130-155 / MR: PRGC2_146-166). HBSP(+) buffer (10 mM HEPES, 

150 mM NaCl, 0,005% P20, pH=7.4) was used for all measurements. For SPR, the 

two biotinylated peptides was immobilized on a strepavidin chip (GE healthcare) 

using a Biacore 3000 (GE healthcare) to 500-1000 RU. Budesonide/aldosterone was 

added to a final concentration of 25 µM to a solution of 130 nM GR/MR, 

preequilibrated with 1µM dexamethasone/dibC. Directly after budesonide/aldosterone 

addition, receptor binding rate to the cofactor peptide was monitored by consecutive 

injection cycles (1 min injections). The peptide surface was regenerated with 0.005% 

SDS after each injection. To compensate for potential protein degradation over the 

time course of the measurement, the data was normalized to a reference sample 

containing only 1uM dexamethasone/dibC. For SMM, the respective NHR was bound 

via 6×His-tag to liposomes containing POPC, DGS-NTA, lissamine rhodamine B 

sulfonyl in a ratio of 1:0.02:0.01. Liposomes were prepared as described by 

Gunnarsson Anal chem. 2015. The coregulator peptides were mixed with Neutravidin 

(NA) in a 1:1 molar ratio. Subsequently, the coregulator peptide-NA complex was 

incubated at 50 µg/ml NA with TL1 cleaned PLL-g-PEG/ PLL-g-PEG-biotin (1:1, 

Surface Solutions) coated glass surfaces. Budesonide/aldosterone was added to a 

final concentration of 10 µM to a 150 pM liposome-NHR solution containing 1 µM 

dexamethasone/dibC. To compensate for potential protein degradation over time the 

data was normalized to a reference sample of 150 pM liposome-NHR solution 

containing only 1uM dexamethasone/dibC. Image data was collected on an inverted 



 

microscope (Nikon Ti Eclipse) equipped with a 60x oil immersion objective (NA = 

1.49), TRITC filter cube, perfect focus system and air cooled sCMOS (Orca Flash 4.0 

v2 Hamamatsu). For imaging in an iterative fashion, 10 sec time series at 10Hz 

framerate were recorded for the competition and the reference well at two different 

positions continuously over ~15 minutes. Images were analyzed using custom made 

Matlab (Mathworks) routines to extract the liposome-NHR conjugate binding rate to 

the surface. The liposome-NHR binding rate during each time series (10 sec) was 

assumed to be constant and hence, the vesicle binding rate was extracted by linear 

regression to the cumulative number of binding liposomes as a function of time. To 

compensate for surface preparation inhomogeneities the data of the two different 

positions in each well were averaged. The extracted binding rates were plotted over 

time and fitted with                 . 
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Supplementary Figure S1: Initial product formation rate of TyrBm activity on HQ in the 

presence of reducing agents measured at 475 nm.  (a) HQ as the substrate in the presence of 

increasing concentrations of L-dopa (0-3 mM). HQ concentrations (mM) were: (a ■) 0, (b ♦) 

0.025, (c ●) 0.075 and (d +) 0.5. The product may be composed of HPB (2-hydroxy-p-

benzoquinone) and dopa-quinone since both HQ and L-dopa may serve as substrates. (b) HQ 

as the substrate in the presence of increasing concentrations of H2O2 (0-90 mM). HQ 

concentrations (mM) were: (a ▲) 0.1, (b ●) 0.5 and (c ■) 1.5. The product is HPB only. The 

reactions contained 6 µg ml-1 of purified TyrBm, 50 mM PBS buffer pH 7.4 and 0.01 mM 

CuSO4. 
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Supplementary Figure S2: Inhibition of TyrBm monophenolase activity by (a) KA and (b) 

HQ. IC50 values were determined at 50% activity.  
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Supplementary Figure S3: Action of TyrBm on L-dopa alone or in the presence of KA and 

HQ. (a) Spectrophotometric recordings measured at 475 nm. All measurements were performed 

in heptaplicates. (b) Oxygen consumption recordings. The inset presents the oxygen 

consumption in the presence of L-dopa and L-dopa with HQ in the first 5 minutes. All 

measurements were performed in triplicates. The reactions contained 4 µg ml-1 of purified 

TyrBm, 50 mM PBS buffer pH 7.4, 0.01 mM CuSO4, 1 mM L-dopa, 0.1 mM HQ and 0.1 mM 

KA. The slopes representing the activity rate are given for each graph. KA clearly inhibits 

TyrBm activity, whereas HQ enhances activity. 
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Supplementary Figure S4: Microscale thermophoresis (MST) analysis showing the binding 

of TyrBm-ligand by change in fluorescence. (a) Titration of rising concentrations of KA (0-4 

mM) induces MST signal and yields KD of 377±4 µM. (b) Titration of rising concentrations of 

HQ (0-1mM) yields KD of 9±1 µM. (c) Titration of  rising concentrations of L-tyrosine (0-

2mM) yields KD of 0.10±0.03 µM. The reactions contained constant concentration of TyrBm 

(0.377 µM) in 50 mM PBS buffer pH 7.4. 
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Supplementary Figure S5: KA with its mFO-DFC electron density omit map (light blue wire) 

contoured at 2σ. (a) KA in the active site of monomer A, structure 5I38. (b) KA in the active 

site of monomer B, structure 5I38. Copper ions are presented as brown spheres. 
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Supplementary Figure S6: Representative structures from the MSM clusters for HQ (panel a) 

and KA (panel b) within 1 kcal/mol of the best bound complex (highlighted in darker blue). 

Copper ions are presented as brown spheres, water molecules in red. 
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Supplementary Figure S7: Positions of HQ in the active site of TyrBm. Superposition of the 

active site of TyrBm monomers, obtained from two crystal structures with HQ in the active site. 

In orientation 1 of HQ (deep teal), the hydroxyl side chain forms a hydrogen bond with Asn205 

(monomer A, 5I3B). In orientation 2 (green), HQ is oriented similar to tyrosinase substrates 

(monomer B, 5I3B). The different orientations of HQ (1, 2 and 3) represent flexibility in the 

active site. Zinc ions are presented as grey spheres. HQ in the active site of monomer A, 5I3A, 

is positioned in orientation 1 as well (data not shown). 
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Supplementary Figure S8: HQ with its mFO-DFC electron density omit map (light blue wire) 

contoured at 2σ. (a) HQ (in orientation 1) in the active site of monomer A, structure 5I3A. (b) 

HQ (in orientation 2) in the active site of monomer B, structure 5I3A. (c) HQ (in orientation 1) 

in the active site of monomer A, structure 5I3B and (d) HQ (in orientation 3) in the active site 

of monomer B, structure 5I3B. Zinc ions are presented as grey spheres. 
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Table S1.  PDB-ids used for calculating the PCA modes 

AR 1E3G 1T63 1T79 1XJ7 1Z95 2AX6 2HVC 2PIP 2PIV 2Q7I 2YHD 3B5R 3G0W 3V49 1GS4 1T65 
1T7F 1XNN 2AM9 2AX7 2IHQ 2PIQ 2PIW 2Q7J 2YLO 3B65 3L3X 3V4A 1I37 1T73 1T7M 
1XOW 2AMA 2AX8 2NW4 2PIR 2PIX 2Q7K 2YLP 3B66 3L3Z 3ZQT 1I38 1T74 1T7R 1XQ2 
2AMB 2AX9 2OZ7 2PIT 2PKL 2Q7L 2YLQ 3B67 3RLJ 4HLW 1T5Z 1T76 1T7T 1XQ3 2AO6 2AXA 
2PIO 2PIU 2PNU 2QPY 2Z4J 3B68 3RLL 

ER 1G50 1R5K 1X7R 1ZKY 2B23 2G5O 2JFA 2Q6J 2QAB 2QH6 2R6W 1A52 1L2I 1SJ0 1XPC 2B1V 
2BJ4 2I0J 2OUZ 2Q70 2QE4 2QR9 2R6Y 1ERE 1PCG 1UOM 1XQC 2B1V 2FAI 2IOK 2P15 2QA6 
2QGT 2QSE 3ERD 1ERR 1QKU 1QKT 1X7E 1YIN 2B1Z 2G44 2JF9 2POG 2QA8 2QGW 2QXM 
3ERT 

GR 1M2Z 1P93 2Q1V 3BQD 3E7C 3K22 3MNE 3MNP 4E2J 4P6X 2Q1H 2Q3Y 3CLD 3GN8 3K23 
3MNO 3RY9 

MR 1Y9R 1YA3 2A3I 2AA2 2AA5 2AA6 2AA7 2AAX 2AB2 2ABI 2OAX 3VHU 3VHV 5XHK 

PR 1A28 1SQN 1ZUC 2OVM 3D90 3G8O 3KBA 3ZRA 4A2J 1E3K 1SR7 2OVH 2W8Y 3G8N 3HQ5 
3ZR7 3ZRB 4APU 
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Figure S1 Visualization of the per residue displacement magnitude of the lowest 6 ANM and 
first 6 PCA modes, for the rest of systems. The helix 6-7 loop region (residue 833 to 853 for 
MR) is highlighted in green. A) Androgen receptor, B) Estrogen receptor α, C) Glucocorticoid 
receptor, D) Mineralocorticoid receptor.  
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Figure S2 Results for PELE simulations using PCA modes for AR, ERα, GR, and MR. Plots 
show the correlation of the ligand heavy atom RMSD to the bound crystal (in angstroms), 
and the binding energy (in kcal/mol). Each color and symbol corresponds to an independent 
trajectory from the PELE sampling. 
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Figure S3 Implied time scales of the slowest relaxation mode for the three studied ligands. 
The MSM was generated with 600 independent 24h simulations, using k-means as the 
clustering method for the ligand center of mass. Convergence is achieved for all ligands at 
300 steps. 
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Figure S4. Chapman-Kolmogorov test, which checks the equality P(kτ) ≈ Pk(τ) for the main 
PCCA+ clusters at multiple times of the lagtime. We followed the same color code as in the 
main text, and, within each plot, we show a close-up, given the slow transitions. We see that 
there is agreement between predicted and estimated probabilities. Again, this plot supports 
the idea that the hydrophobicity of progesterone is key in the binding. For progesterone, the 
orange (B), green (D), and pink (E) clusters are decaying faster in favor of the binding site 
cluster (blue, C), compared to both cortisol and aldosterone. 
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Figure S5. We test the convergence of the MSM using a metric, D, based on the relative 
entropy between normalized probability distributions. We compare the distribution of the 
transition probabilities for all different states, and weight the measures with the stationary 
distribution, π. Then, the metric D between the transition matrices P and Q is defined as in 

Ref. 1: 𝐷(𝑃||𝑄) =  ∑ 𝜋𝑖𝑃𝑖𝑖log �𝑃𝑖𝑖𝑄𝑖𝑖
�𝑖𝑖 , where P, and Q correspond to the gold model and a trial 

one, respectively. We use the whole data set as the gold model, and analyze how the 
relative entropy varies for different numbers of number of trajectories and trajectory length. 
When the relative entropy does not change, we assume that we have enough sampling and, 
therefore, a converged MSM. Results show that convergence is first achieved for 
progesterone, then aldosterone, and finally cortisol. This is probably explained with the 
number of binding events: progesterone binds more easily than cortisol, and is able to start 
before collecting data and converging the transition matrix.  
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Figure S6. Main binding pathways (i.e. those with fluxes larger than 4%). The thickness of 
the arrow is proportional to the folding flux, shown in percentage. The committor probability, 
which is the probability of reaching the binding site from the different metastable states, 
before going back to the bulk is shown in the y axis. 
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Supplementary Information 
Supplementary information includes: i) methodological clustering details; ii) Clustering 
exploration results (Fig. 1); iii) Energy landscape exploration of TRP, A-GPCR and PR (Figs 
2-4); iv) Complete table with all binding time statistics; v) Standard PELE induced fit 
simulations on sEH; vi) Clustering parameters configurations (Fig. 5) 
 
 
Centroid distance as a lower bound for the RMSD. 
 
In the clustering, we have a ligand structure that we want to cluster, and a cluster center (the 
reference structure) with coordinates r and rREF, respectively.  
The distance vector between the i-th atom in both structures is defined as: 
 
 !! !! , !REF,! = !!! − !!REF,! (1) 
   
For the sake of brevity, we will avoid recalling explicitly the dependence on the two sets of 
coordinates: !! ≡ !! !! , !REF,!! . The distance between a pair of atoms corresponds to its 
modulus: !! = ||!!||. 
The centroid distance, cd, between both structures is: 
 
 !! !! = ! || !!

!

!

!
|| (2) 

 
where the summation extends over all N ligand atoms. 
 
After superposing the protein alpha carbons, the ligand RMSD is calculated with: 
 
 

RMSD!(!!) = !
!!!
!!

 (3) 

where the summation again extends over all ligand atoms. 
 
The Cauchy-Schwarz inequality states that in an n-dimensional Euclidean space: | ! · ! | !≤
||!|| ! · ! ||!||, where . , . !is the inner product. Applying it to u and v such that !! = ! !!!  and 
!! = !1,∀!!|!! ∈ ! [1,!]: 
 
 !!

!

!

!
≤ !!

!
!!

!
· !! != !!!

!

!

!
!= RMSD(!!) (4) 

   
Using the triangle inequality for di: !!!

! ≤ !!!
! != !!!

! , and dividing it by N, we 
obtain: 
 



 !! !! = ! || !!
!

!

!
|| ≤ !!

!

!

!
 (5) 

   
Combining Eq. (4) and Eq. (5) we obtain:  
 
 !!(!!) ≤ RMSD(!!), (6) 
 
as we wanted to prove. Intuitively, the equality applies when the structure is a translation of 
the reference structure, and the inequality applies when there is a translation and rotation. 
 



 

 
Supplementary Figure 1 | Cluster exploration in a typical binding simulation with 1024 
trajectories. In white, we show the native structure, and each cluster is marked with the 
ligand’s center of mass with a color that represents its number of contacts and RMSD 
threshold: in blue those with c <= 0.5 and a threshold of 5Å, in cyan those with 0.5 < c <= 
0.75 and a threshold of 4Å, in yellow those with 0.75 < c <= 1 and a threshold of 3Å, and in 
red, those with c > 1 and a threshold of 2Å. Panel (a) corresponds to TRP, panel (b) to PR, 
panel (c) to B-GPCR and panel (d) to A-GPCR. 



 
 

 
Supplementary Figure 2 | Energy landscape exploration of TRP with 512 different 
explorers. (a,b) The RMSD variation along MC steps and the binding energy against the 
RMSD for the adaptive results. Each color code corresponds to a different epoch number, for 
a total of 12 adaptive iterations. (c,d) Analogous plots for the standard executions. Each color 
corresponds to a different trajectory (performed in a different computing core). 



 
Supplementary Figure 3 | Energy landscape exploration of PR with 512 different 
explorers. (a,b) The RMSD variation along MC steps and the binding energy against the 
RMSD for the adaptive results. Each color code corresponds to a different epoch number, for 
a total of 12 adaptive iterations. (c,d) Analogous plots for the standard executions. Each color 
corresponds to a different trajectory (performed in a different computing core). 



 
Supplementary Figure 4 | Energy landscape exploration of A-GPCR with 512 different 
explorers. (a,b) The RMSD variation along MC steps and the binding energy against the 
RMSD for the adaptive results. Each color code corresponds to a different epoch number, for 
a total of 12 adaptive iterations. (c,d) Analogous plots for the standard executions. Each color 
corresponds to a different trajectory (performed in a different computing core). 



 

 32 64 128 256 512 1024 

 TRP 

 39±30 26±10 18±7 14±4 11±3 11±2 

 26±20 21±9 12±3 9±2 10±2 9±1 

 19±7 13±3 10±2 8±2 9±1 8±1 

 19±9 13±4 10±2 9±3 9±2 8±2 

 PR 

 - 1830±125
0 

1590±115
0 1510±930 610±300 500±310 

 460±270 160±90 160±130 110±60 42±20 30±9 

 270±160 160±50 120±90 73±40 56±40 32±6 

 230±110 200±90 97±60 65±30 43±10 33±10 

 B-GPCR 

 
2200±100

0 1100±800 740±300 490±200 360±130 350±100 

 420±500 140±50 87±20 59±20 39±10 36±10 

 200±90 130±60 82±40 55±10 48±10 35±10 

 110±40 98±30 67±20 53±7 40±6 33±8 

 A-GPCR 

 - - 2440±700 1260±830 1230±640 910±460 

 200±100 115±40 56±10 45±10 30±4 25±4 

 230±100 76±22 74±30 45±10 30±5 23±4 

 110±50 85±30 53±20 42±10 32±3 25±3 

 Std. PELE, : Inversely Proportional, B.E. ε-greedy,  RMSD ε-
greedy 

 
Supplementary Table 1 | Binding times for all studied systems and strategies. Results 
show the MC steps averaged over ten independent runs. For PR with 32 processors and A-
GPCR for 32 and 64, we did not observe any binding event in more than half of the runs. The 
color code corresponds to the strategy; red for non-adaptive PELE, blue for the inversely 
proportional strategy, green for the binding energy ε-greedy and orange for the RMSD ε-
greedy.  
 
  



 
 
 
Supplementary Figure 5 | Standard PELE induced-fit docking studies. Two different 
cross docking simulations with 64 trajectories are shown for the sHE system: protein structure 
from PDB ID:5ALX and ligand structure from PDB ID:5AI5 (a,b) Evolution of the ligand 
RMSD to the bound crystal along the simulation. (c,d) Evolution of the binding energy for 
the different RMSD values.  
 
 
 
 



!
Supplementary Figure 6 | Clustering parameters configurations. (a,b,c) Evolution of the 
ligand RMSD to the bound crystal along the simulation, corresponding to configuration 1, i.e. 
the one that is used throughout the paper, configuration 2 and 3, respectively. (d) Evolution of 
the number of clusters. Those results correspond to A-GPCR using 128 processors and 100 
MC steps for three different parameter configurations.  
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