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the Universitat Politècnica de Catalunya for the

degree of Doctor of Philosophy in Mechanical Engineering

Saqib Hameed

Thesis director: Hernán Alberto González Rojas
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Foreword

The aim of this thesis is to report the electroplastic cutting effect in machining

operations. The effect of electropulses has beed studied in drilling and round turning

processes. A mechanism was developed in the form of electrically isolated system for

each process to perform the investigations under safe mode. The main objective was

to study the machinability differences between conventional and electrically assisted

metal cutting processes.

For this, an electropulse generator was used to assist the machining processes

through electrical connectors between the workpiece and cutting tool. Before start

of experiments, it was made sure that the machine tools were completely isolated from

electricity to perform experiments under safe and controlled environment. The ex-

periments were conducted by using current pulses of short duration through different

metallic materials with different cutting parameters during cutting processes. The

results obtained then compared to study the machinability differences between con-

ventional and non conventional processes. The machinability of materials is analyzed

by comparing the power consumption, chip compression ratio and effect of current den-

sities during machining processes. It was found that the process efficiency improved

when current density passed through cutting materials. However, it was also noted

that the effect of high current densities changes the behaviour of materials which is

difficult to understand and for that it is necessary to study the numerical analysis and

metallography of metallic materials.

The metal cutting processes (drilling and round turning) were carried out in the

manufacturing laboratory of Universitat Politècnica de Catalunya (Spain). Finally, the

research will provide a valuable resource for scientists seeking background information

about electroplastic metal cutting processes.
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Chapter 1

Introduction

The phenomenon of electroplasticity has been demostrated to reduce the flow

stresses of deformed materials to attain better properties, deformability and machin-

ability by applying the electropulses (EPs) of short durations and high density in the

deformation zone, while at the same time microstructure improved and plasticity in-

creases significantly [1]. This influence of the electric current pulses on the plastic flow

is called the electroplastic effect. It was first discovered and reported by Troistkii and

Likhtman in 1963, investigating the influence of drift electrons on the flow stress in a

variety of metals [2].

H. Conrad et al. [3] reviewed the influence of an electric field or corresponding

current on the plastic deformation of metals and ceramics. They studied that high

density dc current applied either continuosly or as short duration pulses can reduce the

flow stress and significantly increase the plastic deformation rate in metals, but more

importantly retarted cavitation and grain growth. Hui et al. [4] investigated the effect

of EPs on dislocation mobility and demonstrated that the electropulsing treatment

can decrease dislocation tangles and enhance dislocation mobility. H. Conrad et al. [5]

showed that the dislocation movement leads to the modification of the material’s lat-

tice, changing the dimensions of interstitial gaps. Such lattice variation brings changes

in the mechanical properties of material.

Electroplastic effects

The mechanism about electropulsing on the microstructure of materials is not very

clear. Although the researches on electroplasticity phenomenon are fruitful but still

there are some important issues concerning the side effects such as thermal, pinch and

skin effects, electron wind effects and thermal compressive stress occur in concert with

the direct effect caused by the electrical current. The role of these effects is an impor-

tant issue in electroplasticity.
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Skin and pinch effects:

The skin effect is associated near a specimen surface when a high frequency current

is applied. The depth δ of skin effect can be calculated as suggested by Okazaki et

al. [6]:

δ =

(
π · f · µ

ρ

)−1/2

(1.1)

Where f is frequency of pulses, µ is permeability, and ρ is the resisitivity of ma-

terial. Conrad and coworkers [7] investigated that the current distribution is uniform

throughout the cross section of material rather than at the surface. The pinch effect

occurs by applying high current pulses producing radial compressive stress which can

be estimated as follows:

δ = ν · µ · J2 · a
2

2
2 (1.2)

Where µ is the Poisson’s ratio, a is the specimen radius and J is the current den-

sity. Okazaki et al. [6] found that the contributions from the skin and pinch effects

associated with current pulses are quite small compared with the total stress changes

due to the plastic deformation of materials. However, these stresses can enhance the

atomic mobility and reduce the strength of obstacles opposing the dislocation motion.

Heating effects :

The heating effect is ascribed to Joule law. The average temperature rise by Joule

heating effect can be regarded as adiabatic due to very short time during electroplastic

treatment (EPT). The thermal effect of EPs plays an important role in the reduction

of deformation resistance and improvement of plasticity [6]. The equation for single

current pulse which can produce adiabatic temperature rise can be written as follows:

∆T =
ρJ2tp
cpd

(1.3)

Where ρ is the total resistivity, tp is the pulse duration, J is the current density, cp
is the specific heat and d is the density of material.

Tang et al. [8] observed that an adequate thermal effect resulting from the Joule

heating effect of EPT is necessary to increase the nucleation rate of recrystallization.

Hui et al. [9] stated that When EPs are passed through the metal specimen, the tem-

perature rise is higher in the area with defects than those without defects due to in-

homogeneous resistivity in the metal. This inhomogeneous rise of temperature causes

inhomogeneous thermal expansion and the defected area suffers compressive stresses

as compared to area without defects.

Due to very short duration of EPs, the material particles undergo heavy stress

impact [10]. Because of increase of current density, a higher temperature would be
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produced and hence maximum stresses would be produced. Then, based on the hight

rate heating of EPs, the maximum thermal stress suggested by Tang et al. [11] can be

calculated as follows:

σmax = E · α ·∆T (1.4)

where E is Young’s modulus and α is the coefficient of thermal expansion.

Jiang et al. [12] studied that as compared to conventional heat treatment, the EPT

can increase sub grain growth speed by improving climb velocity of dislocation due to

enhancement of atomic diffusion, which is resulting from the coupling action of thermal

and athermal effects. They also observed that at low temperature, the recrystalliza-

tion does not occur even with the coupling of thermal and athermal effects because

Joule heating effect is not enough. The exact mechanism of athermal effect is still not

very clear and there is possibility that it results from additional force of electron called

electron wind as explained below.

Electron wind effects:

The drift electrons pushed on dislocations when high density EP have passed

through the specimen, the force is called electron wind force which is proportional to

the current density. The electron wind force for metal single crystals can be estimated

by the following equation [6].

Few = eneJ

(
ρ

ND

)
(1.5)

Where Few is electron wind force per unit dislocation length, (ρ/ND) is the specific

resistivity per unit dislocation length, ND dislocation density and ne is the electron

density.

The tremendous force is impacted due to very short duration of EPs which further

enhances irregular speed of atoms based on thermal effect. As the electron wind force

increases the higher athermal effects will be induced due to higher values of current

density [13]. The athermal effects strongly depend on the electrical parameters such s

frequency f, pulse duration tp and high current density J. The increase of these param-

eters not only enhancing athermal effects but also increases the thermal effects [12].

Qing et al. [14] observed that EPs enhance recrystallization due to the joint action

of the accumulation and annihilation effects at relatively low temperature. They pro-

posed that the electron wind force accumulates dislocations which form the coarse

grain boundaries. The coupling of the thermal and athermal (electromigration) effects

annihilate dislocations. Hence, effect of EPs consist of two parts: the accumulation

effect induced by the electron wind force and annihilation effect caused by the coupling

action of the thermal and athermal effects.



18 1. Introduction

Conrad and coworkers [3] reported that increase of material plastic flow is found

mainly by the direct effect of the drift electrons on dislocation motion. The electron

wind force reduces dislocation density and increase the mobility of dislocation which

enhances the nucleation rate of recrystallization. Hui et al. [9] reported that EPT

enhances the migration of atoms and minimizes the strength of obstacles which op-

pose dislocation motion. The low residual dislocation density within the newly formed

grains shows that stored energy is decreased. They also noted that the retardation

of subsequent grain growth is due to the reduction in driving force for the growth of

newly crystallized grains and hence finally smaller crystallized grains can be obtained.

Molotskii and Fleurov [15] observed that electron wind force is too small to produce

plastic deformation in the material during EPT. They reported that the magnetic field

induced by EPs is the major reason for the occurrence of electroplasticity phenomenon.

Although the contributions of side effects and electron wind force are negligible due

to low temperature of EPT. Hence an adequate thermal effect from Joule heating is

necessary for substantially accelerating recystallization in materials subjected to EPT.

oxidation reduction:

Rufei et al. [16] proved that electropulses plays a vital role in improving the surface

finish by reducing the surface oxides during EPT. Toe et al. [17] proposed that oxidation

can be expressed as, (
∆W

A

)n
= Kt + C (1.6)

Where ∆W is the mass difference before and after oxidation, A is the area, n is the

index number of oxidation rate, kn is the coefficient of oxidation velocity, t is the time

and c is the constant.

The Eq. 1.6 shows that the metals will have more oxidation on the surface at high

temperatures for longer time. Thus, the time for metals at high temperature should

be reduced and eventually, EPs can decrease the heat treatment time of the process.

The role of the side effects such as thermal, pinch and skin effects is an important

issue but still they are far from explaining the observed phenomenon. Several mecha-

nisms have been proposed to explain the combined thermal and athermal effects arising

from electropulsing.

Mechanisms of electroplasticity

The mechanism of electroplasticity is mainly based on the effect of electric current
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on dislocation propagation. Xu et al. [18] proposed that the dynamic recrystallization

occurs due to the combined thermal and athermal effects arising from electroplasticity

at relatively low temperature. The momentum from electrons gives an additional

high energy input which enhances the propagation of dislocations. Jiang et al. [19]

indicated that propagation of dislocation climb into sub grain boundaries is due to the

substantial increase in the atomic flux resulted from the coupling action of the thermal

and athermal effects as can be described by the following equation:

Jt =
pi ·G · b ·Dl

(1− ν) · k · T
(1.7)

Ja =
2N ·Dl · Z∗ · e · ρ · f · jm · tp

(1− ν) · k · T
(1.8)

J = Jt + Ja =
pi ·G · b ·Dl

(1− ν) · k · T
+

2N ·Dl · Z∗ · e · ρ · f · jm · tp
(1− ν) · k · T

(1.9)

Where J is the total flux of atom under EPT, Jt is the thermal atomic flux of atom,

Ja is the flux of atom by athermal effect, G is the shear modulus, b the burger vector,

ν is the Poisson ratio, N is the density of atom, Z is effective valence of the Mg ion, e is

the charge on electron, ρ is the electrical resistivity, k is the Boltzmann constant, T is

the absolute temperature, Dl is the lattice diffusion coefficient, jm is the peak current

density, f is frequency and tp is the duration of EPs.

Accordingly, the thermal effects can be expressed by high rise of temperature due

to Joule heating effect and athermal effect results from tremendous force between elec-

trons and atoms (electron wind). The Eq. 1.9 shows that by increasing f, tp and jm
not only increases the athermal effect but also increases the thermal effect, because

of increasing jm , f and tp results in large joule heating effect. Thus, the temperature

is an important factor for the atomic flux and accelerating the recrystallization be-

haviour. There is a possibility that without the aid of thermal effect, the contribution

of athermal effects to accelerate dislocation climb and sub grain growth is so small that

recrystallization does not occur during EPT [1].

Generally, during plastic deformation of material, the distribution of defects such as

microcracks, cavity and void is not same and electrical resistivity is higher in the area

with defects than that without defects. When the high density EPs are passed through

the metal, the change of temperature is higher in the area with defects because of the

joule heating and thermal compressive stresses. Accordingly, thermal and athermal

effects are higher in the area with defects because of the big regional resistivity and

strong influence of the the current pulses. This is termed as the ”Selective effect”

of electroplasticity [20]. During electropulsing, the influence of thermal and athermal

effects on compressive stress variation gives rise an additional driving force as follows:

∆P = Pth + Path (1.10)
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Where,

Pth =

(
2a ·∆S · gradT

ϕ

)
(1.11)

Path =

(
ρD

ND

· e · ne · j
)

(1.12)

The Eq. 1.10 can be written as;

∆P =

(
2a ·∆S · gradT

ϕ

)
+

(
ρD

ND

· e · ne · j
)

(1.13)

where ∆S is the difference in the entropy between the grain boundary and crystal

(approximately equal to entropy of melting), ϕ is the atomic volume, 2a is the thick-

ness of the grain boundary, gradT is the temperature gradient, ρD/ND is the specific

resistivity per unit dislocation length, ne is the electron density, ND is the dislocation

density, and j is the current density.

The results from Eq. 1.13 indicated that by increasing current density j, the sub-

stantial thermal and athermal effects are produced which increases the velocity of

moving boundaries during EPT at relatively low temperature.

Furthermore, the EPs can change the physical properties of materials by chang-

ing the phase transformation due to difference in crystal structures. Hui et al. [21]

concluded that fine and homogeneous microstructures can be obtained when the mate-

rials are treated by EPs. The electropulsing treatment tremendously accelerates phase

transformation in two stages [22]: The first stage is quenching from supersaturated

state approaching the final stable state and the second stage is upquenching from the

final stable state to a higher temperature state. They investigated that as compared to

conventional processes, the phase transformations are faster in the way of quenching

than the reverse phase transformation in upquenching during EPT. The mechanism of

electropulsing induced phase transformation from the point of view of Gibbs free en-

ergy consists of various parts: chemical Gibbs free energy, strain energy, surface energy,

the Gibbs free energy induced by crystal orientation, the Gibbs free energy induced by

EPs and so on as follows:

∆G = ∆Gchem. + ∆Gstress + ∆Gsurf. + ∆Gorient. + ∆Gep + ...... (1.14)

From the thermodynamic point of view, the chemical Gibbs free energy, ∆Gchem. is

considered as the main part of driving force. The strain energy, ∆Gstress induces various

internal deformation energies that may be available due to thermal stress during solidi-

fication of melt and external deformation energies. EPs increase the Gibbs free energy,

∆Gep which ultimately increases the total driving force for the phase transformation.

Zhang et al. [23] reported that during electropulsing new structural distortions such as
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vacancies and dislocations are produced in the material which reduces the Gibbs free

energy, ∆Gep due to the interaction between electrons and dislocations and vacancies.

Accordingly, the Gibbs free energy, ∆Gep for the reverse transformation are also re-

duced.

Hence, due to the increase of current density jm, an adequate thermal and ather-

mal effects are produced due to the increase of Path and Pth. The contribution of

thermal effects resulting from Joule heating effect of EPT should be sufficient to en-

hance athermal effects resulting from movement of electrons. Consequently, the phase

transformation occurs due to high stored energy and faster grain boundary growth at

relatively low temperature. Despite the recent progress, the mechanism of electropuls-

ing on the phase transformation, electromigration and mechanical and metallurgical

variations is still inadequate. Further systematic studies are required to explain the

influence of current pulses on these phenomena.

Moreover, electroplasticity is one of the most effective ways to simplify the man-

ufacturing processes while enhancing the properties of final product. Yao et al. [24]

presented that the wire drawing force and ultimate tensile strength are significantly

reduced while ductility and surface quality improved by applying current pulses in wire

drawing process of an austenitic stainless steel. Tang et al. [8] [25] demonstrated that

electroplastic process can decrease the drawing stress by about 20-50 %, increase the

plasticity and improve the surface quality in the cold drawing of stainless steel wire.

They also described that the tensile strength and resistivity of the wire have decreased

which lead to a considerable reduction of the drawing force [26]. Numerous studies have

proved that electroplsaticity has a direct industrial impact as reported by Xu et al. [13]

that the phenomenon of electroplasticity improves the ductility and surface quality of

AZ31 Mg alloy strips during rolling process by releasing the intensity of stress induced

by twinning and slip of the coarse grains. Hui et al. [9] studied the effect of high

density EPT on formability of TC4 titanium alloy sheet and the experimental results

indicated that electropulsing significantly changes the mechanical properties of metal

sheet by reducing the yield stress upto 19.8 % and elongation is increased by 35 %.

They also found that due to the effect of EPs in titanium alloy sheets, the dislocation

tangles decreased and dislocation mobility enhanced with maximum current density of

7.9 kA/mm2 and pulse period of 110 µs [4].

Electroplastic effect on power consumption

Reduction in energy consumption can contribute to improve the manufacturing

quality during material removal processes. In drilling process, the material removal

rate (MRR) is greatly influenced by cutting speed, feed rate and drill diameter and the

energy consumption decreased with increase in MRR [29]. Therefore, if it is desired

to increase the productivity for a given material, then the cutting speed, feed rate,
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tool geometry and tool material should be selected properly to achieve optimum drill

performance.

The investigations showed that the MRR plays a decisive role in determining ma-

chine energy consumption. When the MRR increased, the energy required by machine

reduced and its efficiency increased [30]. Simoneau et al. [31] realized that by increas-

ing spindle speed and feed rates, MRR increases which can lead to an overall energy

consumption decrease. Bhattacharya et al. [32] investigated the effects of cutting pa-

rameters on power consumption during high speed machining of AISI 1045 steel. They

found that cutting speed was observed to be the most significant factor to reduce the

power consumption with a contribution of 77.4%, followed by depth of cut (13.2%).

Fernandez-Abia et al. [33] analyzed the effect of high cutting speeds over cutting forces,

surface quality and chip geometry during turning process. They concluded that when

the cutting speed increases, the three force components reduce and then they increase

again with cutting speed as shown in Fig. 1.1. They also observed that the main com-

ponent (tangential component) of cutting forces reduces at high speeds, which implies

less power consumption and less stress and deformation in cutting tool. While, the

chip thickness is significantly less, which implies low chip compression ratio and higher

shear angles.

Figure 1.1: Evolution of cutting forces with cutting speed.

[26]

The specific cutting energy (SCE) is a function of cutting power and MRR being

strongly influenced by cutting parameters. The higher the MRR for the same cutting

power, the better the power consumption for cutting, which means the lower SCE [34].

Mativenga et al. [35] presented that by selecting cutting conditions such as feed rate,

cutting speed and depth of cut in turning process, the reduction in energy foot print is

about 64% compared to using recommended cutting data from tool suppliers. Silva et
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al. [36] evaluated that the cutting forces increase drastically with the increase in feed

rates, while the shear stress tends to reduce as feed rate is elevated during machining

of AISI 1045 steel. Additionally, they found that the shear angle decreases and chip

deformation increases as the chip compression ratio is elevated as shown in Fig. 1.2.

Mori et al. [37] verified that in drilling process, the power consumption is decreased

by increasing the feed rate and cutting speed within a value range which does not

compromise the tool life. Yoon et al. [38] identified the energy consumption and man-

ufacturing cost behavior in terms of the process parameters in drilling. They found

that fast machining process can reduce the energy consumption because of decreased

process time and only 35% of manufacturing cost can be saved. Hamade et al. [39]

highlighted the benefits and challenges associated with drilling holes in aluminium by

using aggressive combination of speeds and feeds in reducing the specific cutting power

(and drilling forces) while removing substantial amount of material.

Figure 1.2: Experimental shear plane angle and chip deformation versus chip compres-

sion ratio.

[36]

Electropulsing as an instantaneous high energy input method, is recognized as one

of the most important techniques in improving the machinability of material by re-

ducing cutting resistance in metal cutting processes. The electrons exert a push on

dislocations which is named as electron wind force. The electron wind force reduces

the dislocation density and enhances the mobility of dislocation. In addition, higher

current density pulses also increase the mobility of atoms and reduce the strength of

the obstacles opposing dislocation [4]. Electroplasticity has demonstrated that it can

improve the mechanical properties of material. Hui et al. [20] showed that electoplas-

ticity can increase the strength and maintain the required high ductility by increasing

the elongation of material. The effect of high density EPT not only heals the primary

defects but also decreases the yield stress and yield to tensile ratio. The decrease in

yield stress and yield to tensile ratio is helpful for increasing the formability and de-

creasing the spring-back to control the dimensional accuracy of sheet metal parts as

shown in Fig. 1.3 [9].
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Figure 1.3: True stress-true strain curves of specimens A, B and C.

[9]

Zhang et al. [40] found that the ultimate tensile strength was decreased and elon-

gation ratio was increased with the application of EPs. Since, the yield stress and

ultimate tensile strength have been decreased due to EPT which could be the reason

why SCE has been decreased. Zhang et al. [41] also proved that cutting forces and

hardness decreased and surface roughness improved in turning of specimens previously

assisted by EPs of different frequencies as shown in Fig. 1.4.

Figure 1.4: cutting force and Surface roughness under different frequency of EPT.

[41]

Recently, Baranov et al. [42] have discovered that the effect of pulse current on
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metal cutting area reduces the static force of cutting and hence the plastic deforma-

tion of metals. Sanchez et al. [43] stated that the power consumption and the SCE are

decreased when the turning process is assisted with EPs as shown in Fig. 1.5. Also

they showed that surface roughness can be improved while hardness decreased with

EPs.

Figure 1.5: cutting force and Surface roughness under different frequency of EPT.

[43]

The Fig. 1.5 showed the reduction in power consumed which is the difference be-

tween the net active power of conventional turning process and the net power of a

EPs assisted turning process (Wn −Wne). They performed the experiments with 200

µs pulses, 100 and 300 Hz frequencies for SAE 1045 and 4140 steel. They found that

the assisted turning process is more efficient than the conventional turning, especially

when higher values of frequency and greater pulse durations are induced. However,

the energy saved dramatically decreases when the combination of higher values of fre-

quency and shorter pulse duration are used.

Electroplastic effect in microstructure evolution

In material removal process, the chip undergoes severe plastic deformation under

high strain rate and temperature. Pu et al. [44] experimentally observed the chip

morphology as a function of cutting speed in AISI 1045 steel based on the criteria

of minimum total energy consumed in the primary and secondary shear zone. They

analyzed that when the cutting speed is increased, there is an onset of severe plastic

deformation in the secondary shear zone and onset of microstructural softening event

occurs as the temperature exceeds the critical values for dynamic recrystallization or

phase transformation. At very high temperatures and low strain rates, dislocation den-

sity increases and grain growth becomes predominant to get fine grains, where complete

dynamic recrystallization took place [45]. Sun et al. [46] observed the microstructure
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evolution in cutting chips at different cutting speeds during machining and investigated

that the morphology of chip changes from continuous chip to regular and irregular chip

segments by increasing cutting speed. Also, the deformation twinning was observed

inside the segment which is responsible for hardening inside the segment.

Hui et al. [21] examined that electroplasticity can be considered as an efficient

method to refine grains by means of phase transformation and recrystallization in

specimens of as-cast TiAl alloy and cold-rolled TA15 sheet when treated by high den-

sity electropulsing. The optical microstructues of the TA15 before and after treatment

are shown in Fig.1.6. It is shown that recrstallization occurs in the sheets after EPT.

The crystallized grains are very fine and uniformly distributed at lower temperatures

compared with conventional heat treatment. Xu et al. [14] investigated that EPs accel-

erated the dynamic recrystallization at relatively low temperature and high strain rates

due to two effects: the accumulation effect induced by the electron wind force which

accumulates dislocations and leads to the formation of coarse grain boundaries and

the annihilation effect induced by the coupling of thermal and electromigration effects

annihilates dislocations and leads to the rearrangement of dislocation structures.

Figure 1.6: Optical microstructures of TA15 sheets: (a) Cold-rolled sheet; (b) Elec-

tropulsed sheet.

[21]

Zhang et al. [47] mentioned that various kinds of defects, such as large amounts

of dislocation tangles and lattice distortions with many dislocation arrays and nodes

were introduced from previously cold working process in the original samples as shown

in Fig. 1.7a. After the EPT, most of dislocation arrays became straight and relatively

stable state with less dislocation nodes was achieved as shown in Fig. 1.7b
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Figure 1.7: (a) The typical TEM images of the original samples and (b) the samples

after electropulsing

[47]

Jiang et al. [19] studied the influence of EPs on microstructure of cold rolled

AZ91 Mg alloy strips and examined that fine microstructure of quasi-single-phase-

recrystallized grains can be obtained at relatively low temperature. The fracture char-

acteristics of cold rolled AZ91 specimens are shown in Fig.1.8.

Figure 1.8: SEM fractographs of the samples after EPT: (a) cold-rolled sample, (b)

100 Hz-EPT sample, (c) 110 Hz-EPT sample and (d) 133 Hz-EPT sample..

[19]

When the frequency of EPT was increased to 110 Hz, the ductile fracture was ob-

served with numerous dimples and tear ridges. By increasing the frequency to 133 Hz,

some cleavage planes known as quasi-cleavage were found on fracture surface. Hence,

recrystallization increased because of increase of EPT and the intensity of the basal tex-

ture of sample decreased gradually until recrystallization completed. They proposed

that EPT subsequently increases the nucleation rate of recrystallization and atomic
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diffusion due to the coupling of the thermal and athermal effects.

Zhang et al. [41] determined that with increasing frequency of electropulsing, both

twins and dislocation density were reduced and decomposition and precipitation of β

phase were tremendously accelerated in the AZ91 alloy. The optical micrographs of

non EPT specimens and the EPT specimens with various frequencies of EPs are shown

in Fig. 1.9. Many deformation twins were observed inside the grains of the cold rolled

specimens of AZ91 alloy in Fig. 1.9 (a) without EPT and grain size was approximately

77 µm. When the frequency of electropulsing increased, the grain size and number of

twins decreased. The average grain size reduced to 68 µm, 63 µm and 35 µm with

frequencies of 209 Hz, 253 Hz and 294 Hz respectively in EPT specimens. A relatively

homogeneous microstructure of equiaxed grains was observed at frequency of 294 Hz

which implied that the EPs of high frequencies greatly accelerated recrystallization of

specimens.

Figure 1.9: Optical micrographs of (a) non-EPT, (b) 209Hz-EPT, (c) 253Hz-EPT, and

(d) 294Hz-EPT

[41]

All these studies have reported that the resistance to plastic deformation decreases

significantly by EPT. They also indicated that the drift electrons help dislocations to

overcome the resistance from obstacles, thereby resulting in a load drop. The exper-

iments verified that yield strength, utlimate tensile strength, ductility, surface rough-

ness, resistivity and elongation depend on the type of material and current intensity

flowing through the material. Most of the studies are in agreement that mechanical

properties and phase transformation occur due to the coupling of thermal and athermal

effects. However, athermal effects on these properties remain under investigation.
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Challenges of electroplastic manufacturing processes

There are various challenges that are still ahead before the successful application

of electroplastic manufacturing processes. Some are listed below:

Development of electropulsing mechanism:

During electropulsing treatment, the thermal and athermal effects arising from EPs

facilitate the manufacturing process. It is important to note that the values of thermal

and athermal effects need to clarify the real reason for electroplastic effect and provide

a theoretical knowledge to use electrical energy more efficiently.

Exploitation of new manufacturing processes:

More experimental and theoretical studies are required pertaining to manufacturing

processes such as electroplastic deformation in drilling, turning and milling processes.

These are important for the continuous sustainability of the technology. Although the

progress of electroplastic manufacturing processes has been made in the past few years

to understand the mechanism of electropulsing, further it needs to know how to pass

large EPs to the deformation zone. The power sources are required to increase the

process efficiency, unless the manufacturing cost should be controlled.

The main objectives of this research are listed in the following section.

1.1 Objectives

The main objective of this research work is to study the phenomenon of electro-

plasticity in various metal cutting processes. The constant current pulses of short

duration are induced in the cutting zone with minimum possible plastic deformation

that could improve the machinability of materials. The metal cutting processes studied

are: drilling process and round turning process. All of theses processes are electrically

assisted with short pulse duration and the results obtained then compared with con-

ventional processes to study the machinability difference. To accomplish the main goal,

it is proposed to set the following specific objectives.

• Design and develop the generator of short duration EPs to discharge multiple

positive pulses and minimize the thermal effects (Joule effect) during machining

processes.

• Electrically isolate the tool from the workpiece for each machining process during

experiments for safety considerations.
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• The electronic Watt meter was designed and developed to measure the nominal

power consumption during each cutting process.

• Study the differences are presented in the conventional drilling process when

compared with EPs assisted drilling process. The aim here is to analyze the

variations of power consumption, SCE, chip compression ratio ξ, shear plane

angle φ and thermal compressive stresses for conventional and assisted processes.

• Examine the variations of SCE, chip compression ratio ξ, shear plane angle φ

and effect of high current densities for different materials during conventional

and EPs assisted round turning processes.

1.2 Scope

Since, the main of research presented in the thesis is to improve the machinability

of conventional metal cutting processes by using effect of current pulses, the scope of

the study to accomplish different activities throughout research work is as follows:

a. The EP generator used to assist conventional cutting processes provide maximum

current intensity of 140 A, frequency ranges from 100 to 300 Hz and duration of

current pulses from 50 to 250 µsec.

b. Design and manufacture the electric Watt meter to record the power consumption

during machining operation.

c. Design and manufacture electrical isolation system and electrical connectors to

connect the workpiece and ctting tool with EP generatore for each cutting process.

d. The electrical parameters like frequency discharge and duration of short pulses are

monitored by oscilloscope and frequency meter.

e. The mechanical power of motor for particular process is measured at different load-

ing conditions to estimate the effective cutting power.

f. The machinability of material will be analyzed by using different mechanical pa-

rameters when the cutting process is assisted with current pulses compared with

conventional process. The parameters analyzed for each process are:

• Cutting power consumption

• Specific cutting energy, SCE

• Thermal stresses

• Chip compression ratio ξ

• Shear plane angle φ
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1.3 Thesis organization

1. Chapter 2: This chapter reported the effect of EPs in drilling process. The influence

of EPs has been investigated on cutting power consumption, SCE, chip compression

ratio ξ, shear plane angle φ and thermal stresses. The results are then compared

with conventional drilling process to study the machinability differences for different

materials.

2. Chapter 3: In this chapter, the machinability of materials has been studied by com-

paring the conventional turning process with electrically assisted turning process.

The impact of high current density has been investigated on SCE, chip thickness,

chip compression ratio ξ and shear plane angle φ and compared with conventional

turning process.

3. Chapter 4: In this chapter, the general discussion is carried out about the results

and limitations presented in the thesis.

4. Chapter 5: This chapter explains the main conclusions of the thesis and the rec-

ommendations suggested for future work that could be achieved in the following

years.

1.4 Article Authorship and conference

Chapter 2 has been published in International Journal of Advanced Manufacturing

Technology in Feb 2016. The article composition was done by Saqib Hameed. The

Experimental procedure was performed by Sqib Hameed, Dr. Antonio Sánchez and

Amelia Napolez. The current pulse generator and electric Watt meter were designed

and manufactured by Dr. Hernán Alberto González Rojas. The article was reviewed

for publication by Dr. Hernán Alberto González Rojas and Dr. Antonio Sánchez.

(http://dx.doi.org/10.1007/s00170-016-8562-z)

Conference:

”An influence of electropulses on power consumption during drilling process” IMECE2016-

65328, ASME 2016 International Mechanical Engineering Congress and Exposition,

November 11-17, 2016, Phoenix, Arizona, USA





Chapter 2

Electroplastic cutting effect in

drilling process

The aim of the present study is to report the use of non conventional material

removal during metal cutting process. When the electropulses (EPs) are applied to

metals undergoing plastic deformation, the deformation resistance reduces dramati-

cally and plasticity increases at the same time. This influence of EPs on the plastic

flow is called the electroplastic effect. Traditional metal cutting processes such as turn-

ing, drilling and milling rely mainly on the use of heat associated with cutting parts,

which presents the largest expenditure of energy. Chip formation during machining is

greatly influenced by cutting speed, feed rate and tool geometry. Selecting properly

these parameters for a particular machining operation is very important to reduce tool

wear and breakage as well as to achieve high machining efficiency. Speeds and feeds

that are too high or too low, can reduce the efficiency of the whole operation [28]. In

machining, optimum tool performance is achieved by selecting optimum cutting speed,

feed, tool geometry and tool material depending upon workpiece material and quality

requirements of machined surface.

Energy saving is considered as one of the most important factors in manufactur-

ing industry. In drilling process, elevated shear stress induced by the cutting tool in

the chip formation zone should exceed the strength of the work material. The dis-

tribution of these stresses must be such that the work material shows the strain at

fracture as small as possible [27]. Geometrically, the surface is seen to have large num-

ber of minute irregularities (peaks and valleys) lead to stress concentration, which in

turn induces residual stresses that influence the fatigue strength of critical parts be-

sides causing harmful deformation. Therefore, surface quality is very important and

its proper evaluation is of utmost interest as described by Astakhov [28]. Moreover,

the main objective of machining is to separate a certain layer from the workpiece with

minimum possible plastic deformation and thus energy consumption [27]. Therefore,

energy spent on plastic deformation in drilling must be considered as wasted and EPs

assisted drilling process is a novel technique that could reduce the power consumption.
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In this research, a micropuls generator was used to assist the drilling process. A

constant current intensity was induced in the cutting zone with a minimum possible

plastic deformation that could improve the plasticity of material during the drilling

process. The impact of EPs are analyzed on the power consumption, specific cutting

energy, SCE and thermal stresses for different metallic materials. The ultimate objec-

tive is to study if differences are presented in the conventional drilling process when

compared with the EPs assisted drilling process.

2.1 Methodology

An aeronautical aluminium alloy and a commercial steel alloy were chosen as work-

piece materials for test samples. The specimens of aluminium alloy were cylindrical

bars with a length of 20 mm and a diameter of 25 mm. Whereas the dimensions of steel

alloy samples were 80 mm x 40 mm x 15 mm. The chemical composition of metallic

materials is shown in Table 2.1.

Table 2.1: Material chemical composition.

7075 aluminium T6
% Al % Zn % Mg % Cu % Fe % Si % Mn % Cr % Zr

87.2 6.1 2.9 2.0 0.5 0.4 0.3 0.28 0.25

1045 carbon steel
% C % Ni % Mo % Cu % S % Si % Mn % Cr % P

0.45 0.17 0.05 0.35 0.035 0.26 0.60 0.10 0.02

Drilling process was carried out by using Huvema HU Profi Popular drilling ma-

chine. The tool was held by a standard tool holder. The cutting tool used was twist

drill of high speed steel (HSS) with point angle of range 1160-1200 and helix angle of

200-300. The drill diameters were 3 mm and 4.5 mm. The polymer material was used

to electrically isolate the workpiece and tool from drilling.

In drilling, the parameters used are spindle speed of 1050 rpm and a range of feed

velocity is from 0.2 to 0.4 mm/s. The nominal power consumption was continuously

measured by a self made monophasic energy analyzer linked to the motor of the ma-

chine. The sampling rate was analogic with storage after every 0.5 s. A self made short

duration electric pulse generator was developed to discharge multiple positive pulses.

The parameters of current pulses such as voltage, frequency and pulse duration were

monitored by an oscilloscope, as listed in Table 2.2.

A schematic illustration of electrically assisted drilling process is shown in Fig. 2.1.
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Table 2.2: Electropulsing operation parameters.

Material
Current intensity Pulse duration Frequency Average output power

(A) (µs) (Hz) (Watts)

7075 Al.
140 250 300 300

1045 Steel

The workpieces were cut by facing process to make sure the surface was smooth.

The carbon clamps were attached on one side with round smooth element in the tool

holder and on other side connected with generator through wire. The workpiece was

also connected with generator through wire. Then, drilling operation was performed

without EPs (conventional process). Subsequently, the same procedure was performed

but assisted with EPs. The EPs were induced when the drill was already in contact

with the material, in order to avoid sparking (electroerosion). Later, the power con-

sumption and SCE of both processes have been compared. Finally, the removed chip

was thoroughly polished and prepared to measure the chip thickness with an optical

microscope.

2.2 Results and Discussions

2.2.1 Current density and cutting configuration

In a material removal process the large strains are imparted to the chip at the

primary deformation zone [48]. For this reason it is necessary to estimate the current

density induced in this zone. The current density is defined as current intensity which

goes through the cross-sectional area of the material. Here it is assumed that the

current flows through the tool-chip contact length and then goes across the shear

cutting area, making a close electric circuit with the workpiece. The shear cutting area

is defined by the segment OA and the length of the cutting edge b, as shown in Fig.

2.2.

The nominal chip thickness or undeformed chip thickness a can be estimated as:

a =
f

2
· sin(

ϕ

2
), (2.1)

where f is the feed rate (mm per second), ϕ is the point angle (◦).

Additionally, the segment OA is described by:

OA =
a

sin(φ)
, (2.2)

where φ is the shear plane angle (◦).



36 2. Electroplastic cutting effect in drilling process

Figure 2.1: Schematic of electrically assisted drilling process.

Then, the nominal cutting width is defined by:

b =
0.85·dr

2

sin(φ
2
)
, (2.3)

where dr is drill diameter (mm).

Consider the shear angle plane of drill bit to estimate the current density Je at

cutting edge of drill. Therefore, the current density can be calculated by the following

equation

Je =
2 · I · sin(φ)

0.8 · f · dr
, (2.4)

where I is the current intensity (A).

The shear plane angle φ proposed in [49] can be expressed geometrically by chip

compression ratio ξ as
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Figure 2.2: Graphical model for the determination of uncut chip thickness.

φ = arctan

(
cosα

ξ − sinα

)
. (2.5)

Chip thickness coefficient defined as a ratio ξ = a1/a, where a1 is deformed chip

thickness. α is the rake angle which is also helix angle in drilling. The value of helix

angle for drills under study is 30◦.

The chip removed by the drilling tool was encapsulated in resin. A conventional

polishing process was conducted until revealed the cross sectional area presented in

Fig. 2.3 (a). The average chip thickness was measured by capturing the images with

an optical microscope to calculate the area and the length of the chip in pixel and then

convert into mm with a calliper. The average chip thickness is defined as the quotient

between the cross sectional area of the chip and the chip length. Each value of chip

thickness is the average of ten measurements and the margin error is up to 8% of a

standard deviation estimation. The Fig. 2.3 (b) exhibits the zoom of the cross section

of chip used to calculate the chip thickness experimentally.
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Figure 2.3: (a) Cross sectional area of chip. (b) Zoom of a single chip segment.

The drill used during the experiments has not automatic feed rate configuration;

therefore it was necessary to estimate the feed velocity and the spindle velocity to be

able to calculate the feed rate f . An optical ON/OFF switch control with a timer

was used to measure the feed velocity. A metallic strip attached to the axle of the

drill was used to change the switch status. Subsequently, the feed velocity was defined

by the strip length and the time registered with the timer. The spindle velocity in

rpm was measured with a conventional tachometer. Table 2.3 gives the values of chip

compression ratio, shear plane angle and current density as a function of feed rate in

drilling for 1045 carbon steel and 7075 aluminium.

Table 2.3: Values of chip compression ratio ξ, shear plane angle φ and current densities

as functions of feed rates.

Material
Drill Feed rates Undeformed Chip Shear Current

dia chip compression angle density

thickness ratio

(dr) (f) (a) (ξ) (φ) (Je)

[mm] [µm/rev] [µm] [◦] [A/mm2]

7075 Al.
3 97.71 41.52 3.37 16.79 354

4.5 18.68 7.93 5.33 10.15 758

1045 Steel
3 48.17 20.47 4.37 12.61 544

4.5 51 21.67 4.53 12.12 329

It can be noticed that the shear angle φ decreases as the chip compression ratio ξ

increases. Also, the chip compression ratio ξ decreases with the increase of feed rate.

The chip compression ratio ξ can be considered as a measure of plastic deformation

of material [28]. The high values of chip compression ratio (low φ values) mean large

amount of strain in the shear plane. The results of chip compression ratio obtained

were comparable with those evaluated by Silva et al. [36] to study the machinability of

1045 carbon steel. By comparing the operating parameters with the present work, it



2.2. Results and Discussions 39

was observed that the difference in results was about 3%. Therefore, the values of chip

compression ratio and shear plane angle give an intensive amount of plastic deformation

at the shear zone. The current density increases with the decrease of feed rates during

electrically assisted drilling process as shown in Table 2.3. The effect of these densities

is presented in the section of thermal expansion to calculate the adiabatic temperature

rise and thermal stresses in the materials.

2.2.2 Thermal expansion

The high rise of temperature described by Joule heating effect is calculated to

determine the contribution of factor in the electrically assisted drilling process. Okazaki

et al. [6] observed that the thermal effect of electropulsing can reduce the deformation

resistance and improve the plasticity of material. They described the adiabatic rise of

temperature, ∆T for a single EP by the following equation;

∆T =
J2
e · ρ · tp · f
Cp ·D

, (2.6)

where Je is the effective current density, also called root mean square value of cur-

rent density, ρ is the resistivity, tp is the EP duration, f is the frequency discharge, Cp
is the specific heat and D is the density of materials.

Table 2.4: Properties of materials.

Material
ρ Cp E α D

(Ωm) (J/Kg◦C ) (GPa) (◦C−1) (Kg/m3)

7075 Al. 5.15× 10−8 960 71.7 21.6× 10−6 2810

1045 Steel 1.62× 10−7 486 206 11.5× 10−6 7850

To calculate the adiabatic rise of temperature, the properties of materials are shown

in Table 2.4. An adequate thermal effect resulting from the Joule heating effect of elec-

troplastic treatment is necessary to increase the nucleation rate of recrystallization [8].

The exact mechanism of athermal effect is still not very clear; however, there is possibil-

ity that it results from additional force of electrons exert on dislocations called electron

wind, the Joule heating effect and thermal stresses. Due to very short duration, the

tremendous force should be impacted which further enhances irregular speed of atoms

based on thermal effect. As the electron wind force increases, the higher athermal ef-

fects will be induced due to higher values of electron current density [13]. The defects

such as micro-crack, cavity and void can be produced in machining processes. Because

of these defects, the resistivity is higher in the area with defects than that without

defects. When the EPs are passed through the metal specimen, the temperature rise
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is higher in the area with defects than that without defects due to inhomogeneous re-

sistivity in the metal. This inhomogeneous rise of temperature causes inhomogeneous

thermal expansion and the defected area suffers compressive stresses as compared to

area without defects [35].

Then, based on the high-rate heating of EPs, the maximum thermal stress suggested

by Tang et al. [11] can be written as:

σmax = E · α ·∆T, (2.7)

where E is Young’s modulus and α is the coefficient of thermal expansion.

Table 2.5: Adiabatic temperature and thermal stress values.

Material
Drill diameter ∆T σmax
(mm) (◦C) (GPa)

7075 Al.
3 179 0.28

4.5 823 1.27

1045 Steel
3 942 2.23

4.5 345 0.82

When the current pulses of short duration passed through the specimen, the Joule

heating effect occurred in the specimen. Due to very short duration of EPs, the material

particles undergo heavy stress impact [10]. Because of the increase of current density, a

higher rise in temperature would be produced and hence the maximum stresses will be

increased during EPs treatment, as shown in Table 2.5. Then, higher thermal stresses

would be induced by increasing the current density, which is strong enough to accelerate

the motion of dislocations [5]. Accordingly, nucleation rate of recrystallization can

be increased by advancing the mobility of dislocations during EPs treatment [50].

Hence, electrically assisted processes play a vital role in the modifications of mechanical

properties of materials.

2.2.3 Power consumption

Energy consumption in machining processes is one of the key parameters that plays

an important role during cutting and is a function of cutting speeds, feed rates and

workpiece material [27]. Stephenson et al. [51] defined that the specific cutting power

also called SCE is the amount of energy spent to cut per volume of the work material

per unit time. It is often used to compare the machinability of different materials,

especially when relative tool life data are unavailable. Ekincioglu et al. [52] stated that
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efficient cutting process requires maximum cutting speed and minimum SCE. There-

fore, the SCE becomes a measure of cutting efficiency and a criterion as well. The SCE

is the sum of the energy consumed in the primary, secondary and tertiary deformation

zones [53].

The power consumption during the cutting process was measured by self made en-

ergy analyzer. The net active power Wn is determined by taking the difference between

the average power when the cutting tool is removing the material and the power when

machine is idle. In this section, the net power obtained in a conventional drilling pro-

cess is compared with a power obtained in electrically assisted drilling process. The

hypothesis is: the net power consumed in assisted drilling process is less than the power

consumed by conventional drilling process.

Table 2.6: Specific cutting energy and power consumption.
Drill diameter Feed rates Es Nc

Material (dr) (f) (SCE)

(mm) (µm/rev) (W.s/mm3) (W)

7075 Al. 3 12.91 7.55 12.03

(without EPs) 4.5 9.08 5.72 14.08

7075 Al. 3 11.94 5.49 8.05

(with EPs) 4.5 7.42 4.77 9.62

1045 Steel 3 21.94 4.16 11.29

(without EPs) 4.5 17.65 4.32 21.08

1045 Steel 3 22.45 3.94 10.96

(with EPs) 4.5 18.34 3.61 18.32

In Table 2.6 the values of SCE and power consumption as a function of feed rates

are presented for 7075 aluminium and 1045 carbon steel with pulse duration of 250 µs,

frequency of 300 Hz and drill diameters of 3 mm and 4.5 mm. All the values are the

average of ten measurements registered in each case during conventional and assisted

drilling processes. The margin errors represent the t-student distribution with a 95%

confidence interval.

Figure 2.4 shows the reduction in SCE and power consumption due to the appli-

cation of EPs during drilling process. The maximum reduction of SCE was observed

2.06 W s/mm3 for 7075 aluminium and the least was observed 0.22 W s/mm3 for 1045

steel with 3 mm drill diameter. Similarly, the maximum reduction of power consump-

tion was noted 4.46 W for 7075 aluminium with drill diameter of 4.5 mm and the

least was 0.33 W for 1045 steel with drill diameter of 3 mm. The use of pulses with

high frequency and large duration values shows a large reduction of SCE and power
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Figure 2.4: Specific cutting energy and power consumption for 7075 aluminium (a) and

1045 carbon steel (b).

consumption. These results show an improvement of the material machinability when

drilling process is assisted with EPs compared with the conventional drilling process.

Sood et al. [54] stated that SCE can be calculated as quotient of the net energy

and material removal rate. The material removal rate Qc is the volume of material

removed per unit time. In this particular case, it is estimated by a feed velocity which

crosses perpendicularly to the section of the material removed by the drill. Therefore,

the Qc (measured in mm3/s) is a function of cutting conditions and can be written as:

Qc =
π · d2

r

4
· Vf , (2.8)

where Vf is feed velocity (mm/s) and dr is the drill diameter.

Then, the SCE is the energy consumed per unit of volume of the material removed

and can be described as,

Es =
Nc

Qc

, (2.9)

where Nc (W) is the effective cutting power consumed during drilling.

The material’s machinability during EP assisted drilling process was determined

by comparing the SCE with respect to the conventional drilling process. To do that,

the SCE was calculated by Eq. 2.9, where the power consumption and the material

removal rates were measured experimentally, for both processes, conventional and as-

sisted drilling process. The material removal rate was previously estimated with Eq.

2.8. This equation has been recalculated for each measurement because of the dif-

ferences in feed rates between the conventional and the assisted drilling processes. To
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compare the assisted process with the conventional process, the percentage of reduction

rp in the SCE is evaluated. This reduction is defined as:

rp = 1− Es(assisted)

Es(conventional)
, (2.10)

In Table 2.7, the percentage of SCE reduction values are presented for 7075 alu-

minium and 1045 steel, calculated from Eq. 2.10 for drill diameters of 3 mm and 4.5

mm, 300 Hz frequency and 250 µs pulse duration.

Table 2.7: Specific cutting energy percentage reduction
dr Frequency Duration 7075 Al. 1045 Steel

(mm) (Hz) (µs) (%rp) (%rp)

3
300 250

27.3 9.9

4.5 16.7 16.6

The results showed that the current pulses of high frequency and large duration gave

a large decrease in SCE and cutting power consumption, Nc. The 7075 aluminium

presented a SCE reduction of approximately 27.3 and 16% and reduction in Nc of

about 33% and 31% with drill diameters of 3 mm and 4.5 mm respectively. Similarly

1045 carbon steel registered reduction of SCE of approximately 5.3 and 16.43% and

reduction in Nc of about 3 and 13.1% with drill diameters of 3 mm and 4.5 mm

respectively. Baranov et al. [39] discovered that plastic deformation of metals becomes

easier by superimposing pulse current on metal cutting area in drilling process, which

decreases the static force of cutting and increases the speed of cutting. Hence, due

to the thermal contribution of EPs, the deformation resistance decreases [38], which

ultimately decreases the SCE and Nc, so improves the plasticity of material during EP

assisted drilling process. However, the results are also in agreement with Sánchez et

al. [40], where the maximum reduction in SCE was 25% for EPs of 300 Hz frequency

and 200 µs in turning process.

2.3 Conclusion

The influence of the electropulses in the cutting material have decreased the re-

sistance of material to be plastically deformed, which ultimately reduces the specific

cutting energy and improves the plasticity of material during EP assisted drilling pro-

cess.

There is a correlation between chip compression ratio ξ , shear angle φ, feed rates,

and current density in EPs assisted drilling process. When lower feed rates are used

and subsequently, higher current density values are induced, the shear angle decreases
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and the chip compression ratio increases.

The specific cutting energy is reduced up to 27% in 7075 aluminium and 17% in

1045 steel when the drilling process is assisted with EPs. The electrically assisted

drilling process seems to have influence on improving the material machinability, but

further investigations need to be done with different EPs configurations to determine

the trends and contributions of each electrical parameter.



Chapter 3

Electroplastic cutting effect in the

round turning process

Machining of metals and alloys plays a crucial role in the manufacturing industry,

including the ultra precision machining of extremely delicate components [55]. Plastic

deformation of the layer being removed in the form of chip is the greatest nuisance in

metal cutting, i,e the energy required to remove the material as plastically deformed

chip should be minimized to achieve high process efficiency [56]. The cutting speed

influences the energy spent on the deformation of the chip through the temperature,

dimensions of the deformation zone adjacent to the cutting edge and velocity of defor-

mation. An increase in cutting speed leads to decrease of the plastic deformation in

the chip formation zone and this region of plastic deformation becomes smaller because

of increase of cutting speed [27]. Generally, in metal cutting processes, the reduction

in energy spent in metal cutting is of great importance, as only 30-50% of energy is

spent for useful work while 25-60% of energy consumed by cutting system is simply

wasted [57]. Therefore, the prime objective of the cutting process is to reduce this

energy to the lowest possible by selecting properly the tool material, machining regime

and process parameters.

Since, the energy consumption in machining processes is one of the key parameters

that plays a vital role during cutting and is a function of cutting speeds, feed rates

and workpiece material [31]. In turning of medium carbon steel, the SCE, the amount

of energy required for unit volume of material decreased when the feed and depth of

cut are simultaneously high [58]. Adam et al. [59] evaluated the influence of feed rates

and cutting speed on the thickness of chip being produced. They found that the chip

thickness decreased as the cutting speed and feed rates decreased. Moreover, Gui et

al. [60] studied the influences of uncut chip thickness on the cutting forces and SCE.

They investigated that increasing the uncut chip thickness increases the cutting force

while, SCE increases linearly when the uncut chip thickness decreases from 150 micron

to 10 micron.
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The physical phenomenon that govern the problem of material removal are complex.

Many approaches have been proposed for quantifying the flow stresses of material at

elevated strains and strain rates combined with temperatures during machining. Mer-

chant [61] is the first to develop an orthogonal cutting plane based on the principle of

minimum energy under the basic assumption that the deformation occurs in a single

cutting plane, producing a single discontinuity in the velocity field. The hypothesis of

a single cutting plane makes it difficult to include the effect of hardening by strain rate,

which is known to be significant factor in high speed deformation processes. Examin-

ing Merchant’s theory with respect to the prediction of cutting plane angle, Oxley [62]

proposed a new model of shear stresses parallel sides, based on direct observation of

chip formation. This model has many characteristics of the model developed by Mer-

chant but it introduces as novelty of strain hardening ad temperature effects in the

properties of material. Subsequently, Adibi-Sedeh et al. [63] extends the theory de-

veloped by Oxely to predict forces in different materials and Lalwani et al. [64] does

so to predict temperature by using Johnson-Cook (J-C) model. They found that J-C

model obtains better results in the prediction of forces amongst the different models

studied. Taunsi et al. [65] estimates the coefficients of the constitutive equation of J-C

used in the model of one dimensional cutting of two parts. Dudzinski y Molinari [66]

developed a thermomechanical model of orthogonal cutting for high speed machining.

Assuming that the hydrostatic pressure is constant in the primary shear zone and the

equation of motion is reduced to a single relationship by calculating inertial force. All

the aforementioned models of metal cutting considered plastic deformation as a quasi-

static process, assuming that the inertial forces due to plastic flow are negligible.

Becze et al. [67] noted that the adiabatic temperature rise presented considerable

heating of shear band in the specimen at elevated strain rates. They also indicated

that the temperature rise in the shear band will decrease the flow stress of material due

to constitutive laws. The plastic deformation starts when the material passes through

primary deformation zone and is sheared at a rapidly increasing strain rates until the

strain rate reaches its maximum value [68]. Lee et al. [69] studied the phenomenon

associated with large strain deformation in the primary shear zone by using particle

image velocimetry (PIV) technique. They examined that the shear strain rate increases

linearly with the cutting speed and the shear zone is narrower for higher shear strain

rates. Oxley et al. [70] determined that the plastic deformation zone is smaller for

lower rate of strain hardening materials to give a reduction in cutting force with cor-

responding increase in chip thickness ratio ξ, that is the material is removed with less

deformation. Higher strain rates and cutting speeds significantly reduce the energy

required to accomplish the process [71]. Since the sensitivity of material deformation

to micro defects increases with chip thickness, the energy required in removing unit

volume of material decreases [72]. Bakkal et al. [73] investigated that machining at high

cutting speed significantly reduces the SCE for material with low thermal conductivity

and high thermal softening. The electrically assisted turning process can be considered
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as a novel technique to reduce the plastic deformation in the deformation zone and

thus the energy consumption by optimizing cutting conditions during machining.

In the following sections, an experimental methodology is succeeded with several

experiments to record the electrical and mechanical parameters. A model of orthogonal

cutting was also developed to study the strain, strain rate and temperature distribu-

tions in the primary deformation zone.

3.1 Experimental set up

The turning process was carried out by using WEISS WMP280V-F round turning

machine. A tungsten carbide tool with a rake angle of 6◦ was used and held by stan-

dard tool holder to machine the metallic bars. The purpose of cutting edge angle is

to relieve the cutting edge to prevent rubbing the machined surface. The commercial

steel alloys (S235) and aluminium alloys (Al 6060) of 20 mm diameter were chosen as

workpiece materials for test specimens. The chemical composition of metallic mate-

rials is shown in table 3.1 and mechanical properties of materials are shown in table 3.2

Table 3.1: Material chemical composition.

Al 6060
% Al % Zn % Mg % Cu % Fe % Si % Mn % Cr

97.9 0.15 0.35 1.0 0.1 0.3 0.10 0.05

Steel S235
% C % N % Cu % S % Mn % Cr % P

0.17 0.012 0.55 0.04 1.4 0.3 0.04

Table 3.2: Mechanical properties of materials.

Material
ρ Cp E α D

(Ωm) (J/Kg◦C ) (GPa) (◦C−1) (Kg/m3)

Al 6060 3.2× 10−8 900 70 21.6× 10−6 2700

Steel S235 1.42× 10−7 450 210 12× 10−6 7900

A polymeric material was used to electrically isolate the workpiece and tool holder

from the lathe. The machining parameters used are shown in table 3.3. The power con-

sumed was continuously measured by a self made monophasic energy analyzer linked

to the motor of the machine. A self made short duration electric pulse generator was

developed to discharge multiple positive pulses. The parameters of current pulses such

as voltage, frequency and pulse duration were monitored by an osciloscope as listed in

table 3.4.
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Table 3.3: Turning operation parameters.

Material
Spindle speed Feed rate Depth of cut

(rpm) (mm/rev) (mm)

6060 Al.
600/900 0.07/0.14 0.2/0.4

S235 Steel

Figure 3.1: Schematic of electrically assisted turning process.

Table 3.4: Electropulsing operation parameters.

Material
Current intensity Pulse duration Frequency

(A) (µs) (Hz)

6060 Al.
140 250 300

S235 Steel

A schematic illustration of electrically assisted turning process is shown in Fig.

3.1. The workpieces were performed round turning process to make sure the surface

was smooth and symmetric. The carbon clamps were attached with workpiece and

connected on one side with cutting tool and on the other side with generator through

wire. The turning operation was performed without EPs (conventional process). Sub-

sequently, the same procedure was performed with EPs assisted process and made sure

that the workpiece was already in contact with the tool to avoid electro-erosion.
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3.2 Model of cutting zone

The metal cutting is considered to be taking place in a system consisting of tool,

workpiece and the chip, through which the external energy applied causes the fracture

of layer being removed [57]. Chip formation occurs due to concentrated shear within

a narrow zone often called as primary deformation zone in the shear plane [69]. The

process of orthogonal cutting of ductile material in finishing condition is shown in Fig.

3.2. Assuming a reference system with respect to material, the problem of chip removal

is reduced to a stationary process, where the workpiece moves at a speed Vc downwards

and chip leaves with speed Vch. Assuming the Merchant hypothesis, the mechanism

of chip removal is characterized by a shear stress on shear plane OA. A characteris-

tic geometric parameter of chip removal processes is chip thickness ratio ξ, defined as

the ratio between the chip thickness a1 and chip thickness before cutting which in the

case of cylinder advanced by turn f . Large value of ξ means more thickening at low

feed rates i,e more effort is required in terms of forces or energy to accomplish the cut-

ting process. Therefore, it is always desired to reduce ξ without sacrificing productivity.

Figure 3.2: Orthogonal cutting plane.

From the geometry of orthogonal cutting, the known expression is derived to obtain

shear plane angle φ.

tan(φ) =

(
cosα0

ξ − sinα0

)
. (3.1)
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Figure 3.3: velocity diagram of orthogonal cutting.

where α0 is the rake angle

The law of conservation of mass is applied to orthogonal cutting process in which

the material flows in a continuous slip of cutting allows to obtain velocity of chip Vch.

Vch =
f

a1

·Vc (3.2)

where Vc is the cutting velocity. f is the feed rate (mm/rev) which is also unde-

formed chip thickness.

The shear velocity in the shear zone is obtained from the velocity hodograph as

shown in Fig. 3.3. This velocity is associated with energy dissipation that occurs in

shear plane.

From the velocity diagram, the magnitude of velocity, Vs in the shear zone is given

by

Vs = Vc

(
cosα0

cos(φ− α0)

)
. (3.3)

The plastic shear strain γ can be estimated as quotient between the change in

displacement experienced by shear plane ∆S and change in displacement from the

normal direction to shear zone ∆x
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γ = tan(φ− α0) +
1

tan(φ)
(3.4)

Considering that the material flows when the effective stress at a given point in the

material exceeds effective pure stress τ . The rate of energy dissipated along disconti-

nuity is

Ẇs = τ ·Vs· e·
f

sin(φ)
(3.5)

where e is the thickness of the tube.

The heat transfer during orthogonal cutting is governed by one dimensional heat

equation. In the cutting process the edges of cutting band are considered adiabatic [74].

Due to the velocity with which moves, the contribution of heat by diffusion is negligible

compared to the convection heat flow. Likewise, the friction in the primary shear zone

can be considered negligible. Therefore, the rate of heat generation per unit volume

depends only on the plastic deformation. Assuming that the fraction β of plastic

deformation is converted to heat. The equation of heat can be reduced to

ρ·Cp·u
dT

dx
= β· τ · γ̇ + q̇ (3.6)

where T is the temperature in the shear zone, ρ is the density of workpiece, Cp
is specific heat, β is the coefficient of Taylor-Quinney when plasticity occurs, x is the

direction normal to shear zone as listed in Fig. 3.2 and q̇ is Joule heating effect which

can be written as

q̇ =
ρe·h· sin(φ)

e· f
· i2 (3.7)

where ρe is the resistivity of material, h is the thickness of primary deformation

zone and i is the current intensity.

Moreover, the workpiece material is assumed to be homogeneous and isotropic and

is governed by constitutive equation of Johnson-Cook (J-C). This model expresses the

effective pure shear stress τ as a function of effective plastic strain, the effective strain

rateand temperature. Currently the J-C model is widely used for modelling the stress

flow of the material machined, mainly due to its precision and simplicity.

τ =
√

3

[
A+B

(
γ√
3

)n][
1 + Cln(γ̇∗)

][
1−

(
T ∗)m] (3.8)

where γ̇∗ is the dimensionless shear strain rate, A is threshold stress in MPa, B

is modulus of hardening in MPa, C is the coefficient of sensitivity to strain rate, m

is thermal softening coefficient and n is work hardening exponent. The first term in

brackets of J-C Eq. 3.8 is elasto-plastic term and represents the strain hardening. The



52 3. Electroplastic cutting effect in the round turning process

second one is the vision term and shows that the yield stress flow increases when the

material is subjected to high strain rate. The third term is the thermal softening and

reflects the fact that the yield stress of material decreases as the temperature increases.

The shear strain rate by definition is maximum in shear zone γ̇∗ = 1, which reduces

the J-C equation to a function of the effective plastic strain and temperature, reducing

with four constants that can be determined as A, B, n and m.

3.3 Results and Discussions

3.3.1 Current density, chip thickness ratio and cutting config-

urations

In machining, chip formation occurs by imparting shear within a narrow defor-

mation zone called primary shear zone in which the effective strain rates are much

larger [75]. The current density which is defined as current intensity through the cross

sectional area of the material during cutting, can be considered as an important factor

in changing the deformation resistance of material in primary shear zone. The shear

cutting area is defined by the segment AB and the length of cutting edge BD (ab) as

shown in Fig. 3.1. The segment AB is described as:

AB =
f

sin(φ)
, (3.9)

φ is the shear plane angle (◦)

The current density in the primary deformation zone can be calculated by the

following equation

Je =
I · sin(φ)

f · ab
, (3.10)

where ab is the depth of cut. The shear plane angle φ proposed in [49] can be

expressed geometrically by chip compression ratio ξ as

φ = arctan

(
cosα0

ξ − sinα0

)
. (3.11)

Chip thickness coefficient defined as a ratio ξ = a1/a, where a1 is deformed chip

thickness and a = f is undeformed chip thickness which is actually the feed rate. α0

is the rake angle which is 6◦ for the particular tool used during experiments. Chips

were collected randomly at the end of each cutting test to measure the thickness of the

chip. The chip thickness was measured by using micrometer with 0.01 mm precision.

At least 5 measurements were taken to get the average chip thickness. The spindle

velocity was measured in rpm with a conventional tachometer. Table table 3.5 gives

the values of current densities, chip compression ratio ξ and shear plane angle φ with

and without pulses as a function of feed rates, cutting velocity and depth of cut for
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Table 3.5: Values of chip compression ratio, shear plane angle and current densities as

a function of feed rates and cutting speed for steel S235.

Material Workpiece Feed Cutting Depth Chip Shear Current

St
diameter rates speed of cut

compression
densityratio angle

S235
(f) (Vc) (ab) (ξ) (φ) (Je)

[mm] [mm/ [m/min] [mm] [◦] [A/mm2]

rev]

Without

20 0.07 38.213 0.2 6.357 9.037 -

20 0.14 38.213 0.2 4.321 13.270 -

20 0.07 57.461 0.2 3.685 15.520 -

pulses
20 0.14 57.461 0.2 2.957 19.220 -

20 0.07 38.213 0.4 5.257 10.924 -

20 0.14 38.213 0.4 3.343 17.072 -

20 0.07 57.461 0.4 4.085 14.025 -

20 0.14 57.461 0.4 3.057 18.815 -

With

20 0.07 38.213 0.2 3.1 18.366 3151

20 0.14 38.213 0.2 2.492 22.607 1922

20 0.07 57.461 0.2 3.171 17.966 3084

pulses
20 0.14 57.461 0.2 2.557 22.072 1878

20 0.07 38.213 0.4 4.214 13.603 1176

20 0.14 38.213 0.4 4.228 13.558 586

20 0.07 57.461 0.4 4.128 13.882 1199

20 0.14 57.461 0.4 3.378 16.896 726

steel S235.

It can be seen in table 3.5 that chip compression ratio ξ decreases with the increase

in feed rates and cutting speed during turning of steel S235. Also the shear plane angle

φ increases as chip compression ratio ξ decreases. However, as compared to conven-

tional turning process, the values of chip compression ratio ξ are less during electrically

assisted turning process. The low values of chip thickness ratio ξ (high φ values) mean

low shear strain in the shear plane [36]. Since, chip compression ratio ξ is measure of

plastic deformation of material which decreases with the increase in cutting speed [27].

Hence, an increase in cutting speed leads to a decrease of plastic deformation in chip

formation zone. It was generally observed that the chip thickness decreased as the

cutting speed increased and the region of plastic deformation becomes smaller which

ultimately reduces the energy consumption [76]

The current density decreases with the increase in feed rates during electrically as-
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Table 3.6: Values of chip compression ratio, shear plane angle and current densities as

a function of feed rates and cutting speed for Aluminium 6060.

Material Workpiece Feed Cutting Depth Chip Shear Current

Al
diameter rates speed of cut

compression
densityratio angle

6060
(f) (Vc) (ab) (ξ) (φ) (Je)

[mm] [mm/ [m/min] [mm] [◦] [A/mm2]

rev]

Without

20 0.07 38.213 0.2 2.371 23.691 -

20 0.14 38.213 0.2 1.214 41.872 -

20 0.07 57.461 0.2 3.771 15.176 -

pulses
20 0.14 57.461 0.2 2.214 25.241 -

20 0.07 38.213 0.4 4.028 14.223 -

20 0.14 38.213 0.4 2.085 26.664 -

20 0.07 57.461 0.4 5.285 10.867 -

20 0.14 57.461 0.4 2.971 19.134 -

With

20 0.07 38.213 0.2 3.514 16.261 2800

20 0.14 38.213 0.2 1.114 44.572 3509

20 0.07 57.461 0.2 5 11.483 1990

pulses
20 0.14 57.461 0.2 2.914 19.493 1688

20 0.07 38.213 0.4 3.971 14.424 1245

20 0.14 38.213 0.4 2.085 26.173 1102

20 0.07 57.461 0.4 8.628 6.655 579

20 0.14 57.461 0.4 2.914 19.493 834

sisted turning process of carbon steel as shown in table 3.4. However, the results are

in agreement with the previous study [77], in which current density decreases with the

increase in feed rates during electrically assisted drilling process. As the chip formation

zone decreases with increase cutting speed, this may be the reason why current den-

sity values are higher at high cutting speeds for steel S235 during electrically assisted

turning process.

Table 3.6 gives the values of chip compression ratio ξ, shear plane angle φ and

current densities with and without pulses as a function of feed rates, cutting velocity

and depth of cut for aluminium 6060. The table 3.6 shows that chip compression ratio

ξ decreases with increase in feed rates and increases with the increase in cutting speed.

Also shear plane angle φ increases with the increase in feed rates and decreases with

the increase in cutting speed. The high values of chip compression ratio ξ mean large

amount of strain in shear plane [36]. An increase in the cutting speed leads to an

increase in the temperature of the chip so its plastic deformation increases [27]. Hence,
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Figure 3.4: Variation of chip thickness with feed rate, cutting speed and depth of while

turning steel S235 with and without pulses.

during turning of aluminium 6060, an increase in cutting speed tends to increase chip

compression ratio ξ which indicates severe plastic deformation in the chip formation

zone.

Figure 3.5: Variation of chip thickness with feed rate, cutting speed and depth of while

turning aluminium 6060 with and without pulses.

It is also seen in table 3.6 that during electrically assisted turning process the values

of chip compression ratio ξ are higher and that of shear plane angle φ are lower than

conventional turning process in aluminium 6060. Also the current density decreases

with the increase in cutting speed while increases with the increase in feed rates.

The Fig. 3.4 demonstrates the variation of chip thickness with feed rates, cutting

speed and depth of cut for steel S235 by using factorial analysis. The chip thickness

increases with the increase in feed rates and decreases with the increase in cutting

speed. The increase in undeformed chip thickness with increasing feed rates will re-

sult in increase of shear plane area [59]. The reduction in chip thickness will result

in shorter shear plane and longer shear plane is associated with thicker chip produced

during the cutting process [78]. However, depth of cut has very little effect on chip
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thickness during conventional turning process but chip thickness increases with the

increase in depth of cut during EPs assisted turning process.

The Fig. 3.5 shows that feed rates have very little effects on chip thickness, however

chip thickness increases with the increase in cutting speed and depth of cut during

turning of aluminium 6060. As compared to conventional process, the chip thickness

values are higher during electrically assisted turning process. When the chip thickness

increases, the chip compression ratio ξ also increases which means plastic deformation

of material increases and amount of energy required to accomplish the cutting process

of aluminium 6060 also increases.

3.3.2 Specific cutting energy, SCE

The machinability of material can be estimated by comparing the SCE during EP

assisted and conventional turning processes. An energy analyzer was developed to mea-

sure the power consumption during cutting process. The net effective cutting power

consumed Nc (W) is determined by taking the difference between the average power

to cut the workpiece and the power of machine without cutting. The net power ob-

tained during conventional turning process is then compared with the power obtained

in electrically assisted turning process.

Figure 3.6: Variation of SCE with feed rate, cutting speed and depth of while turning

steel S235 with and without pulses.

The Fig. 3.6 showed that the SCE decreased with the increase in feed rates and

depth of cut for steel S235 by using factorial analysis. It was observed that the effect of

cutting speed on SCE is negligible for steel S235. However, the SCE decreased due to

the application of EPs during cutting. The reduction in SCE was observed 7% for high

feed rates and 14.62% for low feed rates, 12.46% for high cutting speed and 10.57% for

low cutting speed and 10.55% for high depth of cut and 12.11% for low depth of cut.

Hence, due to thermal contribution of EPs, the deformation resistance decreases [48],
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which ultimately decreases the SCE and improves the plasticity of material during EP

assisted turning process. The results are also in agreement with Sànchez et al. [43]

and Hameed et al. [77] where the SCE decreases due to the application of electropulses

during machining processes.

Figure 3.7: Variation of SCE with feed rate, cutting speed and depth of while turning

aluminium 6060 with and without pulses.

The Fig. 3.7 presented that SCE decreased with the increase in feed rates and

depth of cut for aluminium 6060 by using factorial analysis. However, as compared to

steel S235, a different trend was observed when the cutting speed increased the SCE

also increased. It is also noted that SCE increased due to the application of EPs during

cutting. The cutting at high speed increases the SCE of materials with much higher

thermal conductivity and less thermal softening effect [73]. Since aluminium 6060 has

higher thermal conductivity and less thermal softening effect as compared to steel S235.

So, at higher cutting speed and due to the application of EPs, the strain rate in the

shear zone is expected to be high. Thus more heat energy will be generated and time

for heat dissipation decreases, which ultimately increases the temperature [79]. Also

an excess of electrons can increase the flow stress during superplastic deformation of

aluminium alloy [80]. Hence, due to increase of temperature and flow stress, the plastic

deformation of material increases which increases the SCE in aluminium 6060.

It can be observed that by increasing the cutting speed for steel S235, the chip

thickness decreases and current density increases, while for aluminium 6060, by in-

creasing the cutting speed, chip thickness increases and current density decreases, due

to which SCE increases during turning of aluminium 6060 due to the application of

EPs. It is assumed that area of deformation zone decreases by increasing the cutting

speed for steel S235 and increases by increasing the cutting speed for aluminium 6060.

So, it is expected that as compared to steel S235, plastic deformation increases with

the increase in cutting speed for aluminium 6060 because of increase of temperature in

the chip formation zone.
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3.4 Conclusion

The effect of electropulsing has been observed for steel S235 and aluminium 6060

during turning process. Correlation between chip compression ratio ξ, shear plane an-

gle φ and current density were obtained by using different cutting parameters for both

materials.

The chip compression ratio decreases and shear plane angle increases with the in-

crease in cutting speed during turning of steel S235. In contrast, chip compression

ratio ξ increases and shear plane angle φ decreases with the increase in cutting speed

while turning of aluminium 6060. The current density decreases with the increase in

feed rates and increases with the increase in cutting speed in steel S235. However,

current density has high values at higher feed rates and it decreases with the increase

in cutting speed during turning of aluminium 6060.

The SCE decreased with the increase in feed rates, cutting speed and depth of cut

during electrically assisted turning process of steel S235. But a different trend was

observed when the cutting speed increased, SCE also increased for aluminium 6060. It

is also noted that as compared to steel S235, SCE values are higher in aluminium 6060

when current pulses are induced during turning.

The electrically assisted turning process seems to have influence on improving the

machinability of material for steel S235 but for aluminium 6060, plastic deformation

tends to be increased. Further investigations are required by studying the chip mor-

phology of S235 steel and aluminium 6060 to further analyze the effect of electropulses

on machinability of materials.

3.5 Future work

The study of material deformation in the chip formation zone by using Johnson-

Cook constitutive plastic flow stress model (discussed in section 3.2) is still under

investigation. The model constitutes the effects of strain hardening, strain rates and

thermal softening. The material parameters A, B, m and n can be determined by using

flow stress data obtained from mechanical tests.



Chapter 4

General discussion

The purpose of EPs with short duration and high frequency is to soften the ma-

terial in order to reduce the deformation resistance and increase the plasticity at the

same time during metal cutting processes. In this chapter it is tried to discuss the

limitations and results obtained during electrically assisted cutting processes to deter-

mine the mechanism by which machinability of material can be improved. The SCE

which is the indication of machinability of material has been measured and compared

for different materials during conventional and electrically assisted cutting processes.

Generally, it is expected that when the deformation region is activated by EPs, the

current density is favourably directed to minimize the plastic deformation of material

in the deformation zone which helps to improve the machinability of material.

As a whole, from the experiments carried out in this thesis, the most important

factors which need to discuss are thermal effects, current density threshold and elec-

trical resistivity of materials.

Thermal effects and current density threshold

In machining, the course of rise of temperature in the deformation zone can be re-

garded as an adiabatic course in a very short time during the EPT. Due to the adiabatic

rise of temperature by joule heating effect, the plastic deformation of metals becomes

easier. In Chapter 2, the thermal balance approach can be achieved to determine the

thermal contribution when short pulses of electricity are induced in 7075 Al and 1045

steel. By considering steady state conditions, the internal thermal energy that can be

transferred to its boundary is estimated as:

QJ = ∀·D·Cp·∆T, (4.1)

Where QJ is the internal thermal variation of the specimen, ∀ is the specimen

volume, D is the density of material, Cp is the specific heat capacity and ∆T is the

temperature difference.
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While the energy generation due to the electric resistance heating is

QJ = I2·R (4.2)

where I is the current intensity through the specimen and R is the material electric

resistance. The thermal contribution by Joule effect due to induced EPs is explained

as:

QJ = I2·R· tp.f (4.3)

where tp is the current impulse duration and f is the frequency discharge of cur-

rent pulse. Comparing the thermal contributions induced by Joule effect and internal

thermal variation of the specimen, the following expression is obtained

∀·D·Cp·∆T = I2.R.tp.f (4.4)

The thermal expansion when short pulses are induced can be written as:

∆T = (D·Cp)−1· I2· R
∀
· tp.f (4.5)

Assuming that the cross sectional area is constant then the above equation can be

written as:

∆T = (D·Cp)−1

(
I

A

)2

· ρ.tp· f (4.6)

where A is the cross sectional area and ρ = R.A
L

is material resistivity.

Thermal stress distribution

Due to inhomogeneous rise of temperature, inhomogeneous thermal expansion oc-

curs in the area with defects. So thermal stress exists even in the case of uniform

temperature distribution and free expansion.

To calculate thermal stress relaxation, lets assume t∗ is a dimensionless temperature

rise t∗ = ∆T (t)/∆Tmax, where ∆T (t) is the instant temperature change, ∆Tmax(= Tf−
T0) is the maximum temperature change; l(t) is the dimensionless thermal expansion,l(t) =
∆L(t)

∆Lmax
, where ∆L(t) is the instant thermal expansion, ∆Lmax is the maximum thermal

expansion. Hence

∆Lmax = α·∆Tmax·L0 (4.7)

where α is the coefficient of thermal expansion of specimen and L0 is the initial

length.
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When deformation occurs in heated elastic bodies, then from the Duhamal-Neumann

relation the thermal stress and strain have the following relation;

σik =
1

(1 + ν)[Eεik + νδiks∗ − α∆T (t)Eδik]
(4.8)

where

s∗ = σxx + σyy + σzz (4.9)

and ν is the poisson ratio, E is Young’s modulus, εik is the strain tensor, σik is the

stress tensor and deltaik is Kronecker delta.

We can suppose that stresses in the transverse directions are zero i,e σyy = σzz = 0

for the direction along the length, Eq. 4.8 can be written as

σx(t) =
1

(1 + ν)[Eεx(t) + νσx(t)− α∆T (t)E]
(4.10)

or

σx(t) = E[εx(t)− α∆T (t)] (4.11)

Because the distribution of temperature is uniform in x direction, so it can be

supposed that εx(t) is the same. Then

∆L(t) =

∫ L0

0

εx(t)dx = εx(t)L0 (4.12)

i,e

εx(t) = ∆L(t)/L0 (4.13)

By substituting the Eq. 4.13 and relations t∗ = ∆T (t)/∆Tmax, l(t) = ∆L(t)
∆Lmax

into

Eq. 4.11 we obtained the following expression;

σx(t) = E[
l(t)∆Lmax

L0 − α∆t∗∆Tmax
] (4.14)

From Eq. 4.7 the thermal stress can be obtained as

σx(t) = Eα∆Tmax[l(t)− t∗] (4.15)

So thermal stress during expansion is

σ
′

x(t) = −σx(t) = Eα∆Tmax[t
∗ − l(t)] (4.16)

The maximum possible thermal stress in the specimen when instantaneous temper-

ature rise occurs can be estimated by considering the dimensionless temperature t∗ =

0, when t >0 and t∗ = 1 when t <0. Then the maximum difference of t∗ and l(t) is
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equal to 1.

The main cause of thermal stress in this condition is the nonsynchronous change

of temperature and thermal expansion. The magnitude of thermal stress depends on

time difference between temperature rise and thermal expansion and also the power of

heating pulse. The bigger the time difference is the bigger the thermal stress is. The

maximum possible thermal stress σmax is determined by the power of the heating pulse.

If the thermal expansion changes synchronously with temperature i,e t∗− l(t) = 0 then

the thermal stress will vanish.

The threshold of current density depends on material and cutting process as shown

from experimental results carried out in this thesis. Since, higher cutting speeds de-

crease the area of shear plane while increasing the shear plane angle, so temperature

of the cutting system increases which is advantageous for decreasing the mechanical

loads because of thermal softening of materials [81]. The temperature rise due to EPs

occurs from the change in stress which indicates that the current produces an effect in

addition to that due to heating [6]. In chapter 2, it can be seen that adiabatic rise in

temperature and hence maximum stresses increase with the increase in current density

by decreasing the feed rates which ultimately reduces the SCE during electrically as-

sisted drilling process.

However, in chapter 3, the effect of current density was found different in electri-

cally assisted turning process. The SCE increases in aluminium 6060 as compared to

steel S235. Since the average deformation zone temperature for steel is higher than

aluminium [82], so it is expected that an increase in current density increases the

temperature in the deformation zone during turning of steel S235 which reduces the

plastic deformation and hence ultimately reduces the SCE of material. But for alu-

minium 6060, the increase in current density increases the uneven temperature in the

deformation zone which increases the plastic deformation and hence SCE increases dur-

ing turning process. The effect of electric field suggests that a deficiency of electrons

in workpiece material reduces the flow stress whereas, an excess of electrons increases

it [80]. From the results carried out in the thesis, it is suggested that the threshold

of current density should be lowered during turning of aluminium 6060 to improve the

machinability of process.

Electrical resistivity of materials

Electrical resistivity is an intrinsic property which specifies the flow of electric cur-

rent through given material. A high resistivity indicates how difficult to flow the

electric current through material. Since, the resistivity of carbon steel is higher than

aluminium alloy, therefore, in steel the current density should increase the adiabatic

temperature rise enough so that plastic deformation can be decreased in the deforma-



63

tion zone during electrically assisted metal cutting processes.

in chapter 3, it was observed that the current density values are very high dur-

ing turning of carbon steel S235 and aluminium 6060. As aluminium 6060 has low

resistivity and high specific heat capacity than steel S235, so the uneven increase of

temperature due to high current density increases the plastic deformation of aluminium

6060 and hence increases the SCE. Mai et al. [83] observed that the electrical resistiv-

ity of stainless steel 316L increases in electroplastic deformation. Therefore, it is very

important to study the electrical resistivity of different materials when specimens are

assisted with EPs in cutting processes in order to analyze how the electrical resistivity

of materials are affected.

Electroplastic deformation

In machining, it is desired that the strain in the chip formation zone should be

as small as possible to reduce the plastic deformation and improves the efficiency of

cutting process. The deformation in the shear plane occurs at high strain rates which

generate large amount of heat. In the electroplastic deformation of metals, the electric

current that flows through the metal interacts with the deformation of metal by means

of Joule heating effect, which reduces the flow stress due to electric current density [82].

During superplastic deformation of aluminium alloy, the electric field has been found to

decrease the flow stress, reduce strain hardening and increase the strain rate hardening

whereas, an excess of electrons can increase the flow stress [83].

In chapter 2, it can be seen that the SCE decreased for both steel 1045 and

aluminium 7075 at low values of current density. It seems that the current density

was enough to reduce the plastic deformation of materials during electrically assisted

drilling process. However, in chapter 3, the effect of high current density was found

different for aluminium 6060 as compared to steel S235. The SCE increased for alu-

minium 6060 and decreased for steel S235 during electrically assisted turning process.

Since, aluminium 6060 has low resistivity and high specific heat capacity than steel

S235, so current pulses of high density can increase the flow stress by means of Joule

heating effect (thermal effect), which ultimately increases the plastic deformation of

aluminium 6060. Hence, for materials like aluminium alloys, an excess of electrons

(high current density) can reduce the process efficiency. It is suggested that the EPs of

low current density can play an important in improving the machinability of aluminium

alloys.





Chapter 5

Conclusions, Contributions to work

and Future work recommendations

In this chapter, general conclusions and contribution to work are explained regard-

ing this thesis. Moreover, some recommendations on future work are also suggested

based on present research carried out in this thesis.

5.1 Conclusion

The following conclusions are drawn based on the research performed in the thesis.

• An automatic feed mechanism, energy analyser and electrical insulation system

were designed and manufactured to control feed velocity, calculate the electri-

cal active power consumption and record the desired electrical and mechanical

parameters during cutting processes.

• In chapter 2, the electrically assisted drilling process can be considered as feasi-

ble technique to improve the plasticity of material by inducing constant current

intensity of short pulses in the cutting zone with a minimum possible plastic

deformation.

• As compared to conventional drilling process, the power consumption and SCE

were reduced during electrically assisted drilling process. The current density

decreases by increasing feed rates, while chip compression ratio ξ decreases and

shear plane angle φ increases.

• In chapter 3, the effect of EPs observed in steel S235 is found to be different

than that observed in aluminium 6060 during turning process. The current den-

sity decreases with the increase in feed rates and increases with the increase in

cutting speed during turning of steel S235 while, in aluminium 6060, the current

density increases with the increase in feed rates and decreases with the increase
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in cutting speed. Also as compared to conventional turning process of steel S235,

chip thickness values are lower during electically assisted turning process but

it is opposite in aluminium 6060 where chip thickness values are higher during

electrically assisted process.

• In chapter 3, it is also observed that the electrically assisted turning process

seems to have influence on improving the machinability of steel S235 by de-

creasing SCE. However, in aluminium 6060, the values of SCE are higher than

conventional process which seems to increase the plastic deformation of material

during electrically assisted turning process.

5.2 Research contributions

The present research has contributed to metal cutting processes particularly electri-

cally assisted drilling and turning processes. The contributions that have been achieved

are listed below.

• The mechanism has been developed to electrically isolate each metal cutting

machine.

• The methodology to study and analyze the electrical and mechanical parameters

has been organized.

• Electropulsing assisted metal cutting processes were proved to be feasible to

improve the machinability of materials as compared to conventional metal cutting

processes. The results obtained during research either have been published or

under consideration. ”Electroplastic cutting influence on power consumption

during drilling process” [78].

5.3 Future work and recommendations

By considering the conclusions of research described in the thesis, the following

recommendations for future work are suggested.

a. Current density and workpiece material.

In chapter 2, the effect of current density seemed to be similar for both aluminium

7075 and steel 1045 as SCE decreased during elctrically assisted drilling process. How-

ever, this was not the case during electrically assisted turning process as discussed in

chapter 3, where electroplastic effect was different for aluminium 6060 as compared to

steel S235 when current pulses of high densities were induced during turning process.

Since, aluminium 6060 has low resistivity and high specific heat capacity than steel

S235. It is assumed that due to high current density, the adiabatic rise of temperature
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increased due to joule heating effect which increases the plasticity of aluminium 6060.

Further experiments are necessary to investigate the effect of current densities and

subsequently the thermal effects for different materials with different cutting processes.

b. Tool life.

The improvement in efficiency of machining processes is fairly significant which

needs further study. Another significant cost of machining processes is the tooling

cost associated with worn or chipped cutting tools. If the EPs increase the SCE for

aluminium 6060 during turning process, this would be a direct cost increment. It is

expected that if cutting forces are increased or decreased during electroplastic metal

cutting processes, the tool life can be increased or decreased depending on workpiece

material or machining process. It is speculated that there are two possible effects if

the cutting tool material is influenced by EPs which would be an interesting follow-on

study associated with future work.

1. The EPs may reduce the hardness of cutting tool tending to decrease wear life

time.

2. The EPs may increase the toughness of cutting tool tending to increase the

toughness and reduce the tendency for chipping the cutting tool and increase tool life.

c. Head effected zone.

It would be worthwhile to examine superficial hardness if the machining surfaces

of workpiece materials are different for conventional and assisted drilling processes. If

the EPs have potential to change the material being removed like ”head effected zone”

expect that it would be an ”electropulse effected zone”.

d. Metallography.

As in chapter chp3, it is seen that the effect of EPs is different for aluminium 6060

and steel S235, it is necessary to study the metallographic observation of different

materials assisted by different electrical configurations to analyze the behaviour of ma-

terials. It is also important to investigate if EPs can induce the phase transformations,

annihilation and accumulation of dislocations, material texture and recrystallization to

chipped materials under study. This may help to understand how thermal effects can

change the behaviour of chip formation during electrically assisted machining processes.





Appendix A

Configurations of machining

operation

A.1 Electroplastic drilling machine

Figure A.1: Electroplastic drilling machine.

It is a small light weighted machine designed for drilling small holes in light jobs

for conventional and non conventional processes. It is equipped with an automatic

feed mechanism, energy analyzer, source to control feed velocity and an electric pulse
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generator as shown in Fig. A.1. The machine has the capacity to rotate drills from 1

to 6 mm at maximum speed of 800 rpm.

Automatic feeding mechanism

Figure A.2: Automatic feed mechanism.

There is an automatic feed mechanism for feeding the tool into the work piece. The

drilling head can be controlled automatically by using an electric feed source linked

with a feed motor. This enabled to measure the feed velocity Vf by using stoppers with

a distance of 5 mm and the drilling time was measured electronically with the help of

timer as shown in Fig. A.2.

Electronic Watt meter

A self made electronic Watt meter linked to drilling motor is used to calculate the

electrical active power consumed during drilling as shown in Fig. A.3.

A.2 Mechanical efficiency in turning

The mechanical power Nm produced is proportional to rotational speed and torque.

The torque is proportional to load drop across the load arm. It can be increased by

increasing the load drop. For an ideal motor, the effective electric power Ne input
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Figure A.3: Electronic Watt meter

equals to cutting power out put i,e Ne = Nm. However, practically real motors are not

perfectly efficient. So by using calculus to get area under the curve, the mechanical

power Nm as a function of effective electrical power Ne can be expressed as

Nm = f(Ne) (A.1)

The mechanical power of motor for this particular case can be calculated experi-

mentally by measuring the output parameters i,e load drop, load arm and rotational

speed as shown in Fig. A.4.

Figure A.4: Evolution of load drop and load arm.

The mechanical power Nm can be estimated as

Nm = τ ·ω (A.2)

Nm = F · r·ω (A.3)
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where F is the load drop in (N), r is load arm in (m) and ω is rotational speed in

(rad/sec).

The consumption of energy varies significantly as the cutting tool progresses. The

cutting tool requires more power as the volume of the metal being removed increases.

Energy efficiency also influences the life and maintenance of tool. The machine tool

base load consumes energy even in non-productive phases. So it is necessary to cal-

culate the base load in order to find the exact value of electrical power consumption

during machining. This electrical power is then converted into mechanical power which

is actually the cutting power.

Figure A.5: Relation between mechanical and electrical power of drilling machine.

The Fig. A.5 shows the relation between the mechanical power, Nm and effective

electrical power, Ne of turning machine with spindle speeds of 300, 600 and 900 rpm at

different loading conditions. The purpose of equation of lines is to estimate the effective
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cutting power (mechanical power) for different values of electrical consumption during

experiments in turning process.
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