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Introduction

Classical Hadamard sets (also called lacunary sets) have been studied since
the beginning of the past century.

Definition. A subset E = {nj}∞j=1 of N, with n1 < n2 < . . . is said to be
a Hadamard set if there exists some q > 1 (called Hadamard ratio) such
that nj+1/nj ≥ q for all 1 ≤ j ≤ ∞.

From 1926 to 1941, Sidon showed that lacunary sets possessed various
interesting properties. There is a great deal of results that illustrates an
unexpected behaviour of functions associated to a Hadamard set. For in-
stance:

Theorem. (Classical Hadamard gap theorem [44, Th. 1.2.2.])
Let E = {nj}∞j=1 ⊆ N be a Hadamard set with ratio q > 1. Suppose the

power series f(z) =
∞∑
j=1

cjz
nj has a radius of convergence equal to 1. Then

f cannot be analytically continued across any portion of the arc |z| = 1.

In the 1950’s, some of these properties were more closely studied and
finally became definitions. Since these properties were more functional ana-
lytic in nature, whereas the original lacunary property was arithmetic, it was
no longer necessary to restrict attention to sets of integers.

Therefore, lacunary sets have also been studied in the dual set of compact
topological groups and in more general settings. Kahane [62] first used the
term Sidon set in 1957 and the modern point of view of the notion appeared
in Rudin’s Book [86] in 1962. Let G = T, a Hadamard set E ⊆ Ĝ = Z is a
special type of Sidon set.

Given a compact abelian group G, one of the several characterisations of
a Sidon set (see [66], for instance), stated that a subset E of Ĝ is a Sidon set
if every bounded function on E is the restriction of the Fourier transform of
a measure on G.

Since the dual of a compact group is a discrete group and the Sidon sets
are situated in the dual set, we can study the Sidon sets as subsets of discrete
groups. In this sense, Picardello [76] extended in 1973 the usual definition
of Sidon set in a group G to the discrete non-abelian case.
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2 Introduction

A special kind of Sidon set is the I0 sets. The concept of I0 set in locally
compact abelian groups was introduced by Hartman and Ryll-Nardzewski
[48] in 1964, who considered the weak topology associated to a locally com-
pact abelian (LCA, for short) group and introduced the notion of interpo-
lation set or I0 set. They defined that a subset A of a LCA group G is an
I0 set if every bounded function on A is the restriction of an almost periodic
function on G (here, it is said that a complex-valued function f defined on G
is almost periodic when it is the restriction of a continuous function defined
on bG, the Bohr compactification of G).

Therefore, an I0 set is a subset A of G such that any bounded map on A
can be interpolated by a continuous function on bG. As a consecuence, if A
is a countably infinite I0 set, then A bG is canonically homeomorphic to βω,
the Stone-Čech compactification of ω.

The main result given by Hartman and Ryll-Nardzewski is the following:

Theorem. ([48]) Every LCA group G contains I0 sets.

For the particular case of discrete abelian groups, van Douwen achieved
a remarkable progress by proving the existence of I0 sets in very general
situations. His main result can be formulated in the following way:

Theorem. ([94, Th. 1.1.3]) Let G be a discrete Abelian group and let A be
an infinite subset of G. Then, there is a subset B of A with |B| = |A| such
that B is an I0 set.

In fact, van Douwen extended his result to the real line but left unre-
solved the question for LCA groups. In general, the weak topology of locally
compact groups has been considered by many researchers so far; specially
for abelian groups, where the amount of important results is vast.

Since the dual of a LCA group is also LCA, the definition of I0 set in
the dual group is analogous. In this respect, Kahane [61] proved in 1966 a
characterisation of this notion without recurring to the Bohr compactification
using the Fourier transform. He stated that a subset E of the dual group
is an I0 set if every bounded function on E is the restriction of the Fourier
transform of a discrete measure on G.

Hadamard sets were the first examples of I0 sets and many of the pro-
perties that Hadamard sets posses are held by general I0 sets.

Hare and Ramsey [47] introduced in 2003 the notion of I0 set in he dual
set of a compact non-abelian group. I0 sets are a special type of Sidon set
in which the interpolating measure can be chosen to be discrete.

The search for interpolation sets is a main goal in harmonic analysis and
the monograph by Graham and Hare [44] contains most of the recent results
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in this area. In this thesis, this question is approached from a topological
viewpoint and the main goal is the understanding of the key (topological)
facts that characterise the existence of interpolation sets.

Following this viewpoint, Galindo and Hernández [34] provided in 1994
sufficient conditions for the existence of I0 sets for the duals of abelian, locally
connected, Čech-complete groups and abelian, compact groups, respectively.

For those locally compact groups that can be injected in their Bohr com-
pactification, the so-called maximally almost periodic groups, the existence
of I0 sets was clarified by Galindo and Hernández [35] in 2004. However,
many (non-abelian) locally compact groups cannot be injected in their Bohr
compactification (that can become trivial in some cases).

In Section 4.2, we define wG, the weak compactification of a locally
compact group. This compactification extends the Bohr compactification,
since when G is an abelain group, we have that wG = bG. Using this
extension we are able to give an appropriate definition of an I0 set for locally
compact groups in general: we say that a subset A of G is an I0 set if every
complex valued function on A can be extended to a continuous function on
wG. In this way, we are able to analyse the conditions of the existence of I0

sets in locally compact groups in general.

Bearing the original definition of an I0 set in mind, we can extend it to
the context of topological spaces introducing the notion of M -interpolation
set: we say that a subset Y of X is a M -interpolation set (equivalently,
an interpolation set for C(X,M)) when for every function g ∈ MY with
relatively compact range in M , there exists a map f ∈ C(X,M) such that
f|Y = g.

The idea of this generalisation to the realm of continuous functions is to
use it as a tool so as to obtain different results about interpolation sets in
topological groups and in its duals.

In this thesis, I study the relation between the existence of a particular
sort of subsets of metric-valued continuous functions on a topological space
X and the properties of the topological space itself.

The dissertation relies on how the existence of subsets of continuous func-
tions that possess one of these two antagonist properties, almost equiconti-
nuity and being a B-family, affects the topological space.

The former property appears in the setting of dynamical systems in [2]
and has the following definition: a subset E of C(X,M) is almost equicon-
tinuous if E is equicontinuous on a dense subset of X.

The latter is a property stronger that the concept of non-equicontinuity
and it is motivated by a result of Bourgain in [12]. We say that E ⊆ C(X,M)
is a B-family if the following two conditions hold: (a) E is relatively compact
in MX , and (b) there exists a nonempty open set V of X and ε > 0 such
that for every finite collection {U1, . . . , Un} of nonempty relatively open sets
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of V there is a f ∈ E satisfying diam(f(Uj)) ≥ ε for all j ∈ {1, . . . , n}.
I do not know exactly the relation between the notion of being a B-

family and the negation of being almost equicontinuous (or even hereditary
almost equicontinuous). Nevertheless, when the topological space X is ho-
mogeneous (topological groups, for instance) we know that the concept of
almost equicontinuity is equivalent to equicontinuity; and for every subset
relatively compact in MX the notion of being a B-family is equivalent to
the property of being non-equicontinuous.

Throughout the thesis, I deal with the study of the existence and the
properties of interpolation sets in different settings: (i) spaces of continuous
functions, (ii) topological groups and (iii) the dual of a topological group.
For (i) and (iii) the concept of B-family isolates a crucial fact for the exis-
tence of interpolation sets in fairly general circumstances, whereas for (ii),
I confront this question by using an extension of Rosenthal’s Theorem to
general locally compact groups.

Theorem. (H. P. Rosenthal [85]) Let X be a real Banach space and let
{xn}n<ω ⊆ X be a bounded sequence. Then, either {xn}n<ω contains a
weak-Cauchy subsequence or a subsequence which is homeomorphic to the `1

basis.

However, the version of the Rosenthal’s dichotomy result that I am going
to use along the thesis is the following:

Theorem. ([91]) If X is a Polish space and {fn}n<ω ⊆ C(X) is a pointwise
bounded sequence, then either {fn}n<ω contains a convergent subsequence or
a subsequence whose closure in RX is homeomorphic to βω.

The question of the disposition or placement of a LCA group G within
its Bohr compactification bG has been widely studied. Given a topological
group G, let G+ denote the algebraic group G equipped with the Bohr topo-
logy. Glicksberg [42] showed in 1962 that in a LCA group G, every compact
subset in G+ is compact in G. This result concerning LCA groups is one of
the pivotal results of the subject, often referred to as Glicksberg’s theorem.
Glicksberg result was extended by Comfort, Trigos-Arrieta and Wu [21] in
1993 by the following remarkable result: let G be a LCA group and let N
be a closed metrizable subgroup of its Bohr compactification bG. Denote by
π the canonical projection from bG onto bG/N and set bN

def
= π ◦ b making

the following diagram commutative:

G
b //

bN

��

bG

π

~~
bG
N
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Theorem. (Comfort, Trigos-Arrieta and Wu) Let G be a LCA group and
let N be a closed metrizable subgroup of its Bohr compactification bG. If A
is a subset of G, then A + (N ∩ G) is compact in G if and only if the set
bN (A) is compact in bG/N .

In the same paper, the following classes of topological grous are intro-
duced: a group G respects compactness (resp. strongly respects compactness)
if satisfies Glicksberg’s theorem (resp. satisfies the thesis of the previous
theorem). The authors also propose the question of clarifying the relation
between these two classes of groups and, furthermore, the characterization of
the groups that strongly respect compactness. Observe that for the special
caseN = {0}, the condition is reduced to respecting compactness and, hence,
every group which strongly respects compactness respects compactness.

The property of respecting compactness has also been generalised and
studied in greater classes of abelian groups [8, 6, 82].

The existence of an interpolation set in a topological group is powerfully
connected to the property of strongly respecting compactness. Therefore,
using the results about interpolation sets in a topological group that we
achieve, we are able to show that the family of locally quasiconvex, abelian,
locally kω groups (that includes all the locally compact abelian groups, for
instance) also respects compactness.

If the topological group is non-abelian, Hughes [56] proved in 1973 a ge-
neralization of Glicksberg’s theorem to (not necessarily abelian) locally com-
pact groups by considering the weak topology generated by the continuous
irreducible unitary group representations. Taking this idea into account and
considering the following extended definition: a locally compact group G
strongly respects compactness if for any closed metrizable subgroup N of
inv(wG), a subset A of G satisfies that AN ∩G is compact in G if and only
if AN is compact in wG (inv(wG) denotes the group of units of wG), we also
show that every locally compact group strongly respects compactness. This
improves the aforementioned results by Comfort, Trigos-Arrieta and Wu [21]
and Galindo and Hernández [35].

The results of this dissertation are mainly addressed in:

(1) M. Ferrer, S. Hernández, L. Tárrega (2017). ‘Equicontinuity criteria for
metric-valued sets of continuous functions.’ Topology and its Applica-
tions 225, p. 220-236.

(2) M. Ferrer, S. Hernández, L. Tárrega (2017). ‘A dichotomy property for
locally compact groups’.
(To appear, https://arxiv.org/pdf/1704.03438.pdf).
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(3) M. Ferrer, S. Hernández, L. Tárrega (2017). ‘Interpolation sets in spaces
of continuous metric-valued functions’.
(To appear, https://arxiv.org/pdf/1707.06550.pdf).

(4) M. Ferrer, S. Hernández, L. Tárrega (2017). ‘Interpolation sets in the
dual set of compact non-abelian groups’. (Pending, the paper is still in
progress).

• Contents and results:

The first chapter has a preliminary nature. It incorporates the notation,
definitions and basic facts which are used along this dissertation.

In Section 1.1, we recall the definition of a topological space and we give
some basic properties.

Section 1.2 is devoted to function spaces. It is divided into three parts.
In Subsection 1.2.1, we define three useful topologies on a function space: the
topology of pointwise convergence, the compact-open topology and the topo-
logy of uniform convergence. In Subsection 1.2.2, we recollect the definition
of Baire class 1 function and we present some celebrated results on C(X)
and B1(X), which are useful for the subsequent work. We also add some
direct consequences of these strong results. The aim of Subsection 1.2.3
is to obtain a way of extending results for R-valued spaces of functions to
metric-valued spaces of functions.

In Section 1.3, we recall the definition of topological group and we give
some basic facts.

In Section 1.4, we present the definition of the dual set of a topological
group and we introduce some terminology.

The second chapter deals with metric-valued sets of continuous func-
tions.

Section 2.1 is devoted to the notion of almost equicontinuity. The main
goal of this section is to extend this important notion to arbitrary topolo-
gical spaces, which were introduced in the setting of topological dynamics
studying the enveloping semigroup of a flow [2, 40, 41]. Combining ideas
of Troallic [93] and Cascales, Namioka, and Vera [15], we prove several cha-
racterizations of almost equicontinuity and hereditarily almost equicontinuity
for subsets of metric-valued continuous functions when they are defined on
a Čech-complete space. We also obtain some applications of these results to
topological groups and dynamical systems.

In Section 2.2, we study sets of continuous functions whose pointwise
closure is compact and contained in the space of all Baire class 1 functions.
We analyse the special case where the functions are defined from a Polish
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space X to a metric space M . Rosenthal [85], Bourgain [12], and Bourgain,
Fremlin and Talagrand [13] and Todorčević [92] have extensively studied the
compact subsets of B1(X). Our aim is to extend some of their fundamental
results to the special case where the functions are metric-valued.

The third chapter is focused on the study of interpolation sets in the
setting of metric-valued spaces of continuous functions.

In Section 3.1, we define the notion of M -interpolation set and we give
some basic facts.

In Section 3.2, motivated by a result of Bourgain in [12], we introduce
a property, called B-family, stronger than the mere non-equicontinuity of a
family of continuous functions. It is important because it brings together
the requisite for the existence of interpolation sets in metric-valued spaces
of functions on Čech-complete spaces.

In Section 3.3, we focus on the applications to spaces of continuous ho-
momorphisms on topological Čech-complete groups.

The fourth chapter is devoted to the analysis of the existence and
properties of interpolation sets in topological groups. As we have previously
said, the existence of this set helps us so as to determine which sort of
topological groups possesses the property of strongly respecting compactness.

In Section 4.1, we deal with the family of locally kω-groups. It includes,
for instance, all locally compact abelian groups, the free abelian groups on
a compact space and all countable direct sum of compact groups. Glöckner,
Gramlich and Hartnick [43] stated in 2010 that the dual group of an abelian
locally kω group is an abelian Čech-complete group, and vice-versa. So, the
proposed approach is a direct application of the results of Section 3.3.

Nevertheless, the approach in Section 4.2 for locally compact groups (not
necessarily abelian) is completely different. Using the extension of the Rosen-
thal’s theorem [85], which is presented in Section 2.2, we are able to extend
Rosenthal’s dichotomy theorem on Banach spaces to locally compact groups
and their weak topologies. For this purpose, we use the notion of an I0 set,
which is analogous to the `1-basis in the realm of locally compact groups.

The weak topology of a topological group plays an analogous function to
that of the weak topology in a Banach space. Therefore, it is often studied
in connection to the original topology of the group. For instance, it can be
said that the preservation of compact-like properties from Gw to G concerns
“uniform boundedness” results and, in many cases, it can be applied to prove
the continuity of certain related algebraic homomorphisms.

Our main result establishes that for every sequence {gn}n<ω in a locally
compact groupG, either {gn}n<ω has a weak Cauchy subsequence or contains
a subsequence that is an I0 set. This result is subsequently applied to obtain
sufficient conditions for the existence of weak Sidon sets in locally compact
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groups.
Here, a subset E of G is called weak Sidon set when every bounded

function can be interpolated by a continuous function defined on the Eberlein
compactification eG. This is a weaker property than the classical notion
of Sidon set in general (see [76]) but both notions coincide for abelian or
amenable groups.

It is still an open question whether every infinite subset of a locally com-
pact group G contains a weak Sidon subset (see [66, 31]).

The fifth chapter shows some reseach lines that we want to develop
promptly. They deal with the analysis of the existence and properties of
interpolation sets in the dual set of compact, not necessarily abelian, groups.
In the realm of non-abelian groups, the theory of interpolation sets is different
from the known facts in the commutative case. For instance, there exist non-
abelian compact groups whose dual contains no infinite Sidon set.

This chapter presents some results that appear in article (4), which is
still in internal revision. Our research is specially focussed on the case of
non-tall compact groups.

In Section 5.1, we recall the definition of Sidon and I0 sets.
In Section 5.2, we give a characterisation of the existence of I0 sets in

the dual of non-tall compact groups and some interesting corollaries.
In 1997, Hutchinson proved that every non-tall compact group contains

an infinite Sidon set [57]. We do believe that this is also true for I0 sets, and
our characterisation can be useful to prove this fact. In this regard, taking
into account [57, Corollary 2.5] and [47, Theorem 4.10], it is known that this
fact is true if the group is also connected. This belief leads us to considering
that we can ameliorate our present work.

In Section 5.3, we focus on the existence of central I0 sets in the dual
set of compact non-abelian groups. The study of central interpolation sets
started in 1972, when Parker introduced the notion of central Sidon set [75].
Afterwards, Grow and Hare defined the concept of central (weighted) I0

sets in 2004 [45]. Here, we present several characterisations of the existence
of infinite central I0 sets in the dual set of a compact group. The most
noteworthy of them is connected with the property of containing a sequence
equivalent to the unit basis `1. Moreover, we show that every infinite subset
of Ĝ contains an infinite central I0 sets if G is a non-tall compact group.
Finally, we present some results regarding the existence of that sort of thin
sets when removing the condition of non-tallness.

We do not present the proofs in this chapter because article (4) has not
yet been submitted. We plan to prove that the dual of every non-tall compact
group contains an infinite I0 set and to analyse the connection between I0

sets and central I0 sets as a subsequent research work.



Introducción

Los clásicos conjuntos de Hadamard (también llamados conjuntos lacuna-
rios) se estudian desde principios del siglo pasado.

Definición. Un subconjunto E = {nj}∞j=1 de N, con n1 < n2 < . . . se dice
que es un conjunto de Hadamard si existe algún q > 1 (llamado ratio de
Hadamard) tal que nj+1/nj ≥ q para todo 1 ≤ j ≤ ∞.

Desde 1926 hasta 1941, Sidon mostró que los conjuntos lacunarios poseen
propiedades interesantes. Existe una gran cantidad de resultados que ilus-
tran un comportamiento inesperado en funciones asociadas a un conjunto de
Hadamard. Por ejemplo:

Teorema. (Classical Hadamard gap theorem [44, Th. 1.2.2.])
Sea E = {nj}∞j=1 ⊆ N un conjunto de Hadamard con ratio q > 1. Suponga-

mos que la serie de potencias f(z) =
∞∑
j=1

cjz
nj tiene un radio de convergencia

igual a 1. Entonces f no puede extenderse analíticamente sobre ninguna
porción del arco |z| = 1.

En la década de los 50, algunas de estas propiedades fueron analizadas
más exhaustivamente y, finalmente, se convirtieron en definiciones. Como
la propiedad original de lacunaridad es de naturaleza aritmética y estas
propiedades se enmarcan mayoritariamente en el área del análisis funcional,
se consideró que no era necesario centrarse únicamente al estudio del con-
junto de los números enteros.

Todo ello motivó que los conjuntos lacunarios también se estudiaran den-
tro del conjunto dual de grupos topológicos compactos y en otros contextos.
Fue Kahane [62] el primero que en usar el término conjunto de Sidon en el
año 1957 y el punto de vista moderno de dicho concepto apareció en el libro
de Rudin [86] en el año 1962. Sea G = T, se tiene que todo conjunto de
Hadamard E ⊆ Ĝ = Z es un tipo particular de conjunto de Sidon.

Dado un grupo compacto y abeliano G, una de las diferentes caracteri-
zaciones de conjunto de Sidon (véase [66], por ejemplo) afirma que un sub-
conjunto E de Ĝ es un conjunto de Sidon si toda función acotada definida

9
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en E se puede obtener como restricción en E de la transformada de Fourier
de una medida en G.

Como el dual de un grupo compacto es un grupo discreto y los conjuntos
de Sidon se definieron, originalmente, en el conjunto dual, también se pueden
estudiar los conjuntos de Sidon como subconjuntos de un grupo discreto. En
este sentido, Picardello [76] extendió en 1973 la definición de conjunto de
Sidon en un grupo G al caso discreto y no abeliano.

Un caso particular de conjunto de Sidon es el conjunto I0. El concepto de
conjunto I0 en grupos localmente compactos y abelianos fue introducido
por Hartman y Ryll-Nardzewski [48] en 1964. En su artículo se trabaja
con la topología débil asociada a un grupo localmente compacto y abeliano
(escribiremos LCA, para abreviar) y se introduce la noción de conjunto de
interpolación o conjunto I0. Se dice que un subconjunto A de un grupo LCA
G es un conjunto I0 si toda función acotada en A se puede obtener como
la restricción de una función casi periódica en G (se dice que una función
complejo valuada f definida en G es casi periódica cuando se trata de la
restricción de una función continua definida en bG, la compactación de Bohr
de G).

Por lo tanto, un conjunto I0 es un subconjunto A de G tal que cualquier
función acotada definida en A puede ser interpolada por una función continua
definida en bG. Por consiguiente, si A es un conjunto I0 numerable e infinito,
se tiene que A bG es canónicamente homeomorfo a βω, la compactación de
Stone-Čech de ω.

El resultado principal de Hartman y Ryll-Nardzewski es el siguiente:

Teorema. ([48]) Todo grupo LCA contiene un conjunto I0.

En el caso particular de los grupos discretos y abelianos, van Douwen
realizó un progreso notable al demostrar la existencia de conjuntos I0 en
situaciones mucho más generales. Su resultado principal puede formularse
de la siguiente manera:

Teorema. ([94, Teo. 1.1.3]) Sea G un grupo discreto y abeliano y sea
A un subconjunto infinito de G. Entonces, existe un subconjunto B de A
cumpliendo |B| = |A| tal que B es un conjunto I0.

De hecho, van Douwen logró demostrar su resultado para el caso de la
recta real, pero no llegó a probarlo para cualquier grupo LCA arbitrario.
El estudio de la topología débil de un grupo localmente compacto ha sido
considerado por gran cantidad de investigadores, especialmente para el caso
de grupos abelianos, donde existe una gran cantidad de resultados relevantes.

Como el dual de un grupo LCA es también un grupo LCA, la definición
de conjunto I0 dentro del conjunto dual es análoga. En este sentido, Kahane
[61] obtuvo en 1966 una caracterización del conjunto I0 en el conjunto dual
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usando la transformada de Fourier y sin recurrir a la compactación de Bohr.
Demostró que un subconjunto E del grupo dual es un conjunto I0 si toda
función definida en E se puede obtener como la restricción de la transformada
de Fourier de una medida discreta en G.

Los conjuntos de Hadamard se pueden considerar como los primeros ejem-
plos de conjuntos I0. Muchas de las propiedades que poseen los conjuntos
de Hadamard se mantienen en los conjuntos I0.

Hare y Ramsey [47] introdujeron en 2003 la noción de conjunto I0 en
el conjunto dual de un grupo compacto no abeliano. En este contexto, los
conjuntos I0 son conjuntos de Sidon en los que la medida interpoladora se
puede tomar discreta.

La búsqueda de conjuntos de interpolación es un objetivo importante en
el análisis armónico. El libro de Graham y Hare [44] contiene muchos de los
resultados recientes en este área. En esta tesis, la búsqueda de conjuntos
de interpolación se realiza desde un punto de vista topológico y el objetivo
principal es poder comprender las claves (topológicas) que caracterizan la
existencia de tales conjuntos.

Siguiendo este punto de vista, Galindo y Hernández [34] proporcionaron
en 1994 condiciones suficientes para la existencia de conjuntos I0 en el dual
de un grupo abeliano, localmente conexo y Čech-completo y en un grupo
abeliano y compacto.

En el año 2004, Galindo y Hernández [35] demostraron que los grupos
localmente compactos grupos maximalmente casi periódicos (i.e. los grupos
que pueden ser introducidos de manera inyectiva en su compactación de
Bohr) contienen conjuntos I0. Sin embargo, se sabe que muchos grupos
localmente compactos (no abelianos) no son maximalmente casi periódicos.

En la Sección 4.2, se define wG, la compactación débil de un grupo
localmente compacto. Esta compactación extiende la compactación de Bohr,
ya que cuando G es abeliano se tiene que wG = bG. Usando esta extensión
se consigue obtener una definición apropiada del conjunto I0 para grupos
localmente compactos en general: un subconjunto A de G es un conjunto
I0 si toda función complejo valuada en A se puede extender a una función
continua en wG. De esta manera, se es capaz de analizar las condiciones
necesarias para la existencia de conjuntos I0 en grupos localmente compactos
en general.

Teniendo en cuenta la definición original de conjunto I0, se puede trasladar
dicho concepto al contexto de espacios topológicos mediante la noción de
conjunto de M -interpolación: un subconjunto Y de X es un conjunto
de M -interpolación (equivalentemente, un conjunto de interpolación para
C(X,M)) cuando para toda función g ∈MY con rango relativamente com-
pacto en M , existe una función f ∈ C(X,M) tal que f|Y = g.



12 Introducción

El análisis de esta propiedad sirve de ayuda para conseguir, además,
resultados sobre conjuntos de interpolación en grupos topológicos y en sus
conjuntos duales.

En esta tesis se estudia la relación que hay entre la existencia de ciertos
tipos de subconjuntos de funciones valuadas en un espacio métrico y definidas
en un espacio topológico X y las propiedades que posee el espacio topológico
X en si.

La disertación se apoya en cómo la existencia de subconjuntos de fun-
ciones continuas que poseen una de estas dos propiedades antagonistas, casi
equicontinuidad y ser una B-familia, afecta al espacio topológico.

La primera propiedad aparece en el contexto de los sistemas dinámicos
en [2] y tiene la siguiente definición: un subconjunto E de C(X,M) es casi
equicontinuo si E is equicontinuo en un subconjunto denso de X.

La segunda propiedad es un concepto más fuerte que la no equicon-
tinuidad y viene motivada por un resultado de Bourgain en [12]. Decimos que
E ⊆ C(X,M) es una B-familia si las siguientes dos condiciones se cumplen:
(a) E es relativamente compacto in MX , y (b) existe un conjunto no vacio
y abierto V de X y un ε > 0 tal que para toda colección finita {U1, . . . , Un}
de conjuntos no vacios relativamente abiertos en V existe f ∈ E tal que
diam(f(Uj)) ≥ ε para todo j ∈ {1, . . . , n}.

No se sabe exactamente la relación existente entre la noción de ser una
B-familia y la negación de casi equicontinuidad (o casi equicontuidad he-
reditaria). Sin embargo, cuando el espacio topológico X es homogéneo (un
grupo topológico es homogéneo, por ejemplo) sabemos que el concepto de
casi equicontinuidad es equivalente al de equicontinuidad; y para todo sub-
conjunto relativamente compacto en MX , la noción de ser una B-familia es
equivalente a la propiedad de no ser equicontinuo.

A lo largo de la tesis se lidia con el estudio de la existencia y propiedades
de los conjuntos de interpolación en diferentes contextos: (i) espacios de
funciones continuas, (ii) grupos topológicos y (iii) el dual de un grupo
topológico. Para los casos (i) y (iii), el concepto de B-familia se trata
de una propiedad crucial para la existencia de conjuntos de interpolación
en circunstancias bastantes generales, mientras que para el caso (ii), se usa
una extensión del Teorema de Rosenthal a grupos localmente compactos en
general.

Teorema. (H. P. Rosenthal [85]) Sea X un espacio de Banach real y sea
{xn}n<ω ⊆ X una sucesión acotada. Entonces, o bien {xn}n<ω contiene
una subsucesión débil-Cauchy, o bien contiene una subsucesión que es ho-
meomorfa a la base del espacio `1.

Sin embargo, la versión del resultado de dicotomía de Rosenthal que se
va a usar a lo largo de la tesis es la siguiente:



Introducción 13

Teorema. ([91]) Si X is un espacio polaco y {fn}n<ω ⊆ C(X) es una
sucesión puntualmente acotada, entonces o bien {fn}n<ω contiene una sub-
sucesión convergente, o bien continene una subsucesión cuya clausura en RX
es homeomorfa a βω.

La cuestión acerca de la disposición o ubicación de un grupo LCA G den-
tro de su compactación de Bohr bG ha sido estudiada por muchos matemáti-
cos. Dado un grupo topológico G, se denota por G+ al grupo algebraico G
equipado con la topología de Bohr. Glicksberg [42] demostró en 1962 que en
un grupo LCA G todo subconjunto compacto en G+ es compacto en G. Este
resultado sobre grupos LCA es uno de los resultados clave en esta cuestión
y se conoce como el Teorema de Glicksberg. Dicho resultado fue extendido
por Comfort, Trigos-Arrieta y Wu [21] en 1993 de la siguiente manera: sea
G un grupo LCA y sea N un subgrupo cerrado y metrizable de su com-
pactación de Bohr bG. Sea π la proyección canónica desde bG hasta bG/N
y sea bN

def
= π ◦ b la aplicación que hace el siguiente diagrama conmutativo:

G
b //

bN

��

bG

π

~~
bG
N

Teorema. (Comfort, Trigos-Arrieta and Wu) Sea G un grupo LCA y sea N
un subgrupo cerrado y metrizable de su compactación de Bohr bG. Si A es
un subconjunto de G, entonces A+(N ∩G) es compacto en G si y solamente
si el conjunto bN (A) es compacto en bG/N .

En el mismo artículo, se introducen las siguientes clases de grupos topológi-
cos: un grupo G respeta la compacidad (resp. respeta fuertemente la com-
pacidad) si satisface el teorema de Glicksberg (resp. satisface la tesis del
teorema previo). Los autores también plantean las siguientes cuestiones:
clarificar la relación existente entre ambas clases de grupos y caracterizar los
grupos que respetan fuertemente la compacidad. Nótese que en el caso par-
ticular en el que N = {0} la condición se reduce a respetar la compacidad.
Por lo tanto, todo grupo que respeta fuertemente la compacidad también
respeta la compacidad.

La propiedad de respetar la compacidad ha sido también estudiada y
generalizada para clases más grandes de grupos abelianos [8, 6, 82].

La existencia de un conjunto de interpolación en un grupo topológico
está notablemente conectada con la propiedad de respetar fuertemente la
compacidad. Por consiguiente, utilizando los resultados obtenidos sobre con-
juntos de interpolación, es capaz de demostrar que la familia de grupos lo-
calmente cuasiconvexos, abelianos, localmente kω (la cual incluye todos los
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grupos LCA, por ejemplo) también respeta compacidad.

Hughes [56] demostró en 1973 una generalización del teorema de Glicks-
berg a grupos localmente compactos en general (no necesariamente abelianos)
considerando la topología débil generada por las representaciones continuas
irreducible y unitarias. Teniendo en cuenta este punto de vista y con-
siderando la siguiente definición extendida: un grupo localmente compacto
G respeta fuertemente la compacidad si para cualquier subgrupo cerrado y
metrizable N de inv(wG), un subconjunto A de G satisface que AN ∩G es
compacto en G si y solamente si AN es compacto en wG (inv(wG) denota el
grupo de unidades de wG), se prueba que todo grupo localmente compacto
respeta fuertemente la compacidad. Este resultado mejora los resultados
previos de Comfort, Trigos-Arrieta y Wu [21] y Galindo y Hernández [35].

Los resultados de esta tesis se encuentran en los siguientes artículos:

(1) M. Ferrer, S. Hernández, L. Tárrega (2017). ‘Equicontinuity criteria for
metric-valued sets of continuous functions.’ Topology and its Applica-
tions 225, p. 220-236.

(2) M. Ferrer, S. Hernández, L. Tárrega (2017). ‘A dichotomy property for
locally compact groups’.
(En fase de revisión, https://arxiv.org/pdf/1704.03438.pdf).

(3) M. Ferrer, S. Hernández, L. Tárrega (2017). ‘Interpolation sets in spaces
of continuous metric-valued functions’.
(En fase de revisión, https://arxiv.org/pdf/1707.06550.pdf).

(4) M. Ferrer, S. Hernández, L. Tárrega (2017). ‘Interpolation sets in the
dual set of compact non-abelian groups’. (Pendiente, el artículo se en-
cuentra todavía en fase de revisión interna).

• Contenidos y resultados:

El primer capítulo es de naturaleza preliminar. Presenta la notación,
definiciones y resultados básicos que se usan a lo largo de la disertación.

En la Sección 1.1, se recuerda la definición de espacio topológico y se dan
algunas propiedades básicas.

La Sección 1.2 se dedica a los espacios de funciones. Está dividida en
tres partes. En la Subsección 1.2.1, se definen tres topologías conocidas para
espacios de funciones: la topología de la convergencia puntual, la topología
compacto abierta y la topología de la convergencia uniforme. En la Sub-
sección 1.2.2, se presenta la definición de función de la primera clase de
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Baire y se recogen algunos resultados conocidos en C(X) y B1(X) que nos
son de ayuda en nuestro trabajo subsecuente. También se añaden algunas
consecuencias directas de estos resultados principales. El objetivo de la Sub-
sección 1.2.3 es presentar una herramienta que sirva para extender resultados
de espacios de funciones real valuadas a espacios de funciones valuadas en
un espacio métrico arbitrario.

En la Sección 1.3, se recuerda la definición de grupo topológico y se dan
algunos resultados básicos.

En la Sección 1.4, se presenta la definición de conjunto dual de un grupo
topológico y se introduce terminología. Se distingue la naturaleza que posee
el conjunto dual si el grupo es abeliano o no lo es.

El segundo capítulo trata sobre conjuntos de funciones continuas va-
luadas en un espacio métrico arbitrario.

La Sección 2.1 versa sobre la casi equicontinuidad. El objetivo principal
de esta sección es extender esta noción a un espacio topológico arbitrario.
La definición original fue introducida en el marco de los sistemas dinámi-
cos [2, 40, 41]. Combinando ideas de Troallic [93] y Cascales, Namioka
y Vera [15], se prueban varias caracterizaciones de casi equicontinuidad y
casi equicontinuidad hereditaria para subconjuntos de funciones continuas
valuadas en un espacio métrico y definidas en un espacio Čech-completo.
También se obtienen algunas aplicaciones a grupos topológicos y a sistemas
dinámicos.

En la Sección 2.2, se estudian los conjuntos de funciones continuas cuya
clausura puntual es compacta y está contenida en el espacio de todas las
funciones de la primera clase de Baire. Se analiza el caso especial en el que
las funciones están definidas en un espacio polaco X y toman valores en un
espacio métrico M . Rosenthal [85], Bourgain [12], y Bourgain, Fremlin y
Talagrand [13] y, en una dirección diferente, Todorčević [92] han estudiado
de manera exhaustiva los subconjuntos compactos de B1(X). El objetivo
es extender algunos de estos resultados fundamentales al caso en el que la
funciones toman valores en un espacio métrico.

El tercer capítulo está enfocado en el estudio de conjuntos de inter-
polación en el marco de las funciones continuas y valuadas en un espacio
métrico.

En la Sección 3.1, se define la noción de conjunto de M -interpolación y
se proporcionan algunos resultados básicos.

En la Sección 3.2, motivados por un resultado de Bourgain en [12], se
introduce el concepto de B-familia. Se trata de una propiedad más fuerte
que la no equicontinuidad. Además, se trata de un requisito indispensable
para la existencia de conjuntos de interpolación en espacios de funciones
definidos en un espacio Čech-completo y que toman valores en un espacio
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métrico.
En la Sección 3.3, nuestra atención se centra en las aplicaciones a espa-

cios de homomorfismos continuos definidos en grupos Čech-completos.

El cuarto capítulo está dedicado al análisis de la existencia y las pro-
piedades de los conjuntos de interpolación en grupos topológicos. Como se
ha comentado anteriormente, la existencia de dicho tipo de conjuntos sirve
para determinar qué clases de grupos topológicos poseen la propiedad de
respetar fuertemente la compacidad.

En la Sección 4.1, se analiza la familia de los grupos localmente kω.
Esta familia incluye, por ejemplo, todos los grupos localmente compactos
abelianos, los grupos libres abelianos y toda suma directa numerable de
grupos compactos. Glöckner, Gramlich y Hartnick [43] demostraron en 2010
que el dual de un grupo localmente kω y abeliano es un grupo Čech-completo
y abeliano, y viceversa. Por consiguiente, la idea que se ha seguido en esta
sección es la aplicación de los resultados que se obtienen en la Sección 3.3 a
este contexto.

Sin embargo, la idea seguida en la Sección 4.2 para grupos localmente
compactos (no necesariamente abelianos) es completamente diferente. Us-
ando la extensión del teorema de Rosenthal [85], el cual se presenta en la
Sección 2.2, se consigue demostrar una extensión del teorema de dicotomía
de Rosenthal en espacios de Banach al caso de grupos localmente compactos
y sus topologías débiles asociadas. En este contexto, el concepto de conjunto
I0 juega un rol análogo al de base del espacio `1.

Nótese que la topología débil de un grupo topológico juega un papel
similar al de la topología débil en un espacio de Banach. Es por ello que a
menudo es estudiada en conexión con la topología del grupo. Por ejemplo, se
puede decir que las propiedades del tipo de conservación de la compacidad
de Gw a G están relacionadas con los resultados de “acotación uniforme” y,
en muchos casos, pueden ser aplicadas para probar la continuidad de ciertos
homomorfismos algebraicos relacionados.

Nuestro resultado principal establece que toda sucesión {gn}n<ω en un
grupo localmente compacto G, o bien {gn}n<ω posee una subsucesión débil
Cauchy, o bien contiene una subsucesión que es un conjunto I0. Este resul-
tado se aplica, posteriormente, para obtener condiciones suficientes para la
existencia de conjuntos débil Sidon en grupos localmente compactos.

Un subconjunto E de G se dice que es un conjunto débil Sidon si toda
función acotada puede interpolarse por una función continua definida en la
compactación de Eberlein eG. Se trata de una propiedad más débil que la
noción clásica de conjunto de Sidon (véase [76]), aunque ambos conceptos
coinciden para grupos abelianos o amenables.

Todavía es una cuestión abierta saber si todo subconjunto infinito de
un grupo localmente compacto G contiene un conjunto débil Sidon (véase
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[66, 31]).

El quinto capítulo muestra agunas de las lineas de invetigación fututa
que queremos desarrollar a corto plazo. Estas tratan sobre el estudio de la
existencia y las propiedades de los conjuntos de interpolación en el conjunto
dual de un grupo compacto no necesariamente abeliano. En el contexto de
los grupos no abelianos, la teoría sobre los conjuntos de interpolación es
diferente a la que hay para grupos topológicos abelianos. Por ejemplo, se
sabe que hay grupos compactos no abelianos cuyo dual no contiene ningún
conjunto de Sidon.

Este capítulo presenta resultados que aparecen en el artículo (4), el cual
se encuentra todavía en revisión interna. Nuestra investigación está partic-
ularmente enfocada en el estudio de los grupos compactos no tall.

En la Sección 5.1, se recuerda la definición de conjunto de Sidon y con-
junto I0.

En la Sección 5.2, se presenta una caracterización acerca de la existen-
cia de conjuntos I0 en el dual de un grupo compacto no tall, el cual nos
proporciona algunos corolarios interesantes.

En el año 1997, Hutchinson demostró que todo grupo compacto no tall
contiene un conjunto de Sidon [57]. Pensamos que dicha afirmación también
es cierta para los conjuntos I0, y que nuestra caracterización puede ser útil
para probar esta conjetura. En este sentido, teniendo en cuenta [57, Coro-
lario 2.5] y [47, Teorema 4.10], es conocido que este hecho se cumple si el
grupo es, además, conexo. Esta creencia nos lleva a considerar que se puede
mejorar el artículo en el que se está trabajando.

La Sección 5.3 se centra en el estudio de la existencia y de las propiedades
de los conjuntos centrales I0 en el conjunto dual de un grupo compacto no
abeliano. El estudio de los conjuntos centrales de interpolación empezó en el
año 1972, cuando Parker introdujo la noción de conjunto central Sidon [75].
Recientemente, Grow y Hare definieron los conjuntos centrales (ponderados)
I0 en 2014 [45]. En esta sección, se presentan algunas caracterizaciones para
la existencia de conjuntos centrales I0 infinitos en el conjunto dual de un
grupo compacto. La más destacada de ellas está conectada con la propiedad
de contener una sucesión equivalente a la base unidad del espacio `1. Además,
se demuestra que todo subconjunto infinito de Ĝ contiene un conjunto cen-
tral I0 infinito si G es compacto no tall. Finalmente, se presentan algunos
resultados acerca de la existencia de este tipo de conjuntos de interpolación
en los que no es necesaria la hipótesis de ser no tall.

No se presentan las pruebas de este capítulo porque el artículo (4) to-
davía no ha sido enviado para su publicación. Como subsecuentes lineas de
investigación, cabe destacar la de conseguir demostrar que el dual de todo
grupo compacto no tall contiene un conjunto infinito I0 y la de analizar la
conexión entre los conjuntos I0 y los conjuntos centrales I0.





Chapter 1

Preliminary results and
terminology

In this chapter, we introduce some notation and results required along the
dissertation. Our basic references are [71, 26, 98] for topological spaces and
for topologies on function spaces, [85, 13, 89] for the study of real-valued
functions, [53] for topological groups and [52, 32, 86, 44, 10] for the study of
the dual set of a topological group.

1.1 Topological spaces

A topology on a setX is a collection τ of subsets ofX satisfying the following
conditions:

(i) ∅ ∈ τ and X ∈ τ .

(ii) If U1 ∈ τ and U2 ∈ τ , then U1 ∩ U2 ∈ τ .

(iii) If Ai ∈ τ , then
⋃
i∈I
Ai ∈ τ for an arbitrary set of indices I.

A topological space is an ordered pair (X, τ) consisting of a set X and
a topology τ on X. We often omit specific mention of τ if no confusion arises.

Let X be a topological space with topology τ and let U be a subset of
X, we say that U is an open set of X if U ∈ τ . We say that U is a closed
set when its complement is open. The closure of a set U , denoted by U , is
the smallest closed set such that U ⊆ U and the interior of U , denoted by
Int(U), is the largest open set contained in U .

A topological space (X, τ) is called Hausdorff when distinct points can
be separated by open sets. In this thesis, we always assume that all the
topological spaces and groups are Hausdorff.
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Let τ and τ ′ be two topologies on a set X. If τ ⊆ τ ′ we write τ ≤ τ ′ and
we say that τ is weaker (coarser) than τ ′. We also say that τ ′ is stronger
(finer) than τ .

A subset A of a topological space X is dense in X if A = X. A subset
B of X is said to be nowhere dense if the interior of the closure of B is the
empty set. We say that a subset A of X is a set of first category if it can be
expressed as the union of countably many nowhere dense subsets of X. The
complement of a first category set is a residual set .

A family of nonempty sets A ⊆ τ is called a basis for a topological space
(X, τ) if every nonempty open subset of X can be represented as the union
of a subfamily of A. The family A is called subbasis for a topological space
(X, τ) if it satisfies one of the two following equivalent conditions:

(i) The subcollection A generates the topology τ . This means that τ is
the smallest topology containing A.

(ii) The collection of open sets consisting of all finite intersections of ele-
ments of A forms a basis for τ .

Given a subset A of a topological space (X, τ), we denote by τ |A the topolo-
gy induced by τ on A; that is, the topology whose open sets are of the form
U ∩A with U ∈ τ .

Let X and Y be two topological spaces. A function f : X → Y is said
to be continuous if for each open subset V of Y , the set f−1(V ) is an open
subset of X. We denote by C(X,Y ) the set of all continuous functions from
X to Y . When Y is the set of real numbers R we simply write C(X).

A topological space (X, τ) is called completely regular if given any closed
set F and any point x that does not belong to F , there is a continuous func-
tion f from X to [0, 1] such that f(x) is 0 and, for every y in F , f(y) is 1.
In other terms, this condition says that x and F can be separated by a con-
tinuous function. Moreover, X is a Tychonoff space if it is both completely
regular and Hausdorff.

Let (X, τ) be a topological space, and let ∼ be an equivalence relation
on X. We denote by X/∼ the set of equivalence classes of ∼ and by q the
mapping from X to X/∼ assigning to the point x ∈ X the equivalence class
[x] ∈ X/∼. We take the finest topology on X/∼ that makes q continuous;
that is, the family of all sets U such that q−1(U) is open in X. This topology
is called the quotient topology , the set X/∼ equipped with it is called the
quotient space, and q : X → X/∼ is called the quotient map.
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Let X be a set and let E = {fα : X → Yα}α<κ be a family of maps
where Yα is a topological space for every α < κ. The initial or weak topology
on X associated to E, w(X,E), is the coarsest topology on X that makes
continuous all the maps in E.

Let X def
=
∏
i∈I

Xi be a cartesian product of topological spaces Xi, i ∈ I.

Consider the canonical projections pi : X → Xi. The product topology on
X is defined to be the coarsest topology for which all the projections pi are
continuous. This topology is sometimes also called the Tychonoff topology.

We say that a topological space is disconnected if it is the union of two
disjoint nonempty open sets. Otherwise, X is said to be connected . The
maximal connected subsets (ordered by inclusion) of a nonempty topological
space are called the connected components of the space.

Let X be a topological space, the tightness of X, denoted tg(X), is the
smallest infinite cardinal κ such that for any subset A ⊆ X and any point
x ∈ A there is a subset B ⊆ A with |B| ≤ κ and x ∈ B.

Let X be a Hausdorff topological space. Here we recall some topological
properties that we use in the text:

- We say that X is totally disconnected space if the connected components
in X are the one-point sets.

- A metric space is an ordered pair (M,d) whereM is a set and d is a metric
on M . Given x ∈ M , we define the open ball of radius ε > 0 about x as
the set B(x, r)

def
= {y ∈ M : d(x, y) < ε}. These open balls form a basis

for a topology on M , making it a topological space. A metric space M
is called complete if every Cauchy sequence in M converges in M . If it is
also separable (i.e. it contains a countable dense subset), then it is said to
be a Polish space.

- A topological space X is called compact (resp. Lindelöf ) if every open
cover has a finite subcover (resp. countable subcover). Every compact
space is Lindelöf.

- A topological space X is said to be σ-compact if it is the union of countably
many compact subspaces. Every compact space is σ-compact, and every
σ-compact space is Lindelöf.

- A topological space X is called locally compact if every point of X has a
compact neighbourhood. Clearly, every compact space is locally compact.

- A Tychonov space X is Čech-complete if it is a Gδ-subset (i.e. it is ex-
pressible as a countable intersection of open subsets) of its Stone-Čech
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compatification. The family of Čech-complete spaces includes all complete
metric spaces and all locally compact spaces.

- A topological space is hemicompact if it has a sequence of compact subsets
such that every compact subset of the space lies inside some compact set
in the sequence. Every locally compact Lindelöf space is hemicompact.
Every hemicompact space is σ-compact.

- We say that X is a k-space if the following condition holds: A ⊆ X is open
if and only if A ∩ K is open in K for each compact set K in X. Every
Čech-complete space is a k-space [26, Th. 3.9.5.].

- A Hausdorff topological space X is a kω-space if there exists an ascending
sequence of compact subsets K1 ⊆ K2 ⊆ . . . ⊆ X such that X =

⋃
n<ω

Kn

and U ⊆ X is open if and only if U ∩ Kn is open in Kn for each n < ω
(i.e. X = lim

→
Kn) as a topological space. A Hausdorff topological space X

is locally kω if each point has an open neighbourhood which is a kω-space
in the induced topology. It is clear that every kω-space is a k-space (see
[43]) and hemicompact.

1.2 Function spaces

Let X and Y be two topological spaces. We denote by Y X the set of all
functions from X to Y . The space Y X can be viewed as a product of X
copies of Y (i.e. Y X =

∏
x∈X

Y ). In particular, the set C(X,Y ) is a subspace

of Y X . In the following section we report on some topologies on the space
Y X and its subcollections, which are used along the thesis.

1.2.1 Topologies on function spaces

Definition 1.2.1. We say that E ⊆ Y X has the topology of pointwise
convergence if it is provided with the subspace topology induced by the Ty-
chonoff product topology on Y X .

The reason for calling it the topology of pointwise convergence comes
frome the following theorem:

Fact 1.2.2. A net {fδ}δ∈∆ of functions converges to the function f in the
topology of pointwise convergence if and only if for each x ∈ X, the sequence
{fδ(x)}δ∈∆ of points of Y converges to the point f(x).
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Given F ⊆ X, the symbol tp(F ) denotes the topology on Y X , of pointwise
convergence on F . We denote by Cp(X,Y ) the topological space (C(X,Y ), tp(X)).

For a set E of functions from X to Y and F ⊆ X, the symbol E|F de-
notes the set {f |F : f ∈ E}. We denote by EM

X

the closure of E in the
Tychonoff product space MX .

For each point x ∈ X, we consider the evaluation map evalx : Y X → Y ,
defined by evalx(f)

def
= f(x), for every f ∈ Y X . Note that we can see

each point x ∈ X as a function from Y X to Y if we associate the point x
to the map evalx. Therefore, the symbolism (F, tp(E

Y X
)) also denotes the

set F ⊆ X equipped with the weak topology generated by the functions in
E
MX

|F ; that is, the topological space (F,w(F,E
MX

|F )).

Definition 1.2.3. The compact-open topology on E ⊆ Y X is the topology
having for a subbase the sets

[K,U ] = {f ∈ E : f(K) ⊆ U}

for K compact in X, U open in Y . We denote this topology by τc.

We denote by Cc(X,Y ) the topological space (C(X,Y ), τc).

Let (Y, d) be a metric space, let X be a topological space and let E be a
subset of Y X . It is known that the bounded metric d(x, y) = min{d(x, y), 1}
induces the same topology as d. For any set X and any two functions
f, g : X → Y , sup

x∈X
{d(f(x), g(x))} is always a real number. Therefore, the

function d∞ : E × E → [0,+∞[ defined by

d∞(f, g) = sup
x∈X
{d(f(x), g(x))}

is a metric on E.

Definition 1.2.4. The metric d∞ on E is called the uniform metric induced
by d, and the topology it induces on E is called the topology of uniform
convergence.

Given F ⊆ X, the symbol t∞(F ) denotes the topology on Y X , of uni-
form convergence on F . We denote by C∞(X,Y ) the topological space
(C(X,Y ), t∞(X)).

Let us see the following version of Arzelà-Ascoli’s theorem that we can
find in [98, Theorem 43.15] and is useful in Subsection 4.1.2. First, we
introduce the definition of equicontinuity.
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Definition 1.2.5. Let X be a topological space and (M,d) be a metric space.
A subset E is equicontinuous at x0 ∈ X if for every ε > 0, there is an
open neighbourhood U of X such that d(f(x0), f(x)) < ε for all x ∈ U and for
all f ∈ E. We say that E is equicontinuous provided it is equicontinuous
at each point of X.

Theorem 1.2.6. (Arzelà-Ascoli Theorem [64, Th. 7.18.]) Let X be a Haus-
dorff, or regular, k-space, (M,d) a metric space, and E a subset of C(X,Y ).
Then E is compact in the compact-open topology if an only if

(a) E is pointwise closed,

(b) for each x ∈ X, evalx(E) has compact closure,

(c) E is equicontinuous on each compact subset of X.

Theorem 1.2.7. (Namioka Theorem [72, Th. 2.3.]) Let X be a Čech-
complete space, (M,d) a metric space, and E a subset of C(X,Y ). If E is
compact relative to the pointwise topology, then E is equicontinuous at each
point of a dense Gδ set in X.

Corollary 1.2.8. ([91, Th. Section 4]) If X and Y are compact spaces and
f : X × Y → R is separately continuous in each variable, then there is a
dense Gδ set U ⊆ X such that f is jointly continuous on U × Y .

1.2.2 Real-valued continuous functions and Baire class 1 func-
tions

We begin by recalling the notion of a Baire class 1 function.

Definition 1.2.9. A function f : X → M is said to be Baire class 1 if
there is a sequence of continuous functions that converges pointwise to f .
We denote by B1(X,M) the set of all M -valued Baire 1 functions on X. If
M = R we simply write B1(X).

A compact spaceK is called Rosenthal compactum ifK can be embedded
in B1(X) for some Polish space X.

The first two basic results are Rosenthal’s dichotomy theorem [85], which
we present in the way they are formulated by Todorčević in [91], and a
theorem by Bourgain, Fremlin and Talagrand about compact subsets of Baire
class 1 functions [13].
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Theorem 1.2.10. (H. P. Rosenthal) If X is a Polish space and {fn}n<ω ⊆
C(X) is a pointwise bounded sequence, then either {fn}n<ω contains a con-
vergent subsequence or a subsequence whose closure in RX is homeomorphic
to βω.

Theorem 1.2.11. (J. Bourgain, D.H. Fremlin, M. Talagrand) Let X be a
Polish space and let {fn}n<ω ⊆ C(X) be a pointwise bounded sequence. The
following assertions are equivalent (where the closure is taken in RX):

(a) {fn}n<ω is sequentially dense in its closure.

(b) The closure of {fn}n<ω contains no copy of βω.

Our third starting fact is extracted from a result by Pol [78, p. 34], which
again was formulated in different terms (cf. [15]). Here, we only use one of
the implications established by Pol.

Theorem 1.2.12. (R. Pol) Let X be a complete metric space and let E be
an infinite subset of C(X) which is uniformly bounded. If ERX * B1(X),
then E contains a sequence whose closure in RX is homeomorphic to βω.

The following Remark show us how to translate some results in con-
tinuous functions defined on a Polish space into continuous functions on a
compact space.

Remark 1.2.13. Given a subset E ⊆ C(X,M), it is possible to define an
equivalence relation on X by x ∼ y if and only if f(x) = f(y) for all f ∈ E. If
X̃ = X/∼ is the quotient space and p : X → X̃ denotes the canonical quotient
map, each f ∈ E has associated a map f̃ ∈ C(X̃,M) defined as f̃(x̃)

def
= f(x)

for any x ∈ X with p(x) = x̃. Furthermore, if Ẽ def
= {f̃ : f ∈ E}, we can

extend this definition to the pointwise closure of Ẽ. Thus, each f ∈ EM
X

has associated a map f̃ ∈ Ẽ
MX̃

such that f̃ ◦ p = f . We denote by XE the
topological space (X̃, tp(Ẽ)). Note that XE is metrizable if E is countably
infinite and it is Polish if X is compact and E is countably infinite.

Proposition 1.2.14. Let L be a countably infinite subset of C(X,M) such
that LM

X

is compact. We denote by XL the topological space (X̃, tp(L̃)),
which is metrizable because L̃ is countable. Consider the map

p∗ : (M X̃ , tp(X̃))→ (MX , tp(X))

defined by p∗(f̃) = f̃ ◦ p, for each f̃ ∈M X̃ . Then p∗ is a homeomorphism of

L̃
MX̃

onto LM
X

.
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Proof. We observe that p∗ is continuous, since a net {f̃α}α∈A tp(X̃)-converges

to f̃ in L̃
MX̃

if and only if {f̃α ◦ p}α∈A tp(X)-converges to f̃ ◦ p in LM
X

.

Let us see that p∗(L̃
MX̃

) = L
MX

. Indeed, since p∗ is continuous we have

that p∗(L̃
MX̃

) ⊆ p∗(L̃)
MX

= L
MX

. We have the other inclusion because

L
MX

is the smallest closed set that contains L and L ⊆ p∗(L̃
MX̃

).

Let f̃ , g̃ ∈ L̃
MX̃

such that f̃ 6= g̃. Then there exists x̃ ∈ X̃ such that f̃(x̃) 6=
g̃(x̃). Let x ∈ X an element such that x̃ = p(x). Thus (f̃ ◦p)(x) 6= (g̃ ◦p)(x).
So, p∗ is injective because f̃ ◦ p 6= g̃ ◦ p.
Finally, we arrive to the conclusion that p∗|

L̃
MX̃ is a homeomorphism because

it is defined between compact spaces.

A direct consequence of the strong results presented previously are the
following corollaries. We frequently use c to denote the cardinal of the con-
tinuum of real numbers, that is, c = 2ℵ0 = |R|.

Corollary 1.2.15. If X is a Polish space and E is an infinite uniformly
bounded subset of C(X). Then tg(E

RX
) ≤ ω if and only if ERX ⊆ B1(X).

Proof. One implication is consequence of a well known result by Bourgain,
Fremlin and Talagrand (see Theorem 1.2.11). So, assume that tg(E

RX
) ≤ ω.

If ERX * B1(X), by Theorem 1.2.12, we can find a sequence {fn}n<ω ⊆ E
whose closure in RX is canonically homeomorphic to βω. This implies that
E

RX contains a copy of βω, which is a contradiction.

Corollary 1.2.16. Let X be a Polish space and let E be an infinite uniformly
bounded subset of C(X). The following assertions are equivalent:

(a) tg(E
RX

) ≤ ω.

(b) ERX ⊆ B1(X).

(c) E is sequentially dense in ERX .

(d) |ERX | ≤ c.

(e) E does not contain any sequence whose closure in RX is homeomorphic
to βω.
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Proof. (a)⇔ (b) is Corollary 1.2.15.
(b)⇒ (c) was proved by Bourgain, Fremlin and Talagrand (see [91]).
(b)⇒ (d), (a)⇒ (e) and (c)⇒ (a) are obvious.
(d)⇒ (b) and (e)⇒ (b) are a consequence of Theorem 1.2.12.

Furthermore, according to results by Rosenthal [85] and Talagrand [89]
we can also add the property of containing a sequence equivalent to the unit
basis `1.

Definition 1.2.17. Let {gn}n<ω be a uniformly bounded real (or complex)
sequence of continuous functions on a set X. We say that {gn}n<ω is equi-
valent to the unit basis `1 if there exists a real constant C > 0 such
that

N∑
i=1

|ai| ≤ C · ‖
N∑
i=1

aigi‖∞

for all scalars a1, . . . , aN and N ∈ ω.

Theorem 1.2.18. (Talagrand [89]) Let X be a compact and metric space
and let E be an infinite uniformly bounded subset of C(X). The following
assertions are equivalent:

(a) ERX ⊆ B1(X).

(b) Every sequence in E has a weak-Cauchy subsequence.

(c) E does not contain any sequence equivalent to the `1 basis.

Remark 1.2.19. It is pertinent to notice here that using Rosenthal-Dor
Theorem [24], Talagrand’s result formulated above also holds for complex
valued continuous functions.

A slight variation of Corollary 1.2.15 is also fulfilled if X is a compact
space and E is countably infinite.

Corollary 1.2.20. Let X be a compact space and let E be a countably infinite
and uniformly bounded subset of C(X). Then tg(E

RX
) ≤ ω if and only if E

does not contain any sequence whose closure in RX is homeomorphic to βω.

Proof. Let XE be the quotient space associated to E equipped with the
topology of pointwise convergence on X. According to Proposition 1.2.14,
we may assume WLOG that X = XE and therefore that is a Polish space.
It now suffices to apply Corollary 1.2.16.
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Corollary 1.2.21. Let X be a compact space and let E be a countably in-
finite and uniformly bounded subset of C(X). The following assertions are
equivalent:

(a) tg(E
RX

) ≤ ω.

(b) E does not contain any sequence whose closure in RX is homeomorphic
to βω.

(c) ERX is a Rosenthal compactum.

(d) |ERX | ≤ c.

(e) E does not contain any subsequence equivalent to the `1 basis.

Proof. If XE denotes the quotient space associated to E, then Fact 1.2.14

implies that ERX is canonically homeomorphic to Ẽ
RXE

(a)⇔ (b) is Corollary 1.2.20.

(a) ⇒ (c) By Corollary 1.2.15, we have that Ẽ
RXE

⊆ B1(XE). Thus

Ẽ
RXE

and, consequently, also ERX are Rosenthal compactum.
(c)⇒ (d) and (d)⇒ (b) are obvious.
(a) ⇔ (e) It follows from Fact 1.2.14, Corollary 1.2.15 and Theorem

1.2.18.

Corollary 1.2.22. Let X be a compact space and let E be a countably infinite
and uniformly bounded subset of C(X). If tg(E

RX
) ≤ ω, then ERX ⊆ B1(X).

Proof. Suppose that there is f ∈ ERX \ B1(X). Since tg(E
RX

) ≤ ω, there
is L ∈ [E]≤ω such that f ∈ L

RX . Therefore f ∈ L
RX \ B1(X) and, by

Fact 1.2.14, we deduce that f̃ ∈ L̃
RXL
\ B1(XL). It now suffices to apply

Corollaries 1.2.16 and 1.2.20.

The following example shows that Corollary 1.2.21 may fail if one takes
E of uncountable cardinality. Given a subset A ⊆ X, we denote by χA the
characteristic function of A, that is, the map defined by setting χA(x) = 1
if x ∈ A and χA(x) = 0 if x ∈ X \A.

Example 1.2.23. Let X = [0, ω1] and set

E = {χ[α,ω1] : α < ω1, and α it is not a limit ordinal}.

Then |ERX | = c. However χ{ω1} is in the closure of E but it does not belong
to the closure of any countable subset of E.
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1.2.3 Extensions to M-valued functions

The goal in this section is to provide two ways to extend some results ob-
tained for real-valued continuous functions and Baire class 1 functions to
functions that take values in a metric space. The former approach requires
that M is a compact metric space, whereas the latter can be used for all
metric spaces.

It is well known that for every compact metric space (M,d), there is a
canonical continuous one-to-one mapping EM : M −→ [0, 1]ω that embedsM
into [0, 1]ω as a closed subspace. Let ρn : [−1, 1] −→ [0, 1] the map defined
by ρn(r) = |r|

2n for every n < ω. Along this subsection, we consider that
[0, 1]ω is equipped with the metric ρ defined by

ρ((xn), (yn)) =
∑
n<ω

ρn(xn − yn)

The proof of the following lemma is obtained by a standard argument of

compactness, using the continuity of E−1
M and that every continuous map

defined on a compact space is uniformly continuous.

Lemma 1.2.24. Let (M,d) be a compact metric space. Let EM : M −→
[0, 1]ω denote its attached embedding into [0, 1]ω, and let πn : [0, 1]ω → [0, 1]
denote the nth canonical projection. Then, for every ε > 0, there is δ > 0 and
n0 < ω such that if (x, y) ∈M×M and ρn(πn(EM (x))−πn(EM (y))) < δ/2n0

for n ≤ n0 then d(x, y) < ε.

Proof. As we said before, we know that E−1
M is uniformly continuous on

EM (M). Let ε > 0, then there is δ > 0 such that for every x, y ∈ M with
ρ(EM (x), EM (y)) < δ, we have that d(x, y) < ε.

Let n0 be the minimum natural number such that 1/2n0 < δ/2. Let us
take (x, y) ∈ M ×M satisfying that ρn(πn(EM (x)) − πn(EM (y))) < δ/2n0

for n ≤ n0.
We have that:

ρ(EM (x), EM (y)) =
∑
n<ω

ρn(πn(EM (x))− πn(EM (y)))

≤
n0∑
n=1

ρn(πn(EM (x))− πn(EM (y))) +

∞∑
n=n0+1

1/2n

<

n0∑
n=1

δ/2n0 + 1/2n0 < δ/2 + δ/2 = δ

Consequently, d(x, y) < ε.

We now recall some simple remarks that are used along the work.
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Proposition 1.2.25. Let X be a topological space and (M,d) a compact
metric space. If πn is the nth projection mapping defined above, then the
following map is continuous if we consider that the two spaces have the topol-
ogy of pointwise convergence.

π∗n : MX → [0, 1]X

defined by π∗n(f)
def
= πn ◦ EM ◦ f , f ∈MX , for each n < ω.

For each S ⊆MX and each n < ω we define Sn
def
= π∗n(S).

Proposition 1.2.26. Let X be a Baire space, (M,d) be a compact metric
space, E ⊆ C(X,M) and H def

= E
MX

. Then π∗n(H) = Hn = En
[0,1]X .

Proof. Indeed, since π∗n is continuous we have thatHn = π∗n(H) = π∗n(E
MX

) ⊆
π∗n(E)

[0,1]X

= En
[0,1]X . For the reverse inclusion, remark that En

[0,1]X is the
smallest closed subset that contains En and En ⊆ Hn.

Proposition 1.2.27. Let X be a Baire space, (M,d) be a compact metric
space and E ⊆ C(X,M). If En is almost equicontinuous (see Definition
2.1.1) for every n < ω, then E is almost equicontinuous.

Proof. For each n ∈ ω there exists a dense Gδ subset Dn of X such that
En is equicontinuous on Dn. Since X is a Baire space, the D =

⋂
n<ω

Dn is

dense in X. We claim that E is equicontinuous in D. Indeed, let x0 ∈ D
and ε > 0. By Lemma 1.2.24 we get δ > 0 and n0 < ω. Take ε0 = δ

2n0
. For

each n < n0, being En equicontinuous in x0, there is an open neighbourhood
Un of x0 such that |gn(x0) − gn(x)| < ε0 for all x ∈ Un and gn ∈ En.
Consider the open neighbourhood U =

⋂
n<n0

Un of x0. So, let an arbitrary

g ∈ E and x ∈ U , then ρn(πn(EM (g(x0)))−πn(EM (g(x)))) = ρn(π∗n(g)(x0)−
π∗n(g)(x)) = |π∗n(g)(x0)−π∗n(g)(x)|

2n < ε0
2n ≤

δ
2n0

. Consequently, d(g(x0), g(x)) < ε
by Lemma 1.2.24.

Proposition 1.2.28. The diagonal map ∆ : H →
∏
n<ω

Hn defined by ∆(h) =

(πn ◦ EM ◦ h)n<ω for each h ∈ H, is a homeomorphism of H onto its image.

All maps defined in the previous subsection can be conveyed canonically
to a countably infinite subset L of E. Thus we have:

π̃∗n : M X̃ → [0, 1]X̃ ; f̃ 7→ πn ◦ EM ◦ f̃
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∆̃ : L̃
MX̃

→
∏
n<ω

L̃n
[0,1]X̃

; f̃ 7→ {πn ◦ EM ◦ f̃}n<ω

p∗ : [0, 1]X̃ → [0, 1]X ; f̃ 7→ f̃ ◦ p

Proposition 1.2.29. p∗ : L̃
[0,1]X̃

−→ L
[0,1]X is an onto homeomorphism.

So, for each n0 < ω we have the following commutative diagram:

∏
n<ω

(M X̃)n M X̃

[0, 1]X̃

MX

[0, 1]X

∏
n<ω

(MX)n

pn0

∆̃

π̃∗n0

p∗

p̃∗

π∗n0

∆

pn0

where pn0 is the n0th projection of the sequence.

In the second chapter of the thesis, we extend some results for real-valued
functions spaces to metric-valued function spaces. This is accomplished using
an idea of Christensen [19]. First, recall that given a metric space (M,d),
it is well known that the metric d̄ : M ×M → R defined by d̄(m1,m2)

def
=

min{d(m1,m2), 1} for all m1,m2 ∈ M induces the same topology as d. So,
without loss of generality, we work with this metric from here on.

Definition 1.2.30. Let X be a topological space, (M,d) be a metric space
that we always assume equipped with a bounded metric and E be a subset of
C(X,M) that we consider equipped with the pointwise convergence topology
tp(X) in the sequel, unless otherwise stated.
Set

K def
= {α : M → [−1, 1] : |α(m1)− α(m2)| ≤ d(m1,m2), ∀m1,m2 ∈M}.

Being pointwise closed and equicontinuous by definition, it follows that K is
a compact and metrizable subspace of RM . For m0 ∈ M , define αm0 ∈ RM

by αm0(m)
def
= d(m,m0) for all m ∈M . It is easy to check that αm0 ∈ K.

Consider the evaluation map ϕ : X × E →M defined by ϕ(x, g)
def
= g(x)

for all (x, g) ∈ X×E, which is clearly separately continuous. The map ϕ has
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associated a separately continuous map ψ : X × (E × K) → [−1, 1] defined
by ψ(x, (g, α))

def
= α(g(x)) for all (x, (g, α)) ∈ X × (E ×K).

Set
ν : E

MX

×K → [−1, 1]X

defined by
ν(h, α)

def
= α ◦ h for all h ∈ EM

X

and α ∈ K.

Remark 1.2.31. ν is continuous.

Proof. Let {(hδ, αδ)}δ∈∆ ⊆ E
MX

× K be a net that converges to (h, α) ∈
E
MX

× K. Given ε > 0 and x ∈ X, then there exists δ0 ∈ ∆ such that
d(hδ(x), h0(x)) < ε/2 and |αδ(h0(x))−α0(h0(x))| < ε/2 for all δ > δ0. There-
fore, we have that |ν(h0, α0)(x)− ν(hδ, αδ)(x)| = |α0(h0(x))− αδ(hδ(x))| ≤
|α0(h0(x))−αδ(h0(x))|+ |αδ(h0(x))−αδ(hδ(x))| ≤ |α0(h0(x))−αδ(h0(x))|+
d(h0(x), hδ(x)) < ε for all δ > δ0.

Since E ⊆ C(X,M), we have that ν(E ×K) ⊆ C(X, [−1, 1]).

Given f ∈MX we can associate a map f̌ ∈ RX×K defined by

f̌(x, α)
def
= ν(f, α)(x) = α(f(x)), for all (x, α) ∈ X ×K.

In like manner, given any subset E of MX , we set Ě def
= {f̌ : f ∈ E} ⊆

RX×K.

Lemma 1.2.32. Let X be a topological space, (M,d) a metric space and
E a subset of C(X,M). Let K and ν be the space and the map defined
in Definition 1.2.30. Then, for every subset F of X, the identity map
id : (F, tp(E

MX

))→ (F, tp(ν(E
MX

×K))) is a homeomorphism.

Proof. Let {xδ}δ∈∆ ⊆ F be a net that tp(E
MX

)-converges to x. Since

α is continuous, for any (h, α) ∈ E
MX

× K, we have lim
δ∈∆

ν(h, α)(xδ) =

lim
δ∈∆

α(h(xδ)) = α(h(x)) = ν(h, α)(x). So, id is continuous. Conversely,

let {xδ}δ∈∆ ⊆ F be a net that tp(ν(E
MX

× K))-converges to x0 ∈ F .

Given h ∈ E
MX

arbitrary, take αh(x0) ∈ K. So, fixed ε > 0, there is
δ0 ∈ ∆ such that ε > |ν(h, αh(x0))(xδ)−ν(h, αh(x0))(x0)| = |d(h(xδ), h(x0))−
d(h(x0), h(x0))| = d(h(xδ), h(x0)) for every δ > δ0. That is, the net {xδ}δ∈∆

converges to x0 in tp(E
MX

), which completes the proof.
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Lemma 1.2.33. Let X be a topological space, (M,d) a metric space and
E ⊆ C(X,M). Then:

(a) f ∈ C(X,M) if and only if f̌ ∈ C(X ×K).

(b) A net {gδ}δ∈w ⊆ C(X,M) converges to f ∈ MX if and only if the net
{ǧδ}δ∈w ⊆ C(X ×K) converges to f̌ ∈ RX×K.

(c) If EM
X

is compact, then E
MX

and Ě
RX×K

are canonically homeomor-
phic.

Proof. (a) Suppose that f ∈ C(X,M) and let {(xδ, αδ)}δ∈w ⊆ X × K be a
net that converges to (x, α) ∈ X ×K. For every δ ∈ w, we have

|αδ(f(xδ))− α(f(x))| ≤ |αδ(f(xδ))− αδ(f(x))|+ |αδ(f(x))− α(f(x))| ≤
≤ d(f(xδ), f(x)) + |αδ(f(x))− α(f(x))|

Since {f(xδ)}δ∈w converges to f(x) and {αδ}δ∈w converges to α it follows
that

lim
δ∈w

f̌(xδ, αδ) = lim
δ∈w

αδ(f(xδ)) = α(f(x)) = f̌(x, α).

Conversely, suppose that f̌ ∈ C(X × K) and let {xδ}δ∈w ⊆ X a net that
converges to x ∈ X. Consider the map αf(x) ∈ K. We have

lim
δ∈w

d(f(xδ), f(x)) = lim
δ∈w

αf(x)(f(xδ)) = lim
δ∈w

f̌(xδ, αf(x)) = f̌(x, αf(x)) = 0,

That is, f is continuous.
(b) Suppose that {gδ}δ∈w ⊆ C(X,M) converges pointwise to f ∈ MX

and take the associated sequence {ǧδ}δ∈w ⊆ C(X ×K). Then lim
δ∈w

ǧδ(x, α) =

lim
δ∈w

α(gδ(x)) = α(lim
δ∈w

gδ(x)) = α(f(x)) = f̌(x, α) for all (x, α) ∈ X ×K.

Conversely, suppose that {ǧδ}δ∈w ⊆ C(X × K) converges pointwise to
f̌ ∈ RX×K and let us see that the sequence {gδ}δ∈w ⊆ C(X,M) converges
pointwise to f . Indeed, it suffices to notice that for every x ∈ X and its
associated map αf(x) ∈ K, we have

|ǧδ(x, αf(x))− f̌(x, αf(x))| = |αf(x)(gδ(x))− αf(x)(f(x))| = d(gδ(x), f(x)).

(c) Consider the map ϕ : E
MX

→ Ě
RX×K

defined by ϕ(g)
def
= ǧ for all

g ∈ E
MX

. By compactness, it is enough to prove that ϕ is injective and
continuous. The argument verifying the continuity of ϕ has been used in (b).
Thus we only verify that ϕ is injective. Assume that ϕ(f) = ϕ(g) with f, g ∈
E
MX

, which means α(f(x)) = α(g(x)) for all (x, α) ∈ X ×K. Given x ∈ X,
we have the map αg(x) ∈ K and, consequently, αg(x)(f(x)) = αg(x)(g(x)) = 0
for all x ∈ X. This yields d(f(x), g(x)) = 0 for all x ∈ X, which implies
f = g.



34 Preliminary results and terminology

1.3 Topological groups

Definition 1.3.1. Let (G, ·) be a group and let τ be a topology on G. If the
mappings

m : G×G→ G and i : G→ G

m(g, h) = g · h i(g) = g−1

are continuous, then τ is said to be a group topology and (G, τ) is called
topological group.

The conditions on the continuity on m and on i are in general indepen-
dent. In case where m is continuous but i need not be continuous, (G, τ) is
called paratopological group. Compact paratopological groups are automati-
cally topological groups because i is automatically continuous.

A group homomorphism is a map g : G → H between two groups such
that the group operation is preserverd (i.e. f(q1 · g2) = f(g1) · f(g2) for all
g1, g2 ∈ G). The set of homomorphisms (resp. continuous homomorphisms)
of G into H is denoted by Hom(G,H) (resp. CHom(G,H)).

We say that a topological group G is precompact if it is isomorphic (as
a topological group) to a subgroup of a compact group H (we may assume
that G is dense in H).

Proposition 1.3.2. ([54, Prop. 1.8.])

(i) The space underlying a topological group is homogeneous (i.e. for every
(g, h) ∈ G×G there is a homeomorphism f : G→ G such that f(g) =
h).

(ii) Every quotient space G/H def
= {gH : g ∈ G} with the quotient topology

is a homogeneous space.

Proposition 1.3.3. ([54, Prop. 1.10.])

(i) If H is a subgroup of a topological group G, then H is a topological
group in the induced topology.

(ii) If {Gi}i∈I is a family of topological groups, then
∏
i∈I

Gi is a topological

group.

(iii) If N is a normal subgroup of a topological group G, then the quotient
group G/N is a topological group with respect to the quotient topology.
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Example 1.3.4. ([54, Example 1.9.])

(i) Every group is a topological group when endowed with the discrete topol-
ogy. A group G endowed with the discrete topology is denoted by Gd.

(ii) The group of real numbers R and the group of complex numbers C
endowed with its usual topology are topological groups.

(iii) The general linear group GL(n,C) of all invertible nxn matrices with
complex entries can be viewed as a topological group with the topology
defined by viewing GL(n,C) as a subspace of Euclidean space Cn×n.

(iv) The unitary group of degree n, denoted U(n), is the group of n×n uni-
tary matrices, with the group operation of matrix multiplication. The
unitary group is a subgroup of the general linear group GL(n,C).

(v) More generally, for a Hilbert space H, U(H) is the group of unitary
operators on that Hilbert space.

Let us see the following structure theorem for compact connected groups.

Theorem 1.3.5. ([79, Th. 6.5.6.]) Let G be a compact connected group.
Then, G is isomorphic to a quotient of K def

=
∏
i∈I

Gi × A where each Gi is a

compact simply-connected Lie group and A is a compact abelian group.

The next definition is a purely algebraic concept.

Definition 1.3.6. Let G be an arbitrary group, not necessarily topological.
A complex-valued function f on G is said to be positive-definite if the
inequality

m∑
j=1

m∑
k=1

αjαkf(x−1
j xk) ≥ 0

holds for every choice of x1, . . . , xm in G and for every choice of complex
numbers α1, . . . , αm.

Example 1.3.7. (a) Suppose f ∈ L2(G) (i.e.
∫
G |f |

2dmG < ∞) and con-
sider the map f̃ defined by f̃(g) = f(x−1) for every x ∈ G. Then the
map ϕ def

= f ∗ f̃ is positive-definite.

(b) The map h : C → C defined by h(x) = |x|, for every x ∈ C, is not
positive-definite
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Proof. (a)

m∑
j=1

m∑
k=1

αjαkϕ(x−1
j xk) =

m∑
j=1

m∑
k=1

αjαk

∫
G
f(y)f(x−1

k xjy)dmG(y) =

=
m∑
j=1

m∑
k=1

αjαk

∫
G
f(x−1

j y−1)f(x−1
k y−1)dmG(y) =

=

∫
G
|
m∑
k=1

αkf(x−1
k y−1)|2dmG(y) ≥ 0

1.4 Dual set of a topological group

Definition 1.4.1. Let (G, τ) be a locally compact group.

- An unitary representation of G is a homomorphism σ from G into the
group U(Hσ) that is continuous with respect the strong (equivalently, weak)
operator topology (i.e. the topology of pointwise convergence on U(Hσ)).

- An unitary representation σ is irreducible if {0} and Hσ are the only
closed subspaces of Hσ invariant for all σ(g), g ∈ G.

- If σ1, σ2 are two unitary representations of G, an intertwining operator
for σ1 and σ2 is a bounded linear map T : Hσ1 → Hσ2 such that Tσ1(g) =
σ2(g)T for all g ∈ G. Denote by C(σ1, σ2) the set of all such operators.

- Two unitary representations σ1, σ2 are equivalent if C(σ1, σ2) contains a
unitary operator U (i.e. there is an unitary operator U such that σ2(g) =
Uσ1(g)U−1, g ∈ G).

Proposition 1.4.2. ([10, Prop C.4.3.]) Let σ be a unitary representation
of G, and let u be a vector in H. Then the diagonal matrix coefficient

g 7→ 〈σ(g)u, u〉

is a positive-definite function.

The functions of the type 〈σ(·)u, u〉 are said to be the positive-definite
functions associated to σ.
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Definition 1.4.3. Let σ1 and σ2 be two unitary representations of the topo-
logical group G. We say that σ1 is weakly contained in σ2 if every positive-
definite function associated to σ1 can be approximated, uniformly on compact
subsets of G, by finite sums of positive-definite functions associated to σ2.
That is, for every u in Hσ1, every compact subset K of G and every ε > 0,
there exists v1, . . . , vn in Hσ2 such that, for all x ∈ K,

|〈σ1(x)u, u〉 −
n∑
i=1

〈σ2(x)vi, vi〉| < ε.

We write for this σ1 ≺ σ2.

Lemma 1.4.4. (Schur’s Lemma [32, Th. 3.5.])

(i) A unitary representation σ of G is irreducible if and only if C(σ, σ)
contains only scalar multiples of the identity.

(ii) Suppose σ1 and σ2 are irreducible unitary representations of G. If they
are equivalent, then C(σ1, σ2) is one-dimensional; otherwise, C(σ1, σ2) =
{0}.

Given a locally compact group (G, τ), we denote by Irr(G) the set of
all continuous unitary irreducible representations σ defined on G. That is,
continuous in the sense that each matrix coefficient function g 7→ 〈σ(g)u, v〉
is a continuous map of G into the complex plane.

Thus, fixed σ ∈ Irr(G), if Hσ denotes the Hilbert space associated to σ,
we equip the unitary group U(Hσ) with the strong operator topology. The
dimension of Hσ is called dimension or degree of σ and it is denoted by dσ.

A basic example is given when G is a locally compact group with a left
Haar measure. Then left translations provide us a unitary representation
λG of G on the Hilbert space L2(G) called the left regular representation, by
taking (λG(g)f)(h)

def
= Lgf(h) = f(g−1h), f ∈ L2(G), g, h ∈ G. Similarly,

one can define the right regular representation ρG.

For two elements π and σ of Irr(G), we write π ∼ σ to denote the rela-
tion of unitary equivalence and we denote by Ĝ the dual set of G, which is
defined as the set of equivalence classes in (Irr(G)/∼). We refer to [23, 10]
for all undefined notions concerning the unitary representations of locally
compact groups.

Adopting the terminology introduced by Ernest in [27], set Hn
def
= Cn

for n = 1, 2, . . .; and H0
def
= l2(Z). The symbol IrrCn (G) denotes the set of

irreducible unitary representations of G on Hn. We assume that every set
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IrrCn (G) is equipped with the compact open topology. Finally, we define
IrrC(G) =

⊔
n≥0

IrrCn (G) (the disjoint topological sum).

Theorem 1.4.5. (Dixmier [23, Section 18.1.10]) If G is a Polish locally
compact group, then IrrCn (G) equipped with the compact-open topology is a
Polish space for all n ∈ {0, 1, 2, . . .}.

We denote byGw = (G,w(G, Irr(G)) (resp. GwC = (G,w(G, IrrC(G))))
the group G equipped with the weak (group) topology generated by Irr(G)
(resp. IrrC(G)). Since equivalent representations define the same topology,
we have Gw = (G,w(G, Ĝ)). That is, the weak topology of a group G is the
initial topology on G defined by the dual set. Moreover, in case G is a separa-
ble, metric, locally compact group, then every irreducible unitary represen-
tation acts on a separable Hilbert space and, as a consequence, it is unitary
equivalent to a member of IrrC(G). Thus, Gw = (G,w(G, IrrC(G))) = GwC

for separable, metric, locally compact groups. We make use of this fact in
order to avoid the proliferation of isometries (see [23]). In case the group G
is abelian, the dual object Ĝ is a group, which is called dual group, and the
weak topology of G reduces to the weak topology generated by all continuous
homomorphisms of G into the unit circle T. Therefore, the weak topology
coincides with the so-called Bohr topology of G, which we recall in the next
paragraph.

The Bohr compactification of a topological group G can be defined as
a pair (bG, b), where bG is a compact Hausdorff group and b is a continu-
ous homomorphism from G onto a dense subgroup of bG such that every
continuous homomorphism h : G → K into a compact group K extends to
a continuous homomorphism hb : bG → K, making the following diagram
commutative:

G
b //

h

  

bG
hb

}}
K

The topology that b induces on G is referred to as the Bohr topology . In An-
zai and Kakutani [4], bG is built when G is locally compact abelian (LCA).
However, most authors agree that it was A. Weil [97] the first to build bG.
Weil called bG “Groupe compact attaché à G ”. The name of Bohr com-
pactification was given by Alfsen and Holm [3] in the context of arbitrary
topological groups. The Bohr topology of an abelian group G is commonly
denoted by G+.

A topological group G is said to be maximally almost periodic (MAP, for
short) when the map b is one-to-one, which implies that the Bohr topology
is Hausdorff.
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Example 1.4.6. (a) R is a MAP group.

(b) SL(2,C) (i.e the special linear group of order 2) is not a MAP group
(see [96]).

1.4.1 Duality for abelian groups

We present some basic definitions and facts about the Pontryagin-van Kam-
pen duality and the Bohr compactification of abelian groups.

As a corollary of the Schur’s Lemma (see Lemma 1.4.4), we have that if
G is abelian, then every irreducible representation of G is one-dimensional.
Note that U(1) = T.

Let (G, τ) be an abelian topological group, with underlying group G
and topology τ . In this case, the elements of the dual set Ĝ are usually
called characters. This set is a group when we consider the operation
(χ1 + χ2)(g) = χ1(g) + χ2(g) for all g ∈ G. Here, we use the additive
notation and 0 for the trivial element. In particular, we identify T with the
additive group [−1/2, 1/2), having addition defined by identifying ±1/2.

For a topological abelian group G, let K(G) denote the family of all
compact subsets of G. For a set A ⊆ G and a positive real ε, define

[A, ε]
def
= {χ ∈ Ĝ : |χ(a)| ≤ ε for all a ∈ A}.

The sets [K, ε] ⊆ Ĝ, for K ∈ K(G) and ε > 0, form a neighborhood base at
the trivial character, defining the compact-open topology. We simply write
Ĝ for the topological abelian group obtained in this manner.

A topological abelian group G is reflexive if the evaluation map eval

eval : G→ ̂̂
G,

defined by eval(g)(χ) = χ(g) for all g ∈ G and χ ∈ Ĝ, is a topological
isomorphism. By the Pontryagin–van Kampen theory, we know that eve-
ry locally compact abelian group is reflexive. Furthermore, the dual of a
compact group is discrete and the dual of a discrete group is compact. In
general:

Theorem 1.4.7. The dual of a locally compact abelian group is a locally
compact abelian group.

It follows that every compact abelian group is equipped with the topology
of pointwise convergence on its dual group.
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Definition 1.4.8. Let G be a topological abelian group. For A ⊆ G, let
A� def

= [A, 1/4]. Similarly, for X ⊆ Ĝ, let

X� def
=
{
g ∈ G : |χ(g)| ≤ 1

4
for all χ ∈ X

}
.

The following facts are well known (see [7]).

Lemma 1.4.9. For each neighborhood U of 0 in G, we have that U� ∈ K(Ĝ)
(i.e. U� is a compact subset of Ĝ).

Definition 1.4.10. Let G be a topological abelian group. A set A ⊆ G is
quasiconvex if A�� = A. The topological group G is locally quasiconvex
if it has a neighborhood base at its identity, consisting of quasiconvex sets.

For each set A ⊆ G, the set A� is a quasiconvex subset of Ĝ. Thus, the
topological group Ĝ is locally quasiconvex for all topological abelian groups
G. Moreover, local quasiconvexity is hereditary for arbitrary subgroups.

The set A�� is the smallest quasiconvex subset of G containing A. This
set is closed.

In the case where G is a topological vector space, G is locally quasiconvex
in the present sense if, and only if, G is a locally convex topological vector
space in the ordinary sense.

If G is locally quasiconvex, its characters separate points of G, and thus
the evaluation map eval : G → ̂̂

G is injective. For each quasiconvex neigh-
borhood U of 0 in G, the set U� is a compact subset of Ĝ (Lemma 1.4.9),

and thus U�� is a neighborhood of 0 in ̂̂G. As eval[G]∩U�� = eval[U��] =
eval[U ], we have that eval is open [7, Lemma 14.3].

The duality theory can be used to represent the Bohr compactification of
an abelian group as a group of homomorphisms. Indeed, if G is an abelian
topological group and Ĝd denotes its dual group equipped with the discrete
topology then bG coincides with the dual group of Ĝd. This canonical repre-
sentation of the Bohr compactification together with Pontryagin duality have
made possible a much better understanding of the Bohr compactification and
topology for locally compact abelian groups than in the general non-abelian
case.
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1.4.2 Dual set of a non-abelian group

When G is non-abelian, Ĝ fails to be a group. Hence, it is called dual ob-
ject in this context. Duality theory for non-abelian groups is much more
involved because, in this case, the group CHom(G,T) no longer determines
the topological structure of G. In fact, given a finite simple group G, the
only homomorphism that we can define between G and T is the trivial one.
In the search of a duality in the case of non-abelian group, it is compulsory
to remark the Tannaka-Kreǐn [33] and Chu duality [20].

In the remainder of the subsection we assume that the topological group
G is compact, unless we indicate the contrary. In that case, the Peter-Weyl
Theorem (see [53]) implies that all irreducible unitary representation of G
are finite-dimensional and determine an embedding of G into the product of
unitary groups U(n). Thus we may view Ĝ as a set of matrix-valued func-
tions σ : G→ U(dσ).

Adopting the convention of McMullen and Price [69], we say that G is
tall if for each positive integer n there are only finitely many elements of
Ĝ of degree n. Theorem 1.4.14 and Example 5.3.10 provides us with some
examples of tall compact groups.

Given σ ∈ Ĝ, we denote by χσ the character associated to σ, which is
defined by χσ(g)

def
= tr(σ(f)) for all g ∈ G, and by χNσ the normalised cha-

racter associated to σ; that is, the character associated to σ divided by the
degree of the representation dσ.

Theorem 1.4.11. (Gallagher [36]) If G is a compact group, then there is
g ∈ G and σ ∈ Ĝ such that χσ(g) = 0.

Every compact group admits a left Haar measure, mG. Therefore, as in
the abelian case, one can define the notion of Fourier transform for inte-
grable functions and measures.

Given f ∈ L1(G), the Fourier transform of f is the function f̂ defined
on Ĝ by

f̂(σ) =

∫
G
f(x)σ(x)dmG

Observe that f̂(σ) is a matrix of size dσ × dσ, for each σ ∈ Ĝ.
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The Fourier transform can be extended to complex Radon measures on
G by the following way: if µ ∈ M(G), its Fourier transform is the bounded
continuous function µ̂ on Ĝ defined by:

µ̂(σ) =

∫
G
σ(x)dµ

It is easy to verify the following properties:

̂(aµ1 + bµ2)(σ) = aµ̂1(σ) + bµ̂2(σ)

̂(µ1 ∗ µ2)(σ) = µ̂1(σ)µ̂2(σ)

where µ1, µ2 ∈M(G), a, b ∈ C and σ ∈ Ĝ.

The Fourier series of f ∈ L1(G) is given by∑
σ∈Ĝ

dσtr(f̂(σ)σ(x))

where tr denotes the trace of a matrix.

A function f ∈ L1(G), f ∼
∑
σ∈Ĝ

tr(f̂(σ)σ(x)), is said to have an abso-

lutely convergent Fourier series if∑
σ∈Ĝ

dσ‖f̂(σ)‖op <∞

here ‖A‖op denotes the operator norm of the matrix A (i.e. the maximum
eigenvalue of |A|, where |A| is the positive square root of AA∗).

The set of functions with absolutely convergent Fourier series is denoted
by R(G). If G is compact, it is known that the space R(G) coincides with
the complex linear space of functions on G spanned by all continuous definite
functions on G ([52, Th. 34.13]).

Theorem 1.4.12. [52, Cor. 34.6] Let f be a function in R(G), f ∼∑
σ∈Ĝ

tr(f̂(σ)σ(x)). Then f is equal almost everywhere to the continuous func-

tion
∑
σ∈Ĝ

tr(f̂(σ)σ(x)) and so can be regarded as an element of the set of

complex valued continuous functions on G.

Let `∞(Ĝ), denote the Banach space of all {Aσ}σ∈Ĝ, where Aσ is a dσ×dσ
matrix, with norm ‖{Aσ}σ∈Ĝ‖∞ = sup

σ∈Ĝ
‖Aσ‖op <∞.
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We define `∞(E) similarly for E ⊆ Ĝ by restricting the representations
to E.

Sidon sets are an interesting subject of study in the Harmonic Analysis.
They are defined as follows:

Definition 1.4.13. Let E be a subset of Ĝ. We call E a Sidon set if every
continuous function f such that f̂(σ) = 0 for σ 6∈ E is necessarily in R(G).

It is trivial that every finite set E is a Sidon set. Unlike the abelian case,
there are infinite non-abelian compact groups whose dual contains no infinite
Sidon sets.

Theorem 1.4.14. (Huchinson [57, Th. 3.2.]) Let G be a compact Lie group.
The following assertions are equivalent:

(i) G is semi-simple;

(ii) G is tall;

(iii) G admits no infinite Sidon sets.

In chapter 5, we use the following characterisation as the definition of
Sidon set in the dual of a compact group:

Theorem 1.4.15. [52, Th.37.2] Let E be a subset of Ĝ. Then the following
assertions are equivalent:

(i) E is a Sidon set;

(ii) given {Aσ}σ∈E ∈ `∞(E), there is a measure µ ∈ M(G) satisfying
µ̂(σ) = Aσ for all σ ∈ E.

Let G be a locally compact group. We denote the space of all continuous
functions vanishing at infinity on G by C0(G).

The spaces A(G) and B(G) are the Fourier and Fourier-Stieltjes algebras,
as introduced in Eymard [28]. B(G) is the algebra defined as the matrix
coefficients of the unitary representations of G. When G is abelian B(G)
reduces to the set of Fourier transforms of measures of the dual group [25].
A(G) is the Banach subalgebra of B(G) spawned by the positive-definite
functions with compact support. Let Bλ(G) be the closed subalgebra of
B(G) defined as the matrix coefficients of the unitary representations of G
that are weakly contained in λG, the left regular representation of G.
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The set B(G) is a ∗-closed subalgebra of the C∗-algebra `∞(G), where
`∞(G) is the space of all bounded functions f : G→ C, with norm ‖f‖∞ =
sup
g∈G

f(g) and involution given by f∗(g) = f(g).

Let E(G)
def
= B(G)

‖·‖∞ denote the commutative C∗-algebra consisting of
the uniform closure of the Fourier-Stieltjes algebra of G. E(G) is commonly
called the Eberlein algebra of G.

Let Ψ(E(G)) denote the space of multiplicative linear functionals on E(G)
(i.e. linear functionals T : E(G) → C with T (f1f2) = T (f1)T (f2), for all
f1, f2 ∈ E(G)). The set Ψ(E(G)) with the topology of pointwise convergence
on E(G) is a compact topological space called the spectrum of E(G). Every
element f ∈ E(G) can be identified with a function evalf ∈ C(Ψ(E(G)),C)
via evaluations (evalf (T ) = T (f), for every T ∈ Ψ(E(G))).

The compact space Ψ(E(G)) defines a compactification of G. Indeed,
bearing in mind that the elements of E(G) are continuous functions on G,
we have an evaluation mapping j : G→ Ψ(E(G)) (given by j(g)(T ) = T (g))
that defines a one-to-one continuous mapping with dense range.

Following [68] we call the spectrum of E(G) the Eberlein compactification
ofG, and we denote it with the symbol eG. Unlike the Bohr compactification,
eG is no longer a topological group, only a semitopological semigroup.

The following lacunary sets in a discrete group have been deeply studied
in the literature [76, 31].

Definition 1.4.16. Let G be an infinite discrete group.

(i) A subset S of G is called strong Sidon if for every complex-valued
function f ∈ C0(G) there is a function g ∈ A(G) such that f(x) = g(x)
for all x ∈ S.

(ii) A subset S of G is called Sidon if for every bounded function f on G
there exists g ∈ Bλ(G) such that f(x) = g(x) for all x ∈ S.

(iii) A subset S of G is called weak Sidon if for every bounded function
f on G there exists g ∈ B(G) such that f(x) = g(x) for all x ∈ S, or
equivalently, if f can be interpolated by a continuous function defined
on the Eberlein compactification eG.

IfG is abelian or amenable (see [10] for a proper definition of amenability)
the three types of Sidon sets are equivalent [76]. The following result gives
a characterisation of amenability of a locally compact group G in terms of
the weak containment property. Recall that the symbol 1G denotes the unit
representation of the topological group G.

Theorem 1.4.17. (Hulanicki-Reiter’s Theorem [10, Th. G.3.2.]) Let G be
a locally compact group. The following properties are equivalent:
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(i) G is amenable;

(ii) 1G ≺ λG;

(iii) σ ≺ λG for every unitary representation σ of G.





Chapter 2

Metric-valued sets of
continuous functions

This chapter is divided into two parts. In the first part, we focus on the
notion of almost equicontinuity. In the second part, we extend some known
results concerning R-valued Baire class 1 functions to M -valued Baire class
1 functions. Throughout this chapter, we make use of the extension tools
that are provided in Subsection 1.2.3.

2.1 Almost Equicontinuity

2.1.1 Main definitions and basic results

Within the setting of dynamical systems, the following definitions appear in
[2].

Definition 2.1.1. Let X and (M,d) be a topological space and a metric
space respectively, and let E ⊆ C(X,M). According to [2], we say that a
point x ∈ X is an equicontinuity point of E when for every ε > 0 there
is a neighborhood U of x such that diam(f(U)) < ε for all f ∈ E. We say
that E is almost equicontinuous when the subset of equicontinuity points
of E is dense in X. Furthermore, it is said that E is hereditarily almost
equicontinuous if E|A is almost equicontinuous for every nonempty closed
subset A of X.

The proof of the following lemma is known (see [39, Prop 6.6.]). This
characterisation is very useful in order to obtain subsets of continuous func-
tions that are not almost equicontinuous.

Lemma 2.1.2. Let X and (M,d) be a topological space and a metric space
respectively, and let E ⊆ C(X,M). Consider the following two properties:

47
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(a) E is almost equicontinuous.

(b) For every nonempty open subset U of X and ε > 0, there exists a
nonempty open subset V ⊆ U such that diam(f(V )) < ε for all f ∈ E.

Then (a) implies (b). If X is a Baire space, then (a) and (b) are equiva-
lent. Furthermore, in this case, the subset of equicontinuity points of E is a
dense Gδ-set in X.

Proof. That (a) implies (b) is obvious. Assume that X is a Baire space and
(b) holds. Given ε > 0 arbitrary, we consider the open set

Oε
def
=
⋃
{U ⊆ X : U 6= ∅ and diam(f(U)) < ε, ∀f ∈ E}.

By (b), we have that Oε is nonempty and dense in X. Since X is Baire,
taking W def

=
⋂
n<ω

O 1
n
, we obtain a dense Gδ subset which is the subset of

equicontinuity points of E.

Remark 2.1.3. As a consequence of assertion (b) in Lemma 2.1.2, it fol-
lows that, when X is a Baire space, a subset of functions E is hereditarily
almost equicontinuous if, and only if, E|A is almost equicontinuous for every
nonempty (non necessarily closed) subset A of X. Since we mostly work with
Baire spaces here, we make use of this fact in some parts along the section.

Note that the set of equicontinuity points of a subset of functions E is a
Gδ-set. The next corollary is a straightforward consequence of Lemma 2.1.2.

Corollary 2.1.4. Let X and (M,d) be a topological space and a metric space
respectively, and let E ⊆ C(X,M). Suppose there is an open basis V in X
and ε > 0 such that for every V ∈ V, there is fV ∈ E with diam(fV (V )) ≥ ε.
Then E is not almost equicontinuous.

Let 2ω be the Cantor space and let 2(ω) denote the set of finite sequences
of 0’s and 1’s. For a t ∈ 2(ω), we designate by |t| the length of t. For σ ∈ 2ω

and n > 0 we write σ|n to denote (σ(0), . . . , σ(n− 1)) ∈ 2(ω). If n = 0 then
σ|0 def

= ∅.
Applying Corollary 2.1.4, it is easy to obtain subsets of continuous func-

tions that are not almost equicontinuous.

Example 2.1.5. Let X = 2ω be the Cantor space and let E = {πn}n<ω be the
set of all projections of X onto {0, 1}. Then E is not almost equicontinuous.
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Proof. Let U 6= ∅ be an open subset in X. Then, for some index n < ω we
have πn(U) = {0, 1}, which implies diam(πn(U)) > 1/2. Therefore, E is not
almost equicontinuous by Corollary 2.1.4.

The precedent result can be generalised in order to obtain a more general
example of non-almost equicontinuous set of functions. It turns out that this
example is universal in a sense that becomes clear along the section.

Example 2.1.6. Let X = 2ω be the Cantor space and let (M,d) be a metric
space. Let {Ut : t ∈ 2(ω)} be the canonical open basis of X. If E = {ft}t∈2(ω)

is a set of continuous functions on X intoM satisfying that diam(ft(Ut)) ≥ ε
for some fixed ε > 0 and all t ∈ 2(ω), then E is not almost equicontinuous.

The next result gives a sufficient condition for the equicontinuity of a
family of functions. It extends a well known result by Corson and Glicksberg
[22]. However, we remark that the subset F found in the lemma below can
become the empty set if Z is a first category subset of X.

Lemma 2.1.7. Let X and (M,d) be a topological space and a separable
metric space, respectively. If E ⊆ C(X,M) and (E

MX

)|Z is metrizable and
compact for some dense subset Z of X, then there is a residual subset F in
Z such that E is equicontinuous at every point in F . In case Z is of second
category in X, it follows that F is necessarily nonempty.

Proof. Set H def
= E

MX

and consider the map eval : X → C(H,M), x 7→
evalx; defined by evalx(f)

def
= f(x) for all x ∈ X and f ∈ H.

For simplicity’s sake, the symbols Ctp(E)(H|Z ,M) and C∞(H|Z ,M) de-
notes the space C(H|Z ,M) equipped with the pointwise convergence tp(E)
and the uniform convergence topology, respectively.

Now set Φ such that the following diagram commutes

Z
eval //

Φ

%%

Ctp(E)(H|Z ,M)

id

vv
C∞(H|Z ,M)

Remark that the evaluation map, eval, is continuous becauseE ⊆ C(X,M).
Since H|Z is tp(Z)-compact and metrizable and Z is dense in X, it follows
that C∞(H|Z ,M) is separable and metrizable (see [26, Cor. 4.2.18]). There-
fore, for every n < ω, there is a sequence of closed balls {B(u

(n)
i , 1/n) : i < ω}

that covers C∞(H|Z ,M). Furthermore, since E is dense in H, we have
that each B(u

(n)
i , 1/n) is also closed in Ctp(E)(H|Z ,M). As a consequence
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K(i,n)
def
= Φ−1(B(u

(n)
i , 1/n)) = eval−1(B(u

(n)
i , 1/n)) is closed in Z for all

i, n < ω, because eval is continuous.
We have that Z ⊆

⋃
i<ω

K(i,n) for every n < ω, so Z ⊆
⋂
n<ω

⋃
i<ω

K(i,n).

Observe that
⋃
n<ω

⋃
i<ω

(K(i,n) \ intZ(K(i,n))) is a set of first category in Z. As
a consequence

F
def
= Z \

⋃
n<ω

⋃
i<ω

(K(i,n) \ intZ(K(i,n)))

is a residual set in Z.
We now verify that E is equicontinuous at each point z ∈ F . Let z ∈ F

and ε > 0 arbitrary. Take n0 < ω such that 2/n0 < ε. Since z ∈ F ⊆⋂
n<ω

⋃
i<ω

K(i,n) ⊆
⋃
i<ω

K(i,n0) there is i0 < ω such that z ∈ K(i0,n0). We claim

that z ∈ intZ(K(i0,n0)). Indeed, if we assume that z 6∈ intZ(K(i0,n0)), then
z ∈ K(i0,n0) \ intZ(K(i0,n0)). Therefore, z ∈

⋃
n<ω

⋃
i<ω

(K(i,n) \ intZ(K(i,n))) and

z 6∈ F , which is a contradiction.
Since z ∈ intZ(K(i0,n0)) there is a nonempty open set A in X such that

intZ(K(i0,n0)) = A ∩ Z. Note that A ∩ Z is dense on A because Z is dense
in X. So, z ∈ A = A ∩ ZA ⊆ A ∩ ZX .

Let a, b ∈ A ∩ Z. Then Φ(a) = evala,Φ(b) = evalb ∈ B(u
(n0)
i0

, 1/n0).
Consequently, d(f(a), f(b)) ≤ 2/n0 for every f ∈ E. So, given x, y ∈
A ⊆ A ∩ ZX we have that d(f(x), f(y)) ≤ 2/n0 for every f ∈ E. Then
diam(f(A)) ≤ 2/n0 < ε for all f ∈ E.

The following lemma reduces many questions related to a general metric
space M to the interval [−1, 1].

Lemma 2.1.8. Let X and (M,d) be a topological and a metric space, res-
pectively. If E is a subset of C(X,M), then E is equicontinuous at a point
x0 ∈ X if and only if ν(E ×K) is equicontinuous at it.

Proof. Assume that E is equicontinuous at x0. Given ε > 0, there is an open
neighbouhood U of x0 such that d(f(x0), f(x)) < ε for all x ∈ U and f ∈ E.
Let α ∈ K, x ∈ U and f ∈ E, then we have

|ν(f, α)(x0)− ν(f, α)(x)| = |α(f(x0))− α(f(x))| ≤ d(f(x0), f(x)) < ε.

Conversely, assume that ν(E×K) is equicontinuous in x0. Given ε > 0, there
is an open neighbouhood U of x0 such that |ν(f, α)(x0)− ν(f, α)(x)| < ε for
all x ∈ U , f ∈ E and α ∈ K.

For f ∈ E, consider the map αf(x0) ∈ K. In order to finish the proof, it
suffices to observe that

|αf(x0)(f(x0))− αf(x0)(f(x))| = d(f(x), f(x0))
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for all x ∈ U and f ∈ E.

Corollary 2.1.9. Let X and (M,d) be a topological and a metric space,
respectively, and let E be an arbitrary subset of C(X,M). Then E is (he-
reditarily) almost equicontinuous if and only if ν(E × K) is (hereditarily)
almost equicontinuous.

The concept of fragmentability was introduced by Jayne and Rogers in
1985 [60]. This property is related with the notion of almost equicontinuity.

Definition 2.1.10. A topological space X is said to be fragmented by a
pseudometric ρ if for each nonempty subset A of X and for each ε > 0
there exists a nonempty open subset U of X such that U ∩ A 6= ∅ and ρ-
diam(U ∩A) ≤ ε.

There is a vast literature on this topic. It suffices to mention here the
contribution by Namioka [73] and Ribarska [83].

Let X be a topological space, (M,d) a metric space and E ⊆ MX a
family of functions. Whenever feasible, for example if EM

X

is compact, we
consider the pseudometric ρE,d, defined as follows:

ρE,d(x, y)
def
= sup

g∈E
d(g(x), g(y)), ∀x, y ∈ X.

Therefore, taking into account Definition 2.1.1 and Lemma 2.1.2, we have
the following proposition.

Proposition 2.1.11. Let X and (M,d) be a topological space and a me-
tric space, respectively, and let E ⊆ C(X,M) such that EM

X

is compact.
Consider the following two properties:

(a) E is hereditarily almost equicontinuous.

(b) X is fragmented by ρE,d.

Then (a) implies (b). If X is a hereditarily Baire space, then (a) and (b) are
equivalent.

2.1.2 Almost equicontinuity criteria

The following technical lemma is essential in most results along this section.
The construction of the proof is based on an idea that appears in [88] and [15].
Throughout this section, the symbol [A]≤ω denotes the set of all countable
subsets of A.
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Lemma 2.1.12. Let X and (M,d) be a Čech-complete space and a hemicom-
pact metric space, respectively, and let E be an infinite subset of C(X,M)

such that EM
X

is compact. If E is not almost equicontinuous, then for every
Gδ and dense subset F of X there exists a countably infinite subset L in
E, a compact separable subset CF ⊆ F , a compact subset N ⊆ M and a
continuous and surjective map Ψ of CF onto the Cantor set 2ω such that for
every l ∈ L there exists a continuous map l∗ : 2ω → N satisfying that the
following diagram is commutative
Diagram 1:

CF
Ψ //

l|CF

!!

2ω

l∗

~~
N

Furthermore, the subset L∗ def
= {l∗ : l ∈ L} ⊆ C(2ω, N) separates points in

2ω and is not almost equicontinuous on 2ω.

Proof. Let F be a Gδ and dense subset of X. Then there is a sequence
{Wn}∞n=1 of open dense subsets of X such that Ws ⊆ Wr if r < s and

F =
∞⋂
n=1

Wn.

Since M is hemicompact, there is a sequence {Mn}n<ω of compact sub-
sets such that M =

⋃
n<ω

Mn and satisfying that for every compact subset

K ⊆M there is n < ω such that K ⊆Mn.
For each n < ω we consider the closed subset Xn = {x ∈ X : f(x) ∈

Mn ∀f ∈ E}. We claim that X =
⋃
n<ω

Xn. Indeed, let x ∈ X. Since

E
MX

⊆ MX is compact and the xth projection πx is continuous, then
πx(E

MX

) ⊆ M is compact. So, there is nx < ω such that πx(E
MX

) ⊆ Mnx

by hemicompactness. Therefore x ∈ Xnx .
Since E is not almost equicontinuous there exists a nonempty open subset

U of X and ε > 0 such that for all nonempty open subset V ⊆ U there exists
a function fV ∈ E such that diam(fV (V )) ≥ 2ε > ε by Lemma 2.1.2.

Note that U is Čech-complete. If we express U =
⋃
n∈ω

(U∩Xn), by Baire’s

theorem, there is n0 < ω such that Ũ def
= intU (U ∩Xn0) 6= ∅ and open in X.

Set C = Ũ
Xn0 , which is closed in X, and On = Wn ∩ Ũ = Wn ∩ Ũ ∩ C

that is open and dense in C for each n < ω. Then Os ⊆ Or if r < s and

H =
∞⋂
n=1

On ⊆ F is a dense Gδ subset of C, which is a Baire space. Remark

further that f(x) ∈ Mn0 for all x ∈ C and f ∈ E. Since Mn0 is compact,
every function g ∈ C(C,Mn0) can be extended to a continuous function
gβ ∈ C(βC,Mn0). Set Eβ = {fβ : f ∈ E} ⊆ C(βC,Mn0).
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The space C, being Čech-complete, is a dense Gδ subset of its Stone-Čech
compactification βC. Therefore, since H is a Gδ subset of C, it follows that
H also is a dense Gδ subset of βC. Consider a sequence {Bn}∞n=1 of open

dense subsets of βC such that Bs ⊆ Br if r < s and H =
∞⋂
n=1

Bn. We have

that H =
∞⋂
n=1

(Bn ∩ Oβn), where Oβn = βC \ (C \On)
βC

is open in βC and

Oβn ∩ C = On.
By induction on n = |t| with t ∈ 2(ω), we construct a family {Ut : t ∈

2(ω)} of nonempty open subsets of βC and a family of countable functions
L

def
= {ft : t ∈ 2(ω)} ⊆ E, satisfying the following conditions for all t ∈ 2(ω):

(i) U∅ ⊆ U∅
βC ⊆ Oβ0

def
= βC \ (C \ Ũ)

βC
(remark that Oβ0 ∩ C = Ũ);

(ii) Uti ⊆ Uti
βC ⊆ B|t| ∩O

β
|t| ∩ Ut for i = 0, 1 (where B0

def
= βC);

(iii) Ut0 ∩ Ut1 = ∅;

(iv) d(ft(x), ft(y)) > ε, ∀x ∈ Ut0 ∩ C and ∀y ∈ Ut1 ∩ C;

(v) whenever s, t ∈ 2(ω) and |s| < |t|, diam(fs(Utj ∩ C)) < 1
|t| for j = 0, 1.

Indeed, if n = 0, by regularity we can find U∅ an open set in βC such that
U∅ ⊆ U∅

βC ⊆ B0 ∩ Oβ0 . For n ≥ 0, suppose {Ut : |t| ≤ n} and {ft : |t| < n}
have been constructed satisfying (i)− (v). Fix a t ∈ 2(ω) with |t| = n. Since
Ut is open in βC, there is an open set At in X such that Ut ∩ C = At ∩ C.
Therefore

Ut ∩ C = (At ∩ C) ∩Oβ0 = At ∩ (Oβ0 ∩ C) = At ∩ Ũ

is open in X and included in U .
By assumption there exist ft ∈ E such that diam(ft(Ut ∩ C)) > ε.

Consequently, we can find xt, yt ∈ Vt ∩ C such that d(ft(xt), ft(yt)) > ε. By
continuity, we can select two open disjoint neighbourhoods in βC, St0 and
St1 of xt and yt, respectively, satisfying conditions (iii) and (iv).

If i ∈ {0, 1}, observe that Ut ∩ Sti ∩ Oβ0 is open in βC and nonempty.
Since B|t| ∩O

β
|t| is dense in βC then Ut ∩Sti ∩B|t| ∩O

β
|t| is a nonempty open

subset of βC. By regularity there exists a nonempty open subset Uti of βC
such that Uti ⊆ Uti

βC ⊆ Ut
⋂
Sti
⋂
B|t|∩O

β
|t|. Therefore, Ut0 and Ut1 satisfies

conditions (ii), (iii) and (iv) and, by continuity, we can adjust the open sets
to satisfy (v).

Set K def
=

∞⋂
n=0

⋃
|t|=n

Ut
βC , which is closed in βC and, as a consequence,

also compact. Remark that we can express K =
⋃

σ∈2ω

∞⋂
n=0

Uσ|n
βC . Therefore,
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for each σ ∈ 2ω, we have
∞⋂
n=0

Uσ|n
βC 6= ∅ by the compactness of βC, which

implies K 6= ∅. Furthermore, since K ⊆
∞⋂
n=0

(Bn ∩ Oβn) = H ⊆ F , it follows

that K is contained in F .
Let Ψ : K → 2ω be the canonical map defined such that Ψ−1(σ) =

∞⋂
n=0

Uσ|n
βC for all σ ∈ 2ω. Clearly Ψ is onto and continuous. Observe that

for each t ∈ 2(ω) and σ ∈ 2ω, ft(Ψ−1(σ)) is a singleton by (iv). Therefore,
ft lifts to a continuous function f∗t on 2ω such that ft(x) = f∗t (Ψ(x)) for all
x ∈ K.

Take a countable subset D of K such that Ψ(D) = 2(ω) and makes Ψ|D
injective. Set CF

def
= D

K . Note that 2(ω) is a countable dense subset of 2ω.
We have that Ψ|CF : CF → 2ω is an onto and continuous map. We

consider the set L∗ ⊆ C(2ω,Mn0) defined by L∗ = {l∗ : l ∈ L|CF } that
makes the diagram 1 commutative. We claim that L∗ separates points in
2ω and, as a consequence, defines its topology. Indeed, let σ, σ′ ∈ 2ω be
two arbitrary points such that σ 6= σ′. Since Ψ is an onto map there exist

x, y ∈ CF such that σ = Ψ(x) and σ′ = Ψ(y). Therefore, x ∈
∞⋂
n=0

Uσ|n
βC and

y ∈
∞⋂
n=0

Uσ′|n
βC . Since σ 6= σ′, there is n0 ∈ ω such that σ|n0 = σ′|n0 and

σ(n0) 6= σ′(n0). Taking t = σ|n0, then by (iv) we know that d(ft(x), ft(y)) >
ε. So, f∗t (σ) 6= f∗t (σ′).

On the other hand, by the commutativity of Diagram 1, and taking into
account how L and L∗ have been defined, it is easily seen that L∗ is not
almost equicontinuous on 2ω using Example 2.1.6.

Applying Corollary D of [15] by Cascales, Namioka and Vera, Lemma
1.2.24 and Propositions 1.2.25, 1.2.26 and 1.2.27, the next result follows
easily.

Proposition 2.1.13. Let X be a compact space, (M,d) be a compact me-
tric space and let E be an infinite subset of C(X,M). If (X, tp(E

MX

)) is
Lindelöf, then E is hereditarily almost equicontinuous.

Using Lemma 2.1.12, the constraints in Proposition 2.1.13 can be relaxed
as the following result shows.

Proposition 2.1.14. Let X be a Čech-complete space, (M,d) be a compact
metric space and let E be an infinite subset of C(X,M). If there exists a
dense Gδ subset F ⊆ X such that (F, tp(E

MX

)) is Lindelöf, then E is almost
equicontinuous.
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Proof. Reasoning by contradiction, suppose that E is not almost equicon-
tinuous. By Lemma 2.1.12 there exists a compact separable subset CF of F ,
a continuous onto map Ψ : CF → 2ω, and a countable subset L of E such
that the subset L∗ ⊆ C(2ω,M) defined by l∗(Ψ(x)) = l(x) for all x ∈ CF
separates points in 2ω and is not almost equicontinuous.

Let KF be the closure of CF in F with respect to the initial topology
generated by the maps in L. Using a compactness argument, it follows that
if p ∈ KF then there is xp ∈ CF such that l(p) = l(xp) for all l ∈ L.
Indeed, let p ∈ KF . Then there is a net {xδ}δ∈∆ ⊆ CF that tp(L)-converges
to p. Since CF is compact there is a subnet {xγ}γ∈Γ such that converges
to x0 ∈ CF . Given l ∈ L, we know that lim

γ∈Γ
l(xγ) = l(x0) because l is

continuous. Therefore, l(x0) = lim
γ∈Γ

l(xγ) = l(p). Consequently, we can

extend Ψ to a map Φ : KF → 2ω by Φ(p) = Ψ(xp) for all p ∈ KF .
Let us see that Φ is well-defined. Let p ∈ KF , suppose that there are

xp, x̃p ∈ CF such that xp 6= x̃p and l(p) = l(xp) = l(x̃p) for all l ∈ L.
Since the Diagram 1 commutes, we know that l∗(Ψ(xp)) = l∗(Ψ(x̃p)) for all
l∗ ∈ L∗. So, Ψ(xp) = Ψ(x̃p) because L∗ separates points in 2ω.
Observe that the following diagram is commutative
Diagram 2:

KF
Φ //

l|KF

!!

2ω

l∗

~~
M

Certainly, let p ∈ KF , then there is xp ∈ CF such that Φ(p) = Ψ(xp). Given
l ∈ L, we have that l(p) = l(xp) = l∗(Ψ(xp)) = l∗(Φ(p)).
We claim that Φ : (KF , tp(L)) → (2ω, tp(L

∗)) is also continuous. Indeed,
let {hδ}δ∈∆ ⊆ KF a net that tp(L)-converges to h0 ∈ KF . For each δ ∈ ∆
there is xδ ∈ CF such that Φ(hδ) = Ψ(xδ) and l(hδ) = l(xδ) for all l ∈ L.
Analogously, there is x0 ∈ CF such that Φ(h0) = Ψ(x0) and l(h0) = l(x0)
for all l ∈ L.
Since CF is compact there is a subnet {xγ}γ∈Γ such that converges to x̃ ∈ CF .
Given l ∈ L, we know that lim

γ∈Γ
l(xγ) = l(x̃) because l is continuous. On

the other hand, we also have that lim
γ∈Γ

l(xγ) = lim
γ∈Γ

l(hγ) = l(h0) = l(x0).

Therefore, l(x̃) = l(x0) for all l ∈ L. So, Ψ(x̃) = Ψ(x0) because L∗ sepa-
rates points in 2ω. The continuity follows because lim

γ∈Γ
Φ(hγ) = lim

γ∈Γ
Ψ(xγ) =

Ψ(x̃) = Ψ(x0) = Φ(h0).

Now, since KF is tp(L)-closed in F , it follows that it is also tp(E
MX

)-
closed in F .

By our initial assumption, we have that F is tp(E
MX

)-Lindelöf, which

implies that also KF is tp(E
MX

)-Lindelöf.
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We claim that (2ω, tp(L∗
M2ω

)) is also Lindelöf. Indeed, it is enough to

prove that Φ is continuous on KF when it is equipped with the tp(E
MX

)-

topology and 2ω is equipped with the tp(L∗
M2ω

)-topology.

Take a map k ∈ L∗
M2ω

and let {l∗γ}γ∈Γ ⊆ L∗ be a net converging to

k pointwise on 2ω. Since EM
X

is compact, we may assume WLOG that
{lγ}γ∈Γ ⊆ L tp(X)-converges to h ∈ EM

X

. Therefore, for each x ∈ KF we
have that k(Φ(x)) = lim

γ∈Γ
l∗γ(Φ(x)) = lim

γ∈Γ
lγ(x) = h(x). That is k ◦ Φ = h.

Since h is continuous on KF , the continuity of Φ follows.
By Proposition 2.1.13, this implies that L∗ is a hereditarily almost equicon-

tinuous family on 2ω, which is a contradiction.

Proposition 2.1.15. Let X be a Čech-complete space, (M,d) be a metric
space and let E be an infinite subset of C(X,M) such that EM

X

is compact.
If there exists a dense Gδ subset F ⊆ X such that (F, tp(E

MX

)) is Lindelöf,
then E is almost equicontinuous.

Proof. Let K and ν defined as in Definition 1.2.30. Since ν(E
MX

× K) is a

compact subset of [−1, 1]X , it follows that ν(E ×K)
[−1,1]X

= ν(E
MX

×K).

By Lemma 1.2.32 we know that (F, tp(ν(E
MX

×K))) is Lindelöf . Now,
applying Proposition 2.1.14 to the subset ν(E×K) ⊆ C(X, [−1, 1]), it follows
that ν(E ×K) is almost equicontinuous. Therefore, E is almost equicontin-
uous by Corollary 2.1.9.

The following lemma is known. We refer to [30, Cor. 3.5] for its proof.

Lemma 2.1.16. Let X be a Lindelöf space, (M,d) be a metric space. If E
is an equicontinuous subset of C(X,M), then EM

X

is metrizable.

We are now in position of proving one of the two main theorems of this
section.

Theorem 2.1.17. Let X and (M,d) be a Čech-complete space and a sepa-
rable metric space, respectively, and let E be an infinite subset of C(X,M)

such that EM
X

is compact. Consider the following three properties:

(a) E is almost equicontinuous.

(b) There exists a dense Baire subset F ⊆ X such that (E
MX

)|F is metri-
zable.
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(c) There exists a dense Gδ subset F ⊆ X such that (F, tp(E
MX

)) is Lin-
delöf.

Then (b) ⇒ (c) ⇒ (a). If X is also a hereditarily Lindelöf space, then all
conditions are equivalent.

Proof. (b) ⇒ (c) Since (E
MX

)|F is compact metric, it follows by Lemma
2.1.7 that there is a dense subset D such that E is equicontinuous at the
points in D with respect to X. Since D is dense in F , which is dense in X, it
follows that D is also be dense in X. Moreover, if Y denotes the Gδ subset
of equicontinuity points of E in X, since D ⊆ Y , it follows that Y , the set
of equicontinuity points of E is a dense Gδ-set in X. Set K def

= (E
MX

). The
equicontinuity of E at the points in Y combined with the density of D ⊆ F
in Y , implies that the map Θ : K|F −→ K|Y defined by Θ(f |F )

def
= f |Y is a

homeomorphism of K|F onto K|Y .
By our initial assumption we have that K|F is compact and metri-

zable, which yields the metrizability of K|Y . Thus, the evaluation map
Eval : Y −→ C∞(K|Y ,M) is a well defined and continuous map. We
know that C∞(K|Y ,M) is a separable space by [26, Cor. 4.2.18]. Therefore
(Eval(Y ), t∞(K|Y )) and (Y, t∞(K|Y )) are Lindelöf spaces. As a consequence
(Y, tp(K|Y )) must be also Lindelöf and we are done.

(c)⇒ (a) This implication is Proposition 2.1.15
(a) ⇒ (b) Suppose that X is Čech-complete and hereditarily Lindelöf.

By Lemma 2.1.2, the subset, F , of equicontinuity points of E is a dense
Gδ-set in X, which is a Lindelöf space by our initial assumption. Since
E is equicontinuous on F , Lemma 2.1.16 implies that (E

MX

)|F must be
metrizable.

The following result can be found in [41, Prop. 2.5 and Section 5] in the
setting of compact metric spaces. Notwithstanding this, the proof given there
can be adapted easily for Čech-complete and hereditarily Lindelöf spaces, as
it is formulated in the next proposition.

Proposition 2.1.18. Let X be a hereditarily Lindelöf space, (M,d) is a
metric space and E ⊆ C(X,M). If H def

= E
MX

is compact and hereditarily
almost equicontinuous, then H is metrizable.

Proof. The symbol C∞(H,M) denote the space C(H,M) equipped with the
uniform convergence topology. Consider the map eval : X → C∞(H,M)

defined by eval(x)[h]
def
= h(x) for all x ∈ X and h ∈ H.

By Proposition 2.1.11 X is fragmented by ρE,d. Thus, for each nonempty
subset A of X and for each ε > 0 there exists a nonempty open subset U
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of X such that U ∩ A 6= ∅ and diam(h(U ∩ A)) ≤ ε for all h ∈ H. Thus,
d∞-diam(eval(U ∩A)) ≤ ε.

We claim that eval(X) is separable. Indeed, pick ε > 0. Let A be the
collection of all open subsets O of X such that eval(O) can be covered by
countably many sets of diameter less than ε. Since X is hereditarily Lindelöf
there is a countable subfamily B of A such that

⋃
A∈A

A =
⋃
B∈B

B. Take

V
def
=

⋃
A∈A

A. Observe that V is the largest element of A. Let us see that

A
def
= X \ V is empty. Assume that A 6= ∅. Then there is a nonempty

set U of X such that U ∩ A 6= ∅ and d∞-diam(eval(U ∩ A)) ≤ ε. Since
eval(U ∪ V ) = eval(U ∩ A) ∪ eval(V ) we know that eval(U ∪ V ) can be
covered by countably many sets of diameter less than ε. So, U ∪ V ∈ A and
we arrive to a contradiction because U ∩ (X \ V ) 6= ∅. Since X = V ∈ A
and ε was arbitrary eval(X) is separable.

There is a dense and countable subset D of eval(X). We know that
D separates points of H because eval(X) also separates points. Let ∆D :
H → MD be the diagonal product. Since ∆D is an embedding and MD is
metrizable we conclude that H is metrizable.

The next result is due basically to Namioka [73, Lemma 2.1]. It can also
be found in [38, Lemma 6.4.], where the reference to Namioka is acknowl-
edged.

Lemma 2.1.19. Let X, Y and (M,d) be two arbitrary compact spaces and
a metric space, respectively, and let E be a subset of C(Y,M). Suppose
that p : X −→ Y is a continuous onto map. Then E ◦ p def

= {g ◦ p : g ∈
E} ⊆ C(X,M) is hereditarily almost equicontinuous if and only if E is also
hereditarily almost equicontinuous.

Proof. In order to prove this result, we apply Lemma 2.1.2. Assume that
E ◦p is hereditarily almost equicontinuous. Let A be a closed (and compact)
subset of Y , U be a nonempty relatively open set in A and ε > 0. By Zorn’s
Lemma, there exists a minimal compact subset Z of X such that p(Z) = A.
Since Ũ def

= p−1(U)∩Z is a nonempty relatively open set in Z and (E ◦ p)|Z
is almost equicontinuous there is a nonempty relatively open set Ṽ ⊆ Ũ in
Z such that diam((f ◦ p)(Ṽ )) < ε for all f ∈ E. Let V def

= A \ p(Z \ Ṽ ),
which is relatively open set in A. We claim that V 6= ∅. Indeed, assume that
V = ∅. Then A = p(Z \ Ṽ ) and this contradicts the minimality of Z. Since
V ⊆ p(Ṽ ) we have that diam(f(V )) < ε for all f ∈ E.

Conversely, let Z be a closed subset of X, Ũ be a nonempty relatively
open set in Z and ε > 0. Consider the closed subset W0

def
= p(Ũ) of Y .

Since E|W0 is almost equicontinuous there is a nonempty relatively open set
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V0 in Y such that V0 ∩W0 6= ∅ and diam(f(V0 ∩W0)) < ε for all f ∈ E.
Take Ṽ def

= p−1(V0)∩ Ũ . Since Ṽ is a nonempty relatively open set in Z and
p(Ṽ ) ⊆ V0 ∩W0 we conclude that diam(f(p(Ṽ ))) < ε for all f ∈ E.

Remark 2.1.20. If the map p of the previous lemma is open or quasi-open
we obtain the same result for almost equicontinuity. Recall that a map f :
X → Y between two topological spaces is quasi-open if for any nonempty
open set U ⊆ X the interior of f(U) in Y is nonempty.

Proof. Let U be a nonempty open set of Y and ε > 0. Since E ◦ p is almost
equicontinuous and Ũ = p−1(U) is an open subset of X there is a nonempty
open subset Ṽ ⊆ Ũ of X such that diam((f ◦ p)(Ṽ )) < ε for all f ∈ E.
Since the nonempty open set V def

= int(p(Ṽ )) is included in p(Ṽ ) we have
that diam(f(V )) < ε for all f ∈ E.

Conversely, let Ũ be a nonempty open set of X and ε > 0. Take U def
=

int(p(Ũ)) 6= ∅. Since E is almost equicontinuous there is a nonempty open
subset V ⊆ U of Y such that diam(f(V )) < ε for all f ∈ E. So, taking the
open subset Ṽ def

= p−1(V )∩ Ũ , we conclude that diam((f ◦ p)(Ṽ )) < ε for all
f ∈ E.

Proposition 2.1.21. Let X be a Čech-complete space, (M,d) be a hemicom-
pact metric space and E be an infinite subset of C(X,M) such that EM

X

is
compact. Then the following conditions are equivalent:

(a) E is hereditarily almost equicontinuous.

(b) L is hereditarily almost equicontinuous on F , for all L ∈ [E]≤ω and F a
separable and compact subset of X.

Proof. (a) implies (b) is trivial. To see the other implication, assume, rea-
soning by contradiction, that (a) does not hold. Then there must be some
closed subset A ⊆ X such that E|A is not almost equicontinuous. By Lemma
2.1.12 there exists a compact and separable subset F of X, an onto and con-
tinuous map Ψ : F → 2ω, and a countable subset L of E such that the
subset L∗ ⊆ C(2ω,M) defined by l∗(Ψ(x)) = l(x) for all x ∈ F is not almost
equicontinuous. Therefore, L is not hereditarily almost equicontinuous on F
by Lemma 2.1.19 and we arrive to a contradiction.

The second main theorem of this section characterises the hereditarily
almost equicontinuous families of functions defined on a Čech-complete space
(this question has been studied in detail in [90] for compact spaces). It is
a sort of generalisation of the result given by Troallic in [93, Corollary 3.2]
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due to the fact that we can reduce the verification of hereditarily almost
equicontinuity to countable subsets. The equivalence (a) ⇔ (b) bellow is a
direct consequence of Troallic’s result (op. cit.).

Theorem 2.1.22. Let X and (M,d) be a Čech-complete space and a metric
space, respectively, and let E be an infinite subset of C(X,M) such that EM

X

is compact. Then the following conditions are equivalent:

(a) E is hereditarily almost equicontinuous.

(b) L is hereditarily almost equicontinuous on F , for all L ∈ [E]≤ω and F a
separable and compact subset of X.

(c) (L
MX

)|F is metrizable, for all L ∈ [E]≤ω and F a separable and compact
subset of X.

(d) (F, tp(L
MX

)) is Lindelöf, for all L ∈ [E]≤ω and F a separable and com-
pact subset of X.

Proof. (b)⇒ (a) is a direct consequence of Proposition 2.1.21 and Corollary
2.1.9.

(a)⇒ (c) Let L ∈ [E]≤ω and let F be a separable and compact subset of
X. L defines an equivalence relation on F by x ∼ y if and only if l(x) = l(y)
for all l ∈ L. If F̃ = F/∼ is the compact quotient space and p : F → F̃
denotes the canonical quotient map, each l ∈ L has associated a map l̃ ∈
C(F̃ ,M) defined as l̃(x̃)

def
= l(x) for any x ∈ F with p(x) = x̃. Furthermore,

if L̃ def
= {l̃ : l ∈ L}, we can extend this definition to the closure of L̃ in M F̃ .

Thus, each l ∈ LM
F

has associated a map l̃ ∈ L̃
M F̃

such that l̃ ◦ p = l. By
construction, we have that L̃ separates the points in F̃ . Since L̃ is countable
it follows that (F̃ , tp(L̃)) is a compact metric space. On the other hand, E is
hereditarily almost equicontinuous on X. Applying Lemma 2.1.19 to F and
F̃ , it follows that L̃ is hereditarily almost equicontinuous on F̃ . Therefore,

the space L̃
M F̃

is metrizable by Proposition 2.1.18. In order to finish the

proof, it suffices to remark that LM
F

is canonically homeomorphic to L̃
M F̃

(see Proposition 1.2.14).
(c) ⇒ (d) Let L ∈ [E]≤ω and let F be a separable and compact subset

of X. We know that H def
= ((L

MX

)|F , tp(F )) is compact metric. Since F is
separable, we have that l(F ) is a separable for every l ∈ L. Hence N def

=⋃
l∈L

l(F )
M

is a separable subset of M . Now, remark that M can be replaced

by N without loss of generality. On the other hand, since F ⊆ C(H,M) and
H is compact metric, it follows that (F, t∞(H)) is separable and metrizable
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by [26, Cor. 4.2.18], which implies that (F, t∞(H)) is Lindelöf. Since the
the topology tp(H) is weaker than t∞(H), we deduce that (F, tp(H)) must
be Lindelöf.

(d)⇒ (b) By Lemma 1.2.32, for all L ∈ [E]≤ω and F a separable compact
subset of X, we have that (F, tp(ν(L

MX

× K))) is Lindelöf . Applying [15,

Corollary D], it follows that ν(L
MX

×K) is hereditarily almost equicontinuous
for all L ∈ [E]≤ω and F a separable compact subset of X. Thus, Corollary
2.1.9 yields (b).

Remark 2.1.23. If E is an infinite subset of C(X,M) such that K def
=

E
MX

is contained in C(X,M), then the implication (c) ⇒ (a) in Theorem
2.1.22 provides a different proof of the celebrated Namioka Theorem (see
Theorem 1.2.7). Indeed, given any L ∈ [E]≤ω and any separable compact
subset F of X, since K ⊆ C(X,M) and F is separable, it follows that
((L

MX

)|F , tp(F )) is metrizable. Thus E (and therefore K) is hereditarily
almost equicontinuous.

Corollary 2.1.24. With the same hypothesis of Theorem 2.1.22, consider
the following three properties:

(a) E is hereditarily almost equicontinuous.

(b) E is hereditarily almost equicontinuous on F , for all F a separable and
compact subset of X.

(c) (F, tp(E
MX

)) is Lindelöf, for all F a separable and compact subset of X.

Then (a)⇔ (b)⇐ (c).

2.1.3 Applications

The results formulated in the previous subsection have consequences in dif-
ferent settings. First, we consider an application of Theorem 2.1.22 to frag-
mentability.

Corollary 2.1.25. Let X and (M,d) be a Čech-complete space and a metric
space, respectively, and let E be an infinite subset of C(X,M) such that EM

X

is compact. Then the following conditions are equivalent:

(a) X is fragmented by ρE,d.

(b) F is fragmented by ρL,d, for all L ∈ [E]≤ω and F a separable and compact
subset of X.
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(c) ((L
MX

)|F , tp(F )) is metrizable, for all L ∈ [E]≤ω and F a separable and
compact subset of X.

(d) (F, tp(L
MX

)) is Lindelöf, for all L ∈ [E]≤ω and F a separable and com-
pact subset of X.

It is easy to check that, in the context of topological groups, the notion of
almost equicontinuity is equivalent to equicontinuity. This fact allows us to
characterise equicontinuous subsets of group homomorphisms using Theorem
2.1.17.

Recall that a topological group G is said to be ω-narrow if for every
neighborhood V of the neutral element, there exists a countable subset H of
E such that G = HV .

Corollary 2.1.26. Let G and (M,d) be a Čech-complete topological group
and a metric separable group, respectively, and let E be an infinite subset
of CHom(G,M) such that EM

G

is compact. Consider the following three
properties:

(a) E is equicontinuous.

(b) E is relatively compact in CHom(G,M) with respect to the compact open
topology.

(c) There exists a dense Baire subset F ⊆ G such that (E
MG

)|F is metriz-
able.

(d) There exists a dense Gδ subset F ⊆ G such that (F, tp(E
MG

)) is Lindelöf.

Then (c)⇒ (d)⇒ (a)⇔ (b). If G is also ω-narrow, then all conditions are
equivalent. Furthermore (c) and (d) are also true for F = G.

Proof. The equivalence (a)⇔ (b) follows from Ascoli Theorem (see Theorem
1.2.6). So, after Theorem 2.1.17, it suffices to show the implication (a)⇒ (c)
for an ω-narrow G. Now, assuming that E is equicontinuous, it follows that
K

def
= E

MG

⊆ CHom(G,M). Thus K is an equicontinuous compact subset
of continuous group homomorphisms. As a consequence, it is known that K
is metrizable. (see [30, Cor. 3.5]).

Applying Theorem 2.1.22 to the setting of topological groups, we obtain
the next result.

Corollary 2.1.27. Let G and (M,d) be a Čech-complete topological group
and a metric group, respectively, and let E be an infinite subset of CHom(G,M)

such that EM
G

is compact. Then the following conditions are equivalent:
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(a) E is equicontinuous.

(b) L is equicontinuous on F , for all L ∈ [E]≤ω and F a separable and
compact subset of G.

(c) ((L
MG

)|F , tp(F )) is metrizable, for all L ∈ [E]≤ω and F a separable and
compact subset of G.

(d) (F, tp(L
MG

)) is Lindelöf, for all L ∈ [E]≤ω and F a separable and com-
pact subset of G.

For a function f : X × Y →M , let fx : Y →M (resp. fy : X →M) be
f(x, ·) for a fixed x ∈ X (resp. f(·, y) for a fixed y ∈ Y ).

A variation of Corollary 1.2.8 is also obtained as a corollary of Theorems
2.1.17 and 2.1.22 (cf. [65, 88, 77, 9]).

Corollary 2.1.28. Let X, H, and (M,d) be a Čech-complete space, a com-
pact space, and a metric space, respectively, and let f : X × H → M be a
map satisfying that fx ∈ C(H,M) for every x ∈ X and there is a dense
subset E of H such that fg ∈ C(X,M) for every g ∈ E. Suppose that any
of the two following equivalent conditions holds.

(a) There exists a dense Baire subset F ⊆ X such that (E
MX

)|F is metri-
zable.

(b) There exists a dense Gδ subset F ⊆ X such that (F, tp(E
MX

)) is Lin-
delöf.

Then there exists a Gδ and dense subset F in X such that f is jointly con-
tinuous at each point of F ×H.

Finally, we obtain some applications to dynamical systems [40, 39, 41].
Recall that a dynamical system, or a G-space, is a Hausdorff space X on
which a topological group G acts continuously. We denote such a system by
(G,X). For each g ∈ G we have the self-homeomorphism x 7→ gx of X that
we call g-translation.

Corollary 2.1.29. Let X be a Polish G-space such that GX
X

is compact.
The following properties are equivalent:

(a) G is almost equicontinuous.

(b) There exists a dense Baire subset F ⊆ X such that (G
XX

)|F is metriza-
ble.
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(c) There exists a dense Gδ subset F ⊆ X such that (F, tp(G
XX

)) is Lindelöf.

Corollary 2.1.30. Let X be a completely metrizable G-space such that GX
X

is compact. Then the following conditions are equivalent:

(a) G is hereditarily almost equicontinuous.

(b) L is hereditarily almost equicontinuous on F , for all L ∈ [G]≤ω and F a
compact subset of X.

(c) ((L
XX

)|F , tp(F )) is metrizable, for all L ∈ [G]≤ω and F a compact subset
of X.

(d) (F, tp(L
XX

)) is Lindelöf, for all L ∈ [G]≤ω and F a compact subset of
X.

In [5, Problem 28], Arkhangel’skii raises the following question: Let X
be a Lindelöf space and let K be a compact subset of (C(X), tp(X)). Is it
true that the tightness of K is countable? As far as we know, this question
is still open in ZFC. Here we provide a partial answer to Arkhangel’skii’s
question.

Corollary 2.1.31. Let X be a Lindelöf space and let K be a compact sub-
space of (C(X), tp(X)). If there is a a dense subset E ⊆ K such that
(X, tp(E)) is Čech-complete and hereditarily Lindelöf, then K is metrizable.

Proof. The proof of this result is consequence of Theorem 2.1.22. Indeed,
remark that, if F is a subset of X that is closed in the tp(E)-topology, then F
is Čech-complete and hereditarily Lindelöf as well. Moreover, since E ⊆ K,
it follows that F is also closed in the tp(K)-topology and, as a consequence,
Lindelöf. Applying Corollary 2.1.24 to the (compact) space K, which is
equipped with the tp(X)-topology, it follows that E is hereditarily almost
equicontinuous on X. Since (X, tp(E)) is hereditarily Lindelöf, Proposition

2.1.18 yields the metrizability of K = E
RX .

2.2 Compact sets of metric-valued Baire class 1 func-
tions

Using Lemma 1.2.33, we can generalise Theorem 1.2.10 to an arbitrary metric
space. This result is very useful in the sequel.
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Corollary 2.2.1. Let X be a Polish space, (M,d) a metric space and a se-

quence {fn}n<ω ⊆ C(X,M) such that {fn}n<ω
MX

is compact. Then, either
{fn}n<ω contains a pointwise convergent subsequence or a subsequence whose
closure in MX is homeomorphic to βω.

Now, we are in position of extending, to the setting of metric-valued func-
tions, the results obtained in the previous section for real-valued functions.

Proposition 2.2.2. Let X be a Polish space, (M,d) be a metric space and
let E be an infinite subset of C(X,M) such that EM

X

is compact. The
following assertions are equivalent:

(a) tg(E
MX

) ≤ ω

(b) EM
X

⊆ B1(X,M).

(c) E is sequentially dense in EM
X

.

(d) |EM
X

| ≤ c.

Proof. If follows from Lemma 1.2.33 and Corollary 1.2.16.

Proposition 2.2.3. Let X be a Polish space, (M,d) be a metric space and

a sequence {fn}n<ω ⊆ C(X,M) such that {fn}n<ω
MX

is compact. The
following assertions are equivalent:

(a) {fn}n<ω is sequentially dense in its closure.

(b) The closure of {fn}n<ω contains no copy of βω.

Proof. (a)⇒ (b) is obvious.

(b)⇒ (a) By Lemma 1.2.33 we know that {f̌n}n<ω
RX×K

contains no copy
of βω. Thus by Theorem 1.2.11, it follows that {f̌n}n<ω is sequentially dense
in its closure. By Lemma 1.2.33 we conclude that {fn}n<ω is sequentially
dense in its closure.

Corollary 2.2.4. Let X be a compact space, (M,d) be a metric space and
let E be a countably infinite subset of C(X,M) such that EM

X

is compact.
If tg(E

MX

) ≤ ω, then EM
X

⊆ B1(X,M).

Proof. It suffices to apply Corollary 1.2.22 and Lemma 1.2.33.
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Corollary 2.2.5. Let X be a compact space, (M,d) be a metric space and
let E be a countably infinite subset of C(X,M) such that EM

X

is compact.
The following assertions are equivalent:

(a) tg(E
MX

) ≤ ω.

(b) E does not contain any sequence whose closure in MX is homeomorphic
to βω.

(c) EM
X

is a Rosenthal compactum.

(d) |EM
X

| ≤ c.

Proof. It suffices to apply Corollary 1.2.21 and Lemma 1.2.33.

Corollary 2.2.6. Let X be a compact space, (M,d) be a metric space and
let E be a countably infinite subset of C(X,M) such that EM

X

is compact.
If |EM

X

| ≥ 2c, then there is a countable subset L of E such that its closure
is canonically homeomorphic to βω.

Proof. Use Corollary 2.2.5.

In the case where the metric spaceM is C we have the following Corollary.

Corollary 2.2.7. Let X be a compact space and E a uniformly and countably
infinite subset of C(X,C). The following assertions are equivalent:

(a) tg(E
CX

) ≤ ω.

(b) E does not contain any sequence whose closure in CX is homeomorphic
to βω.

(c) ECX is a Rosenthal compactum.

(d) |ECX | ≤ c.

(e) E does not contain a subsequence equivalent to the `1 basis.

Proof. Apply the complex version of Theorem 1.2.18 and Corollary 2.2.5.



Chapter 3

Interpolation sets in spaces of
continuous functions

In this chapter, we introduce the notions ofM -interpolation set andB-family
and we analyse their fundamental properties. The study of interpolation
sets in spaces of continuous functions is useful in the search of interpolation
sets in a locally quasiconvex abelian locally kω-group and in the dual of a
topological group.

3.1 Basic facts

Definition 3.1.1. Let X and M be a topological space and metric space,
respectively. If C(X,M) denotes the set of all continuous functions from X
to M, we say that a subset Y of X is a M-interpolation set (equivalently,
an interpolation set for C(X,M)) when for every function g ∈ MY with
relatively compact range in M , there exists a map f ∈ C(X,M) such that
f|Y = g.

Definition 3.1.2. Let X and M be a topological space and metric space,
respectively, and let C(X,M) denote the space of continuous functions of X
into M . Given a subset L ⊆ C(X,M), we say that K ⊆ X separates L if
for every subset A ⊆ L there are two closed subsets in M , say D1 and D2,
and xA ∈ K such that dist(D1, D2) > 0, χ(xA) ⊆ D1 for all χ ∈ A and
χ(xA) ⊆ D2 for all χ ∈ L \A.

The next lemma is folklore. We refer to [26, 37] for further information.

Lemma 3.1.3. Let X be a topological space, M be a metric space and L a
countably infinite subset of C(X,M) such that LM

X

is compact. Consider
the following four properties:
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(a) There is a nonempty subset ∆ of X such that L is separated by ∆.

(b) Every two disjoint subsets of L have disjoint closures in MX .

(c) LM
X

is canonically homeomorphic to βω.

(d) L is a M -interpolation set for C(MX ,M).

Then (a) ⇒ (b) ⇔ (c) ⇐ (d). If M is a Banach space then the properties
(b), (c) and (d) are equivalent.

Proof. (b) ⇔ (c) is folklore. It is also clear that (d) implies (c). For (a)
implies (b), let B1 and B2 two disjoint subsets of L, which is separated by
∆. Then, there are two closed sets D1 and D2 in M and x0 ∈ ∆ ⊆ X
such that d(D1, D2) ≥ ε0, for some ε0 > 0, b1(x0) ∈ D1 for all b1 ∈ B1

and γ(x0) ∈ D2 for all γ ∈ L \ B1 (in particular for all γ ∈ B2). Thus,
B1

MX

∩B2
MX

= ∅.
Finally, let us see that (c) implies (d) ifM is a Banach space. Let f ∈ML

with relatively compact range in M . By (c), there is a continuous function
f : L

MX

−→M such that f |L = f . Now, since f(L
MX

) is compact metric, it
must be separable. Therefore, there is a separable Banach subspace F ⊆M
such that f(L

MX

) ⊆ F . Under such conditions, it is known that there is
a continuous map f̃ : MX −→ F that extends f (see [51]). Thus f̃ is the
required extension of f to MX .

3.2 Continuous functions on a Čech-complete space

Given a Banach spaceM , our goal in this section is to obtainM -interpolation
sets in subsets of M -valued continuous functions defined on a topological
space X. Our procedure is the following: assume that E is an infinite subset
of C(X,M) and equip E with the pointwise convergence topology on X. If
E
MX

is compact, in order to prove that E contains a (countably infinite)
M -interpolation set, we find a (countably infinite) subset L ⊆ E which is se-
parated by X. Applying Lemma 3.1.3, it follows that L is aM -interpolation
set. Previously, we need the following definitions and a technical lemma.

Definition 3.2.1. Let X and M be a topological space and a metric space
(respectively) and let f ∈ MX . We say that f is totally discontinuous if
there are two subsets N0 and N1 in M and two dense subsets A0 and A1 in
X such that d(N0, N1) > 0 and f(Aj) ⊆ Nj for j = 0, 1.
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We may assume that N0 and N1 are open sets, because otherwise we
would work with B(Ni, s/3)

def
= {m ∈ M : d(m,Ni) < s/3}, where s =

d(N0, N1) and i = 0, 1.

Lemma 3.2.2. Let X and M be a Čech-complete space and a metric space,
respectively. If E is an infinite subset of C(X,M) where each element has
relatively compact range in M such that EMX

contains a totally disconti-
nuous function f , then there is a nonempty compact subset ∆ of X and a
countably infinite subset L of E, which is separated by ∆. As a consequence,
if M is a Banach space, it follows that L is a M -interpolation set

Proof. Since X is Čech-complete, it is a Gδ-subset of its Stone-Cech compac-

tification βX. Set X =
∞⋂
n=0

Wn, where Wn is a dense open subset of βX for

each n < ω and Ws ⊆Wr if r < s. In the sequel, given a map g ∈ C(X,M)
with relatively compact range inM , we denote by gβ its continuous extension
to βX.

Let N0, N1, A0, A1 as in Definition 3.2.1, recall that we can consider that
N0 and N1 are open. By induction on n = |t|, t ∈ 2(ω) (i.e. the set of finite
sequences of 0’s and 1’s), we construct a family {Ut : t ∈ 2(ω)} of nonempty
open subsets in βX and a sequence of functions {hn : n < ω} ⊆ E, satisfying
the following conditions for all t ∈ 2(ω):

(i) U∅ ⊆ U∅
βX ⊆W0;

(ii) Uti ⊆ Uti
βX ⊆W|t|+1 ∩ Ut for i = 0, 1;

(iii) Ut0 ∩ Ut1 = ∅;

(iv) hβ|t|(Utj) ⊆ Nj for j = 0, 1;

(v) whenever s < |t|, diam(hβs (Utj
βX

)) < 1
|t| for j = 0, 1.

Construction: If n = 0, by regularity we can find U∅ a nonempty open
set in βX such that U∅ ⊆ U∅

βX ⊆ W0. For n ≥ 0, suppose {Ut : |t| ≤ n}
and {hβ|t| : |t| < n} have been constructed satisfying (i) − (v). Fix t ∈ 2(ω)

with |t| = n. Since Ut is open in βX, then Vt
def
= Ut ∩X 6= ∅ is open in X.

We can find at, bt ∈ Vt such that f(at) ∈ N0 and f(bt) ∈ N1 because Vt is a
relatively open subset of X and the sets A0 and A1 are dense in X. Since
f ∈ EM

X

, there is hn ∈ E such that hn(at) ∈ N0 and hn(bt) ∈ N1.
Let hβn the continuous extension of hn, then we can select two open

disjoint neighbourhoods in βX, Ot0 and Ot1 of at and bt, respectively, such
that:
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(1) Ot0
βX ∪Ot1

βX ⊆ Ut;

(2) Ot0
βX ∩Ot1

βX
= ∅;

(3) diam(hβn(Otj)) <
1
|t| ;

(4) hβn(Otj) ⊆ Nj , for j = 0, 1.

Since W|t|+1 is dense in βX, then W|t|+1 ∩Ot0 and W|t|+1 ∩Ot1 are two
nonempty open sets. By regularity, there exist two nonempty open sets Ut0
and Ut1 such that Ut0 ⊆ Ut0

βX ⊆W|t|+1∩Ot0 and Ut1 ⊆ Ut1
βX ⊆W|t|+1∩Ot1

respectively. Therefore, Ut0 and Ut1 satisfies the conditions (ii), (iii) and
(iv). Moreover, observe that by continuity we can adjust the open sets to
satisfy (v).

Let ∆
def
=
⋂
n<ω

⋃
|t|=n

Ut
βX , then ∆ is a closed subset of βX. Consequently,

∆ is compact. Note that we can express ∆ =
⋃

σ∈2ω

⋂
n<ω

Uσ|n
βX . For each

σ ∈ 2ω,
⋂
n<ω

Uσ|n
βX 6= ∅ by compactness of βX. So ∆ 6= ∅. By construction

we have that ∆ ⊆
∞⋂
n=0

Wn = X. Consequently ∆ is contained in X.

Define ϕ : ∆ → 2ω by ϕ−1(σ) =
⋂
n<ω

Uσ|n
βX . Clearly ϕ is an onto and

continuous map. For each t ∈ 2(ω) and σ ∈ 2ω, h|t|(ϕ−1(σ)) is a singleton
by (v). Therefore, h|t| lifts to a continuous function h∗|t| on 2ω such that
h|t|(x) = h∗|t|(ϕ(x)) for all x ∈ ∆.

Let us see that {hn}n<ω is separated by ∆. Let S ⊆ ω an arbitrary
subset, we can take σ ∈ 2ω such that σ(0) = 0 and σ(n + 1) = 1 if n ∈ S
or σ(n + 1) = 0 if n 6∈ S. If we choose an element z ∈

⋂
n<ω

Uσ|n
βX ⊆ ∆,

then we have that hn(z) ∈ N1 if n ∈ S and hn(z) ∈ N0 if n 6∈ S. Finally, in
case M is a Banach space, it suffices to apply Lemma 3.1.3, to obtain that
L = {hn}n<ω is a M -interpolation set.

The following definition is essential in the sequel. We refer to [12] for its
motivation.

Definition 3.2.3. Let X be a topological space and let M be a metric space.
We say that E ⊆ C(X,M) is a B-family if the following two conditions
hold:

(a) E is relatively compact in MX .
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(b) There exists a nonempty open set V of X and ε > 0 such that for every
finite collection {U1, . . . , Un} of nonempty relatively open sets of V there
is a f ∈ E satisfying diam(f(Uj)) ≥ ε for all j ∈ {1, . . . , n}.

It is pertinent to mention here a result by Pol [78], where the existence
of interpolation subset in a set E of real-valued continuous functions defined
on a metric complete space X can be obtained when EX contains a function
that is not Baire one. The main difference in our approach is that this
propoperty is isolated within the set E.

In Section 2.1, we defined a subset E of C(X,M) as almost equiconti-
nuous (resp. is hereditarily almost equicontinuous) if E is equicontinuous on
a dense subset of X (resp. if E is almost equicontinuous for every closed
nonempty subset of X). We do not know which is the relation between
the notions of being a B-family and the negation of being almost equiconti-
nuous or hereditary almost equicontinuous whenX is a Čech-complete space.
However, in the cases in which this relation is known (topological groups,
for instance), the existence of interpolation sets is assured as we show later.

We can now formulate the main result in this section. First, we recall
that a map is said quasi-open when the closure of the image of an open
subset has nonempty interior. In the proof of the next theorem we use the
compact space K that was defined in Section 1.2.3.

Theorem 3.2.4. Let X be a Čech-complete space, M a metric space, Y
a metrizable separable space and Φ : X → Y a continuous and quasi-open
map. If an infinite subset E of C(X,M) is a B-family where each g ∈ E
factors through Y ; that is for every g ∈ E, there is a g̃ ∈ C(Y,M) satisfying
g(x) = (g̃ ◦Φ)(x) for all x ∈ X, then there is a nonempty compact subset ∆
of X and a countably infinite subset L of E such that L is separated by ∆. As
a consequence, if M is a Banach space, it follows that L is a M -interpolation
set.

Proof. We may assume without loss of generality that the map Φ is sur-
jective because otherwise we would work with the separable and metrizable
space Φ(X). Due to the fact that Čech-completeness is hereditary for closed
subsets, we may assume, from here on, that X = V WLOG; where V is a
nonempty open subset satisfying the following property: there is some fixed
ε > 0 such that for every finite collection {U1, . . . , Un} of nonempty open
subsets contained in V , there is some element g ∈ E with diam(g(Uj)) ≥ ε
for all j ∈ {1, . . . , n}.

Let {Ṽk}k<ω be an arbitrary countable open basis in Y . We set Vk
def
=

Φ−1(Ṽk) and pick and arbitrary point xk ∈ Vk for each k < ω.
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Since X is Čech-complete, there exists a sequence {Ai}i<ω of open co-
verings of X, such that, if a family F of closed subsets has the finite inter-
section property, and if for each i < ω there is an element of F such that is
contained in a member of Ai, then

⋂
F 6= ∅ [26, Theorem 3.9.2]. In order

to simplify the notation below, we say that a set of X is Ai-small if it is
contained in a member of Ai.

Using an inductive argument, for every integer n < ω, we find fn ∈ E,
αn ∈ K and a finite collection {Un,k}1≤k≤n of nonempty open sets in X
satisfying the following conditions (for each n < ω and each k = 1, . . . , n):

(i) Un,k ⊆ Vk;

(ii) diam(fn(Un,k)) ≤ 1
n ;

(iii) Un+1,k ⊆ Un,k;

(iv) d(fn(x), fn(xk)) ≥ ε
3 , for all x ∈ Un,k;

(v) Un,k is contained in a member of Aj for 1 ≤ j ≤ n;

(vi) |αn(fn(x))− αn(fn(xk)| ≥ ε
3 , for all x ∈ Un,k.

Construction: If n = 1, since V1 is an open subset in X there exists
f1 ∈ E such that diam(f1(V1)) ≥ ε. By the continuity of f1, it follows that
there exists a nonempty open subset W1,1 such that:

(a) W1,1 ⊆ V1

(b) d(f1(x), f1(x1)) ≥ ε
3 , for all x ∈W1,1

Let α1
def
= αf1(x1) ∈ K. Note that |α1(f1(x)) − α1(f1(x1))| ≥ ε

3 , for all
x ∈W1,1.

Now, we take the open covering A1 of X. Then, there is A ∈ A1 such
that A ∩W1,1 is not empty. By regularity, we can find a nonempty open
subset U1,1 such that U1,1 ⊆ U1,1 ⊆ A ∩W1,1 ⊆ V1 and diam(f1(U1,1) ≤ 1.

Assume now that fn, αn and {Un,k}1≤k≤n have been obtained, with
n ≥ 1. By hypothesis, there exists fn+1 ∈ E such that diam(fn+1(Un,k)) ≥ ε
for all k ∈ {1, . . . , n} and diam(fn+1(V ′n+1)) ≥ ε, where xn+1 ∈ V ′n+1 ⊆ Vn+1

and V ′n+1 is Aj-small for 1 ≤ j ≤ n.
By the continuity of fn+1, we can find a finite collection {Wn+1,k}1≤k≤n+1

of nonempty open subsets such that:

(1) Wn+1,k ⊆ Un,k, for all 1 ≤ k ≤ n;

(2) Wn+1,n+1 ⊆ Vn+1 and Wn+1,n+1 is Aj-small for 1 ≤ j ≤ n;

(3) diam(fn+1(Wn+1,k)) ≤ 1
n+1 , for all 1 ≤ k ≤ n+ 1;
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(4) d(fn+1(x), fn+1(xk)) ≥ ε
3 , for all x ∈Wn+1,k and 1 ≤ k ≤ n+ 1.

Let αn+1 ∈ [−1, 1]M defined by

αn+1(m)
def
= min

1≤k≤n+1
d(m, fn+1(xk)) for all m ∈M.

We claim that αn+1 ∈ K. Indeed, if m1,m2 ∈M , then

|αn+1(m1)−αn+1(m2)| = | min
1≤k≤n+1

d(m1, fn+1(xk))− min
1≤k≤n+1

d(m2, fn+1(xk))|.

Assume without loss of generality that

min
1≤k≤n+1

d(m1, fn+1(xk)) ≥ min
1≤k≤n+1

d(m2, fn+1(xk))

and choose k0 ∈ {1, . . . , n+ 1} such that

min
1≤k≤n+1

d(m2, fn+1(xk)) = d(m2, fn+1(xk0)).

Then,

|αn+1(m1)− αn+1(m2)| = min
1≤k≤n+1

d(m1, fn+1(xk))− d(m2, fn+1(xk0)) ≤

d(m1, fn+1(xk0))− d(m2, fn+1(xk0)) ≤ d(m1,m2).

On the other hand, for all x ∈Wn+1,k′ and 1 ≤ k′ ≤ n+ 1:

|αn+1(fn+1(x))− αn+1(fn+1(xk′))| = |αn+1(fn+1(x))|

= min
1≤k≤n+1

d(fn+1(x), fn+1(xk)) ≥
ε

3
,

Take the open covering An+1 of X. Then, for each k ∈ {1, . . . , n + 1}
there is Ak ∈ An+1 such that Ak ∩Wn+1,k is a nonempty open subset of X.
By regularity we can find an open set Un+1,k such that:

• Un+1,k ⊆ Un+1,k ⊆ Ak ∩Wn+1,k ⊆ Un,k, if 1 ≤ k ≤ n;

• Un+1,n+1 ⊆ Un+1,n+1 ⊆ An+1 ∩Wn+1,n+1 ⊆ Vn+1, if k = n+ 1.

This completes the construction.

Now, for each k < ω, the intersection
∞⋂
n=k

Un,k is nonempty by Čech-

completeness. Therefore, we can fix a point zk ∈
∞⋂
n=k

Un,k for all k < ω.

Note that Φ(xk) ∈ Ṽk and Φ(zk) ∈ Ṽk for all k ∈ ω.
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Take an element (f, α) ∈ {(fn, αn)}n<ω
(E

MX
×K)

.
By (vi) we have:

|αn ◦ f̃n(Φ(zk))−αn ◦ f̃n(Φ(xk))| = |αn ◦fn(zk)−αn ◦fn(xk)| ≥
ε

3
, ∀n ≥ k.

Therefore, osc(αn ◦ f̃n, Ṽk) ≥ ε
3 for all n ≥ k. As a consequence, we also

have osc(α ◦ f̃ , Ṽk) ≥ ε
3 for all k < ω.

Let {rm, δm}m<ω be an enumeration of all pairs of rational numbers (r, δ)
with δ > 0. For each m < ω, define

F̃m = {y ∈ Y : inf(α◦f̃)(U) < rm, sup(α◦f̃)(U) ≥ rm+δm, ∀nbd U of y}.

It is easily seen that F̃m is closed and, consequently, Fm
def
= Φ−1(F̃m) is

closed in X.
Observe that, since {Ṽk}k<ω is an open basis in Y , it follows that Y =⋃
m<ω

F̃m and, hence X =
⋃
m<ω

Fm. Being X Čech-complete, it is a Baire

space. Therefore, there is some m0 < ω such that Fm0 has nonempty
interior U in X. Since Φ is a quasi-open map, we have that Φ(U) has
nonempty interior Ũ included in F̃m0 . It follows that inf

(
α ◦ f̃(Ũ)

)
< rm0

and sup
(
α ◦ f̃(Ũ)

)
≥ rm0 + δm0 . Set U0 = Φ−1(Ũ) ⊆ U we have that

inf (α ◦ f(U0)) < rm0 and sup (α ◦ f(U0)) ≥ rm0 + δm0 .

Set F = U0, r
def
= rm0 and δ def

= δm0 and we consider the following sets:

A0 = {x ∈ F : α ◦ f(x) < r} = {x ∈ F : α ◦ f(x) ∈ I0}

A1 = {x ∈ F : α ◦ f(x) ≥ r + δ} = {x ∈ F : α ◦ f(x) ∈ I1}
where I0 = [−1, r) and I1 = (r + δ, 1]. Note that A0 and A1 are dense

subsets in F . Define N0
def
= α−1(I0) and N1

def
= α−1(I1), which are disjoints.

Moreover, since α ∈ K, it follows that d(N0, N1) ≥ δ and f(Aj) ⊆ Nj for
j = 0, 1. Therefore f is totally discontinuous on F . It now suffices to apply
Lemma 3.2.2

Remark 3.2.5. Note that the result remains valid if we consider that for
each residual subset R of X there is a separable metrizable space Y and a
continuous and quasi-open map Φ : R → Y such that for all g ∈ E there is
a g̃ ∈ C(Y,M) satisfying g(x) = (g̃ ◦ Φ)(x) for all x ∈ R.

Corollary 3.2.6. Let X be a Polish space and let (M,d) be a metric space.
If an infinite subset E of C(X,M) is a B-family, then there is a nonempty
compact subset ∆ of X and a countable subset L of E such that L is separated
by ∆. As a consequence, if M is a Banach space, it follows that L is a M -
interpolation set.
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3.3 Continuous functions on a Čech-complete group

In this section, we apply the results obtained previously to the context of
topological groups. Our first result clarifies the relevance of the notion of B-
family in the context of topological groups. From here on, we assume, with-
out loss of generality, that every metrizable topological groupM is equipped
with a left-invariant metric. Furthermore, if M is in addition compact, then
we assume that M is equipped with a bi-invariant metric.

Lemma 3.3.1. Let G be a topological group, M a metric topological group
and E ⊆ CHom(G,M) such that EM

G

is compact. Then E is a B-family
if and only if it is not equicontinuous.

Proof. It is clear that, if E is a B-family, then it may not be equicontinuous.
So, assume that E is not a B-family. Taking V = G and ε > 0 arbitrary,
there exists a finite family {U1, . . . , Un} open subsets in G (WLOG, we as-
sume that Uj = gjVj , where Vj is a neighbourhood of the neutral element)
such that for every f ∈ E there is Vj , with 1 ≤ j ≤ n, satisfying that
diam(f(gjVj)) < ε. Now, since f is a group homomorphism and d is left-
invariant, it follows that diam(f(Vj)) < ε as well. Set V0 = V1 ∩ . . . ∩ Vn,
then diam(f(gV0)) < ε for all f ∈ E and g ∈ G. Consequently E is equicon-
tinuous.

The next result is a direct consequence of Lemma 3.3.1, Theorem 3.2.4
and Lemma 3.1.3. Previously, we need the following definition. Recall that
U(n) denotes the unitary group of degree n.

Definition 3.3.2. Let G be a topological group. If we equip Hom(G,U(n))
with the pointwise convergence topology on G, it becomes a compact Haus-
dorff space (indeed, it is closed in the product U(n)G). We say that a subset
E of CHom(G,U(n)) is an In0 set when E is a Cn2-interpolation set in
Hom(G,U(n)); that is to say, when for every bounded function f : E −→ Cn2

there exists f̃ ∈ C(Hom(G,U(n)),Cn2
) such that f̃ |E = f .

One may look at the notion of In0 set as a generalization of I0 set, given
by Hartman and Ryll-Nardzewski for abelian groups [48].

Corollary 3.3.3. Let G be a compact group, M a metric topological group
and E an infinite subset of CHom(G,M) such that EM

G

is compact. If E
is not equicontinuous, then there is a nonempty compact subset ∆ of G and
a countably infinite subset L of E separated by ∆. As a consequence, if M
is a Banach space, it follows that L is a M -interpolation set. In particular,
if M = U(n) then E contains an In0 set.
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Proof. By Corollary 2.1.27, we may assume without loss of generality that E
is countable and G is separable. By Lemma 3.3.1, E is a B-family. Define an
equivalence relation on G by g ∼ h if and only if f(g) = f(h) for all f ∈ E.
Since E is countable and consists of group homomorphisms, it follows that
the quotient space G̃ = G/∼ is a compact metrizable group. Therefore, if
p : G→ G̃ denotes the canonical quotient map, each f ∈ E factors through
a map f̃ defined on CHom(G̃,M); that is f̃(p(g))

def
= f(g) for any g ∈ G.

Since every quotient group homomorphism is automatically open, Theorem
3.2.4 implies that there is a nonempty subset ∆ of G and a subset L of E
such that L is separated by ∆. In case M = U(n), applying Lemma 3.1.3,
we obtain that L is a M -interpolation set.

The next result is folklore but we include its proof for the sake of com-
pleteness.

Lemma 3.3.4. Let G be a topological group, M a metric topological group,
E ⊆ C(X,M) and h ∈ C(G,M). Set Eh def

= {fh : f ∈ E}. E is equiconti-
nuous on G if and only if Eh is equicontinuous on G.

Proof. It suffices to prove that Eh is equicontinuous if E is equicontinuous.
Let g0 be an arbitrary but fixed point in G. Since right translations are con-
tinuous mappings on a topological group, and E (resp. h) is equicontinuous
(resp. continuous) on G, given ε > 0, there is a neighbourhood U of g0 such
that d(f(g0)h(g0), f(g)h(g0)) < ε/2 and d(h(g0), h(g)) < ε/2 for all g ∈ U
and all f ∈ E. Thus, applying left invariance of the group metric, we obtain

d(f(g0)h(g0), f(g)h(g)) ≤ d(f(g0)h(g0), f(g)h(g0))

+ d(f(g)h(g0), f(g)h(g))

<
ε

2
+
ε

2
= ε.

for all g ∈ U , which completes the proof.

With the hypothesis of the previous lemma, if f ∈ CHom(G,M), the
symbol f−1 denotes the map defined by f−1(g) = f(g)−1 = f(g−1) for all
g ∈ G. Combining Lemmas 3.3.1 and 3.3.4, we obtain:

Corollary 3.3.5. Let G be a topological group, M be a topological group
with a bi-invariant metric, E ⊆ CHom(X,M) such that EM

X

is compact
and f0 ∈ E. Then Ef−1

0 is a B-family if and only if it is not equicontinuous.

Proof. It suffices to see that Ef−1
0 is equicontinuous if Ef−1

0 is not a B-
family. Reasoning as in Lemma 3.3.4, let V = G and ε > 0, then there are
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{U1, . . . , Un} open subsets of G such that for all f ∈ E there is j ∈ {1, . . . , n}
with diam(ff−1

0 (Uj)) < ε. We can assume that Uj = gjVj , where Vj is
a neighbourhood of the identity element of G, for all 1 ≤ j ≤ n. Take
W

def
=

⋂
1≤j≤n

Vj and an arbitrary element g0 ∈ G.

Given f ∈ E, there is j ∈ {1, . . . , n} such that

ε > diam(ff−1
0 (Uj)) = diam(ff−1

0 (gjVj))

= sup
g,h∈Vj

d(ff−1
0 (gjg), ff−1

0 (gjh))

= sup
g,h∈Vj

d(f(gj)
[
ff−1

0 (g)
]
f−1

0 (gj), f(gj)
[
ff−1

0 (h)
]
f−1

0 (gj))

= sup
g,h∈Vj

d(
[
ff−1

0 (g)
]
,
[
ff−1

0 (h)
]
) = diam(ff−1

0 (Vj))

≥ diam(ff−1
0 (W )) = diam(ff−1

0 (g0W )).

We now formulate one of the main results in this section.

Theorem 3.3.6. Let G be a Čech-complete group and K a compact group. If
the infinite subset E of CHom(G,K) is not equicontinuous, then E contains
a countably infinite subset L such that LK

G

is canonically homeomorphic to
βω. In case K = U(n), it follows that L is an In0 set.

Proof. Since K is compact, there is a representation π : K → U(n) such that
{π ◦ f : f ∈ E} is not equicontinuous. Therefore, we assume that K = U(n)
without loss of generality.

Applying Corollary 2.1.27, since E ⊆ CHom(G,U(n)) is not equicontin-
uous, there exists H ≤ G closed and separable and L ⊆ E countable such
that L|H is not equicontinuous . So we can assume WLOG that G is sepa-
rable and E is countable. On the other hand, by Čech-completeness of G,
there must be a compact subgroup C of G such that G/C is complete and
metrizable [14], therefore, a Polish space.

Let E|C
def
= {f |C : f ∈ E} ⊆ CHom(C,U(n)). We have two possible

cases:

(1) E|C contains infinitely many elements that are pairwise inequivalent
(recall that γ1, γ2 ∈ Hom(C,U(n)) are equivalent (γ1 ∼ γ2) if there
exists U ∈ U(n) such that γ1 = U−1γ2U).

(2) E|C only contains a finite subset of elements that are pairwise inequiva-
lent.
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- Case (1): We may suppose without loss of generality that all elements of
E|C are pairwise inequivalent, which implies that E|C may not be equicon-
tinuous on C. Applying Corollary 3.3.3, there is a nonempty subset ∆ of
C and a countable subset L of E such that L is separated by ∆. Thus, by
Lemma 3.1.3, LU(n)G is canonically homeomorphic to βω and we are done.

- Case (2): Set H def
= {ϕ1, . . . , ϕm} ⊆ E such that every f ∈ E is equi-

valent to an element in H when they are restricted to C. If we define
Ei = {f ∈ E : f |C ∼ ϕi|C}, then E = E1

⋃
. . .
⋃
Em. Since E is not

equicontinuous, there is i ∈ {1, . . .m} such that Ei is not equicontinuous.
So, we assume without loss of generality that there is f0 ∈ E such that
f |C ∼ f0|C for all f ∈ E. Therefore, for each f ∈ E, there is Uf ∈
U(n) with (U−1

f fUf )|C = f0|C . Denote by f̃ the map U−1
f fUf and set

Ẽ
def
= {U−1

f fUf : f ∈ E}, which is a subset of CHom(G,U(n)). It is
easily seen that Ẽ is not equicontinuous on G. (Indeed, assume that Ẽ
were equicontinuous and let W be an open neighbourhood of the identity
matrix In in U(n). By [53, Corollary 1.12] there would exist an open
neighbourhood V of eG such that f̃(V ) ⊆

⋂
U∈U(n)

U−1WU for all f̃ ∈ Ẽ.

Therefore, we would have f(v) = Uf f̃(v)U−1
f ∈ W for all v ∈ V . This

implies that E is equicontinuous, which is a contradiction). Hence, Ẽf−1
0

is a B-family on G by Lemmas 3.3.4 and 3.3.5.

Let πC : G → G/C the canonical quotient map, which is open an conti-
nuous. Since G/C is Polish and each f̃f−1

0 factors through G/C, we apply
Theorem 3.2.4 and Lemma 3.1.3 in order to obtain ∆ ⊆ G and L̃ ⊆ Ẽ
such that

L̃
U(n)∆

' L̃
U(n)∆

f−1
0 ' βω.

Set L def
= {f : f̃ ∈ L̃} ⊆ E and consider the map

ψ : (L̃, tp(∆)) −→ (L, tp(∆))

U−1
f fUf 7−→ f

The map ψ is continuous because L̃ is discrete. Moreover, using that L̃
U(n)G

is canonically homeomorphic to βω, there is a continuous extension map

ψ : (L̃
U(n)G

, tp(∆))→ (L
U(n)G

, tp(∆)).

A compactness argument on the group U(n), implies that if p, q ∈ L̃
U(n)G

and ψ(p) = ψ(q) then p and q are equivalent. Since Orbit(p) = {U−1pU :

U ∈ U(n)} and |βω| = |L̃
U(n)G

| = 2c,
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we obtain:

2c = |L̃
U(n)G

| ≤ |LU(n)G ||U(n)| = max{|LU(n)G |, c}.

Therefore
|LU(n)G | ≥ 2c.

Applying Corollary 2.2.6, it follows that L contains a subset P such that
P

U(n)G is canonically homeomorphic to βω. This completes the proof.

Corollary 3.3.7. Let G be a Čech-complete abelian group. If the infinite
subset E of Ĝ is not equicontinuous, then E contains a countably infinite I0

set.

A consequence of this result is a variation of a well-know result of Corson
and Glicksberg [22] asserting that if a subset E of continuous homomorphism
defined on a hereditarily Baire group has a compact and metric closure, then
it is equicontinuous. In case G is Čech-complete and K is a compact group,
these constraints can be relaxed considerably.

Corollary 3.3.8. Let G be a Čech-complete group, K be a compact group
and E be an infinite subset of CHom(G,K). If for every countable subset
L ⊆ E and compact separable subset H ⊆ G we have that either LK

H

has
countable tightness or |LK

H

| ≤ c, then E is equicontinuous.

Proof. If for every countable subset L ⊆ E and compact separable subset
H ⊆ X we have that either LK

H

has countable tightness or |LK
H

| ≤ c, then
L
KH

may not contain a copy of βω. By Theorem 3.3.6, this implies that
L|H is equicontinuous on H. Applying Theorem 2.1.22, it follows that E
is hereditarily equicontinuous on G, which implies that E is equicontinuous
because E consists of group homomorphisms.





Chapter 4

Interpolation sets in
topological groups

4.1 Abelian locally kω groups

In this section, we study the existence of I0 sets for abelian locally kω groups,
which is a large family of topological groups that includes, for example, all
locally compact abelian groups, the free abelian groups on a compact space
and all countable direct sum of compact groups. The proof of our main
results are obtained using methods of Pontryagin–van Kampen duality.

4.1.1 Basic facts

Definition 4.1.1. A kω-group (resp., locally kω-group) is a topological
group where the underlying topological space is a kω-space (resp. locally kω).

The following theorem of Glöckner, Gramlich and Hartnick [43] states
that there exists a relation between the abelian locally kω groups and the
abelian Čech-complete groups.

Theorem 4.1.2. (Glöckner, Gramlich and Hartnick) If G is an abelian lo-
cally kω group, then Ĝ is abelian Čech-complete. Conversely, Ĝ is abelian
locally kω, for each abelian Čech-complete topological group G.

4.1.2 I0 sets

Using the duality of Theorem 4.1.2 and Theorem 3.3.6, we prove the following
result:

Theorem 4.1.3. Let G be a locally quasiconvex, abelian, locally kω-group.
If {gn}n<ω is a sequence in G that is not precompact in G, then {gn}n<ω
contains an infinite I0 set.

81
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Proof. Consider the abelian Čech-complete group Ĝ. By means of the eva-
luation map eval : G→ ̂̂

G ⊆ C(Ĝ,T), we can look at the sequence {gn}n<ω
as a subset of C(Ĝ,T). Furthermore, since {gn}n<ω is not precompact in
G, it follows that {gn}n<ω is not equicontinuous on Ĝ. Indeed, if it were
equicontinuous on Ĝ, by Arzelà-Ascoli’s theorem (see Theorem 1.2.6), then
{gn}n<ω would be precompact in Cc(Ĝ,T), the group C(Ĝ,T) equipped
with the compact open topology. Now, since G is a locally quasiconvex k-
space, the evaluation map eval : G → ̂̂

G is a topological isomorphism in its
image (see [49]). Thus {gn}n<ω would also be precompact in G, which is a
contradiction.

Therefore, the sequence {gn}n<ω is not an equicontinuous set on Ĝ and,
by Corollary 3.3.6, contains an I0 set.

4.1.3 Property of strongly respecting compactness

The next result was proved in [34, Lemma 4.11].

Lemma 4.1.4. Let G be a maximally almost periodic abelian group, A a
subset of G and let N be a subset of bG containing the neutral element such
that A + N is compact in bG. If F is an arbitrary subset of A, there exists
A0 ⊆ A with |A0| ≤ |N | such that

clbGF ⊆ A0 +N + clG+(F − F ).

We are now in position of proving the main result in this section.

Corollary 4.1.5. Every locally quasiconvex, abelian, locally kω, group strongly
respects compactness.

Proof. Let G be a locally quasiconvex, locally kω group and let bG denote
its Bohr compactification. If N is a closed metrizable subgroup of bG and A
is a subset G such that A+ (N ∩G) is compact in G, then bN (A) is trivially
compact in bG/N . Note that bN (A+N ∩G) = bN (A).

Reasoning by contradiction, assume that bN (A) is compact in bG/N but
A + (N ∩ G) is not compact in G. This means, being closed in G, that
A+ (N ∩G) is not precompact in the topology inherited from G. As in the
proof of Theorem 4.1.3, if we take the abelian Čech-complete group Ĝ and
inject G in C(Ĝ,T) by means of the evaluation map eval : G→ ̂̂

G ⊆ C(Ĝ,T),
it follows that A+(N∩G) is not equicontinuous on Ĝ. By Corollary 2.1.27, it
follows that there exists a countable subset F ⊆ A+(N ∩G) and a separable
compact subset X ⊆ Ĝ such that F is not equicontinuous on X. Taking the
closure in Ĝ of the subgroup generated by X, we may assume that X is a
separable closed subset of Ĝ.
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Set X⊥ def
= {g ∈ G : χ(g) = 0 for all χ ∈ X} and take the quotient

G/X⊥, which clearly is a maximally almost periodic group whose dual is
X. Furthermore, the group G/X⊥ is locally kω and X is Čech-complete.
If p : G → G/X⊥ denotes the open quotient map, it follows that there is
a canonical extension pb : bG → b(G/X⊥). Therefore, we have that p(A +
(N ∩G)) is contained in pb(A+N) = p(A)+pb(N) that which is compact in
b(G/X⊥). Applying Lemma 4.1.4 to p(F ) and pb(N), we obtain that there
exists A0 ⊆ p(A) with |A0| ≤ |pb(N)| ≤ c such that

clb(G/X⊥)p(F ) ⊆ A0 + pb(N) + cl(G/X⊥)+p(F − F ).

Now, being the group X is separable, it follows that G/X⊥ can be
equipped with a metrizable precompact topology. As a consequence |G/X⊥| ≤
c. All in all, we obtain that |clbG/X⊥p(F )| ≤ c.

On the other hand p(F ) is not equicontinuous as a subset of C(X,T)
and, by Theorem 4.1.3, this means that it contains an I0 set. This yields
|clbG/X⊥p(F )| = |βω| = 2c > c. This is a contradiction that completes the
proof.

4.2 Locally compact groups

Let G be a locally compact group. Set Hn
def
= Cn for n = 1, 2, . . .; H0

def
=

l2(Z). Recall from the Section 1.4 that IrrCn (G) denotes the set of irreducible
unitary representations of G on Hn (where it is assumed that every set
IrrCn (G) is equipped with the compact open topology), and IrrC(G) =⊔
n≥0

IrrCn (G) (the disjoint topological sum).

The symbol Gw (resp. GwC ) designates the group G equipped with the
weak (group) topology generated by Irr(G) (resp. IrrC(G)). As it was
mentioned in the Introduction, if G is abelian, then the weak topology of G
coincides with the so-called Bohr topology associated to G.

Definition 4.2.1. We denote by P (G) the set of continuous positive-definite
functions on (G, τ). If σ ∈ Irr(G) and v ∈ Hσ, then the positive-definite
function

ϕ : g 7→ 〈σ(g)(v), v〉, g ∈ G

is called pure, and the family of all such functions is denoted by I(G). We
also can define IC(G) as the subset of I(G) consisting of the elements whose
irreducible representation is in IrrC(G). When G is abelian, the set I(G)
coincides with the dual group Ĝ of the group G.

The proof of the lemma below is straightforward.
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Lemma 4.2.2. Let G be a locally compact group. Then:

(a) Gw = (G,w(G, I(G))).

(b) GwC = (G,w(G, IC(G))).

Proof. Both proofs follow from the fact for any representation σ ∈ Irr(G)
and v1, v2 ∈ Hσ we have the following equality:

〈σ(g)(u1), u2〉 =
1

4
〈σ(g)(u1 + u2), u1 + u2〉+

i

4
〈σ(g)(u1 + iu2), u1 + iu2〉−

1

4
〈σ(g)(u1 − u2), u1 − u2〉 −

i

4
〈σ(g)(u1 − iu2), u1 − iuu2〉

and the fact that the strong operator topology and the weak operator topol-
ogy coincides in U(H) for all Hilbert space H.

Remark 4.2.3. We recall that Gw = GwC if G is a separable, metrizable,
locally compact group.

Definition 4.2.4. Let G be a locally compact group and consider the two
following natural embeddings:

w : G ↪→
∏

ϕ∈I(G)

ϕ(G) and wC : G ↪→
∏

ϕ∈IC(G)

ϕ(G)

w(g) = (ϕ(g))ϕ∈I(G) wC(g) = (ϕ(g))ϕ∈IC(G)

We define the weak compactification wG (resp. C-weak compactifica-
tion wCG) of G as the pair (wG,w) (resp. (wCG,wC)), where wG

def
= w(G)

(resp. wCG
def
= wC(G)).

This compactification has been previously considered in [16, 17] using
different techniques. Also Akemann and Walter [1] extended Pontryagin du-
ality to non-abelian locally compact groups using the family of pure positive-
definite functions. Again, in case G is abelian, both compactifications,
(wG,w) and (wCG,w), coincide with the Bohr compactification of G.

The Eberlein compactification of a locally group G, eG, (see Subsection
1.4.2) is closely related to wG. Since eG is defined using the family of all
continuous positive-definite functions, it follows that wG is a factor of eG
and, as a consequence, inherits most of its properties. In particular, wG is
a compact involutive semitopological semigroup.

In the sequel, inv(wG)
def
= {x ∈ wG : xy = yx = 1 for some y ∈ wG}

designates the group of units of wG.
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The following definition was introduced by Hartman and Ryll-Nardzewski
for abelian locally compact groups [48]. Here, we extend it to arbitrary not
necessarily abelian locally compact groups.

Definition 4.2.5. A subset A of a locally compact group G is an I0 set if
every bounded complex (or real) valued function on A can be extended to a
continuous function on wG. This definition extends the classic one, since
when G is an abelian group, we have that wG = bG and C(bG)|G = AP (G)
is the set of almost periodic functions on G.

Remark 4.2.6. Observe that if (G, τ) is a locally compact group and A be
a countably infinite subset of G, then A is an I0 set if and only if AwG is
canonically homeomorphic to βω (see Lemma 3.1.3).

The next Lemma can be found in [91, Section 14, Th.3].

Lemma 4.2.7. Let X be a compact space and f : X → βω a continuous
and onto map. If f−1(n) is a singleton for all n < ω and f−1(ω) is dense in
X. Then f is a homeomorphism.

Lemma 4.2.8. Let (G, τ) be a separable metric locally compact group and
{gn}n<ω be a sequence on G such that {gn}n<ω

wCG ∼= βω, then {gn}n<ω
wG ∼=

βω.

Proof. Let ϕ : Gw → GwC be the identity map, which is clearly a continuous
group homomorphism and set ϕ : wG → wCG the continuous extension of
ϕ. The result follows from Lemma 4.2.7.

We now recall some known results about unitary representations of lo-
cally compact groups that are needed in the proof of our main result in
this section. One important point is the decomposition of unitary represen-
tations by direct integrals of irreducible unitary representations. This was
established by Mautner [67] following the ideas introudced by von Neuman
in [74].

Theorem 4.2.9 (F. I. Mautner, [67]). For any representation (σ,Hσ) of
a separable locally compact group G, there is a measure space (R,R, r), a
family {σ(p)} of irreducible representations of G, which are associated to
each p ∈ R, and an isometry U of Hσ such that

UσU−1 =

∫
R
σ(p)dr(p).
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Remark 4.2.10. The proof of the above theorem given by Mautner assumes
that the representation space Hσ is separable but, subsequently, Segal [87]
removed this constraint. Furthermore, it is easily seen that we can assume
that σ(p) belongs to IrrC(G) locally almost everywhere in the theorem above
(cf. [59]).

A remarkable consequence of Theorem 4.2.9 is the following corollary
about positive-definite functions.

Corollary 4.2.11. Every Haar-measurable positive-definite function ϕ on a
separable locally compact group G can be expressed for all g ∈ G outside a
certain set of Haar-measure zero in the form

ϕ(g) =

∫
R
ϕp(g)dr(p),

where ϕp is a pure positive-definite functions on G for all p ∈ R.

4.2.1 Dichotomy-type result

Definition 4.2.12. Let U be an open neighbourhood of the identity of a
topological group G. We say that a sequence {gn}n<ω is U-discrete if gnU ∩
gmU = ∅ for all n 6= m ∈ ω.

Theorem 4.2.13. Let (G, τ) be a metric locally compact group and let
{gn}n<ω be a sequence in G. Then, either {gn}n<ω contains a weak Cauchy
subsequence or an infinite I0 set.

Proof. Since G is metric, we may assume WLOG that the sequence is not
{gn}n<ω is not τ -precompact. Otherwise, it would contain a τ -convergent
subsequence that, as a consequence, would be weakly convergent and a for-
tiori weakly Cauchy.

Thus, {gn}n<ω must contain a subsequence that is U0-discrete for some
symmetric, relatively compact and open neighbourhood of the identity U0 in
G. For simplicity’s sake, we assume WLOG that the whole sequence {gn}n<ω
is U0-discrete.

Take the σ-compact, open subgroup H def
= 〈U0 ∪ {gn}n<ω〉 of G. Since

H is metric, σ-compact, it follows that H is a Polish locally compact group.
Consequently, by [23, Section 18.1.10], we have that IrrCm(H), equipped with
the compact open topology, is a Polish space for all m ∈ {0, 1, 2, . . .}.

Being Hm separable, for each m ∈ {0, 1, 2, . . .}, there exists a countable
subset Dm

def
= {vmn }n<ω that is dense in the unit ball of Hm (therefore, the



Interpolation sets in topological groups 87

linear subspace generated by Dm is dense in Hm). Fix m ∈ {0, 1, 2, . . .} and
let D denote the closed unit disk in C. We have that < σ(g)(vmn ), vmn >∈ D
for all σ ∈ IrrCm(H), g ∈ H and n < ω.

For each m ∈ {0, 1, 2, . . .}, let αm : H → Cp(Irr
C
m(H),Dω) be the con-

tinuous and injective map defined by αm(h)(σ)
def
= (< σ(h)(vmn ), vmn >)n∈ω

for all h ∈ H and σ ∈ IrrCm(H). Since Dω is a compact metric space, it
follows that

{αm(gn)}n<ω
(Dω)Irr

C
m(H)

is compact for all m ∈ {0, 1, 2, . . .}.
Now, we successively apply Corollary 2.2.1 for each m ∈ {0, 1, 2, . . .} as

follows.
For m = 0, {α0(gn)}n<ω contains either a pointwise convergent sub-

sequence or a subsequence whose closure in (Dω)Irr
C
0 (H) is canonically ho-

meomorphic to βω.
If there is a pointwise convergent subsequence {α0(gn0

i
)}i<ω, then we go

on to the case m = 1. That is {α1(gn0
i
)}i<ω contains either a pointwise

convergent subsequence or a subsequence whose closure in (Dω)Irr
C
1 (H) is

canonically homeomorphic to βω. If there is a pointwise convergent subse-
quence {α1(gn1

i
)}i<ω we go on to the case m = 2, and so forth.

Assume that we can find a pointwise convergent subsequence in each step
and take the diagonal subsequence {gnii}i<ω. We have that {αm(gnii

)}i<ω is
pointwise convergent for each m ∈ {0, 1, 2, . . .}. We claim that the the
subsequence {gnii}i<ω is Cauchy in the weak topology of G.

Indeed, take an arbitrary element ϕ ∈ IC(H), then there is t ∈ {0, 1, 2, . . .},
σ ∈ IrrCt (H) and v ∈ Ht such that ϕ(h) =< σ(h)(v), v > for all h ∈ H,
where we may assume that ‖v‖ ≤ 1 WLOG.

Let ε > 0 be an arbitrary positive real number. By the density of Dt,
there is u ∈ Dt such that ‖u− v‖ < ε/6.

For every h ∈ H, we have

| < σ(h)(v), v > − < σ(h)(u), u > | = | < σ(h)(v), v > − < σ(h)(u), v > +

< σ(h)(u), v > − < σ(h)(u), u > |
≤ | < σ(h)(v − u), v > |+
| < σ(h)(u), v − u > |
≤ 2‖v − u‖ < ε/3.

On the other hand, we know that {αt(gnii)}i<ω is a pointwise Cauchy

sequence in (Dω)Irr
C
t (H). Thus, from the definition of αt and, since u ∈ Dt,

it follows that
{< σ(gnii

)(u), u >}i<ω
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is a Cauchy sequence in D. Hence, there is i0 < ω such that

| < σ(gnii
)(u), u > − < σ(g

njj
)(u), u > | < ε/3 for all i, j ≥ i0.

This yields

| < σ(gnii
)(v), v > − < σ(g

njj
)(v), v > |

≤ | < σ(gnii
)(v), v > − < σ(gnii

)(u), u > |
+ | < σ(gnii

)(u), u > − < σ(g
njj

)(u), u > |

+ | < σ(g
njj

)(u), u > − < σ(g
njj

)(v), v > |

< ε/3 = ε.

We conclude that {< σ(gnii
)(v), v >}i<ω = {ϕ(gnii

)}i<ω is a Cauchy
sequence in D for all ϕ ∈ IC(H). Since H is a locally compact Polish group,
we have that Gw = GwC by Remark 4.2.3. As a consequence, it follows that
which proves that {gnii}i<ω is weakly Cauchy in H. We must now verify that
{gnii}i<ω is weakly Cauchy in G.

In order to do so, take a map ψ ∈ I(G). Since H is separable, by
Corollary 4.2.11, there is a measure space (R,R, r), a family {ψp} of pure
positive-definite functions on H, which are associated to each p ∈ R, such
that

ψ(h) =

∫
R
ψp(h)dr(p) for all h ∈ H.

Therefore

ψ(gnii
) =

∫
R
ψp(gnii

)dr(p)) for all i < ω.

Now, for each i < ω, consider the map fi on R by fi(p)
def
= ψp(gnii

).
Then fi is integrable on R and, since {gnii}i<ω is weakly Cauchy in H, it
follows that {fi} is a pointwise Cauchy sequence on R. Furthermore, if
ψp(h) =< σp(h)[vp], vp > for some σp ∈ Irr(H) and vp ∈ Hσp , it follows
that

|fi(p)| = |ψp(gnii)| = | < σp(gnii
)[vp], vp > | ≤ ‖vp‖2.

Thus defining f on R as the pointwise limit of {fi}, we are in position to
apply Lebesgue’s dominated convergence theorem in order to obtain that∫

R
f(p)dr(p) = lim

i→∞

∫
R
ψp(gnii

)dr(p) = lim
i→∞

ψ(gnii
).
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In other words, the sequence {ψ(gnii
)} converges and, therefore, is Cauchy

for all ψ ∈ I(G). Hence {gnii} is weakly Cauchy in G and we are done.
Suppose now that there exists an index m0 ∈ {0, 1, 2, . . . ,∞} such that

{αm0(gnm0
i

)}i<ω contains a subsequence {αm0(gn(j))}j<ω whose closure in

(Dω)Irr
C
m0

(H) is homeomorphic to βω. Applying Lemma 4.2.7, we know
that {gn(j)}j<ω

wCH ∼= βω. Consequently, by Lemma 4.2.8, we obtain that

{gn(j)}j<ω
wH ∼= βω.

On the other hand, by Bichteler’s [11, Lemma 3.2], we have that the
irreducible representations of H are the restrictions of irreducible represen-
tations of G, which implies that the identity map id : (H,w(G, I(G))|H) →
(H,w(H, I(H))) is a continuous group isomorphism that can be extended
canonically to a homeomorphism between their associated compactifications
id : H

wG → wH. By Lemma 4.2.7 again, we obtain that {gn(j)}j<ω
wG ∼= βω.

Thus {gn(j)}j<ω is an I0 set, which completes the proof.

Remark 4.2.14. Theorem 4.2.13 fails if we try to extend it to every locally
compact group (by removing the metrizability condition) or even to every
compact group. Indeed, Fedorčuk [29] has proved that the existence of a
compact space K of cardinality c without convergent sequences is compatible
with ZFC. If we take the Bohr compactification of the free abelian group
generated by K, then every sequence contained in K does not fulfil any of
the two choices established in Rosenthal’s dichotomy.

4.2.2 I0 and Sidon sets

Hartman and Ryll-Nardzewski [48] proved that every abelian locally com-
pact group contains an I0 set. This result was improved in [34], where it
was proved that every non-precompact subset of an abelian locally compact
group contains an I0 set. These sort of results do not hold for general lo-
cally compact groups unfortunately. Indeed, the Eberlein compactification
of the group SL2(R) coincides with its one-point compactification, which
means that each continuous positive-definite function on SL2(R) converges
at infinity (see [18]). Therefore, for this group, only the first case of the di-
chotomy result in Theorem 4.2.13 holds. If we search for interpolation sets,
some extra conditions have to be assumed.

In this section we explore the application of the results in the previous
sections in the study of interpolation sets in locally compact groups. First,
we need the following result, which was established by Ernest [27] (cf. [59])
for separable metric locally compact groups and convergent sequences and
subsequently extended to locally compact groups and compact subsets by
Hughes [55].
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Proposition 4.2.15. (J. Ernest, J.R. Hughes) Let (G, τ) be a locally com-
pact group. Then (G, τ) and Gw contain the same compact subsets.

In some special cases, Hughes’ result implies the convergence of weakly
Cauchy sequences.

Proposition 4.2.16. Let (G, τ) be a locally compact group and suppose
that {gn}n<ω is a Cauchy sequence in Gw. If {gn}n<ω

wG ⊆ inv(wG), then
{gn}n<ω is τ -convergent in G.

Proof. Assume that {gn}n<ω is a Cauchy sequence in Gw. First, we verify
that the sequence is a precompact subset of (G, τ).

Indeed, we have that {gn}n<ω converges to some element p ∈ inv(wG).
If {gn}n<ω were not precompact in (G, τ), there would be a neighbour-
hood of the neutral element U and a subsequence {gn(m)}m<ω such that
g−1
n(m) · gn(l) /∈ U for each m, l < ω with m 6= l. On the other hand, the se-
quence {g−1

n(m) · gn(m+1)}m<ω converges to p−1p, the neutral element in Gw.
This takes us to a contradiction because, by Proposition 4.2.15, it follows
that {g−1

n(m) ·gn(m+1)}m<ω must also converge to the neutral element in (G, τ).
Therefore, the sequence {gn}n<ω is a precompact subset of (G, τ). This

implies that p ∈ G and we are done.

Lemma 4.2.17. Let (G, τ) be a locally compact group and let B be a non-
precompact subset of G such that B wG ⊆ inv(wG). Then there exist a open
subgroup H of G, a compact and normal subgroup K of H, a quotient map
p : H → H/K and a sequence {gn}n<ω ⊆ B ∩H such that H/K is a Polish
group and p({gn}n<ω)

wH/K ∼= βω.

Proof. Since B is non-precompact there exists an open, symmetric and rela-
tively compact neighbourhood of the identity U in G such that B contains
a U -discrete sequence {gn}n<ω.

Consider the subgroup H
def
=< U ∪ {gn}n<ω >, which σ-compact and

open in G. By Kakutani-Kodaira’s theorem, there exists a normal, com-
pact K of H such that K ⊆ U and H/K is metrizable, and consequently
Polish. Let p : H → H/K be the quotient map and let p : wH → wH/K
denote the canonical extension to the weak compactifications. Therefore, we
have that p(inv(wH) ⊆ inv(wH/K). Furthermore, since H wG is canoni-
cally homeomorphic to wH, it follows that {gn}n<ω

wH ⊆ inv(wH). Hence
{p(gn)}n<ω

wH/K ⊆ inv(wH/K). Thus, we are in position of applying
Proposition 4.2.16.

Assume that there is a weakly Cauchy subsequence {p(gs)}s<ω in (H/K)w,
which would be τ/K-convergent by Proposition 4.2.16. Then by a theorem
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of Varopoulos [95], the sequence {p(gs)}s<ω could be lifted to a sequence
{xs}s<ω ⊆ H converging to some point x0 ∈ H. This would entail that
x−1
s gs ∈ K for all s ∈ ω. Thus the sequence {gs}s<ω would be contained

in the compact subset ({xs}s<ω ∪ {x0})K, which is a contradiction since
{gn}n<ω was supposed to be U -discrete. This contradiction completes the
proof.

Theorem 4.2.18. Every non-precompact subset of a locally compact group
whose closure is placed in inv(wG) contains an infinite I0 set.

Proof. Apply Lemmata 4.2.7 and 4.2.17.

Corollary 4.2.19. Let G be a discrete group and let {gn}n<ω be an infinite
sequence in G. If {gn}n<ω

wG ⊆ inv(wG), then {gn}n<ω contains an infinite
I0 set.

Remark 4.2.20. In case the group G is abelian, Corollary 4.2.19 is a variant
of van Douwen’s Theorem (see page 2).

We now look at Sidon sets, a well known family of interpolation sets in
harmonic analysis. Recall that a subset E of G is called weak Sidon set
when every bounded function can be interpolated by a continuous function
defined on the Eberlein compactification eG and it is equivalent to a Sidon
set if G is abelian or amenable [76]. We notice that the following question
still remains open (see [66] and [31, p. 57]).

Question 4.2.21. (Figà-Talamanca, 1977) Do infinite weak Sidon exist in
every infinite discrete non-abelian group?

Since every I0 set is automatically weak Sidon (because wG is a factor of
eG), Theorem 4.2.18 and Corollary 4.2.19 give sufficient conditions for the
existence of weak Sidon sets.

Theorem 4.2.22. Every non-precompact subset of a locally compact group
whose closure is placed in inv(wG) contains an infinite weak Sidon set.

Let us see some results for discrete groups. First, we need the following
definitions.
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Definition 4.2.23. Let G be a group. A sequence {xn}n<ω ⊆ G is called
independent if for every n0 < ω the element xn0 /∈ 〈{xn}n∈ω\{n0}〉. A
group G is called locally finite if every finite subset of the group generates
a finite subgroup. The group G is residually finite if for every non-identity
element g of G there exists a normal subgroup N of finite index in G such
that g /∈ N . Finally, the group G is called an FC-group if every conjugacy
class of G is finite (i.e. for all g ∈ G, we have that Og

def
= {hfh−1 : h ∈ G}

is finite.)

Proposition 4.2.24. Every independent sequence in a discrete group G is
a weak Sidon set.

Proof. Let E = {xn}n<ω be an independent sequence in G. It suffices to
show that EeG is homeomorphic to βω or, equivalently, that every pair of
disjoint subsets in E have disjoint closures in eG.

Indeed, for any pair A,B of arbitrary disjoint subsets of ω, set XA
def
=

{xn}n∈A, and XB
def
= {xn}n∈B ⊆ G \ 〈XA〉. Since 〈XA〉 is an open subgroup

of G, the positive-definite function h defined by h(x) = 1 if x ∈ 〈XA〉
and h(x) = 0 if x ∈ G \ 〈XA〉 is continuous (see [52, 32.43(a)]). Thus
XA

eG ∩XB
eG

= ∅, which completes the proof.

Corollary 4.2.25. Let G be a discrete group and let {xn}n<ω be a sequence
in G. If the sequence contains either an independent subsequence or its wG-
closure is contained in inv(wG), then the sequence contains an infinite weak
Sidon set.

Remark 4.2.26. Note that if G is a discrete FC-group we can find an
independent sequence within every infinite subset of G. Therefore, every
infinite subset of a discrete FC-group contains an infinite weak Sidon set
[70].

We finish this subsection with an example of a sequence that is a weak
Sidon set and converges to the neutral element in the Bohr topology. Recall
that, given two elements g and h of a group G, the commutator of g and
h is [g, h]

def
= g−1h−1gh. We denote by G′ the commutator subgroup of G

generated by all the commutators of the group.

Proposition 4.2.27. Let G be a discrete, residually finite, locally finite
group that is not abelian by finite. Then G contains a sequence that is weak
Sidon and converges in the Bohr topology.
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Proof. Since G is not abelian by finite there are x1, x2 ∈ G such that a1
def
=

[x2, x2] 6= eG. Take the finite subgroup B1
def
= 〈x1, x2〉 of G. Note that

a1 ∈ B′1. Suppose we have defined L =
∑n

i=1Bi. Since L is finite and G
is residually finite, we can get m ∈ N and a representation σ of G with
dimension m such that σ|L is faithful and σ(G) is finite. Indeed, consider

the finite subgroup L def
= {l1, . . . , lr}, where l1 is the identity element. Since

G is residually finite, we know that for each i ∈ {2, . . . , r} there exists
a normal subgroup Mi of finite index in G such that li /∈ Mi. Take the

normal subgroup M
def
=

r⋂
i=2

Mi of finite index in G. Observe that li /∈ M

for all i ∈ {2, . . . , r}. Now, since G/M is a a finite group, there is a faithful
representation ψ of G with dimension m ∈ N such that ψ(G/M) is finite.
Take the quotient map π : G→ G/M and define the representation σ def

= ψ◦π
of G. Note that σ has dimension m and σ(G) is finite. Finally, we know
that σ|L is faithful because ker(σ|L) = eL.

Set N = ker(σ). If N were Abelian, it would follow that G is Abelian
by finite, which is impossible. Thus, we may assume WLOG that N ′ 6= {1}
and we can replace G by N in order to obtain a finite non-abelian subgroup
Bn+1 of N and a non-trivial element an+1 ∈ B′n+1. Using an inductive
argument, we obtain B =

∑∞
i=1Bi, a subgroup of G, such that B′i 6= {1}, for

all i ∈ N. Under such circumstances, it is known that the sequence {an}∞n=1

is convergent in the Bohr topology (cf. [50, Cor. 3.10]). On the other hand,
the sequence {an}∞n=1 is an independent set by definition and, therefore, a
weak Sidon subset in G. This completes the proof.

Remark that a positive answer to the following question also solves Ques-
tion 4.2.21.

Problem 4.2.28. Does every discrete group contain an infinite I0 set?

4.2.3 Property of strongly respecting compactness

We introduce the following definition, which extends the concept of strongly
respecting compactness, given by Comfort, Trigos-Arrieta and Wu [21] in the
setting of locally compact abelian groups, to groups that are not necessarily
abelian equipped with the weak topology.

Definition 4.2.29. We say that a locally compact group G strongly re-
spects compactness if for any closed metrizable subgroup N of inv(wG),
a subset A of G satisfies that AN ∩G is compact in G if and only if AN is
compact in wG.
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Let G be a locally compact group and let H be an open subgroup
of G. We discuss in the proof of Theorem 4.2.13 that the identity map
id : (H,w(G, I(G))|H) → Hw is a continuous isomorphism that can be ex-
tended to a continuous map id : H

wG → wH defined on their respective
compactifications. Moreover, using that wG is factor of the Eberlein com-
pactification eG, it follows that wG is a compact involutive semitopological
semigroup for every locally compact group G. Taking this fact into account,
the following lemma is easily verified.

Lemma 4.2.30. Let G and H be locally compact groups and let h : G→ H be
a continuous homomorphism. Then there is a canonical continuous extension
h : wG→ wH such that for every p, q in wG, we have h(pq) = h(p)h(q).

The next result is a variation of [35, Lemma 3.6].

Lemma 4.2.31. Let G be a locally compact group, H an open subgroup of
G, A a subset of G, and let N be a subgroup of inv(wG), containing the
identity, such that AN is compact in wG. If F is an arbitrary subset of
AN ∩H, then there exists A0 ⊆ A with |A0| ≤ |N | such that

F
wH ⊆ (FF−1)

Hw

· id(A0N).

Proof. We first verify that FwH ⊆ id(AN ∩HwG
).

Indeed, since AN ∩H ⊆ AN ∩HwG and AN ∩HwG is compact, we have
AN∩H ⊆ id(AN∩HwG

) and, as a consequence, it follows that AN ∩HwH ⊆
id(AN ∩HwG

). Hence FwH ⊆ id(AN ∩HwG
) and FwH is compact.

For any x ∈ N such that FwH ∩ id(Ax) 6= ∅, pick ax ∈ A with id(axx) ∈
F

wH . We define A0
def
= {ax ∈ A : x ∈ N and id(axx) ∈ FwH}. We have

A0 ⊆ A and |A0| ≤ |N |.
Pick an arbitrary point b ∈ FwH . Since FwH ⊆ id(AN ∩HwG

) we can
find a ∈ A and y ∈ N such that b = id(ay). Set b′ = id(ayy) ∈ F

wH .
Then bb′−1 = id(ay)id(ayy)−1 ∈ F

wH
F−1

wH
= FF−1

wH
. Observe also

that, by Lemma 4.2.30, we have bb′−1 = id(ayy−1a−1
y ) = id(aa−1

y ) = aa−1
y ∈

wH∩G = H. Therefore bb′−1 ∈ FF−1
wH∩H. Since H is an open subgroup,

by [55, Cor. 14.2], we deduce that bb′−1 ∈ FF−1
wH ∩H = FF−1

Hw

. Thus
b = bb′−1b′ ∈ FF−1

Hw

· id(A0N) and we are done.

Theorem 4.2.32. Every locally compact group G strongly respects compact-
ness.
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Proof. Let N be a metrizable subgroup of inv(wG) and let A a subset of G
such that AN is compact in wG. Since AN ∩G is closed in G it suffices to
see that it is precompact. By reduction to absurd, assume that AN ∩ G is
non-precompact. By Theorem 4.2.17 there exist an open subgroup H of G, a
compact and normal subgroup K of H, a quotient map p : H → H/K and a
sequence F ⊆ AN∩H such thatH/K is a Polish group and p(F )

wH/K ∼= βω.
Thus, |p(F )

wH/K | ≥ 2c.
By Lemma 4.2.31 there is A0 ⊆ A with |A0| ≤ |N | such that FwH ⊆

(FF−1)
Hw

id(A0N). Since |id(A0N)| ≤ c we can enumerate it as {aα}α<c.
Therefore, we can write FwH ⊆

⋃
α<c

FF−1
Hw

aα.

Let p : wH → wH/K be the canonical extension of p to the respective
compactifications of H and H/K. Using Lemma 4.2.30, for each z ∈ wH
consider the map Tz defined on wH/K by Tz(p(x)) = p(xz) = p(x)p(z) for
all x ∈ wH. Hence, from the previous inclusion we obtain that p(F )

wH/K
=

p(F
wH

) ⊆
⋃
α<c

Taα(p(FF−1)
Hw/K

). Since the topology of Hw/K is finer

than that of (H/K)w we have that p(FF−1)
Hw/K ⊆ p(FF−1)

(H/K)w

. Fur-
thermore |p(FF−1)

(H/K)w

| ≤ c because H/K is a Polish space. Therefore,
|p(F )

wH/K | ≤ c. This is a contradiction that completes the proof.





Chapter 5

Future research lines:
Interpolation sets in the dual
set of a topological group

5.1 Main definitions and basic results

In this setting, we use the characterisation of Sidon set given in Theorem
1.4.15 as its definition. Moreover, we present the notion of I0 set in the
dual set as a particular case of Sidon set, as it was introduced by Hare and
Ramsey [47] in 2003.

Definition 5.1.1. A subset E ⊆ Ĝ is called Sidon set if whenever element
{Aσ}σ∈E ∈ `∞(E), there is a measure µ on G satisfying µ̂(σ) = Aσ for all
σ ∈ E. If, in addition, µ can be chosen to be discrete (or discontinuous),
then E is said to be an I0 set.

Proposition 5.1.2. ([47, Prop. 2.2.]) Any finite set in Ĝ is an I0 set.

I0 sets have been investigated by several authors. First, let us see a
characterization of I0 set.

Theorem 5.1.3 ([47, Prop. 2.1.]). A subset E of Ĝ is an I0 set if and only
if there exists 0 < ε < 1 (equivalently, for every 0 < ε < 1) such that for
each {Aσ}σ∈E ∈ `∞(E) with ‖{Aσ}σ∈E‖∞ ≤ 1, there is a discrete measure
µ such that ‖µ̂(σ)−Aσ‖ < ε for all σ ∈ E.

If we look at the elements in `∞(E) as bounded functions defined on E,
then we have that E is a Sidon set (resp. I0 set) when for every bounded
function f : E −→

⋃
σ∈E

Cd2
σ there is a measure (resp. discrete measure) µ

97
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such that µ̂(σ) = f(σ) for all σ ∈ E.

Fixed n < ω, we denote by [Ĝ]n the set of continuous irreducible uni-
tary representations of G of dimension n. Selecting, as usual, a convenient
representative from each class, we may assume that [Ĝ]n ⊆ CHom(G,U(n)).

Bearing in mind Proposition 3.3.3, the following proposition is immedi-
ate.

Proposition 5.1.4. Let G be a compact group and let E be an infinite subset
of [Ĝ]n, for some n < ω. Then, there exists a countably infinite subset L of
E that is an In0 set. Consequently, if G is a non-tall compact group, then Ĝ
contains a countably infinite In0 set, for some n < ω.

Proof. It is well known that the dual space of a compact group is discrete,
which means that no infinite subset of inequivalent representations of the
same dimension can be equicontinuous.

The next section explores how to relate the notion of In0 set with the
classical notion of I0 set mentioned above.

5.2 I0 sets in the dual of compact non-abelian groups

As we have said in the introduction, we think that every non-tall compact
group contains an I0 set. Since we consider that we can ameliorate our cur-
rent work and demonstrate the conjecture, we present the results that we
have obtained here but without the proof.

The main result of this section is a characterisation of the existence of I0

sets in the dual of non-tall compact groups.

Theorem 5.2.1. Let G be a compact group and let E be an infinite subset
of [Ĝ]n. The following conditions are equivalent:

(a) E is an I0 set.

(b) For every (constant) n× n matrix A, there is a discrete measure µ such
that µ̂(σ) = A for all σ ∈ E.

Let us see some applications of this theorem. Now, the following known
result is immediate.

Corollary 5.2.2. Let G be a compact abelian group and let E be an infinite
subset of Ĝ. Then E contains an infinite I0 set.



Interpolation sets in the dual set of a compact topological
group 99

Corollary 5.2.3. Let G =
∏
α∈I

Gα be a non-tall compact group formed by

an infinite product of compact groups. Let n < ω be the minimum non-
negative integer such that |[Ĝ]n| ≥ ℵ0. Suppose that each Gα satisfies that
|[Ĝα]m| < ℵ0, for every m ≤ n. Then, every infinite subset E of [Ĝ]n
contains an infinite I0 set.

Proposition 5.2.4. Let G = A1 × A2 be a non-tall compact group and let
n < ω be the minimum non-negative integer such that |[Ĝ]n| ≥ ℵ0. Suppose
that each Ai (i = 1, 2) is a compact group such that if |[Âi]mi | ≥ ℵ0, for
some mi ≤ n, it follows that every infinite subset Ei ⊆ [Âi]mi contains an I0

set. Then, every infinite subset E of [Ĝ]n contains an infinite I0 set.

Lemma 5.2.5. Let G be a simple, simply connected compact Lie group.
Then G is a tall group.

Tacking into account the previous characterisation of I0 set, we obtain
a different approach to prove the result of Hare and Ramsey [47, Theorem
4.10].

Corollary 5.2.6. Let G be a non-tall compact connected group. Then, every
infinite subset E of Ĝ contains an infinite I0 set.

Proof. Since G is non-tall there is an infinite subset E′ of E such that
E′ ⊆ [Ĝ]n, for some non-negative integer n. By the structure theorem for
compact connected groups (Theorem 1.3.5), we know that G is isomorphic to
a quotient of K def

=
∏
i∈I

Gi×A, where each Gi is a compact simply-connected

Lie group and A is a compact abelian group. Let ϕ : K → G be the quotient
map. We claim that if Ẽ def

= {σ ◦ ϕ : σ ∈ E′} contains an I0 set, then E′

contains an I0 set. Indeed, given a constant n × n matrix A, we know that
there is a discrete measure µ1

def
=
∑
i<ω

aiδxi ∈ Md(K) such that µ̂1(τ) = A

for every τ ∈ Ẽ. Take µ2
def
=
∑
i<ω

aiδyi ∈ Md(G), where yi
def
= ϕ(xi) for each

i < ω. Then, it follows that µ̂2(σ) = A for every σ ∈ E′.
By Lemma 5.2.5, we know that each Gi is tall. Taking A1

def
=
∏
i∈I

Gi and

A2
def
= A, the hypothesis of Corollary 5.2.4 are satisfied thanks to Theorem

5.2.3 and Corollary 5.2.2. Therefore, there exists an I0 set in Ẽ, and hence
E contains an infinite I0 set.
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Corollary 5.2.7. Let G def
=
∏
n<ω

F a countably infinite cartesian product of

infinitely many copies of a finite group F . Then Ĝ contains an infinite I0

set.

5.3 Central I0 sets in the dual of compact non-
abelian groups

Central interpolation sets are related with the concept of central measures,
which are characterised by the property that their Fourier transforms are
scalar multiples of identity matrices. Recall that a measure is central if it
commutes with all other measures on the group under convolution. We do
not present all the proofs in this section.

Continuing with the idea of the definition of Sidon sets, Parker [75] intro-
duces the notion of central Sidon set in 1972: a subset E of Ĝ is said central
Sidon set if whenever {aσIdσ}σ∈E ∈ `∞(E) there is a central measure µ on
G satisfying µ̂(σ) = aσIdσ for all σ ∈ E. Hence, every Sidon set is a central
Sidon set.

Now, one could analogously define central I0 sets, but in that case, since
central discrete measures must be supported on the centre of G [80], there
would be groups for which not even all finite sets would be central I0 sets
(see [44, 45]). As a consequence, there would be I0 sets that are not central
I0 sets. In order to avoid this issue, in 2004 Grow and Hare [45] change
the definition replacing central discrete measure by a linear combination of
orbital measures.

Definition 5.3.1. A subset E ⊆ Ĝ is said central I0 set if any {aσIdσ}σ∈E ∈
`∞(E) can be interpolated by the Fourier transform of a linear combination
of orbital measures.

The orbital measures are the central, probability measures, µx, supported
in the conjugacy class containing x ∈ G and defined by∫

G
fdµx =

∫
G
f(gxg−1)dmG(g)

for all continuous functions on G. It is know that any I0 set is a central I0

set and all finite subsets of Ĝ are central I0 sets[45]. Moreover, any central
I0 set is a central Sidon set.

There is an equivalent characterisation of central I0 set in the same spirit
as the Kalton’s characterisation for I0 sets (see [63], [81] and Theorem 5.1.3)
that we can find in [46].
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Proposition 5.3.2. Let G be compact group. A subset E of Ĝ is a central
I0 set if and only if for some 0 < ε < 1 (equivalently, for every 0 < ε < 1)
there is a constant C > 0 so that for all choices of {aσ}σ∈E, aσ = ±1, there

is a finite measure µ =
m∑
i=1

λiµgi such that ‖µ‖ ≤ C and ‖µ̂(σ)−aσIdσ‖op ≤ ε

for all σ ∈ E.

Recall that, given σ ∈ Ĝ, we denote by χσ the character associated to σ
and by χNσ the normalised character associated to σ; that is, the character
divided by the degree of the representation dσ.

Remark 5.3.3. Since the Fourier transform of any orbital measure satisfies:

µ̂g(σ) = χNσ (g)Idσ

for every σ ∈ Ĝ, we can say that E ⊆ Ĝ is a central I0 set if for every
{aσIdσ}σ∈E ∈ `∞(E) there exists {λi}i<ω ⊆ C and {gi}i<ω ⊆ G such that∑
i<ω

λiχ
N
σ (gi) = aσ for every σ ∈ E.

Using some results from Section 2.2, it is possible to relate the notion of
infinite central I0 set with the property of containing a sequence equivalent
to the unit basis `1. Again, we don’t include any proof in this section.

Theorem 5.3.4. Let G be a compact group and let E be a countably infinite
subset of Ĝ. The following conditions are equivalent:

(a) There is a countably infinite subset L of E that is a central I0 set.

(b) There is a countably infinite subset L of E such that {χNσ }σ∈L contains
a subsequence equivalent to the `1 basis.

Corollary 5.3.5. Let G be a compact group and let E be a countably infinite
subset of Ĝ. The following conditions are equivalent:

(a) There is a countably infinite subset L of E that is a central I0 set.

(b) There is a countably infinite subset L of E such that {χNσ }σ∈L contains
a subsequence equivalent to the `1 basis.

(c) There is a countably infinite subset L of E such that tg({χNσ }σ∈L
CG

) > ω.

(d) There is a countably infinite subset L of E such that {χNσ }σ∈L
CG

is not
a Rosenthal compactum.

(e) There is a countably infinite subset L of E such that |{χNσ }σ∈L
CG
| > c.
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(f) There is a countably infinite subset L of E such that every two disjoint
subsets of {χNσ }σ∈L have disjoint closures in CG.

(g) There is a countably infinite subset L of E such that {χNσ }σ∈L
CG

is
canonically homeomorphic to βω.

Corollary 5.3.6. Let G be a compact group and let E be an infinite subset
of [Ĝ]n. Then, E contains an infinite central I0 set. Consequently, if G is a
non-tall compact group, then Ĝ contains an infinite central I0 set.

Corollary 5.3.7. Let G be a compact group and let E be a countably infinite
subset of Ĝ. Then, either E contains a countably infinite subset L such that
{χNσ }σ∈L is a pointwise Cauchy sequence, or E contains a countably infinite
central I0 set.

Remark 5.3.8. In [80] Ragozin proves that, given a compact simple Lie
group G, µ is a continuous central measure measure in G if and only if
{aσ}σ∈Ĝ ∈ c0(Ĝ), where the element aσ is the scalar associated to the Fourier
transform µ̂(σ)(= aσIσ), for each σ ∈ Ĝ. If we consider an arbitrary se-
quence {χNσn}n∈ω of normalised characters, we claim that it is a pointwise
convergent sequence. Indeed, take a point g ∈ G. Since the orbital measure
µg is continuous and central, we know that µ̂g(σn) = χNσn(g)Idσ converges
as n → ∞. Thus, χNσn(g) converges as n → ∞. By Corollary 5.3.7 we can
conclude that there are not infinite central I0 sets in Ĝ if G is a compact
simple Lie group.

Corollary 5.3.9. Let G =
∏
α∈I

Gα, where each Gα is a compact group, and

I is an infinite index set. Then, Ĝ contains an infinite central I0 set.

By Corollary 5.3.6 we know that every non-tall compact group contains
an infinite central I0 set. However, by Ragozin’s result mentioned above,
some tall compact groups neither contain an infinite Sidon nor an infinite I0

set. Using Corollary 5.3.9, it is possible to establish the existence of central
I0 sets for some classes of tall groups.

Example 5.3.10. Consider the following tall groups:

1) G1 =
∞∏
n=6

An, where An is the alternating group on n letters for each n.
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2) G2 =
∞∏
n=1

SL(2, pn), where SL(2, pn) denotes the special linear group of

order 2 with coefficients in the Galois field GF [pn].

3) G3 =
∞∏
n=2

SU(n), where SU(n) denotes the special unitary group.

4) G4 =
∞∏
n=2

SO(n), where SO(n) denotes the special orthogonal group.

Observe that G1 and G2 are profinite and G3 and G4 are connected.
In [57, 58] Hutchinson has demonstrated that Ĝ3 and Ĝ4 contain an infinite
Sidon set and that Ĝ1 and Ĝ2 doesn’t. He also proves that all of them contain
an infinite central Sidon set. In view of Corollary 5.3.9, we demonstrate that
the dual of all these groups also admit an infinite central I0 set.

Note that the group G2 from the previous example has an infinite center.
The following Theorem assures us that this property implies the existence
of an infinite central I0 set.

Theorem 5.3.11. Let G be a compact group with an infinite center. Then
Ĝ contains an infinite central I0 set.

As a consequence, if G is a connected compact group, we get a generali-
zation of a result from Rider [84, Th. 9.], which states that Ĝ contains an
infinite central Sidon set if and only if G is not a semi-simple Lie group.

Corollary 5.3.12. Let G be a connected compact group. Then Ĝ has an
infinite central I0 set if and only if G is not a semi-simple Lie group.

Remark 5.3.13. (i) The converse implication of Theorem 5.3.11 is not true
in general because G1 is a compact group with a finite center that contains
an infinite central I0 set. (ii) By the previous Corollary we obtain the same
conclusion that which we have reached in Remark 5.3.8.
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