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Abstract

CARDIAC myocytes constitute a unique physiological system. They are the muscle cells that build

up heart tissue and provide the force to pump blood by synchronously contracting at every beat.

This contraction is regulated by calcium concentration (among other ions) which exhibits a very complex

behaviour, rich in dynamical states at the molecular, cellular and tissue levels. Details of such dynamical

patterns are closely related to the mechanisms responsible for cardiac function and also cardiac disease,

which is the first cause of death in the modern world. The emerging field of translational cardiology focuses

on the study of how such mechanisms connect and influence each other across spatial and temporal scales

finally yielding to a certain clinical condition.

In order to study such patterns, we benefit from the recent and very important advances in the field of

experimental cell physiology. In particular, fluorescence microscopy allows us to observe the distribution

of calcium in the cell with a spatial resolution below the micron and a frame rate around the millisecond,

thus providing a very accurate monitoring of calcium fluxes in the cell.

This thesis is the result of over five years’ work on biological signal and digital image processing

of cardiac cells. During this period of time the aim has been to develop computational techniques for

extracting quantitative data of physiological relevance from microscopy images at different scales. The

two main subjects covered in the thesis are image segmentation and classification methods applied to

fluorescence microscopy imaging of cardiac myocytes. These methods are applied to a variety of problems

involving different space and time scales such as the localisation of molecular receptors, the detection and

characterisation of spontaneous calcium-release events and the propagation of calcium waves across a

culture of cardiac cells.

The experimental images and data have been provided by four internationally renowned collaborators

in the field. It is thanks to them and their teams that this thesis has been possible. They are Dr. Leif

Hove-Madsen from the Institut de Ciències Cardiovasculars de Catalunya in Barcelona, Prof. S. R. Wayne

Chen from the Department of Physiology and Pharmacology in the Libin Cardiovascular Institute of

Alberta, University of Calgary, Dr. Peter P. Jones from the Department of Physiology in the University of

Otago, and Prof. Glen Tibbits from the Department of Biomedical Physiology & Kinesiology at the Simon

Fraser University in Vancouver.

The work belongs to the biomedical engineering discipline, focusing on the engineering perspective by

applying physics and mathematics to solve biomedical problems. Specifically, we frame our contributions

in the field of computational translational cardiology, attempting to connect molecular mechanisms in

cardiac cells up to cardiac disease by developing signal and image-processing methods and machine-

learning methods that are scalable through the different scales. This computational approach allows for a

quantitative, robust and reproducible analysis of the experimental data and allows us to obtain results that

otherwise would not be possible by means of traditional manual methods.

The results of the thesis provide specific insight into different cell mechanisms that have a non-negligible

impact at the clinical level. In particular, we gain a deeper knowledge of cell mechanisms related to cardiac

arrhythmia, fibrillation phenomena, the emergence of alternans and anomalies in calcium handling due to

cell ageing.
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1
Introduction

1.1 Motivation

During the past three decades Mankind has entered what in the future is going to be

known as the information revolution or age of information. Most probably it will be grouped

as part of a longer, several-hundred-year-old, technological revolution that will include

the industrial revolution [1, 2]. This information age was born to internet with the digital

revolution and is characterised by the ability to broadcast and store great amounts of data.

It is estimated the world’s total storage capacity in 2014 was of 5ZB [3] and the total annual

traffic of 2016 has surpassed the ZB [4], a zettabyte being 1021bytes. If we were to store this

amount of information as text, without compression each character taking up one byte, and

we were to print it out using the format of this thesis, without figures each page containing

about 3000 characters and considering a paper thickness of 0.1mm... our book would have a

thickness of 103AU (astronomical units), that is a book with the thickness of one thousand

times the mean distance from Earth to the Sun.

These overwhelming amounts of data cover all kinds of information and nonsense, of

which a very small part is dedicated to science, and of this very small part a great deal will

either never be applied for it is either too specialised and condition dependent, or simply

false [5, 6]. Nevertheless, progress in science does require a whole load of parallel minute

contributions (and failures) for a single breakthrough and for its author to go down in history

and therefore all data, good or bad, needs to be processed.

Specifically in the field of biology, the onset of the information age has forced image

processing and analysis to become a key step. Thanks to the combined progress of microscopy

and computer engineering current researchers are producing huge amounts of data, far

more than they can store and far, far more than they can analyse by means of the manual
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2 1. INTRODUCTION

and time-consuming traditional techniques [7]. Techniques such as segmenting, labelling or

counting objects in an image and measuring their morphological features have historically

been human dependent and subjective whereas now, with the aid of software tools, they

are becoming objective and more reproducible and results that were previously limited to

qualitative observation are now gradually becoming quantitative [8]. Hence the need for

bridge disciplines: disciplines that are halfway between the classical science pillars, like

biomedical engineering, that cover the gap in this case between researchers applying bio-

imaging and the advanced mathematical and computational tools available [9, 10].

Each research group has overcome their own problems in their own ways and this has led

to a gradually increasing proliferation in methods and software tools, both commercial and of

free access, covering a wide range of utilities like image viewing, manipulation, annotation,

analysis, classification and storage [11]. There are currently hundreds of them available but

each individual tool is hardly used in the sense that they are highly tailored to resolve specific

problems and so only applicable under very particular conditions and are therefore very

hard to tune and adapt to new experiments [12, 13, 9]. Besides, it is very common that when

attempting to widen the spectrum of applicability of a tool one tends to compromise its

performance and accessibility and there is a general lack of usability [12, 14].

1.2 Framework

The field of translational cardiology is no different from the rest of the biomedical world.

It involves experimental data that may come in very different formats and belonging to

different physical scales, hence the thesis title with the term multiscale. A scale integration

is required that connects molecular, sub-cellular, cellular and multicellular cultures. In this

sense, this thesis is an attempt to connect the molecular scale to the tissue scale by developing

a set of tools for signal and image processing.

Some of the specific problems that overall make processing experimental data from

translational cardiology so hard and complex are listed next:

• Many different data types: electrophysiological recordings, line scan images,

frame scan images, 3D stacks of images and image sequences.

• Necessity to be able to compare amongst sets of data that may have been taken

under very different conditions such as different sampling rates or pixel physical

sizes. Also to be able to deal with all the available digital file formats such

as images in grayscale versus colour-indexed versus RGB or image sequences

versus multipage images versus video files.
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• Multiple temporal and spatial scales showing a great variety of spatial and

temporal dynamics and patterns. Calcium events can range from milliseconds

(sparks) to seconds (calcium waves) and show different morphological and

dynamical characteristics.

• The characteristics that define each type of event also changes depending on

the species that is under study, even amongst close mammals such as mouse

and rat.

• Noise is always present and is both of biological and experimental origin.

It is a central feature that heavily restricts the use of methods designed for

broad use and often makes it necessary to design specific algorithms or to adapt

conventional methods to each dataset.

• Large amounts of data per experiment, especially in image sequences, which

require both huge hard drive capacity and processing power.

• Great inter and intra-experiment variability requires the processing of huge

amounts of experiments to test the developed tools.

This thesis provides a best practice guide towards dealing with this kind of data with an

automatic approach that allows both to quantify from a neutral point of view and also to

reproduce the results obtained. It specifically provides state-of-the-art solutions to three main

problems and many satellite problems that are also encountered while dealing with calcium

imaging. These are:

• Detection and characterisation of intracellular molecular structures.

• Detection and characterisation of intracellular calcium events.

• Characterisation of the calcium dynamics of single cells and cellular cultures.

These three main problems are covered individually in the following chapter while

reviewing the current state of the art and are described in detail in the subsequent chapters. In

this chapter, a not-so-brief introduction to basic cardiac physiology, fluorescence microscopy

and the main techniques involved in digital signal and image processing is required due to

the fact that we are dealing with a broad discipline that is halfway between fundamental

branches of science that historically have been independent.
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1.3 Cardiac physiology

Cells are the basic biological unit of all known lifeforms excluding viruses. The name

cell comes from the fact that they are closed compartments that form part of a whole. Some

organisms are unicellular, like bacteria and protozoa, while all plants and animals are multi-

cellular. As an example, a human body is formed of some 1014 cells. Cells have a membrane

that is its boundary and are full of water acting as the solvent to all chemical compounds

needed for life. Inside the cell is also a complex network of organelles, each having its own

function, analogous to the organs in the human body.

Myocytes are the cells that form muscular tissue. The main feature that characterises this

kind of cells is their ability to contract, that is to reduce their size. When all cells in a particular

muscle tissue contract simultaneously the whole muscle reduces its total length and produces

a tension force in the direction of contraction. Cardiac myocytes are the cells that form cardiac

tissue and their contraction at each heart beat reduces the total volume of the heart cavities

which allows the continuous pumping of blood through the circulatory system.

Cardiac myocytes are elongated cells attached to one another in the longitudinal direction

forming the cardiac muscular fibres. Each of them is around 100µm long and around 25µm

wide and a human heart consists of some 109 cardiac myocytes all contracting at each heart

beat, pumping around 7000 litres of blood a day and producing a total of around 3·109 beats

in an average human lifetime [15]. Vertebrate animals have hearts composed of between two

to four chambers, mammals having two atria and two ventricles. Atria are smaller and with

each contraction they collect blood from the system and serve it into the ventricles, which

in turn during the same beat expel the blood from the heart sending it out again into the

circulatory system. The heart is divided into two halves, the right atria serving to the right

ventricle which pumps to the lungs for oxygenation, this blood then returns oxygenated back

to the heart via the left atria which serves to the left ventricle which pumps into the rest of

the system via the aorta.

Fig. 1 Atrial myocytes. Top row, left to right, human and pig, bottom row, left to right, mouse and trout (held by
two pipettes). All scales are 20µm long.

Contraction of myocytes is dictated via electrical stimulus and the process converting this

electrical stimulus into mechanical force is called excitation-contraction coupling [16–18]. The
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charge carriers at the cellular level are ions of different chemical elements, the most relevant

being Na+,K+,Ca2+,Cl−. In the case of cardiac myocytes the ion that is mainly responsible

for regulation of contraction is Ca2+ [19].

Each cell is limited by a membrane that isolates it from the exterior. This membrane

consists of by two layers of phospholipids, a kind of lipid (fat) molecule, and together they

form what is known as a lipid bilayer. The main property of phospholipids is that one end of

the molecule is hydrophilic (attracted to water) while the other end is hydrophobic (repelled

by water) and therefore when in water the hydrophobic ends are forced to aggregate exposing

the hydrophilic ends on each side of the membrane. This is the reason why the cell membrane

is impermeable to water and any molecules and free ions that may be dissolved in water thus

allowing it to hold considerable charge gradients.

Fig. 2 Ventricular myocytes. From top to bottom: mouse,
rat, rabbit and zebrafish (held by a pipette). All scales are
20µm long.

For the particular case of Ca2+, the

concentration in extracellular medium is

around 1mM whereas the concentration in

the cytosol (intracellular fluid) of a resting

cardiac myocyte is around 0,1µM , a factor

of 104 between each other [20]. This great

difference in concentration allows the cell

to very rapidly increase its inner concen-

tration by opening the membrane up and

letting Ca2+ fall in.

This ability of the cell’s membrane to

open up is due to transmembrane proteins.

These are molecules that are embedded in

the membrane, going straight through it

from one side to the other, and acting as

doorways for the cell. There are many dif-

ferent types of transmembrane proteins de-

pending on wether they are selective to par-

ticular ions, if they are activated by the presence of a certain molecule or by an electrical

potential difference, or if they allow only the ion flow in the direction of gradient or if they are

capable of pumping ions counter-gradient. The three main transmembrane proteins for Ca2+

transport are the L-type calcium channel (voltage regulated opening allowing ions to pass in

direction of gradient), the Ca2+ ATPase (which pumps Ca2+ out of the cell consuming ATP),

and the sodium-calcium exchanger (which removes one Ca2+ from the cell while letting three

Na+ in).

Myocytes have also a skeleton-like structure of proteins that holds them together and acts

as the contractile machinery. This structure can be seen as a grid of proteins attached to one
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another with the ability to slide through one another reducing the effective lattice of the grid.

This lattice grid unit is around 1 % of the length of the myocyte and the main proteins that

form it are myosin, actin and troponin. The latter has a series of Ca2+-binding sites so that

in the presence of Ca2+, the sites are filled and the proteins undergo their conformational

change. It is a sort of double direction rowing boat, myosin being the boat with oars holding

it to actin on either end of it so that the rowing motion brings together actin at either end

reducing the distance between them and therefore the total length of the myocyte. This all

seems rather confusing from an engineering point of view, but the bottom line, however, is

that the presence of Ca2+ in the cell triggers its contraction.

To regulate this presence of Ca2+, myocytes have a much more clever way than just

letting it in through the membrane. The process is called calcium-induced calcium release

[21, 22], and the name comes from the fact that myocytes have a Ca2+ reservoir inside them

that contributes largely to raising the concentration of Ca2+ far above the concentration

they would reach by just letting Ca2+ from the outside. This reservoir is the sarcoplasmatic

reticulum, a closed structure within the cell, with its own electrically insulating membrane,

and with its own transmembrane proteins to allow ion flux through it. This reticulum releases

large amounts of Ca2+ into the intracellular fluid and this release is triggered by the presence

of Ca2+ coming from ouside of the cell. The two main transmembrane proteins that allow

this calcium flux from the sarcoplasmatic reticulum are the ryanodine receptor (RyR2) for the

release flux and the SERCA pump for the subsequent regathering back into the reticulum.

To summarise, here is a step list of the cycle each cardiac myocyte undergoes with each

heart beat:

1. In the resting state the myocyte keeps an electrical membrane potential of around -90mV.

The cell is polarised, with an excess of negative charge.

2. A variation in the extracellular charge (due to an electric current coming from a neigh-

bouring cell) triggers a depolarisation of the cell, allowing great amount of positive charge

through the membrane, mainly Na+ and K+.

3. Membrane potential changes sign and reaches a value of up to +50mV. At this point Ca2+

starts to enter the cell while K+ are ejected, fixing the positive voltage value (this phase

is called the plateau of the action potential), and this rise in Ca2+ concentration starts the

calcium-induced calcium release process described above, by which the release of Ca2+ from

the sarcoplasmatic reticulum grants a sudden rise in inner Ca2+ concentration which initiates

contraction of the myocyte.

4. Finally, Ca2+ is collected back into the sarcoplasmatic reticulum and ejected out of the cell

to return to the negative potential resting state. To avoid a cell initiating the cycle again with

its own charge release, the transmembrane proteins that allow the entrance of charge are shut
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down for a short interval of time until the cycle is complete. This is known as the refractory

period.

Fig. 3 Calcium-induced calcium release
diagram of the heart beat cycle at the cellular
level: Extracellular calcium ions (1) enter
the cell (2) trigger the calcium release from
the sarcoplasmatic reticulum (3) which all
together activates the contractile machinery
(4) and finally calcium levels are recovered
(5).

1.4 Fluorescence microscopy

1.4.1 Optics introduction

Refraction is a property of light that defines the fact that it changes the direction of

propagation whenever it crosses a change of transmission medium. Typically the two media

are air to glass or vice versa, but for any given two media this direction change is described

by Snell’s law:

n1sin(θ1) = n2sin(θ2)

where n1 and n1 are the refractive indices of the two transmission mediums and θ1 and θ1 are

the angles of incidence and refraction perpendicular to the boundary surface between the

two media.

A flat piece of glass will make light change direction when entering and then rectify when

leaving to recover its original direction. If the two surfaces of the glass are not parallel (i.e.

the thickness is not homogeneous) the light will effectively change its direction. The simplest

lens is a piece of transparent material, polished to a spherical curvature on either side and

with thickness decreasing from the centre, with the result that light entering perpendicular to

the lens plane is focused to a single point in space regardless of the position of incidence on

the plane.

A microscope is an optical device designed to produce an image of an object that is larger

than the object itself and therefore achieving magnification of the object. The magnification
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power is defined as the ratio between the angle under which we would see the object without

the microscope (at the closest possible distance the eye can focus it, standardised to 25mm)

and the angle under which we actually see the object through the microscope. This can be

achieved using a single convergent lens but to a much greater degree by combining a set

of lenses. Figure 4 shows an example of an object being viewed under a single convergent

lens and also exemplifies the simple rules required for understanding geometrical optics

(approximation for thin lenses and small angles). These rules are the following:

The image of a point is in focus only where rays coming from the point

converge to form another point.

Light entering a lens through its centre will not change its path.

Light entering a lens parallel to the optical axis will leave the lens passing

through the lens focus (the optical axis is the line perpendicular to all lenses in

the system that goes through the centre of them).

Light entering a lens passing through its focus will leave the lens parallel to

the optical axis.

Fig. 4 Single convergent lens
symbolised by the vertical line with
arrows (a) and foci symbolised by
red dots (f). The light leaving ob-
ject (O) converges to form the ob-
ject image (I). An observer (E) will
see the object magnified (and inver-
ted in this case) since the angular
size of the image (β) is larger than
the angular size of the object (α).

The optical microscope (figure 5) consists of two sets of lenses (objective and eye piece)

arranged one behind the other along the optical axis in a manner that the angular separation

of light rays coming from two different parts of an object is even wider than if seen through a

single lens.

Fig. 5 Diagram for an optical mi-
croscope. The object (O) is viewed
from the eye (E) inverted and at
infinity. The magnification is the
ratio tan(β)/tan(α). The red dots
are the focal points for each of the
two lenses, objective lens (a) and
eyepiece lens (b). The pale blue
arrow is the image of the object th-
rough the objective lens, which the
eyepiece lens sends to infinity.
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If we need to record the image through the microscope we have to replace our eye by

a camera. In order to view the object in-focus we have to set the camera lens position and

detector position so that the points of the object are focused as points on the detector (not as

blurred blobs). Figure 6 depicts the situation where we have added the camera to the system

and also exemplifies how the image of the object becomes blurred if we change the detector

plane position. In the same way, objects lying closer or farther away from the microscope will

be in focus on a different plane and for this reason the microscope-camera system can only

focus objects that are lying on a plane at a particular distance from the system.

Fig. 6 Extended version of figure 5 with a camera/eye attached to the microscope. The camera/eye lens (c) produces
the final image (I) where the detector chip/retina lies (D). The grey dashed line is a hypothetical detector where the
tip of the object is seen as an extended blob (orange) instead of a point. In this hypothetical plane the object is seen
out-of-focus.

The aperture of the system determines the amount of light the system can collect. It is

limited by the size of the physical tube holding the microscope and the size of the lenses,

and it can also be limited by the use of diaphragms. These are simply opaque elements with

an opening in the centre with the single purpose to limit the cone of light that enters the

system and therefore limiting the brightness of the image itself. One would expect this to be

an undesired result (we want our system to produce bright images in order to detect very dim

objects) but it has two clear benefits: On one hand it reduces the effect of optical aberrations

[23] and on the other, and more importantly, by reducing the cone of light it also reduces the

size of out-of-focus points (see figure 7).

The detector will always be composed of a series of unit detectors, in the case of the

digital camera they are the MOS capacitors (producing the pixels in the image), in classical

photography it is the size of the crystals sensitive to light (film grain) and for the human eye

it is the size of the light sensitive neurones (rods and cones). If our aperture is small enough

so that the cone of light coming from an out-of-focus object is smaller than the unit detector

then this object will actually be viewed in-focus. This combined effect of both aperture and

size of unit detector allows the system to record focused images of objects that are in a range

of distances to the microscope, not only at one particular distance. This range of distances is

what is known as depth of field.
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Fig. 7 Simplified version of the system in figure 6 with a second object closer to the microscope (O’) and its image
(I’). Also a diaphragm has been added to limit the amount of light and instead of single light rays we see the whole
light cone. The image of the new object does not fall on the detector and therefore every point of the new object is
recorded as an extended blob (orange). Note that the size of the aperture limits the size of this extended blob, the
smaller the aperture is the smaller the extended blob. If we reduce the aperture enough so that the size of the blob is
smaller than the unit detector on the recording plane (size of the pixel for a digital recorder) we will obtain focused
images of the two objects even if they are not on the same plane. The aperture together with the size of the unit
detector controls the depth of field of the system.

The first microscopes would illuminate the sample by placing a source of light so that

some of the light reflected by the sample in all directions would be caught by the microscope

to form the image. This system fails if the sample is transparent since light goes straight

through and none is reflected, and that is the exact case when the sample is a cell. For this

reason the first cells to be viewed through a microscope were dyed using colorants that would

give contrast and therefore reveal the basic morphology. The next step was to put the source

of light along the optical axis before the sample and to use a lens (condenser lens) to focalise

it on the sample. This allows a better control of the amount of light that is being received

by the microscope and as the image is now produced by transmission of light through the

sample the images are called transmission images or simply trans. These types of setup are

referred to as bright-field microscopy due to the fact that the resulting images are bright and

the light absorbing sample is darker.

Another early improvement was the scanning optical microscope. This technique consists

in limiting the illumination so that it hits a single point of the sample and recording the image

of that point in the detector. Then the image is built by moving the sample and detector along

the plane perpendicular to the optical axis (or moving the source of light), to form the image

point by point. The sample is being scanned. This again was an improvement on the control of

the amount of light being used, allowing images of very low or very high contrast specimens,

as the image is formed point by point, the illumination conditions or microscope parameters

can be changed depending on the area that is being scanned. The scanning microscope

allowed a further improvement though, which is the confocal microscope.
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Fig. 8 Scanning optical microscope. Condenser lens (d) is focusing light coming from our source onto the plane
where our specimen is (O), and the diaphragm (g) is blocking the light so that only points along the optical axis are
illuminated

1.4.2 The confocal microscope

The confocal microscope is a scanning microscope with the addition that it is able to greatly

reduce the amount of light coming from out-of-focus regions and therefore achieves much

sharper images. It was first developed during the 1950s but together with the improvements

in fluorescence techniques, since the 1980s it has become the king of microscopes in the study

of biological sciences. The principle behind it is the pin-hole, a very small diaphragm, placed

in the plane where the microscope objective lens focuses the image of the sample. Figure 9

exemplifies this situation and demonstrates how light coming from points lying out of the

focal plane is blocked by the pin-hole. It has a clear disadvantage: we are greatly reducing

the amount of light coming from the object, so we need a very sensitive detector (or long

exposures) and images become noisier, we are adding diffraction (described further on in

section 1.4.5), but on the other hand, we also greatly reduce the blur due to out-of-focus light

and, the main benefit of this feature, we can now take 3D images of objects. The microscope

scans a whole plane of the sample taking a 2D image, and as the pin-hole ensures the image

contains none or very little information from other planes, we can then move the sample away

from the microscope and scan another image off a parallel plane to the first. By continuing to

do this we obtain a series of stacks that reconstruct the sample.

Fig. 9 Confocal microscope principle: The pin-hole (h) is letting through the whole cone of light for the relevant
object (O). Other objects lying before or after (O’) have a fraction of the cone blocked at the pinhole, the further they
are from the relevant object, the higher the fraction of light blocked.
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1.4.3 Line scan versus frame scanning

If one needs to record the time evolution of a sample, this scanning technique can be very

limiting since the time it takes to record the whole scene limits the frame rate of the final

sequence. This is the reason why line scans were first introduced. The technique consists in

scanning a single line in the sample at each frame and the final result is, instead of a series of

2D images forming a film, a set of 1D lines that can be arranged to form a 2D image with one

dimension being space and the other being time. This technique allows a greater temporal

resolution at the cost of losing a spatial dimension (see figure 10 for an example).

Fig. 10 Line scan example. Left panel shows a bright field image of a region of cardiac tissue with several visible
cells. The vertical red line represents the position where the microscope is recording to obtain the line scan, in this
case crossing seven cells. The right panel shows the line scan where one can observe the temporal evolution (time
going left to right). Many calcium transients can be seen, approximately one every second, and the arrows indicate
calcium waves travelling within single cells. Image taken from work by Rubart et al. [24]

1.4.4 Fluorescence

Fluorescence is a natural phenomenon by which an object will absorb light of a certain

energy and re-emit it in a lower energy. The habitual mental concept of a spontaneous

emission of light is erroneous and is due to the fact that an object apparently emitting light is

actually being illuminated by higher energy light that the human eye cannot perceive (such

as ultraviolet). To understand how this absorption and emission works a little knowledge on

the interaction of electromagnetic radiation and matter is required.

Electromagnetic radiation is an oscillatory perturbation in the electric and magnetic field

that propagates through space and is responsible for the interactions of charged matter. The

frequency of this oscillation determines the energy of the radiation, high energy radiation

oscillating faster than low energy, and this energy determines the possible interactions with

matter. What is commonly known as light is a small range of the whole spectrum of energies

electromagnetic radiation can cover, it is the most energetic part of the range that the Earth’s

atmosphere does not filter out and, for this same reason, the range the human eye can

perceive.
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Fig. 11 Electromagnetic
spectrum with the associa-
ted orders of magnitude in
frequency and wavelength.
Visible light is the expanded
region where wavelength
values associated to each
colour are seen. White
colour is a combination of
all wavelengths together,
black is absence of light.

Visible matter is composed of atoms. They are the chemical units of matter and their sizes

are measured in picometers (10−12m). Atoms at the same time are composed of three main

particles: neutrons, protons and electrons. The first two provide mass, they lie in the centre

of the atom forming its nucleus, and are bound together by a very strong force; the nuclear

force. The second two provide electrical charge, of opposing sign, and this charge bonds

electrons around the nucleus into specific possible states known as shells. These shells (or

energetic states) can hold a specific number of electrons and depending on this number it will

allow certain atoms to produce certain types of bond with other atoms to form molecules. The

transition of an electron from one shell to the other is possible by exciting the electron with

electromagnetic radiation, and vice versa, an excited electron can decay to a lower energetic

state by emitting electromagnetic radiation.

Substances that are fluorescent (fluorophores) have atoms with electrons in a state that

can be excited to a higher state and then decay to the ground state by stopping in at least one

intermediate state. In this manner the electrons are absorbing light of a certain energy when

being excited, to re-emit it in at least two different lower energies.

Some of the parameters that characterise a fluorophore are: The peak wavelengths of both

the absorption and emission spectra (i.e. the colour of the light used to illuminate and the

colour of the light it will then re-emit), the quantum yield (the ratio between the intensities

of the absorption and emission light), the extinction coefficient (the relation between the

intensity of light absorbed and the concentration of the fluorophore) and the lifetime (mean

time the excited state will take to decay to the ground state).

The decay paths the electrons take after being excited determine the effectiveness of

the fluorophore. If the decay is slow, generally by going through close to stable states, the

fluorophore is less useful since the light emission at a particular time cannot be directly related

to the simultaneous concentration of the fluorophore. If the decay is fast the fluorophore is

more reliable since the light emitted is proportional to a quasi-simultaneous concentration

of the fluorophore. This decay being a quantum process, we cannot ensure a certain decay

path will take place, all we can do is to select those fluorophores that have empirically proven
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certain decays. Moreover, the fluorophore will tend to change its chemical properties under

continuous exposure to light, depending on temperature, the concentration of the fluorophore

and obviously the chemical composition of the fluorophore itself and, in practice, it will

deteriorate in time. All these combined effects produce what is known as photobleaching.

Fig. 12 Some calcium
indicators with their ex-
citation and emission wa-
velengths. Those that ha-
ve either two excitation or
emission wavelengths are
ratiometric. Wavelength
values are taken from
[25].

Fluorescence microscopy is the technique by means of which one

uses a fluorophore that has been designed to attach to a target biolo-

gical structure to reveal its position and allow its viewing under the

microscope. Non-specific staining is a general term used to refer to the

fact that on some occasions a fluorescent signal will be emitted from

an undesired location in an experiment. An example of this can be

seen in figure 29, subfigure a, where the fluorophore has attached to

cellular structures other than the targeted RyR2. Fluorophores can also

be designed to become fluorescent only when bound to a particular

chemical or molecular structure, hence they can be used to measure

concentration of the chemical.

In fluorescence microscopy, one loads the specimen with a fluorop-

hore (or genetically encodes it in), then illuminates with light of the

appropriate energy for the absorption and records the emission using

a filter to block light of all other wavelengths. The first fluorophores

were derivatives of the green fluorescent protein (GFP), first extracted

from a kind of jellyfish in the 1960s [26] but not applied in life sciences

until the 1990s [27, 28]. For the particular case of measuring Ca2+

concentration there are many available fluorophores (fig. 12) and one

of the most common of them is Fluo-4. The excitation wavelength

peak of Fluo-4 is 494nm and the emission peak is 516nm. Using this

fluorophore we would illuminate the sample with laser of a wave-

length around 494nm, record the emission with a filter around 516nm

and the intensity of light recorded would be directly proportional to the intracellular Ca2+

concentration. Ratiometric fluorophores either require two excitation wavelengths or emit in

two different wavelengths and the concentration is measured as a ratio of the intensities.

1.4.5 The diffraction limit

Due to the wave nature of light there are some considerations to be made when imaging

objects the size of which is close to the wavelength of the light we are using to view them.

Diffraction is a term used to describe some of the effects of this wave nature and it can

be understood by considering Huygens’ principle which states that ’Every point in a flat

wave-front can be considered as a source of a spherical front’ (see figure 13).
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(a) Wrong interpretation
of a flat wave-front en-
countering a slit.

(b) The same situation
with Huygens principle
being applied.

Fig. 13 Left panel depicts the naive idea of light encountering a slit. Right panel depicts Huygens principle where
we imagine every point in the wave-front as a source of a spherical front, so that after the slit light can reach regions
we would not expect.

The most important implication of the principle is that light is capable of changing

direction after encountering an obstacle, therefore reaching places one would not expect from

a naive point of view. If an object is illuminated by a light source one would expect that in the

space behind the object, where the shadow is cast, absolutely no light would reach. Applying

Huygens’ principle, someone standing in the object’s shadow sees light coming from the

edges of the object.

Interference is another property of light also due to its wave nature. Two identical waves

that meet in a point in space can produce very different results depending on the phase of the

waves. If at the point where they meet both waves are at maximum amplitude the resulting

wave will be of double amplitude whereas if one is at maximum amplitude and the other is

at minimum amplitude the two waves will cancel out. The two waves are interfering with

each other.

Taking both phenomena into account we discover that light going through a pinhole will

propagate in all directions from the pinhole and furthermore it will interfere with itself since

every point in the pinhole can be considered a different source of light. If we set a screen

behind the pinhole on which to project the light that goes through the pinhole we will not see

an exact image of the hole, rather we will see the diffraction pattern of the hole, with dark

regions due to interference. This diffraction pattern depends on the size and shape of the hole,

the wavelength of the light used and the medium the light is travelling through.

This is the reason why we define the point spread function (PSF) of an optical setup. The

PSF is the image of a point source of light through the optical setup, and it is not a point, it is

instead a pattern due to diffraction and interference, that depends on the optical setup and

the light itself. Optical aberrations will also contribute to the PSF of the system, see Hecht &

Zajac, chapter5 [23] for more information. Any light-emitting object with a certain extension

has to be understood now as a series of points emitting light that cover the extension of the

object. The image of the object through the optical system will be the sum of the PSFs of the
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system at every location of the object. This procedure of summing a pattern by locating it at

every position is known as convolution. If the objects being viewed are much bigger than the

PSF of the system then the image is hardly affected by it but when viewing objects of sizes

close to the PSF the image is going to be altered by the pattern of the PSF. In conventional

photography the mental concept of an image is that of a projection copy of the scene we are

photographing. From now on we need to set aside this idea and think of an image as the

convolution of the scene by the PSF of the optical system.

(a) Image of a circular pin-hole. (b) Intensity distribution.

Fig. 14 The image of a circular pin-hole is the Airy pattern. Left panel shows a real image obtained on an optical
bench and right panel depicts a simulation of the intensity distribution. The diameter of the central disk is the
diffraction limit of the optical setup. Images courtesy of Optics and Photonics Unit, Department of Applied Phisics,
Universitat de Barcelona.

For the case of an optical setup with a circular aperture the PSF has the morphology of

the Airy pattern (see figure 14). This pattern has a very bright, central, circular zone and a

series of concentric bright rings decreasing in intensity the further away they are from the

centre. The radial distribution of this pattern is a sinc function; sinc(x) = sin(x)
x . The central

circle is known as the Airy disk and its size is our main handicap in microscopy imaging. The

diameter of this central bright disk is what is known as the diffraction limit of the optical

system since it is the smallest size resolvable by the optical system, typically in fluorescence

micoscopy around the quarter of micron [29]. In other words, if we have two point sources of

light that are closer to each other than the diffraction limit, their images will be superimposed

and we shall not be able to tell they were originally two separate sources (see figure 15).

Another less-restrictive definition of this minimal resolvable distance is by using the radius

of the Airy disk instead of the diameter and it is known as the Rayleigh limit [23].
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(a) Separation ∼ 4R. (b) Separation ∼ R.

Fig. 15 The diffraction limit. Two points emitting light appear to form an image with the two corresponding Airy
disks. In the left panel the separation of the sources is around four times the radius and so the disks are separated. In
the right panel the images appear superimposed because the separation is smaller than the disk’s diameter, and so
the objects start to be irresolvable. We cannot tell the number of point sources under the pattern. Also interference
can be observed in the outer rings of the left panel.

1.5 Digital data processing

This section covers a series of general key concepts in the field of digital data processing,

both for signals and images, that are necessary before entering the actual thesis body.

1.5.1 The normalisation problem

Normalisation is a key point in the preprocessing stage of a processing pipeline because it

allows certain image transforms to be applied later on in the pipeline. When batch processing

images from which data is going to be extracted one needs to ensure is that all images

have been taken under the same conditions so that the brightness intensity of objects can be

compared between all images. In general this is not necessarily possible. We may have to

compare images taken with different optical setups or under different ambient conditions

and therefore images need to have their intensity normalised.

Normalisation is the process by which one establishes a reference minimum and maximum

value (generally zero and unity) in order to measure a magnitude regardless of the units it is

measured in. The main purpose for normalisation is to fix the range of values a magnitude

can take to an easily comprehensible and normal range for our perception.

For example, someone may say The mean distance from Earth to the Sun is 149597870700m

[30]. This is not much of an intuitive sentence since on one hand we are not accustomed to

thinking of numbers that big and on the other hand the meter is not an appropriate unit for

measuring something that is millions of millions of times bigger. We might just as well say

The distance from Earth to the Sun is huge and to most of us it will be just as informative. For this
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reason, when measuring distances in the Solar System, astronomers define the astronomical

unit (AU) as the distance from Earth to the Sun so the sentence becomes The mean distance

from the Earth to the Sun is 1AU. Now any other distance can be referred to this astronomical

unit and it will easily enter our mind without confusing us. For instance we can now say

the mean distance from Venus to the Sun is 0.72AU. We have normalised the distances to the

astronomical unit.

In the particular case of digital image processing the magnitude that needs to be norma-

lised is the brightness or intensity values of the pixels in the image and the normalisation

process is usually referred to as histogram stretching or level equalisation.

From a mathematical perspective we would say:

In = k (Io−min(Io))
(max(Io)−min(Io))

where Io is the original image, In is the normalised image and k is the normalisation constant.

We are making the darker pixel in the image appear black and the brighter pixel in the image

appear white.

The dynamic range of a digital image is the range of possible values the image takes.

A pure black and white image (no grey, just two colours, black and white) has a dynamic

range of two values. This hypothetical image is very poor in terms of human perception but

it has the advantage that it fills very little memory when recorded since we can use only one

bit of memory for each pixel. It is generally accepted that a minimum of 8 bits (one byte) is

required so that the intensity transition becomes smooth for human perception [31]. In this

case a greyscale image (what is known as a black and white image) has 256 possible tones

of grey and the dynamic range is set in the interval ranging from 0 to 255 (255 being the

normalisation constant). The darkest pixel in this image, pure black, should take the value

zero, the brightest pixel, pure white, should take the value 255, and any value in between the

two will be a grey pixel. The transition of brightness is said to be smooth to human perception

due to the fact that two pixels differing one unit are indistinguishable to the human eye,

meaning that a pixel with value 254 will be as equally white to our eye as a pixel with value

255. The higher the dynamic range in the image the higher the precision we will have when

measuring brightness but at the same time the higher the memory usage will be when storing

the image. When recording an image it might happen that we do not use up the whole of the

dynamic range. This can be due to many reasons, intended and unintended, but in terms of

resource and memory usage the image is badly exposed. We may allow 256 possible values

for each pixel but if in the image fewer than 256 values are present we are reserving too much

memory for each pixel.

As an example, imagine two images of the same field of view taken with the same exact

experimental conditions and optical setup except that the second is using a smaller aperture
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and therefore is darker. In this case the two images will not be using up the same dynamic

range, the second image with the darker light conditions will be using a smaller interval

of the dynamic range (and closer to zero) and so an object appearing in this second image

will have lower intensity values compared to its intensity in the first image. In order to be

able to compare the two images, we will need to normalise both images to the whole of

the dynamic range, so that in both images the darkest pixel takes the lowest possible value

and the brightest pixel takes the highest possible value. Once the two images have been

normalised they should appear very similar to the eye, although the grey transition of the

first will be much smoother since it was originally using a higher fraction of the dynamic

range. Nevertheless, once the two have been normalised, an object in both images will appear

with similar intensity values in the two images.

Now imagine we take a third picture but, in this case, in the field of view we have a new

object that is brighter in intensity than anything else in the image. If we normalise this image,

the brighter object will be setting the maximum value and in this case the image will not be

comparable to the other two because all the objects that in the other two images were equally

bright (after normalisation) will now appear darker in this third image. This is when the

normalisation problem arises. An example is shown in figure 16 with a lamp post playing the

role of the bright object.

Under the assumption that in a set of images they were all taken with the same exact

optical setup and experimental conditions, the images should not be normalised, or at least

they should not be normalised to their own range, instead they should be normalised to the

overall dynamic range of the whole set, so that the intensity of objects remains unchanged

independently of whatever is in the field of view. On the other hand when this assumption

cannot be made, images have to be normalised to their own dynamic range but, in this case,

one needs to either ensure the brighter and darker objects in all images are the same or at

least be able to tell when brightness has shifted. If this is not the case a solution is to reference

the normalisation to a known object that appears in all images but that of course will require

further processing for the object will need to be found in each image.

In summary, each set of images will require its own treatment depending on what is being

pictured and how the images were taken (even on who took them), and normalisation is an

important step that needs to be treated carefully because it can easily distort image content.

Normalising fluorescence signals

All that has been said for conventional photography is equally applied to fluorescence

imaging. We still have to consider image content when deciding on how to normalise an

image and especially a set of images, and we also still have to consider how the images were

taken; the image intensity values are still dependant on all the variables already mentioned
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Fig. 16 The normalisation problem. The top row shows three images of Altafulla castle taken in different light
conditions. All three have been normalised to stretch the dynamic range to the maximum [0,255] and a region of
interest is shown with the detail of the clock and bell in the church steeple (rightmost building).
The bottom row shows a renormalisation using the brighter pixels belonging to the clock for the maximum value
and the darker pixels belonging to the bell shadow for the minimum value. Regarding the whole field of view, the
first image hardly changes, but the second and especially the third have saturated regions. On the other hand, the
steeple wall in the region of interest now has similar colour tones in all three images.
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(exposition, aperture, detector sensitivity). There is though another variable to take into

account: the emitted light depends on fluorescence, both on the fluorophore concentration

and the excitation light intensity.

This produces additional experimental variability and makes comparison of images harder.

The way this has historically been overcome is by normalising the fluorescence to the basal

level of fluorescence in the image or sequence. That is to find the darker areas of the image

and normalise to the mean fluorescence in that area Fo. Authors use two variants of this

normalised fluorescence value, one is absolute normalisation Fa and the other is relative

normalisation Fr:

Fa =
F

Fo
or Fr =

F − Fo
Fo

Both are incomplete normalisation procedures in the sense that they consider only the

lower values and not the higher. This is done to remove the fluorescence offset due to

concentration and or intensity of the light, but the normalisation problem is still present when

attempting to compare different images or different sets of images.

Moreover there is a new problem that has to be taken into account and that is that when

basal fluorescence is very low, the normalised fluorescence becomes very large due to division

by a close to zero value (see figure 17).

Fig. 17 Normalising fluorescence signals may lead to artifacts in amplitude. The top panel shows two sample
signals taken from different places in an image with one with a higher baseline value (blue). The bottom panel shows
the same two signals normalised using (F − Fo)/Fo. As the red signal has a close to zero baseline in the top panel,
the normalised version has a much larger amplitude than the blue signal.
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1.5.2 Baseline estimation

Normalisation of fluorescence images requires an accurate estimation of the basal fluores-

cence. The most simple approach is to take the lower values in the signal, some low percentile

threshold, for example 0.05, and suppose that that is the baseline. This is a very unreliable

method because:

Noise oscillations may be well above the percentile threshold used, making

our baseline estimation really be the lower peaks of the noise.

Morphology of the signal changes the distribution of the values, so if the

signal contains lots of activity the threshold may include signal.

Most importantly it does not take into account variations in baseline due to

fluorophore wash-out or degradation.

The first two can be addressed by either first detecting the activity in the signal and using

the rest for baseline estimation or alternatively if the signal belongs to an experiment with a

preset resting state (see section 5.1 and figure 58 for an example stimulation protocol) then

one can use the mean fluorescence in the window of the experiment without activity as the

basal fluorescence.

The last item requires an additional step. One needs to not only know the activity that is

present in the signal to exclude the events from baseline estimation, but also to consider the

variability in the baseline. If one knows the nature of the variability, the most widely used

method is to fit a curve to the values belonging to baseline (see figure 18).

The proposed method in this thesis is to use a sliding window and produce a fluctuating

local baseline estimation that adapts to the signal (this is described in detail in section 4.3.1).

Fig. 18 Example signal with decaying baseline. The particular signal corresponds to the calcium concentration
inside the sarcoplasmatic reticulum, which at each beat is ejecting calcium into the cytosol and so the inner
concentration decreases from a basal fluorescence which in turn is also decreasing. For this reason basal fluorescence
corresponds to the upper part in each peak. A double exponential is fit to model the loss of fluorescence in time (y
axis is in image intensity units over 255).
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1.5.3 Noise estimation

Noise is the part of information that is irrelevant and will tend to hide the relevant part.

In image processing it will usually be due to the electronics in the digital detector, either

leakage currents produced by long exposures or heat or faulty capacitors in the array, but

it can also be due to the experimental conditions such as the fluorophore concentration or

binding specificity. Quantifying the noise in a signal or an image is useful to establish an

adequate hardness in the noise removal step, especially when dealing with sets of data with

different origins, where maybe some will be noisier than others, and we will need to apply

filters of different intensity.

Common measures of noise are standard deviation, coefficient of variation and mean

absolute deviation, but in general, any statistical measure of variance can be used with the

only consideration is that it must only measure noise and not signal. This is easy to say but

very hard to achieve. Say for example we take the standard deviation of all the pixel values

of two image sequences. The first contains lots of activity, e.g. moving objects, bright objects

appearing or disappearing in the field of view, changes of plane, etc. All of this activity will

contribute to the calculated standard deviation. The second image sequence is a near to

static plane of a very smooth field of view, for example the sky, or a snowy landscape, but

in this case, the image sequence is taken under very poor light conditions which produces

high variability in the pixels. These two film examples may well produce very similar pixel

standard deviation when in fact only one of them has the noise contributing to the variance

measure.

A solution to this is to measure the variability using a sliding window that iteratively

covers the image sequence. If the window is small enough so as not to capture the real activity

in the film, then the noise estimation will not include signal.

It is very common though in calcium imaging that the spatio-temporal resolution is

close to the dimensions of the objects/events we are trying to observe and so the sliding

window will be too small to achieve a proper statistical measure. The best solution to this

is to exclude the objects/events from the noise estimation and take the statistical measure

from the background pixels. In the image sequence example of the previous paragraph, if

we are capable of first detect all moving objects, then we can estimate he noise by taking

the standard deviation of the pixels that belong only to background. This may seem a bit

awkward since the noise estimation step will usually be part of a preprocessing phase to ease

the posterior object detection, but it is not that strange. One can start the analysis by applying

a simple and rough detection step, ideally with more false alarms than omissions, to exclude

all areas with signal and then use the noise estimation of the background in the preprocessing

phase to clean the data and normalise it to finally ensure a finer and more robust detection

step at the end.
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1.5.4 Image Segmentation

Image segmentation is a general term that refers to the process of grouping the pixels in

an image into separate regions. It can be seen as identifying objects or as labelling areas. It is

one of the main blocks in image processing if not the most important one and in this thesis it

is widely used. The following chapter goes deeper into the segmentation methods applied

to calcium imaging but it is mentioned here as an introduction and the two most important

methods are briefly described.

(a) Example image of the chapel outside
Tarrés, Lleida.

(b) Ask a computer to identify three
regions.

(c) Ask a human to identify three re-
gions.

Fig. 19 Image segmentation is a subjective task. A human will take into account its knowledge of the image
content whereas the computer needs to be programmed. The segmentation algorithm used in the middle image is a
region clustering according to similar colour (k-means). Of the three objects covering the chapel only the middle one
is a cyprus tree, the other two are shadows.

Histogram thresholding

Histogram segmentation is a simple and effective technique consisting in using the hills

and valleys in the histogram of an image to cluster the pixels in separate groups. If we rather

just want to separate the image into two regions (background and foreground) it can be called

histogram thresholding because we use the histogram to find a threshold value to binarise

our image. This method, or variations of it, can be applied when content and background

pixels have distinctive enough values and at the same time the image has enough pixels

to allow a smooth histogram. In calcium imaging of isolated cells one will always have a

near-black background versus a bright foreground, which is the cell, and therefore this is a

good technique to obtain the cell mask for further processing. When the experiment consists

of a sequence of film frames or a series of stacks, obtaining the sum (or average) of the

sequence (or series) can sometimes give the pixel value richness that a single image may not

have.

In the particular case of histogram segmentation of a cell in a fluorescence image we can

encounter several possibilities. In general there will be two hills in the image histogram; the

bulk values corresponding to pixels belonging to the background and to the right of that

(brighter) the values of pixels corresponding to the cell. The background pixels can be around
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(a) (b) (c)

Fig. 20 Cell mask evaluation in three different cases. In each of the three, the top panel shows the original image,
second panel shows the image histogram and threshold determination in red, next is the binarised version of the
image and last is the final mask after filling holes and deleting islands. The first and last exemplify presence of
wholes, the second and third a background above zero and presence of islands.

zero so that the shape of the histogram is only half a hill and in some cases the image can

present other bright areas contributing to a third or fourth hill in the histogram. Therefore

we can say that the first local minimum in the histogram corresponds to a good separation

between background and foreground pixels. To further reinforce this in cases with a low

number of pixels, one should choose as a threshold the first value (going from left to right)

that is a local minimum in the histogram and that is also below a certain percentage of the

maximum value to the left of it. Some examples of this are shown in figure 20, in the second

row of panels.

Two further steps are generally required after thresholding: the first is to delete any

isolated areas in the mask and the second is to fill in the holes in the mask. In the first case,

a simple procedure is to find the unconnected regions belonging to the mask and delete all

but the one with the largest area. In the second case, a similar procedure is again to find

unconnected regions but now belonging to the background and all of those that are not in

contact with the image borders can be set to cell mask. Examples of this are shown in figure

20.

Watershed segmentation

There is an infinite family of watershed-based algorithms but they all have in common a

step called the watershed transform [32, 33]. The name given to these algorithms is connected

to the geographical idea of a watershed (also catchment or drainage basin), that is a region of

land such that all the rain water that falls upon it will eventually converge to a single point

where it may or may not exit the region. If one thinks of an image as a section of terrain,
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with the brighter regions being the mountains and the darker regions being the valleys, the

watershed transform can be seen as if we were to pour water on the terrain and draw lines

separating regions that send the water to different points. Typically the separation borders

will be high elevation points along the mountain peaks and ridges. We can then use further

information to limit the growth of these regions, using for example the area covered or the

depth of the region. The reason why the family is infinite is because we can choose an infinite

combination of parameters to modify or to limit the watersheds.

These algorithms have many applications, and in the case of calcium imaging, by adding

a few constraints , they are very powerful for segmentation of excitable cells in a culture. This

is expanded in the following chapter and in section 6.1.

Fig. 21 European seas and the landmasses draining into each of them. From De Jager & Vogt [34]. Further
subdivisions of these watersheds are seen in figure 26.

1.5.5 Integral transforms in image processing

The Fourier transform

The Fourier transform is an integral transform with many applications in a wide range of

fields. It is named after Jean-Baptiste Joseph Fourier who first introduced the idea in his work
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on heat flow in 1822. The basic concept behind it is that any function can be decomposed into

a sum of periodic functions, meaning that we can express the original function into another

function that will now depend on the periods of the functions it is composed of (instead of the

original variable it depended on). The typical example is a time function that is transformed

into a frequency function, but in general the original variable can be any magnitude, for

example in image processing it is a space function that is transformed into a spatial-frequency

function.

The definition of the transform is as follows:

F (ν) =

∫ ∞
−∞

f(t)e−2πitν dt

where f(t) is the original function of time (t), F (ν) is its transform function of frequency

(ν) and the term e−2πitν is the complex number cos(−2πtν) + i sin(−2πtν) with i being the

complex unit
√
−1. For a particular frequency, we are multiplying the the original function

point by point (from minus infinity to plus infinity) by a periodic function and adding up all

the terms so, if the original function has some kind of periodicity with the frequency of the

periodic function, the maxima and minima will match up and the result of the integral will be

a large number. On the other hand, when the frequency is not present in the original function,

the result of the integral will be much lower. After covering all possible frequencies, we obtain

a function that, at every frequency, will tell us how much that frequency is present in the

original function, regardless of the position (temporal position usually). A good example in

musical terms is to take the Fourier transform of the signal of a chord, say C major, composed

of three separate notes played at the same time (do, mi, sol). The transform will produce three

peaks at the frequencies corresponding to these three notes and also at the harmonics of these

notes (signals with frequencies that are multiples of each other fit perfectly into one another).

The inverse Fourier transform is simply the integral transform that will do the inverse process:

given the function of frequency it will recover the original time function.

To put it simply, a function that has very rapid changes will have high frequencies present,

whereas a function that is smooth and does not oscillate much, will have low frequencies

present. Extrapolating this concept to images, if our image has many details, and so the

values change drastically from one pixel to the next, the transform will give us high values

at high frequencies. On the other hand, if the image is smooth and does not have great

contrast changes from one pixel to the next, the transform will return us high values at low

frequencies.

The calculation of this transform may seem tedious, having to integrate the whole range

[−∞,∞] for every frequency, but it is in fact computationally very fast thanks to an algorithm
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already developed by Gauss around 1805 and later re-formulated and published in 1965 by

Cooley and Tukey [35]. This algorithm, known as the Fast Fourier Transform (FFT), uses a

divide and conquer approach which drastically reduces the computational load and, for this

same reason, gives new applications to the transform.

Extending this transform to a two-dimensional discrete function in the spatial domain,

that is an image, we obtain:

F (µ, ν) =
∑
m

∑
n

f(m,n)e−2πi(mµ+nν)

(a) An image of Monument Valley un-
der the early morning summer sun.

(b) High pass filtering conserves only
details.

(c) Low pass filtering discards all detail
in the image.

(d) Natural logarithm of the FFT of
original image.

(e) FFT without the excluded central
zone.

(f) FFT with only the central low fre-
quency zone.

Fig. 22 Example of FFT used for image filtering. Starting from the original image (a), we transform it to its
frequency domain (d) and then we can either crop low frequencies (e) to anti-transform and obtain the image (b) or
we can crop high frequencies (f) and obtain image (c).

One of the best known applications in image processing is regarding convolution. As des-

cribed in section 1.4.5, convolution is the process of multiplying one object by another at every

possible position. Thanks to the convolution theorem and the FFT algorithm, convolution is

nowadays performed in a fraction of a second. Read more about this in [36].

Another very common application of the FFT in image processing is filtering. As the

transform separates the information in our image into frequencies, we can crop an undesired

part of the transform and then do the inverse transform to recover the original image without

the undesired frequencies. For example one can carry out a low-pass filtering to reduce noise

in the image, or a high-pass filter to enhance details, or even a band-pass filter to keep only

certain frequencies. See an example of this in figure 22.
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Wavelet transform

The wavelet transform is another very useful transform with again many applications

in a wide range of fields like data compression, pattern recognition or signal denoising. Its

mathematical definition is as follows:

W (r, s) =

∫ ∞
−∞

f(t)ψ

(
t− r
s

)
dt

where f(t) is the original function of time (t), W (r, s) is the resulting transform function

of both time shift (r) and scale (s), and ψ is the particular mother wavelet function used for

the transform. This mother wavelet (or wavelet family) is a function that complies with a

series of mathematical conditions but is basically a template of a certain shape that we are

using to convolve the original function with. Just like in conventional convolution, if the

original function has a similar shape at a certain time, the integral will produce high values

for the time shift corresponding to that time, but the power of the method lies in the fact that

not only can we test our template at every possible time, but also for every possible scale of

the template. For this reason the wavelet transform becomes a very powerful tool for signal

morphology inspection.

Fig. 23 Top panel: example signal with increasing intensity in time, decreasing frequency in the first half and
increasing frequency in the second half. Bottom panel: Continuous wavelet transform of the example signal using
gaussian family. As can be seen the transform is a 2D function that effectively obtains high values (red) at the times
where the original signal had a ’gaussian shape’, and also identifies the scale of the gaussian shape in the vertical
axis (small at the top, large at the bottom). Note how the term scale has a more temporal connotation than in the
sense of size, meaning that high scales correspond to long objects more than big objects.
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Fig. 24 Example application of the wavelet transform in detecting events of two scales.
Top panel: line scan image with some calcium activity. At start a series of transients, followed by a series of calcium
waves. The black arrows mark the position from which a profile is extracted for the following panel.
Second panel: A calcium profile extracted from the line scan reveals the presence of a spark (arrow) which was
hardly visible in the original image. The profile shown is the mean of a 17pixel central region in the line scan (out of
a total of 512) to reduce the amount of noise.
Third panel: Continuos wavelet transform of the previous signal using gaus2 family. Two scales of interest have
been marked with the red and blue arrows.
Last panel: The two profiles extracted from the wavelet transform where the arrows are marked in the previous
panel. A simple maxima detection function is applied to locate the events (marked with dots) and each maximum is
assigned to one of the two scales if the wavelet transform is higher for that scale than it is for the other. Note how the
smaller scale (red) enhances the spark and note also how the initial transients are assigned to the small scale due to
their short duration.

1.5.6 Local extremal detection

This is a common problem found in many fields and therefore it is covered here for it

will be used in several sections further on. Starting in one dimension, we would have a

signal of which all the peaks and valleys have to be found. The mathematical approach is to

find the places where the derivative of the signal is zero. As our signal is discretised we are

likely not to have a zero derivative sample, rather we will have a positive derivative sample

followed by a negative derivative sample (or vice-versa), so the computational translation of

the mathematical approach is to find between which samples there is a zero crossing of the

derivative. The easiest way to do this is to compute the derivative of the signal by subtracting

each value from its susequent neighbour and then to find extrema by multiplying each value
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in the derivative by its following neighbour. At this point all negative values of the resulting

vector are local extrema, those with positive second derivative are valleys, those with negative

second derivative are peaks. Here is an example in matlab code:

% the original signal is in vector S with length L

D=S(2:L)-S(1:L-1); % first derivative

P=D(1:L-1).*D(2:L); % product of each sample with its following neighbour

E=find(P<0); % vector containing sample indexes for local extrema

This simple code is the one used throughout the thesis whenever peak detection of a

signal is mentioned. When moving on to higher dimensional data the problem becomes a

little harder because null derivatives do not necessarily imply local extrema (in 2D a saddle

point is a maxima in one direction and a minima in another and therefore it is not a local

extremum). A method that is applicable all the same to any dimensional data and that is used

throughout the thesis whenever detection of image local maxima is required is the following:

loop through all samples and compare them to the n neighbours (two for signals, in images

four or eight depending on wether diagonals are excluded or not). If any of the neighbours

has a higher value we set the current sample to zero (or the minima in the set). This leaves us

with all samples set to zero except for local maxima. If we are searching for minima the search

is performed all the same but whenever a neighbour has a lower value we set the sample to

the maximum in the set.

The two methods effectively find all samples that are local extrema, but this does include

any noisy bumps the signal or image might have. The first solution one would come up with

is to filter the original signal by some low pass filter but this is not recommended for it affects

the signal morphology. The usual approach is to detect all extremal points and filter them out

afterwards using some custom rule appropriate for the occasion. This could be an absolute or

relative height rule (keep only extrema that have a height/depth above a certain threshold) or

it could be a width rule (keep only extrema that are at least a certain distance away from other

neighbouring extrema), or even a shape rule (keep only those extrema with surrounding

samples satisfying certain morphology criteria).
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1.6 Thesis outline

After this long but necessary introduction we are now ready to enter the subject of the

thesis. The next chapter provides another sort of introduction but in this case to the main

methods used in calcium imaging. It is a review on the current state of the art and therefore

sets the framework to what has been carried out during the development of the thesis.

The following four chapters contain the body of the work and detail the computational

methods developed aiming to solve the typical problems an experimental physiologist en-

counters while studying calcium dynamics in cardiac cells. This includes detecting objects in

signals and images, establishing appropriate features to characterise them, using machine-

learning techniques to classify them and extracting statistical information in order to prove

or refute hypothesis of either medical or biological implications. The chapters are organised

according to the physical scale of the problem to be treated, starting from the cell organelle

scale through the cellular scale up to the tissue scale.

The link section that connects the chapters dedicated to one scale to the next should

intuitively be found in between the two but instead it is found at the end of the second. For

example the section that links the molecular scale with the intracellular scale is found after

the chapter describing the latter, so that first you read the chapter dedicated to the molecular

scale, next you read the chapter dedicated to the intracellular scale and at the end of this one

you encounter the section that connects the two.

At the end of each of the four chapters that constitute the body of the thesis there is a

small section with the results of the methods presented in the each chapters, and a summary

of the datasets that were used for developing the methods.

The last chapter contains the conclusions to the work as an itemisation of the contributions

of the thesis both from a computational and also from a more general biomedical point of

view. Also a summary of the most important publications is provided.

Fig. 25 Thesis outline. The body of the thesis is composed of four chapters each dedicated to a spatial scale.
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State of the Art

This chapter is an up-to-date review of the research in the three main themes covered by

this thesis. They are:

Detection and characterisation of intracellular molecular structures.

Detection and characterisation of intracellular calcium events.

Characterisation of the calcium dynamics of single cells and cellular cultures.

All three contain the word characterisation. In the first two it refers to measuring the

morphological features of the objects detected. In the third case it is considered in a broader

sense and consists in defining a closed set of dynamic regimes and classifying amongst them.

Most importantly though, all three of them are based on image segmentation. The first two

contain the detection part, in the first case static structures, in the second, time-evolving

events and the third theme also contains a segmentation part because it requires detecting the

cells in the culture as the first step.

Image segmentation is a very common problem in image processing, if not the most

common, and in many cases a crucial step. This is because it is usually one of the first

blocks in a processing pipeline and the following analysis heavily depends on it. It consists

in separating the relevant or foreground pixels in a digital image from the irrelevant or

background pixels according to specified relevancy conditions. There are many studies that

treat the general problem of image segmentation together with methods for evaluating its

performance and they all agree on the fact that segmentation is a very challenging problem

and an open one [37–42]. The main reason for this is that it is, as mentioned, a process

that depends on predefined conditions and therefore it is essentially subjective. On top of

that there is the fact that raw images can have very different properties and content (see
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the normalization problem in section 1.5.1) which overall makes it very hard to choose a

particular method or technique. This is the reason why there are so many studies that either

focus on a particular type of image and compare different segmentation algorithms [43–46] or,

the great majority including this thesis, that attempt to develop new algorithms by applying

or combining or modifying existing techniques to their particular field of research.

Our case is restricted to fluorescence images and particularly blob segmentation (sub-

resolution objects), spark segmentation and cell segmentation. The following sections cover

the methods applied in each of these cases. There is one general tip for image segmentation in

fluorescence imaging (and probably any other kinds of imaging) that is worth mentioning for

it is used several times later on and is regularly stated in the literature. It is that if one wants

to guarantee no omissions, it is always better to be generous and over-segmentate by having

more false alarms and then to use a subsequent filtering step where one can discard the false

alarms [47, 48].

2.1 Image Processing Tools

Some of the best known general-purpose tools for bio-image processing and analysis

in fluorescence microscopy are ImageJ [49], CellProfiller [50, 51], BioImageXD [52], Icy [53],

amongst many others. These are high-level examples which do not require great computer

science skills to use, but there are also sets of libraries that can be called from code, and in

fact are used by the already mentioned, containing the basic image processing functions.

Examples are ITK [54] and openCV [55]. Subsets of these are continuously being reviewed,

expanded and tested for specific applications and under specific conditions [48, 56] because,

as already mentioned, the variability in image conditions makes image processing a very

artisanal subject where each problem has many possible solutions: many acceptable, none

perfect. For this reason there is still no unified approach or gold-standard and a great amount

of literature available in the field. The specific applications covered in this thesis are discussed

in the following sections.

2.2 Blob Segmentation

Blob or particle segmentation refers to the detection of isolated objects that are smaller

than the diffraction limit of the optical setup. Isolated because the distance from one to the

other has to be larger than the diffraction limit and so they can be resolved as independent

PSFs (see section 1.4.5 for details). This is a common problem, on the one hand for straight

localization of molecular structures (and also applied in astronomy images for star detection

[57]), and on the other for microscope PSF estimation purposes in which luminous beads of

known size are imaged [58].
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There have been many developments in recent years towards overcoming the diffraction

limit. Superresolution methods such as the early STED [59, 60] or the more recent STORM

[61] or PALM [62] allow resolving light sources that are closer to each-other than the system

diffraction limit by means of special fluorescence technology and taking thousands of images.

The basic idea is that by using fluorophores that have been engineered to be switchable and

with a low probability of activation, much lower than the time between images, then in a

single image of the sample the chances are that we record light from a small subset of emitting

molecules. By taking many images of the same cluster of molecules we can observe slight

shifts in the PSF and therefore infer the individual locations of emission and reconstruct

a superresolution image of the structure [63]. The sample needs to be treated during the

experiment to remove the subset of light emitting probes that were switched on and allow

another subset for subsequent images .These procedures have proven very successful and

produce impressive images with very high detail, some ten times higher resolution than

was thought possible by means of visible light (in nanometers from the hundreds down to

the dozens [64]). However, these techniques are expensive and time consuming, and are

unnecessary when the required precision in localisation is not below the few hundreds of a

micron.

In conventional optical microscopy all sub-diffraction limit objects appear as blobs. The

best case scenario is that all blobs are of homogeneous intensity and morphology against

a background that also has homogeneous intensity. Then, more or less any approach will

work, and possibly the most widely used is simple thresholding [65]. The image is binarised

according to a single intensity value that separates blobs from background. There are many

ways to choose a value the best known being Otsu’s method [66] in which the threshold is the

value that minimises the variance in the two classes. Example applications are by Allalou et

al. [14] where Otsu is used as a first step and then is combined with a watershed method and

Ghaye et al. [67] that use a local thresholding method thus overcoming intensity variability

throughout the images. Similarly histogram based methods will attempt to find the threshold

based on the morphology of the histogram, by selecting a local minimum that separates the

pixel values into distinct populations (see section 1.5.4).

Other common methods are those based on image morphological operations. One of the

most famous of these is the top-hat filter. It consists in applying an opening filter (erosion

followed by dilation) and then subtracting the result image from the original image. The

erosion suppresses any areas smaller than the structuring element (presumably the blobs), the

following dilation recovers the original image without the blobs which, when subtracted from

the original image, only the blobs survive. The method performs very well when objects have

very clear borders or alternatively are very bright because the image can be thresholded and

a binarised version used for segmenting. Examples of applications can be found in [68, 69].

The other very widely used morphological operation is the h-dome, also named h-maxima
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transform. This image transformation deletes all maxima that are below a certain height h

while lowering all the other areas to the same height. Its main feature is that the maxima are

all then set to a common height, which can be both an advantage or a disadvantage. Another

feature that is an advantage over the top-hat transform is that it is independent of object

size and shape. Its main counterpart is that it is heavily dependent on the height h which

requires a very precise estimation and so the method is usually combined with other methods

to maximise performance [70–72].

Another family of methods are those that consist in some sort of filtering in order to

reduce noise and to enhance the target blobs and subsequently apply any of the previously

mentioned to segment them. Examples are techniques that model the blob by a Gaussian

function, including the one proposed in this thesis, and apply a filter accordingly, or others

based on wavelet decomposition in which the image is filtered by choosing appropriate

coefficients that remove noise and large structures [73–75]. The most common of all blob

detectors though is the Laplacian of a Gaussian filter, also called Mexican hat, which as the

name suggests has a bell-like central shape that decays rapidly. An example is by Sage et al.

[76], who use the Mexican hat filter in a particle tracker algorithm and also demonstrate that

it is the optimal detector for Gaussian-like blobs under certain noise conditions.

For a review and comparison between several blob segmentation methods see Smal et al.

[77] and Ruusuvuori et al. [78].

2.3 Event Segmentation

Calcium events is a term used to refer to a localised increase in calcium concentration, both

spatially and temporally, within an excitable cell. There are several types of events classified

depending on their spatial and temporal scale (see table 5 for a summary), but of these, the

most studied is by far the calcium spark. Since its first description in the 1990’s [79] there have

been many attempts at producing a robust spark detector and we will now briefly review

them.

One of the most widely used methods was developed by Cheng et al. [80], which is a

thresholding method based on an estimation of background noise and setting the threshold

to a factor times the background standard deviation. The factor is user-inputted and therefore

depends on the image type and conditions. This method is surprisingly still in use [81–84]

mainly for the simplicity of its implementation and the comprehensiveness of its performance.

Other thresholding based methods that are in fact variations of the previous one are for

example cases in which Cheng’s method is combined with other methods for performance

improvement with an automatically estimated threshold [85], or with an improved back-

ground noise estimation [86], or with relaxed threshold, relying on precise morphology post
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filtering [87–89] or even with user-supervising to reject or accept candidates [90]. Others have

taken into account the temporal nature of sparks, for example by thresholding the difference

of consecutive frames [91] or by adapting the threshold considering the previous frames [92].

Just as in the case of blob segmentation, there is a family of methods that are based on some

sort of template matching which altogether smoothens out the images and enhances locations

of sparks. In all of these cases a posterior method for determining the exact spark location

is required and it generally involves some sort of thresholding. As an example, Kong et al.

[93] detect sparks in line scans using a hand-made spark template which is cross-correlated

through the line scan and local maxima are recorded. Statistical tests are performed to assess

the correlation and in this case the threshold is the significance applied to the p-value.

Within the template-correlating family included are the methods based on the wavelet

transform. As described in section 1.5.5, wavelet transform is very powerful for it allows

detection of objects that have a particular shape but do not have a fixed size. It is a kind of

correlation by a template where the template is modified through a range of scales. Again the

method requires some sort of thresholding after the transform has been applied in order to

detect the exact location of the sparks. Examples of methods that use wavelet transform can

be found in [94–97]

2.4 Cell Segmentation

Cell segmentation is a very broad term due to the vast variety of microscopy imaging

techniques. As mentioned in the previous chapter for the general case of biomedical data

processing, when developing a tool for cell segmentation one needs to find a balance between

producing a solution with a wide range of applicability and at the same time not losing

performance in the individual cases. On the other hand, it is also very common to find papers

that propose a particular solution to a problem that is so particular that it will hardly be useful

elsewhere or are simply using a very small set of images lacking statistical significance [98].

A curious example of a highly tailored solution to specific image conditions is by Thompson

et al. [99].

As in the previous cases, the simplest approach is image thresholding which are fast

methods but highly dependent image conditions and therefore only applicable under very

specific situations or as a step in a larger segmentation pipeline [100]. The renowned Otsu

method dating from the late seventies is still applied in some cases, generally as part of a

combination of methods, for example in the work by Amanfu et al. [101] which is discussed

in the following section. An example of a thresholding method using commercial software

that demonstrates the limited range of application is by Walsh et al. [102].

Generally speaking, in cell segmentation, the approaches that produce the best results

are contour based, in which search for local maxima in brightness to detect the border
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between cell membrane and background [103]. They are the best results in the sense that

the pixels belonging to the cell will be more precisely identified from the background, not

necessarily from other cells [104]. These contour based methods are only applicable when

there is a clear border between cell and background [105] and therefore require certain types

of imaging (e.g. phase contrast, bright field), and single cell images (as opposed to cell cultures

where clumping may occur). Examples of contour based methods are segmentation via edge

detectors [106, 107], contour shape and morphology-based [108, 109], active contour models

or snakes [110–112] or the subgroup of these, level-set based [113–115] and combinations of

contour-based with others like local thresholding [116], or with watershed [117].

In calcium imaging cell borders are hardly visible and cell segmentation usually becomes

cytoplasm segmentation. This is due to the combined facts that light is originated in the

fluorophore that is in the cell cytoplasm and also that due to the aqueous nature of the cells,

being laid on a slide they do not have constant thickness. Instead they rather rest in a manner

having a thick centre and spreading out with shallow thickness towards the edges, in a

mountain-like fashion, or in Dr Hove’s words "like fried eggs in a pan". This makes cells in

fluorescence images appear with high intensity in the central region and gradually dimming

towards the cell membrane, where it fades out to the background without a clear border.

Despite this there have been some attempts to use contour-based methods like the work

by Srinivasa et al. [118] and Bergeest et al. [119] where a combination of methods based on

active contours and minimising certain energy functionals are applied to hard problems in

fluorescence imaging to produce remarkable results. Nevertheless, in general when dealing

with lack of borders, the other great family of cell segmentation methods arises, those relying

on smooth transition from the pixels belonging to the cell to the background. Examples

from this family are statistical- or clustering-based methods [120–122], region-growing-based

methods [123, 124] or, most importantly the watershed-based family [125], which are currently

the preferred methods for their balance of performance and computation time [126, 118]. The

watershed methods are discussed at the end of this section.

All of the mentioned have both semi-automatic versions, requiring user-inputted data,

and pure automatic versions. The user-input data usually comes in the form of either an

initial point from which the clustering, region growing or watershed will start [127–129], or

an initial line or contour from which the edge detection or active contour method will start

[130, 131]. These semi-automatic versions tend to perform better due to the clear advantage

of the human inputted data [46, 48] and the fully automatic tend to rely on a post-processing

step to remove, merge or join errors [132]. Some authors have successfully attempted to

produce a seed detector algorithm to produce hybrid methods [133, 134].

Another family of methods that has gained recent popularity are those that apply graph

theory to image segmentation [135]. Graph theory is a branch of maths that formalises the

study of sets of objects that have pairwise relations (see Rubinov et al. for an introduction
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[136]). In this sense an image can be treated as a regular lattice of points (the pixels) with

connections to their neighbours. This allows distances to be established between the pixels

and then the graph-partitioning methods can be applied to cluster them in regions, thus

segmenting it [137]. Another graph-based interpretation of an image that is very close to the

idea of watersheds [138, 139], builds a tree of nodes in which the root node represents the

whole image and the leaf nodes are each individual pixel. The nodes at the branching points in

the tree represent areas of similar pixel values according to some established distance metric,

and again, graph-partitioning methods can be applied in this case to establish a pruning

rule of the tree [140]. As an example, using figures 21 and 26, the North Sea catchment basin

(figure 21) would be represented by a node from which several branches would grow, one of

them being the river Thames basin from which many branches would grow, one for the basin

of each tributary (figure 26). This modelling produces impressive results in real-world images

because it can easily handle the complexity found of shapes, borders, sizes and brightness,

but it is also computationally expensive and altogether is hardly applied in cell segmentation

[141].

As explained in the previous chapter, section 1.5.4, watershed-based methods understand

the image as if it were a surface and then use a rain catchment basin idea to separate it in

regions. There are two interpretations of the watersheds and both can share a common result

[142]. The first is the rain model in which water falling on each point will flow down the

surface and end up at a certain point, either inside or at the surface limits; the whole area

sending the water to that point is the watershed. This is the interpretation for the method

discussed in this thesis and some examples of similar methods found in the literature are

mentioned in the following paragraphs. The other interpretation is the flooding model in

which the surface is flooded from sources placed at particular points so that the areas that

get filled up from these points are the watersheds and when two watersheds meet, a dam is

setup to separate them. The flooding points, also called seeds, can be set as regional minima

[143], user-inputted [144] or randomly placed [133]. The two interpretations give the same

results when enough seeds are taken to cover the whole image

There are also two interpretations of the term watershed itself, again analogous to one

another. The first is that the actual regions are the watersheds [145] and the other is that the

border or dam separating the regions is the watershed [146, 147]. Obviously, these methods

can be used both to detect local brightness minima and also local brightness maxima by

inverting the image. A not so obvious but very common approach is to use watershed-based

techniques on the derivative of the image, or the norm of the gradient of the image, that is

to segment the regions of steep brightness changes, converting the method into a border

detection technique.

Watersheds are the most widely-used methods for cell segmentation in calcium imaging,

because, by definition, they are designed to locate local maxima/minima intensity regions



40 2. STATE OF THE ART

which are the standard images (fried egg model mentioned earlier). Also, the watershed

method is immune to shape and size variations [148] and it can easily handle images of high

density cultures with clustered cells [149, 150]. The main drawback of the watershed method

is that it is sensitive to noise and will tend to over-segmentate if no constraints are established

for the regions [151]. This sets the wide variety of methods found in the literature and also

allows some authors to claim it gives bad results by applying no or poor constraints to the

technique.

(a) Catchment basins of the major rivers in Europe. (b) Sub-basins of the River Thames (UK).

Fig. 26 Watershed segmentation requires a stopping rule of some kind to avoid over-segmentation. Both figures
from Vogt et al [152]. These are further subdivisions of the watersheds shown in figure 21.

There are many examples of watershed based approaches to cell segmentation, the follo-

wing are worth mentioning because of their similarity to the method applied here: Lindblad

et al. [153] overcome the over-segmentation by previously detecting cell nuclei (using another

fluorescent marker) and seeding the watersheds from the nuclei, thus allowing a single cell

(watershed) from each nuclei. A similar approach is used by Pinidiyaarachchi et al. where

they use a sequence of images to track cells by using the segmentation in one frame as the

seed for the next [143]. Arteta and others [47, 154, 155] have applied a well known method

in which the watersheds are selected depending on the speed at which they grow while the

surface is filled, i.e. sudden changes in area can indicate two regions have been merged thus

solving the over-segmentation problem. Wahlby et al. [156] propose a method in which they

seed from local maxima (inverted image model) and allow for regions to grow from this

maxima on a step-by-step basis in a range of intensities. The range is gradually lowered thus

finding cell borders when two regions meet.

Finally, for a some articles where several methods are reviewed and comparison measures

are proposed are [43, 44, 120, 157] and a nice recap on cell segmentation in the last 50 years is

the work by Meijering [100].
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Molecular Scale

In this chapter we cover a collection of methods for detection and measurement of struc-

tures at the intracellular scale. These are generally static cell organelles and the methods

described can be applied to the analysis of any sub-diffraction limit object. They are molecular

size structures in the size order of magnitude of the nanometer, tagged by some fluorophore

and under the microscope they will be imaged as shapes close to the system PSF (see section

1.4.5). The chapter focuses mainly on ryanodine receptor 2 (RyR2) detection because it is

currently a research focus in calcium imaging, but it could simply be called blob detection.

3.1 Ryanodine Receptor 2

As mentioned in section 1.3 the RyR2 is a transmembrane protein acting as a calcium

channel in the sarcoplasmatic reticulum’s (SR) membrane and its role in the calcium induced

calcium release process is to mediate the massive release of calcium ions into the cytosol. Its

name is due to ryanodine, an alkaloid found in a Caribbean plant ryania speciosa, which has

nothing to do with cardiac function other than its toxicity to mammals for it blocks the RyR,

and thus the historical name for the protein [158, 159].

RyR2 is the isoform of the protein found in cardiac cells (RyR1 are found in skeletal muscle

cells and RyR3 in neurones) [160]. They are grouped in clusters, each containing a number

ranging from a few dozen [161] to a few hundred [162] and the clusters are distributed all

over the SR which at the same time is evenly distributed throughout the myocyte.

It is well known that calcium release through the RyR2 plays a crucial role in the regulation

of intracellular calcium and cardiac contraction [164, 165] and that some heart diseases are

linked to mutations in the RyR2 [166]. However little is known about the 3D distribution

throughout the cell and if they are the only agents responsible for calcium release from the

41



42 3. MOLECULAR SCALE

Fig. 27 Ryanodine receptor structure in closed state obtained from cryogenic electron microscopy by Peng et al.
[163]. Top panel shows the different domains identified in the receptor and in the bottom panel we see a side view
(left) and top view (right) of the receptor using the same colour code for each domain. The sarcoplasmatic reticulum
membrane position is indicated in the left view with the two black lines, on top would be the cytoplasm and below
the sarcoplasmatic reticulum interior.

sarcoplasmatic reticulum. Therefore this molecule is currently a common focus of study in

many research groups around the world and the development of computational techniques

for the detection of RyR2 clusters from fluorescence imaging is currently highly relevant.

3.2 RyR2 localisation

RyR2 can be tagged with fluorophores in order to be viewed through the microscope.

There are several different techniques for doing this but in any case, as they are objects some

ten times smaller (∼ 30nm [167]) than the diffraction limit of optical microscopes, they appear

as blobs a little larger than the size of the system’s PSF (see figure 29).
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Fig. 28 Example template used for
filtering RyR2 images. It is a 2D Gaus-
sian with its mean subtracted, so that
the outer values are negative, the cen-
tral values are positive and the sum of
all values is zero.

A simple and effective way to localise these structures in

an image is to perform a search for local brightness intensity

maxima. The problem is that very often noisy images will

have local maxima that are purely noise peaks, so we need

to free the image of these noise peaks and so a filter has to be

applied. A good approach is to use a Gaussian filter of the

same size as the PSF of the system (figure 28). The reason is

two-fold; the 2D Gaussian is a good approximation to the

PSF [77, 168] so it will nicely adjust to the image wherever

clusters are located and, in this manner, RyR clusters will

be enhanced while at the same time the whole image will

be smoothed out reducing the number of false detections

when localising the clusters.

(a) Scale length 20µm. (b) Scale length 2µm. (c) Pixel size 0.135µm.

(d) Scale length 20µm. (e) Scale length 2µm. (f) Pixel size 0.04µm.

Fig. 29 Two example images of RyR2 clusters in different conditions. Top row: Human atrial myocyte labelled
by means of immunofluorescence. Bottom row: Mouse ventricular myocyte from a line of mice that have been
genetically modified to express GFP at RyR2s. In both cases, brighter objects correspond to clusters that fall on
the focal plane and fainter objects correspond to out-of-focus clusters. In the first image, the bigger bright regions
correspond to non-specific staining, possibly vacuoles or other cellular organelles that are not the real target of the
study. In the second case the pixel size is unnecessarily small: the cluster is a sub diffraction-limit object an so the
blob we see is the microscope PSF and it will not get any better by improving the resolution of the detector.



44 3. MOLECULAR SCALE

Cluster detection then becomes easy by finding those pixels with zero derivative as

explained in section 1.5.6 although it is very likely that some kind of post filtering will be

needed to discard local maxima with too low intensity values (possibly out of focus clusters

and/or surviving noise peaks) or objects that do not have the expected shape of the PSF.

Another approach is to use a watershed based method and impose some sort of limitation

to the detection by applying known properties of the objects to be detected such as shape or

size, but to do this we first need to cover how to measure these properties.

3.3 Shape and size measurements

Due to the fact that these sub-resolution objects do not have a clear border, as they rather

fade into the background, a definition of how size is going to be measured is required. This

definition can either be relative or absolute in terms of image intensity: We can say an object

border corresponds to those pixels with intensity below a certain threshold, this threshold

being a fraction of the brightest pixel of the object itself, or instead a fraction of the brightest

pixel in the whole image.

Using one definition or another will depend on the image content. If for example we know

all objects are more or less the same size but the fact that some are farther away than others

makes them appear smaller in the image, the first option will be more appropriate. On the

other hand, if we know all objects are more or less on the same plane, and that those we see

smaller are truly smaller, then the second option is a better approach.

Other definitions can be made using the derivative of the object’s cross section. For

example a common criteria is to search for the inflection point in the decay (i.e. where the

slope is maximum). Once a size definition is set, it is best practice to fit the object to a known

function and measure the size using this fit instead of measuring from the raw pixel values in

order to avoid errors due to image noise. For the particular case of RyR2 cluster images, a

Gaussian fit is a straightforward approach.

As RyR2 cluster images have radial symmetry, in principle their radius can be measured

in any direction and should produce the same result. For this reason, a sensible approach is to

do so in a series of cross sections and give the radius result as a mean of the values measured

in every direction. One last consideration though is to take each cross-section and crop from

the first minima on either side of the local maxima so that any possible neighbouring clusters

do not affect the size measurement (see figure 30 magenta cross-section). Note also that in

each cross-section, pixel size depends on the obliquity of the cross-section.
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Fig. 30 Cluster size measurement using four cross-sections. In each of them a Gaussian function is fitted to the
segment of the cross-section in between the two minima before and after the maximum. As an example, the top right
panel shows a case where the final uprise was excluded in the fit. Note that the radii are measured from the true
centre of the object to the intersection with the fit, so in this case we are actually measuring eight radii. Horizontal
axis in the plots are measured in pixels.

3.4 Z-line distance estimation

Z-lines are the name given to the observed dark lines between sarcomeres when viewing

a myocyte under the microscope. They correspond to the place where actin molecules are

bound together in the contractile machinery of a myocyte, but they are merely a name given to

a visual perception, they do not define a structural component of a myocyte. Nevertheless the

distance between Z-lines in a myocyte does give information about the grade of contraction

of a myocyte and so the measurement of this distance is relevant when studying myocytes.

Fig. 31 Mouse ventricular myocyte with actin labelling. The centre of each band corresponds to the position of the
Z-line. RyR2 clusters and actin filaments are arranged with the same lattice constant, known as Z-line distance.

The reticular distribution of RyR2 clusters corresponds to the periodic distribution of actin

myosin filaments and for this reason the distance between bands of RyR2 clusters corresponds

to the Z-line distance.

One would think that the best way to tackle this problem is to connect each detected cluster

with its nearest neighbour in order to to segment the lines clusters are distributed along, fit a
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straight line and then measure the distance between these lines in the perpendicular direction.

This method is tedious and is easily dependent on errors due to regions where the confocal

plane changes from one plane of clusters to the next or regions close to the cell membrane

where the mesh seems to disappear. A statistical approach to this measurement can be used

thanks to the fast algorithms available for computing all pairwise distances bewteen a set

of objects [169], in this case between RyR2 clusters. If an image has N detected clusters, the

number of distances to measure is (N2 −N)/2. If one then takes the histogram of the values

measured from the periodic distribution of clusters, this histogram will produce a series of

maxima matching the multiples of the Z-line distance. By autocorrelating this histogram one

can measure the mean of the most present distance in the image and therefore a mean Z-line

distance is obtained by taking into account all clusters (see figure 32).

This procedure can equally be applied to an image with labelling on any of the proteins

that form the contractile machinery of a myocyte. As an example figure 31 shows actin

labelling corresponding to the Z-lines.

Fig. 32 Z-line estimation after RyR cluster detection. Top panel shows the histogram of all distances present
between clusters, in this case a total of 712 clusters yield to ∼250k distances. As can be seen there is a periodic
pattern corresponding to multiples of the separation between cluster rows. To measure the distance corresponding to
this periodicity, we first cut and de-trend the initial region of the histogram (bottom row, left-most panel), we then
autocorrelate this signal (bottom row, middle panel), and we finally measure the distance to the first peak (bottom
row, rightmost panel).

3.5 Example applications

The set of sub-resolution object detection techniques described above have successfully

been applied in a series of experimental conditions and the results have been manually
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verified in a subset of cases. As one may imagine, the best results are obtained with the higher

signal to noise ratio, higher resolution and also when no non-specific fluorescent signal is

present. The following subsections are some examples of applications.

3.5.1 Straightforward detection

The first example is from a set of experiments of transgenic mice expressing GFP at RyR2

clusters where detection was used for exploration of spatial distribution, size and distance

measurement [170, 171]. These images were processed using some of the techniques described

in the previous sections; image pre-filtering for noise removal, convolution by a Gaussian

filter (0.5 divided by image resolution of 0.14µm yielding around 35 pixel filter similar to

figure 28), image binarisation with a threshold depending on image intensity range, connected

component filter, and final removal of objects out of expected size interval. Post-processing

included measuring nearest neighbour distances, size measuring (using eight cross sections

as described in section 3.3) , and Z-line distance estimation (using method described in 31).

See figure 33 for examples of these experiments.

(a) Whole image after pre-processing. (b) Top-right detal.

(c) Bottom-left detail. (d) Bottom-center detail. (e) Bottom-right detail

Fig. 33 Mouse ventricular myocyte expressing GFP at RyR2 clusters. After the image has been processed for
detection of clusters, a white dot has been positioned on detected sites. Pixel size is of 0.14µm.
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3.5.2 Phosphorylated versus non-phosphorylated clusters

Another application of the methods described was applied to a set of experiments in

which the labelling technique used was immunofluorescence. It has been proven that phosp-

horilation of RyR2 will produce a conformational change and promote its opening [172]

and for this reason in this study a fluorophore was used to tag RyR2 clusters, while another

fluorophore was used to tag those clusters that were phosphorylated (see figure 34). This work

was presented in [173] and also used in [174]. Detecting the clusters in each of the images

allowed computing of ratios of phosphorylated versus non-phosphorylated clusters under

different pharmacological conditions. Also these phosphorylation ratios were measured in

separate concentric regions in the cell in order to measure how the distance to membrane

would affect phosphorylation under the different pharmacological conditions (see figure 35).

(a) RyR2 clusters. (b) Phosphorylated RyR2 clusters.

(c) RyR2 clusters detail. (d) Phosphorylated RyR2 detail.

Fig. 34 Sub-diffraction limit blob detection applied to Phosphorylated RyRs versus non-phosphorylated. Upper
row shows original images (after preprocessing), lower row shows the same detail with white pixels on detected
blobs.
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(a) Cell regions. (b) Number of clusters.

(c) Cluster density. (d) Phosphorlated ratio.

Fig. 35 Peeling example results for the same cell as in figure 34. First panel (a) shows concentric regions of width
1.5µm, the following panels show number of clusters in each region (b), cluster density in each region (c) and ratio
of phosphorylated RyR2 over the total number of RyR2 clusters (d). In these graphs the horizontal line corresponds
to the mean of the inner regions (third and higher).

3.5.3 Co-localisation of RyR2 and membrane calcium channels

This set of experiments is very similar to the previous example regarding image conditions

and image processing but in this case one channel contained the RyR2 cluster fluorescence

whilst the other was of L-type calcium channels. See figure 36.

3.5.4 Line scan example

This example corresponds to a set of experiments designed to co-localise calcium sparks

(section 4.1) and RyR2 clusters in line scans (section 1.4.3) used in [170, 175].
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(a) (b) (c) (d)

Fig. 36 Mouse ventricular myocytes. Green fluorescence reveals RyR2 cluster locations and red fluorescence
reveals calcium channels (Cav1.2). Detailed crops have been marked with a white pixel in detection sites.

In this set of experiments the image temporal pixel size was of 1.8ms and the spatial pixel

size ranged from 0.04µm to 0.06µm. These values are relevant for the filtering parameters

mentioned further on. As RyR2 clusters are static objects, they appear as bands following

the time direction, with only a slight shortening of the distance between them whenever the

cell is contracting. For this reason the signal was further enhanced by summing the spatial

signal in the temporal direction in windows of 100ms (a time long enough so as to ensure

noise reduction and short enough so as not to include contraction artifacts). The resulting

spatial fluorescence signal from each time sample was then run through a continuous wavelet

transform with the scales of the estimated sizes of the clusters (sum of scales 4 to 10) and then

thresholded to values of the transform above zero. The resulting binarised image was run

through a closing filter to fill any gaps in the logical true regions and finally a skel filter was

applied to obtain the central line for each of the bands. This process can be seen in figure 37.
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(a) Original RyR2 line scan in false colour. (b) Pre-filtering of the original image.

(c) Temporal sum (note gap at left side). (d) Wavelet transform (again note gap at left side).

(e) Thresholding of positive values. (f) Final skeletonization filter.

Fig. 37 RyR2 clusters detected in line scans. Note that the horizontal dimension is time, and that it has been
significantly compressed to show the two contractions present during the recording. We are seeing 20µm in the
vertical direction by 10s in the horizontal direction. The crucial step in the process corresponds to panel (d) where
the image is composed of concatenated vertical lines resulting of wavelet filtering using gauss2 family for a range of
appropriate scales. Note that the gap to the left of the image corresponding to the size of the temporal window used
for the sum in step (c), that is then filled up at step (e) by extending the values of the first line different to zero.

3.6 Results

The following sections present some of the results directly obtained from the methods

in this chapter. Whenever a value is reported accompanied by a plus/minus sign (±) and

second value behind it, this second value always corresponds to the standard deviation (not

standard error as commonly used in biology).

3.6.1 RyR2 detection in line scan

The RyR2 cluster detection method for line scans described in section 3.5.4 was used on

several image sets in order to report cluster distribution and its relation to spark occurrence

sites [170]. For the study, a total of 68 line scans were used from which 1391 RyR2 clusters

were detected.

The method proved to be near perfect, successfully detecting clusters in challenging

conditions such as while the cell is contracting or in situations where the clusters are very

faint. Figure 38 shows examples of dim clusters due to image conditions, out-of-focus clusters
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Image Set # of cells scanned distance (µm) cluster density (#/µm) nearest neighbour(µm) # of clusters

Jun2015 11 384 0.58 ± 0.04 1.77 ± 0.13 223

Aug2015 23 589 0.59 ± 0.05 1.76 ± 0.12 342

Sep2015 34 1408 0.59 ± 0.03 1.72 ± 0.09 826

Table 1 Summary of the cluster detection in line scan datasets. Note that the nearest neighbour distance is in fact
closer to the z-line distance because the cells were scanned in the contraction direction.

(a) Faint clusters. (b) Out-of-focus clusters. (c) Clusters under contraction.

Fig. 38 RyR2 detection in line scans showing examples of challenging situations. The original image is the green
channel line scan and a red line has been pained on the detected clusters. In all cases spatial direction is horizontal
and temporal direction is vertical.

due to structural reasons like the sarcoplasmatic reticulum folds or transition areas from one

level of clusters to the next and a contraction situation.

The scans were taken in the contraction direction so the nearest neighbour distance in

fact corresponds to the z-line distance. For each cluster detected, the distance to the next was

measured, so that each scan i with ni clusters contributed with ni − 1 distances. The final

z-line distance obtained was 1.73 ± 0.11 (µm), N =1323.

3.6.2 RyR2 detection in frame scan

The frame scan RyR2 cluster detection methods described in this thesis have been pu-

blished as independent methods and also have allowed publications towards further un-

derstanding of both structure and function of cardiac cells from a physiological point of

view.

In order to develop the RyR2 cluster detection, two sets of images were used; one of

inmuno-fluorescence human atrial myocytes taken from patients under heart surgery, and

another of mice ventricuar myocytes genetically engineered to express green fluorescent

protein at RyR2 clusters.

The first is summarised in table 2, and is the set that was initially used for developing

the cluster detector. The images in immunofluorescence are by far noisier and therefore are

a harder set. The set contains images taken from 431 different cells under different drug

conditions, some of them imaged in a single frame and others taken as a series of stacks along

the optical axis to obtain a 3D structure approximation. The experiments were part of a study

on the effect of phosphorilation in the opening of RyR2s and for this reason all images are
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Fig. 39 Phosphorilation dataset results. The two images shown correspond to the phosphorilated cluster tag
images, both of which are compared to a RyR2 cluster image. The reported ratio is the number of clusters that appear
in the phosphorilated image over the number of clusters that appear in the RyR2 cluster image.

duplicated, one corresponds to the raw RyR2 tagging and the other to the phosphorilated

RyR2 clusters (ratiometric approach described in section 3.5.2). This leads to a huge dataset

with over 10k images containing near 2M clusters.

Dataset characteristics

Number of patients 44

Number of cells 431

Number of treatments 6

Number of image stacks 5064

Number of images 10854

Number of detected clusters 1972366

Table 2 The human dataset used for developing the RyR2 cluster detector.

The dataset included cells under six different treatments, one being the control and the

other five being drug conditions. Of the five drug conditions only one was used for the study

results, isoprotheranol (ISO), to compare the ratio of phophorilated clusters under this drug

treatment versus the control set. Of the total 45 patients, 9 where used in the study, from

which 21 untreated control cells where used and 24 cells under ISO treatment. These two

subsets produced mean phosphorilated ratios of 0.32 ± 0.03 (CON) versus 0.52 ± 0.06 (ISO),

with a t-test p-value of 0.002 (figure 39)[173], the p-value in this case being the probability of

the two distributions having equal means and producing these results. This result was used

as a positive control towards proving the detection method since it was a known fact that ISO

would promote cluster phosphorilation.

The second dataset was the one used in the co-localisation study of sparks and RyR2

clusters (table 3). In this case a total of 173 confocal images of mice ventricular myocytes

where used, in which over quarter of a million RyR2 clusters where detected (263402). This

study presented cluster size measurements, cluster density and nearest neighbour distance,

together with z-line distance shown in the following section.

The conditions of this set where slightly different to the previous one, mainly because
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there was no non-specific staining, which made the detection simpler and therefore more

robust. Of the whole dataset used for developing the detector, in the final publication only

a small fraction was used because many images where discarded for several reasons. Some

of the reasons are image saturation (image dynamical range is not optimal), out-of-focus

images (object sizes cannot be properly estimated), cropped cells or more than one cell in a

single image (producing false cell area estimation and therefore offsetting the cluster density).

Nevertheless the final numbers presented [170] coincide with the ones that appear here in

table 3. Figure 40 shows the distributions for nearest neighbour, cluster size and cluster

intensity for one of the image subsets.

Image set # of cells cluster radius (nm) cluster density (#/µm2) nearest neighbour (nm) # of clusters

Live cells 59 49.5 ± 5.3 0.719 ± 0.093 763 ± 37 94029

Fixed cells 58 53.5 ± 6.2 0.699 ± 0.105 785 ± 34 85201

March set 28 55.7 ± 5.7 0.725 ± 0.062 787 ± 32 38715

July set 28 62.5 ± 5.2 0.316 ± 0.064 762 ± 29 45457

Table 3 Summary of the cluster detection datasets with the measured parameters. Note that reported cluster
radius are sub diffraction limit values, they have been estimated using the measured PSF of the optical system (see
section 3.6.4).

3.6.3 Z-line distance estimation

Z-line distance estimation by means of the procedure described in section 3.4 was applied

to the same datasets as in the previous section, but in this case adding an extra subset of

Fig. 40 RyR cluster measurements for the July image set. Left panel shows nearest neighbour distribution, the
shape of which is highly conditioned by the detection method (section 3.2). Central panel shows measured size
together with the estimated size by shifting the distribution using the known optical system PSF (section 3.6.4). The
third panel shows cluster intensity in order to demonstrate that some of the images have clusters that are saturated,
i.e. they are cut flat at the top and therefore are really brighter than they appear. This is usually human error and
due to over exposition or too much gain in the detector amplifier; we erroneously tend to want to see the dimmer
clusters at the cost of capping the brighter ones when the information is already in the image, just that the naked eye
cannot see it.
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experiments. In this case a total of 218 cells where analysed and the mean z-line distance

obtained was of 1.74 ± 0.20 µm.

The extra subset corresponds to a set of images that had had a manual measurement of

the z-line distance and therefore was included as a validation set. The manual measurements

had reported a z-line distance of 1.78± 0.16 µm (N=28), whereas the automatic determination

for this subset produced a z-line distance of 1.70 ± 0.21 µm. Both the automatic and manual

values overlap each-other in terms of the standard deviation which is a measure of the

goodness of the method. As always though, manual validation is in general dangerous

because humans will tend to be prone to bias and fatigue when manually segmenting or

measuring. In this case for example, the 28 images came from a larger set of 31 but three of

them had been already excluded because they were declared as presenting contracted regions.

Of the final 28, another 13 were included although they were tagged as slightly contracted and

it was thought that they would contribute to underestimate the z-line distance.

Image set # of cells Estimated z-line distance (µm)

Live cells 59 1.75 ± 0.19

Fixed cells 58 1.73 ± 0.21

March set 28 1.66± 0.14

May set 45 1.70 ± 0.21

July set 28 1.84 ± 0.17

Totals 218 1.74 ± 0.20

Table 4 Summary of the z-line estimation datasets with the automatic measurements. The May dataset is the one
that was used for manual measurement.

3.6.4 PSF estimation

Measuring of the point spread function (PSF) of an optical system is useful if one wants to

estimate the size of objects smaller than the actual PSF. In this case we were attempting to

perform a rough estimation of the RyR2 cluster sizes, aiming at later developing an image

deconvolution method to improve resolution of the system. As explained in section 1.4.5,

an image of a sample is actually the convolution of every light source of the sample by the

system’s PSF. Big objects (compared to the PSF) hardly appear modified but small objects will

be viewed with a slight size increase due to the PSF and a single point source is viewed as the

PSF itself.

In order to measure the microscope PSF, a light emitting source of a known size that is as

small as possible needs to be imaged. For that, artificial fluorescent beads with a diameter of

0.1µmwere bought and imaged under the microscope with the same setup that had been used

for viewing the cardiac myocytes (the beads commercial name is TetraSpec™microspheres,

catalog number T7279 at TermoFisher) .
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Fig. 41 PSF estimation. Top panel shows a crop of a high resolution image of fluorescent beads of 0.1µm diameter.
The image has been saturated in order to be able to actually see the beads. There is a region of interest marked of
an example bead which appears magnified at the bottom left (unsaturated). Next to it a sequence of stacks (again
saturated in order to perceive the diffraction rings), moving away from the focal plane where the original image was
taken. As can be seen the PSF grows as we move away from the focal plane forming conical shape, sort of a sand
glass. Step size between stacks is 0,1µm, as the figure shows only even numbered stacks, the distance from one to
the next is 0,2µm.

If one measures a bead’s diameter in an image, it appears bigger than the known size due

to the optical system’s PSF. The excess radius with respect to the known 0.05µm is due to the

PSF’s radius. This is a very simple first approach but it allows to estimate the measured size

of any other object by subtracting the PSF’s estimated radius.

The approach is applicable only for objects that are lying on the same plane as the plane

where the PSF estimation was made, so if we measure the bead’s radius on the focal plane,

we can only ensure an estimation for objects on the focal plane. Moreover as it is a very rough

method, it is really only valid when coping with great numbers; subtracting the PSF radius to

the mean radius of the objects makes sense, but subtracting to individual values will easily

produce impossible results like negative sizes (see figure 40, central panel).

For the optical setup used for viewing the RyR2 clusters, a total of 628 beads where

measured using the method described in section 3.3 to produce a bead radius of 0.314 ± 0.078

µm and thus a PSF estimation radius of 268nm. This allowed estimating the real size of the

clusters in the image sets that had been used for characterising RyR2 distribution, producing

mean cluster radius of 55.7 ± 5.6 nm.
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Sub-cellular scale

4.1 Types of event

During cardiac contraction each myocyte undergoes the process known as calcium-induced

calcium release described in section 1.3. It is a complex process in which many factors intervene

and with a variety of possible outcomes that can occur depending on specific conditions.

A heuristic classification of calcium release events has been established based on visual

inspection of cardiac myocytes in fluorescent microscopy of the spatio-temporal scale and the

ability of the event to depolarise neighbouring cells (see table 5).

Event Name Spatial Scale Temporal Scale Description

Spark ∼ 1µm <100ms Localised and generally isolated calcium release
event from the sarcoplasmatic reticulum.

Mini-wave ∼ 10µm >100ms Propagating calcium release event that covers a
small fraction of the cell size and is not capable
of depolarising neighbouring cells.

Wave ∼ 100µm ∼1s Major slow-propagating calcium release event
covering a large fraction of the cell volume and is
capable of depolarising neighbouring cells.

Transient whole cell ∼1s Synchronised calcium concentration increase du-
ring cell contraction that depolarises neighbou-
ring cells.

Table 5 Summary of intracellular calcium events [176].

Cell transients are the normal cell function in which the intracellular calcium rises and

triggers cell contraction. The release from the sarcoplasmatic reticulum is homogeneous and

synchronous so in a fraction of a second the intracellular calcium of the whole cell rises to

maximum value and then decays to prepare for the next beat. Waves are said to be slow-

propagating events meaning that they are slower than a regular transient that is practically

instant. This slow-travelling speed allows for a neighbouring cell to complete its refractory

57
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period meaning that it can be stimulated again by the wave which can produce a variety of

undesired propagation faults that on the large scale show up as cardiac malfunction.

Calcium sparks are the smallest and the only type of event that can only be spontaneous

whereas all other events can be both spontaneous and induced by other types of events

[79, 177]. It is believed that sparks are a healthy regulation mechanism that allows for a

flexible heart function and that a lack of sparks implies a stiff dynamics and would induce

heart pathologies [178]. On the other hand, waves are seen as unhealthy events because they

are capable of altering the normal front propagation patterns [179].

4.2 Event segmentation

Image segmentation is the process of separating the relevant or foreground pixels of an

image from the background pixels. There are many algorithms that can be applied as already

discussed in section 2.3 depending on the conditions of the image and the object that has to

be segmented.

In the particular case of calcium dynamics, the events need to be segmented from a

space-time point of view, in the case of line scans it is therefore 2D and in the case of image

sequences it is a 3D segmenting problem. The following two sections cover these cases.

4.2.1 Line scan imaging case

As already described in section 1.4.3, line scans are images composed of a sequence

of single pixel lines taken at consecutive frames. In such images, calcium transients will

appear as brighter areas occupying the whole spatial dimension and a short temporal size.

Traveling waves and mini-waves will appear as tilted brighter areas (the travelling speed can

be measured from the tilt) and sparks will appear as localised rises in fluorescence (see figure

42 for some examples with image pre-processing and figure 43, panels d and e, for examples

of detection and classification of events). The following subsections describe the image

processing techniques applicable to line scans in calcium imaging. These techniques have

been successfully applied in several publications in the field of biological science [170, 180].

Line scan pre-processing

The scanned line will usually be taken from within the cell but in some cases it can include

a membrane section and regions outside the cell. Therefore cell boundaries need to be detected

and this can be done by searching for regions presenting a large spatial derivative of the

time integral of the fluorescence. In cases where cell contraction results in a movement of
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the cell boundaries, cell limits can be defined by the minimum width of the cell during the

experiment thus avoiding the use of fluorescence data from regions outside the cell.

Images should be normalised using a time-dependent basal fluorescence bi(t) at each

spatial location c inside the cell. The reason for using a space-dependent baseline is to remove

imaging artifacts of brighter regions, and the reason for using a time-dependent baseline is

twofold: first, to account correctly for consecutive events between which fluorescence does

not return to the basal level. Second, to correct for temporal drifts in the basal fluorescence due

to experimental factors such as photobleaching. If si(t) is the time-dependent fluorescence

signal at cell pixel i, at each time t, the baseline bi(t) is estimated as the first decile (meaning

lower 10 %) of si(t) computed in a time window centred at sample t. In order to avoid

overestimation of the basal fluorescence due to the occurrence of large events within the

temporal window, the window size is suitably chosen as the maximum number of consecutive

time samples in which the fluorescence exceeds the mean fluorescence of the experiment

(section 4.3.1 details this process of baseline estimation). Normalised line scan at each pixel

i can now be defined as zi(t) = si(t)/bi(t), so that the normalised fluorescence of release

events is measured relative to its local baseline in both space and time. Figure 42 shows some

examples of line scan pre-processing.

In order to ensure a common global contrast when comparing sets of images, the contrast

of each image should be adjusted so that pixel values range similarly, for example from 1 to

the average maximum fluorescence of all the images in the study.

Actual detection

For each pixel location i in the line, a wavelet-based detection applied to the normalised

time-dependent fluorescence signal zi(t) will robustly enhance Ca2+ release events. The

continuous wavelet transform (section 1.5.5) measures the similarity between the local shape

of the signal zi(t) and the shape of a reference template function (the wavelet). In particular

for calcium release events, a good approach is the use of the bell-shaped Gaussian wavelet

function with a duration in the interval [50,100]ms, which allows the localisation of calcium

release events with a duration ranging from 20-40ms (sparks) up to 300ms (mini-waves).

Events with longer durations such as waves or transients can be easily detected using an

amplitude threshold given the fact that they are the brightest events in the line scan.

As already mentioned, it is always better to have more false alarms and fewer omissions

(by using relaxed constraints in detection such as a wide wavelet scale range or a low

threshold) and apply a filtering step after detection. This subsequent filtering step can be

performed by removing events that do not present a statistically significant increase in

fluorescence with respect to the local activity in the surrounding region. Specifically, a two-

sample-Student’s t-test with a low significance level p=0.01 can be used to compare the
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(a) Transients and waves. (b) Transients, waves and mini-waves.

(c) Sparks and a wave. (d) Mini-waves and sparks.

Fig. 42 Four examples of the line scan pre-processing. In each case the top panel shows the original line scan and
the bottom panel shows the image after preprocessing (it has been converted to a single channel image and hence
the false colour). We can see examples of brighter horizontal lines removed by a localised baseline normalisation,
examples of image cropping due to line scan covering the membrane area, and general event enhancement thanks to
the normalisation step.

distribution of pixels belonging to an event and the distribution of pixels in a surrounding

region with equal pixel area.

In order to avoid erroneous grouping of close events in a single detected region an event

separation phase should be applied. As an example, events can be skeletonised and divided

using a probabilistic clustering method based on orientation, occurrence time and spatial

overlap (skeletonisation is a process where a region is eroded until only a line is left [31]).

An example of such a method is provided in section 4.4. Indeed, these features allow the

distinguishing of cases in which calcium waves with different origins converge or calcium

waves with a common origin that propagate in opposite directions. Figure 43 (panels a to c)

shows an example of wavelet detection and skeletonisation allowing the event separation.

4.2.2 Frame scan image sequence case

A frame scan is a traditional 2D image, frame as a contraposition to line scans (section

1.4.3). In this case, for studying temporal dynamics we need a temporal sequence of frame
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Fig. 43 Event seg-
mentation in line scans.
The top three panels
show a region in a
line scan (a), event
detection in central
panel (b) with the wa-
velet detection (white)
and skeletonisation
of detected events
(red), and final event
separation (c) with
each event in a different
colour (temporal
direction is vertical
and spatial direction
is horizontal). Panel
(d) shows an example
of line scan with a
variety of calcium
events and panel (e)
shows the detected
events and colour-
coded classification.
In this case temporal
direction is horizontal
and space direction is
vertical. Cell transients
correspond to the
yellow objects, waves
are the red objects,
mini-waves blue and
sparks in green.

scans, in everyday terms a film. The methods described in the following sections have been

used as a tool in several biomedical publications for linking spark spatial distribution to

atrial fibrillation [181, 182], proving causes to changes in spark distribution, morphology and

kinetics [183].

Image sequence preprocessing

As always, images will require some sort of pre-processing depending on their original

conditions. The two main steps are noise estimation and removal and image normalisation.

The first is fairly straightforward (see section 1.5.3) but, as explained in section 1.5.1, there are

some considerations to be taken into account when normalising the image sets, especially

when the analysis is going to be performed in several experiments. If this is the case, it is very

possible that each experiment will have a slightly different fluorophore load, and also that

some experiments may have non-specific staining that can shift the normalising factor to a

very high value compared with experiments without non-specific staining.

The best approach is to first extract the cell mask as described in 2.4, then use this mask to
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measure the time signal of pixels belonging to the cell, next apply detection methods, and

finally use pixels belonging to the cell, but not belonging to detected events, to establish basal

fluorescence. This method should really be called post-processing normalisation but it is

equally valid. Basal fluorescence f0 can then be the mean of the values below a certain pre-

established percentile of the pixels that do not belong to an event. Once f0 has been measured

we can normalise the whole sequence by either applying Fn = F/f0 or Fn = ∆F/f0 where

∆F is fluorescence increment from baseline ∆F = F − F0.

Detecting events

There are two basic ways to approach sequences of calcium imaging: one is a two-step

method, in which we analyse each temporal frame independently for a later merge of infor-

mation in the temporal direction, and the other is a straightforward 3D method, in which we

take the sequence as a 3D space x-y-t where we have cubic pixels (voxels), with one direction

being temporal, and treat the whole volume for the analysis. Each approach has its own pros

and cons; the first is easier to work with since it allows performance during development

because viewing 2D images is much more simple (when viewing a volume the inner voxels

are hidden by the outer) and it is also cheaper in terms of computation cost. On the other

hand it is not as neat because it is a two step approach and one has to establish a criterion

for the later merging in the temporal direction and, above all, the approach gives priority to

either spatial or temporal characteristics depending on the order in which the problem was

tackled. In general, good advice is to start with the combined 1D and 2D approach for data

inspection but when targeting a definitive analysis go for the 3D view.

Here we cover segmentation of non-propagating events such as sparks, the next section

covers segmentation of propagating events. As in general the image sequence will have all

kinds of events, a good approach for the 1D temporal direction, as always, is to use wavelet

transform to enhance objects with the desired temporal support. We take the time signal for

every pixel in the field of view and compute its transform with either a fixed single scale

(all objects have similar temporal length) or by taking a range of scales and summing or

averaging the result (objects cover a range of temporal lengths). Treatment of individual

sequence frames for the case of the 2D spatial analysis will generally require some sort of

smoothing as in the case of RyR detection in the previous chapter. The spatial filtering can be

of any kind, we have to choose an appropriate filter considering the the size of the objects we

are targeting, the resolution of the images and the remaining noise after pre-processing. A

typical case for calcium sparks would be convolution by a Gaussian filter with a diameter

in the range of the micron. If our approach is 3D we can equally filter by a 3D smoothing

template.

The actual segmentation in the combined 1D temporal and 2D spatial and x-y-t 3D cases

can be performed with any method depending on the resulting data sets. The simplest
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Fig. 44 A sample trace of a calcium spark from an experiment taken at a spatial resolution of 0,28µm/pix and
temporal resolution of 11,63ms/frame. Each time sample is the mean fluorescence of a 4 × 4µm region around
the centre of the calcium release. Beneath the trace is a cropped image sequence of 8 × 8µm corresponding to the 18
frames around the maximum (white area in top panel).

Fig. 45 Mean spark trace with image sequence. In this case, instead of a single spark we show the mean calcium
spark by averaging the traces of all sparks (13) and also the the regions of interest around them are combined into a
single image sequence. This reveals both a much clearer profile and calcium diffusion pattern. Spatial resolution is
of 0,23µm/pix and temporal resolution of 11,63ms/frame.

approach is the straightforward thresholding but in general an almost infallible method is

a watershed-based algorithm 1.5.4. As an example, the method applied in [175, 171] was

to first filter using wavelet transform in the temporal direction obtaining quite a smoothed

3D volume, with which a watershed transform was used to search for local maxima in the

volume. These were treated as candidates for sparks but were further filtered after measuring

morphological parameters. This takes us to the rule of thumb in processing calcium imaging:

Always use a permissive segmentation step with false alarms and no omissions because

objects can always be post-filtered using morphological features.

4.3 Event features

In calcium digital imaging, calcium events can be measured by taking the mean fluores-

cence value in a region around the event and plotting this fluorescence over time. They all
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present common characteristics, such as a sudden rise followed by a slower decay. For this

reason a series of signal features have long been established by the community and are used

to define and classify an event. Furthermore, measuring these features is crucial to be able

to link cellular level conditions to cardiac pathologies. Some of the most relevant of these

features are summarised in table 6.

Feature Abbreviation Units Description

Absolute amplitude AMP F Intensity of maximum measured from zero.

Relative amplitude amp F Intensity of maximum measured from local base-
line.

Baseline BL F Local baseline intensity before event start.

Time to peak t2p ms Time lapse from baseline intensity to maxima.

Rate of rise RoR F/ms Mean intensity variation over time during event
rise.

Rate of decay RoD F/ms Mean intensity variation over time during event
decay.

Decay constant tau ms Denominator parameter in an exponential fit to
the decay of the event.

Decay time TX ms Time it takes for the intensity to reach X percent
of that at the maxima (typical features are T10,
T50, T90) .

Full duration at half
maximum

FDHM ms Temporal width of the event measured at half the
intensity of the maximum.

Full width at half
maximum

FWHM µm Spatial width of the event measured at half the
intensity of the maximum.

Distance to membra-
ne

d2m µm Distance from the centre of the event to the cell
membrane measured on the focal plane (makes
sense only for small events like sparks).

Speed v µm
ms

≡ mm
s

Scalar quantity measuring the mean displace-
ment over time.

Velocity ~v µm
ms

≡ mm
s

Vector quantity measuring the speed in each of
the N predefined axes in an N -dimension space.

Table 6 Summary of typical event features. F stands for fluorescence, which can be raw image intensity values,
or more frequently will be normalised to basal fluorescence: either F/Fo or ∆F/Fo. ∆F stands for fluorescence
increment; ∆F=F-Fo.

These features or a subset of them can be used for classification of events into the set of

existing predefined event types (table 5) or blindly classified into new types depending on the

experiment. In general though, as the detection technique will already be different depending

on the type of event, it is not very common to use a posterior classifier.

The size one chooses for the region around the event is very important towards the

resulting time signal. The bigger the region chosen the smoother the signal will be but, at

the same time, the smaller the intensity of the event because we will be averaging with

surrounding lower fluorescence values. A good procedure is to choose a fixed radius that is

slightly smaller than the average size of the events, ensuring we are not diluting the signal

with surrounding background values, but big enough for the signals to be clean and allow

measurement of signal properties. For example if we are measuring sparks, a diameter of one

or two microns will allow the inclusion of the main area of the spark while at the same time
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averaging enough pixels to obtain a reasonable signal-to-noise ratio. This of course is totally

dependent on the time-space resolution of the experiment and therefore every case will be

different and no absolute statements can be declared.

In some cases, measuring these features is fairly straightforward, in others the process

can be a little problematic. The following sections are dedicated to each of the signal features

where some of the typical problems one can encounter are detailed, together with possible

solutions to overcome them.

4.3.1 Baseline

Baseline or local baseline, is defined as the fluorescence value just before an event. This is a

somewhat ambiguous definition and for this reason some considerations need to be made

when attempting to measure an event’s baseline.

The first consideration is that fluorescence decays with usage during an experiment,

meaning that the overall intensity of the signal will gradually be dimmer and so the local

baseline before a particular event will be different depending on when the event occurred in

an experiment.

Also, the baseline signal for a particular time signal should be obtained prior to event

segmentation for two main reasons. For a start if we try to obtain the baseline value from a

cropped section of a time signal, we are subject to possible errors in the event segmentation.

A common case is that of events that occur one on top of the other, for example a series of sparks

that appear during a calcium wave. If we consider only the time signal of the spark, we will

most probably overestimate local baseline because of the high fluorescence values produced

by the wave.

The other reason is that the only way to estimate the baseline of a signal is to establish a

sliding window from which to take the lower values, and the size of the sliding window will

depend on the events that take place in the signal.

The procedure is simple, we choose a window of a certain temporal length and for a

particular position of the window we measure the baseline value. We then slide the window

one sample along the signal and repeat the operation to obtain the next value for the baseline

signal. The way in which we take the baseline value in the window can be chosen from a

range of possibilities, but the overall structure of the method is the same. One simple and

computationally effective approach is to take the minimum value directly, but this method is

not recommended because it is subject to noise and can easily produce jagged signals of the

size of the window.The best approach is to take a particular low percentile of the window

or, similarly, the mean of the values below a particular fraction of the range of values in the

signal.
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This method therefore requires choosing two parameters. The first is the fraction threshold

or percentile. One should choose a low enough value but one that makes sense with the

length of the window in samples, so that we are not simply forcing the minimum value in the

window. For example, if the window measures 10 samples, taking the lower 1 % makes no

sense because we will simply be taking the lower of the 10 samples.

Fig. 46 Baseline method applied to a particular signal of a cell producing alternating calcium transients. The
method applied is by taking the mean of the lower 6 % of the sliding window. The black plot is the original signal
and the green plot is a baseline signal taken with a reasonable window size. The other two are respectively a clearly
too small window (red, the baseline follows the signal up the transients), and a too big a window (magenta, during
the first and last half second the baseline is static).

The other parameter is the length of the window and it is not so simple to choose. The

problem of the method is that the resulting baseline signal is shorter than the original signal

by exactly the length of the sliding window in samples (minus one). These empty samples

can be either at the start or the end of the signal, or even half on each side depending on

how we applied the algorithm, and they have to be filled typically by extending the first/last

value to the extension of the original signal. Obviously, we do not want to have to invent too

many values, so we want our sliding window to be the shorter the better. On the other hand,

the sliding window cannot be too short, otherwise our baseline signal will simply become a

smoothed version of the original signal. We cannot accept a sliding window that is smaller

than the bigger events taking place in the signal because otherwise our baseline will follow

the events as they go up in intensity (see figure 46 for clarity). A good option is to take a

window of the duration of the largest possible event, which, in our case has to be calcium

waves that are in the order of magnitude of the second. Nevertheless, if we know for sure

that our signal contains only sparks, we can then reduce the size of the window down to a

tenth of a second.

Global baseline corresponds to a background fluorescence value that is measured in the

first frames of a sequence and is therefore higher than the local baseline in events throughout

the sequence.
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4.3.2 Amplitude

Amplitude is the peak value of the intensity of an event measured from either zero

intensity value (absolute amplitude) or from global or local baseline (relative amplitude). The

only consideration to take into account is that if the signal is noisy one cannot simply take

the maximum value in the event for it will really be measuring the peak noise. The first and

most simple option is to ensure a pre-filtering step to clean the signal in order to assign the

maximum value to the amplitude but this can deform the original time signal, especially in

cases when it is not symmetric, and will usually produce an under-estimated value of the

amplitude.

Another option is to fit a known function to the whole event and take the maximum of

the fit. This second option is not always possible: when we are taking the mean fluorescence

values of a whole cell or a large area, the time signal is a rounded function somewhere in

between a Gaussian and a rounded exponential (also named roex; the subtraction of decaying

exponentials, the first with a slightly higher decay time). Usually though, the time signal

belongs to a small region of interest and, especially for sparks, will consist of a sudden uprise

followed by a long decay.

Therefore, the third option and most usual approach is to divide the signal into two

segments and fit a straight line to the first half and an exponential decay to the second half.

The time a which the maximum intensity occurs can then be defined as the time at which the

these two fits intersect. Choosing the point at which to divide the signal is not so crucial now

so one can filter the signal to smooth out the values simply by taking the maximum as the

breaking point.

4.3.3 Time to peak

Time to peak is the time it takes from the initial upstroke to reach the maximum of the

signal.

The only complication here is to properly define where this upstroke starts because it

depends on the segmentation step. If the temporal borders of the event are either exact or they

crop some of the event off, then one can set the start of the event as the start of the upstroke,

but this is not usually the case and an initial baseline segment has to be excluded from the

signal. A robust method to find the exact sample where the the upstroke starts is depicted

in figure 47. It consists in fitting a constant value followed by a straight line to the part of

interest of the signal (from start to maxima) and taking the sum of distances from the fit to the

real signal. The position i that separates the constant fit and the linear fit for which the sum

of distances is minimum is the best fit and so i can be set as the sample where the upstroke

starts. For a given sample i the constant value is directly the mean of the signal from the first
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sample to i, the rest of the signal until the sample where the maximum value is fitted to a

linear polynomial.

4.3.4 Rate of rise

Rate of rise is the rate at which the fluorescence grows during the uprise. It is used only

for rapid increases in calcium release events in which the upstroke is near lineal and so the

rate of rise is a constant given by the slope of a straight line fit to the upstroke.

A direct way to obtain this feature is to simply divide the relative amplitude by the time to

peak but a better approach is to fit the upstroke to a straight line. As described in the previous

section, by fitting a constant term followed by a straight line to the samples from the start of

the signal to the maximum value, we can obtain the exact sample where the upstroke starts.

The coefficient of the degree-one term of the linear fit is taken as the rate of rise.

4.3.5 Decay constant

The intensity decay in calcium events is close to exponential. In some cases it has been

modelled by a double or even triple exponential decay justified by the several processes

involved (diffusion of calcium in the cytosol, regathering into the sarcoplasmatic reticulum

and ejection through the cell membrane out of the myocyte), but the most common is a fit to

a simple exponential function of time t: I(t) = Ae−
t−t0
τ , where e is the natural exponential

base (the transcendental number e = 2,7183..), A the normalisation factor, t0 the temporal

shift and, most importantly, τ (tau) the decay constant.

This decay constant is a parameter expressed in the temporal units we are sequencing our

images (generally ms) and it indicates the rate at which the signal intensity decays regardless

of its current intensity value. It is defined as the time it takes for the intensity to decay by

a factor of e−1 (≈ 0,368), that is for the intensity to reduce to around 36.8 % of its value. It

is important to see that this decay gives no measure of the temporal duration neither of the

amplitude, it is only a measure of the rapidness of the decay.

Given a temporal signal of an event, with the time of the maximum already found (see

sections 4.3.2 and 4.3.3), one can crop the decay so that the maximum corresponds to the

initial sample, and divide the decay into the value at the maxima so it is normalised to unity.

This is equivalent to setting the temporal shift to zero (t0 = 0) and the normalisation factor

to unity (A = 1), thus allowing a computationally faster fit to a single parameter function:

I(t) = e−t/τ .

The one consideration to take into account when fitting the decay is that it is possible for

a new event to occur before the previous one has decayed to rest state. In this case the only

solution is to exclude the new event from the decay so the fit is not altered.
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Fig. 47 Finding the upstroke start of a spark time signal. We scan every possible sample i ( in this case from i = 1
to i = 25; the sample of the maximum is i = 26) and in every case we fit the signal with a constant value from the
start to i and a straight line from i to the maxima. In each case we take the sum of squared differences between the
fits and the signal to obtain a mean distance value. The position that produces a minimal distance is set as the start
of the upstroke (in this case i = 22 with the signal plotted in green). The two blue lines mark the sample separating
the two fits and the sample of the maximum.

4.3.6 Decay time

Decay time is another feature to describe the decay and it is a little more intuitive and

less mathematical than the decay constant because it is given in normal numbers and not an

irrational constant. It is defined as the time it takes for the signal to be reduced by a certain

percentage and it is expressed as TX where X is the particular percentage. For example T10

would be the time it takes for the signal to decay from the peak value to exactly 90 % of the

peak value. The most commonly used are T10, T25, T50, T75 and T90. The decay constant
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from the previous section expressed in this way would be T63,2 because it was defined as the

time it takes for the intensity to drop to 36.8 %.

Unlike the decay constant in the previous section, these parameters do not require a fit to

a particular function and they can be measured straight from the raw signal, but it is likewise

recommended to previously fit a function to the decay and measure the parameters from the

decay so that the results are subject to noise.

4.3.7 Rate of decay

This is the mean intensity variation in the decay phase of the event, as it is a rate, we are

making a linear approximation. This is an uncommon simplification applicable only when

the decay is very fast or the temporal resolution is too low or events are so close together that

the calcium cannot decay to resting state. In any case measuring it is a mirror version of rate

of rise described in section 4.3.4 together with section 4.3.3 and figure 47.

4.3.8 Full duration at half maximum

This is simply the temporal width of an event at half its intensity height. Assuming the

uprise of the event is linear, this feature can be defined as the decay time to 50 % plus half of

the time to peak: FDHM = T50 + t2p/2.

4.3.9 Full width at half maximum

Of all the event features described up to this point this is the first that is of spatial nature

instead of temporal. It is defined as the width of the event measured at half its intensity.

Several techniques for measuring this feature are described in the previous chapter in

section 3.3 and an example is provided in figure 30 where objects are fitted to a Gaussian

function across several cross-sections and the width is measured from the respective fits.

Measuring the size of the spark is very much the same: we take the image where the spark

is at its maximum (or the mean image of a window around the maximum if the images are

noisy) and proceed to fit a Gaussian function in a series of cross-sections. In each of these

cross-sections we take the width at half the height of the fit. See figure 48.

4.3.10 Distance to membrane

This is not so much a feature but a characteristic that only makes sense for localised small

events like sparks and is useful to analyse the spatial distribution of the events. In general we
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Fig. 48 Measuring full spark width at half its maximum. In this case the left panel shows the mean image of five
frames around the maximum (∼ 60ms) and four cross-sections at 45° from each other, each taken as the mean of
a 3pix wide line (∼ 0,8µm). The central panel shows each of these cross-sections with the Gaussian fit and the
diameter measured from the fit. The last panel shows a 3D representation of the fits on the image where the fits have
been normalised in height for the sake of aesthetics. This example is the same spark as in figure 44.

will have a single image so we can only measure the shortest distance to the membrane in

the focal plane or plane of the image. The best approach is usually first to establish the pixels

that belong to the cell as described in section 2.4 obtaining a cell mask, and from this mask

obtain a contour of it by, for example, subtracting its one-pixel eroded version of itself. Next

one measures all distances from the event location to the pixels in the contour and takes the

smallest of them.

4.3.11 Speed and velocity

Speed is a scalar magnitude that gives the rate of change in position, whereas velocity

is the vectorial equivalent and the norm of which is speed. In both cases, this magnitude is

the derivative of position and so the straightforward approximation is to define speed at a

particular frame s(f) as the difference of position s(f) = p(f) − p(f − 1). There are many

other definitions for a discrete estimation of derivative, like using the next frame instead

of the previous s(f) = p(f + 1) − p(f), or maybe defining speed as a shifted vector with

measureents in between samples (at pixel vertices in 2D) s(f − 1
2 ) = p(f) − p(f − 1), or

also using higher order approximations s(i) = p(f + 1)− 2p(f) + p(f − 1). Nonetheless, the

derivative will be a signal with a length at the most one sample shorter and this has to be

taken into consideration; for example one cannot expect to give speed at the first sample s(1)

if it is being calculated using the most common backward definition s(f) = p(f)− p(f − 1)

because position at frame zero p(0) is not defined.
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4.4 Wave tracking

Fig. 49 Video tracking of calcium wa-
ves. Sample frames are shown in which
waves are originating at the centre of
the cell and travelling in opposing di-
rections. Images are displayed in false
colour.

Large propagating objects such as waves can also be

approached as described in the previous sections; temporal

detection based on object duration, spatial detection based

on object size, with these two methods applied in parallel

or consecutively. Alternatively detection can be performed

in the 3D volume as x-y-t blobs, if the resolution allows it,

by simply segmenting objects in the volume.

Another option though is to apply a motion-tracking

algorithm. This kind of approach is especially useful when

the image sequence contains many propagating events at a

time, because a raw 3D segmentation will tend to join them

if the events either collide or start from the same point.

There are two main types of tracking algorithm; the

first being the so-called detect-before-track (DbT) and the

other being the track-before-detect (TbD). The first group

uses some segmentation method to separate objects from

background and then applies a tracking method to assign

each object in one frame to an object in the next frame (i.e.

deciding which object is which in two different frames). The

second group, the TbD family, uses some blind method to

follow moving objects without clearly resolving the limits

of the object and after estimating the new position, at each

frame one has to apply a segmentation method to clearly

define the object. Each method has its pros and cons and

is useful in different conditions. For example DbT is useful

when object movement is such that their position does

not overlap from one frame to the next (typically small

fast moving objects related to the frame rate), when the

scene has many objects that can change size throughout the

sequence or when objects tend to leave the field of view or

new ones appear. On the other hand, TbD is very powerful

when we have few objects that do not change much in size and move slowly enough so that

their position is similar from one frame to the next and therefore near continuous.

An example of an application case is detailed next with a sequence of images of mouse

ventricular myocytes with a heavy calcium load that triggered many spontaneous waves.
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For this particular problem a DbT method was applied and a custom probabilistic tracking

algorithm was developed [184] and further used in [185].

Knowing the image sequence contains waves and that these are the brighter events in the

sequence, the detection step is straightforward; simple thresholding at a fraction of the value

distribution in the sequence provides a fast and easy way to separate foreground objects from

the background. At each frame a series of features are measured for each surviving region

and these features are used to establish the probability of a region i in frame f being the same

event as region j in frame f + 1. A general expression for this probability function in terms of

a weighted normalised discrepancy is:

P fij = 1−
Nf∑
l=1

ωl d̂l

where Nf stands for the number of extracted features, ωl is the weight assigned to feature

fl and d̂l is the normalised feature discrepancy dl = fl(i, f)− fl(j, f + 1). This discrepancy

is simply the difference in values the feature takes from one frame to the next, and it is

normalised to a value that can be the maximum value possible for the difference: d̂l = dl/Ll.

For example if our feature is distance, the normalisation value L can be the maximum distance

possible in the image, i.e. the image diagonal, so that any difference in position between

objects is a value in the interval [0,1].

The particular probability function used in the study was built using four features: position

norm, the two velocity components and area, and so the its complete expression was:

P fij = 1− ω1
‖~ri − ~rj‖√
Lx

2 + Ly
2
− ω2

|vix − vjx|
Lx

− ω3
|viy − vjy|

Ly
− ω2

|ai − aj |
LxLy

where i and j represent two detected regions belonging to consecutive frames, Lx and

Ly are the spatial dimensions of the frames, ~ri and ~rj are the position vectors of the centre of

each region, vix, vjy, vix and vjy are the velocity vector components of each region, and ai

and aj are the areas of each region.

This probability function returns a maximum value of unity when we are comparing two

regions that have exactly the same area, position and velocity, and will return a minimum

value of zero when the difference of the features is the highest possible (determined by the

frame dimensions). It is key to say that the velocity parameter is measured from frame to

frame, so when comparing two particular regions, the velocity will be set assuming that

they are the same region. That is to say that when comparing regions i in frame f and j in

frame f + 1, the velocity of j will be set as the difference ~vj
f+1 = ~rf+1

j − ~rfi but then when

comparing another region, say k in frame f with the same j in frame f + 1, the velocity of j
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(a) Frame A. (b) Frame B.

B1 B2

A1 0.95 0.82

A2 0.94 0.93

A3 0.82 0.92

(c) Crossed probabilities.

Fig. 50 Two consecutive frames, the first with three detected regions and the second with two detected regions
together with the associated probabilities. We see that region A1 is more likely to be region B1 (P=95 %) and that
region A2 is also more likely to be region B1 (P=94 %). The algorithm would start with the highest value in the
table (95 %) and assign A1 to B1. Then it would ignore all other values in that row and column and continue with
the highest value remaining (93 %), therefore assigning A2 to B2. A3 would be left with no assignation in this case.
Frame rate is 80ms and thresholding value is 0,7.

will be set as the difference ~vj
f+1 = ~rf+1

j − ~rfk . Figure 50 shows an example of two frames

with a few regions and the table shows the crossed probabilities measured for these regions.

Now for a given region in a given frame, it is suffice to choose the region of highest

probability from the following frame, discarding all other combinations. The assignation

should be made starting from the higher probability values and going down from there (see

figure 50). However a certain probability minimum has to be required to associate two regions

(depending on the experimental setup), otherwise it could happen for example that a calcium

wave disappearing out of the field of view at one end of the image could be associated with a

new wave appearing from the opposite end of the image in the following frame if no other

events are present at that time.
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4.5 Connecting the scales

Fig. 51 RyR2 cluster and spark detection. Left is
an example line scan with calcium concentration in
red. Right hand panel is a detailed area of the line
scan. Vertical lines are the RyR2 cluster position
detected and in cyan the detected sparks.

As explained in the previous chapter, rya-

nodyne receptor 2 (RyR2) are molecular channels

that release calcium ions from the sarcoplasmatic

reticulum into the cytosol in order to initiate cell

contraction. As explained in this chapter, sparks

are localised calcium release events that may or

may not trigger further events such as waves.

Co-localisation refers to the act of testing if the

locations of both RyR2 and sparks correspond to

the same positions. This was part of a study in

which the aim was to prove that calcium sparks

were only produced in RyR2 clusters [170], and

so there were no other ion channels responsible

for calcium release. The analysis was performed

both in line scans and frame scans.

For this, first RyR2 cluster position was de-

termined (detailed in the previous chapter, sec-

tion 3.5.4) and then sparks were detected using

the wavelet procedure detailed in the this chap-

ter (section 4.2) . Sparks were also filtered using

spark morphology features described in this chapter and with the final set of sparks the

distance to the nearest cluster was then measured.

The results of this study can be seen in figures 51 and 52, where it can be seen that sparks

form almost exclusively in RyR2 locations. The few exceptions found in the study seemed to

be due to out-of-focus sparks in areas where the confocal plane was in between RyR2 clusters.

The frame scan version of these results is in figure 53.
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Fig. 52 Results of
the co-localisation
study in line scans
[170]. The only exam-
ples of sparks that do
not fall in the apparent
RyR2 cluster size
seem to be either very
close to the cluster
or in an area where
the confocal plane is
between clusters and
therefore the spark is
most probably out of
focus.

Fig. 53 A 2D histogram of the spark occurrences around the closest RyR2 cluster. The total spark count is
N = 2984 of which over half fall in the central 9 pixels (spatial resolution is 0,07µm/pix). As can be seen the
outer sparks fall in approximately one nearest cluster neighbour distance, suggesting that possibly these sparks
were released from an undetected cluster and were therefore wrongly associated to a neighbouring cluster.
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4.6 Results

As in the previous chapter, here some of the results directly obtained from the methods in

this chapter are presented and a summary of the datasets form which they were measured

is also provided. Whenever a value is reported accompanied by a plus/minus sign (±) and

second value behind it, this second value always corresponds to the standard deviation (not

standard error as commonly used in biology).

4.6.1 Event detection in line scan

Section 4.2.1 describes a method to segment events in line scans, and classify them by

means of their morphological features. This method was developed specifically for a study

that related certain drugs to the increase in mini-waves versus decrease in waves [180] and

successfully quantified the mentioned results.

Total detected event numbers 285 linescans

Sparks 24563

Mini-Waves 14245

Waves 1065

Stimulated Transients 232

Spontanous Transients 167

Other Events 708

Total 40980

Table 7 Events detected in line scans.

The whole dataset with which the method was tested comprised a total of 285 line scan

images, all together summing a scan distance of ∼33mm and a scan time of ∼48min. These

images where analysed using the described methods, to detect over 40k events in total. Table

7 gives the exact number of events detected of each type, described in section 4.1. The term

other events refers to discarded events due some features not being measured, usually because

the events are either too close to image border or are overlapping some other events.

The line scan dataset was divided into 6 different subsets depending on the drug treatment

that had been applied to the cells. Of the subsets, 4 of them where actually divided into a

before and after the drug set, so they actually contributed with 8 sets. The other two were

divided into 3 due to the study purpose; two independent phenotypes plus the expression of

the two at the same time (further explained in section 7.2). This produced a total of 14 subsets,

each of which was analysed independently and the properties of all detected events where

measured.

The relevant events for the study were actually only sparks, mini-waves and waves, and

this is the reason why these are the ones reported in the following tables. The first, table
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#events/scan #events/s #events/mm/s FluoContribtion

DataSet waves m-wav spks waves m-wav spks waves m-wav spks

RC 8.2±0.4 3.4±0.5 10.6±2.2 0.9±0.0 6.7±1.0 22.6±5.5 81 % 18 % 1 %

PLN 1.3±0.4 56.7±4.0 88.0±9.9 0.1±0.0 61.6±4.3 95.2±10.5 6 % 70 % 24 %

PLNRC 2.3±0.3 41.1±2.3 52.9±3.7 0.2±0.0 61.6±2.4 85.1±6.5 10 % 77 % 14 %

ISO RC 5.6±0.8 5.7±2.0 16.8±2.9 0.3±0.0 6.0±2.3 15.4±2.7 87 % 11 % 2 %

ISO PLN 2.3±0.6 29.7±12.8 64.5±18.5 0.1±0.0 15.0±6.2 31.6±8.8 22 % 69 % 10 %

ISO PLNRC 2.5±0.6 24.7±4.8 113.2±19.5 0.1±0.0 24.7±4.8 113.2±20.0 25 % 53 % 22 %

befCaff+6mMCa 6.4±1.0 53.1±9.1 69.9±9.4 0.6±0.1 41.8±6.7 55.3±7.1 41 % 54 % 5 %

0.5mMCaff 2.9±0.9 78.6±9.2 221.5±13.5 0.3±0.1 48.7±6.1 136.9±8.6 17 % 67 % 16 %

KRH+6mMCa 4.6±0.9 56.0±7.6 59.1±10.7 0.4±0.1 39.2±4.4 40.5±6.2 27 % 68 % 5 %

LiCl+6mMCa 7.6±1.2 91.4±12.3 113.8±11.2 0.7±0.1 61.7±6.9 79.1±8.7 29 % 65 % 6 %

befBayK+6mMCa 5.3±1.2 70.8±11.4 81.2±7.0 0.5±0.1 51.2±8.3 58.3±5.8 30 % 65 % 6 %

1µmBayK 4.6±0.8 104.1±13.8 131.1±15.7 0.4±0.1 66.4±8.1 84.3±9.9 19 % 73 % 8 %

befBHQ 2.0±0.4 106.3±9.3 166.1±19.0 0.2±0.0 63.8±6.4 101.0±15.5 7 % 82 % 11 %

aftBHQ 2.5±0.3 3.8±1.6 21.9±7.2 0.2±0.0 2.7±1.8 12.3±4.3 97 % 2 % 1 %

Table 8 General event properties of the line scan datasets. For each dataset, three main properties are presented
for each of the three relevant types of event . Of the three properties, the normalised number of events (central
columns) was performed per unit time and area in the case of sparks and mini-waves, but only per unit time in the
case of waves. This is because the line scans only scanned a small section of the cell and so the waves always would
cover the whole scan distance, therefore it made no sense to normalise by spatial dimension because the real size was
actually unknown.

8, gives the general event numbers (event per scan, event per unit area and fluorescence

contribution), where as the second, table 9, gives the three most relevant features (amplitude,

duration and rate of rise).

Mean Amplitude Mean FDHM Mean RoR

DataSet waves m-wav spks waves m-wav spks waves m-wav spks

RC 0.9±0.0 0.8±0.0 0.3±0.0 118.6±1.6 114.1±2.4 37.4±2.2 20.4±1.3 19.0±2.0 8.0±1.0

PLN 0.6±0.1 0.6±0.0 0.4±0.0 68.8±2.2 59.9±1.1 44.1±0.8 14.7±1.8 14.8±1.0 11.5±0.8

PLNRC 0.7±0.0 0.6±0.0 0.3±0.0 69.8±1.4 65.1±0.9 43.5±0.4 14.8±0.8 13.0±0.7 9.1±0.6

ISO RC 2.8±0.2 2.6±0.2 0.6±0.0 155.4±12.9 144.4±16.9 35.3±0.7 64.5±11.5 61.1±12.0 27.9±3.4

ISO PLN 3.4±0.2 2.3±0.2 0.9±0.1 155.5±21.0 94.7±3.3 41.4±1.5 266.1±80.8 39.4±3.9 38.3±3.7

ISO PLNRC 3.3±0.3 1.9±0.1 0.9±0.1 185.3±49.8 99.7±4.1 44.7±1.2 145.4±29.5 27.3±2.5 27.1±1.8

befCaff+6mMCa 4.4±0.2 2.8±0.1 1.3±0.1 131.8±9.9 92.7±2.8 44.6±1.0 74.3±5.6 44.0±2.8 41.6±2.5

aft0.5mMCaff 2.2±0.2 1.3±0.1 0.7±0.0 180.9±7.7 111.1±2.1 49.9±1.0 25.5±4.0 12.3±0.9 14.4±0.8

KRH+6mMCa 3.8±0.2 2.6±0.1 1.1±0.1 95.6±2.7 79.5±1.3 43.0±0.9 68.0±6.2 48.5±3.4 39.9±3.5

LiCl+6mMCa 2.6±0.3 1.9±0.2 0.7±0.0 92.4±2.0 77.0±1.4 41.1±1.3 53.5±5.8 35.0±3.4 26.6±2.5

befBayK+6mMCa 3.4±0.2 2.4±0.1 1.0±0.0 122.2±8.8 89.2±2.5 45.6±0.9 56.3±4.7 37.4±2.7 33.0±2.1

1µMBayK 3.0±0.2 2.0±0.1 1.0±0.0 108.9±4.2 85.2±1.7 46.2±0.7 47.7±4.5 32.0±2.2 28.3±1.7

Table 9 Morphological features of the events in the line scan datasets (continuation of previous table).
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4.6.2 Transient parameter measurements in line scan

This study was a follow-up on the previous, in this case though the focus type of events

where whole cell transients produced by external stimulation of the cells. Again, line scan

images where taken and the task was to detect the transients and extract the relevant parame-

ters. As the transients were stimulated, the pacing frequency was known so it was relatively

simple to detect the transient peaks. Simply by correlating the time signal with a train of

deltas separated by the appropriate distance would give a lag between the signals from which

the position of the transients was determined. Then the parameters of each transient were

measured by following the methods described in section 4.3.

Set ID # of linescans # of transients

EQwt#9 GCaMP6f-T 46 426

EQwt#11 GCaMP6f-T 68 625

EQwt GCaMP6f-T 66 603

EQHet#10 GCaMP6f-T 500uMCaff 32 294

EQHet#10 GCaMP6f-T 36 330

EQHet#10 GCaMP6f-T 1mMCaff 38 349

EQHet#10 GCaMP6f-T 100nMIso 48 440

EQHet GCaMP6f-T 106 966

EQHet 500uMCaff 28 260

EQHet 100nMIso 28 256

Table 10 Transient parameter measurement line scan dataset.

Set ID amp(∆F/Fo) tau(ms) ror(∆F/s) t2p(ms) fdhm(ms) T10(ms) T50(ms) T90(ms)

EQwt#9 GCaMP6f-T 0.82±0.37 95±16 13±7 105±26 184±31 110±18 176±27 263±40

EQwt#11 GCaMP6f-T 0.95±0.38 101±16 13±7 112±26 188±31 111±19 181±28 274±41

EQwt GCaMP6f-T 0.63±0.36 98±20 9±6 110±24 179±30 105±18 173±29 262±45

EQHet#10 GCaMP6f-T 500uMCaff 0.84±0.40 104±20 12±7 119±25 205±30 121±21 192±33 287±49

EQHet#10 GCaMP6f-T 0.89±0.51 103±26 13±9 108±19 188±28 114±24 184±41 278±63

EQHet#10 GCaMP6f-T1 mMCaff 0.87±0.37 135±297 11±6 137±28 236±44 139±27 221±37 327±53

EQHet#10 GCaMP6f-T 100nMIso 1.63±0.51 87±14 29±12 103±19 190±24 113±16 173±24 253±35

EQHet GCaMP6f-T 0.65±0.34 114±29 10±6 118±38 215±46 132±32 210±47 312±67

EQHet 500uMCaff 0.73±0.36 100±19 12±7 98±27 185±39 115±25 184±37 274±53

EQHet 100nMIso 1.20±0.41 85±14 26±10 86±16 174±19 110±16 169±25 247±37

Table 11 Morphological features of the transients.

This section is mentioned as further proof that the methods described in the previous

chapters have been extensively used in many sets and that they have proven to be robust.

The dataset allowed measuring the parameters of over 4.5k transients, which are listed in

figure 11. Of them, the time of decay to half the amplitude (T50) is shown as an example of

statistical comparison of the sets in figure 54.
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Fig. 54 Example parameter statistical comparison. In this case T50 is compared in the different datasets (time it
takes for the signal to decay to 50 % of its initial amplitude). A t-test was performed to measure the probability
of the given distributions coming from distributions of equal mean. Sets linked with one star represent a p-value
under 1 %, two stars represent p-values under 0.1 %.
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4.6.3 Spark detection in frame scan

The frame scan spark detector was developed using a manually validated set of experi-

ments in which cells were filmed while presenting spontaneous calcium release events. The

manual validation was performed by an expert member of Dr Hove-Madsen’s lab, and the

validation consisted in manual labelling of the pixel coordinates and temporal frame of each

spark within each experiment. A total of eight experiments where used with an accumulated

spark count of 621. The experiments were chosen to cover two different recording set-ups

(traditional photomultiplier versus hybrid detector using also avalanche photo diode), had

been taken in two different seasons of the year (implying different temperature conditions)

and had been performed by two different technicians (some parameters are subjective and

produce discrepancies amongst experiments; for example the amplification applied to the

recording device which can easily saturate the images).

It is necessary to say that this manually validated ground truth was far from perfect due

to human error, mainly because the image sequences are very long and the sparks can be very

Fig. 55 Spark features of the validation dataset.
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faint. Altogether, a posterior analysis has given an estimation of the ground truth data set

error: less than 1 % of false positives, but between 5 and 25 % of omissions depending on the

experiment.

The set of validated experiments (table 12) allowed to tune some of the detector parameters

by repeatedly processing the data-set. All parameters where fixed to a particular value except

for one that was used as a test parameter by scanning across different possible values and

recording the performance in each case. This was done for a series of parameters in order to

obtain the combination of filtering parameters that best would fit the validation results. Figure

56 shows an example of the sensitivity and specificity versus two of the filtering parameters

and figure 57 presents the receiver operating characteristic (ROC, [186]) analysis obtained.

These plots show sensitivity versus one minus specificity for the selected combinations of the

parameters (the intersections of the grid in figure 56, top panel). Of all the points obtained,

the one that presents a higher are under the curve (AUC) is selected as the best performance

(AUC in the case of a single point is the area of the quadrilateral under the lines that go from

the origin (0,0) to the selected point and then up to the opposing edge at (1,1). ROC analysis

Fig. 56 Parameter sweeping. The algorithm is tested with the eight experiments forming the dataset; top two
panels show a surface for each experiment of sensitivity and specificity, both as a function of intensity threshold (It)
and of the goodness of fit of the exponential fit to the spark decay (r2). The mean value of the eight experiments is
seen in the bottom panels as a function of r2 for different It values.
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of the eight experiments produces a mean AUC of 0.798 ± 0.047.

Fig. 57 Parameter tuning example. Each experiment is run under all possible combinations of the parameters (in
this case r2 and It). Each of these combinations gives a point in the sensitivity versus specificity (1-specificity). The
one that gives a higher area under he curve (AUC) is chosen as the best combination for the set. It is interesting
to see how setting the same parameters changes completely the ROC analysis depending on the experiment. As
opposing examples, the top-left panel has a clear saturation at sensitivity around 75 %, whereas the central panel
does not reach saturation.

Experiment Id Cell area (µm2) Duration (s) # of frames # of Sparks

07100302 1654 31.43 2125 235

07112901 1309 52.34 4547 35

07112902 1001 31.41 2729 75

07121801 1583 31.35 2729 88

07121804 728 41.90 3640 38

13042503 632 30.35 2610 79

13042504a 738 30.34 2610 36

13042504b 719 30.34 2610 35

Totals 8365 279.46 23600 621

Table 12 Summary of spark detector validation dataset. All experiments were recorded at a spatial resolution of
0.24µm/pix)
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4.6.4 Spark-RyR2 co-localisation

This study was a combination of methods for RyR2 detection and spark detection. It was

performed both in line scans and frame scans, and the results are already shown in section

4.5. Nevertheless here are a couple of tables with the resulting distribution of distances for

the two sets.

sparks lying at less than

50 % 0.10µm

75 % 0.24µm

90 % 0.48µm

99 % 0.88µm

sparks lying at less than

50 % 0.16µm

75 % 0.25µm

90 % 0.40µm

99 % 0.79µm

Table 13 Co-localisation results, left for line scans (N=1008sparks) and right for frame scans (N=2984).

These distributions cannot be shown as histograms because of the digitalisation of space,

both in the line scans and in the frame scans. In the line scans, the images were taken in

four different pixel sizes [0.03,0.04,0.05,0.06]µm. This uneven discretisation means not only

that there are only certain possible values of distance measured from a spark to a RyR2

cluster, but also that certain distances cannot happen in certain sets. A histogram with a small

distance would present wild peaks due to the number of images with each resolution. The

only solution to this would be to use a binning size of the least common multiple of the

resolutions (0.6µm), but that would produce a histogram of just 3 columns from one z-line to

the next, with all sparks falling in the first bin.

The frame scans were taken all with the same resolution, but again, being the plane

discretised into pixels, only certain distances are possible: with r being the pixel size, objects

can only be in the same pixel d = 0, one pixel apart d = r, one pixel apart in each direction

d =
√

2r, two pixels apart d = 2r, one pixel apart in one direction and two in the other

d =
√

5r, two pixels in each direction d = 2
√

2r and so on. This would populate the histogram

according to the square lattice mesh, rather than giving us real information of the distance

distribution, and we would only get a smooth histogram with a bin size that is far to big

to capture any information. These are the reasons why the distributions are presented as

percentiles in the tables.
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5.1 Cell dynamical regimes

Cardiac myocytes normal function is to respond to a neighbouring cell action potential

with a calcium transient triggering its own contraction and at the same time triggering the

next cell to start the same process. Therefore, a typical stress experiment for a single cell (or

a group of cells) is to submit them to an electrical stimulation protocol in which the cell is

electrically paced at increasing pacing frequency. The experiment would consist of different

sections during which first the pacing frequency would be low for a some time and then we

would have periods with pacing at increasing frequency. Typically a section at the start would

be included with no pacing to see if spontaneous activity is present and a final section at the

end with the original low frequency pacing to see if the cell returns to its original state. See

figure 58 for an example.

The calcium concentration is measured as the average fluorescence value of the pixels

within a cell at each frame normalised to the cell baseline. This produces a time-dependent

signal s(t) = (f(t)− f0)/f0, where f(t) is the average fluorescence of the cell in each frame

t and f0 the average baseline value (see section 4.3.1 on baseline estimation). In normal

conditions this signal consists of a series of transients, each corresponding to an action

potential of the cell as a result of external electrical stimulation. However cell response is not

always as such.

In order to study cell dynamics of human myocytes, our collaborator Dr Leif Hove-Madsen

established a total of six groups into which the dynamics of a cell is classified according to

its response to external electrical stimuli at a constant frequency with the aim of developing

an automatic classification system. These six dynamical regimes are not unique and even

they can slightly overlap each-other, but they are useful to characterise the cell function and

85
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Fig. 58 An example of a calcium concentration plot of a cardiac myocyte during a stimulation protocol. The
pacing times are marked as black ticks at the top of the plot and the blue lines separate periods of different pacing
frequency. As can be seen the experiment consists of an initial section lasting 30s without pacing during which the
cell produces three spontaneous transients. The following five periods are of increasing frequency: pacing every 2.5s,
2s, 1.5s, 1s, 0.75s. After that there is a 10s period without any pacing followed by another 10s period with pacing
at the original rate of 2.5s and finally 40s without any pacing again during which the cell produces another three
spontaneous transients.

some of the behaviours that can lead to pathologies at the tissue level. They are subjective

classification set from an experimental point of view of the typical responses one can observe.

The six possible regimes are described in the following table:

Regime Name Description

Regular The cell responds with a normal transient after each stimuli.

Alternans The cell responds with a lower intensity every other stimulus.

Phase-lock Severe case of alternans in which every other stimulus there is no cell response.

Wave The cell initiates a slow propagating event that lasts over several stimuli.

Irregular The cell responds in an irregular fashion that does not correlate to the stimulus.

Inactive The cell does not respond to the stimulus.

Sub-classes of Alternans

Spatially Discordant The cell has two distinct spatial regions which activate separately contributing to
an alternant behaviour as a whole.

Spatially Concordant The alternans is not due to spatial differences, rather the whole cell has an alterna-
ting pulsation.

Table 14 Possible behaviour of an excitable cell under periodic electrical stimuli.

It is relevant to say that the six cases do not exclude each other, for example a small

wave and an irregular response are indistinguishable, and that the border between some of

them can be a fuzzy region, for example between alternans and phase-lock. Therefore the

classification is rather a subjective matter and this is why for the automatic classification a

machine learning method was chosen as the best option so that the method would be capable

of adapting to the criterion of the person using it. Regarding the two types of alternans,

since it is a spatial difference, it cannot be distinguished only with the time signal and so the

problem is tackled from another point of view in the next section.
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Fig. 59 Example signal for the six different dynamical regimes for cells stimulated every 2s (black ticks mark
stimuli).

5.2 The training set

In order to prepare a classifier we selected a total of 569 signals from different experiments

and three separate experts manually classified them into one of the six regimes. The cases in

which none of the three coincided with the verdict were removed leaving a final training set

of 512 signals with their class set. Because some of the regimes are not very common the set

turned out to be un-balanced: 180 cases of regulars the most common versus only 36 cases

of alternans the least common (see table 18 at the end of the chapter for a summary of the

training set). This un-balanced number of elements in each of the classes can be a handicap for

some classifiers, and for this reason the set is currently being rebuilt with the aim of having

200 instances of each of the 6 classes to build a final training set of 1200 instances.

Choosing a correct set of features to best describe the signals is an open problem and is

also a critical step because it can limit the performance of the classifier. A set of features was

selected such that at least one feature would best describe one of each of the six possible

classes and some extra features were aded for robustness. The features were chosen so that

they would emulate the mental process one undergoes when tackling the problem as a human

classifier. The feature set is detailed in table 15.

5.3 The classifier

The next step is to choose the appropriate machine learning classifier which is a somewhat

tedious task if one has to implement the whole collection of classifiers available in the market.



88 5. CELLULAR SCALE

Chosen feature descriptor Target Regime

The coefficient of variation(1) of the time between detected peaks in the signal. Regular

The mean time between detected peaks in the signal over the pacing period. Phase-Lock

The number of peaks that alternate (more than 10 % in intensity) over the total number of peaks(2). Alternans

The intensity of the highest peak in the continuous wavelet transform(3). Waves

The amplitude of the signal (maximum value minus minimum value). Inactive

The mean of the signal. Extra

The standard deviation of the signal. Extra

The standard deviation of the baseline of the signal (measured as described in 4.3.1). Extra

Table 15 Selected features used to classify a signal together with the dynamical regime they are targeting. Peak
detection was performed by searching for 2D maxima in the continuous wavelet transform with wavelet family
gaus2 and scales ranging from corresponding to 0.2s (minimal length of an event) to the length of the signal.
(1) Coefficient of variation is defined as the standard deviation over the mean.
(2) Over the total number of peaks minus two since at least three peaks are needed to establish if alternans is present.
(3) At scales corresponding to more than twice the pacing period (feature is set to zero if no peaks are present).

The problem is highly non-linear with possible hidden feature interactions and presence

of outliers and it was first tackled using a hand-made decision tree [187]. This early stage

classifier had only four classes but already implemented the alternans discrimination using

PCA (described in 5.4.1). Shortly afterwards, the performance of the classifier was greatly

improved with the implementation of the random forest algorithm [188] which seems to

outperform many of the newer classification methods. This method has proven to give good

results and it has been used continuously for a couple of years and given rise to several

publications. After testing several methods, it seems that simple bagging could give better

results than the random forest, although this may be due to the fact that the set is unbalanced

and the random forest tends to prioritise classes with a low representation in the training set.

For this reason a new exploratory analysis will be carried out when the new training set is

ready.

Table 16 shows the accuracy of a collection of classifiers applied to the training set. Luckily,

new versions of MATLAB have a classification tool (called classification learner) that applies

a fixed set of classifiers to your data thus allowing a quick approach to the best family of

classifiers. The tool rapidly showed that ensemble methods using decision trees were the best

option for this problem and so the table was completed with a collection of variations in the

algorithms. All algorithms in the table were tested by applying a cross validation of 5 folds,

that is dividing the training set into 5 random subsets, training the classifier using 4 of the

subsets and then testing the classifier with the remaining subset. The process is repeated 4

more times with the other possible combinations to finally produce an accuracy value as the

total ratio correctly classified in the 5 tests. Because the training set is unbalanced and the

testing method is random there is a certain drift in the accuracy values every time one repeats

the test (∼ 1 %) so to be strict the values have been rounded to the closest integer percentage.

The table is divided into families. First the Naive Bayes stands on its own with a poor
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Classifier Name Accuracy Parameter Details

Naive Bayes Classifier 54 % -

Linear Discriminant 61 % Regularisation: Diagonal covariance.

Quadratic Discriminant 49 % Regularisation: Diagonal covariance.

Linear SVM 66 % Kernel scale: Automatic.

Quadratic SVM 64 % Kernel scale: Automatic.

Cubic SVM 62 % Kernel scale: Automatic.

Fine Gaussian SVM 56 % Kernel scale: 0.75.

Medium Gaussian SVM 65 % Kernel scale: 3.

Coarse Gaussian SVM 57 % Kernel scale: 12.

Fine KNN 56 % Neighbours: 1, Distance metric: Euclidean, Distance weight: Equal.

Medium KNN 63 % Neighbours: 10, Distance: Euclidean, Distance weight: Equal.

Coarse KNN 53 % Neighbours: 100, Distance: Euclidean, Distance weight: Equal.

Cosine KNN 61 % Neighbours: 10, Distance: Cosine, Distance weight: Equal.

Cubic KNN 61 % Neighbours: 10, Distance: Minkowski (cubic), Distance weight: Equal.

Wighted KNN 64 % Neighbours: 10, Distance: Euclidean, Distance weight: Squared inverse.

Simple CT 61 % Number of splits: 4, Criterion: Gini’s diversity index.

Medium CT 65 % Number of splits: 20, Criterion: Gini’s diversity index.

Complex CT 60 % Number of splits: 100, Criterion: Gini’s diversity index.

Wild C4.5 61 % Number of splits: Unlimited, Criterion: Information gain, Pruning: No.

Complex C4.5 63 % Number of splits: Unlimited, Criterion: Information gain.

Subspace Discriminant 59 % Number of learners: 30, Subspace dimension: 5.

Subspace KNN 61 % Number of learners: 30, Subspace dimension: 5.

AdaBoosted Trees 66 % Number of splits: 20, Trees: 30, Learning rate: 0.1.

RUSBoosted Trees 66 % Number of splits: 20, Trees: 30, Learning rate: 0.1.

Small RF 64 % Trees: 30, Criterion: Information gain.

Small Wild RF 62 % Trees: 30, Criterion: Information gain, Pruning: No.

Medium RF 66 % Trees: 100, Criterion: Information gain.

Medium Wild RF 67 % Trees: 100, Criterion: Information gain, Pruning: No.

Large RF 65 % Trees: 1000, Criterion: Information gain.

Large Wild RF 67 % Trees: 1000, Criterion: Information gain, Pruning: No.

Small Bagging CT 67 % Trees: 30, Criterion: Gini’s diversity index.

Small Bagging C4.5 68 % Trees: 30, Criterion: Information gain.

Small Bagging Wild C4.5 68 % Trees: 30, Criterion: Information gain, Pruning: No.

Medium Bagging C4.5 69 % Trees: 100, Criterion: Information gain.

Medium Bagging Wild C4.5 69 % Trees: 100, Criterion: Information gain, Pruning: No.

Large Bagging C4.5 67 % Trees: 1000, Criterion: Information gain.

Large Bagging Wild C4.5 69 % Trees: 1000, Criterion: Information gain, Pruning: No.

Table 16 Comparison of different classifiers where clearly the winners are ensemble methods using decision trees.
The training set consists of 512 instances and 8 features with a possible outcome of 6 classes (notice that a random
classifier would produce an accuracy of 16.7 %). In each case the training set was cross-validated using 5 random
subsets with no overlapping and for this reason there is a dispersion of ∼ 1 % in the accuracy and the values have
been rounded to the integer.
Acronym explanation: SVM is support vector machine, KNN is k-nearest neighbours, CT is a classification tree (as
in CART), C4.5 is a particular algorithm for CTs and RF is random forest.
Regarding classifier parameters, some have been omitted in the details column for redundancy and are mentioned
here: all SVM and KNN were applied setting standardise data to ’true’ and all SVM were applied using box
constraint level of 1 and multi-class method of ’one-vs-one’. The term ’wild’ in decision trees is used to refer to trees
without pruning, in all other decision trees the pruning threshold is set to 3 %. Finally, bagging and random forest
methods were applied using an outbag of 55 %.
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accuracy as expected being a non-independent set of features. The next are the discriminant

analysis where the linear performs surprisingly well again considering the highly probable

correlation in the features and that they do not necessarily come from normal distributions.

The following groups are the support vector machines, the nearest neighbour methods and

the single decision trees, and the final group consists of the ensemble methods where the

bagging and random forests have been thoroughly explored because they have proved to be

the best.

Just to make it clear as there is a little confusion in the literature on these two terms:

Bagging is the act of building a series of learners (decision trees in this case) each of which

is trained (grown in this case) using a subset (generally random) of the training set. The

term random forest is a kind of bagging in which the trees are also built including a certain

randomness; at every branch a feature is chosen at random and the value that best separates

the remaining classes is chosen (using an established criterion). In the case of the C4.5 trees

the feature is not chosen at random, rather the chosen feature is the one that will best separate

the remaining classes once the best separating value is found.

The trees can be grown with a limited number of branching points or instead they can

be grown until only elements of one class are left on that branch (called a leaf). If they are

allowed to grow to this point it is highly probable that the tree is over-fitting the data. In

principle the ensemble methods using several trees will overcome this problem by averaging

the results, but for the sake of testing a pruning method was applied anyway. Once the tree is

grown without limits, the training set used to grow that tree is run through the tree to see how

many instances fall down each branch. The pruning method cuts any branch that contains less

than a certain percentage of the training set. As can be seen, small forests/bagging ensembles

produce slightly better results when the trees have been pruned and on the other hand when

the forest/ensemble is big the results are slightly better if the trees are wild (no pruning).

It seems that bagging of C4.5 trees outperforms the random forest, but as mentioned

earlier we assume this is an effect of the fact that the set is un-balanced and that may not be

the case once the training set is rebuilt.

Regarding the apparent low performance of all classifiers, this is due partly to the fact that

it is a subjective problem, with overlapping classes and with a high variability in the data.

The relatively small feature set is surely limiting the performance, and also the fact that the

signals come from ver different sources (atria and ventricular, isolated single human cells

imaged at high resolution, cultured cells imaged at low resolution). As already mentioned we

are currently building a new training set, which hopefully will overcome all these imitations

and raise the classifier performance.
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5.4 Alternans analysis

Alternans in cardiac myocytes has proved to be linked to cardiac pathologies such as ven-

tricular fibrillation and sudden death but the hidden mechanisms that trigger this behaviour

are not yet understood nor are the exact consequences it implies. For this reason its study is a

hot topic and in fact has been so for the last 10 years or so.

5.4.1 SCA versus SDA using PCA

As mentioned in table 14 there are two types of alternans regarding their spatial origin,

namely spatially concordant alternans (SCA) and spatially discordant alternans (SDA). This section

provides a short description on how principal component analysis (PCA)[189] can be used to

distinguish between these two cases. The method is was presented in [187] and further

applied in [190].

PCA is a technique that is usually used to reduce the dimensionality of a dataset. Given a

set of observations in an N-dimensional space, the method searches for the linear combination

of the N dimensions that gives the direction of maximum variability in the observation set. It

will then search for a new direction that is orthogonal to the previous and which also contains

the maximum variability and so on until a set of N vectors is obtained. These N vectors

provide a new orthogonal basis for the N-dimensional space. Now if we apply a change of

basis of the observations to this new set of vectors we are simply projecting the observations

to each of the vectors to find their components in each of the N new directions. Because of the

fact that this new basis is sorted (by the order in which we obtained it) we can keep only a

fraction of the components and ignore the rest to reduce the dimensionality of the set. The

number of components that are kept depends on the focus of the problem, it can either be a

fixed value, for example we can set it to two if we want to do a graphical representation of

the data, or we can set it to the number such that the ratio of reconstruction of the original

data is above a certain threshold.

Going back to our problem, if we imagine each pixel in an image of the sequence as an

observation and the values it takes over time as each of its components in an N-dimensional

space (where N is the number of frames in the film), we can apply PCA to obtain an image

for each of the N directions of variability. In each of these images each pixel will show

its component in that direction but the significance of these principal images will depend

on the contents of the original sequence, that is it will "show whatever are the most exciting

things happening in the film". Examples of this are shown in figure 60 where we see the first

component capturing extremal positions in a contracting cell, a similar case of a moving cell,

a case in which simply the presence versus lack of activity is captured and an example where

the discordant activity is captured.
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(a) Contraction. (b) Movement.

(c) Activity versus background. (d) Spatially discordant alternans.

Fig. 60 First component of four different sequences of images. Each pixel displays its component in the direction
of maximum variability of the data, with the values normalised to the maximum range. As can be seen, a variety of
situations can show up.

Assuming we have applied a previous classifier that already has established that the

signal of the mean fluorescence of a cell is alternating we can test for SDA. We will have

to take not only the first but up to the third or fourth component (considering PCA could

have first captured movement, contraction and presence of activity). An option is to not

include the pixels of the background in the analysis but this can be dangerous if the cell is

moving throughout the image sequence. A good practice is to apply a k-means clustering to

the resulting components with k = 3 allowing for empty clusters. The cluster to which the

borders of the image belong is discarded as being considered background. If two clusters are

still remaining and the pixels belonging to each are connected in a single region and at the

same time are enough to cover a minimal area of the cell, we can assume we have found the

alternating areas.

By obtaining the mean fluorescence signal for the surviving regions we can test if they are

actually contributing to the total signal as a counter-phase system (example in figure 61). The

dynamical regime classifier should classify these signals as either alternant or phase-locking

and their lag at maximum cross-correlation should be of exactly the pacing time. If not then

we might have captured movement or contraction and so we would need to search further in

higher components or else the alternans is spatially concordant.

5.4.2 Characterising alternans

Given a signal presenting alernans there are several ways to characterise it. The severity

of the alternans and its duration are two independent matters. This problem was addressed



5.4. ALTERNANS ANALYSIS 93

Fig. 61 The top
panel shows two
distinct regions
found at opposing
ends of the first
principal compo-
nent. The middle
panel shows the
mean fluorescence
of the whole cell
and the bottom
panel shows the
mean fluorescence
of each of the
regions. This
example is the
same cell as in
figure60(d).

in [191] where alternans was linked to RyR2 function and ventricular tachycardia. It is briefly

described in this section.

Fig. 62 Features measured in alternating transients. After clas-
sifying peaks into wither big or small, the features are measured
and kept in a different pool. A is for amplitude, B is for baseline,
T is for time to peak and D is for duration.

Having already measured the ave-

rage fluorescence signal of a cell, as al-

ways, continuous wavelet transform

is a reliable way to clean of noise and

at the same time enhance peaks in

the signal. Zero-crossing of the de-

rivative can be used to detect peaks

and valleys in the signal (see section

1.5.6). Knowing the pacing frequency

we can cross-correlate the signal with

a train of deltas to separate stimulated

from spontaneous peaks. Amplitude

for each peak can be measured as the

difference in height between the peak

and the previous valley (relative amplitude). For a particular couple of consecutive stimulated

peaks, alternans ratio can be defined as the difference in amplitude between the two over the

amplitude of the largest of the two (taking the absolute value).

The criterion we used for establishing the presence of alternans in one cell was that at

least six consecutive peaks should all present an alternans ratio above 0.05. The mean value of

the alternans ratio for every couple of peaks provided the alternans ratio of the whole signal,

and the alternans duration was defined as the cumulative elapsed time of alternans periods

over the total duration of the line-scan.
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5.5 Cell contraction

Somewhat to my displeasure, measuring cell contraction has stayed slightly at the edge

of the scope of this thesis when it is one of the most important aspects of cardiac myocytes.

The main reason behind this is that it is not a fluorescence imaging problem (also the fact

that time is finite). Nevertheless, attempts have been made by applying image processing

techniques to the visible channel image of the cell because it is computationally speaking

cheaper than other tecniques [192, 193].

Characterising cell contraction requires a method that will produce a vector field of

displacement at each position of the cell. A very well-known set of methods that can produce

this displacement field are algorithms that attempt to measure optical flow [194, 195]. For big

images and high frame rates, these methods rapidly become slow whereas image correlation

based methods can be tuned easily by reducing the window of correlation. Image correlation

is an extension of the regular signal correlation, in which an image template is multiplied at

each position of a given image to obtain a sort of match score in the image. It can be used

as a tracking technique; one uses as a template a small region of an image in one frame of a

sequence and then correlates it to a bigger region around it in the following frame. If the two

are exactly the same a maximal value is obtained in the centre of the correlation. If there is a

displacement of the bright objects the maxima appears away from the centre. This provides

a mean displacement vector (proportional to the intensity) of the objects in the image. The

procedure is applied frame after frame to obtain a vector field of displacement in each frame.

The technique is simple to apply but has the drawback that it is a polarised method, in the

sense that it will match objects that have high intensity and therefore, for example, black

objects in a grayscale image that have displaced will show a maximal correlation in the

previous position and not the current.

The cell was first segmented and then divided into regions. For each region the image

correlation method was applied throughout the film to obtain a position signal as a function of

time with respect to resting state (figure 63). The position signal of the regions corresponding

to one end of the cell plus the position signal of the regions at the opposite end of the cell (they

have opposing signs) produced a total length variation signal which measures contraction

in an absolute sense, and it was then divided into the length of the cell to give a relative

contraction measure. Figure 64 shows the contraction signal in red together with the calcium

fluorescence signal (of an alternating cell), where one can see how when calcium concentration

raises, shortly after contraction starts. Also it is seen that a small increase in calcium is not

enough to trigger contraction.
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Fig. 63 The mean displace-
ment as a function of time
of the opposing regions of the
cell (the plots correspond to
the mean of the values measu-
red in the four leftmost and
rightmost columns). The the
cell is slightly out of focus in
the left area and that is why
that zone was excluded from
the cell segmentation.

Fig. 64 The sum of the two
signals in the previous figu-
re appears here in red toget-
her with the cell fluorescence in
blue. The cell is alternating and
small responses do not trigger
contraction.

5.6 Connecting the scales

In the previous chapter we have seen a description of the typical calcium events that

appear in calcium imaging together with a series of methods to detect them. Also the main

features that characterise these events have been explained and methods on how to measure

these features are detailed. Now, in this chapter, when imaging whole cells developing

transients as a whole, this set of features can still be applied to describe the whole cell calcium

signal that are obtained.

Indeed, these features constitute the basis of the features that have then been extracted

to build the cell response classifier, which has allowed to characterise the response of a cell

to electrical stimulation. This characterisation of the cell behaviour under stimulation can

be extended to the cell response is due to neighbouring cells activation instead of artificial

stimulation of an isolated cell. Therefore it will still be applicable in the following chapter

when analysing cultures of cells and the propagation of a calcium front across the culture.

Applying this dynamical regime classifier to each of the cells in a culture will allow to describe

the propagation patterns from the point of view of an individual cell.



96 5. CELLULAR SCALE

5.7 Results

5.7.1 Alternans analysis

In this study the aim was to develop a way to characterise alternans in intact heart line

scans while under electrical stimulation. The line scans taken across the tissue, covering

several cells in the direction in which the cells are shorter (see figure 10 for an example).

During stimulation the cells would respond to each stimulus by producing a transient which

in the line scan appeared as a sudden rise in calcium concentration. The developed algorithm

had to extract the mean fluorescence signal of each cell, detect each of the transients, use the

temporal location of the transients to determine the exact pacing frequency (an estimate was

known but with a precision around 10 times the sampling time) and measure the properties

of each transient (section 5.4.2).

Fig. 65 Characterising alternans. Scatter plot of
the two alternans measures used in [191]. In this
particular example, a total of 328 cells are depicted,
each having been paced at 8Hz during 10s. Half of
the cells (blue crosses) had a mutation that suppres-
sed the function of RyR2 which clearly triggered the
appearance of alternans.

The experiments were performed under dif-

ferent drug conditions and many stimulation

frequencies, which in total provided us 653 line

scan images. In these images, over half a million

transients were detected and classified either in-

to spontaneous, non-alternating or if alternating

into big or small. These numbers can be seen in

table 17. All of these transients had their proper-

ties measured but this is not shown here.

Characterisation of alternans was performed

using two parameters. The first the alternans

ratio, that is the mean difference of intensities

between consecutive peaks normalised to the

larger of the two (equal to 0 if no alternans is

present and equal to 1 in the extreme case of

phase-locking). A cell was considered to present

alternans if at leas six consecutive peaks mantai-

ned a ratio above 5 %.

The other parameter used was duration of alternating periods over the duration of the

experiment. These two parameters proved to adequately quantify the presence of alternans

and the results of these methods were used in a study to prove the relation between RyR2

function and the appearance of alternans at the cellular level and problems at the organ level

[191]. An example of a scatter plot of these parameters can be seen in figure 65.
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# of % Cells # of % Transients Total scan

Set ID freqs linescans cells alternating transients alternating spont dist(µm) time(s)

EQWT 1.8mMCa 7 91 857 56.5 78944 50.7 0.0 17900 949

EQHET 1.8mMCa 7 103 988 83.8 84531 86.7 0.6 20190 1074

Bef 0.5mMCaff 8 14 121 89.3 10933 98.3 0.0 2380 136

Aft 0.5mMCaff 5 14 132 65.9 11268 57.1 6.4 2660 147

Bef 1mM Caff 8 66 548 84.7 47614 88.7 0.0 11040 624

Aft 1mMCaff 7 45 371 46.9 32010 46.6 2.3 7790 456

Bef 3uMCarv 6 15 133 75.2 9172 79.5 0.0 2490 136

Aft 3uMCarv 4 10 109 69.7 7538 31.2 25.3 1910 104

Bef 1uMEGTAAM 7 42 475 89.3 40317 88.2 1.8 8360 437

Aft 1uMEGTAAM 6 72 768 87.6 62843 86.3 2.0 13600 755

Bef 2uM EGTAAM 7 45 522 87.7 44163 89.3 0.9 8880 469

Aft 2uMEGTAAM 6 75 795 83.4 67221 84.2 0.2 13950 786

Bef 4uMEGTAAM 6 24 270 90.7 23874 95.2 0.0 4600 251

Aft 4uMEGTAAM 6 37 388 88.4 34461 71.4 2.3 6460 389

Table 17 The alternans dataset. The dataset is divided into 14 conditions, each of them has several stimulation
frequencies (freqs). Other abbreviations in the table are spont, standing for spontaneous, and dist, standing for
distance.
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5.7.2 Cell response

This section needs not to be extended since the procedure of building the training set,

choosing the classifier and testing the performance is already described in sections 5.2 and

5.3. Nevertheless, here is a summary of the original 512 signals chosen to form the training

set (table 18). Also, another table shows a summary of the properties of the random forest

that was built to solve the classification problem (table 19). Regarding the characterisation of

decision trees, the number of branches refers to the total number of branching points, and

so it gives an idea of the complexity of the tree. The tree height is, of all the paths from the

root of the tree to all the leafs, the path that has the most branching points, this number of

branching points determines the height. It is the maximum number of branching points one

needs to go trough to get to a leaf, therefore providing also information on the computational

load of the decision tree.

Dynamical regime Number Percentage

Regular 152 29.7 %

Phase-lock 46 9.0 %

Alternant 37 7.2 %

Wave 84 16.4 %

Irregular 135 26.4 %

Inactive 58 11.3 %

Total 512 100 %

Table 18 Summary of the classifier training set. The 512 signals are the signals that, after the manual classification,
at least two of the three experts coincided in the veredict.

Random Forest characteristics

Total number of trees 1000

Average # of branches 148 ± 10

Average tree height 15 ± 1

Largest tree: 181 branches

24 height

Smallest tree: 125 branches

12 height

Table 19 Random forest description. As can be seen the trees were not pruned (large heights and number of
branches). Clearly a single tree will over fit the data, but having 1000 trees allows to overcome this.
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Culture and tissue scale

Fig. 66 Sequence of fluorescence images of a culture un-
der electrical stimuli every 2.5s. Planar fronts can be seen
travelling with a slight anti-clockwise drift after which a
couple of clear spiral fronts can be seen. Towards the end
flat fronts are seen again but with a clockwise drift. The
field of view is approximately 1mm by 1mm with around
550 cells, and the total film duration is around 30s.

Cardiac tissue is a complex network

of myocytes connected to each other that

allows the propagation of the action po-

tential that triggers the contraction of each

individual cell. The study of patterns of

the electrical propagation of this action po-

tential in cardiac tissue is very important

to understand how pathologies at cellular

level can affect myocardium function. Stu-

dies can be carried out using ex-vivo intact

heart (removing a whole heart and keeping

it pumping alive while performing calcium

imaging) or for simplicity of equipment

and to avoid artifacts due to movement

among others, tissue can be emulated by

means of a cell culture (growing cells on

a flat surface). Cultures also allow resear-

chers to manipulate the environment for

instance by injecting drugs into individual cells or adding mutated cells to regions of the

culture or simply by erasing or burning an area to affect electric conductivity.

The stimulation protocols described in the previous chapter (section 5.1, figure 58) in

which a single cell is being electrically stimulated to test its response and correct function

can now be equally applied to a network of cells. A pair of electrodes are placed at one end

and an electrical pulse triggers an action potential that should be transmitted throughout the

cells, if the cells have been loaded with the appropriate fluorophore we will be able to record

brightness proportional to calcium concentration.

99
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The analysis of calcium imaging at the tissue/organ scale requires segmentation of indivi-

dual cells, measuring of propagation of calcium fronts and characterising this propagation

in order to link cellular anomalies to tissue propagation dynamics. The following sections

describe these steps.

6.1 Culture segmentation

When imaging fluorescence from an excitable cell under stimulation or exhibiting sponta-

neous activity, the light originates inside of the cell and the transition to lack of light outside

the cell towards the edge of the cell is rather gentle or smooth. This is because the cells are

sitting on a flat surface (the culture dish) and tend to be thicker around the centre where the

nucleus or the bulk of the contractile machinery may be. As the focal-plane will always be

slightly above the culture dish, each cell has a larger portion within the focal-plane around

the centre than around the edges and therefore we register more light from the centre than

from the edges.

Moreover, each individual image in a sequence tends to be very noisy and it is not until

one sees the whole sequence at fast frame rate that one can start to notice the presence of

individual cells. See figure .

Fig. 67 Animation of the segmentation watershed method of the variability image.

The usual approach when a single image does not contain enough information to re-

veal sharp edges is to take the mean of several images. As these are excitable cells which

throughout the sequence have an oscillatory behaviour, a much better approach is to use this
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variance as an indicator of the positions where a cell is (at least an active cell). The approach

was originally developed for cardiac myocytes [187] but can be applied to any excitable cell.

That produce an image where at each pixel we depict the variance or standard deviation of

the same pixel throughout the image sequence. This provides a clear image where individual

cells are revealed. We call this image the variability image because it enhances the areas that

take a larger distribution of values in the image sequence (see figure 68a for an example).

This variability image is the input to the segmentation method. It is a fairly smooth image,

with no clear edges and all the cells are more or less the same size. Furthermore each cell

has a single local brightness maximum around the centre and then decreases in brightness

towards the edges. This clearly calls for a watershed method as mentioned in section 1.5.4,

where each cell will be a separate watershed (if the image is inverted, the cells are local

brightness minima which if we were to pour water on would form independent puddles).

We do not want to constrain the watersheds by absolute or local intensity because some cells

have greater variability than others and therefore appear brighter, but we do want to limit

the size of the watersheds to avoid several cells being joined and demand for a minimal size

to avoid spots of noise being tagged as an independent cell.

(a) Variablilty image. (b) Algorithm result.

Fig. 68 An image sequence of a culture is preprocessed into a single image (a) and the cell segmentation algorithm
is applied (b) to detect a total of 651 cells in this case. For clarity each cell has had its centre marked with a red cross
and its limits marked with a brighter shade of blue.

An algorithm was developed to accomplish this using a minimal and maximal size as

constraints to the watershed. This segmentation method was developed reversed with respect

to the usual watershed approach: we can imagine the variability image as a section of terrain

where each cell is a hill and then we cover the whole terrain with water making each cell an

underwater hill. We then lower the sea level and at each step we measure the sizes of the
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islands that appear. The islands will tend to grow in size and merge with each other as the

sea level gets lower and lower. The method records the limits of an island only when it is

between the expected sizes. Figure 67 depicts this process.

Apart from the minimal and maximal sizes of the desired objects the other parameter that

defines the precision of the method is the step size, that is the amount we lower the water

level at each iteration. This parameter greatly affects the speed of the algorithm, a big step

height vastly reduces the computation time at the cost of producing worse segmentation

results because from one step to another an object can go from being smaller than the minimal

size to being bigger than the maximal size. This is why not being too restrictive with the

sizes allows for a bigger step size and faster computation speed. A balanced value to which

it has been fixed is the range of values in the image divided by 100, meaning that we do

100 steps. It has successfully been used like this in [190, 196–198]. As an example, figure 68b

shows the results of the method being applied with 1000 steps and producing 651 distinct

cells. The method applied to the same image but with 100 steps produced 650 distinct cells,

so we gained a ridiculous 0.15 % accuracy at the ludicrous computational cost of ∼10 fold.

6.2 Front propagation

Fig. 69 Time of front arrival at every pixel of the field
of view. The image is very noisy, especially in the regions
inbetween cells and for this reason it is far better to only
use information from pixels that belong to a cell than to
simply smooth out this image by means of any sort of filter.

Measuring front propagation may seem

a simple problem with a straight-forward

solution but this is not as so. The process

is, given a sequence of images containing

several fronts, first to cut the sequence into

groups of frames containing a single front,

then to estimate the time of arrival of the

front at each pixel, with which it should

be possibe to construct a propagation map

where the colour codes the time of arrival

of the front. This colour-coded map is what

is known as an isochronal map.

There are several problems to overco-

me before obtaining the isochronal maps

though. Dividing the sequence into frames

belonging to each front can be very hard

(or impossible) if the fronts overlap eachother or if two or more of them appear at the same

time in the field of view. Besides, taking the time fluorescence of a single pixel can produce

noisy signals which can then hinder the estimation of time of arrival of a front (see figure

Figure 69).
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If the fronts are spaced out in time the simplest approach is to take the mean fluorescence

value of the whole field at each frame and use the resulting time dependant signal to establish

the presence of a front by simply finding local minima in the signal (see section 1.5.6). If the

activity is high, turbulent-like so the fronts occur simultaneously and therefore cannot be

separated in the time signal, a possible solution is to use a tracking technique as described in

section 4.4. The third option is not to cut the image sequence into distinct stretches until the

times of arrival have been found and then attempt to relate them to one another.

Regarding the noisy signals, as always the first solution is to take the mean value of a

region around every pixel to produce the time signal but an approach that is a little more

tailor-made to the problem is to consider the previously segmented cells in the culture. As

mentioned in the previous section, each cell will tend to emit more light from its central

regions and therefore the areas close to cell edges (or where no cell is present) will produce

noisy and almost random signals.

Fig. 70 Example of the same culture as in figure 68 where
the cells have been eroded by 5µm (white areas), the mean
distance to nearest neighbour is of 29µm and so in the field
of 912×912µm has been divided into a 32×32 mesh. The
time signal of each square will now be at each sample the
mean of the pixels belonging to a white area in the square.

Taking this into account, a method was

developed in which the temporal signal

from which the time of arrival was mea-

sured would use only fluorescence values

belonging to areas close to the centres of the

cells. This method was published as part

of a more extensive culture dynamics work

[199] and also used as a tool in [200, 198]. In

this method, the field of view was divided

into a square mesh with a lattice constant

of the mean nearest neighbour distance of

all cells. Then the temporal signal was cons-

tructed based on this mesh; for a particu-

lar square of the mesh, at each frame the

fluorescence of the square was taken as the

mean value of only the pixels belonging to

the central regions of a cell. The central re-

gion can easily be found by applying an erode filter to the segmented cell image (using a

template of radius around 5µm would produce an image with only the white areas in figure

70). This process allowed us to obtain a smooth time-dependent signals where the arrival

of the front was made obvious by the presence of a sudden upstroke in the signal followed

by a slow decay. Detecting this upstroke was then very straightforward by searching for the

highest maximal point in the derivative of the signal. For each front an image was constructed

where the pixels belonging to each square of the mesh were assigned the number of the frame

of arrival of the front at that square. Finally a smoothing step was applied by using a low-pass
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Fourier transform as described in section 1.5.5 and figure 22. The resulting image was then

rounded to the closer integer (the procedure is applied on a frame basis) and a final step of

eroding each region by one pixel to daw lines in between regions. Multiplying the whole

image by the frame rate in milliseconds produced some nice isochronal maps as shown in

figure 71.

6.3 Front dynamics

The purpose of this section is to characterise propagation dynamics and at the same

time to classify a front amongst a set of predefined cases. These cases or situations were set

with the aim of establishing a connection between the inividual cellular calcium dynamics

(discussed in section 5.1 and summarized in table 59 and figure 14) and the properties of the

propagating fronts. For this reason the situations are rather general, only four different cases

have been established, but one could always subdivide into further subgroups. These four

basic situations are regular flat fronts, flat reentry fronts, spiral fronts and a fourth left-over

group for anything that does not fit in the previous three. The spiral case is probably the most

interesting since this kind of dynamics is the cause of pathologies such as cardiac fibrillation.

The origin of this is a region in the network that is blocking the transmission of a front which

causes the front to bend around this area. This can then cause a permanent activity around

the area and the breaking of future fronts arriving at the region. The reentry case is usually

when a spiral has taken place out of the field of view and we see a front that, instead of

coming from the electrodes, is coming from an unexpected direction. This tells us there is

some connectivity problem outside of the field of view, so the reentry can be seen as a sign of

unhealthy culture but at the same time as a sign of a healthy field of view (in the part of the

culture we are imaging the propagation is flat). The four situations are summarised in the

following table (table 20) and an example of each is shown in figure 71.

Front Name Description

Regular A flat front that is originated at the field electrodes.

Reentry A flat front that is originated elsewhere.

Spiral A front with constant angular velocity different to zero.

Other Either non-constant angular velocity or a combination of
various fronts.

Table 20 Summary of possible front dynamics. The second case is relevant because as the field of view is always
smaller than the whole culture and for this reason a reentry usually indicates a spiral or a spontaneous front has
occurred outside the field-of-view. The last case is more of an escape case for the situations in which the fronts have
either not been properly separated or a strange unexpected situation appears.

The main feature that characterises these situations is angular velocity, allowing us to

distinguish the spiral case, and the other feature would be linear velocity, its direction
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(a) Regular flat front. (b) Reentry. (c) Spiral front. (d) Other situation.

Fig. 71 Sample isochronal maps displaying different propagation dynamics. Each successive colour indicates the
front arrived at a particular frame and so that is associated with a time of arrival.

distinguishing between reentry and regular flat. We will now focus on how to measure these

magnitudes.

6.3.1 Linear velocity

Remembering the way in which the isochronal maps were constructed, we have a frame-

wise approach, meaning that each of the distinct coloured bands in the map indicate that the

front arrived during the recording of that frame.

Consider a particular coloured band in the map. All the pixels in the band have in common

that the front arrived at the same frame in the sequence, and the region is limited by two lines

that are the borders with the previous and next region. We will call these two border lines

isochrones; one is the previous isochrone and the other is the next isochrone.

Now, taking the previous isochrone, we can draw a perpendicular straight line from it

which will then intersect the next isochrone at one point. This line going from one isochrone

to the next (perpendicular to the first) we will define as a velocity vector. If we draw many of

these starting from all along the previous isochrone we will obtain a collection of velocity

vectors all associated with the region between the two isochrones. The mean of all these

vectors can be set as the velocity vector for that frame.

The modulus of this velocity vector has been constructed as the mean width of the region

in the map; it is the distance covered by the front during one frame, so dividing it by the time

between frames we obtain proper speed units.

There are some considerations to be taken into account. One is that when drawing the

perpendicular lines to the isochrone we need to fix a distance from one to the next (the spatial

resolution of the velocity measure). We can do this pixel-wise at high computational cost

or relax it a little. Another consideration is that sometimes the velocity vector will not be

measurable, it may not intersect the next isochrone either because it hits the limits of the

field of view or the next region has zero width, or this region has zero width. All these cases

should be ignored otherwise we might obtain strange things like infinite velocity vectors. The
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last consideration is that to be able to measure the velocity vector we need the two borders of

a region in the map, so if the front takes N frames to cover the field of view, we are only able

to measure the velocity for N − 2 fronts, that is from the second to the last but one.

6.3.2 Angular velocity

Having previously measured the velocity vector at each frame, obtaining the angle of

propagation is now very straightforward. We only need to set a zero angle direction, in

our case having the electrodes beneath the field-of-view, we set the vertical axis as the zero

direction and the angles were measured anticlockwise, so a front travelling normally towards

the top would have an angle of 0◦ and a front travelling towards the left would have a

direction of 90◦. Each velocity vector has its angle measured from this direction to obtain

an angle of propagation. As we only need the angle and not the modulus of the velocity

vector, we can go back and measure it for the first and last isochrone in the map, to obtain an

angle of propagation for each of the isochrones in the isochronal map. This means that if the

field of view was covered during N frames we would now be able to measure the angle of

propagation for the N − 1 isochrones present in the map.

The angular velocity is simply the derivative of the sequence of measured angles so by

subtracting the sequence from one another and dividing by the time between frames we are

left with a sequence of N-2 angular velocities.

Fig. 72 Linear and angular velocities measured for a planar front.
Speed is the mean of the top graph s = 0,6 ± 0,1(mm/s), angle of propagation is the mean of the bottom graph
α = 63 ± 5(◦) and angular velocity is the mean slope of the bottom graph ω = 8 ± 25(◦/s). This dispersion
including zero in angular velocity is proof that the front is planar.

6.3.3 Classifying the dynamics

The procedure here should be equal to that in the previous chapter when attempting

to classify cell dynamics (section 5.1); constructing a training set, manually labelling it,

establishing a collection of features, testing several classifiers and choosing one from the best.

Unfortunately, as we are still pending rebuilding the cell dynamics training set we have not
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Fig. 73 Linear and angular velocities measured for a spiral front.
In this case s = 0,5 ± 0,2(mm/s), α = −23 ± 39(◦) and ω = 129 ± 18(◦/s). Now, the enormous dispersion in
α prooves the front is not planar.

managed to build and label the culture propagation training set. For this reason, a temporary

solution was to build a decision tree with manually chosen threshold values.

Fig. 74 Front classification decision
tree.

The custom threshold values were: angular speeds be-

low 100◦/s implied a flat front, (flattish that is, as opposed

to spiral). Then for the flat fronts, mean angles above 20◦

were assigned as reentries and below that as regular fronts.

For the case of angular speed above 100◦/s if the standard

deviation was lower than the actual value of the angular

speed the front was classified as spiral, otherwise it was

classified as the fourth case.

6.4 Connecting the scales

The first approach to connect the cellular scale with the tissue/culture scale is to see

if the number of cells behaving in a particular dynamical regime grow or decrease when

pacing frequency gets higher. A statistical test that allows this is the McNemar test [201] for

significance of changes, which allows testing hypotheses such as: When the pacing frequency

goes from 1Hz to 1.3Hz the number of irregular cell responses is significantly larger. This test can be

applied between every two pacing sections in the protocol and for every dynamical regime.

The connection of the cell dynamics with front dynamics depends more on cell size than

cell number. Rather than cell size it is the sum of sizes of cells behaving in a particular way

that contributes to the propagation patterns. This is why a good measure is the area ratio

covered by cells behaving in a particular way over the total area.

As previously mentioned, the reentry fronts are a sign that the culture is not propagating

properly outside the field of view, but, in terms of propagation within the field-of-view the

behaviour is flat and therefore the connectivity is healthy. This is why a good measure is the
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ratio of flat fronts to non-flat fronts present at a particular pacing frequency that characterises

the connectivity (figure 75b).

We can then connect these two magnitudes to the pacing frequency (figure 75a and 75a),

but above all, we can statistically compare the distribution of one of these magnitudes fixing

the other and therefore establishing a direct connection from the individual cell response

to the propagation of the calcium signal through the culture (figure 75c). This work was

published [196] and figure 75 is an extract of the work. The experimental data was taken

from 35 cultures of the HL-1 cell line, with between 500 and 1000 cells each field-of-view,

and all paced with the same protocol consisting of 5 periods of increasing stimulation rates

and two resting periods (one before and one after the protocol). The statistical comparison

of the distribution of area ratios covered by irregular cells for the cases when all fronts were

flat versus cases in which at least one front was not flat was carried out with the Wilcoxon

rank-sum test and a p value under 10−3 was obtained.

(a) Mean area occupied by a cells of
each (complementary) class is close to li-
near with frequency change (slope 0,77±
0,11Hz−1).

(b) Mean values of the percentage of
fronts present in each (complementary)
class. Wilcoxon rank-sum test produced
p < 0,001.

(c) Irregular cells area distribution in two
front dynamics situations. Wilcoxon rank-
sum test produced p < 0,001.

Fig. 75 Results of a particular culture study. The last panel is the most important result where we can see that
when non-flat fronts start to appear, the area occupied by irregular responding cells is greater.

All the methods described in this chapter together with the single cell response classifier

from the previous chapter constitute an automatic processing pipeline that analyses a sequen-

ce of fluorescence images from an excitable cell culture and provides numeric quantification

of the spatio-temporal dynamics that are present, both at cellular scale and the culture scale.

This pipeline is the body of a patent published in January 2016 [197].

The methods allow for comparison of control versus test cells, wether in a group of cells a

mutation has been introduced or that a drug has been applied. If these cells in the culture have

been marked by means of a different dye (other than the calcium indicator) a segmentation

technique can be applied separately. Then a group of equal size of controls can be selected

for comparison. A good way to select the controls is to search for cells of similar size and

similar position. For each dynamical regime, a contingency table can be built where one

counts the number of cells presenting that dynamical regime versus the number of cells not

presenting the regime, and that can be done for the control cells and for the test cells. Each



6.5. RESULTS 109

of the contingency tables can be statistically tested using Fisher exact test [202] against the

hypothesis that the data belongs to the same distribution.

6.5 Results

The culture analysis was performed using a total of 47 different culture experiments. These

experiments were part of different projects, and had different types of cells under different

drug conditions, but they all served to develop, test and improve the different parts involved

such as the cell response classifier, the culture cell segmentation or the front analysis.

Culture characteristics

Total number of cultures 47

Number of sections in each 7

Total number of cells 25988

Mean number of cells 553 ± 65

Total number of signals classified 181916

Table 21 Summary of the dataset used for developing the culture analysis programs.

As described in section 5.1 the experiments are divided into different sections according

to the stimulation frequency applied. With a total of 47 experiments each with 7 sections

and around 550 cells each, this produced a total of nearly 182k cell response signals which

were further classified into one of the six cell dynamical regimes established (also section 5.1).

Table 21 summarises this dataset.

Section 5.2 describes how a subset of these signals where selected to build the training

set for the classifier. Here the total 182k sample signals where classified (table 22) and these

numbers are proof that the method has been extensively tested.

Being under development during five years, several parts of it have been published as

individual methods: the cell response classifier [187], the cell segmentation algorithm [199] or

the front propagation analysis,[196], and the whole method is under a spanish patent [197].

Several studies have used this culture analysis method to in different conditions [200, 190]

they are discussed in the conclusions chapter, section 7.2.
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Dynamical regime Number Percentage

Regular 48026 26.4 %

Phase-lock 9776 5.4 %

Alternant 2887 1.6 %

Wave 48819 26.8 %

Irregular 64351 35.4 %

Inactive 8057 4.4 %

Table 22 Summary of the signal classes used for developing the cell response classification and culture analysis
programs.



7
Conclusions

This thesis is a collection of methods for image processing in calcium imaging using

fluorescence microscopy, ranging from the diffraction limit scale to the culture scale. The

development of these methods has allowed significant contributions to science in the unders-

tanding of cardiac function at the cellular level and its relation to cardiac pathologies such as

arrhythmia and fibrillation. The last section of this chapter includes a brief summary of the

most important publications that have been carried out during the thesis.

7.1 Summary of Contributions

The specific contributions in the field of calcium fluorescence microscopy image processing

are listed as individual methods in the following section. After that another itemisation lists

the findings that the thesis has allowed from a more general physiology and medical point of

view.

7.1.1 Computational tools

Organelle scale

• A fast, reliable and fully automatic method for localisation of sub-diffraction

limit structures in frame scans together with the measurement of their sizes

[173, 174, 203, 204].

• A simplification of the method that is applicable to line scan images [170].

• A mean Z-line distance estimation measurement method based on the position

of detected RyR2 clusters [175].

111
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Intracellular scale

• A very sensitive calcium spark detector for frame scans that measures morp-

hological properties of the detected objects to further refine the detection based

on a set of tuneable parameters [205, 206, 181–183].

• In particular an uprise position detector is proposed for sparks and transients,

and in general for any signal with a rapid upstroke [171].

• A calcium wave tracking method based on a probabilistic approach using

information of the position, speed and size of the wave [184, 207].

• A general calcium event detector for line scans that is capable of detecting

and classifying sparks, mini-waves and waves [180, 208, 207].

Cellular scale

• Definitions of the possible dynamical regimes an excitable cell may enter

during its stimulation [185, 187].

• A proposal for a set of features to describe these dynamical regimes together

with a classification method [209, 185].

• An alternans detector and quantification method for line scans and frame

scans capable of distinguishing spatially concordant from spatially discordant

alternans in the case of frame scans [191, 190].

Culture scale

• A variation of the well known watershed transform focused on segmentation

of cardiac myocytes in a culture during a stimulation protocol [190, 196, 198].

• A method to determine the propagation of fronts during this type of expe-

riments by producing isochronal maps and measuring the linear and angular

velocity of the action potential throughout the culture [196, 197, 200, 199].
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7.1.2 Physiological findings

The contributions to knowledge in cardiac physiology that this thesis has allowed can

be divided into four main subjects of study. The next four sections correspond to these four

subjects and the contributions are itemised under each section.

Arrhythmia

• Identification of a mutation responsible of increased spontaneous calcium

release and ultimately of increased risk of atrial fibrillation [206].

• Promotion of calcium intake by the SERCA pump into the sarcoplasmatic

reticulum breaks down calcium waves into separate smaller waves which sup-

presses ventricular tachycardia [180].

• LDL concentration affects sarcoplasmatic reticulum load and calcium transient

amplitude and regularity where as HDL does not. Higher LDL levels also

negatively affect action potential propagation across cardiac myocite cultures

[200].

Alternans

• RyR2 cluster function is closely linked to the appearence of alternans at the

cellular level. Suppression of its function promotes cardiac alternans at the heart

level [191].

• A2A receptor activation also promotes alternans at the cellular level [190].

Ageing

• Low calcium release by the sarcoplasmatic reticulum and long calcium tran-

sients are linked to a pathologically slow heart rhythm related to ageing [209].

• Low calcium concentration in the sarcoplasmatic reticulum and low membra-

ne calcium current is also related to ageing [185].

Structure & Function

• RyR2 clusters are the only calcium release receptors from the sarcoplasmatic

reticulum [170].
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7.2 Publication Review

This section is a review of the journal publications that have been carried out during the

development of this thesis and is therefore a proof of the thesis impact.

The 4q25 variant rs13143308T links risk of atrial fibrillation to defective pitx2c and calcium homeostasis.

Pending publication [U1].

In this paper, a particular single nucleotide mutation in chromosome four is shown to be

more frequent in atrial fibrillation patients and is linked to spontaneous release of calcium

from the sarcoplasmatic reticulum.

The frame scan spark detector presented in this thesis was used to quantitatively measure

the increase in spontaneous calcium release. Sparks were located, morphological features

were measured and also a clustering method of the spark sites was applied. This allowed

to report both a significantly higher spark frequency and higher number of release sites in

patients with the mutation.

Suppression of Ryanodine Receptor Function Prolongs Ca2+ Release Refractoriness and Promotes

Cardiac Alternans in Intact Hearts. Biochemical Journal, October 2016 [J1].

This publication reports a longer refractory period in calcium release from the sarcoplas-

matic reticulum and an increase in alternating behaviour in cardiac myocytes of mice that

have been genetically engineered to present a mutation that supresses function of the RyR2.

It also demonstrates that drugs affecting RyR2 activity (caffeine suppressing and carvedilol

promoting it) have the same effect on myocyte alternans, therefore linking RyR2 to alternans

at cellular and whole heart level and arrhythmia.

To demonstrate the increase and decrease of alternans depending on the drugs applied, the

alternans identification and quantification method presented in this thesis was used together

with the transient morphology characterisation methods. It showed statistically significant

changes in the severity of alternans and in the duration throughout the experiments and also

showing the dependency of pacing frequency with appearance of alternans.

Cardiac electrical defects in progeroid mice and Hutchinson-Gilford progeria syndrome patients with

nuclear lamina alterations. PNAS, October 2016 [J2].

Abnormal calcium dynamics is reported in cardiac myocytes of mice with a particular

mutation and human patients with a rare disease. In both cases, alterations in an essential

component of the cell nucleus leads to symptoms related to premature ageing. In the paper it
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is shown that the cardiac rhythm of the mice presents a slower rhythm and this is linked at

the cellular level to longer calcium transients and lower sarcoplasmatic reticulum capacity

and release. These cellular level abnormalities are proposed to be the cause of the premature

death in the patients due to myocardial infarction.

Single cell response to increasing pacing was classified with the discussed methodology

in this thesis permitting differences to be established in both in the calcium dynamics and in

the transient kinetics.

Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial

myocytes. Basic Research in Cardiology, January 2016 [J3].

This article reports a relation between the activation of a transmembrane protein and

irregular response of human atrial myocytes under high frequency pacing. It also shows

similar results in mouse myocyte cultures and in porcine atria.

The contribution here was analysing the cultures, in which the cell segmentation algorithm

was used to automatically measure the calcium signal of all cells in the cultures. The cell

response classifier was further applied showing that the fraction of cells that were responding

irregularly increased significantly when the receptor was activated therefore proposing its

inhibition as a means of preventing atrial fibrillation.

Distribution and Function of Cardiac Ryanodine Receptor Clusters in Live Ventricular Myocytes. Journal

of Biological Chemistry, August 2015 [J4].

This paper shows the spatial distribution of RyR2 clusters in mouse ventricular myocytes

and links them to spark origination sites. Here the contribution was both in line scans and

frame scans. In both cases the RyR2 cluster detectors proposed in the thesis were used and in

both cases also the spark detection methods were used. Once sparks and RyR2 clusters were

located in space and time directions, the distance from each spark to the closest RyR2 was

measured, which proved that sparks originate exclusively from RyR2 clusters.

Ageing is associated with deterioration of calcium homeostasis in isolated human right atrial myocytes.

Cardiovascular Research, April 2015 [J5].

This publication is a study on how age effects calcium dynamics at the cellular level.

It describes a general depression in function including lower membrane calcium current

and lower intacellular and sarcoplasmatic reticulum calcium concentration amongst others.

Human myocytes were analysed using the image processing techniques presented in this

thesis, such as the single cell segmentation, signal extraction from concentric layers, and
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morphology and kinetics measurement. Furthermore the signals were analysed and classified

to automatically quantify cell response as a function of age and the frame scan spark detector

was applied to report no changes in spontaneous activity.

Phospholamban knockout breaks arrhythmogenic Ca2+ waves and suppresses catecholaminergic poly-

morphic ventricular tachycardia in mice. Circulation Research, August 2013 [J6].

This article presents an analysis on the effects of a particular protein, phospholamban

(PLN), in calcium dynamics and relates these effects to ventricular tachycardia. The protein is

a known inhibitor of the SERCA pump that collects calcium into the sarcoplasmatic reticulum,

and here it is shown that by inhibiting PLN, therefore promoting calcium intake by SERCA,

tachycardia inducing calcium waves are broken down into smaller units which suppresses

the tachycardia. Mice were genetically engineered to present lack of PLN (knockout) and

these were crossbred with another line of mice that have a mutation making them prone to

ventricular tachycardia producing a third set of mice presenting both features.

For this particular study the line scan general calcium event detector and classifier was

developed and it allowed us to automatically produce event frequency distribution for the

three sets of mice studied, thus quantifying the absence of waves. This batch processing

also allowed the testing of the counter-effects on a series of drugs attempting to recover the

calcium waves.

Low Density Lipoproteins Promote Unstable Calcium Handling Accompanied by Reduced SERCA2 and

Connexin-40 Expression in Cardiomyocytes. PLoS ONE, March 2013 [J7].

In this paper the negative effect of a type of cholesterol (LDL) in the accommodation of

cardiac cells to increasing frequencies is shown and linked to changes at the cellular level. It

is shown that transient amplitude is reduced, sarcoplasmatic reticulum load is reduced and

overall the calcium dynamics becomes irregular. For the study cultures of mouse myocytes

were used and signal propagation speed across the culture was also reported to decrease with

LDL concentration.

The analysis of the cultures was performed using the methods described in this thesis,

such as the cell segmentation, the dynamical regime classifier and the front propagation

quantification technique. This showed smaller calcium transients under LDL and that as

pacing frequency increased, the number of cells presenting irregular response or alternans

was significantly greater at higher LDL concentration.
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7.3 Further work

There is still plenty of work to do in the field. In my opinion, the one thing that is needed

and that I regret not having achieved during this thesis is a unification of the calcium event

detector. This would be a sort of general purpose tool for x-y-t calcium imaging that identifies

objects without taking into account any parameters or a pre-established event classification.

More like what a naive infant would do: simply segment relevant concentration increases and

maybe after that attempt to perform some kind of unsupervised clustering that is ignorant of

current trends in event classification.

The RyR2 cluster distribution inside cardiac myocytes is still not fully understood and

for that stacks of images need to be analysed (x-y-z). De-convolution type techniques need

to be developed to overcome the greater diffraction limit in the optical axis direction to be

able to locate the clusters properly in the 3D space. Further work also needs to be done in

connecting the calcium release from these clusters with their spatial distribution by, for a start,

performing proper local identification of z-lines and by measuring diffusion of sparks and

relating it to such z-lines.

Regarding the classification of calcium dynamics it is possible that neural network based

methods will achieve better results and that is something else that is yet to be done. The

current classifier is certainly limited by the set of features, so might be a good idea to broaden

it up or maybe even not take features and rather use the signal samples as features in the

neural network (by adjusting the signal to a particular number of samples).

Another idea close to the afore-mentioned is to develop a convolutional neural network

that can take the culture image sequences and maybe its segmentation as input and establish

either cell response classification or culture response classification.
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