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Resumen

Los procesos climáticos que representan una mayor incertidumbre respecto a la modificación
del balance radiativo terrestre son los relacionados con los aerosoles atmosféricos. Por tanto,
este campo de investigación representa uno de los temas clave a la hora de establecer políticas
de mitigación del cambio climático. Los estudios de las interacciones calidad del aire / clima
(siglas en inglés, AQCI) son por tanto de especial relevancia, contribuyendo a su vez a la
comprensión de las incertidumbres asociadas a los forzamientos antropogénicos. Con el fin de
crear confianza en los estudios de AQCI, un campo científico de especial interés, el uso de
modelos meteorológicos y químicos de escala regional acoplados está en alza. En este contexto,
el principal objetivo de esta Tesis es la caracterización de las incertidumbres del sistema clima-
química-aerosol-nubes-radiación, asociadas a los efectos radiativos directo e indirecto causados
por los aerosoles sobre Europa.

El primer aspecto tratado en esta Tesis es la configuración del modelo acoplado, relacionado
con la parametrización de la microfísica. Se han estudiado y analizado las diferencias al usar dos
esquemas de microfísica diferentes con el modelo meteorológico acoplado con la química (siglas
en inglés, WRF-Chem). Las simulaciones estudiadas han sido realizadas bajo la segunda fase
de la iniciativa internacional sobre evaluación de la modelización de la calidad del aire (siglas
en inglés, AQMEII). Se ha estimado el impacto de varias variables bajo los siguientes esquemas
de microfísica: Morrison versus Lin, sobre periodos de tres meses durante el 2010 en Europa.
Los resultados obtenidos muestran que la parametrización Morrison simula gotas de nube más
pequeñas y más numerosas, siendo por tanto más efectivo a la hora de dispersar la radiación
de onda corta.

Así mismo, se han estudiado los efectos de los aerosoles procedentes de la quema de biomasa
(siglas en inglés, BB) sobre los vientos en superficie durante la ola de calor y fuegos de Rusia. La
metodología consiste en tres simulaciones con el modelo WRF-Chem sobre Europa, realizadas
bajo la iniciativa EuMetChem COST Action ES1004. Éstas difieren en la inclusión (o no) de
las interacciones aerosol-radiación y aerosol-nubes (en inglés ARI y ACI, respectivamente). Los
resultados muestran que estos aerosoles pueden afectar los vientos en superficie no solo sobre
la fuente de emisión sino también alejados de ella. Los vientos locales disminuyen debido a que
la radiación de onda corta que llega a la superficie se reduce, lo que supone un descenso en la
temperatura a dos metros. Además, la estabilidad atmosférica aumenta cuando se tienen en
cuenta las realimentaciones producidas por los aerosoles sobre la meteorología, provocando una
menor altura de la capa límite planetaria.

Finalmente, esta Tesis evalua la representación de las interacciones ACI en modelos de escala
regional acoplados complementando el análisis colectivo de temperatura. Las simulaciones
analizadas se llevaron a cabo bajo la segunda fase de AQMEII (sobre Europa en 2010) e incluyen
las interacciones ARI+ACI. Las simulaciones son evaluadas frente datos de la Agencia Espacial
Europea (siglas en inglés, ESA) del proyecto Cloud de la iniciativa sobre cambio climático (siglas
en inglés, CCI). La variable fracción de nubes (CFR) se subestima (sobreestima) sobre tierra
(océano), lo que puede ser debido a que los satélite infraestiman las nubes finas sobre el océano.
El bias y el error absoluto medio (siglas en inglés, MAE) son menores al considerar el promedio
del conjunto de simulaciones. En general, la profundidad óptica de la nube (siglas en inglés,
COD), así como el camino de hielo líquido en la nube (siglas en inglés, CIP) son subestimadas
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sobre todo el dominio. Las diferencias encontradas entre los modelos se deben a los diferentes
esquemas de microfísica empleados.

El desarrollo de esta Tesis ha contribuído al estado del arte de los estudios sobre AQCI. A
pesar de que incluir las realimentaciones de los aerosoles no contribuye a la mejora del sesgo
de los modelos, hay una mejora en la variabilidad espacio-temporal así como los coeficientes de
correlación. Son necesarios más estudios en el futuro con el fin de mejorar la representación de
estas interacciones.







Abstract

The response of the climate systems to aerosols and their effect on the radiative budget of the
Earth is the most uncertain climate feedback, and therefore represents one of the key topics
of research in climate change mitigation. Air quality-climate studies (AQCI) are a key, but
uncertain contributor to the anthropogenic forcing that remains poorly understood. To build
confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry
models are in demand. In this context, the main objective of the present Thesis is the character-
ization of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated
to the aerosol direct and indirect radiative effects caused by aerosols over Europe, employing
an ensemble of fully-coupled climate and chemistry model simulations.

The first topic covered here deals with the configuration related to the microphysics param-
eterization of an online-coupled model. The differences when using two microphysics schemes
within the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model,
are analyzed. The evaluated simulations are run under the umbrella of the Air Quality Model
Evaluation International Initiative (AQMEII) Phase 2, during the year 2010, in Europe. The
impact on several variables is estimated when selecting Morrison vs. Lin microphysics parame-
terizations. The results showed smaller and more numerous cloud droplets simulated with the
Morrison parameterization, and therefore this scheme is more effective in scattering shortwave
radiation.

Also, the impact of biomass burning (BB) aerosols on surface winds during the Russian
heat wave and wildfires episode is studied. The methodology consists of three WRF-Chem
simulations over Europe, run under the context of EuMetChem COST Action ES1004, differing
in the inclusion (or not) of aerosol-radiation (ARI) and aerosol-cloud interactions (ACI). Results
show that these aerosols can affect surface winds not only where emission sources are located,
but also further from the release areas. Local winds decrease due to a reduction of shortwave
radiation reaching the ground, which leads to decreases in 2-m temperature. Atmospheric
stability increases when considering aerosol feedbacks, inducing a lower planetary boundary
layer height.

This Dissertation also investigates the ability of an ensemble of simulations to elucidate the
aerosol-radiation-cloud interactions. An assessment of whether the inclusion of atmospheric
aerosol radiative feedbacks during two aerosol case studies (wildfires and dust) of an ensemble
of on-line coupled models improves the simulation results for maximum, mean and minimum
2-m temperature is done. The simulations (EuMetChem COST Action ES1004) are evalu-
ated against observational data from E-OBS gridded database. In both episodes, a general
underestimation of the studied variables is found, being most noticeable in maximum temper-
ature. The biases are improved when including ARI or ARI+ACI in the dust case, but no
evident improvements are found for the heatwave/wildfires episode. Although the ensemble
does not outperform the individual models (in general), the improvements found when includ-
ing ARI+ARI are more remarkable for the ensemble than for the individual models. Last, an
improvement of the spatio-temporal variability and correlation coefficients when atmospheric
aerosol radiative effects are included is found.

Finally, this Thesis explores the representation of the ACI in regional-scale integrated models
when simulating the climate-chemistry-cloud-radiation system. It complements the temperature
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collective analyses. The evaluated simulations are run in the context of AQMEII Phase 2 (over
2010 and Europe) and include the ARI+ACI interactions. The model simulations are evaluated
against the (ESA) Cloud_cci data. Results show an underestimation(overestimation) of cloud
fraction (CFR) over land(ocean) areas, which could be related to satellite retrieval missing
thin clouds. Lower bias and mean absolute error (MAE) are found in the ensemble mean.
Cloud optical depth (COD) and cloud liquid ice path (CIP) are generally underestimated over
the whole domain. The differences found can be attributed to differences in the microphysics
schemes.

The development of this Thesis has contributed to the state of the art in AQCI studies.
Despite the inclusion of the aerosol feedbacks does not modify the bias, the spatio-temporal
variability and correlation coefficients are improved when atmospheric aerosol radiative effects
are included. Further studies are needed in order to improve the representation of these inter-
actions.







Publications

Included in this Thesis

1. Baró, R., Stengel, M., Brunner, D., Curci, G., Hollmann, R., Forkel, R., Palacios-Peña,
L., Savage, N., Schaap, M., Van der Gon, H., Hogrefe, C., Galmarini, S and Jiménez-
Guerrero, P.: How good are aerosol-cloud interactions represented in online coupled re-
gional models? Submitted to :Atmospheric Chemistry and Physics.

2. Baró, R., Palacios-Peña, L., Baklanov, A., Balzarini, A., Brunner, D., Forkel, R., Hirtl,
M., Honzak, L., Pérez, J. L., Pirovano, G., San José, R., Schröder, W., Werhahn, J.,
Wolke, R., Zabkar, R., and Jiménez-Guerrero, P. (2017): Regional effects of atmospheric
aerosols on temperature: an evaluation of an ensemble of on-line coupled models, At-
mospheric Chemistry and Physics Discussions, pp. 1–35, doi:10.5194/acp–2016–1157,
http://www.atmos-chem-phys-discuss.net/acp-2016-1157/, 2017.

3. Baró, R., Lorente-Plazas, R., Montávez, J.P., Jimenez-Guerrero, P (2017). Biomass
burning aerosol impact on surface winds during 2010 Russian forest fires. Geophysical
Research Letters 44, 1088–1094.

4. Baró, R., Jiménez-Guerrero, P., Balzarini, A., Curci, G., Forkel, R., Grell, G., Hirtl,
M., Honzak, L., Im, I., Lorenz, C., Perez, J.L., Pirovano, G., San Jose, R., Tuccella,
P., Werhahn, J., Zabkar, R. (2015). Sensitivity analysis of the microphysics scheme in
WRF-Chem contributions to AQMEII phase 2. Atmospheric Environment, 115, 620-629.

Derived from this Thesis

1. Palacios-Peña, L., Baró, R., Baklanov, A., Balzarini, A., Brunner, D., Forkel, R., Hirtl,
M., Honzak, López-Romero, J.M., Pérez, J. L., San José, R., Schröder, W., Werhahn,
J., Wolke, R., Zabkar, R., and Jiménez-Guerrero, P. An assessment of aerosol optical
properties from remote sensing observations and an ensemble of regional chemistry-climate
coupled models over Europe. To be submitted to Atmospheric Chemistry and Physics.

2. Solazzo, E., Bianconi, R., Hogrefe, C., Curci, G., Alyuz, U., Balzarini, A., Baró, R.,
Bellasio, R., Bieser, J., Brandt, J., Christensen, J.H., Colette, A., Francis, X., Fraser,
A., Garcia Vivanco, M., Jimenez-Guerrero, P., Im, U., Manders, A., Nopmongcol, U.,
Kitwiroon, N., Pirovano, G., Pozzoli, L., Prank, M., Sokhi, R.S., Tuccella, P., Unal, A.,
Yarwood, G., Galmarini, S (2016). Evaluation Error Apportionment of an Ensemble
of Atmospheric Chemistry Transport Modelling Systems: Multi-variable Temporal and
Spatial Breakdown. Atmospheric Chemistry and Physics, 17, 3001–3054.

3. Palacios-Peña, L., Baró, R., Guerrero-Rascado, J.L., Alados-Arboledas, L., Brunner,
D., Jimenez-Guerrero, P (2016). Assessment of the radiative effects of aerosols in an on-
line coupled model over the Iberian Peninsula. Atmospheric Chemistry and Physics, 17,
277–296.

xix



xx Publications

4. Kioutsioukis, I., Im, U., Solazzo, E., Bianconi, R., Badia, A., Balzarini, A., Baró, R.,
Bellasio, R., Brunner, D., Chemel, C., Curci, G., Denier van der Gon, H., Flemming,
J., Forkel, R., Giordano, L., Jimenez-Guerrero, P., Hirtl, M., Jorba, O., Manders-Groot,
A., Neal, L., Perez, J.L., Pirovano, G., San Jose, R., Savage, N., Schroder, W., Sokhi,
R.S., Syrakov, D., Tuccella, P., Werhahn, J., Wolke, R., Hogrefe, C., Galmarini, S (2016).
Improving the deterministic skill of air quality ensembles. Atmospheric Chemistry and
Physics, 16, 15629–15652.

5. Palacios-Peña, L., Baró, R., Jimenez-Guerrero, P (2015). An on-line modelling study of
the direct effect of atmospheric aerosols over Europe. Física de la Tierra, 27,155–170.

6. Giordano, L., Brunner, D., Flemming, J., Im, U., Hogrefe, C., Bianconi, R., Badia, A.,
Balzarini, A., Baró, R., Chemel, C., Curci, G., Forkel, R., Jimenez-Guerrero, P., Hirtl,
M., Hodzic, A., Honzak, L., Jorba, O., Knote, C., Kuenen, J.J.P., Makar, P.A., Manders-
Groot, A., Neal, L., Perez, J.L., Pirovano, G., Pouliot, G., San Jose, R., Savage, N.,
Schroder, W., Sokhi, R.S., Syrakov, D., Torian, A., Tuccella, P., Werhahn, J., Wolke, R.,
Yahya, K., Zabkar, R., Zhang, Y., Galmarini, S (2015). Assessment of the MACC/IFS-
MOZART model and its influence as chemical boundary conditions in AQMEII phase 2.
Atmospheric Environment, 115, 371–388.

7. San José, R., Pérez, J. L., Balzarini, A., Baró, R., Curci, G., Forkel, R., Galmarini, S.,
Grell, G., Hirtl, M., Honzak, L., Im, U., Jimenez-Guerrero, P., Langer, M., Pirovano, G.,
Tuccella, P., Werhahn, J., Zabkar, R (2015). Evaluation of feedback effects in CBMZ/-
MOSAIC chemical mechanism. Atmospheric Environment, 115, 646–656.

8. Curci, G., Hogrefe, C., Bianconi, R., Im, U., Balzarini, A., Baró, R., Honzak, L, Brunner,
D., Forkel, R., Giordano, L., Hirtl, M., Honzak, L., Jimenez-Guerrero, P., Knote, K.,
Langer, M., Makar, P., Pirovano, G., Perez, J.L., San Jose, R., Syrakov, D., Tuccella, P.,
Werhahn, J., Wolke, R., Zabkar, R., Zhang, J. (2014) . Uncertainties of simulated aerosol
optical properties induced by assumptions on aerosol physical and chemical properties:
an AQMEII-2 perspective. Atmospheric Environment, 115, 541–552.

9. Forkel, R., Balzarini, A., Baró, R., Bianconi, R., Curci, G., Jimenez-Guerrero, P., Hirtl,
M., Honzak, L., Lorenz., C Im, U., Perez, J.L., Pirovano, G., San Jose, R., Tuccella, P.,
Werhahn, J., Zabkar, R (2014). Analysis of the WRF-Chem contributions to AQMEII
phase 2 with respect to aerosol radiative feedbacks on meteorology and pollutant distri-
butions. Atmospheric Environment, 115, 630–645.

10. Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Baró, R.,
Bellasio, R., Brunner, D., Chemel, C., Curci, G., Flemmig, J., Forkel, R., Giordano,
L., Jimenez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba Casellas, O., Knote,
C., Kuenen, J. J., Makar, P. A., Manders-Groot, A., Neal, L., Perez, J. L., Pirovano,
G., Pouliot, G., San Jose, R., Savage, N., Schroder, W., Sokhi, R., Syrakov, D., Torian,
A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y., Zhang, J.,
Horgefe, C., Galmarini, S (2014). Evaluation of operational on-line-coupled regional air
quality models over Europe and north America in the context of AQMEII Phase 2. Part
I: Ozone. Atmospheric Environment, 115, 404–420.

11. Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Baró, R.,
Belasio, R., Brunner, D., Chemel, C., Curci, G., Denier van der Gon, H.A.C., Flemming,
J., Forkel, R., Giordano, L., Jimenez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L.,
Jorba, O., Knote, C., Makar, P.A., Manders-Groot, A., Neal, L., Perez, J.L., Piravano,
G., Pouliot, G., San Jose, R., Savage, N., Schroder, W., Sokhi, R.S., Syrakov, D., Torian,
A., Tuccella, P., Werhahn, K., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y., Zhang, J.,



Publications xxi

Hogrefe, C., Galmarini, S (2014). Evaluation of operational online-coupled regional air
quality models over Europe and North America in the context of AQMEII phase 2. Part
II: Particulate Matter, Atmospheric Environment, 115, 421–441.

12. Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J. J., Madronich, S., Baró, R.,
Jimenez-Guerrero, P., Luecken, D., Hogrefe, C., Forkel, R., Werhahn, J., Hirtl, M., Perez,
J.L., San Jose, R., Giordano, L., Brunner., D., Yahya, K., Zhang, Y (2014). Influence
of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the
AQMEII Phase-2 intercomparison. Atmospheric Environment, 115, 553–568.

13. Kong, X., Forkel, R., Sokhi, R. S., Suppan, P., Baklanov, A., Gauss, M., Brunner, D.,
Baró, R., Balzarini, A., Chemel, C., Curci, G., Guerrero, P., Hirtl, M., Honzak, L.,
Im, U., Perez, J.L., Pirovano, G., San Jose, R., Schlünzen, H., Tsegas, G., Tuccella,
P., Werhahn, J., Zabkar, R., Galmarini, S (2014). Analysis of Meteorology-Chemistry
Interactions during Air Pollution Episodes using online coupled models within AQMEII
Phase-2. Atmospheric Environment, 115, 527–540.

14. Makar, P. A., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Zabkar, R., Milbrandt, J., Im,
U., Galmarini, S., Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel,
S., Hirtl, M., Honzak, L., Hou, A., Jimenez-Guerrero, P., Langer, M., Moran, M.D.,
Pabla, B., Perez, J.L., Pirovano, G., San Jose, R., Tuccella, P., Werhahn, J., Zhang, J
(2014). Feedbacks between Air Pollution and Weather, Part 1: Effects on Chemistry.
Atmospheric Environment, 115, 442–562.

15. Makar, P. A., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Zabkar, R., Im, U., Balzarini,
A., Baró, R., Bianconi, R., Cheung, P., Forkel,R., Gravel, S., Hirtl, M., Honzak, L., Hou,
A., Jimenez-Guerrero, P., Langer, M., Moran, M.D., Pabla, B., Perez, J.L., Pirovano, G.,
San Jose, R., Tuccella, P., Werhahn, J., Zhang, J., Galmarini, S (2014). Feedbacks be-
tween Air Pollution and Weather, Part 2: Effects on Weather. Atmospheric Environment,
115, 499–526.

16. Campbell, P., Zhang, Y., Yahya, K., Wang, K., Hogrefe, C., Pouliot, G., Knote, C., San
Jose, R., Perez, J.L., Jimenez-Guerrero, P., Baró, R., Makar, P (2014). A Multi-Model
Assessment for the 2006 and 2010 Simulations under the Air Quality Model Evaluation
International Initiative (AQMEII) Phase 2 over North America: Part I. Indicators of
the Sensitivity of O3 and PM2.5 Formation Regimes. Atmospheric Environment, 115,
569–586.

17. Wang, K., Yahya, K., Zhang, Y., Hogrefe, C., Pouliot, G., Knote, C., Hodzic, A., San
Jose, R., Jimenez-Guerrero, P., Baró, R., Makar, P., Bennartz, R (2014). A Multi-Model
Assessment for the 2006 and 2010 Simulations under the Air Quality Model Evaluation
International Initiative (AQMEII) Phase 2 over North America: Part II. Evaluation of
Column Variable Predictions Using Satellite Data. Atmospheric Environment, 115, 587–
603.

18. Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Makar, P., Badia, A.,
Balzarini, A., Baró, R., Bianconi, R., Chemel, C., Curci, G., Forkel, R., Jimenez-
Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Im, U., Knote, C., Manders-Groot, A.,
Neal, L., Perez, J.L., Pirovano, G., San Jose, R., Schröder, W., Sokhi, R.S., Syrakov, D.,
Torian, A., Werhahn, J., Wolker, R., van Meijgaard, E., Yahya, K., Zabkar, R., Zhang,
Y., Hogrefe, C., Galmarini, S (2014). Evaluation of the meteorological performance of
coupled chemistry-meteorology models in the context of AQMEII phase 2. Atmospheric
Environment, 115, 470–498.



xxii Publications

Book chapters

1. Montávez, J.P., Gómez-Navarro, J.J., Jerez S., Baró, R., Lorente-Plazas, R., García-
Valero, J.A., Jiménez-Guerreo, P. Análisis del papel de la elección de la base de datos retic-
ular observacional en la evaluación de modelos climáticos regionales. Cambio climático.
Extremos e impactos. 15, 153-163. Asociación Española de Climatología, 2012. ISBN
978-84-695-4331-3.

International Conferences and Workshops

1. Baró, R., Palacios-Peña, L., Baklanov, A., Balzarini, A., Brunner, D., Forkel, R., Hirtl,
M., Honzak, L., Pérez, J.L., Pirovano, G., San José, R., Schröder, W., Werhahn, J.,
Wolke, R., Zabkar, R., and Jiménez-Guerrero, P Regional effects of atmospheric aerosols
on temperature: an evaluation of an ensemble of on-line coupled models. Viena, Austria.
04/2017.

2. Palacios-Peña, L., Baró, R., Jiménez-Guerrero, P. An evaluation of uncertainty in the
aerosol optical properties as represented by satellites and an ensemble of chemistry-climate
coupled models over europe. EGU General Assembly. Viena, Austria. 04/2016.

3. Palacios-Peña, L., Baró, R., Alados-Arboledas, L., Jiménez-Guerrero, P. Evaluation of
the aerosol-radiation and aerosol-cloud interactions in an online-coupled model over the
iberian península. AIR QUALITY - Science and application. Milano, Italy 03/2016.

4. Baró, R., Palacios-Peña, L., Brunner, D., Bianconi, R., Curci, G., Honzak, L., Forkel, R.,
Manders, A., Neal, L., Shaap, M., Tuccella, P., Van der Gon, H., Werhahn, W., Zabkar, R.,
Jiménez-Guerrero, P. How good are aerosol-cloud interactions in online coupled models?.
AIR QUALITY - Science and application. Milano, Italy 03/2016.

5. Baró, R., Palacios-Peña, L., Jiménez-Guerrero, P. Study of the aerosol cloud interactions
over the Iberian Peninsula. 3rd Iberian Meeting on Aerosol Science and Technology,
RICTA 2015, Elche, Alicante, España. 06/2015.

6. Palacios-Peña, L., Baró, R., Jiménez-Guerrero, P. How good are aerosol radiative feed-
backs represented in on-line coupled models? An assessment over the Iberian Peninsula.
3rd Iberian Meeting on Aerosol Science and Technology, RICTA 2015, Elche, Alicante,
España. 06/2015

7. Baró, R., Lorente-Plazas, R., Jerez, S., Montávez, J.P., Jiménez-Guerrero, P. Are at-
mospheric aerosols able to modify the surface winds? A sensitivity study of the biomass
burning aerosols impact on the spatially-distributed wind over Europe. EGU General
Assembly. Viena, Austria. 04/2015.

8. Forkel, R., Brunner, D., Balzarini, A., Baró, R., Hirtl, M., Jiménez-Guerrero, P., Jorba,
O., Pérez, J.L., Pirovano, G., San José, R., Schröder, W., Werhahn, J., Wolke, R., Zabkar,
R. Case studies on aerosol feedback effects in online coupled chemistry-meteorology models
during the 2010 Russian fire event. European Geosciences Union. Viena, Austria. 04/2015

9. Palacios-Peña, L., Baró, R., Jiménez-Guerrero, P. Direct radiative effect of atmospheric
aerosols over Europe: An on-line modelling approach. Gloream 25th Workshop On Tro-
pospheric Chemical Transport Modelling. Aveiro, Portugal. 11/2014.

10. Campbell, P., Zhang, Y., Yahya, K., Wang, K., Christoph, K., Hodzic, A., San José,
R., Pérez, J.L., Jiménez-Guerrero, P., Baró, R., Makar, P. A multi-model assessment
for the 2006 and 2010 simulations under the air quality model evaluation international
initiative (AQMEII) Phase 2 over north America: indicators of the sensitivity of O3 and



Publications xxiii

PM2.5 formation regimes. Community Modeling and Analysis System (CMAS). Chape
Hill, Carolina del Norte, United States. 10/2014.

11. Knote, C., Emmons, L., Hodzic, A., Madronich, S., Orlando, J., Baró, R., Jiménez-
Guerrero, P., Brunner, D., Giordano, L., Curci, G., Tuccella, P., Forkel, R., Hirtl, M.,
Hogrefe, C., Luecken, D., San José, R., Pérez, J.L., Wolke, R., Zhang, Y. Evaluation
of the performance of different WRF-chem configurations with a focus on the gas-phase
mechanisms. 15th Annual WRF Users’ Workshop. Boulder, Colorado, United States.
06/2014

12. Jiménez- Guerrero, P., Balzarini, A., Baró, R., Curci, G., Forkel, R., Hirtl, M., Honzak,
L., Langer, M., Pérez, J.L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zabkar,
R. Describing the direct and indirect radiative effects of atmospheric aerosols over Europe
by using coupled meteorology-chemistry simulations: a contribution from the AQMEII-
Phase II exercise. European General Assembly. Viena, Austria. 04/2014

13. Werhahn, J., Forkel, R., Balzarini, A., Baró, R., Curci, G., Hirtl, M., Honzak, L.,
Jiménez-Guerrero, P., Pérez, J.L., Pirovano, G., San José, R., Tuccella, P., Zabkar, R.
Analysis of the WRF-Chem simulations for the AQMEII Phase II exercise with respect to
aerosol impact on precipitation. European General Assembly. Viena, Austria. 04/2014.

14. Forkel, R., Balzarini, A., Baró, R., Curci, G., Jiménez-Guerrero, P., Hirtl, M., Honzak,
L., Pérez, J.L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zabkar, R. WRF-
CHEM simulations on the effect of aerosol-meteorology feedback on regional pollutant
distributions over Europe. Garmisch-Partenkirchen, Alemania. 03/2014.





Acronyms

ACCMIP Atmospheric Chemistry and Climate Model Intercomparison Project.

ACI Aerosol-Cloud Interactions.

ACT Atmospheric Chemical Transport.

ACTMs Atmospheric Chemistry Transport Models.

ACTRIS Aerosols, Clouds, and Trace gases Research InfraStructure Network.

AEROCOM Aerosol Comparisons between Observations and Models.

AERONET AErosol RObotic NETwork.

AOD Aerosol Optical Depth.

AQCI Air Quality-Climate Interactions.

AQMEII Air Quality Model Evaluation International Initiative.

AR4 Fourth Assessment Report.

AR5 Fifth Assessment Report.

ARI Aerosol-Radiation Interactions.

ASY Asymmetry parameter.

BB Biomass Burning.

BC Black Carbon.

CAM3 Community Atmosphere Model.

CB05 Carbon Bond mechanism version 05.

CBM-Z Carbon-Bond Mechanism version Z.

CCN Cloud Condensation Nuclei.

CCSM Community Climate System Model.

CFR Cloud Fraction.

CH4 Metane.

CIP Cloud liquid Ice Path.

CLOUDNET Network of stations for the continuous evaluation of cloud and aerosol profiles.

xxv



xxvi Acronyms

CMAQ Community Multiple Air Quality.

CMIP5 Coupled Model Intercomparison Project Phase 5.

CO2 Carbon dioxide.

COD Cloud Optical Depth.

CTM Chemistry Transport Model.

CWP Cloud liquid water Path.

DMS Dimethylsulfide.

Dp Diameter particle.

DRF Direct Radiative Forcing.

DWD German Weather Service.

EARLINET European Aerosol Research Lidar Network.

EC Elemental Carbon.

ECMWF European Centre for Medium-Range Weather Forecasts.

EMEP European Monitoring and Evaluation Programme.

EPA Enviromental Protection Agency.

ERF Effective Radiative Forcing.

ERFaci Aerosol-Cloud Interactions Effective Radiative Forcing.

ERFari Aerosol-Radiation Interactions Effective Radiative Forcing.

ESA European Space Agency.

EU Europe.

EuMetChem European framework for online integrated air quality and meteorology mod-
elling.

GATOR-GCMOM Gas Aerosol Transport Radiation, General Circulation Mesoscale, Ocean
Model.

GCMs Global Climate Models.

GHGs Greenhouse gases.

GOCART Global Ozone Chemistry Aerosol Radiation and Transport model.

HNO3 Nitric acid.

IN Ice Nuclei.

IPCC Intergovernmental Panel on Climate Change.

LM-MUSCAT Local Model Multiscale Chemistry Aerosol Transport.



Acronyms xxvii

LW LongWave.

MADE Modal Aerosol Dynamics Model for Europe.

MADRID Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution.

MAE Mean Absolute Error.

MFB Mean Fractional Bias.

MIRAGE Model for Integrated Research on Atmospheric Global Exchanges.

MODIS Moderate Resolution Imaging Spectroradiometer.

MOSAIC Model for Simulating Aerosol Interactions and Chemistry.

NA North America.

NB Normalized Bias.

NCAR National Center for Atmospheric Research.

NH3 Ammonia.

NH+
4 Ammonium.

NMSE Normalized Mean Square Error.

NO−
3 Nitrate.

NOx Nitrogen oxides.

NOy Total reactive nitrogen.

O3 Ozone.

OA Organic Aerosol.

OC Organic Carbon.

OM Organic Matter.

PBAP Primary Biological Aerosol Particles.

PBL Planetary Boundary Layer.

PBLH Planetary Boundary Layer Height.

PCC Pearson Correlation Coefficient.

PM Particulate Matter.

PM10 Particulate Matter with an aerodynamic diameter less than or equal to 10 µm.

PM2.5 Particulate Matter with an aerodynamic diameter less than or equal to 2.5 µm.

POA Primary Organic Aerosol.

ppbv Parts per billion in volume.

ppm Parts per million.



xxviii Acronyms

QCLOUD Cloud Water Mixing Ratio.

QNDROP Droplet Number Mixing Ratio.

RACM Regional Atmospheric Chemistry Mechanism.

RADM2 Regional Acid Deposition Model version 2.

RAINC Accumulated Convective Precipitation.

RAINNC Accumulated Total Grid scale Precipitation.

RCP Representative Concentration Pathways.

RE Radiative Effect.

RF Radiative Forcing.

RH Relative Humidity.

RMSE Root Mean Square Error.

RRTMG Rapid Radiative Transfer Method for Global.

Sfc Surface.

SILAM System for Integrated modeLing of atmospheric coMposition.

SLP Sea Level Pressure.

SO2 Sulphur dioxide.

SO−2
4 Sulphate.

SOx Sulphur oxides.

SOA Secondary Organic Aerosol.

SORGAM Secondary Organic Aerosol Model.

SSA Single Scattering Albedo.

SW ShortWave.

SWDNB ShortWave Downwelling flux at Bottom.

SWUPB Shortwave Upwelling flux at the Bottom.

T2 Temperature at 2 meters.

TNO Netherlands Organization for Applied Scientific Research.

TOA Top Of the Atmosphere.

US United States.

VOCs Volatile organic compounds.

WRF-Chem Weather Research and Forecasting Chemistry model.

WS10 Wind Speed at 10 meters.



Contents

Acknowledgements vii

Resumen xi

Abstract xv

Publications xix

Acronyms xxv

1 Introduction 1
1.1 State of the art of atmospheric aerosol . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Aerosol properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1.1 Mass concentration and size distribution . . . . . . . . . . . . . 4
1.1.1.2 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.2 Aerosol-radiation-cloud Interactions . . . . . . . . . . . . . . . . . . . . 9
1.1.2.1 Effective radiative forcing by the aerosol-radiation interactions 9
1.1.2.2 Effective radiative forcing by the aerosol-cloud interactions . . 12
1.1.2.3 Types of aerosols and their radiative effects . . . . . . . . . . . 12
1.1.2.4 Aerosol and climate change . . . . . . . . . . . . . . . . . . . . 17
1.1.2.5 Forcing, Rapid Adjustments and Feedbacks . . . . . . . . . . . 19

1.1.3 Aerosol processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1.3.1 Radiation schemes . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.1.3.2 Nucleation, condensation and coagulation . . . . . . . . . . . . 22
1.1.3.3 Dry deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1.3.4 Wet deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.1.4 Approaches to study atmospheric aerosols . . . . . . . . . . . . . . . . . 24
1.1.4.1 Extractive techniques . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.4.2 In situ or ground-based measurements . . . . . . . . . . . . . . 25
1.1.4.3 Remote sensing techniques . . . . . . . . . . . . . . . . . . . . 25
1.1.4.4 Aerosol modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.1.4.5 Online-coupled meteorology and chemistry models . . . . . . . 32
1.1.4.6 Short description of WRF-Chem model . . . . . . . . . . . . . 36
1.1.4.7 Aerosol feedbacks modeling studies . . . . . . . . . . . . . . . . 37

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.3 Scope and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2 Sensitivity analysis of the microphysics scheme in WRF-Chem contributions
to AQMEII Phase 2 49
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2.1 Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xxix



xxx Índice

2.2.2 Model configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2.3 Microphysics schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.1 Sensitivity study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.2 Numerical model comparison and evaluation . . . . . . . . . . . . . . . . 61

2.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Biomass burning aerosol impact on surface winds during the 2010 Russian
heatwave 65
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Simulations and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1 Model configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Base case meteorological situation . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 Effects on wind speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.3 Causes of wind variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.3.1 Wind correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Regional effects of atmospheric aerosols on temperature: an evaluation of an
ensemble of on-line coupled models 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Participating models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.2 Emissions and boundary conditions . . . . . . . . . . . . . . . . . . . . . 81
4.2.3 Observational database . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.4 Validation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.1 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3.2 Temporal correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.3 Temporal variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.4 Spatial variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 How good are aerosol-cloud interactions represented in online-coupled re-
gional models? 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Model simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.2 Observational data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2.3 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.1 Cloud fraction, CFR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.3.2 Cloud optical depth, COD . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.3 Cloud ice path, CIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.4 Cloud water path, CWP . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.5 Spatial correlation and variability . . . . . . . . . . . . . . . . . . . . . . 127

5.4 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Conclusions and future perspectives 133
6.1 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133



Índice xxxi

6.1.1 Sensitivity analysis of the microphysics scheme . . . . . . . . . . . . . . 134
6.1.2 Biomass burning aerosol impact on surface winds . . . . . . . . . . . . . 135
6.1.3 Atmospheric aerosol effects on temperature . . . . . . . . . . . . . . . . 136
6.1.4 Aerosol-cloud interactions representation in online-coupled models . . . 137

6.2 Future works and development . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Bibliography 141





List of Figures

1.1 Comparison of an unpolluted and polluted area of Beijing (PM10) . . . . . . . . 2
1.2 Mass distribution of atmospheric aerosols . . . . . . . . . . . . . . . . . . . . . 5
1.3 Simplified diagram of the scatter and absorbing light . . . . . . . . . . . . . . . 6
1.4 CIMEL Sun Photometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Average seasonal AOD by MODIS . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Schematic of the new terminology used in the AR5 . . . . . . . . . . . . . . . . 10
1.7 Schematic of aerosol-radiation interactions . . . . . . . . . . . . . . . . . . . . . 11
1.8 Diagram of the semi-direct effect . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Schematic that represents aerosol-cloud interactions . . . . . . . . . . . . . . . . 13
1.10 Image of sulfate aerosols (the spherical structures) . . . . . . . . . . . . . . . . 14
1.11 A mixed organic/sulfate below-cloud aerosol . . . . . . . . . . . . . . . . . . . . 15
1.12 Transmission electron microscope image of BC . . . . . . . . . . . . . . . . . . 16
1.13 Mineral dust particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.14 Sea salt particle that consists of a sodium chloride crystal, mixed-cation sulfate,

and filamentous organic material . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.15 Principal component of the RF of climate change . . . . . . . . . . . . . . . . . 19
1.16 Multi-model CMIP5 average changes in the annual mean radiation anomaly at

the TOA over 2081-2100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.17 CMIP5 multi-model changes in annual mean total cloud fraction (in %) relative

to 1986-2005 for 2081-2100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.18 Overview of the forcing and feedback pathways involving GHGs, aerosols and

clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.19 Aerosol particles interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.20 Schematic representation of the nucleation process and subsequent growth process 23
1.21 Schemematic representation of the wet deposition processes . . . . . . . . . . . 24
1.22 Schematic diagram of a High Volume Sample . . . . . . . . . . . . . . . . . . . 25
1.23 Nephelometer schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.24 AERONET stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.25 Particle size distribution approach . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.26 Interactions of the integrated system of meteorology and ACTMs. . . . . . . . . 34
1.27 Flowchart of the WRF-Chem system. . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 (Top panel): (First row) Winter 2010 (left) and summer 2010 (right) mean cloud
water mixing ratio (QCLOUD) in MORRAT simulations (g kg−1). (Second row)
Winter 2010 (left) and summer 2010 (right) mean differences between MOR-
RAT and LINES (g kg−1). (Bottom panel) Id. for droplet number mixing ratio
(QNDROP) (kg−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xxxiii



xxxiv Índice de figuras

2.2 (Top panel): (First row) Winter 2010 (left) and summer 2010 (right) mean down-
welling shortwave flux at bottom (SWDNB) in MORRAT simulations (W m−2).
(Second row) Winter 2010 (left) and summer 2010 (right) mean differences be-
tween MORRAT and LINES (W m−2). (Bottom panel) Id. for upwelling short-
wave flux at the top of the atmosphere (SWTU) (W m−2). . . . . . . . . . . . . 58

2.3 (First row) Winter 2010 (left) and summer 2010 (right) T2 in MORRAT sim-
ulations (K). (Second row) Winter 2010 (left) and summer 2010 (right) mean
differences between MORRAT and LINES (K). . . . . . . . . . . . . . . . . . . 59

2.4 (Top panel): (First row) Winter 2010 (left) and summer 2010 (right) mean con-
vective precipitation (RAINC) in MORRAT simulations (mm). (Second row)
Winter 2010 (left) and summer 2010 (right) mean differences between MORRAT
and LINES (mm). (Bottom panel) Id. for grid scale precipitation (RAINNC)
(mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 Total PM10 fire emissions during the fire episode (25 July-15 August 2010). The
region affected by the wildfires is highlighted with a circle. . . . . . . . . . . . . 70

3.2 Mean values during Russian forest fires. First row represents the Base case;
second row DRF-Base differences, third row RF-Base differences. . . . . . . . . 71

3.3 Aerosol effects on WS10. First row represents the Base case; second row DRF-
Base differences and third row RF-Base differences. . . . . . . . . . . . . . . . . 73

3.4 Spatial correlation over Russian area of WS10 differences and differences in sev-
eral meteorological variables: SWDNB, T2, PBLH, SLP, AOD and RH. Correla-
tions are computed for the spatial differences between experiments RF (triangles)
and DRF (circles) and Base case, i.e., Figure 3.3 versus Figure 3.2. . . . . . . . 74

4.1 (Top row) Maximum temperature (TMAX) for the fires (left) and dust (right)
episodes, as derived from E-OBS database (in K). The panel below represents the
bias for the fires (left) and dust (right) episodes of each simulation with respect
to the E-OBS database. NRF: no radiative feedbacks; ARI: aerosol-radiation
interactions; ARI+ACI: as ARI including aerosol-cloud interactions. . . . . . . 85

4.2 (Top row) Mean temperature (TEMP) for the fires (left) and dust (right) episodes,
as derived from E-OBS database (in K). The panel below represents the bias for
the fires (left) and dust (right) episodes of each simulation with respect to the E-
OBS database. NRF: no radiative feedbacks; ARI: aerosol-radiation interactions;
ARI+ACI: as ARI including aerosol-cloud interactions. . . . . . . . . . . . . . . 87

4.3 (Top row) Minimum temperature (TMIN) for the fires (left) and dust (right)
episodes, as derived from E-OBS database (in K). The panel below represents the
bias for the fires (left) and dust (right) episodes of each simulation with respect
to the E-OBS database. NRF: no radiative feedbacks; ARI: aerosol-radiation
interactions; ARI+ACI: as ARI including aerosol-cloud interactions. . . . . . . 88

4.4 (Top row) Time determination coefficient (ρ2) (model vs. E-OBS) of the max-
imum temperature (TMAX) for the fires (left panel) and dust (right panel)
episodes. The first column in each panel below represents the value of ρ2 of
the no radiative feedback case with respect to the E-OBS database. The center
and right columns indicate the increase (red values) or decrease (blue value) of
each simulation with respect to the case not including feedbacks. NRF: no radia-
tive feedbacks; ARI: aerosol-radiation interactions; ARI+ACI: as ARI including
aerosol-cloud interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



Índice de figuras xxxv

4.5 (Top row) Time determination coefficient (ρ2) (model vs. E-OBS) of the mean
temperature (TEMP) for the fires (left panel) and dust (right panel) episodes.
The first column in each panel below represents the value of ρ2 of the no radiative
feedback case with respect to the E-OBS database. The center and right columns
indicate the increase (red values) or decrease (blue value) of each simulation
with respect to the case not including feedbacks. NRF: no radiative feedbacks;
ARI: aerosol-radiation interactions; ARI+ACI: as ARI including aerosol-cloud
interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.6 (Top row) Time determination coefficient (ρ2) (model vs. E-OBS) of the mini-
mum temperature (TMIN) for the fires (left panel) and dust (right panel) episodes.
The first column in each panel below represents the value of ρ2 of the no radiative
feedback case with respect to the E-OBS database. The center and right columns
indicate the increase (red values) or decrease (blue value) of each simulation with
respect to the case not including feedbacks. NRF: no radiative feedbacks; ARI:
aerosol-radiation interactions; ARI+ACI: as ARI including aerosol-cloud inter-
actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7 (Top row) Standard deviation (STD) of the maximum temperature (TMAX) for
the fires (left) and dust (right) episodes, as derived from E-OBS database (in K).
The panel below represents the bias for the standard deviation of the fires (left)
and dust (right) episodes of each simulation with respect to the E-OBS database.
NRF: no radiative feedbacks; ARI: aerosol-radiation interactions; ARI+ACI: as
ARI including aerosol-cloud interactions. . . . . . . . . . . . . . . . . . . . . . . 94

4.8 (Top row) Standard deviation (STD) of the mean temperature (TEMP) for the
fires (left) and dust (right) episodes, as derived from E-OBS database (in K).
The panel below represents the bias for the standard deviation of the fires (left)
and dust (right) episodes of each simulation with respect to the E-OBS database.
NRF: no radiative feedbacks; ARI: aerosol-radiation interactions; ARI+ACI: as
ARI including aerosol-cloud interactions. . . . . . . . . . . . . . . . . . . . . . . 96

4.9 (Top row) Standard deviation (STD) of the minimum temperature (TMIN) for
the fires (left) and dust (right) episodes, as derived from E-OBS database (in K).
The panel below represents the bias for the standard deviation of the fires (left)
and dust (right) episodes of each simulation with respect to the E-OBS database.
NRF: no radiative feedbacks; ARI: aerosol-radiation interactions; ARI+ACI: as
ARI including aerosol-cloud interactions. . . . . . . . . . . . . . . . . . . . . . . 97

4.10 Taylor diagrams for (left) maximum temperature, (center) mean temperature,
and (right) minimum temperature for the simulations included in the analysis.
The top row represents the Taylor diagrams for the fires episode, while the bottom
row stands for the dust episode. The cases included are: no radiative feedbacks
(filled circle), ARI (asterisk) and ARI+ACI (empty squares). Each configuration
is shown in a different color: CS1 (green), CS2 (dark blue), DE3 (red), ES1
(yellow), ES3 (pink) and ENS (black). . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 MEAN BIAS ERROR (bias) CFR. First row represents the mean satellite values
of 2010, JFM, AMJ, JAS, OND. Following rows represent the bias of CFR for
the same time periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 MEAN ABSOLUTE ERROR (MAE) CFR. First row represents the mean satel-
lite values of 2010, JFM, AMJ, JAS, OND. Following rows represent the MAE
of CFR for the same time periods. . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Temporal correlation (r) for the whole year 2010. First row represents the mean
satellite values of 2010 where each column represents a cloud variable. Following
rows show the r of each model and cloud variable. . . . . . . . . . . . . . . . . 116



xxxvi Índice de figuras

5.4 MEAN BIAS ERROR (bias) COD. First row represents the mean satellite values
of 2010, JFM, AMJ, JAS, OND. Following rows represent the bias of COD for
the same time periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.5 MEAN ABSOLUTE ERROR (MAE) COD. First row represents the mean satel-
lite values of 2010, JFM, AMJ, JAS, OND. Following rows represent the MAE
of COD for the same time periods. . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 MEAN BIAS ERROR (bias) CIP. First row represents the mean satellite values
of 2010, JFM, AMJ, JAS, OND. Following rows represent the bias of CIP for the
same time periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 MEAN ABSOLUTE ERROR (MAE) CIP. First row represents the mean satellite
values of 2010, JFM, AMJ, JAS, OND. Following rows represent the MAE of CIP
for the same time periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.8 MEAN BIAS ERROR (BIAS) CWP. First row represents the mean satellite
values of 2010, JFM, AMJ, JAS, OND. Following rows represent the bias of
CWP for the same time periods. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.9 MEAN ABSOLUTE ERROR (MAE) CWP. First row represents the mean satel-
lite values of 2010, JFM, AMJ, JAS, OND. Following rows represent the MAE
of CWP for the same time periods. . . . . . . . . . . . . . . . . . . . . . . . . . 126



List of Tables

1.1 Radiation schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2 Passive remote sensing techniques and relevant satellite instruments and missions

for observing atmospheric aerosols (Boucher, 2015). . . . . . . . . . . . . . . . . 27
1.3 Features of aerosol approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4 Main aerosol modules in CTMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.5 Photolysis schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.6 Gas-phase schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.7 Online-coupled models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.8 WRF-Chem features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1 Model configuration options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2 Statistical evaluation of MORRAT and LINES simulations against variables with

available observations within the ENSEMBLES system . . . . . . . . . . . . . . 62
2.3 Comparison of the two simulations taking MORRAT as reference for those vari-

ables not available within ENSEMBLES . . . . . . . . . . . . . . . . . . . . . . 63

3.1 WRF-Chem parameterizations included in this study. . . . . . . . . . . . . . . . 68

4.1 Modeling systems participating and their contributions to the case studies . . . 81

5.1 Some of the AQMEII2 models features of the simulations studied. . . . . . . . . 109
5.2 Source of the data used in the simulations inputs for the initial conditions (IC),

boundary (BC) and aerosols emissions . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Mean Satellite, models and Ensemble values for CFR, COD, CIP and CWP. . . 117
5.4 Spatial correlation and standard deviation ratio values for CFR, COD, CIP and

CWP over the periods: 2010, JFM, AMJ, JAS, OND. r: correlation coefficient;
σP /σO: ratio between the standard deviation of the models (σP ) and the obser-
vations (σO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

xxxvii





Chapter 1

Introduction

This chapter reviews the state of the art of atmospheric aerosols. It is focused on the study of

the optical properties and their effect on climate. Hence, it will not be focused on the aerosol

effects on air quality. This Thesis is structured in such a way that each chapter covers one work

related to the aerosol-radiation-cloud interactions. In this sense, there is not a Chapter devoted

to the methodology itself since it is structured as a compilation of different studies, in which a

more specific review and the employed methodology are described.

1.1 State of the art of atmospheric aerosol

Human health and the environment are affected by poor air quality. Its impacts are clear: it

damages health (Pope et al., 2009), adversely affects ecosystems (Lovett et al., 2009) and leads

to the corrosion and soiling of materials (EEA, 2010). By way of example, Figure 1.1 shows

a comparison of an unpolluted and polluted situation in the same area of Beijing related to

particulate matter with an aerodynamic diameter less than or equal to 10 µm (PM10) particles.

Besides health, air quality also affects people’s well-being (Welsch, 2007; Akay et al., 2013).

Within air pollution, aerosol particles also play a key role in meteorology and climate. Exposure

to fine particulates has been associated with increased morbidity and mortality (Pope et al.,

2009). Complex analyses of North American epidemiological data by the U.S. Environmental

Protection Agency (EPA) indicate wide variability in morbidity and mortality rates that are

associated with exposure to fine particles (Kennedy, 2007).

An aerosol is a suspension of finely divided (liquid or solid) matter dispersed in a gaseous

medium such as air (Seinfeld and Pandis, 2006). They are often mixtures of different chemical

components and their typical feature is that undergo constant physical and chemical transfor-

mation cycles during their lifetime, typically in the order of 1 week in the lower troposphere.

1
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Figure 1.1: Comparison of an unpolluted and polluted area of Beijing (PM10), from http:
//news.bbc.co.uk/2/hi/in_pictures/7506925.stm

Aerosol particles originate from both natural and anthropogenic sources. Natural aerosol sources

include wind-blown soil from arid regions, natural weathering, volcanic emissions, sea spray,

biomass burning from wildfires and biogenic aerosol formation. Anthropogenic aerosol sources

are divided into four categories: fuel combustion, industrial processes, non industrial fugitive

sources and transport.

Atmospheric aerosols can be formed either as a result of the wind’s action on the Earth’s

surface (land or ocean) or in situ by nucleation from the gaseous phase (AIAA, 1999). They are

subject to changes in size and composition by the processes of condensation, evaporation and

coagulation. Water-soluble aerosols may also change size in response to changes in atmospheric

humidity (Saarikoski, 2008). They are also subject to modification by cloud processes, where

aerosols are integrated into cloud droplets and may later be regenerated as a result of evapo-

ration. Cloud processes are also responsible for removing a considerable part of the aerosols

from the atmosphere within rain or snow. Aerosol concentrations and compositions depend on

locations in relation to source regions, production and removal rates, transport and altitude.

The most significant sources of atmospheric aerosols lie within the planetary boundary layer

(PBL). Sources may vary in time, e.g., seasonal variation (formation of desert dust plumes by

spring-time surface wind erosion or in the annual cycle of biomass burning and smoke produc-

tion in tropical countries). Examples of sporadic aerosol production are those formed as a result

of volcanic activity or forest fires (AIAA, 1999).

The study of atmospheric aerosols is important for several reasons (Hsu et al., 2011):

1. Their direct and indirect effects on climate are complex and have not been well assessed.

2. Heavy aerosol loadings in urban areas lead to poor air quality, with adverse effects on

http://news.bbc.co.uk/2/hi/in_pictures/7506925.stm
http://news.bbc.co.uk/2/hi/in_pictures/7506925.stm
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human health.

3. Transported aerosols provide nutrients such as iron, which come from mineral dust and

volcanic ash, important for fertilization.

4. Knowledge of aerosol loading is important for studying potential yields from solar energy

sources.

The importance of atmospheric aerosols to issues of social concern has motivated much

research, which intends to describe their loading, distribution and properties and to develop

understanding of controlling processes to address both issues that produce air pollution and the

influence of aerosol on climate. Atmospheric aerosols exert a substantial influence on Earth’s

climate, and currently interest in studying atmospheric aerosols has increased given the need

to quantify this influence. They are a complex disperse system of solid and liquid particles of

different sizes, shapes, chemical compositions and reactivities (Hauck et al., 2004). Atmospheric

aerosols affects the Earth’s radiation budget, which is also known as the aerosol radiative effect

(RE) or as radiative forcing (RF). The former refers to both natural and anthropogenic aerosols

while the latter refers explicitly to anthropogenic aerosols. Both cases, imply a secular change

in the flux of an atmospheric radiation component, which affects the Earth’s energy balance,

expressed in units of watts per square meter: W m−2 (Boucher, 2015). It is a useful metrics to

investigate the potential impacts of aerosol emission reductions on climate (Forster et al., 2007).

A warming influence is denoted by positive forcing, and a cooling influence, by negative forcing

(Buseck and Schwartz, 2003). As a result of their short atmospheric residence times (according

to Ramanathan et al. (2001a), 1 or 2 weeks), tropospheric aerosol particles are highly variable

in space and time.

1.1.1 Aerosol properties

Aerosol properties encompass mass concentration, particle size and size-dependent composition,

optical properties, solubility, and the ability to serve as nuclei of cloud particles (Ghan and

Schwartz, 2007). Physical, chemical and optical properties vary considerably depending on the

aerosol because of not only the great non homogeneity of aerosols in the atmosphere, but also

atmospheric conditions. Size distribution together with their composition, sources and sinks, is

a key element to understand and control aerosol effects on health, visibility and climate (Stanier

et al., 2004).

The important radiative properties of atmospheric aerosols (both direct and indirect) are

determined by aerosol composition and size distribution. Nevertheless, in relation to direct
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radiative effect calculations, and also assessments of uncertainties, these properties can be

subsumed into a small set of parameters. Knowledge of a set of four quantities of the wavelength

function is necessary to translate aerosol burdens into first aerosol optical depths, and then

radiative perturbation: mass light-scattering efficiency (sp), the functional dependence of light-

scattering on relative humidity (RH), the single-scattering albedo (SSA) and the asymmetry

parameter (ASY, g) (Charlson et al., 1992).

1.1.1.1 Mass concentration and size distribution

Mass concentration is the most commonly measured aerosol property, defined as the mass of

particulate matter (PM) in a unit volume of gas (for atmospheric aerosol usually µg m−3).

Aerosol concentration can also be expressed as a number concentration, which is the number of

particles per unit volume of aerosol (usually number/cm3). In contrast to gaseous contaminants,

volume ratio or mass ratio in parts per million (ppm) is not used for aerosols because two phases

are involved and aerosol concentrations are numerically very low when expressed in this way.

Mass concentration is the equivalent to the density of the ensemble of aerosol particles in air

(Hinds, 1999).

Particles in an aerosol are characterized by size distribution, which is one of their core

physical parameters. It determines various properties, like mass and number concentration or

optical properties.

The size of a particle is the main quantity for characterizing the behaviour of particles

as most properties of aerosols depend on particle size. The diameter of atmospheric aerosol

particles ranges from a few nanometers to several hundreds of micrometers. As the smallest

aerosol particles approach the size of gas molecules, they have many similar properties to them.

Large aerosol particles are visible grains whose properties can be depicted by Newtonian Physics.

Particle aerodynamic diameter is defined as the diameter of the spherical particle with a unit

density (1 g cm−3), which has the same settling velocity as the actual particle does.

Figure 1.2 shows the mass distribution of atmospheric aerosols, which can be represented

in four different modes: nucleation, Aitken, accumulation and coarse particle mode:

• Ultrafine particles, which include the nucleation mode (Diameter particle [Dp] < 20-25

nm) and Aitken mode (20 nm < Dp < 0.1 µm) particles, have the majority of particles by

number (usually > 90%), but account for a few percent of the total mass of atmospheric

particles because of small size. Ultrafine particles consist of combustion particles formed

by the condensation of the hot vapors or fresh particles formed in the atmosphere by

nucleation. They are usually found near combustion sources, close to highways or places
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Figure 1.2: Mass distribution of atmospheric aerosols (Seinfeld and Pandis, 2006).

where the nucleation of biogenic volatile organic compounds (VOCs) arise (Kulmala et al.,

2001). Owing to the large number of particles in the ultrafine mode, they can coagulate

rapidly with each other, as well as with particles, in the accumulation mode. Nucleation

mode particles have short lifetimes (usually a few hours), while Aitken mode particles can

be found far away from their sources.

• Accumulation mode (size range from 0.1 to 1 µm) usually has a substantial fraction of

the total particulate mass. The source of these particles is the coagulation of ultrafine

particles as well as particles that have grown to accumulation size through condensation

of vapors toward existing particles and by cloud processing. Accumulation mode particles

can be removed from the atmosphere by rainout or washout, but are less efficient because

they remain for many days and consequently travel long distances in the atmosphere.

Accumulation mode particles cause most of the visibility effects of atmospheric particles

since the accumulation size range includes the wavelength range of visible light (Hinds,

1999).

• Coarse mode particles ( > 1 µm) are formed by mechanical processes. Within this size

range man-made and natural dust particles are usually included. Coarse mode particles

are made of large sea salt particles and particles from volcanic eruptions. These particles

are removed from the lower atmosphere by sedimentation or inertial impaction over a rea-

sonably short time scale (typically from hours to 1 day) due to their large size. Although

coarse particles have a limited lifetime in the atmosphere, they can cause exposure to
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people close to the particle source.

The accumulation and coarse mode are the aerosol sizes that primarily impact the radiative

energy budgets of the atmosphere. On a global scale, the accumulation size mode is dominated

by sulfate and carbonaceous aerosol, while coarse size is characterized by sea salt and dust

(Kinne et al., 2006).

Size distribution measurements are needed to evaluate of regional and global chemical trans-

port and climate models, which attempt to include size distributed aerosols as active con-

stituents (WMO, 2003). Other number size distribution applications include:

• Adjustment of observed cloud condensation nuclei (CCN) through modeling.

• Explaining observed particle mass within a given size range or observed light-scattering

coefficients.

1.1.1.2 Optical properties

Aerosol optical properties cause many atmospheric effects (coloured sunsets, halos around the

sun or moon, and rainbows) as well as visibility degradation due to atmospheric pollution, and

are required to evaluate their radiative impact. They depend on particle size distribution, mix-

ing state, composition and refractive index, among others (Yu et al., 2012). If electromagnetic

radiation goes through a medium made of molecules and particles, its intensity will always

diminish. This is due to either scattering or absorption (Figure 1.3). During the scattering

process, some incident radiation is re-radiated in all directions at different rates, its polariza-

tion state alters, but its wavelength (λ) remains constant. The sum of lost contributions due to

scattering and absorption is called extinction, which is a process in which the aerosol particles

illuminated by a beam of light scatter and absorb some light so that the intensity of the beam

reduces. Usually aerosol particles scatter light and the absorbing aerosols absorb light (Hinds,

1999).

Figure 1.3: Simplified diagram of the scatter and absorbing light (Goosse et al., 2009).



1.1. State of the art of atmospheric aerosol 7

The coefficient of light extinction (Equation 1.1) by PM σep, is the sum of the scattering

and absorption coefficients (σsp and σab, respectively):

σep = σsp + σab (1.1)

Radiative important properties of atmospheric aerosols are determined mainly by the aerosol

composition and size distribution. Nevertheless for direct radiative forcing (DRF) calculation

purposes, some quantities as a function of wavelength should be known, such as aerosol optical

depth (AOD), SSA, ω0 and the ASY, g (Charlson et al., 1992).

Aerosol optical depth

AOD is a quantitative measure of solar radiation extinction by aerosol scattering and ab-

sorption between the point of observation and the top of the atmosphere (TOA) and is the main

variable for aerosol-climate interaction (Chung, 2012). It is a measure of the integrated colum-

nar aerosol load and the single most important parameter for evaluating DRF. AOD can be

determined by satellite, aircraft, and can be ground-based such as sunphotometers (Figure 1.4)

or filter radiometers (WMO, 2003). Figure 1.5 shows the average seasonal AOD by Moderate

Resolution Imaging Spectroradiometer (MODIS).

Figure 1.4: CIMEL Sun Photometer. From the Aerosol Robotic Network (AERONET.
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Figure 1.5: Average seasonal AOD by MODIS (De Meij et al., 2012).

As Equation 1.2 shows, AOD (τ) is a vertical integral of the aerosol extinction coefficient

from the Earth surface (Sfc) to TOA.

τλ =

∫ TOA

Sfc
kλρdz (1.2)

Where kλ is the mass extinction cross-section (in units of area per mass). So AOD is a

function of wavelength and the standard value of AOD is usually 550 nm (Chung, 2012). There

are many networks that measure this optical property such as AERONET (Holben et al., 2001)

which is a major global network with central calibration facilities in the USA and France.

By increasing AOD, anthropogenic emissions of aerosols and their precursors contribute

to solar radiation reduction on the surface. Therefore, worsening air quality leads to regional

aerosol effects on radiation (Forster et al., 2007).

Single scattering albedo

SSA, ω, is defined as the ratio of scattering to extinction, Equation 1.3 (where extinction

was the sum of scattering and absorption). It is the particulate extinction fraction resulting

from scattering (Buseck and Schwartz, 2003). When photons are scattered, the wavelength

remains unchanged and SSA is a wavelength function (Chung, 2012).

ω = σsp/(σsp + σab) (1.3)

SSA is also a key variable in assessing the climatic effect of aerosols. Values range from

about 0.7 for very absorbing particles to 1 for aerosols that only scatter light. According to

Hansen et al. (1981), aerosols with a SSA lower than 0.85 generally warm the planet whereas

those with more than 0.85 cool the planet.
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Asymmetry parameter

ASY, g is the cosine-weighted average of the phase function (Equation 1.4), which is the

probability of radiation being scattered in a given direction (Ogren et al., 2006). When it

approaches +1 for scattering, it strongly peaks in the forward direction. When it comes close

to −1 for scattering strongly, it peaks in the backward direction. Generally, g=0 indicates the

scattering directions distributed uniformly between the forward and backward directions.

The ASY is defined as:

g =
1

2

∫ 1

−1
P (cos Θ) cos Θd cos Θ (1.4)

where P is the phase function and Θ is the angle between the direction of incoming light

and that of scattered light.

1.1.2 Aerosol-radiation-cloud Interactions

The Fifth Report of the Intergovernmental Panel on Climate Change (IPCC AR5)(Boucher

et al., 2013; Myhre et al., 2013b) distinguishes between aerosol-radiation interactions (ARI),

which encompass the traditional direct and semi-direct effect and also the aerosol-cloud interac-

tions (ACI) that account for the indirect effects. A new term, effective RF (ERF), is defined in

the AR5, which adds the RE from rapid adjustments, caused mainly by cloud changes (Figure

1.6). This new concept avoids confusion with the traditional RF definition and is generally a

better predictor of the eventual surface temperature change induced by a forcing mechanism

(Hansen et al., 2005). The traditional semi-direct effect is better seen as a rapid adjustment

associated with ARI. The effective RF due to ARI (ERFari) is therefore the sum of direct and

semi-direct effects. The ACI forcing component, the so called indirect aerosol effects, can be

more easily compiled into an effective RF due to ACI (ERFaci). These indirect effects can be

interpreted as rapid adjustments associated with the initial modification of the concentrations

of CCN and ice nuclei (IN).

1.1.2.1 Effective radiative forcing by the aerosol-radiation interactions

Radiative effect due to aerosol-radiation interactions or direct effect (REari)

The RE due to ARI is defined by the IPCC AR5 (Boucher et al., 2013; Myhre et al.,

2013b) as the change in the radiative flux caused by the combined scattering and absorption of

radiation by anthropogenic and natural aerosols (Figure 1.7). ARI occur essentially under cloud
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Figure 1.6: Schematic of the new terminology used in the AR5 ARI and ACI and its relations
with the Fourth Assessment Report (AR4) terminology. Blue arrows depict solar radiation,
grey arrows terrestrial radiation and the brown arrow symbolizes the importance of couplings
between the surface and the cloud layer for rapid adjustments (Boucher et al., 2013).

free conditions since clouds themselves are good scatters, so the modification of the TOA flux

solar radiation by the atmospheric aerosols is more effective in clear sky conditions (Boucher,

2015). ARI does not only depend on the properties of aerosols, but also on the properties of

the solar radiation that interacts with them (Boucher, 2015).

To estimate REari, aerosol and environmental properties, and the fraction of the aerosol of

anthropogenic origin, needs to be known. Characterizing the natural aerosol only by observation

methods is difficult since aerosols are present everywhere. For this reason, most of the aerosol

RE requires using modeling approaches.

REari is influenced by: radiative properties of the surface, atmospheric trace gases and

clouds. Under cloud-free conditions it is typically negative at the TOA, but can be weakened

and become positive due to increasing aerosol absorption, a decreasing upscatter fraction or

increasing albedo. Under cloudy conditions, REari is weaker except when the cloud layer is

thin or when absorbing aerosols are located above or between clouds (Chand et al., 2009). The

REari on the surface is negative and can be much stronger than the REari at the TOA over

regions where aerosols are absorbing (Li et al., 2010).

Zanis (2009) studied the total DRF of aerosol as derived from models and observations,

which was estimated to be −0.5 ± 0.4 W m−2 in global scale. The Aerosol Comparisons be-

tween Observations and Models (AEROCOM) Phase 1 (Schulz et al., 2006) showed a global

DRF that resulted from 16 models of −0.22 W m−2 and in its Phase 2 (Myhre et al., 2013a) of

−0.35 W m−2. This could be due to the addition of new species such as nitrate and secondary
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Figure 1.7: Schematic of the aerosol-radiation interactions (Boucher, 2015).

organic aerosol (SOA).

Rapid adjustments to aerosol-radiation interactions or semi-direct effect

Incoming solar radiation can also be absorbed by aerosols consisting of black carbon (BC)

and mineral dust, heating the local atmosphere and possibly reducing the incidence of cloud

formation (Figure 1.8) (Hansen et al., 1997). Solar radiation absorption can cool the surface

below thus increasing the stability of lower atmosphere leading to inhibition of convection

(Sanap et al., 2014). Ramanathan and Carmichael (2008) estimated that the light absorbed by

BC particles may have a global warming effect comparable to that of carbon dioxide (CO2).

This phenomenon gives rise to rapid adjustments and contributes to ERF (Boucher et al., 2013)

Figure 1.8: The left panels show the instantaneous radiative effects of aerosols, while the right
panels show their overall impact after the climate system has responded to their radiative effects.
(Stocker et al., 2013).
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1.1.2.2 Effective radiative forcing by the aerosol-cloud interactions

Atmospheric aerosols influence cloud microphysical properties in a number of ways (Figure

1.9). Previously, these influences were largely known as aerosol indirect effects. As aerosols

act as CCN and/or IN, they may affect cloud microphysics and, thus, influence overall cloud

radiative properties through interactions referred to as the “first indirect effect” or “Twomey

effect” (Twomey, 1974, 1977, 1991; Chapman et al., 2009; Yu and Zhang, 2011). This effect can

be associated with radiative forcing (RFaci) calculations, at least in principle if the preindustrial

aerosol concentration is known. For a fixed cloud cover and liquid water content, an increase

in cloud droplet concentration results in smaller cloud droplets but an increase in the total

scattering cross section, and thus the cloud reflectivity increases (Boucher, 2015). Aerosols

can act as IN by three ways: contacting with supercooled cloud droplets (contact freezing), by

initiating freezing from within a cloud droplet by immersion or condensation freezing, or by

acting as deposition nuclei. This is also named the “cloud albedo effect”. Clouds that form

with many CCN have more numerous small droplets, and will thus be whiter and optically

“thicker”, leading to a cooling effect on the planet (as less solar radiation is absorbed by the

Earth’s surface).

Additionally, the aerosols that act as CCN may affect precipitation efficiency, cloud life-time,

and cloud thickness, and may thus further influence weather and climate through the “second

indirect effect” (Albrecht, 1989), also named the “cloud lifetime effect”. Since the droplets in

clouds that form with many available CCN have smaller droplets, the number of droplets in the

cloud that can fall out of the cloud as rain or drizzle is lower.

The RF due to the first indirect effect is estimated to be −0.7 W m−2 (ranging from −1.8

to 0.3 W m−2) with a poor level of scientific understanding (Forster et al., 2007). The second

indirect effect is estimated as being practically as large as the Twomey effect (Lohmann and

Feichter, 2005; Zanis, 2009).

1.1.2.3 Types of aerosols and their radiative effects

Both natural and anthropogenic atmospheric aerosols originate in two ways: emissions of pri-

mary particulate matter and the formation of secondary particulate matter from gaseous pre-

cursors. The main constituents of atmospheric aerosols are inorganic species (sulfate [SO−2
4 ],

nitrate [NO−
3 ], ammonium [NH+

4 ], sea salt and dust), organic species (organic aerosol, OA), BC

(formed from the incomplete combustion of fossil and biomass based fuels under certain condi-

tions), mineral species (mostly desert dust) and primary biological aerosol particles (PBAP).

Mineral dust, sea salt, BC and PBAP enter the atmosphere as primary particles, whereas non-
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Figure 1.9: Schematic representing aerosol-cloud interactions by Boucher (2015).

sea salt SO−2
4 , NO−

3 and NH+
4 predominantly derive from secondary aerosol formation processes.

OA has both significant primary and secondary sources. In the present-day atmosphere, the

majority of BC, SO−2
4 , NO−

3 and NH+
4 come from anthropogenic sources, whereas sea salt, most

mineral dust and PBAP are predominantly of natural origin. Primary organic aerosols (POA)

and SOA are influenced by both natural and anthropogenic sources. The paragraphs that follow

describe the different types of aerosols and their relation to the RF.

Secondary inorganic aerosols (sulfates, nitrates and ammonium)

Atmospheric SO−2
4 aerosol compositions range from sulphuric acid to ammonium sulfate

and are present as liquid droplets or partly crystallized (Figure 1.10). They constitute a major

aerosol type in the troposphere, and are probably the best known because of this. They either

nucleate homogeneously or form on existing particles from gaseous precursors of both natural

and anthropogenic origins, and the anthropogenic fraction dominates (Pósfai and Buseck, 2010).

Dimethylsulfide (DMS) is a significant natural source of SO−2
4 ; this is an organic compound
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whose production by phytoplankton and its release to the atmosphere depends on climatic

factors. SO−2
4 aerosol tends to cool the Earth surface by scattering part of the incoming solar

radiation (Denman et al., 2007). On a global scale, the main source of SO−2
4 aerosol is via sulfur

dioxide (SO2) emissions from fossil fuel burning (about 72%), with a minor contribution made

by biomass burning (about 2%), while natural sources come from DMS emissions by marine

phytoplankton (about 19%) and by SO2 emissions from volcanoes (about 7%). According to

the IPCC AR5 (Myhre et al., 2013b), the global mean RF due to SO−2
4 aerosol is −0.40 W

m−2.

Figure 1.10: Image of sulfate aerosols (spherical structures) (Pósfai et al., 1999).

NO−
3 aerosol is formed chemically in the atmosphere from precursor species ammonia (NH3)

and nitric acid (HNO3). NH3 sources include agricultural sources, oceans, biomass burning,

crops and soil. Typical sources of nitrogen oxides (NOx), which are the main precursor of HNO3,

include fossil fuel combustion, soils, biomass burning and lighting. The most important impact

of NOx emissions on the climate is through the formation of tropospheric ozone (O3), which

is the third largest single contributor to positive RF. NOx emissions generate indirect negative

RF by shortening the atmospheric lifetime of methane (CH4) (Prather, 2002; Forster et al.,

2007). NH3 contributes to the formation of SO−2
4 and NO−

3 aerosols, which thereby contribute

to aerosol cooling and the aerosol indirect effect. Acording to the AR5 (Myhre et al., 2013b)

the global mean RF for NO−
3 is estimated to be −0.11 W m−2.

Organic carbon

Organic carbon (OC) is a complex mixture of chemical compounds that contain the carbon-

carbon bonds produced from fossil fuel and biofuel burning as well as natural biogenic emissions

(Figure 1.11). They can be emitted as primary aerosol particles or formed as secondary aerosol

particles from the condensation of organic gases, which are considered to be semi-volatile or

have low volatility. As there are lots of different atmospheric organic compounds, modeling the
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direct and indirect effects is a huge challenge. According to AR4 (Forster et al., 2007), for OC,

different modeling studies have shown mean RF of +0.24 W m−2 from biomass burning and

fossil fuel emissions.

Figure 1.11: A mixed organic/sulfate below-cloud aerosol. From the DYCOMS-II project
(Stevens et al., 2003).

Black carbon

The atmospheric science community commonly uses the terms BC for the strongly absorbing

component of aerosols, and elemental carbon (EC) for the most refractory part of carbonaceous

aerosol that oxidizes above a certain threshold in combustion experiments (Pósfai and Buseck,

2010; Petzold et al., 2013). It is a primary aerosol (Figure 1.12), that strongly absorbs solar

radiation, emitted directly at the source produced by the combustion of fossil fuels, residential

biofuel, and biomass, so therefore much atmospheric BC is of anthropogenic origin. Ramanathan

et al. (2001b) studied the importance of absorption by aerosol in the atmospheric column. The

observations showed a local surface forcing of −23 W m−2, which was significantly stronger

than the local RF at the TOA, −7 W m−2. According to the AR5 (Myhre et al., 2013b) the

mean RF was estimated as +0.40 W m−2.

Biomass burning aerosols

Biomass burning aerosols consist of two major chemical components: BC, which mainly

absorbs solar radiation; OC, which mainly scatters solar radiation. Sources of biomass burn-

ing aerosols include burning forests and agriculture, burning agricultural waste and substances

burned for fuel (wood, dung and peat). Not all biomass aerosol comes from anthropogenic activ-

ities, as naturally vegetation fires regularly occur. The anthropogenic biomass aerosol fraction

is difficult to deduce. According to the AR4 (Forster et al., 2007), a contribution to RF of

roughly −0.40 W m−2 from scattering components (mainly OC and inorganic compounds) and

of +0.20 W m−2 from absorbing components (BC) has been reported, which led to an estimate
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Figure 1.12: Transmission electron microscope image of BC collected at a stationary point over
the Arctic Ocean (Taketani et al., 2016).

of the RF of −0.20 W m−2 with a factor of uncertainty of 3. The RF is grouped into a single

estimation because biomass burning emissions are essentially uncontrolled.

Mineral dust

Mineral dust aerosols (Figure 1.13) are soil particles that the wind blows into the atmo-

sphere. Most mineral dust in the troposphere originates from the dust belt, a chain of arid

regions that includes the Sahara and Middle East and China deserts. They are the single

largest component of the Earth’s atmospheric aerosol arsenal, and include half the total aerosol

mass. Dust impacts radiation to varying degrees, depending on the composition of the min-

erals that dust grains comprise. Prospero et al. (2002) have reported that mineral dust from

anthropogenic sources originates mainly from agricultural practices such as harvesting, plough-

ing, overgrazing, changes in surface water (Caspian and Aral Sea, Owens Lake) and industrial

practices (cement production, transport). According to the AR4 (Forster et al., 2007), RF due

to anthropogenic mineral dust falls with a range of +0.40 to −0.60 W m−2, the related mineral

aerosols fall within the range of −0.56 to +0.1 W m−2 and with global mean RF of −0.10 W

m−2 (AR5) (Myhre et al., 2013b).

Sea Salt

Sea salt aerosols (Figure 1.14) are generated by different physical processes, especially by

bursting air bubbles that rise to the sea surface (Monahan and Mac Niocaill, 1986), which

results in a strong dependence on wind speed. In mass terms, an abundance of sea salt particles

is second only to mineral dust in the troposphere (Tomasi et al., 2016). This aerosol may be

the dominant contributor to the light scattering and cloud nuclei in those regions of the marine
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Figure 1.13: Mineral dust particle (Baltensperger, 2010).

atmosphere where wind speeds are high and/or no other aerosol sources exist (Forster et al.,

2007). Sea salt particles are very efficient CCN and, therefore, characterisation of their surface

production is of major importance for aerosol indirect effects.

Figure 1.14: Sea salt particle that consists of a sodium chloride crystal, mixed-cation sulfate,
and filamentous organic material (Pósfai and Buseck, 2010).

1.1.2.4 Aerosol and climate change

As discussed above, aerosols play an important role in the global climate balance, and could,

therefore, be important in climate change. Natural sources like volcano eruptions, are recog-

nized as significant climate forcing (by altering the Earth’s radiation balance) as they cause

global temperature change. Human activities alter atmospheric aerosols near the ground, by

industrial emissions and also at the lower stratosphere (aircraft emissions) and thus possibly

affect climate. The particles in the troposphere influence global climate. Since the response of

climate systems to aerosols and their effect on the Earth’s radiative budget is the most uncer-

tain climate feedback (Randall et al., 2007), our current understanding of how aerosols affect

weather and climate incurs considerable uncertainties that must be reduced in order to better

estimate the impact of anthropogenic emissions on the atmosphere. Aerosol negative RF causes
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changes in atmospheric thermal structure, and also in synoptic and regional circulation systems,

rainfall removal and leads to a loss of efficient atmospheric pollutants removal (Ramanathan

and Feng, 2009). Positive RF could lead to significant regional climate effects as BC can absorb

radiation and can heat air, which partly offset aerosol scattering effects (Jacobson, 2001c).

The uncertainty in the RF of the Earth’s radiation budget by anthropogenic aerosols, which

occurs mainly in the lower troposphere, greatly exceeds that of all the other forcing mechanisms

combined, as stated in IPCC AR5 (Stocker et al., 2013). Consequently, studying aerosol com-

ponents is crucial to assess the impact of human activities on climate and air quality (Zanis,

2009). Aerosols of anthropogenic origin are composed mainly of SO−2
4 , carbonaceous particles

(BC and EC), NO−
3 , NH

+
4 and mineral dust of industrial origin (Stanhill and Cohen, 2001).

BC, SO−2
4 and organics play a major role in solar dimming at the Earth’s surface (Stocker et al.,

2013).

Aerosol as well as changes to cloud and radiation fields from aerosols, affect O3 as it depends

on the photo-oxidation of precursors emissions. Therefore, these short-lived species are signifi-

cant for their climate and air quality impacts, being important in near-term mitigation efforts.

The O3 RF is about 0.4 W m−2 and for aerosols, forcing range from 0.3 (for BC) to −2.2 W m−2

(for reflecting aerosols; sulfates, organic matter [OM], nitrates and aerosol-cloud changes) based

on emission changes from 1750 to the present day (Forster et al., 2007). Absorbing aerosols

are thought to inhibit surface O3 formation by reducing the photolysis rates in polluted areas;

whereas reflecting aerosols are thought to increase O3 formation (He and Carmichael, 1999).

Thus, future forcing depend on emission scenarios and relative changes in the distribution of

precursors and reflecting versus absorbing aerosols (BC)(Menon et al., 2008).

In accordance with other greenhouse gases, Ramanathan and Carmichael (2008) estimated

that the light absorbed by BC particles may have a global warming effect that is comparable

to that of CO2. Figure 1.15 shows the principal components of the RF of climate change. They

are associated with human activities or natural processes. The thin black line attached to each

coloured bar represents the range of uncertainty for the respective value. Contrary to CO2 and

greenhouse gases, tropospheric aerosols and O3 may last in the atmosphere from days to weeks.

Thus, these pollutants are usually most potent near their source of emission, where they can

force local or regional perturbations to the climate (Myhre et al., 2013b).

Understanding and quantifying the influence of anthropogenic sources on atmospheric aerosol

loading is of growing interest since public debate about climate change has begun to focus on

potential mitigation measures and regulatory actions. In this sense, the AR5 includes a chapter

about climate projections for the near term (the next few decades). As an example, Figures
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Figure 1.15: Principal component of the RF of climate change (Myhre et al., 2013b).

1.16 and 1.17 show the changes in the mean radiation and cloud fraction respectively for fu-

ture climate change scenarios by means of the Coupled Model Intercomparison Project Phase

5 (CMIP5). This newness shows the growing importance of adaptation alongside mitigation in

the portfolio of policy responses to climate change (Chalmers et al., 2012).

1.1.2.5 Forcing, Rapid Adjustments and Feedbacks

It is important to distinguish between RF, rapid adjustments and climate feedback (Figure

1.18). As previously explained, the term forcing is associated with radiative imbalance due to

climate perturbation. Forcing agents, such as greenhouse gases (GHGs) and aerosols, act on

the global mean surface temperature by changing the global radiative (energy) budget (Boucher
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Figure 1.16: Multi-model CMIP5 average changes in the annual mean (left) net total radiation
anomaly at the TOA, (middle) net longwave radiation anomaly at the TOA and the (right)
net shortwave radiation anomaly at the TOA for the Representative Concentration Pathways
(RCP) 4.5 scenario averaged over the periods 2081-2100 (Collins et al., 2013).

Figure 1.17: Principal component of the RF of the climate CMIP5 multi-model changes in
the annual mean total cloud fraction (in %) in relation to 1986-2005 for 2081-2100 under the
RCP2.6 (left), RCP4.5 (centre) and RCP8.5 (right) forcing scenarios (Collins et al., 2013).

et al., 2013).

Rapid Adjustments appear when forcing agents affect the cloud cover or other components of

the climate system in a short loop, and consequently modify the global radiative budget, with-

out operating through changes in the global mean surface temperature (indirect alteration).

Therefore, rapid adjustments are related to the re-equilibration of fast climate system com-

ponents, such as the atmospheric water cycle and the energetics of the atmosphere (Boucher,

2015). Adding the rapid adjustment concept helps to redefine the RF concept as the change

in TOA irradiance after rapid adjustments have taken place but before the average surface

temperature has changed.

Lastly, feedbacks are associated with changes in climate variables mediated by a change in

the global mean surface temperature. They contribute to amplify or damp global temperature

changes via their impact on the radiative budget (Boucher et al., 2013). According to Boucher

(2015), many climate feedbacks exist: water vapor feedback, the cloud feedback, surface albedo

feedbacks, etc.
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Figure 1.18: Overview of the forcing and feedback pathways involving GHGs, aerosols and
clouds from Boucher et al. (2013).

1.1.3 Aerosol processes

As the origin of atmospheric aerosol particles can be either as primary particles or secondary

particles, the main aerosol process is the emission of aerosol particles and precursor gases, gas-

to-particle conversion and other atmospheric chemical reactions, transport, and the processes

by which particles are removed from the atmosphere. The following subsections describe the

main processes by which particles are removed and transformed. Figure 1.19 represents the

aerosol particle interaction due to some of the processes described below.

Figure 1.19: Aerosol particles interaction (Jacob, 1999).
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1.1.3.1 Radiation schemes

Radiation is the main force that controls the surface energy budget. There are some variables,

such as surface temperature (T) and PBL height (PBLH) that depend on accurate calculation

of both shortwave (SW) and longwave radiations (LW). All these variables are important as

meteorological inputs to air quality models. Radiative heating (Equation 1.5) is computed as

net radiation fluxes:

(
δT

δt

)
rad

= − g

cp

δF

δp
(1.5)

where F is a net flux (sum of the upward and downward fluxes) (Planton and Maynard,

2004). Table 1.1 shows the main radiation schemes available.

Table 1.1: Radiation schemes.

Name LW/SW Reference
GFDL LW/SW Fels and Schwarzkopf (1975); Schwarzkopf and Fels (1991)/ Lacis and Hansen (1974)
CAM LW/SW Ramanathan and Downey (1986)

Goddard SW Chou and Suarez (1994)
Goddard LW/SW Chou and Suarez (1999)
Goddard LW Chou et al. (2001)
RRTM LW/SW Mlawer et al. (1997)/ Mlawer and Clough (1998)

RRTMG LW/SW Morcrette et al. (2007)/ Morcrette et al. (2008)

1.1.3.2 Nucleation, condensation and coagulation

Nucleation is the gas-to-particle conversion, in which low volatile gas-phase species are converted

into aerosol particles and is, hence, a source of new particles in the Earth’s atmosphere (Figure

1.20). These new particles start to form when they are less than 2 nm in diameter. If conditions

are suitable, these can then grow to larger sizes (50-100 nm). These particles are interesting

from a climate point of view as they can serve as seeds for clouds. Nucleation contributes to the

number of CCN (Haywood and Boucher, 2000; Kazil et al., 2010; Mashayekhi and Sloan, 2013),

which form cloud droplets. Therefore it acts upon cloud radiative properties, cloud lifetimes,

and precipitation rates via the first and second indirect aerosol effect.

The nucleation process takes place through the condensation of molecules and coagula-

tion. Condensation occurs when a vapor condenses on a particle population or when material

evaporates from the aerosol to the gas-phase, hence changes the particle diameters and size

distribution of the population n(v, t) shape (Seinfeld and Pandis, 2006). Coagulation occurs

when the aerosol particles suspended in a fluid come into contact given their Brownian motion

or as a result of their motion produced by hydrodynamic, electrical, gravitational forces, among

others. This process modifies aerosol size distribution and reduces the particles number and is
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more efficient for the smallest particles in the nucleation and Aitken modes.

Figure 1.20: Schematic representation of the nucleation process and subsequent growth process
for atmospheric binary homogeneous nucleation (Curtius, 2006).

1.1.3.3 Dry deposition

This process can be defined as the transport of gaseous and particulate species from the atmo-

sphere onto surfaces when precipitation is absent. The factors that influence dry deposition are

(Seinfeld and Pandis, 2006):

• Atmospheric turbulence.

• The chemical properties of depositing species (solubility of species in water).

• The nature of the surface itself (terrain and type of surface cover).

• Whether the substance is present in the gaseous or particulate form.

• The amount of precipitation in the region.

Solubility and chemical reactivity can affect uptakes on the surface of gaseous species, while

size, density and shape can determine the capture of particle species. In relation to the surface,

natural surfaces (such as vegetation) generally promote dry deposition. Therefore dry depo-

sition (of gases and particles) is a basic process which removes atmospheric aerosols from the

atmosphere. Generally, the parameter used to model the deposition rate is deposition velocity

vd, defined as (Equation 1.6):

vd = −Fc
Cz

(1.6)
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where Fc is the vertical dry deposition flux and Cz is the concentration at height z.

1.1.3.4 Wet deposition

It refers to the natural processes by which a material is scavenged by atmospheric hydrometeors

(cloud and fog drops, rain, snow) and is deposited on the Earth’s surface. Wet deposition is also

known as precipitation scavenging, wet removal, washout, and rainout. Rainout usually refers

to in-cloud scavenging, while washout refers to below-cloud scavenging by falling rain, snow,

etc. Figure 1.21 shows necessary steps for wet removal: first gas or particle species must be

placed in the presence of condensed water. Then species must be scavenged by hydrometeors,

and finally need to be deposited on the Earth’s surface (Seinfeld and Pandis, 2006).

Figure 1.21: Schemematic representation of the wet deposition processes (Seinfeld and Pandis,
2006).

1.1.4 Approaches to study atmospheric aerosols

Several approaches are available to study and measure aerosol properties such as extractive,

in situ and remote sensing techiniques. This section presents some of the techniques used for

characterize the properties of aerosols. Observation systems have increasingly been used in the

last years, but improvement are required (Seinfeld et al., 2016) because of the large range of

scales and the fact that various measuring systems tend to address different scales. Seinfeld
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et al. (2016) compiled some large-scale field experiments, which are planned to address aerosol-

cloud-climate interactions.

1.1.4.1 Extractive techniques

They consists of collecting samples for further laboratory analysis. These methods are highly

sensitive and selected, but offer poor real-time monitoring. The principal instrument used to

collect samples is the High Volume collector (Figure 1.22). This instrument uses a continuous

duty blower to suck in an air stream by collecting aerosol particles and depositing them on a

filter for later chemical and mineralogical analyses. Different size ranges can be selected (PM10,

particulate matter with an aerodynamic diameter less than or equal to 2.5 µm [PM2.5]... etc).

Figure 1.22: Schematic diagram of a High Volume Sample from Okuda et al. (2015).

1.1.4.2 In situ or ground-based measurements

Ground-based measurement networks are a very useful and accurate way to assess aerosol op-

tical properties (Holben et al., 2001). In situ measurements provide accurate local information

on aerosol concentrations and properties but cannot properly sample the atmosphere to char-

acterize the spatial and temporal variability of the global aerosol.

Examples of in situ instruments to monitor aerosol optical properties are: Nephelometer

(Figure 1.23)(it measures the radiation that is scattered or backscattered by aerosols which

are directed into a tube); Aethalometer or Particle Soot Absorption Photometer and Photo-

Acoustic Absorption Measurement which measures aerosol absorption (Boucher, 2015).

1.1.4.3 Remote sensing techniques

Remote sensing techniques include all the measurements taken remotely; i.e., not-coming into

physical contact with it (Boucher, 2015). Hence, one advantage is that the studied sample is not

perturbed. Besides, the electromagnetic waves used are sensitive to different aerosol properties

and can provide point, column or profile data.

There are two main platforms that measure aerosol properties by remote sensing: the Earth’s
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Figure 1.23: Nephelometer schematic from https://www.esrl.noaa.gov/gmd/aero/gallery/
aerosol_instrumentation/nephelometer/.

surface (ground-based measurement) and from the space (by means of satellites). Ground-based

measurement provides reliable information about aerosol optical properties but its drawback

is limited spatial data coverage. Although satellite data are not as reliable as ground-based

observations, they provide valuable information with a higher spatial coverage. Furthermore,

remote sensing techniques can also be classified by the radiation source as: passive techniques

(using natural radiation, e.g., sun photometers and spectroradiometers) and active techniques

(using artificial sources that emit radiation, such as lidar or radar). Remote sensing of aerosols

from the ground and from space is thus essential for monitoring and understanding atmospheric

aerosols and their role in the climate system (Boucher, 2015). Some of the passive remote sensing

techniques and relevant satellite instruments and missions for observing atmospheric aerosols

can be found in Table 1.2.

https://www.esrl.noaa.gov/gmd/aero/gallery/aerosol_instrumentation/nephelometer/
https://www.esrl.noaa.gov/gmd/aero/gallery/aerosol_instrumentation/nephelometer/
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Table 1.2: Passive remote sensing techniques and relevant satellite instruments and missions
for observing atmospheric aerosols (Boucher, 2015).

Instruments Measure Reference

AERONET
PHOTONS

Extinction and scattering of
solar radiation form

the ground and from space,
respectively

Shaw (1983)
Holben et al. (2001)

Twitty (1975)
Nakajima et al. (1983)

Dubovik and King (2000)
SAGE, OSIRIS

GOMOS,
MAESTRO

Extinction of solar
radiation from space Kent et al. (1991)

AVHRR, MERIS,
MODIS, MISR,
SCIAMACHY,

POLDER, ATSR,
AATSR, SEVIRI,

PARASOL,
VIIRS, 3MI

Scattering of solar
radiation from space

Nagaraja Rao et al. (1989)
Herman et al. (1997)
Remer et al. (2005)
Tanré et al. (2011)

METEOSAT,
SEVIRI,

AIRS, IASI,
IASI-NG

Infrared radiation
at nadir

Ackerman (1997)
Legrand et al. (1989)

Pierangelo et al. (2004)

It is worth point out two European ground-based remote sensing networks; the Aerosols,

Clouds, and Trace gases Research InfraStructure Network (ACTRIS) and AERONET. The

aim of ACTRIS is to integrate European ground-based stations equipped with advanced atmo-

spheric probing instrumentation for aerosols, clouds, and short-lived gas-phase species (http:

//www.actris.net/language/en-GB/Project.aspx). ACTRIS integrates three typical data

repositories: EBAS (near-surface aerosol and trace gas data), European Aerosol Research Li-

dar Network (EARLINET) for the remote sensing of vertical aerosol distribution, and Network

of stations for the continuous evaluation of cloud and aerosol profiles (CLOUDNET). The

AERONET program is a federation of ground-based remote sensing aerosol networks estab-

lished by NASA and PHOTONS (University of Lille 1, CNES, and CNRS-INSU) which pro-

vides globally distributed observations of spectral AOD, inversion products, and precipitable

water in diverse aerosol regimes. Two data versions (Versions 1 and 2) and three quality levels

(Levels 1.0, 1.5, 2.0) exist for each product. While Levels 1.0 and 1.5 are provided in near

real-time, a 12-month or longer delay (due to a final calibration and manual inspection) ensures

that the highest quality data can be found in Version 2, Level 2.0 data products. Version 2

AOD processing now includes fine and coarse mode AOD as well as fine mode fraction. AOD at

different wavelenghts (AOD470, AOD555 and AOD675) are compared to available AERONET

data, with information from 85 stations for Europe. We will have also one station to validate

http://www.actris.net/language/en-GB/Project.aspx
http://www.actris.net/language/en-GB/Project.aspx
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O3 sounding (http://aeronet.gsfc.nasa.gov/). Figure 1.24 shows the AERONET stations

worldwide.

Figure 1.24: AERONET stations. From http://aeronet.gsfc.nasa.gov/new_web/aerosols.
html.

Satellite-based remote sensing continues to be the primary source of global data for ACI,

but concerns persist regarding how measurement artefacts affect retrievals of both aerosol (Li

et al., 2010) and cloud properties. Observations can not measure RFari directly, only useful

constraints to aspects of the global RFari. Given their high cost, in situ observations cannot

provide sufficient coverage of these spatial and temporal scales to calculate the climate forcing

by aerosol particles. Consequently, the utility of in-situ observations cannot be fully realized

until closely coupled with numerical models and satellite observations. Models require the

numerical values of the parameters used in the calculation of spatial distribution and optical

properties for each chemical or aerosols type predicted (Ogren, 1995).

1.1.4.4 Aerosol modeling

Ground measurements provide data with high temporal resolution and in real time but, they

sometimes have only a sparse spatial resolution. Satellite data covers regions where no ground-

based stations are available but are representative of larger regions and only serve data at

specific times of the day. Air Quality models fill in the sparse temporal and spatial sampling

of the measurements and connect them in a physically consistent manner.

The aim of aerosol modeling is to provide a detailed description of aerosol particle con-

centrations, composition and size distribution, and to collect expressions for relevant physical

processes (chemical reactions, nucleation, condensation, coagulation, ... etc) (Whitby and Mc-

http://aeronet.gsfc.nasa.gov/
http://aeronet.gsfc.nasa.gov/new_web/aerosols.html
http://aeronet.gsfc.nasa.gov/new_web/aerosols.html
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Murry, 1997), since these processes cannot be obtained by measurements alone. This requires

advanced modeling techniques and innovation, plus reliable validation data of particle char-

acteristics. Therefore modeling plays a key role to quantitatively integrate knowledge and to

evaluate our understanding of physical and chemical processes in the atmosphere.

To mathematically describe the distribution for a given aerosol mode, functions that can

cover a large range of sizes are useful. The most popular function is lognormal distribution

(Equation 1.7), which describes well the typical distributions observed in the atmosphere (Se-

infeld and Pandis, 2006):

dN

d ln r
= N0

1√
2πσ0

exp

(
−1

2

(
ln(r/r0)

σ0

)2
)

(1.7)

There are three approaches to represent aerosol total volume: bulk, sectional and modal,

although commonly-used approaches are sectional and modal. In the sectional approach (Figure

1.25), size distribution is discretized into sections (or bins) and particle properties are assumed

constant over particle size sections (Spracklen et al., 2005). The particle number concentration

and mass concentrations are tracked separately for each section (Bergman et al., 2011). In

the modal approach (Zhang et al., 2010), size distribution is considered by several modes and

particle properties are assumed uniform in each mode (Zhang et al., 1999). Bulk representations

are considered as sectional approaches involving one single bin.

Figure 1.25: Particle size distribution approach (Zhang et al., 1999).

The sectional approach is accurate for coagulation and can reproduce the major character-

istics of particle size distribution evolution for condensational growth with the moving-center

and hybrid algorithms. It is the most accurate and flexible approach in terms of size distribu-
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tion shape, despite being computationally most demanding (Bergman et al., 2011). The modal

approach provides more accurate results according to coagulation and condensation growth

and is used in Models-3, which follows a modal approach with 3 log-normal distributions and

constant standard deviations to represent Aitken nuclei, accumulation, and coarse modes. In

global models, modal approaches are still preferred to sectional approaches because of lower

computational costs (Mann et al., 2012) although this could change as technology is improving.

Table 1.3 summarizes the features of the three aerosol approaches.

Table 1.3: Features of aerosol approaches (Bellouin, 2013).

Bulk Sectional Modal

Simulate modal mass
for an external mixture
of species

Simulate modal mass and
number for an internal mix-
ture of selected species

Size distribution is pre-
scribed globally

Decompose the size
distribution in bins

The mean radius of the size
distribution depends on mass
and number

Mass and number are
co-varying

Does not usually
represent the mixing
sate

Width of the size distribution
is generally fixed

Aerosol modules

Several models have been developed as an extension of the global/regional chemistry trans-

port model (CTM) to better process aerosol effects in these models. A reliable aerosol model

must be able to resolve the wide particle size range and the chemical complexity that arises from

many different primary and secondary aerosol species, and must also include reliable treatments

for simulating the various chemical and microphysical processes. Aerosols of different types and

origins can be composed of various chemical species. Including each species in an aerosol model

is not feasible due to computational cost. Therefore, different aerosol models are designed ac-

cording to the accuracy desired for a given application (Zaveri et al., 2008). Table 1.4 compiles

the main aerosol modules used in state of the art CTMs.

MADE is based on the regional particulate model (Binkowski and Shankar, 1995). The

size distribution of the submicrometer aerosol is represented by two modes, and lognormal

distribution is assumed. Chemical composition is computed in the sulfate nitrate ammonium

and water system. Emission and nucleation are used for modeling aerosol sources. Coagulation,
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condensation, transport and deposition are considered as processes modifying the aerosol load

in the atmosphere. Aerosol dynamics calculations are made on-line in the chemistry-transport

model Ackermann et al. (1998). SOA have been incorporated into MADE by Schell et al. (2001),

through the Secondary Organic Aerosol Model (SORGAM).

Table 1.4: Main aerosol modules in CTMs.

Name Representation Organic/Inorganic Reference
MADE Modal Inorganic Ackermann et al. (1998)

GOCART Bulk Inorganic Chin et al. (2000)
SORGAM Modal Organic Schell et al. (2001)
AERO3 Modal Organic and inorganic Binkowski (1999)
AERO4 Modal Organic and inorganic Binkowski and Roselle (2003)
MADRID Modal and sectional Organic and inorganic Zhang et al. (2004)
MOSAIC Sectional Organic and inorganic Zaveri et al. (2008)

The GOCART (Goddard Chemistry Aerosol Radiation and Transport model) module (Chin

et al., 2000) simulates the distribution of sulfur species in the atmosphere and solves the con-

tinuity equation, including the emissions, chemistry, convection, advection, diffusion, dry and

wet deposition. It has a bulk aerosol scheme. MADRID treats all major aerosol chemical and

microphysical processes including inorganic aerosol thermodynamic equilibrium, SOA forma-

tion, nucleation, condensation, gas/particle mass transfer, and coagulation Zhang et al. (2004).

AERO3 Binkowski (1999) simulates the transformations of gas-phase chemical species, which

are either directly emitted or produced from gas-phase reactions, to aerosol and calculates

aerosol mass, number and surface concentrations. The difference between AERO3 and AERO4

(Binkowski and Roselle, 2003) is that AERO4 includes the sea salt aerosol. MOSAIC (Model

for Simulating Aerosol Interactions and Chemistry) (Zaveri et al., 2008) handles all the major

aerosol species at urban, regional, and global scales. These include sulfate, methanesulfonate,

NO3, chloride, carbonate, NH+
4 , sodium, calcium, BC, OC, and liquid water. In order to

represent aerosol size distribution, they can be implemented by either the modal or sectional

approach.

Apart from the aerosol module, there are two components that are fundamental for the

chemistry modeling: photolysis and gas-phase mechanism.

Photolysis

Photolysis reactions play a key role in atmospheric chemistry, as the Sun is the source

of energy that drives the entire system of atmospheric reactions (Seinfeld and Pandis, 2006).

Photolysis rate coefficient Ji (Equation 1.8) for a gaseous species i depend on the wavelength
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λ and is defined as:

Ji =

∫
λ
σi(λ, P, T )φi(λ, P, T )F (λ)dλ (1.8)

where σi is the absorption cross section, φi is the quantum yield of species i and F is

the representative actinic flux of irradiance that reaches the level where J is calculated. The

variables σi and φi are specific to photolysed species i, whereas F depends on the position of

the sun but also on the presence of clouds and aerosols. Photolysis rates can be modified by

the aerosols and clouds inside the layer but also below and above it (Real and Sartelet, 2011).

Some studies have shown the effects of aerosols on photolysis rates in the presence of clouds

(Liao et al., 1999; Yang and Levy II, 2004; Liu et al., 2009). Table 1.5 summarizes the different

photolysis schemes included in several state of the art CTMs.

Table 1.5: Photolysis schemes.

Name Model Reference
2-stream GISS CTM Isaksen et al. (1977)

δ-Eddington WRF-Chem; CMAQ Joseph et al. (1976)
Madronich WRF-Chem; CMAQ Madronich (1987)
Fast-J WRF-Chem; UCI CTM; NMMB/BSC-CHEM Wild and Prather (2000)
Fast-J2 UCI CTM Bian and Prather (2002)

Fast-TUV/FTUV MOZART-4; CMAQ Tie et al. (2003)
Fast-JX p-TOMACT Neu et al. (2007)

Gas-phase

The gas-phase mechanism is a critical module of CTMs that comprise inorganic species,

such as NOx, HOx and sulphur oxides (SOx) and organic species, mainly VOCs. The chemical

reaction mechanism describes how VOCs and NOx interact to produce O3 and other oxidants

(Dodge, 2000). It is essential to understand the photochemistry of the troposphere in order to

comprehend the changes in RF and to predict the future atmospheric composition (Emmerson

and Evans, 2009). Table 1.6 summarizes the different gas-phase schemes included in several

CTMs.

1.1.4.5 Online-coupled meteorology and chemistry models

Historically, given the complexity and lack of appropriate computer power, meteorology/climate

and chemistry feedbacks have been separately studied. Air chemistry and weather forecasts

have developed as separate disciplines, which has led to the development of separate modeling

systems that are only loosely coupled (offline) (Grell and Baklanov, 2011). Simulating cli-

mate and aerosols offline leads to inconsistencies in transport and no climate-chemistry-aerosol-
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Table 1.6: Gas-phase schemes.

Name Model Reference
LCC CIT Lurmann et al. (1987)

CBM-IV Models-3; CMAQ; NMMB/BSC-CHEM Gery et al. (1989)
RADM2 Models-3; CMAQ; WRF-Chem Stockwell et al. (1990)
EMEP EMEP MSC-W Simpson et al. (1993)
RACM EURAD; WRF-Chem Stockwell et al. (1997)

MELCHIOR1 CHIMERE Lattuati (1997)
MELCHIOR2 MACC CHIMERE Lattuati (1997)

CBM-Z WRF-Chem Zaveri and Peters (1999)
SAPRC CMAQ Carter (2000)
CBM-05 CMAQ; NMMB/BSC-CHEM Yarwood et al. (2005)
CACM CIT Griffin et al. (2002)

CB05-TU Polair-3D Whitten et al. (2010)
CB06 CAMx Yarwood et al. (2010)

cloud-radiation feedbacks (Sanderson et al., 2006). As aerosol is one of the key properties in

simulations of the Earth’s climate (Kinne et al., 2006), fully-coupled meteorology-climate, and

chemistry models provide the possibility to account for these feedback mechanisms between

simulated aerosol concentrations and meteorological variables. Figure 1.26 shows the interac-

tion between meteorolgy and the Atmospheric Chemistry Transport Model (ACTMs). It is also

a promising way toward for future atmospheric simulation systems that lead to a new gener-

ation of models for improved meteorological, environmental and chemical weather forecasting

(Baklanov et al., 2008b, 2014). Nevertheless, this fact presents significant challenges in both

scientific understanding and computational demand terms. Forkel et al. (2012) highlights that

further studies with higher cloud resolving resolution are therefore necessary to investigate the

aerosol indirect effect and also the development of the semi-direct effect in more detail. More-

over, as Grell and Baklanov (2011) showed, considering the many uncertainties in air quality

forecasting (such as emission inventories), more research and studies are needed to show that

models with online chemistry are able to perform well enough to meet these standards.

Online modeling systems have been developed and used by the research community since

the 1990s. The earliest online approach may have been the Gas Aerosol Transport Radiation,

General Circulation Mesoscale, Ocean Model (GATOR-GCMOM) a model developed by Ja-

cobson (Jacobson, 1994, 2001a,b). Both offline and online models are actively used in current

regional and global models and are useful for different applications:

• Offline models: in ensembles and operational forecasting, inverse/adjoint modeling, and

sensitivity simulations.

• Online models: where feedbacks are important (locations with high frequencies of clouds
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and large aerosol loadings, among others), where the local scale wind and circulation

system change quickly, and also when coupled meteorology-air quality modeling is essential

for accurate model simulations (real-time operational forecasting or simulating the impact

of future climate change on air quality).

Figure 1.26: Interactions of the integrated system of meteorology and ACTMs (Baklanov et al.,
2008b).

Many online-coupled global climate models (GCMs) were developed for simulating global

climate change and air quality studies more than three decades ago, whereas fewer coupled

climate/meteorology chemistry models at urban and regional scales (Zhang, 2008). Table 1.7

shows some online models from Europe (EU) and the United States (US).

According to European online models, COSMO-ART (Steppeler et al., 2003) processes re-

active gases and aerosols including secondary aerosols, soot, mineral dust, sea salt and bio-

logical matter. It compiles modules for emissions of mineral dust, sea salt and pollen grains.

Processes such as the emissions, coagulation, condensation, dry deposition, wet removal, and

sedimentation of aerosols are taken into account. Online coupling enables the calculation of

interactions of gases and aerosols with the state of the atmosphere. It ranges from the con-

tinental to the regional scale, and is the operational weather forecast model of the German

Weather Service (DWD). LM-MUSCAT (Wolke et al., 2004) is based on the “Lokal-Modell”

(LM), which is the operational weather prediction model of the DWD, the online-coupled Mul-

tiscale Chemistry Aerosol Transport model (MUSCAT). The Enviro-HIRLAM (Environment-

High Resolution Limited Area Model) is a fully online-coupled ACT-NWP which can be applied
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to regional-, meso- and urban-scale applications. The NWP part has been developed by the

HIRLAM consortium, and has been used for operational weather forecasting (Baklanov et al.,

2008a). NMMB/BSC-Chem, which is under development at the Earth Sciences Department

of BSC-CNS http://www.http://www.bsc.es/earth-sciences/nmmbbsc-project, is a fully

online integrated system used for meso to global scale applications. The meteorological driver

is the NCEP/NMMB numerical weather prediction and the CBM-05 chemical mechanism. The

BOLCHEM model Maurizi et al. (2011) online couples the mesoscale meteorological model BO-

LAM (BOlogna Limited Area Model) and modules for transport and transformation of chemical

species.

Table 1.7: Online-coupled models.

Model EU/US Reference
COSMO-ART EU Steppeler et al. (2003)
LM-MUSCAT EU Wolke et al. (2004)

DMI-Enviro-HIRLAM EU Baklanov et al. (2008a)
NMMB/BSC-CHEM EU Jorba et al. (2010)

BOLCHEM EU Maurizi et al. (2011)
GATOR-GCMOM US Jacobson (2001a,b)

WRF-Chem US Grell et al. (2005)
CAM3 US Collins et al. (2006)

MIRAGE2 US Ghan and Easter (2006)
WRF-CMAQ(online) US Mathur et al. (2010)

Among the American online models, we find GATOR-GCMOM (Jacobson, 2001a,b), a

one-way nested (from the global to the local scale) gas, aerosol, transport, radiation, gen-

eral circulation, mesoscale, and ocean model. The Community Atmosphere Model version 3.0

(CAM3)(Collins et al., 2006) represents the sixth generation of the Atmospheric General Circu-

lation Models developed by the climate community in collaboration with the National Center

for Atmospheric Research (NCAR). It has been designed as a modular and versatile model

suitable for climate studies by the general scientific community. When coupled to the Commu-

nity Climate System Model (CCSM) it interacts with fully prognostic land, sea-ice, and ocean

models. The name of the model series has been changed from the Community Climate Model

to the Community Atmosphere Model to reflect the role of CAM3 in the fully coupled climate

system. MIRAGE (Model for Integrated Research on Atmospheric Global Exchanges) is de-

signed to study the impacts of anthropogenic aerosols on the global environment. It consists of a

CTM coupled online with a GCM. The CTM simulates trace gases, aerosol number, and aerosol

chemical component mass (sulfate, methane sulfonic acid, BC and OC, sea salt, and mineral

dust) for four aerosol modes (Aitken, accumulation, coarse sea salt, and coarse mineral dust)

by the modal aerosol dynamics approach. WRF-CMAQ (Weather Research Forecast Model)

http://www.http://www.bsc.es/earth-sciences/nmmbbsc-project
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coupled with the EPA’s Community Multiple Air Quality (CMAQ) (Mathur et al., 2010), is an

online meteorology-chemistry model that simulates the two-way feedback between meteorology

and chemistry in a single simulation. It takes into account the interactions of estimated aerosol

mass on incoming shortwave radiation through the Rapid Radiative Transfer Method for Global

(RRTMG) radiation scheme for the shortwave aerosol direct effect. It does not simulate the

effects of aerosols on long wave radiation and cannot be used with the CAM radiation scheme.

This release also uses a core-shell model to perform the aerosol optics calculation rather than

the volume mixing technique used in the previous WRF-CMAQ version.

For this Thesis the WRF model coupled with Chemistry (WRF-Chem) (Grell et al., 2005)

has been used. A short description is done in the following Section. The online integrated

design of WRF-Chem has served to comply with the objectives of this work, as explained in

Section 1.2

1.1.4.6 Short description of WRF-Chem model

In this section we focus on describing the main features of this model. WRF-Chem simulates

the emission, transport, mixing, and chemical transformation of trace gases and aerosols simul-

taneously with the meteorology. The model is used for investigating regional-scale air quality,

field program analyses, and cloud-scale interactions between clouds and chemistry. It represents

the first community open-code, supported, online-coupled model (publicly available) and also

conditioned the election of this model for Thesis. Unlike the coarse spatial resolution of GCMs,

feedback processes over a wide range of spatial scales can be investigated with WRF-Chem.

Supermicrometer particles are included in WRF-Chem by adding an interactive coarse mode

(Schell et al., 2001).

Model features

The WRF-Chem model consists of the following components, and some are compiled in

Table 1.8:

• Gas-phase chemical mechanisms: the Regional Acid Deposition Model version 2 (RADM2)

of Chang et al. (1990), the Regional Atmospheric Chemistry Mechanism (RACM) of

(Stockwell et al., 1997). Carbon-Bond Mechanism version Z (CBM-Z) (Zaveri and Peters,

1999) and the 2005 version of Carbon Bond mechanism version 05 (CB05) of (Yarwood

et al., 2005) and (Sarwar et al., 2008).

• Aerosol module: the Modal Aerosol Dynamics Model for Europe (MADE) (Ackermann

et al., 1998) with the Secondary Organic Aerosol Model (SORGAM) of Schell et al.
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(2001) (MADE/SORGAM). Model for Simulating Aerosol Interactions and Chemistry

(MOSAIC) (Zaveri et al., 2008). Model of Aerosol Dynamics, Reaction, Ionization, and

Dissolution (MADRID) (Zhang et al., 2004) and a total mass aerosol module from the

Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART) (Chin et al.,

2000).

• Photolysis scheme: Fast-J scheme (Fast et al., 2006), Madronich scheme (Madronich,

1987) and F-TUV photolysis scheme (scheme faster than the previous Madronich scheme

option).

• Aerosol direct effect through interactions with atmospheric radiation, photolysis, and

micro physics routines. Available for GOCART, MOSAIC or MADE/SORGAM options.

• Aerosol indirect effect through interaction with atmospheric radiation, photolysis, and

microphysics routines. Available for MOSAIC or MADE/SORGAM.

A more detailed description of the model can be found in Grell et al. (2005) and Fast et al.

(2006). Figure below (1.27) shows the flowchart for the WRF-Chem modeling system.

Table 1.8: WRF-Chem features (Zhang, 2008).

Feature Name References

Gas-phase RADM2, RACM, CBM-Z, CB05
(156-237 reactions, 52-77 species)

Chang et al. (1990); Stockwell et al.
(1997); Zaveri and Peters (1999); Yarwood
et al. (2005); Sarwar et al. (2008)

Aerosol module MADE/SORGAM, MADRID,
MOSAIC, GOCART

Ackermann et al. (1998); Schell et al.
(2001); Zhang et al. (2004); Zaveri et al.
(2008)

Photolysis Madronich, F-TUV, Fast-J Madronich (1987); Madronich and Weller
(1990); Fast et al. (2006)

Direct effect Available for GOCART, MOSAIC or
MADE/SORGAM

Chin et al. (2000); Zaveri et al. (2008);
Schell et al. (2001)

Indirect effect Available for MOSAIC or
MADE/SORGAM

Zaveri et al. (2008); Schell et al. (2001)

Emissions Online: biogenic and sea salt
emissions Offline: anthropogenic
emissions and other natural emissions

Aplications Forecast/hindcast, Met/chem
feedbacks; O3, PM2.5; Aerosol direct
and indirect effects

1.1.4.7 Aerosol feedbacks modeling studies

Including aerosol interactions implies a major advance in air quality modeling. It is also im-

portant for developing integrated emissions control strategies for both air quality management

and climate change mitigation (Yu et al., 2013; Rosenfeld et al., 2014). The commonest method

to address the study of the aerosol-radiation-cloud interactions is to use different modeling se-

tups, for both the regional and global scale. Regarding ARI, available works focus on several
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Figure 1.27: Flowchart of the WRF-Chem system (Peckham et al., 2012).

climatic and meteorological variables such as T, SW, AOD and PBLH. On the other hand, in

ACI studies, CCN, cloud cover, precipitation efficiency are the most widely studied variables.

The semi-direct effect is reflected in changes in T, PBL, cloud cover or in solar heating rates.

Chapman et al. (2009) coupled the aerosol-radiation-cloud system into WRF-Chem, and

tested it with a simulation that contained all anthropogenic emission sources and another one

with removed emissions. They focused on a north-eastern North America (NA) domain in

summer of 2004. They found a reduction of 5 W m−2 due to the effect of aerosols. Moreover,

fewer clouds were found when removing emissions. Other studies have computed different

model setups, which include aerosol effects, or did not; i.e., a baseline case without any aerosol

feedback on meteorology, a simulation with the direct effect included and a simulation including

the direct as well as the indirect aerosol effect. The difference between these setups provides an

idea of the influence of the aerosol effect on the studied variable. Forkel et al. (2012) studied a

two-month episode (June to July 2006) to allow medium range effects of the direct and indirect

aerosol effects on meteorological variables and air quality. These authors found a slightly lower

T over western Europe when they included atmospheric aerosol feedbacks. This reduction
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followed the same pattern as PBLH. The inclusion of the indirect aerosol effect led to reduced

cloud water content by up to 70% and also to a significantly higher mean rain water content

over the North Atlantic. The mean O3 mixing ratios in July were modified by up to 4 ppb over

continental Europe, which were related mainly to changes in cloud cover. In July 2006, Meier

et al. (2012) found a general decrease in 0.14 K on T at 2 meters (T2) when simulating absorbing

aerosol in upper layers compared to an aerosol-free troposphere over land surface. During the

Russian forest fires espisode in summer 2010, Péré et al. (2014) showed a SW reduction up to

80-150 W m−2 and daily mean surface temperature reductions between 0.2 to 2.6 K, due to the

presence of high aerosol loads. Kumar et al. (2013) performed a study during a pre-monsoon

season (April-June) in India, and showed that the impact of dust aerosol effects was minor on a

regional scale, but was significant locally. They also found a cooling effect on the surface (−8.0

± 3.3 W m−2) and TOA (−2.9 ± 3.1 W m−2) and conversely a warming itself due to dust

particles (5.1 ± 3.3 W m−2).

Some studies have shown the importance of including the ACI, which contributes to good

performance when simulating aerosol properties; e.g., a work led by Yang et al. (2011a), used

the WRF-Chem model in a study on the northern Chilean and southern Peruvian coasts from

15 October to 16 November 2008. They performed a simulation including ACI and compared it

to another one with fixed CDNC and simplified cloud and aerosol treatments. When taking ACI

into account, it strengthens the temperature and humidity gradients within the inversion layer

and reduced the marine boundary layer depth. They also found that, the coupling simulation

of ACI improved cloud optical and microphysical properties. Moreover, a better agreement of

the mean TOA outgoing fluxes with observations is found in ACI simulation.

Among international initiatives, within GCMs, the AEROCOM initiative (Schulz et al.,

2006), compiles a number of observations and results from more than 14 global models to doc-

ument and compare state of the art modeling of global aerosols. Regarding the RF from the

ARI, in the phase I (Schulz et al., 2006) estimated the direct radiative TOA forcing (without

nitrate and dust) as 0.22 W m−2. After phase I, more attention was paid to the direct aerosol

effect due to anthropogenic nitrate and SOA. In AEROCOM Phase II, (Myhre et al., 2013a),

16 global aerosol models were used to assess the RF of the anthropogenic direct aerosol effects,

with a mean of −0.27 W m−2. In the same initiative, Quaas et al. (2009) evaluated 10 different

GCMs against satellite data, by taking into account aerosol-radiation-cloud interactions. They

computed the statistical relationships between AOD and various cloud and radiation quanti-

ties. Results found suggested that the second aerosol indirect effect had to be revised in the

GCMs (mainly regarding an autoconversion parameterisation). The Atmospheric Chemistry
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and Climate Model Intercomparison Project (ACCMIP) (Shindell et al., 2013) examined the

short-lived drivers of climate change in current climate models. Ten ACCMIP models includ-

ing aerosols, of which 8 also participated in CMIP5, were evaluated. They studied the ERF

which includes the direct + indirect effects. They observed an aerosol ERF of −1.17 W m−2;

(ranging from −0.71 to −1.44 W m−2) for the period 1850–2000, being greater than forcing RF.

The AQMEII Phase 2 Iniciative

The Air Quality Model Evaluation International Initiative (AQMEII) (Rao et al., 2011;

Alapaty et al., 2012) (http://aqmeii.jrc.ec.europa.eu) was launched in May 2009. Its goal

was to promote research on regional air quality model evaluation across European and North

American atmospheric modeling communities. According to the importance of atmospheric

aerosols, and in order to quantity these effects, the second phase of the AQMEII exercise (Ala-

paty et al., 2012) emerged in 2012 and focused on online-coupled meteorology-chemistry models.

Its goal was to assess how well the current generation of coupled regional scale air quality mod-

els can simulate the spatio temporal variability in the optical and radiative characteristics of

atmospheric aerosols and the associated feedbacks among aerosols, radiation, clouds, and pre-

cipitation. Therefore, it focuses on helping build credibility for coupled models and to provide

a better representation of feedback processes, namely, aerosol, radiation, cloud interactions and

changes in the air quality-climate interactions that result from emission changes (Alapaty et al.,

2012; Galmarini et al., 2015). This will lead to a better understanding of the interactions of

climate change and air quality, and to linkages between human health and ecosystems.

EuMetChem COST Action ES1004

On this basis, a coordinated exercise of working groups 2 and 4 of the COST Action ES1004

emerged to take into account the radiative feedbacks of atmospheric aerosol effects on meteorol-

ogy. The COST Action - European framework for online integrated air quality and meteorology

modeling (EuMetChem, http://eumetchem.info) - focused on a new generation of online inte-

grated Atmospheric Chemical Transport (ACT) and Meteorology modeling with two-way inter-

actions between different atmospheric processes including chemistry (both gases and aerosols),

clouds, radiation, boundary layer, emissions, meteorology and climate. The establishment of

such a European framework will enable the EU to develop world class capabilities in integrated

ACT/NWP-Climate modeling systems, including research, education and forecasting. In this

http://aqmeii.jrc.ec.europa.eu
http://eumetchem.info
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initiative, two important episodes with high loads of atmospheric aerosols were analyzed which

were identified in the previous AQMEII Phase 2 modeling intercomparison exercise. They were

selected for their strong potential for aerosol-radiation and aerosol-cloud interactions (Makar

et al., 2015b,a; Forkel et al., 2015).

As a result of the AQMEII Phase 2 initiative and EuMetChem COST Action, several studies

into the analysis of the ARI+ACI feedbacks to meteorology in EU and NA have been done.

The majority of the studies used an ensemble of simulations. Regarding model evaluation over

EU, Brunner et al. (2015) carried out an operational analysis of model performance regarding

the key meteorological variables. Among them, WS10 was significantly overpredicted by most

models (mainly at night). According to T2, seasonal evolution was well captured with monthly

mean biases below 2 K over all the domains. In contrast, solar incoming radiation, precipitation

and PBLH, showed a notable spread between models and observations, which led the authors

to conclude that important challenges still remain in the simulating relevant meteorological

parameters for air quality and for chemistry climate interactions on the regional scale. Im et al.

(2015a,b) performed an operational analysis of model performance as regards O3 and PM10,

respectively, over EU and US during the whole 2010. In Im et al. (2015a), the results in both

domains suggested that models tended to underestimate surface O3 and that simulated levels

depended on meteorological and chemical model configurations. Besides, they saw that bound-

ary conditions strongly influenced O3 predictions (which were more important in winter and

autumn). According to PM10 (Im et al., 2015b), in the EU domain, all the models underesti-

mated it in almost all seasons and sub-regions (largest underestimations in the Mediterranean).

The overestimations in the PM2.5 levels suggested that the large underestimations in the PM10

levels mainly came from the natural dust emissions. Over North US, a general underestimation

in PM10 was also found, in all seasons and sub-regions, which was mainly due to underpredic-

tions in soil dust. The differences found on AOD at 550 nm in both domains, were attributed to

differences in the concentration of the main species and to the way of estimating AOD. Lastly,

dust and sea salt emissions can extensively impact the simulated PM. For the NA domain, the

study of Campbell et al. (2015) made a multi-model evaluation over NA of the O3 and PM2.5 in-

dicators. They saw over southeast US an overprediction in the extent of VOC-limited chemistry,

and how the O3 indicators, total reactive nitrogen (NOy) and O3/NOy were the most robust

(compared to H2O2/HNO3, HCHO/NOy and HCHO/NO2), whereas PM2.5 was the least one.

Moreover, the inter-model agreement for O3 indicator sensitivities was good, which indicated a

governing change to more NOx-limited conditions in 2010 compared to 2006. As an extention

of Campbell et al. (2015), Wang et al. (2015) performed a multi-model evaluation for column
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variables against satellite data over NA in 2010. They found a good prediction of radiation

budgets and major column gases. Variables AOD, cloud optical thickness, liquid water path,

CCN and CDNC were largely underpredicted from most studied simulations. They stated that

there were still many uncertainties related to the parameterizations of the aerosol indirect ef-

fects. Giordano et al. (2015) performed an operational evaluation of the MACC re-analysis data

and to assessed their influence as chemical boundary conditions. They found different degrees

of agreement between the measurements and the MACC re-analysis (better performed over the

US domain). According to the boundary condition effects, a strong influence is shown over

O3. The CO background concentrations near the boundary domain were closed to observations

compared to the interior of both domains. Results showed that inputs in future linked glob-

al/regional modeling studies needed to be harmonized of inputs in future linked global/regional

modeling studies since emissions differences have an impact on model performance.

Focusing on the effects of including the aerosol feedbacks, Forkel et al. (2015) carried out

a study using 8 WRF-Chem simulations over EU in 2010, differing in the models parameteri-

zations. A notable feedback effects were found during the Russian forest fire episode (summer

2010), reducing the seasonal mean solar radiation by 20 W m−2 and mean T by 0.25◦. As

aerosol concentration was underestimated by up to 50%, this results should be considered as

a lower limit. The areas where lower indirect aerosol effects were found coincided with those

with low aerosol concentration (as the Atlantic and Nothern EU). Finally, including the aerosol

feedbacks reduces the bias and improves correlations (in some episodes and regions). The do-

main and time averaged performance statistics did not generally improve. Forkel et al. (2016)

and Kong et al. (2015), focused on the COST Action episodes. Forkel et al. (2016) studied

the 2010 Russian wildfire episode, where presence of atmospheric aerosols decreased the mean

temperature during summer 2010 by 0.25 K over the target area. Kong et al. (2015) focused

on both episodes (Russian forest fires and the Saharan dust event). They compared simulation

without aerosol effects, direct effect only and direct+indirect effects. When comparing the dif-

ferent simulations with the observations made from a station in Moscow, these authors showed

that the best skilled was the aerosol direct effect simulation. According to the model evaluation,

a reduction of 10% to 20% of the bias in PM10 was found when including aerosol direct effects.

The authors concluded that it is important to include the meteorology and chemistry inter-

actions in online-coupled models and, as models performed better when including only direct

effects, this indicates that aerosol indirect effect representation needs to be improved.

Makar et al. (2015a,b) also studied the role of feedback effects on model meteorological

and chemical performance, respectively, for EU and NA in 2006 and 2010. According to the
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aerosol effects on weather (Makar et al., 2015b), they compared two simulations, one without

any feedback effects and a second simulation including the aerosol feedbacks. They saw that

including both feedbacks types systematically changed to forecast predictions of meteorological

variables in, both time and space terms, with the strongest impacts occurring in the summer

and near large sources of pollution. After taking into account only direct effects, reductions

in T, surface downward and upward shortwave radiation, precipitation and PBLH were found,

while an increasing of upward shortwave radiation, in both domains was noted. In contrast,

the aerosol feedbacks response of models taking into account both direct and indirect effects,

varied across models, suggesting the details of implementation of the indirect effect have a

large impact on model results, and hence should be a focus for future research. These authors

also found that feedback implementation improved forecasts of meteorological parameters (as

T2 and precipitation), which suggests that meteorological forecasts could be improved by us-

ing fully coupled feedback models, or by adding improved climatologies of aerosol properties.

Regarding the aerosol feedbacks on chemistry (Makar et al., 2015a), they changed the ozone-

forming chemical regime, within NO−
x and VOC-limited environments. Moreover, feedbacks

have an important influence on biogenic hydrocarbon emissions and concentrations, showing

in NA an average decrease of isoprene concentration were found and on the contrary, in direct

effect simulations during the Russian forest fire. Feedbacks were also important, as it affected

atmospheric chemical transport (such as forest fires plumes). During summer, O3 was improved

whereas performance for PM was decreased. This suggests that current parameterizations for

in- and below cloud processes, may over- or under-predict the strength of these processes. In

that study, the authors recommended using online-coupled models when simulating large scale

urban/industrial and forest fire plumes and process parameterization comparison for further

future studies. For EU and NA domain, Knote et al. (2015) made a comparison of the tropo-

spheric gas-phase mechanisms used in AQMEII Phase 2. They intercompared their performance

under tight constraints for environmental parameters, photolysis rates, removal processes and

emissions. Besides, they computed box model simulations representing mean boundary layer

concentrations, and different sets of conditions. For the O3 box model, differences between

models of 4 ppbv (5%) were found for in both domains. Larger differences for predicted con-

centrations were found for NOx (up to 25%), OH (40%) HO2 (25%) and particularly NO3 by

more than 100%. The authors concluded that the gas-phase mechanism choice is significant in

model simulations for regulatory purposes and emission scenarios since uncertainties still exit.

San José et al. (2015) studied the inclusion of the aerosol feedback within the WRF-Chem

model and the gas-phase chemistry CBM-Z. They used two simulations, one without any feed-
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back effects and a second simulation with both the direct and the indirect aerosol effects. Results

shown that including the aerosol feedbacks increased solar radiation, mainly over cloudy areas

(up to 70%, due to the indirect aerosol effects) and decreased over sunny areas (10% through

scattering). Water vapor also increased (around 3%) and PBLH decreased (20%) over the entire

domain (but for the Sahara, where the highest load are found).

Curci et al. (2015) focused on EU in July 2010 and calculated the optical properties from

several AQMEII Phase 2 simulations by applying the same assumptions. The assumption of

the mixing ratio was found to be the most important factor of uncertainty on simulated AOD

and SSA (30 to 35%). For the ASY, the choice of the mixing state is the order of 10%. In

contrast, the core composition in the core-shell representation resulted crucial for SSA but not

important for AOD. These authors concluded that future modeling research should be focused

on accurate representation of the aerosol mixing state to reduce the uncertainty of simulated

aerosol properties. Last, a sensitivity study of the microphysic scheme is done in Baró et al.

(2015) and will be described in Chapter 2.

Overall, the studies carried out under the umbrella of AQMEII Phase 2 and the EuMetChem

COST Action initiatives have pointed out the improvements of using online-coupled models and

also that uncertainties as to the aerosol-radiation-cloud interactions still remain. In Galmarini

et al. (2015) an overview of these initiatives is compiled.

1.2 Objectives

As previously shown, the main hypothesis on which this Ph.D. Thesis stands on is that climate-

chemistry-aerosol-radiation-cloud feedbacks are important processes occurring in the atmo-

sphere, and that they should be accurately simulated in order to reduce the uncertainties related

to climate change projections. The study of these feedbacks requires fully-coupled meteorology,

climate and chemistry models. To further deepen the insights of this main hypothesis, the main

objective is defined as the characterization of the uncertainties in the climate-chemistry-aerosol-

radiation-cloud system associated to the aerosol direct and indirect radiative effects caused by

aerosols over Europe, employing an ensemble of fully-coupled climate and chemistry model sim-

ulations.

The development of this Thesis has been done within the framework of AQMEII Phase 2

and the EuMetChem COST Action initiatives, contributing to study some of the top ranked

interactions recommended by the expert survey, as aerosol direct effects on radiation and tem-

perature.

The specific objectives can be summarized as:
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• Investigate the impact of different cloud microphysics schemes within two one–year WRF-

Chem simulations, over Europe.

• Estimate the influence of biomass burning (BB) aerosols on spatially-distributed winds

over Europe and, specially over the Russian area.

• Assess whether the outputs of an ensemble of regional on-line coupled models simulations

including aerosol radiative feedbacks, during two important atmospheric aerosol episodes

of the year 2010, improves the prognostic for maximum, mean and minimum temperature

at 2 meters over Europe.

• Assess the representation of the ARI+ACI interactions in regional–scale integrated models

when simulating the climate-chemistry-cloud-radiation system.

As this Thesis has been undertaken under the umbrella of the AQMEII Phase 2, this had

led to contribute to its general objectives:

1. Exchanging expert knowledge in regional air quality modeling.

2. Identifying knowledge gaps in air quality science.

3. Developing methodologies to evaluate uncertainty in air quality modeling building a com-

mon strategy on model development and future research priorities.

4. Establishing methodologies for model evaluation to increase knowledge on processes.

5. Support the use of models for policy development preparing coordinated research projects

and inter-comparison exercises.

Having contributed to the mentioned initiatives have provided us the analytical tools to

reach a better understanding of the air quality-climate interactions as well as to value the

various physical and chemical processes incorporated in the coupled modeling systems. We

have taken profit from the valuable database generated in this initiatives, which will serve to

develop the main objective of this Thesis which goes beyond the initiative’s objectives.

As derived objectives, thanks to the huge and valuable data base generated, it could be used

to study other interest factors in order to establish an air quality climatology over the target

areas. A data base has been created with the results from the different simulations done under

this Thesis. This data base have had an appropriate organization and format according to the

specific requirements in AQMEII and is available to the members of the project as well as the

scientific community.
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It is interesting to highlight that for the first time (to our knowledge), the direct and

indirect effect of aerosols (natural and anthropogenic) have been studied over a whole year by

an ensemble of regional climate-chemistry simulations, and thus not confined to a short period

of time or starting from an episodic approach.

1.3 Scope and structure

The present document shows the discussion and main results of this Ph.D. Thesis entitled:

Analysis of the aerosol-radiation-cloud interactions through the use of regional climate/chem-

istry coupled models. As stated above, the document does not include a Chapter devoted to

the methodology itself since this Thesis is structured as a compilation of different studies.

Each topic composes an organized view of the analysis of aerosol-radiation-cloud interactions.

Therefore each Chapter/topic includes the description of the methodology, together with a more

specialized review of the state-of-the art.

In order to accomplish with the defined objectives, the Thesis document is organized as

follows. Chapter 1 reviews the state of the art of the atmospheric aerosols. The importance of

atmospheric aerosols to issues of social concern has motivated a number of research initiatives

intended to describe their loading, distribution, and properties and to develop understanding

of the controlling processes to address the aerosol influences on climate. Atmospheric aerosols

exert a substantial influence on Earth’s climate, and the current interest in studying atmospheric

aerosol has grown given the need to quantify this influence. Hence, this section focuses on

the aerosols role in modifying the Earth’s radiative balance, and dose not focus so much on

the impacts of aerosols on health, which have been widely covered in the scientific literature.

According all this information, the objectives of this Ph.D. Thesis have been stated.

The first topic covered in this Thesis has to do with the configuration of the on-line coupled

model, especially in those aspects related to mycrophysics parameterization. Chapter 2 shows

a sensitivity analysis of the microphysics scheme used in the WRF-Chem model. Aerosol indirect

effects are related to the microphysical processes, since they govern the formation, growth and

dissipation of hydrometeors. Here, the differences when using two microphysic schemes which

are able to take into account the aerosol-radiation-cloud interactions are analyzed and discussed.

Once the configuration of the model is set up (by confirming the selected microphysics

scheme), the atmospheric aerosol effects on meteorological variables during a case study were

estimated. This topic is covered in Chapter 3, which elucidates the impact of BB aerosols

on surface winds for the Russian heat wave and wildfires episode between 25th July and 15th

August 2010. An important component of atmospheric aerosols are those coming from BB,
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which strongly absorbs solar radiation, having an impact on cloud processes and playing an

important role in the Earth’s climate system.

After studying this episode, this Thesis explores the ability of an ensemble of simulations to

elucidate aerosol-radiation-cloud interactions.This is reflected in Chapter 4, which includes an

assessment of whether the inclusion of atmospheric aerosol radiative feedbacks of an ensemble

of on-line coupled models improves the simulation results for maximum, mean and minimum

temperature at 2 meters over Europe or not.

Since a cloud free condition prevailed during the Russian forest fires (and therefore aerosol

impacts are produced mainly in the ARI), in order to be able to study the ACI, in Chapter 5,

an assessment of the representation of aerosol-cloud interactions interactions in regional-scale

integrated models when simulating the climate-chemistry-cloud-radiation system is done. Up to

now, all the collectives studies performed used global models; regional climate analysis do not

usually take into account ARI+ACI. Hence, It complements the temperature collective analyses

shown in Chapter 4.

Last, Chapter 6 provides not only the main conclusion drawn from this Thesis, but also

suggestions for future works derived from continuing the research line done within the framework

of this Ph.D. Thesis.





Chapter 2

Sensitivity analysis of the microphysics

scheme in WRF-Chem contributions to

AQMEII Phase 2

Published in Atmospheric Environment: Baró, R., Jiménez-Guerrero, P., Balzarini, A., Curci,

G., Forkel, R., Grell, G., Hirtl, M., Honzak, L., Langer, M., Pérez, J.L., Pirovano, G., San

José, R., Tuccella, P., Werhahn, J., and Zabkar, R (2015). Sensitivity analysis of the micro-

physics scheme in WRF-Chem contributions to AQMEII Phase 2. Atmospheric Environment,

115, 620-629.

The parameterization of cloud microphysics is a crucial part of fully-coupled meteorology-

chemistry models, since microphysics governs the formation, growth and dissipation of hydrom-

eteors and also aerosol cloud interactions. The main objective of this study, which is based on

two simulations for Europe contributing to the Phase 2 of the Air Quality Model Evaluation

International Initiative (AQMEII), is to assess the sensitivity of WRF-Chem to the selection of

the microphysics scheme. Two one-year simulations including aerosol cloud interactions with

identical physical-chemical parameterizations except for the microphysics scheme (Morrison

-MORRAT vs Lin -LINES) are compared. The study covers the difference between the simu-

lations for two three-month periods (cold and a warm) during the year 2010, allowing thus a

seasonal analysis. Overall, when comparing to observational data, no significant benefits from

the selection of the microphysical schemes can be derived from the results. However, these

results highlight a marked north-south pattern of differences, as well as a decisive impact of the

aerosol pollution on the results. The MORRAT simulation resulted in higher cloud water mix-

ing ratios over remote areas with low cloud condensation nuclei (CCN) concentrations, whereas

49
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the LINES simulation yields higher cloud water mixing ratios over the more polluted areas.

Regarding the droplet number mixing ratio, the Morrison scheme was found to yield higher val-

ues both during winter and summer for nearly the entire model domain. As smaller and more

numerous cloud droplets are more effective in scattering shortwave radiation, the downwelling

shortwave radiation flux at surface was found to be up to 30 W m −2 lower for central Europe

for the MORRAT simulation as compared to the simulation using the LINES simulation during

wintertime. Finally, less convective precipitation is simulated over land with MORRAT during

summertime, while no almost difference was found for the winter. On the other hand, non-

convective precipitation was up to 4 mm lower during wintertime over Italy and the Balkans

for the case of including Lin microphysics as compared to the MORRAT simulation.

2.1 Introduction

Anthropogenic aerosols exert a substantial influence on Earth’s climate, and the current interest

in studying the atmospheric aerosol has increased due to the need to quantify this influence.

Aerosols influence climate by modifying both the global energy balance through absorption

and scattering of radiation (direct effects), the reflectance and persistence of clouds and the

development and occurrence of precipitation (indirect effects)(Ghan and Schwartz, 2007; Forkel

et al., 2012). Aerosols act as CCN (first indirect effect), thus affecting cloud albedo and lifetime

(Twomey, 1977; Lohmann and Feichter, 2005) and their impacts also include an increase in liquid

water content, cloud cover and lifetime of low level clouds and suppression or enhancement of

precipitation, which is the second indirect effect (Bangert et al., 2011).

Indirect effects are related to the microphysical processes, which play an important role in

how convection develops. Cloud microphysical processes are also very important to predictions

of the atmosphere at temporal scales ranging form minutes to centuries, owing to the effects of

latent heat release due to the phase changes of water and the interactions between clouds and

radiation (Stensrud, 2007).

Several studies have addressed the influence of the aerosols in microphysics. For example,

Rosenfeld et al. (2008) studied how aerosol influences precipitation, showing that clouds with

lower amounts of CCN rain out more quickly than polluted clouds, which evaporate water before

precipitation can occur. Twohy et al. (2005) evaluated the aerosol indirect effect in marine

stratocumulus clouds, showing that clouds formed in air with high particle concentrations had

higher droplet concentrations, smaller droplet sizes, and lower drizzle rates.

As aerosol is one of the key properties in simulations of the Earth’s climate (Kinne et al.,

2006; Grell and Baklanov, 2011), fully-coupled meteorology-climate, and chemistry models are
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required to provide the possibility to account for these feedback mechanisms between simulated

aerosol concentrations and meteorological variables in numerical climate and weather predic-

tion models. Within this context, the microphysics parametrization scheme accounts for the

processes that govern the formation, growth and dissipation of cloud particles (freezing, sub-

limation, evaporation, melting and deposition) (Jérez et al., 2013). There are several schemes

describing these interactions. Most of these schemes are “single-moment” schemes, meaning

that only the total mixing ratio is predicted. “Double-moment” implies additional prediction of

number concentrations. If the aerosol effect on microphysical processes and cloud/precipitation

evolution is studied, the use of a double-moment scheme will be necessary. The prediction of

the number concentration will affect simulated particle sizes and hence gravitational settling,

collision/coalescence and cloud radiative properties, and precipitation efficiency (Ghan et al.,

1997).

In order to investigate the impact of different cloud microphysics schemes on results of

WRF-Chem, two one-year simulations for Europe from the AQMEII Phase 2 modeling exercise

are analysed. Both simulations include aerosol cloud interactions for grid scale clouds and differ

only by the choice of the cloud physics parameterization.

In this sense, the main objective of this paper focuses on the following question: Which is

the sensitivity of WRF-Chem simulations to the selection of the cloud microphysics schemes?

Hence, this work is not focused on characterizing the aerosol radiative effects and feedbacks,

which are covered by the study of Forkel et al. (2015); Curci et al. (2015); San José et al. (2015)

(in this issue).

2.2 Methodology

The WRF-Chem model (Grell et al., 2005) has been used for assessing two different simu-

lations differing only in the microphysics scheme selected. WRF-Chem allows an interactive

coupling and simulates the emission, transport, mixing, and chemical transformation of trace

gases and aerosols simultaneously with the meteorology. The model is used for investiga-

tion of regional-scale air quality, field program analysis, and cloud-scale interactions between

clouds and chemistry. In contrast with the coarse spatial resolution of GCMs, feedback pro-

cesses over a wide range of spatial scales can be investigated with WRF-Chem. The sim-

ulations have been done within the framework of AQMEII Phase 2 (Alapaty et al., 2012)

(http://aqmeii.jrc.ec.europa.eu) which emerged in 2012 and focuses on online-coupled

meteorology-chemistry models. Its goal is to assess how well the current generation of coupled

regional scale air quality models can simulate the spatio temporal variability in the optical

http://aqmeii.jrc.ec.europa.eu
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and radiative characteristics of atmospheric aerosols and associated feedbacks among aerosols,

radiation, clouds, and precipitation.

The target domain covers Europe for the year 2010. The spatial configuration employed

consists of one single domain centered on latitude 50◦N, and longitude 12◦E. The Lambert

Conformal projection has been used according to the project specifications. The vertical model

coordinate system consists of 33 vertical sigma levels, the lowest layer height at 24 m and the

model top 50 hPa. The horizontal resolution is 23 km and the total number of grid points is

60.750.

The simulations were integrated by continuous runs with 2-days of time slices. The chemistry

was restarted form the previous run whereas the meteorology is restarted each time slot. This

keeps the simulations consistent with large-scale analysis fields while allowing for the feedback

processes to work. The simulation was driven by ECMWF operational analyses (with data at

00 and 12 UTC) and with respective forecasts (at 3/6/9 etc. hours), so that the time interval of

meteorological fields used for boundary conditions was 3 hours. The chemical initial conditions

(IC) were provided by the European Centre for Medium-Range Weather Forecasts (ECMWF)

IFS-MOZART model, which are available in 3-hour time intervals and provided in daily files

with 8 times per file.

2.2.1 Emissions

The anthropogenic emissions used were provided by the Netherlands Organization for Applied

Scientific Research (TNO). The dataset is a follow-on to the widely used TNO-MACC database

(Pouliot et al., 2012). The provided species are CH4, CO, NOx, SOx, non-methane VOC,

NH3, PMcoarse, PM2.5. A separate PM bulk composition profile file is composed based on the

information by source sector by country. The different chemical components represented are

EC, OC, SO2, sodium and other mineral components.

Biogenic emissions were estimated using MEGAN (Guenther et al., 2006) which are calcu-

lated online. MEGAN is a global model with a base resolution of arround 1 km that serves

for estimating the net emission of gases and aerosols from terrestrial ecosystems into the atmo-

sphere. Driving variables include land cover, weather, and atmospheric chemical composition.

Fire emissions data were obtained from the IS4FIRE Project (http://is4fires.fmi.fi).

The emission dataset is estimated by re-analysis of fire radiative power data obtained by MODIS

instrument onboard of Aqua and Terra satellites. The fire assimilation system information is

processed into the emission input for the System for Integrated modeling of Atmospheric coM-

position (SILAM) for a subsequent evaluation of the impact of fires on atmospheric composition

http://is4fires.fmi.fi
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and air quality. The emission data is available for Europe with 0.1×0.1 degree spatial resolution.

2.2.2 Model configuration

Within all WRF-Chem simulations included in AQMEII Phase 2 (see Forkel et al. (2015)

for further details), the focus of this paper is on two equal simulations differing only in the

microphysics scheme. The first simulation (MORRAT) uses the Morrison microphysics scheme

(Morrison et al., 2009). The second simulation (LINES) relies on the Lin microphysics scheme

(Lin et al., 1983). WRF-Chem configurations used include the following options (Table 2.1):

RADM2 chemical mechanism (Stockwell et al., 1990); MADE/SORGAM aerosol module (Schell

et al., 2001) including some aqueous reactions; Fast-J photolysis scheme (Fast et al., 2006);

Goddard shortwave radiation parameterization (Chou and Suarez, 1994); Yonsei University

scheme (YSU) (Hong and Pan, 1996) for the Planetary Boundary Layer (PBL); dry deposition

follows the Wesely resistance approach (Wesely, 1989), while wet deposition is divided into

convective wet deposition and grid-scale wet deposition (Easter et al., 2004).

Table 2.1: Model configuration options.

OPTION NAME
Gas phase mechanism RAMD2 (Stockwell et al., 1990)
Aerosol mechanism MADE/SORGAM (Schell et al., 2001)

Organic module SORGAM (Schell et al., 2001)
Aerosol size 3 modes (Aitken, accumulation and coarse)

Planetary Boundary Layer YSU (Hong and Pan, 1996)
Dust model MOSAIC MADE/SORGAM (Schell et al., 2001)

Photolisis option Fast-J (Fast et al., 2006)

Microphysics option Lin (Lin et al., 1983)
modified by Chapman et al. (2009) Morrison (Morrison et al., 2009)

Shortwave radiation Goddard (Chou and Suarez, 1994)
Longwave radiation RRTM (Iacono et al., 2008)

Prognostic cloud condensation nuclei Yes
Direct feedback Yes

Indirect feedback Yes
Wet deposition Gris scale wet deposition (Easter et al., 2004)
Dry deposition Wesely resistance approach (Wesely, 1989)

2.2.3 Microphysics schemes

The Morrison scheme (Morrison et al., 2009) is a double moment scheme including the fol-

lowing six species of water: vapour, cloud droplets, cloud ice, rain, snow and graupel/hail.

While single-moment bulk microphysics schemes only predict the mixing ratios of hydromete-

ors, double-moment methods include an additional prognostic variable that is related to the size

distribution, such as number concentration. Prognostic variables include number concentrations

and mixing ratios of cloud ice, rain, snow and graupel/hail, cloud droplets and water vapour

(total 10 variables). Moreover, several liquid, ice, and mixed-phase processes are included. Par-

ticle size distributions are treated using gamma functions, with the associated intercept and
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slope parameters derived from the predicted mixing ratio and number concentration.

The Lin scheme, based on Lin et al. (1983) and Rutledge and Hobbs (1984), is a single

moment scheme including some modifications, as saturation adjustment following Tao et al.

(1989) and ice sedimentation, which is related to the sedimentation of small ice crystal (Mitchell

et al., 2008). It includes six classes of hydrometeors: water vapor, cloud water, rain, cloud ice,

snow, and graupel. This scheme was one of the first to parameterize snow, graupel, and mixed-

phase processes (such as the Bergeron process and hail growth by riming) and it has been widely

used in numerical weather studies.

According to Li et al. (2008), the one-moment microphysical scheme is unsuitable for assess-

ing the aerosol-clouds interactions as it only predicts the mass of cloud droplets and does not

represent the number concentration of cloud droplets. The prediction of two moments provides

a more robust treatment of the particle size distributions, which is a key for computing the mi-

crophysical process rates and cloud/precipitation evolution. Therefore, prediction of additional

moments allows greater flexibility in representing size distributions and hence microphysical

process rates.

In this sense, although the Lin microphysics is presented as a single moment scheme, WRF-

Chem model allows to transform the single into a double moment scheme. This implementation

is described in Chapman et al. (2009). Following Ghan et al. (1997), a prognostic treatment of

cloud droplet number was added, which treats water vapour and cloud water, rain, cloud ice,

snow, and graupel. The autoconversion of cloud droplets to rain droplets depends on droplet

number follows Liu et al. (2005). Droplet-number nucleation and (complete) evaporation rates

correspond to the aerosol activation and resuspension rates. Ice nuclei based on predicted

particulates are not treated. However, ice clouds are included via the prescribed ice nuclei

distribution following the Lin scheme. Finally, the interactions of clouds and incoming solar

radiation have been implemented by linking simulated cloud droplet number with the Goddard

shortwave radiation scheme, representing the first indirect effect, and with Lin microphysics,

which represents the second indirect effect (Skamarock et al., 2005). Therefore, droplet number

will affect both the calculated droplet mean radius and cloud optical depth when using Goddard

shortwave radiation scheme.

In order to summarize the main differences between the two schemes, cloud droplets spec-

trum is represented by gamma distribution for Morrison scheme (Morrison et al., 2009) whereas

an exponential distribution is used for Lin. All the other hydrometer types are represented by

the exponential function in the Morrison scheme.



2.3. Results and discussion 55

2.3 Results and discussion

2.3.1 Sensitivity study

The difference between MORRAT and LINES for several WRF variables (such as cloud water

mixing ratio, droplet number mixing ratio, 2-m temperature, accumulated cumulus and total

grid precipitation and shortwave radiation) is estimated, giving an idea of the sensitivity of the

results to the selected microphysics scheme. Mean values for a cold period (January-February-

March, JFM) and a warm period (July-August-September, JAS) are considered.

The results of the differences between the two simulations are presented in this section

(Figures 2.1 to 2.4), where MORRAT has been taken as reference. That is, positive (negative)

values indicate that MORRAT simulates higher (lower) levels of the studied variable.

Figure 2.1 shows the mean values of cloud water mixing ratio (QCLOUD) and droplet num-

ber mixing ratio (QNDROP). MORRAT and LINES simulate similar cloud water mixing ratio

for both seasons, with MORRAT providing higher QCLOUD in winter over the northeastern

part of the domain, between 60◦N to 70◦N (+0.05 g kg −1) and remote areas (Mediterranean

Sea and Atlantic Ocean; western Scandinavian peninsula; here the differences are up to +0.10

g kg −1) where the CCN concentration is lower. LINES gives higher values of this mixing ratio

over central Europe (−0.06 g kg −1) and the British Islands (−0.05 g kg −1). Differences over

land are negligible during summertime, but MORRAT simulates a notably higher QCLOUD

(up to +0.08 g kg −1) over the Atlantic Ocean during this part of the year.

Regarding the droplet number mixing ratio, MORRAT simulations indicate higher values

of QNDROP both during winter and summer for nearly all the domain of simulation. Highest

differences are found for JFM (+2.5·10−7 kg −1). In summer, QNDROP is more similar between

the two runs. As cloud water mixing ratio values are similar for MORRAT and LINES, higher

droplet number mixing ratio in MORRAT indicates that cloud droplets have a lower diameter

in MORRAT than in LINES, especially during winter. Therefore, smaller and more numer-

ous cloud droplets as simulated in MORRAT should be more effective in scattering shortwave

radiation. This is clearly observed in Figure 2.2, showing the differences of the mean short-

wave downwelling flux at bottom (SWDNB) and shortwave upwelling flux at the top of the

atmosphere (SWTU), for JFM and JAS over 2010. According to these variables, MORRAT

has lower(higher) levels for SWDNB(SWTU) radiation up to 30 W m−2 (20 W m−2) for cen-

tral Europe during JFM especially during wintertime, reducing to a general MORRAT-LINES

difference of −15 W m−2 for SWDNB for JAS, with a maximum difference of −20 W m−2 in

downwelling shortwave radiation at bottom.
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Figure 2.1: (Top panel): (First row) Winter 2010 (left) and summer 2010 (right) mean cloud
water mixing ratio (QCLOUD) in MORRAT simulations (g kg−1). (Second row) Winter 2010
(left) and summer 2010 (right) mean differences between MORRAT and LINES (g kg−1). (Bot-
tom panel) Id. for droplet number mixing ratio (QNDROP) (kg−1).

This fact is conditioned by the higher levels of cloud droplets in MORRAT, leading to a

more effective scattering. Conversely, MORRAT-LINES difference for SWTU is maximum (+25
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W m−2) over the Atlantic Ocean both for JFM and JAS; and minimum (+1 W m−2) in the

cold period over north-eastern Europe (Russia, Baltic Countries and Scandinavia).

However, taking a look at 2-m temperature in Figure 2.3, higher winter average temper-

atures are simulated with MORRAT than with the case of including Lin microphysics in the

northernmost part of the domain (Nordic countries and Russia, 50◦N to 70◦N, with differences

of +2.5 K). Only small differences are observed for the Mediterranean area and the Atlantic

Ocean, where LINES simulates slightly higher temperatures (differences under −0.2 K). The

spatial pattern of differences for QNDROP and T2 are highly correlated. MORRAT simulations

having higher QNDROP (and therefore, higher levels of cloud droplets) cause lower tempera-

ture during the day (as less shortwave radiation reaches the ground), but higher temperature

during night (because of more longwave radiation reflected towards the ground, not shown).

Between the two effects, the latter prevails, and thus the daily average temperature increases (as

observed during wintertime, when QNDROP differences are higher). Furthermore, in winter at

these latitudes shortwave heating will be smaller so the longwave effect will be more important.

This phenomenon is also described in Forkel et al. (2015).

Last, Figure 2.4 shows the differences of the accumulated convective precipitation (RAINC)

and accumulated total grid scale precipitation (RAINNC). As previously stated in Figure 2.1,

MORRAT showed higher levels of QNDROP, involving a higher droplet number mixing ratio,

but less liquid water droplet. This could be related to the lower convective precipitation simu-

lated over land with MORRAT during summertime (difference up to −1.0 mm over land), while

no importante differences are found for winter. On the other hand, for non-convective precipita-

tion, highest differences are found over Italy and the Balkans, with negative MORRAT-LINES

values up to −4.0 mm (differences are negligible for summertime).
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Figure 2.2: (Top panel): (First row) Winter 2010 (left) and summer 2010 (right) mean down-
welling shortwave flux at bottom (SWDNB) in MORRAT simulations (W m−2). (Second row)
Winter 2010 (left) and summer 2010 (right) mean differences between MORRAT and LINES (W
m−2). (Bottom panel) Id. for upwelling shortwave flux at the top of the atmosphere (SWTU)
(W m−2).
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Figure 2.4: (Top panel): (First row) Winter 2010 (left) and summer 2010 (right) mean convec-
tive precipitation (RAINC) in MORRAT simulations (mm). (Second row) Winter 2010 (left)
and summer 2010 (right) mean differences between MORRAT and LINES (mm). (Bottom
panel) Id. for grid scale precipitation (RAINNC) (mm).
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2.3.2 Numerical model comparison and evaluation

This section is devoted to the evaluation of the two simulations against observations, when

available. The reader should bear in mind that the aim of this paper is not to provide a

comprehensive model evaluation, which has been already done within the study performed

by Im et al. (2015a,b) for pollutants and Brunner et al. (2015) for meteorology; studies also

developed under the umbrella of AQMEII Phase 2. However, in order to highlight the differences

between the two simulations, several variables are evaluated using the web-based platform for

model intercomparison and multi-model ensemble analysis ENSEMBLE (http://ensemble2.

jrc.ec.europa.eu/public/) hosted at the Joint Research Centre (JRC) (Bianconi et al., 2004;

Galmarini et al., 2012). Observations include hourly data collected by the AirBase, AERONET

and the European Monitoring and Evaluation Programme (EMEP). Several classical statistics

are used, such as bias, normalized bias (NB), mean fractional bias (MFB), normalized mean

square error (NMSE), root mean square error (RMSE) and the Pearson correlation coefficient

(PCC).

As the results presented in Section 2.3.1 indicate a marked north-south difference in the

patterns (e.g., for T2 or QNDROP), results have been divided into two domains, northern

(from 50◦N to 70◦N) and southern Europe (from 30◦N to 50◦N), to check whether the models

present any spatial-related bias. Table 2.2 shows the performed statistics over both domains

for those variables with observations available within the ENSEMBLE system. Broadly, the

sensitivity of the results to the selection of the microphysics scheme is very limited, since the

results of the model evaluation are quite similar for both simulations in northern and southern

Europe. No significant benefits from the selection of the microphysics schemes can be derived

from the results. For instance, both simulations underpredict air pollutants such as SO2, PM10

and PM2.5 in all domains. The most importance differences are found for tropospheric ozone

(O3) in the southern domain (30◦N to 50◦N), where the bias is 8.3 µg m−3 for MORRAT

and reduces to 2.8 µg m−3 in LINES. However, the differences in the PCC are low for all these

pollutants. In this sense, it should be highlighted that the selection of the different microphysics

does not seem to improve the time reproducibility of the simulations in both domains.

http://ensemble2.jrc.ec.europa.eu/public/
http://ensemble2.jrc.ec.europa.eu/public/
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Table 2.2: Statistical evaluation of MORRAT and LINES simulations against variables with
available observations within the ENSEMBLES system

VARIABLE SIMULATION BIAS1 NB2 MFB2 NMSE1 RMSE1 PCC
NORTHERN EUROPE

TEMP MORRAT -0.4557 -0.0016 0.0051 0.0001 2.8577 0.9582
LINES -0.5845 -0.0021 -0.0014 0.0001 3.0333 0.9553

PM2.5
MORRAT -5.9173 -0.4190 -0.3183 2.2049 15.9850 0.3044
LINES -6.7524 -0.4783 -0.3889 2.6480 16.5949 0.2406

O3
MORRAT -7.4301 -0.1235 -0.0641 0.1809 23.9560 0.6011
LINES -10.873 -0.1807 -0.1053 0.2158 25-2972 0.5975

SO2
MORRAT -2.7626 -0.5598 -0.6135 4.4752 6.9260 0.4979
LINES -2.8481 -0.5951 -0.6981 4.9115 6.9625 0.5078

PM10
MORRAT -7.7279 -0.3826 -0.2763 0.5053 22.9020 0.1940
LINES -8.9224 -0.4417 -0.3450 0.5511 23.5194 0.1518

SOUTHERN EUROPE

TEMP MORRAT -0.8091 -0.0028 -0.0018 0.0001 3.1894 0.9374
LINES -0.7816 -0.0027 -0.0018 0.0001 3.1850 0.9379

PM2.5
MORRAT -3.5182 -0.3184 -0.3184 0.9605 8.9402 0.3782
LINES -4.0872 -0.3699 -0.3768 1.0789 9.1112 0.3733

O3
MORRAT 8.2815 0.1332 0.1185 0.1632 26.7421 0.5432
LINES 2.7612 0.0444 0.0709 0.2416 25.3991 0.5467

SO2
MORRAT -4.4496 -0.6080 -0.5337 25.9405 23.3353 0.2005
LINES -5.1143 -0.6984 -0.6916 34.1846 23.3353 0.2005

PM10
MORRAT -21.931 -0.5915 -0.5556 3.4689 44.1400 0.2807
LINES -22.883 -0.6172 -0.6061 3.7784 44.5957 0.2818

1RMSE and BIAS are in units of K for T; µg m−3 for PM10 and O3; ppbv for SO2, mm for PREC and
W m−2 for SWUPB and SWDNB.
2Parts per units.

Table 2.3 shows the comparison of the statistics for those variables whose observations are

not included within ENSEMBLE (observations not available) at receptors taking MORRAT

simulation as reference. This has allowed comparing the behaviour of LINES with respect to

MORRAT. Hence, LINES minus MORRAT statistics are computed: as an example, a positive

bias for a certain variable implies that LINES has a higher value of that variable. The dif-

ferences for total precipitation are negligible both for northern Europe and southern Europe.

The biases are below +0.01 mm, with LINES giving higher precipitation for both domains of

study; normalized biases are under +5%, indicating LINES tendency for a higher precipitation.

However, a low correlation is observed for both simulations with respect to precipitation (0.52

in northern Europe and 0.62 in southern Europe), indicating a different timing of precipitation

in both simulations. Last, shortwave radiation differences are also low (under 15% for both

shortwave upwelling flux at the bottom [SWUPB] and SWDNB), being these variables strongly

correlated between the two simulations.
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Table 2.3: Comparison of the two simulations taking MORRAT as reference
for those variables not available within ENSEMBLES

VARIABLE BIAS1 NB2 MFB2 NMSE1 RMSE1 PCC
NORTHERN EUROPE

PREC 0.0054 0.0381 0.0075 0.6078 0.1119 0.5233
SWUPB 8.2893 0.1536 0.0986 0.1473 22.2506 0.9400
SWDNB 28.8298 0.1108 0.963 0.0779 76.5125 0.9566

SOUTHERN EUROPE
PREC 0.0075 0.0457 0.0051 0.4748 0.1152 0.6246
SWUPB 4.9325 0.0636 0.0578 0.0449 16.944 0.9754
SWDNB 21.465 0.0544 0.0566 0.0296 67.852 0.9760

1RMSE and BIAS are in units of mm for PREC and W m−2 for SWUPB and
SWDNB.
2Parts per units.

2.4 Summary and conclusions

Although many aspects related to the microphysics processes are still not completely under-

stood, it is well known that they play an important role in how moist convection develops and

evolves, as well as in the radiative energy budget of the Earth-atmosphere system. Therefore,

the sensitivity of the selection of the microphysics scheme within WRF-Chem model has been

assessed in this contribution. The impact on several variables (such as cloud water mixing

ratio, droplet number mixing ratio, shortwave radiation, 2-m temperature, of precipitation) is

estimated when selecting two different microphysics parameterizations: Morrison (MORRAT)

vs. Lin (LINES). Mean values for winter and summer are considered, allowing a seasonal

interpretation of the analysis.

MORRAT provides higher cloud water mixing ratio in winter mainly over remote areas,

where the CCN concentrations are lower; while LINES gives higher values over most polluted

areas. Regarding the droplet number mixing ratio, MORRAT simulations indicate higher values

of this variable both during winter and summer for nearly all the domain of simulation. This

fact indicates that smaller and more numerous cloud droplets are simulated with the Morrison

parameterization, and therefore this scheme is more effective in scattering shortwave radiation

(as clearly observed when assessing both the differences in the mean upwelling shortwave flux

and the downwelling shortwave flux at bottom).

It is worth nothing that the spatial pattern of differences for the droplet number mixing

ratio T2 are highly correlated for wintertime. MORRAT simulations having higher levels of

cloud droplets allow less shortwave radiation to reach the ground, but also higher longwave

radiation to be reflected towards the ground. Between the two effects, the latter prevails, and
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thus the daily average temperature increases in northern areas (50◦N to 70◦N) in MORRAT

with respect to LINES.

Despite the differences found in the behaviour of both simulations, the sensitivity of the

results to the selection of the microphysics scheme is very limited when comparing the results

to observations. No significant benefits from the selection of the microphysics schemes can be

derived from the results neither in northernmost areas nor in southern-Mediterranean Europe.

Because of the limitations in this sensitivity analysis (which is restricted to just two simula-

tions implemented in just one model), future research on this topic should be devoted to further

studies that examine the impact of aerosols on cloud properties using other microphysics and

convective parameterizations, also in other target domains. In this sense, further analysis of

the simulations included in Phase 2 of the AQMEII initiative could help deepen the study of

these processes.



Chapter 3

Biomass burning aerosol impact on

surface winds during the 2010 Russian

heatwave

Published in Geophysical Rearch Letters: Baró, R., Lorente-Plazas, R., Montávez, J.P., and

Jiménez-Guerrero, P (2016). Biomass burning aerosol impact on surface winds during the

2010 Russian heatwave. Geophysical Research Letters, 44, 1088–1094.

This work elucidates the impact of the biomass burning aerosols (BB) on surface winds for

the Russian fires episode during 25 July to 15 August 2010. The methodology consists of three

Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) simulations

over Europe differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions.

The presence of BB reduces the 10-m wind speed over Russia during this fire event by 0.2 m

s−1 (10%). Aerosol interactions imply a decrease of the shortwave downwelling radiation at the

surface leading to a reduction of the 2-m temperature. This decrease reduces the turbulence

flux, developing a more stable PBL. Moreover, cooling favours an increase of the surface pressure

over Russian area and also it extends nearby northern Europe.

3.1 Introduction

Aerosols radiative effects, which depend mainly on the aerosol optical properties, affect radia-

tion, temperature, stability, clouds and precipitation. But, to what extent do aerosol particles

affect the wind? Jacobson and Kaufman (2006) tried to answer this question for a case study

in California during February and August, 2002–2004. These authors found a reduction of the

65
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near-surface wind speeds below them by up to 8% locally. They attributed this wind speed

reduction due to the enhancement in stability caused by the aerosols directly and to aerosol-

enhanced clouds. Aerosols and aerosol-enhanced clouds decreased near-surface air temperature,

which increased stability and reduced turbulent kinetic energy as well as the vertical transport

of horizontal properties. Moreover, wind speed reductions over China were found (average of

5.5% between February and August) where lots of biofuel burning occurred. Aside from this

study, scientific literature about aerosol effects on wind is scarce. A reason of the lack of these

studies could be the difficulty understanding of the physical causes of the feedbacks between

aerosols and winds.

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC

AR5 (Boucher et al., 2013; Myhre et al., 2013b) distinguishes between aerosol-radiation in-

teractions (ARI) and aerosol-cloud interactions (ACI). ARI encompass the traditional aerosol

direct and semi-direct effect, and ACI mainly account for the indirect effects. Direct effects

influence climate by means of absorption and scattering of solar radiation, which modify the

energy balance. On the other hand, indirect effects affect the reflectance and persistence of

clouds and the growth and occurrence of precipitation (Ghan and Schwartz, 2007; Forkel et al.,

2012). The consideration of different aerosols interactions (ARI and ACI) could play a key

role to understand the interplay between aerosols and winds. For instance, atmospheric aerosol

affects buoyancy processes and wind shear in the atmospheric boundary layer (Baidya and

Sharp, 2013) by modifying meteorological variables such as temperature. Consequently, turbu-

lence characteristics and atmospheric stability change, which directly affect wind fields. Several

studies have demonstrated the implications of atmospheric stability on winds (Gualtieri and

Secci, 2011; Sathe et al., 2011; Wharton and Lundquist, 2012; Lorente-Plazas et al., 2016). On

the other hand, aerosol levels depend on winds by different processes, leading to wind-dependent

emission of particles over land or ocean (for example, Boucher et al. (2013); Prijith et al. (2014);

Li et al. (2015)).

An important component of aerosols are those coming from BB. They consist mainly in

black carbon, which strongly absorbs solar radiation, having an impact on cloud processes and

playing an important role in the Earth’s climate system (Bond et al., 2013). The AR5 gives

an estimate of +0.2 (+0.03 to +0.4) W m−2 as the black carbon contribution to the radiative

forcing caused by ARI for the period 1750–2010, relying on Bond et al. (2013).

During the end of July and mid August extensive heatwave/fires occurred over Russia

and specifically over the Moscow area. According to Konovalov et al. (2011), high levels of

particles were caused by the mix of smoke particles plus accumulated urban and industrial



3.2. Simulations and methods 67

atmospheric pollution, with values of daily PM10 up to 700 µg m−3. Moreover, there was an

important influence of the aerosol solar extinction on the photochemistry. Simulation results

from Péré et al. (2015) showed reductions of the photolysis rate of NO2 and O3 (especially

over the entire boundary layer). Several studies (e.g. Chubarova et al. (2012); Péré et al.

(2014)) analysed the properties of particles from an optical and radiative point of view during

this heatwave. These latter authors found a solar radiation reduction at the ground up to

80-150 W m−2. However, these results were found by using off-line coupled models and only

included direct effects (ARI). Despite Péré et al. (2014) find a wind reduction over the target

domain, their methodology neglects the importance of on-line chemistry-climate coupling. Wind

changes may be conditioned by AOD, who is strongly influence by the aerosol feedbacks affecting

aerosol vertical distribution (Mishra et al., 2015) and vertical profiles of meteorological variables

by absorbing and scattering solar radiation (Zhang et al., 2015). These feedbacks cannot be

characterize by off-line coupling.

Therefore, the contribution presented here goes one step beyond previous studies by includ-

ing on-line feedbacks between aerosols and meteorology in a regional climate-chemistry coupled

model, and by solving online ARI in addition to ACI (and hence considering aerosol feedbacks

with meteorology). Those effects are not considered in offline simulations. Moreover, the nov-

elty of this work is related to the target area covered: our aim is to assess the influence of BB

aerosols on spatially-distributed winds over Europe and, specially over the Russian area. This

study also contributes to verify the results found with global-to-urban models in other areas as

California or China (Jacobson and Kaufman, 2006).

3.2 Simulations and methods

3.2.1 Model configuration

The version 3.4.1 of the WRF-Chem online-coupled meteorology and chemistry model (Grell

et al., 2005; Skamarock et al., 2008) was used in order to perform the simulations. The exper-

iments are focused over Europe to study Russian wildfires during 25 of July to 15 of August

2010. The simulations presented here have been run in the context of the EuMetChem COST

ES1004 Action (http://www.cost.eu/COST_Actions/essem/ES1004). For a detailed descrip-

tion of the simulations, the reader is referred to Forkel et al. (2015) and Baró et al. (2015).

Nevertheless, Table 3.1 depicts a short description of the modeling parameterizations. Meteo-

rological variables and particles have been extensively evaluated in Brunner et al. (2015) and

Im et al. (2015b) and are therefore not included in this work for the sake of brevity.

http://www.cost.eu/COST_Actions/essem/ES1004
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Table 3.1: WRF-Chem parameterizations included in this study.

Parameterizations Name References
Microphysic option Lin Lin et al. (1983)
Photolysis option Fast J Fast et al. (2006)

Shortwave radiation Goddard Chou and Suarez (1994)
Longwave radiation RRTMG Morcrette et al. (2008)

Planetary Boundary Layer YSU Hsu et al. (2011)
Cummulus option Grell 3D Grell and Dévényi (2002)

Dust model MOSAIC Schell et al. (2001)
MADE/SORGAM Zaveri et al. (2008)

Gas phase mechanism RADM2 Stockwell et al. (1990)
Aerosol mechanism MADE/SORGAM Schell et al. (2001)
Organic module SORGAM Schell et al. (2001)
Wet deposition Grid scale Easter et al. (2004)
Dry deposition Wesley resistance Wesely (1989)
Aerosol size Aitken, accumulation

and coarse
Anthropogenic emissions TNO-MACC Pouliot et al. (2012)

Biogenic emissions MEGAN Guenther et al. (2006)
Fire emissions IS4FIRE http://is4fires.fmi.fi

The simulation domain uses a horizontal resolution of 0.22◦ (approximately 23 km) with a

Lambert Conformal projection and complains with Euro-CORDEX requirements. 33 vertical

sigma levels are used for vertical resolution (lowest layer at 24 m). The model top has been

set at 50 hPa. Data provided by the European Centre for Medium-Range Weather Forecasts

(ECMWF) operational analyses (with data at 00 and 12 UTC) and with respective forecasts

have been used as initial (IC) and boundary conditions (BC) (time interval of 3 hours used as

BC). Chemical IC were provided by ECMWF IFS-MOZART (Model for OZone and Related

chemical Tracers) (Brasseur et al., 1998). Wildfires emission data come from the IS4FIRE

Project (Sofiev et al., 2009), where emissions are estimated by re-analysis of fire radiative

power data obtained by MODIS instrument (onboard Aqua and Terra satellites).

3.2.2 Experimental design

Three different simulations are constructed differing only in the inclusion (or not) of ARI and

ACI: (1) No aerosol feedbacks (Base, NRF), (2) only ARI (simulation includes only the direct

radiative forcing, DRF) and (3) ARI+ACI feedbacks (all radiative feedbacks, RF). It is impor-

tant to clarify that although the Base case does not include any aerosol radiation interactions,

there is a standard aerosol assumption for aerosol-radiation and aerosol-cloud interactions of

some continental aerosol. No heat released is considered in the simulations of this study.

With the purpose of studying the effects of BB aerosols on surface winds, a sensitivity
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analysis were conducted by taking the Base case as reference. Differences between DRF and

RF with respect to the Base case have been assessed. Positive (negative) values means that

DRF and RF have higher (lower) values than the Base case. These spatial differences are

inspected for the 10-m wind speed (WS10), shortwave downwelling radiation at the surface

(SWDNB), 2-m temperature (T2), planetary boundary layer height (PBLH), AOD at 550 nm,

relative humidity (RH), and sea level pressure (SLP). The impact of the BB aerosols on WS10

is assessed by computing spatial correlation between the variation in WS10 and the rest of

meteorological variables found for DRF-Base and RF-Base simulations. Correlations are 95%

significant according to a correlation significance test (Wilks, 2011).

3.3 Results

3.3.1 Base case meteorological situation

As stated by several works (e.g. Im et al. (2015b) or Forkel et al. (2015)), the BB aerosols

generated by the Russian wildfires had a very important impact on PM10 ground levels, with

concentrations largely exceeding 700 µg m−3. This increase was evidenced by satellite obser-

vations like Terra-MODIS (not shown), results from WRF-Chem simulation are in agreement

with these previous findings. Figure 3.1 shows the time aggregation of PM10 emissions averaged

during the fires period, where largest values are gathered over the region where wildfires took

place.

First row of Figure 3.2 shows the mean values of the Base case (no aerosol interactions)

for SWDNB, T2, PBLH, AOD, and RH (vertically averaged). The SLP mean spatial pattern

(first row in Figure 3.2(b)) shows a high pressure system over the northeast of the target area

with a strong positive SLP anomaly for this period. This leaded to a strong positive surface

temperature anomaly and weak winds from the southeast. Regarding the AOD, values between

1 to 1.8 are found over Russian area and RH values are around 50%.

The highest WS10 average (over 7 m s−1) is found offshore, over the Baltic sea, Sweden and

Finland coastline. Also large WS10 values are found in south Russia, south Ukraine and over

Azov Sea (around 6–7 m s−1) while in the center of the subdomain winds are around 3 m s−1.
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Figure 3.1: Total PM10 fire emissions during the fire episode (25 July-15 August 2010). The
region affected by the wildfires is highlighted with a circle.
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3.3.2 Effects on wind speed

The analysis of the BB aerosols impacts on WS10 with respect to the Base case (Figure 3.3

second and third row) shows a strong heterogeneity in the spatial patterns of differences for both

DRF and RF simulations. However, there is a clear WS10 reduction up to 10% (mean reduction

of 0.2 m s−1 with respect to average WS10 of 2 m s−1) over the target area. Some areas present

a WS10 reduction up to 0.35 m s−1 for both DRF and RF simulation. In Péré et al. (2014),

horizontal wind speed over Moscow during 8 August was reduced between 0.05–0.86 m s−1.

Our mean values for the whole period are included in that range.

3.3.3 Causes of wind variation

In order to explore the physical causes of the WS10 changes, we have examined several meteo-

rological variables (as SWDNB, T2, PBLH, AOD, RH and SLP), some of them also covered on

previous studies (Jacobson and Kaufman, 2006). Second and third rows in Figure 3.2 represent

the differences found for DRF and RF cases, respectively. Variables SWDNB, T2, PBLH, AOD

and RH are represented over the Russian area whereas SLP is represented over the whole Eu-

rope for a better understanding of this variable and since its effects extend beyond the Russian

area.

The impact of considering aerosols feedbacks in the on-line simulations is analyzed by com-

paring with the Base simulation. Differences between DRF and RF are similar over the Russian

wildfires area because the processes are mainly related to the ARI, occurred during this event.

In both cases (DRF and RF) the aerosol effects imply a decrease of SWDNB. The maximum

differences are around 80 W m−2 over Russia as the period mean. This difference involves a

T2 reduction up to 0.9 K over Russia (consistent with Péré et al. (2014), who found reductions

of 0.2 to 2.5 K). The temperature decrease diminishes the convective processes and the tur-

bulence, resulting in a lower PBLH with lower values up to 300 m with respect to Base case

over the target area. Changes in AOD are found when considering aerosol feedbacks, resulting

in an increase up to 0.25 over the Russian area. This could be related to the increase of the

RH (with values around 3.5%) which is directly related to the hygroscopic growth, which in

turn is related to the effective radius and hence to the particle extinction (Curci et al., 2015).

This increased RH may explain the increase of AOD during the fires. Positive differences are

also found for SLP, because the decrease of the temperature enhances the SLP not only over

the Russian area but also extended over the North of Europe. Hence, the reduction is directly

related to an increase of the atmospheric stability where lower PBLH is found and there was an

increase of the SLP. Jacobson and Kaufman (2006) also explored the effects of clouds on winds;
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however clear skies are found over the entire target period.

Figure 3.3: Aerosol effects on WS10. First row represents the Base case; second row DRF-Base
differences and third row RF-Base differences.
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3.3.3.1 Wind correlation

To assess whether changes in the WS10 may be attributed to changes in meteorological variables

(SWDNB, T2, PBLH, AOD, RH and SLP) correlations are computed between the meteorolog-

ical variables (Figure 3.2) and WS10 (Figure 3.3) for the spatial differences of Base case minus

RF or DRF. Estimations cover the Russian area. In general, correlations are lower than +0.6

and higher than −0.6. The correlations of ∆WS10 with ∆SWDNB, ∆T2 and ∆PBLH are in

the order of +0.45 to +0.55. ∆WS10 is anticorrelated with ∆SLP, ∆AOD and ∆RH, and anti-

correlation is higher for DRF than for RF (−0.4 versus −0.35). In general, slight differences are

found between DRF and RF case since this fire episode is mainly explained by ARI. ARI only

increase or decrease the radiation which is directly related with the meteorological variables

assessed. Including ACI implies more complex physical hampering to attribute the causes of

the changes.
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Figure 3.4: Spatial correlation over Russian area of WS10 differences and differences in several
meteorological variables: SWDNB, T2, PBLH, SLP, AOD and RH. Correlations are computed
for the spatial differences between experiments RF (triangles) and DRF (circles) and Base case,
i.e., Figure 3.3 versus Figure 3.2.
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3.4 Conclusions

Focusing on the heatwave/wildfires episode that took place during summer 2010 over Russia,

this study demonstrates that considering BB aerosols feedbacks could play a key role when

simulating surface winds. Results show that these aerosols can affect surface winds not only

where emission sources are located, but also further from the release areas. Local winds de-

crease due to a reduction of SWDNB which leads to decreases in T2. In addition, atmospheric

stability increases when considering aerosol feedbacks, inducing a lower PBLH. Meanwhile, the

presence of BB aerosols in the atmosphere can change the SLP, producing changes in mesoscale

circulations and an increase of surface winds over distant regions.

With the present analysis, we highlight the relevance of including aerosols feedbacks when

simulating surface winds, which could contribute both to the skill of weather prediction and

improve climatological studies. For instance, better understanding of feedbacks between aerosols

and winds could help the decision making on fires management and could condition the planning

on wind energy. Albeit this promising conclusion, this work only analyzes a particular episode

and more case studies will be needed to support these conclusions.





Chapter 4

Regional effects of atmospheric aerosols

on temperature: an evaluation of an
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The climate effect of atmospheric aerosols is associated to their influence on the radiative

budget of the Earth due to the direct aerosol-radiation interactions (ARI) and indirect effects,

resulting from aerosol-cloud interactions (ACI). On-line coupled meteorology-chemistry models

permit the description of these effects on the basis of simulated atmospheric aerosol concen-

trations, although there is still some uncertainty associated to the use of these models. In this

sense, the objective of this work is to assess whether the inclusion of atmospheric aerosol ra-

diative feedbacks of an ensemble of on-line coupled models improves the simulation results for

maximum, mean and minimum temperature at 2 meters over Europe. The evaluated models

outputs originate from EuMetChem COST Action ES1004 simulations for Europe, differing in

the inclusion (or omission) of ARI and ACI in the various models. The cases studies cover two

important atmospheric aerosol episodes over Europe in the year 2010, a heat wave event and a

forest fires episode (July-August 2010) and a more humid episode including a Saharan desert

dust outbreak in October 2010. The simulation results are evaluated against observational

77
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data from E-OBS gridded database. The results indicate that, although there is only a slight

improvement in the bias of the simulation results when including the radiative feedbacks, the

spatio-temporal variability and correlation coefficients are improved for the cases under study

when atmospheric aerosol radiative effects are included.

4.1 Introduction

Atmospheric aerosol particles are known to have an impact on Earth’s radiative Budget due

to their interaction with radiation and clouds properties, which are dependent on their optical,

microphysical and chemical properties, and are considered to be the most uncertain forcing

agent. They influence climate by modifying the global energy balance through both absorption

and scattering of radiation (direct effect) and by acting as cloud condensation nuclei, thus

affecting clouds droplet size distribution, lifetime (Twomey, 1977; Lohmann and Feichter, 2005;

Chung, 2012) and reflectance (indirect effects) (Ghan and Schwartz, 2007; Yang et al., 2011b).

Depending on the atmospheric aerosol concentration, aerosol cloud interactions may result in an

increase or decrease in liquid water content, cloud cover, and lifetime of low level clouds and a

suppression or enhancement of precipitation (Bangert et al., 2011). Besides, aerosol absorption

may decrease low-cloud cover by heating the air and reducing relative humidity. This leads to a

positive radiative forcing, termed the semi-direct effect, which amplifies the warming influence

of absorbing aerosols (Hansen et al., 1997). The Fifth Report of the Intergovernmental Panel on

Climate Change (IPCC AR5) (Boucher et al., 2013; Myhre et al., 2013a) distinguishes between

aerosol-radiation interactions (ARI), which encompass the aerosol direct and semidirect effect,

and the aerosol-cloud interactions (ACI), which encompass the indirect effects.

In order to account for these atmospheric aerosol effects, the use of fully-coupled models is

needed for meteorological, chemical and physical processes. On-line coupled models include the

interaction of atmospheric pollutants (gaseous-phase compounds and aerosols) with meteoro-

logical variables (Baklanov et al., 2014). In this context, in its phase 2, the air quality model

evaluation international initiative (AQMEII) (Alapaty et al., 2012; Galmarini et al., 2015), fo-

cused on the assessment of how well the current generation of coupled regional scale air quality

models can simulate the spatio-temporal variability in the optical and radiative characteristics

of atmospheric aerosols and associated feedbacks among aerosols, radiation, clouds and precip-

itation. On this basis, a coordinated exercise of working groups 2 and 4 of the COST Action

ES1004 (EuMetChem, http://eumetchem.info) emerged in order to take into account the ra-

diative feedbacks of atmospheric aerosol effects on meteorology. In this initiative, two important

episodes with high loads of atmospheric aerosols were analyzed which were identified during the

http://eumetchem.info
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previous AQMEII Phase 2 modeling intercomparison exercise (Galmarini et al., 2015). They

were selected on behalf of their strong potential for aerosol-radiation and aerosol-radiation-cloud

interactions (Makar et al., 2015b,a; Forkel et al., 2015).

As a result of the AQMEII Phase 2 initiative and EuMetChem COST Action, several studies

covering the analysis of the ARI+ACI feedbacks to meteorology have been done (e.g. Baró et al.

(2015); Forkel et al. (2015, 2016); Kong et al. (2015); San José et al. (2015)). Focusing on the

effects of including ARI+ACI on temperature, Forkel et al. (2015) focused on the 2010 Russian

wildfire episode, where the presence of the atmospheric aerosols decreased the mean temperature

during summer 2010 by 0.25 K over the target area. For the same episode, Péré et al. (2014)

showed daily mean surface temperature reductions between 0.2 to 2.6 K. In Forkel et al. (2012)

they studied a two-month episode (June to July 2006) for allowing medium range effects of

the direct and indirect aerosol effect on meteorological variables and air quality. They found a

slightly lower temperature over western Europe when including atmospheric aerosol feedbacks.

This reduction followed the same pattern as the planetary boundary layer height. Moreover,

Meier et al. (2012) found during July 2006 a general decrease of 0.14 K on 2-m temperature

when simulating absorbing aerosol in upper layers compared to an aerosol-free troposphere over

land surface.

However, all these studies are based on individual model evaluations and do not take into

account an ensemble of regional models, in order to build confidence on model simulations and

to characterize the uncertainty associated to the use of different modeling systems. Therefore,

the objective of this work is to assess whether the outputs of an ensemble of regional on-

line coupled models simulations including aerosol radiative feedbacks, during two important

atmospheric aerosol episodes of the year 2010, improves the prognostic for maximum, mean

and minimum temperature at 2 meters over Europe.

4.2 Methodology

The analyzed model outputs are the results of a coordinated modeling exercise which was

performed within the COST Action ES1004 (EuMetChem). In order to analyze the ARI or

ARI+ACI effect on temperature, it was suggested to run three case studies for two episodes

with different on-line coupled models with identical meteorological boundary conditions and

anthropogenic emissions. The two considered episodes are: the Russian heatwave and wildfires

episode in the summer of 2010 (25 July-15 August 2010) and an autumn Saharan dust episode,

including the dust transport to Europe (2-15 October 2010).

For the chosen episodes, simulations with each model were performed with and without
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considering the atmospheric aerosol effects. Three different configurations were requested: the

first one which does not consider any aerosol effects feedbacks to meteorology (NRF; C11 fire and

C21 dust episode); second, where only aerosol-radiation interactions are considered (ARI; C12

fire and C22 dust episode) and third, where aerosol-radiation-cloud interactions are considered

(ARI+ACI; C13 fire and C23 dust episode)(this case could not be submitted by all of the

participants). Although NRF case does not consider the aerosol effects and feedbacks, there is

a standard aerosol assumption of some continental aerosol (250 cm−3 used by WRF-Chem in the

absence of ACI for estimating cloud droplet number). On the other hand, ARI uses this constant

value for accounting the interaction between aerosols and clouds, but allows the modification

of the radiation budget by using the on-line estimated aerosols. Last, the ARI+ACI cases are

based on simulated aerosol concentrations which interact both with radiation and aerosols. The

common setup for the participating models and a unified output strategy allow analyzing the

model output with respect to similarities and differences in the model response to the aerosol

direct effect and aerosol-cloud interactions.

4.2.1 Participating models

An overview of the different models and their configurations is shown in Table 4.1, where in first

row the model acronymn is shown. The participating models shown here are COSMO-MUSCAT

(Wolke et al., 2012) and WRF-Chem (Grell et al., 2005; Fast et al., 2006; Gustafson Jr et al.,

2007; Chapman et al., 2009; Grell and Baklanov, 2011) with different chemistry and physics

options and performed episodes. The horizontal grid spacing is around 25 km for most of the

contributions. Only for the fire episode, the COSMO-MUSCAT simulations were made with

a grid with of 0.125◦ (approximately 14 km) there is an additional WRF-Chem run with 9

km grid spacing. COSMO models use Kessler-type bulk microphysics (Doms et al., 2011) and

WRF-Chem uses Morrison microphysics (Morrison et al., 2009), except for one contribution,

that utilizes Lin (Lin et al., 1983). COSMO models use prognostic TKE (Doms et al., 2011)

PBL. The YSU PBL scheme (Hong et al., 2006) was chosen for the WRF-Chem simulations. In

general, the Modal Aerosol Dynamics Model for Europe (MADE) is applied (Ackermann et al.,

1998) except for one WRF-Chem simulation, which uses the Model for Simulating Aerosol

Interactions and Chemistry (MOSAIC)(4 bins) approach (Zaveri et al., 2008). For further

information and details about the models, we refer to the work of Forkel et al. (2015); Im et al.

(2015a,b); Baró et al. (2015). To enable the cross-comparison between models, the participating

groups interpolated their model output to a common grid with 0.1◦ resolution.

Moreover, the ensemble of the available simulations has also been included in this compar-
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Table 4.1: Modeling systems participating and their contributions to the case studies

CS1 CS2 DE3 ES1 ES3

Lead Institu-
tion

UL, KIT/IMK-
IFU*

UL, KIT/IMK-
IFU*

IFT Leipzig U. Murcia UPM-ESMG

Model WRF-Chem WRF-Chem COSMO-
MUSCAT

WRF-Chem WRF-Chem

Episode Fire, Dust Fire Fire, Dust Fire, Dust Fire, Dust

Runs NRF, ARI,
ARI+ACI

NRF, ARI,
ARI+ACI

NRF, ARI NRF, ARI,
ARI+ACI

NRF, ARI,
ARI+ACI

Resolution 23 km 9.9 km 0.125◦ 23 km 23 km

Microphysics Morrison Morrison Kessler-type
bulk

Lin Morrison

SW Radiation RRTMG RRTMG δ-2-stream RRTMG RRTMG

LW Radiation RRTMG RRTMG δ-2-stream RRTMG RRTMG

PBL/turbulence YSU YSU Prognostic TKE YSU YSU

Biogenic model MEGAN (Guen-
ther et al., 2006)

MEGAN Guenther et al.
(1993)

MEGAN MEGAN

Gas phase RADM2 modi-
fied

RADM2 modi-
fied

RACM-MIM2 RADM2 CBMZ

Aerosol MADE /
SORGAM

MADE /
SORGAM

Simpson et al.
(2003)

MADE/SORGAM MOSAIC 4 bins

Model refer-
ence

Grell et al.
(2005); Forkel
et al. (2015)

Grell et al.
(2005); Forkel
et al. (2015)

Wolke et al.
(2012)

Grell et al.
(2005)

Grell et al.
(2005)

*Joint effort, also including ZAMG, RSE, UPM-ESMG.

ison, as recommended by several studies (Vautard et al., 2012; Jiménez-Guerrero et al., 2013;

Landgren et al., 2014; Solazzo and Galmarini, 2015; Kioutsioukis et al., 2016), in order to check

whether the design of an ensemble of simulations outperforms (or not) the skill of individual

models.

4.2.2 Emissions and boundary conditions

For the EU domain, the anthropogenic emissions for the year 2009 (http://www.gmes-atmosphere.

eu/) were applied by all modeling groups and are based on the TNO-MACC-II (Netherlands Or-

ganization for Applied Scientific Research, Monitoring Atmospheric Composition and Climate–

Interim Implementation) framework (Kuenen et al., 2014; Pouliot et al., 2015). As described in

Im et al. (2015a), annual emissions of CH4, CO, NH3, total non-methane volatile organic com-

pounds (NMVOC), NOx, PM10 & PM2.5 and SO2 from ten activity sectors are provided on a

latitude/longitude grid of 1/8 × 1/16 resolution. Consistent temporal profiles (diurnal, day-of-

week, seasonal) and vertical distributions were also made available to AQMEII and EuMetChem

http://www.gmes-atmosphere.eu/
http://www.gmes-atmosphere.eu/
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participating groups for time dissagregation. The temporal profiles for the EU anthropogenic

emissions were provided from Schaap et al. (2005). For further details, the reader is referred to

Im et al. (2015a,b).

Hourly biomass burning emissions were provided by the Finnish Meteorological Institute

(FMI) fire assimilation system (http://is4fires.fmi.fi/) (Sofiev et al., 2009). More details

on the fire emissions and their uncertainties are discussed in Soares et al. (2015). The fire

assimilation system provides only data for total PM emissions; the estimation of emissions for

other species are described in Im et al. (2015b).

The chemical initial and boundary conditions were provided by the ECMWF IFS–MOZART

model, which are available in 3–hour time intervals and provided in daily files with 8 times per

file. They were run under the MACC-II project (Monitoring Atmospheric Composition and

Climate- Interim Implementation) which uses an updated data set of anthropogenic emissions

and compiles a satellite observations assimilations of O3, CO and NO2 in the IFS-MOZART

system.

4.2.3 Observational database

E-OBS (Haylock et al., 2008) version 11.0 has been used as the gridded observational database

for maximum, mean and minimum temperature. E-OBS is a high-resolution European land-

only daily gridded data set covering the period 1950-2014. The E-OBS 0.25◦ regular latitude-

longitude grid has been used as the reference for validation. Thus, data from all model runs

have been bilinearly interpolated onto the E-OBS grid. Since the resolution of the models is

similar to that of E-OBS, the interpolation procedure is not expected to alter significantly our

results.

4.2.4 Validation methodology

All the statistical measures are calculated at individual grid points. Only land grid points are

considered in the analysis, since these are the only points where E-OBS contains information.

Areas in grey indicate cells where E-OBS data are not available (southeastern part of the domain

for the wildfires or southern part of the domain in the dust episode) or areas not covered by

the modeling domain (southern part of the domain for the CS2 configuration).

We will use the notation V k
ipc for a variable from model k at grid point i, on period

p=fires,dust and case c=1 2, 3 representing no radiative feedbacks, ARI and ARI+ACI. If

we use bracket notation for an average over a given index (e.g. 〈 · 〉pc, we can express the bias

http://is4fires.fmi.fi/
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at a given grid point as:

bki =
〈
V k
ipc −Oip

〉
pc

(4.1)

where Oip is the value observed. The model bias is the simplest measure of model performance.

The ensemble mean,
〈
V k
ipc

〉
k
, is usually considered as an additional simulation which com-

pensates the errors of the different ensemble members. Even though this is a very simplistic

view of the ensemble (which should be considered from a probabilistic point of view), it can

be useful to reinforce the common signal of the different models in our analysis of the mean

climate. Notice, however, that the ensemble mean is not a physical realization of any of the

models, but just a statistical average (Knutti et al., 2010; Jiménez-Guerrero et al., 2013).

Then, the variability was assessed on the hourly series (V k
ipc). The ability to represent the

variability can be decomposed into:

• the ability to represent its size, which can be represented by the standard deviation of the

series:

sd[V ]ki =

√〈(
V k
ipc

)2〉
pc

(4.2)

and can be compared to that of the observations sd[O]ip, and

• the ability to represent the hourly variations, which can be represented by the linear

determination coefficient (ρ2) with the observations.

ρ2,ki =

〈
V k
ipcOip

〉2
pm〈(

V k
ipc

)2〉
pm

〈
(Oip)

2
〉
pc

(4.3)

The latter ability can only be expected on simulations nested into “perfect” boundary conditions

such as those considered in this study.

Finally, pattern agreement between simulated and observed data was quantified in a Taylor

diagram by means of the spatial correlation (r) and the ratio between simulated and observed

standard deviations, V k
i ≡

〈
V k
ipc

〉
pc

rk =

〈(
V k
i −

〈
V k
i

〉
i

)
(Oi − 〈Oi〉i)

〉
i√〈(

V k
i −

〈
V k
i

〉
i

)2〉
i

〈
(Oi − 〈Oi〉i)

2
〉
i

(4.4)

sk =

√√√√√
〈(
V k
i −

〈
V k
i

〉
i

)2〉
i〈

(Oi − 〈Oi〉i)
2
〉
i

(4.5)
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This information can be summarized in a Taylor (2001) diagram, which is a polar plot, with

radial coordinate sk and angular coordinate related to rk.

4.3 Results

4.3.1 Bias

The results for the daily bias of maximum, mean and minimum temperature have been obtained

by calculating the bias of the daily mean series at each grid point of all the land grid points of

the corresponding domain for the fires and dust episodes.

During the fire episode (Fig. 4.1 left column) there is a general underestimation of the

maximum temperature in the base case (average domain values from −2.1 K in ES3-C11 to

−1.2 K in DE3-C11). This is especially noticeable over several cells in Russia (up to −7 K).

Conversely, a general overestimation is found in the west and northwest area of the domain

(positive differences between +1.0 K in DE3-C11 to +6.5 K in ES1-C11). When introducing

the ARI or ARI+ACI, model biases do not improve (mean variation of the bias of +17.2% in

C12 and +11.0% in C13). This positive variation was expected because the cold bias of models

for reproducing maximum temperature and the overall cooling effects of aerosols. However, the

improvement of introducing aerosol-cloud interactions is remarkable with respect to the case

of including just aerosol-radiation effects (the bias reduces 6.2% in ARI+ACI with respect to

ARI simulations). During the dust episode (Fig. 4.1 right column) the analysis of the results

is similar as for the fires case (averaged-domain underestimations around −1.0 K in DE-C11

to −0.56 K in ES-C21). Here the inclusion of ARI (C22) leads to a mean increase of the bias

of +10.2%, but ARI+ACI (C23) leads to a very limited improvement of the simulations with

respect to the base case (C21), generally reductions of the bias around −0.4%.

A similar discussion can be made for mean temperature. During the fires episode (left

column of Fig. 4.2) all runs (but DE3) tend to underestimate the domain-averaged mean

temperature (biases ranging from −0.4 K in ES1-C11 to +1.0 in DE3-C11). Here, the ensemble

(ENS) simulation clearly outperforms the individual simulations (bias of −0.2 K in ENS-C11).

Again, the model skill does not improve for mean temperature when including ARI or ARI+ACI

(bias increase by 46.0% and 56.2%, respectively for the fires episode) but in the case of DE3-C12

simulation (including ARI reduces the bias by −27.3%). During the dust episode (right column

of Fig. 4.2), there is a general averaged overestimation of mean temperature (+0.4 in ES1-C21

to 0.8 K in DE3-C21).
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Conversely to the fires episode, the inclusion of ARI and ARI+ACI improves the bias (re-

ductions of this variable of −13.4% in C22 and −4.2% in C23). The reduction of the bias when

including ARI+ACI is especially remarkable for the ensemble of simulations, where the bias

decreases by −24.4% in ENS-C23.

Last, minimum temperature during the fire episodes is shown in the left column of Fig.

4.3. Here results are very different to analyze for improvements or worsening of the bias,

since the domain-averaged errors are in the order of −0.01 K for WRF-based models in C11

and C12, so a very slight difference would lead to a percentage increase (or reduction) of the

bias compared to the base case. However, for DE3-C11 the bias is larger (up to +1.6 K for

minimum temperature averaged over all the domain) and the inclusion of ARI leads only to

a small improvement (−1.5%). The dust case (right column of Fig. 4.3) shows a general

overestimation of minimum temperature, with base-case biases ranging from +0.5 K in ES1-

C21 to +1.8 K in DE3-C21. Here, the inclusion of ARI and ARI+ACI slightly improves the

bias (reductions of −10.5% in C22 and −5.0% in C23). Here again, the improvement of the

ENS-C22 and ENS-C23 simulations is larger than for the rest of the models (reductions of the

bias of −29.7% and −38.2% for ARI and ARI+ACI, respectively).

The differences found in the maximum, mean and minimum temperature are related to

what explained in section 4.1, according to other model evaluation studies. Since models un-

derestimate surface temperature, the inclusion of the atmospheric aerosol feedbacks lead to a

reduction on the surface temperature, leading to a worsening of the maximum temperature and

an improvement on the minimum temperatures. In the case of mean temperatures, the effect

will be balanced.
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4.3.2 Temporal correlation

The temporal correlation (estimated through the coefficient of determination, ρ2) between sim-

ulated and observed series is shown in Fig. 4.4, 4.5 and 4.6 for mean maximum and mean

minimum temperature, in that order. The first column in each panel represents the value of

ρ2 of the base case (C11 or C21) of each individual model (or the ensemble) with respect to

the E-OBS database. The center (C12 or C22) and right (C13 and C23) columns indicate the

increase (red values) or decrease (blue value) of the ρ2 for each simulation with respect to the

case not including feedbacks. Then, that gives an idea in the improvement (or not) in the skill of

the model for representing the time evolution of our series when compared to the observations.

For maximum, mean and minimum temperature during the fires episode (left side of Fig. 4.4,

4.5 and 4.6, respectively), domain-averaged ρ2 is higher than 0.5 for all models (0.52 in CS1-

C11 minimum temperature to 0.78 in DE3-C11 mean temperature). In general, coefficients

of determination are highest for mean temperature (0.60 to 0.78) and lowest for minimum

temperature (0.50 to 0.56), presenting the ensemble always maximum values for ρ2 (0.75, 0.79

and 0.61, respectively for maximum, mean and minimum temperature). The highest ρ2 values

are found over the north and west part of the domain (above 0.8 in mean temperature) and

the lowest mainly over south and southeast area of the domain (under 0.2). According to the

improvement with respect to C11 case, when analyzing the inclusion of the ARI and ARI+ACI

a general improvement is observed for maximum and mean temperature, with positive values

reaching up to 0.18 (domain-averaged values improve for individual models around 1% for

maximum, 0.3% for mean temperature). Correlation with minima experiences a slight decrease

(−0.4%) when including ARI or ARI+ACI for the ensemble mean.

During dust episode (right side of Fig. 4.4, 4.5 and 4.6), domain-averaged ρ2 is higher than

for the fires episode for all models and variables in the base case (0.76 in DE3-C21 minima to

0.90 in DE3-C21 mean temperature), with the ensemble again providing the highest correlation

(values ranging from 0.88 for maximum, 0.91 for mean and 0.84 for minimum temperature). As

well as before, the inclusion of the ARI and ARI+ACI shows an improvement over some areas

in the order of 0.17 for mean and maximum temperature, with domain-averaged improvements

of 0.3% in C22-C23 for maximum temperature, and 0.2% in C22-C23 for mean temperature and

0.1% in C23 for minimum temperature, with no improvement for C22 in this latter variable).
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4.3.3 Temporal variability

The results for the daily variability of maximum, mean and minimum temperature have been

obtained by calculating the standard deviation of the daily mean series at each grid point of all

the land grid points of the corresponding domain for the fires and dust episodes.

Considering maximum temperature, in the fires episode (left column of Fig. 4.7), all runs

tend to slightly overestimate the standard deviation of maximum temperature for the base

case (no radiative feedbacks), with biases of maximum temperature standard deviation varying

between +1.28 K for DE3-C11 to +0.25 K for ES1-C11. The biases of the standard deviation

are reduced by −22.6% (on average) when including the ARI, with reductions in the biases

of the standard deviation ranging from −34.2% in ES1-C12 and −8.6% for DE3-C12. For

the ARI+ACI simulations the average reduction of the bias is −41.21% (−56.9% for ES1-

C13 and −24.40% for CS2-C13). The rest of the models and cases show an intermediate

behavior for representing the variability, with the best skills always for the cases including the

ARI+ACI interactions. Analogous results can be found for maximum temperature during the

dust episode (right column of Fig. 4.7): the inclusion of aerosol feedbacks generally improve the

representation of the temporal variability of maximum temperature, with an average reduction

of the bias of the standard deviation of −5.9% (−16.6%) for ARI (ARI+ACI) simulations.

For mean temperature during the fires episode, (left column of Fig. 4.8) all runs tend to

overestimate the standard deviation for the base case (no radiative feedbacks), with biases of

mean temperature standard deviation between +0.2 to +1.1 K. As for the maximum tempera-

ture, the biases of the standard deviation are reduced on −41.8% (on average) when including

the ARI and −66.5% for the ARI+ACI simulations, with reductions in the biases of the stan-

dard deviation ranging from −8.5% in the DE3-C12 simulation to −78.2% in the ES1-C13 case.

Similar to the maximum temperature, the rest of the models and cases show an intermediate

representation the variability of the mean temperature, with the best skills always for the cases

including the ARI+ACI interactions. Results for the dust episode are shown in the right col-

umn of Fig. 4.8. The standard deviation tends to be overestimated by all models in the north

of Africa and central Europe, and underestimated in the eastern part of the target domain.

Overall, the inclusion of ARI does not lead to better skills of the models when representing the

temporal variability (+2.4%), and for ARI+ACI the skill improved only marginally (reductions

of −0.6%).
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With respect to the minimum temperature, for the fires episode (left column of Fig. 4.9)

all runs tend to overestimate the standard deviation. Biases of the minimum temperature

standard deviation range between +0.4 K for the WRF-Chem-based simulations and +1.0 K

for DE3-C11. The high-resolution CS2-C11 simulation presents the lowest bias (+0.3 K).

If considering the biases of the standard deviation, there is a slight improvement when

including ARI or ARI+ACI for the fires episode, while a slight worsening is depicted for the

dust case. The variations in the biases of the standard deviation are on average −2.1% and

−4.9% respectively for the ARI and ARI+ACI simulations (+3.4% and +5.4% for the dust

episode).
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4.3.4 Spatial variability

Taylor diagrams (Taylor, 2001) allow an easy comparison between the spatial and temporal

patterns of two fields (Rauscher et al., 2010). In Fig. 4.10 shows the relative spatial standard

deviation (radial distance from the origin) and the correlation (the cosine of the angular coor-

dinate) with E-Obs. Model results with good performance in terms of spatial variability and

correlation are located closer to the standard deviation ratio 1 and correlation 1, which corre-

sponds to E-OBS (indicated by the small black asterisk). For maximum, mean and minimum

temperature, the diverse models (and configurations) show a narrow spread in the representa-

tion of the spatial structure of the standard deviation.

With respect to the mean field of maximum temperature (left column in Fig. 4.10) all

models perform well for the fires period (top row), with high spatial correlations (over 0.9)

and a normalized standard deviation close to observations. However, the no radiative feedback

configuration (C11 cases in Fig. 4.10) represent excessive spatial variability (standard deviation

ratio over 1). The spatial variability of the daily standard deviation for the ARI simulations

(asterisks in Fig. 4.10, C12 cases), as well as for ARI+ACI simulations (squares, C13 cases)

is substantially improved, despite the spatial correlation remains practically constant for all

models. Since there is a positive bias in the models when representing the spatial variability in

the no radiative feedbacks simulations, the inclusion of radiative effects reduces the variability

and therefore improves its spatial patterns. Analogous results can be found for the dust episode

(bottom row, Fig. 4.10), with a larger agreement between models, and lower differences between

C21, C22 and C23 cases (no feedbacks, ARI and ARI+ACI simulations, in that order).

With respect to the mean temperature (center column in Fig. 4.10), the models perform

very similarly with each other, showing a high spatial correlation with the observations (over

0.9 for all models and cases), with a small overestimation of the spatial variability for the C11

(fire episode, no radiative feedbacks) case (top row), which improves when including the ARI

and ARI+ACI interactions. Similarly, the spatial variability is slightly overestimated for the

C21 (dust, no radiative feedbacks) case, except for the DE3 model. Generally, the models better

capture the spatial structure of the variability during the fires and dust cases (Fig. 4.10, center

column) when including the radiative feedbacks. The correlation is only slightly improved for

the ARI and ARI+ACI cases (except for ENS simulations, which will be discussed below), and

is always higher for the mean temperature than for maximum temperature. The minimum

temperature (Fig. 4.10, right column) is captured with quality as the maximum and mean

temperature.
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While for the fire episode the models (in all cases) tend to provide a higher spatial variability

than the observations, the spatial variability is underestimated for the dust episode, but with

a high correlation (over 0.9) for both episodes. For this variable, the improvement of includ-

ing the radiative feedbacks is not so evident, since the spatial variability does not generally

improve for C12, C13, C22 or C23 cases with respect to the configuration without radiative

feedbacks. Moreover, the correlation coefficient is even slightly reduced with the inclusion of

ARI or ARI+ACI.

Last, the added value of considering the ensemble mean of all available simulations in each

episode and case is clear for the fires episode, but not that obvious for the dust period. For

the fire episode, the ensemble mean outperforms individual models in terms of the standard

deviation and the correlation coefficient, especially for mean temperature, where the correla-

tion increases up to 0.99 for the ENS-C11 case. The exception is found for the ENS-C13 for

minimum temperature. Generally, the skill of most models improves when aerosol-meteorology

interactions are taken into account

For the dust case, the ensemble mean outperforms the individual models for representing the

standard deviation (that is, the spatial variability). However, the spatial correlation coefficient

is somewhat reduced as compared to the individual models.

4.4 Summary and conclusions

This study shows a collective operational evaluation of the temperature at 2 meters (maximum,

mean and minimum) simulated by the coupled chemistry and meteorology models under the

umbrella of COST Action ES1004 for a wildfires and a dust episode in the year 2010. The

meteorological parameters considered in this assessment are important to understand the effect

of the aerosol interactions with clouds and radiation. In this sense, this study complements

other several analysis (e.g. Brunner et al. (2015); Forkel et al. (2015); Makar et al. (2015a)) by

analyzing whether the inclusion of the radiative feedbacks improves or not the representation

of the temperature field (maximum, mean and minimum) in an ensemble of simulations.

Focusing on the bias, in both episodes there is a general underestimation of the studied vari-

ables, being most noticeable in maximum temperature. In general, there is not a straightforward

conclusion with respect to the improvement (or not) of the bias when introducing aerosol ra-

diative feedbacks. Broadly, the biases are improved when including ARI or ARI+ACI in the

dust case, but no evident improvements are found for the heatwave/wildfires episode. Although

the ensemble does not outperform the individual models (in general), the improvements found

when including ARI and ARI+ACI are by far more remarkable for the ensemble than for the



4.4. Summary and conclusions 101

individual models.

With respect to the temporal correlation, maximum and mean temperatures in the fires

and dust episode show higher correlations over most of the domain when considering C11 case

with respect to the E-OBS database than minimum temperature. During these episodes, a

twofold conclusion can be obtained: (1) the ensemble of simulations always outperforms the

representation of the temporal variability of the series; and (2) an improvement of the ρ2

coefficient is found when considering ARI or ARI+ACI feedbacks (in both episodes).

Regarding the temporal variability, during the fire episode there is a general pronounced

overestimation of the standard deviation of the studied variables. Here, the inclusion of aerosol

feedbacks largely improves the representation of the temporal variability of the three studied

variables (reduction of the bias of the standard deviation) showing the best skills for the cases

including the ARI+ACI interactions, with a reduction of bias of the standard deviation by as

much as 75%. Very similar results can be found for the dust episode. Generally, it is for the

temporal variability where the inclusion of the aerosol radiative feedbacks shows the largest

improvements and results in an added value of the computational effort made to include direct

aerosol radiation interactions and aerosol cloud interactions in the models. Last, with respect

to the spatial variability for maximum and mean temperature, the inclusion of radiative effects

reduces the variability and improves the spatial patterns for both episodes. For the minimum

temperature, the improvement of including the radiative feedbacks is less evident.

In order to further investigate the impact of including the aerosol interactions in online-

coupled models, episodes with stronger effects on the ACI should be considered since the selected

episodes during EuMetChem Cost Action were mainly related to ARI. Moreover, during the

dust episode, most of the ARI+ACI differences found in the models with respect to the base

case were found over the Mediterranean sea, but the observational data E-OBS only has values

over land. Unfortunately part of the interpretation of the results may be missed due to the

unavailability of this database over the ocean. Furthermore, it must be considered, that all

results for the ARI+ACI cases were from WRF-Chem simulations.

There are still modeling issues regarding the representation of the field of temperature, where

maximum temperatures are underestimated and minimum temperatures are overestimated and

the inclusion of the aerosol feedbacks does not improve this situation. Nevertheless, in this

study, a general improvement of the temporal variability and correlation has been seen. These

improvements may be important not only for certain episodes, as analyzed here, by also for

the representation of the climatology of temperatures. However, climatic-representative periods

should be covered in further studies.





Chapter 5

How good are aerosol-cloud

interactions represented in

online-coupled regional models?

Baró, R., Stengel, M., Brunner, D., Curci, G., Hollmann, R., Forkel, R., Palacios-Peña, L.,

Savage, N., Schaap, M., Van der Gon, H., Hogrefe, C., Galmarini, S and Jiménez-Guerrero,

P. How good are aerosol-cloud interactions represented in online-coupled regional models? Sub-

mitted to:Atmospheric Chemistry and Physics.

On-line coupled meteorology-chemistry models permit the description of the aerosol-radiation

(ARI) and aerosol-cloud interactions (ACI). The effect of atmospheric aerosols remains uncer-

tain in climate modeling. One of the reasons is their variability in time and space, which could

modify cloud microphysics and impact cloud radiative properties and climate. Hence, the aim of

this work is to assess the representation of the ARI+ACI interactions in regional–scale coupled

models when simulating the climate-chemistry-cloud-radiation system. The evaluated simu-

lations are run under the umbrella of the air quality model evaluation international initiative

(AQMEII) Phase 2 (over 2010 and Europe) and include ARI+ACI interactions. The model sim-

ulations are evaluated against observational data from ESA Cloud_cci project. Results show

an underestimation (overestimation) of cloud fraction (CFR) over land (ocean) areas, which

could be related to satellite retrieval missing thin clouds. Lower bias and mean absolute error

(MAE) are found in the ensemble mean. Cloud optical depth (COD) and cloud liquid ice path

(CIP) generally underestimate over the whole domain. MAE was in line with the bias. Cloud

liquid water path (CWP) broadly overestimates the bias. Temporal r points to a general posi-

tive correlation between models and satellite observations. Finally, the according to the spatial

103
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variability CFR, has the best skill, whereas COD, CIP and CWP indicate a lower skill. The

differences found can be attributed to differences in the microphysics schemes used, for instance,

the number of ice hydrometeors has seen to be relevant as well as the prognostic/diagnostic

treatment of the CWP.

5.1 Introduction

The study of the atmospheric aerosol radiative effects and feedbacks with the climate system

is nowadays one of the most important topics in climate science. Atmospheric aerosols vary in

time and space and can lead to variations in cloud microphysics, which impact cloud radiative

properties and climate. They influence the Earth’s radiation budget by scattering and absorbing

solar radiation, which turns into a reduction of incoming solar radiation and a cooling of the

climate system. These processes have traditionally been called the aerosol direct effect but

were renamed after the Fifth Report of the Intergovernmental Panel on Climate Change (IPCC

AR5) (Boucher et al., 2013; Myhre et al., 2013b) as aerosol-radiation interactions (ARI). This

term also encompass the aerosol semi-direct effect, which has been seen as a rapid adjustment

of the atmospheric state that follows aerosol–radiation interactions (Boucher, 2015). Last,

aerosols serve as cloud condensation nuclei (CCN) influencing overall cloud radiative properties

through interactions referred to as the first indirect effect or Twomey effect (Twomey, 1974,

1977). More aerosol particles lead to more cloud condensation nuclei resulting in an increase in

the concentration of cloud droplets. When the cloud water is fixed, this is accompanied by a

reduction in the cloud droplet size and an increase in the cloud reflectivity. Altogether results

in less solar energy absorbed and a cooling of the climate system. Additionally, aerosols acting

as CCN may affect precipitation efficiency, cloud life–time, and cloud thickness, thus further

influencing weather and climate through the second indirect effect (Albrecht, 1989), also named

cloud lifetime effect. The modification of cloud microphysical properties is expected to have an

impact on cloud evolution, in particular in terms of the ability of clouds to generate droplets that

are large enough to initiate precipitation. This effect is traditionally called the second aerosol

indirect effect, but since the AR5 these indirect effects are called aerosol–cloud interactions

(ACI). Those interactions are more uncertain due to complexity of the microphysical processes

(Boucher and Lohmann, 1995; Schwartz and Benkovitz, 2002; Lohmann and Feichter, 2005).

There are different approaches to address the study of ACI, usually by means of combined

methodologies of observations and/or modeling. In the field of observations/remote sensing,

McComiskey et al. (2009) used the Atmospheric Radiation Measurement (ARM), focused on

California area. They studied the albedo effect as the change in cloud droplet number con-
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centration (CDNC) with aerosol concentration, resulting on a local radiative forcing of around

−13 W m−2 (top-of-the-atmosphere). Liu et al. (2011a) also used ARM combined with GOES

satellite measurements and derived theoretically an analytical relationship between the relative

surface shortwave cloud radiative forcing, cloud fraction and cloud albedo. They noticed its

utility for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

Combining observations and modeling, Avey et al. (2007) used cloud retrievals from the

Moderate Resolution Imaging Spectroradiometer (MODIS) and output from a tracer transport

model (FLEXPART). They compared cloud and pollution fields in northeastern coast of United

States, during 2004, under the umbrella of International Consortium for Atmospheric Research

on Transport and Transformation (ICARTT) mission. Where the transport model indicates

polluted air, cloud droplet effective radii is smaller and cloud optical depth (COD) is in some

cases higher, at least close to primary source regions. Cloud perturbation is negligible when

advection time varies ranges 4 ± 1 days, maybe due to wet-scavenging of CCN. Regarding the

perturbation of cloud liquid water path (CWP) by pollution, they did not find any conclusive

evidence. Menon et al. (2002), by means of the Goddard Institute for Space Studies (GISS)

general circulation model, described the ACI regarding sulfate, organic carbon and sea salt.

The result of the global mean aerosol indirect effect varies from −1.55 to −4.36 W m−2 in the

simulations, considering the three types of aerosols. According to the authors, the preindustrial

background aerosol burden gives a strong indirect effect, making a quite sensitive aerosol indirect

effect result.

In the field of modeling, including aerosol interactions represents an important challenge in

air quality/climate modeling. Additionally, it is also important for the development of integrated

emissions control strategies for air quality management as well as climate change mitigation (Yu

et al., 2013; Rosenfeld et al., 2014). Yang et al. (2011a) used the Weather Research Forecast

coupled with chemistry (WRF-Chem) model in a study over the northern Chilean and southern

Peruvian coasts during 15 October to 16 November 2008. They run a simulation including ACI

and compared to other run with fixed CDNC and simplified cloud and aerosol treatments.

When taking into account a complex ACI treatment, the temperature and humidity gradients

are strengthened within the inversion layer; ACI inclusion also lowers the marine boundary

layer depth. They also found that apart from a better skill when simulating aerosol properties,

the coupled simulation of ACI improved cloud optical and microphysical properties. Moreover,

a better agreement of mean top-of-atmosphere outgoing fluxes with observations was found in

ACI simulation.

In the context of international initiatives, in AEROCOM (Quaas et al., 2009) ten different
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general circulation models (GCMs) taking into account aerosol-radiation-cloud interactions were

evaluated against satellite data. The authors computed statistical relationships between aerosol

optical depth and various cloud and radiation quantities. Their results suggested that the

second aerosol indirect effect has to be revised in GCMs (mainly regarding an autoconversion

parameterisation). The Atmospheric Chemistry and Climate Model Intercomparison Project

(ACCMIP) (Shindell et al., 2013) examined the short-lived drivers of climate change in current

climate models. Ten ACCMIP models including aerosols, 8 of which also participated in the

Coupled Model Intercomparison Project phase 5 (CMIP5) were evaluated. They studied the

effective radiative forcing (ERF) which includes the direct + indirect effects. They pointed to

an aerosol ERF of −1.17 W m−2; (ranging from −0.71 to −1.44 W m−2) for the period 1850

to 2000.

In order to simulate realistically the chemistry-aerosol-cloud-radiation-climate interactions,

fully online-coupled meteorology-atmospheric chemistry models are needed (Baklanov et al.,

2008b; Zhang, 2008). Moreover, to build confidence in air quality-climate interaction studies,

a thorough evaluation of integrated meteorology-atmospheric chemistry models is demanded,

at both global and regional scales. Particularly, ACI continue to be one of the most important

uncertainties in anthropogenic climate perturbations (Penner et al., 2006; Quaas et al., 2009).

The air quality model evaluation international initiative (AQMEII)(Rao et al., 2011) emerged to

promote policy-relevant research on regional air quality model evaluation across the atmospheric

modeling communities in Europe and North America through the exchange of information on

current practices and the identification of research priorities. It is coordinated by the European

Joint Research Center (JRC) and U.S. Environmental Protection Agency (EPA). The first phase

of AQMEII was focused on the evaluation of off-line coupled atmospheric models whereas during

the second phase (Alapaty et al., 2012; Galmarini et al., 2015), the model assessment extended

to on-line-coupled air quality models. Based on this, a coordinated exercise of Working Groups

2 and 4 of the COST Action ES1004 (EuMetChem, http://eumetchem.info) emerged, to take

into account the radiative feedbacks of pollution during episodes with high loads of aerosols.

In this sense, this study is conducted in the context of the second phase of AQMEII and and

EuMetChem COST Action. An extensive model evaluation can be found in Brunner et al. (2015)

for meteorological variables and according to ozone and particulate matter with an aerodynamic

diameter smaller than 10 µg m−3 in Im et al. (2015a,b) respectively; but no information about

aerosol-cloud processes from these initiatives is available in the scientific literature.

Under this umbrella, the main objective of this contribution is to assess the representation

of the ARI+ACI interactions in regional–scale integrated models when simulating the climate-

http://eumetchem.info
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chemistry-cloud-radiation system. Up to now, all the collectives studies performed used global

models; regional climate analysis do not usually take into account ARI+ACI. To the authors

knowledge, this contribution is novel in the sense that comprises a collective analysis taking into

account ARI+ACI in regional coupled models. It also complements the temperature collective

analyses of Baró et al. (2017).

5.2 Methodology

The strategies used to analyze ACI in online-coupled models are described in this section. As

stated in the introduction, the analyzed model outputs are the results run under the AQMEII

Phase 2 initiative and EuMetChem COST Action. In order to analyze the skills of the coupled

models which take into account ARI+ACI, simulations from different models with identical

meteorological boundary conditions and anthropogenic emissions have been analyzed.

The common set-up for the participating models and a unified output strategy allow ana-

lyzing the model output with respect to similarities and differences in the model response to

the aerosol-radiation and aerosol-cloud interactions. The studied variables are cloud fraction

(CFR), cloud optical depth (COD), cloud ice path (CIP) and cloud water path (CWP). The

target domain is Europe, and the analysis covers the whole year 2010 and its seasonality.

5.2.1 Model simulations

An overview of the one-year model simulations contributing to this study in the context of

AQMEII Phase 2 is presented in Table 5.1. It includes 5 simulations conducted with the

following models: LOTOS-EUROS (Sauter et al., 2012), UKCA (Savage et al., 2013) and

WRF-Chem (Grell et al., 2005; Grell and Baklanov, 2011). To facilitate the cross-comparison

between models, the participating groups interpolated their model output to a common grid

with 0.25◦ resolution (but for NL2 model, which has a smaller grid).

According to the emissions and boundary conditions (Table 5.2), all simulations were driven

by European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses

(with data at 00 and 12 UTC) and with respective forecasts (at 3/6/9 etc hours), so that the

time interval of meteorological fields used for boundary conditions was 3 hours. The chemical

initial conditions (IC) were provided by the ECMWF IFS-MOZART model. According to the

anthropogenic emissions used, they were provided by the Netherlands Organization for Applied

Scientific Research (TNO). The dataset is a follow-on to the widely used TNO-MACC database

(Pouliot et al., 2012). Biogenic emissions were estimated by the Model of Emissions of Gases

and Aerosols from Nature (MEGAN) (Guenther et al., 2006) which were calculated online.
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Fire emissions data were obtained from the IS4FIRE Project (http://is4fires.fmi.fi). The

emission dataset is estimated by re-analysis of fire radiative power data obtained by MODIS

instrument onboard of Aqua and Terra satellites. For further information regarding models

parameterizations, the reader is referred to Brunner et al. (2015); Im et al. (2015a,b).

http://is4fires.fmi.fi
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Table 5.2: Source of the data used in the simulations inputs for the initial conditions (IC),
boundary (BC) and aerosols emissions

.

Option Data source
Meteo IC BC ECMWF

Chemical IC BC ECMWF IFS MOZART
Anthro. emissions TNO-MACC
Biogenic emissions MEGAN
Fire emissions FMI

5.2.2 Observational data

In order to analyze the effect of different model settings on the representation of ARI+ACI,

model data is compared and evaluated against satellite-based observations of cloud properties.

In more detail, the satellite data used was generated by the ESA Cloud_cci project which

is part of ESA’s Climate Change Initiative (CCI) programme (see Hollmann et al. (2013) for

scientific aspects covered in the CCI programme). Several datasets are generated in Cloud_cci

(Stengel et al., 2017), of which we used Level-3C data (monthly averages and histograms) of the

Cloud_cci AVHRR-PM dataset (Stengel et al., 2016). The data was retrieved by employing

the Community Cloud retrieval for Climate (CC4CL, Sus et al., 2017; Mcgarragh et al., 2017)

using measurements of the Advanced Very High Resolution Radiometer (AVHRR) onboard the

National Oceanic and Atmospheric Administration satellite No. 19 (NOAA-19). The Level 3C

data has been used in this study, which has a spatial resolution of 0.5◦ Latitude/Longitude

and represents monthly summary of instantaneous cloud property retrievals taken at 01:30

AM/PM local time. The dataset version used is v2.2, containing, compared to Stengel et

al. (2017a) which described v2.0, two significant bug fixes: (1) correcting a miscalculation of

BRDF components in condition of high solar zenith angles and/or snow/ice covered surfaces

and (2) correcting look-up tables containing pre-calculated radiances as a function of ice cloud

properties as well as viewing geometry and illumination condition. Both bug fixes lead to a

significant reduction of random and systematic uncertainties of the data, in particular for the

optical properties cloud effective radius and cloud optical thickness as well as therefrom derived

cloud liquid and ice water path.

5.2.3 Evaluation methodology

Regarding the model evaluation methodology, satellite data is bilinearly interpolated to a com-

mon working grid covering the European domain. For evaluating cloud variables, model data is
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postprocessed computing the monthly mean of the mean value from 13.00 to 14.00 PM. In order

to perform the evaluation of the studied variables, we use several classical statistics according to

Willmott et al. (1985), Willmott and Matsuura (2005) and Weil et al. (1992). We will compute

the mean bias error (bias), the mean absolute error (MAE) and the correlation coefficient (r).

The bias (Eq. 5.1) is defined as:

MBE =
1

n

n∑
i=1

ei = P̄ − Ō (5.1)

Where ei is the individual model-prediction errors usually defined as prediction (Pi) minus

observations (Oi), and P̄ and Ō are the model-predicted and observed means, respectively.

The MAE (Eq. 5.2) is defined as:

MAE =
1

n

n∑
i=1

|ei| (5.2)

The standard deviation of the Pi (Eq. 5.3) is:

σP =

√√√√ 1

n

n∑
i=1

(Pi − P̄ )2 (5.3)

The standard deviation of the Oi (Eq. 5.4) is:

σO =

√√√√ 1

n

n∑
i=1

(Oi − Ō)2 (5.4)

The r (Eq. 5.5) is:

r =

[
1
N

∑n
i=1(Oi − Ō)(Pi − P̄ )

σOσP

]
(5.5)

Also, the standard deviation ratio is computed as σp/σo.

A satellite data mask for each monthly mean was done and applied to model data in order to

compute the statistics over a coincident area. Last, mean values were computed and are shown

in Section 5.3. Due to the monthly availability of the satellite data, the temporal coefficient of

correlation is only shown for the whole year 2010. A satellite data mask with greater or equal

to 6 values of satellite data -months- has been considered so that the correlation is only shown

in grid points with at least 6 months of data).
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5.3 Results

In the following section, the behaviour of the studied variables (CFR, COD, CIP and CWP)

for the bias, MAE, temporal r and spatial variability are presented. They are obtained by

calculating the corresponding statistic of the monthly mean series at each grid point of all the

land grid points of the domain for each season as follows: January-February-March (JFM);

April-May-June (AMJ); July-August-September (JAS); October-November-December (OND).

All the figures have the same structure (but temporal r): top row represents the mean satellite

values from ESA Cloud_cci and from left to right, the mean for the periods analyzed: 2010,

JFM, AMJ, JAS and OND. The following rows (2 to 7) include the computed statistic for

each model and the ensemble (ENS) mean, estimated as the average of all the available model

simulations. With respect to temporal r, only the year correlation is shown (as explained in

5.2). First row shows the mean satellite data for the cloud variables (one in each column) for

2010, while the temporal r for each simulation is shown in the following rows.

5.3.1 Cloud fraction, CFR

Fig. 5.1 shows the bias and Fig. 5.2 the MAE for the variable CFR. In both cases, the first row

shows the satellite CCI values, which are generally higher than 0 (except in some areas during

JAS), with minimum values over the eastern Mediterranean which increase with latitude. The

following rows show the bias and MAE of the different model simulations (Figs. 5.1 and 5.2

respectively). In Table 5.3, mean values of satellite, models and ENS are collected. For CFR,

mean model values are close to satellite data, with a slight tendency for underestimation. Fig

5.1 generally points to an underprediction of CFR over land areas and an overestimation over

the ocean. Individual model simulations present positive a bias range from +40% to over −35%.

ES1 model depicts the highest underestimation (−40% mean bias) mainly over land areas. MAE

(Fig. 5.2) is up to 40%, especially noticeable over central Europe and the Mediterranean Sea in

ES1, and the rest of the models show lower MAE values (15%). DE4 and IT2 simulations show

a high MAE over the Atlantic Ocean and North Africa with an error of 30%, coinciding with

a positive bias of 30% (Fig.5.1). For the ENS mean (last row Fig 5.1), lower levels are found,

with Biases ranging from 20% to −20%, outperforming the individual simulations (also for

MAE). The positive bias is more pronounced during JAS, where mean satellite levels are lower

(first row, Fig 5.1). This negative bias was expected because of the general trend of global and

regional models to underestimate CCN (Wyant et al., 2015) and therefore cloud formation. On

the other hand, overestimations found off-shore could be produced because satellite retrievals
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missed thin clouds, making the models overestimate CFR since satellite did not totally capture

them. Last, Fig. 5.3 represents mean satellite data for the cloud variables in the first row for

2010. The following rows cover the temporal r for each model simulation. For CFR, a positive

temporal r prevails, with mean values of 0.7/0.8 and areas with values close to 0.9. Conversely,

there are some areas over the sea, with negative correlation (around −0.5). This spatial pattern

of the r coefficient is related to Fig. 5.1, where negative bias prevail over land areas and positive

bias over sea. Generally, a positive correlation implies that when satellite CFR values increase

(decrease) also model levels CFR increase (decrease) but models underestimate it, mainly over

land area (Fig. 5.1).
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Figure 5.3: Temporal correlation (r) for the whole year 2010. First row represents the mean
satellite values of 2010 where each column represents a cloud variable. Following rows show the
r of each model and cloud variable.
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5.3.2 Cloud optical depth, COD

Regarding COD, mean seasonal satellite values (first row, Fig 5.4) are up to 30, with the

highest mean levels during the OND period. Lowest levels are found over northeastern part

of the domain, with vales under 10. Table 5.3, second column, indicates that in general lower

mean models level are found compared to satellite data. This spatial pattern is clear the COD

bias (Fig. 5.4), where there is a general underestimation of the monthly mean COD over the

whole domain.

In general, higher negative bias is found during OND, showing NL2 the largest underestima-

tion. During winter months (JFM), DE4 and IT2 show an overestimation over central Europe

and some areas over the Atlantic ocean, coinciding with low levels of COD in the satellite. For

WRF-Chem models, the differences appearing between models can be related to the different

microphysics scheme (Table 5.1) used, Morrison (Morrison et al., 2009) in DE4 and IT2 and

Lin scheme (Lin et al., 1983) in ES1. According to Baró et al. (2015), which studied the differ-

ences between these microphysics schemes, Morrison parameterization involved higher levels of

droplet number mixing ratio.

The authors stated that, since cloud water was similar for Morrison and Lin simulations,

the higher droplet number mixing ratio in Morrison indicates that cloud droplets have a lower

diameter in Morrison than in Lin (especially during winter). Since COD measures the attenu-

ation of the radiation due to the extinction by cloud droplets, smaller and more cloud droplets

in Morrison scheme are more effective in scattering shortwave radiation, and could explain the

positive biases found in DE4 and IT2 models. For the MAE (Fig. 5.5), highest values are found

in winter and autumn months (JFM, OND), in line with the bias. Individual models have a

MAE up to 35, being the largest MAE found in the NL2 model (as for bias). The differences

found in NL2 model may again be related to its model microphysics scheme (Table 5.1)(Tiedtke,

1993; Tompkins et al., 2007; Neggers, 2009). Tompkins et al. (2007) tested the new scheme in

the European Centre for Medium-Range Weather Forecasts (ECMWF), Integrated Forecasting

System (IFS) model within two 7-member ensembles of 13-months. They compared with the

ISCCP D2 retrievals, finding a reduction of the high-cloud cover leading to a lower COD. So,

this is in accordance with the results found here, where this model presents the largest under-

estimations. For bias and MAE, again, ENS simulation outperforms the individual simulations

(with maximum MAE values lower than 20). With respect to the temporal r (second column,

Fig. 5.3), there is a general positive correlation with values up to 0.8 (mostly over land areas)

and others with negative correlation over central Europe in DE4 and IT2 models, coincident

with those areas where the bias is overestimated.
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5.3.3 Cloud ice path, CIP

With respect to CIP (Fig. 5.6), mean satellite levels (first row) are below 100 g m−2 but

for some delimited areas during winter months (JFM, OND) and spring (AMJ), where high

levels over 200 g m−2 can be found. Table 5.3, third column, reflects that mean models values

are significantly lower compared to satellite retrievals for CIP. Therefore, CIP bias in Fig. 5.6

shows a general model underestimation but for UK4. WRF-Chem models (DE4, ES1, IT2) show

negative biases between −80 and −50 g m−2 in different parts of the domain, depending on the

season. The largest underestimations are found during JFM and OND (where mean satellite

values were very high). On the other hand, UK4 overestimates CIP, with a positive bias of 80

g m−2 during JFM over central and northern Europe. During JFM, mean satellite data were

around 50 g m−2, which is best captured by the other models. UK4 also overestimates CIP

during the rest of the year over some northern areas of the domain. The differences found here

with respect to WRF-Chem models and UK4 could be related to the number of hydrometeors

defined in each microphysics scheme. For both WRF-Chem microphysics (Lin et al., 1983;

Morrison et al., 2009), 3 types of ice hydrometeors are consider whereas UK4 (Wilson and

Ballard, 1999) only considers one. The fact that WRF-Chem simulations underestimates CIP,

finding also an overestimation in UK4 model, could mean that the number of ice hydrometeors in

the microphysics scheme is relevant for CIP representation. At the same time, ENS simulation

outperforms the individual simulations since it compensates the UK4 model overestimation

with the underestimations of the rest of the models. Regarding MAE, values are significantly

higher during JFM and OND (Fig. 5.7), with an error over 80 g m−2, shown in all the modelling

results. This spatial pattern coincides with the areas with higher CIP levels in the mean satellite

data as seen in Fig. 5.6. Temporal r (Fig. 5.3 shows positive r values around 0.7 and negative

correlations between −0.5 and −0.6. Positive r is found in practically the entire domain whereas

negative correlations are found in northern Europe (Scandinavian area and north of Russia).
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5.3.4 Cloud water path, CWP

Lastly, bias and MAE values of CWP are shown in Fig. 5.8 and 5.9 respectively. Mean satellite

levels (first row, Figs. 5.8 or 5.9) are below 100 g m−2 (as well as for CIP) but during winter

months (JFM, OND) levels are higher than 150 g m−2 can be found (in JFM mainly in the North

of Spain, some areas of the Mediterranean coast, France and North and Baltic Sea). As for CIP

during OND, CWP is higher over the entire domain (but for the north of Africa). Kniffka et al.

(2014) report CWP levels from space-based observations from the Spinning Enhanced Visible

and Infrared Imager (SEVIRI) of less than 100 g m−2 in low clouds, 200 g m−2 in middle clouds.

Also, satellite retrievals agree with those of Curry et al. (1990), who used data from the Nimbus

7 Scanning Multichannel Microwave Radiometer (SMMR), determining CWP for middle and

low clouds (115 and 102 g m−2, respectively) with a maximum value of 1070 g m−2. Although

mean satellite data seems to be in agreement with other studies, models shows higher CWP

levels. Looking at mean model levels (last column, Table 5.3), these are higher compared to

satellite levels, shown in Fig. 5.8 as a general overestimation of CWP (values up to +50 g m−2),

mainly over the ocean, but for ES1 model. The model differences found here could be related

to the treatment of the variable. For instance, in all the models included but UK4, CWP is

treated as an prognostic variable whereas UK4 treats it as a diagnostic variable (Wilson and

Ballard, 1999). Besides, as seen in section 5.3.2, within the WRF-Chem models and according

to Baró et al. (2015), models with Morrison scheme have more droplets with smaller diameter

compared to Lin scheme. This could also affect the representation of this variable, showing

ES1 a model underestimation over most of the domain. Looking at the MAE (Fig. 5.9), the

highest values are found in JFM and OND and Model NL2 shows the highest error, mainly

over the Atlantic Ocean (50 g m−2). According to Tiedtke (1993), a right representation of the

CWP is important for high clouds, because it is directly related to the transparency or optically

thickness. As stated in section 5.3.2, NL2 underestimates COD, (explained by the fundings of

Tompkins et al. (2007) when testing the scheme). No data is available for evaluating CIP or

CWP over northern Africa. Temporal r (Fig. 5.3 shows a positive r value around 0.7 for most

of the domain. Negative correlations prevail in the Atlantic Ocean and some parts in central

Europe (up to −0.6).
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5.3.5 Spatial correlation and variability

The spatial correlation and variability, averaged for year and target season, are summarized

in Table 5.4 for each variable (CFR, COD, CIP and CWP, in that order). With respect to

CFR, the seasonal correlation coefficients are very high (over 0.90 for each model and season,

except for ES1 in wintertime, with r = 0.89). Year correlation coefficients range from 0.85 to

0.89, which indicates that the models have a good skill when capturing the spatial variability

of the CFR. The ratio σP /σO gives an idea of the trend of the simulations to overestimate or

underestimate the spatial variability (ratio over or under 1, respectively). All models present

an accurate representativity of the spatial variability, with ratios very close to 1 for every

season and also for the annual average. Also, all models have a very slight tendency to the

overestimation of CFR spatial variability (σP /σO ranging from 1.01 to 1.07).

The spatial correlation coefficient for the rest of the variables indicates a lower skill for

representing the spatial correlation of COD, CIP and CWP. All annual spatial r values are

in the order of 0.6-0.7, ranging from the case of NL2 for COD (0.41) and CWP (0.44) on the

bottom to the simulation of UK4 for CWP (0.73). These values are similar if seasonal correlation

coefficients are observed, but in the case of CIP for summertime. The skill of the model for

representing the spatial pattern of CIP is limited during JAS, with correlation coefficients

ranging from 0.16 in UK4 to 0.35 in DE4 and IT2. Once again, the Morrison microphysics

seems to outperform the rest of the simulations when representing the cloud ice path.

With respect to the spatial variability of COD, CIP and CWP, represented by the ratio

σP /σO, important differences between the variables and models are found. For COD, ES1 and

NL2 tend to underestimate its spatial variability, especially in the case of NL2, with values

of σP /σO ranging from 0.09 in OND to 0.17 for summertime (JAS). The rest of the models

present a good skill for reproducing the variability, with ratios which are slightly higher for the

yearly-averaged values than for individual seasons. In the case of CIP, the spatial variability is

pervasively estimated by all models and seasons (values σP /σO in the order of 0.1-0.2), except

in the case of UK4, which just slightly underpredicts the variability (ratios around 0.8 except

for OND, when this value decreases to 0.63).

Last, for the CWP, all models but ES1 slightly overestimate the spatial variability (σP /σO

values around 1.0-1.3) for yearly-averaged values, winter and spring. In summer, this value is

slightly overestimated by simulations not using WRF-Chem (NL2 and UK4), while for autumn

(OND) all models tend to underpredict the spatial variability. In general, the best skills are

found for DE4 simulations while the largest underestimations are present for ES1 simulations,

which use the Lin microphysics scheme.
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Table 5.4: Spatial correlation and standard deviation ratio values for CFR, COD, CIP and
CWP over the periods: 2010, JFM, AMJ, JAS, OND. r: correlation coefficient; σP /σO: ratio
between the standard deviation of the models (σP ) and the observations (σO).

CFR
2010 JFM AMJ JAS OND

r σP /σO r σP /σO r σP /σO r σP /σO r
DE4 0.89 1.06 0.94 1.01 0.94 1.02 0.94 1.07 0.95 1.06
ES1 0.87 1.05 0.89 1.03 0.91 1.05 0.92 1.03 0.92 1.06
IT2 0.88 1.07 0.94 1.03 0.94 1.03 0.94 1.07 0.95 1.07
NL2
UK4
ENS 0.85 1.06 0.93 1.04 0.92 1.04 0.93 1.05 0.94 1.07

COD
2010 JFM AMJ JAS OND

r σP /σO r σP /σO r σP /σO r σP /σO r σP /σO
DE4 0.68 1.12 0.62 1.05 0.59 1.07 0.66 0.94 0.71 0.85
ES1 0.67 0.55 0.69 0.46 0.57 0.61 0.66 0.55 0.73 0.38
IT2 0.68 1.07 0.57 0.99 0.56 1.06 0.59 0.89 0.73 0.81
NL2 0.41 0.16 0.39 0.10 0.34 0.16 0.51 0.17 0.47 0.09
UK4
ENS 0.68 0.74 0.65 0.64 0.57 0.74 0.64 0.66 0.74 0.56

CIP
2010 JFM AMJ JAS OND

r σP /σO r σP /σO r σP /σO r σP /σO r σP /σO
DE4 0.62 0.24 0.53 0.20 0.64 0.30 0.35 0.26 0.58 0.16
ES1 0.60 0.10 0.43 0.09 0.58 0.12 0.31 0.12 0.53 0.07
IT2 0.62 0.24 0.52 0.20 0.63 0.30 0.35 0.26 0.58 0.16
NL2
UK4 0.63 0.81 0.54 0.78 0.25 0.80 0.16 0.80 0.55 0.63
ENS 0.62 0.34 0.54 0.29 0.48 0.34 0.26 0.34 0.59 0.24

CWP
2010 JFM AMJ JAS OND

r σP /σO r σP /σO r σP /σO r σP /σO r σP /σO
DE4 0.68 1.08 0.57 1.14 0.67 1.12 0.76 0.90 0.65 0.85
ES1 0.66 0.69 0.53 0.69 0.64 0.76 0.77 0.67 0.65 0.48
IT2 0.66 1.04 0.56 1.09 0.64 1.11 0.72 0.87 0.66 0.81
NL2 0.44 1.31 0.28 1.32 0.56 1.34 0.72 1.49 0.39 0.87
UK4 0.73 1.10 0.62 0.97 0.69 1.22 0.78 1.19 0.74 0.76
ENS 0.65 1.03 0.56 0.97 0.68 1.07 0.76 0.99 0.66 0.72
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5.4 Summary and conclusions

The presence or the absence of cloudiness must be well represented since clouds play an impor-

tant role in the Earth’s energy balance (Boucher et al., 2013; Myhre et al., 2013b). Hence, in

this study a collective evaluation of the cloud variables CFR, COD, CIP and CWP has been

shown. The simulations evaluated here were run by coupled chemistry and meteorology models

in the context of the AQMEII Phase 2 initiative and EuMetChem COST Action for the year

2010. This study complements other collective analyses as Baró et al. (2017); Brunner et al.

(2015); Makar et al. (2015b,a); Forkel et al. (2015) by adding an assessment of how coupled

models represent ACI in an ensemble of simulations.

With respect to CFR, an underestimation (overestimation) of this variable is observed over

land (ocean) areas. Individual model simulations present positive a bias close to 40% and a

negative bias over −35%. MAE is up to 40%, especially noticeable over central Europe and

the Mediterranean Sea in ES1 model. The rest of the models show lower MAE values (15%).

DE4 and IT2 present a high MAE over the Atlantic Ocean and northern Africa, with an error

around 30%, coincident with a positive bias of the same magnitude. For the ENS mean, lower

CFR levels are found, with Biases ranging from 20% to −20%, outperforming the individual

simulations (also for MAE). The positive bias is more pronounced during JAS, where mean

satellite levels are lower. The negative bias could be due to the general underestimation in the

representation of CCN by global and regional models (Wyant et al., 2015). On the other hand,

overestimations found off-shore could be related to satellite retrieval missing thin clouds. A

positive temporal coefficient of correlation r is dominant in the spatial pattern of this variable,

with values close to 0.9. On the other hand, there are some areas over the ocean with negative

correlation (around −0.5). This is similar to the bias, where a negative bias prevailed over land

areas and a positive bias over the sea.

Regarding COD, lower mean model levels are found compared to satellite data resulting on

a general underestimation of the monthly mean over the whole domain. In general, a higher

negative bias is found during OND, with NL2 showing the largest underestimation. During

winter, DE4 and IT2 have a trend for overestimation over central Europe and some areas

over the Atlantic ocean, corresponding with low levels of COD as indicated by the satellite.

These differences found in the WRF-Chem models may be related to the different microphysics

scheme used (Morrison (Morrison et al., 2009) versus Lin (Lin et al., 1983)). In the former,

cloud droplets have a lower diameter than Lin (especially during winter) (Baró et al., 2015),

leading to a more effective extinction by cloud droplets. With respect to MAE higher levels
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are found in winter months, in line with the bias. Individual models have a MAE up to 35,

being higher for NL2 model (as for bias). The differences found in NL2 model may be related

to the model microphysics scheme. Temporal r points to a general positive correlation between

models and satellite observations, with values up to 0.8 (mostly over land areas). Some areas

with a negative correlation over central Europe in DE4 and IT2 models are related to areas

with a trend for overestimation.

There is an overall underestimation of the CIP but for UK4. The differences found here

with respect to WRF-Chem models and UK4 could be related to the number of hydromete-

ors defined in each microphysics scheme. For both WRF-Chem microphysics, 3 types of ice

hydrometeors are considered whereas UK4 (Wilson and Ballard, 1999) considers only one. So

the underestimation found in UK4 model could mean that the number of ice hydrometeors is

relevant. MAE values are significantly higher during JFM and OND (error of more than 80 g

m−2), shown in all the models results. This spatial pattern correlates with those areas with

a higher mean CIP in the satellite. Temporal r shows positive correlation values around 0.7

and negative correlations between −0.5 and −0.6. Positive r is found nearly over all the target

domain whereas negatives correlations are found in northern Europe (Scandinavian countries

and the north of Russia).

Despite mean satellite data seems to be in agreement with other studies (Kniffka et al.,

2014), models shows higher CWP levels resulting in a general overestimation of CWP mainly

over sea areas (but for ES1 model). The model differences found here could be related to the

treatment of the variable, since for instance, all the models but for UK4, CWP is treated as an

prognostic variable whereas UK4 treats it as a diagnostic variable (Wilson and Ballard, 1999).

Besides, as seen in section 5.3.2, within the WRF-Chem models and according to Baró et al.

(2015), models with Morrison scheme have more droplets with smaller diameter compared to

Lin scheme. This could also affect the representation of this variable, showing an ES1 model

underestimation over the most part of the domain. MAE highest levels were found in JFM

and OND and Model NL2 shows the highest error, mainly over Atlantic Ocean, just as in bias.

According to Tiedtke (1993), a right representation of the CWP is important for high clouds,

due to its directly related to the transparency or optically thickness. Besides, as said in section

5.3.2, NL2 underestimates COD. Temporal r shows positive values around 0.7 for most of the

domain. Negative correlations prevail in the Atlantic Ocean and some parts in center Europe

(up to −0.6).

Finally, the seasonal and yearly correlation coefficients are very high for CFR (seasonal over

0.90, yearly over 0.85), which indicates that the models have a good skill when capturing the
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spatial variability, whilst tender to slightly overestimate CFR spatial variability (value σP /σO

ranging from 1.01 to 1.07). The rest of the variables, indicates a lower skill for representing

the spatial correlation of COD, CIP and CWP. All annual spatial r values are in the order

of 0.6-0.7. These values are similar if seasonal correlation coefficients are observed, but in

the case of CIP for summertime. The skill of the model for representing the spatial pattern

of CIP is limited during JAS, (correlation coefficients ranging from 0.16 to 0.35). Morrison

microphysics seems to outperform the rest of the simulations when representing the cloud ice

path. Important differences in the spatial variability between the variables and models are

found. For COD, ES1 and NL2 tend to underestimate its spatial variability, especially in the

case of NL2, with values of σP /σO ranging from 0.09 in OND to 0.17 for summertime (JAS).

The rest of the models present a good skill for reproducing the variability, with ratios which

are slightly higher for the yearly-averaged values. In the case of CIP, the spatial variability is

pervasively estimated by all models and seasons, except for UK4, which slightly underpredicts

the variability (ratios around 0.8 except for OND, when this value decreases to 0.63). For the

CWP, all models but ES1 slightly overestimate the spatial variability (σP /σO values around

1.0-1.3) for yearly-averaged values, winter and spring. In summer. In general, the best skills are

found for DE4 simulations while the largest underestimations are present for ES1 simulations

(which use the Lin microphysics scheme).

According to Rosenfeld et al. (2014), an improvement in the understanding of ACI and their

effects on climate is restricted by inadequate observational tools and models. The statistical

effect of the aerosol on clouds is still a controversial matter given the limitations of the tools

used in satellite, observation and in large or global-scale models (Stevens and Feingold, 2009).

A better understanding of the aerosol-cloud processes would reduce the uncertainty in an-

thropogenic climate forcing and provide a clear understanding and better predictions of the

future impacts of aerosols on climate and weather (Rosenfeld et al., 2014). Observation sys-

tems have increasingly been used in the recent years, but improvements should be done (Seinfeld

et al., 2016) since the large range of scales, and the fact that the various measuring systems,

tend to address different scales. In Seinfeld et al. (2016) they compiled some large-scale field

experiments planned to address aerosol-cloud-climate interactions. Overall, further comprehen-

sive studies will be needed for a better understanding of these interactions and to help us to

improve the knowledge of the climate and air quality interactions.





Chapter 6

Conclusions and future perspectives

The present Thesis contributes to characterize the uncertainties in the climate-chemistry-

aerosol-cloud-radiation system associated with the aerosol direct and indirect radiative effects

caused by aerosols over Europe, by employing an ensemble of fully-coupled climate and chem-

istry model simulations. As previously mentioned, the development of this Thesis has been

done under the umbrella of the AQMEII Phase 2 and the EuMetChem COST Action ES1004,

which have provided us with analytical tools to reach a better understanding of the air quality-

climate interactions, and to also value the various physical and chemical processes incorporated

in the coupled modeling systems. Moreover, we have taken advantage of the valuable database

generated in this initiative.

Despite a detailed discussion of the results and conclusions have been included in the corre-

sponding Chapters (from 2 to 5), here a summary of their most important aspects is presented.

Moreover, recommendations for future work are also included.

6.1 General conclusions

The development of this Thesis has contributed to the state of the art in AQCI studies. Up

to now, all the collectives studies were based mainly on global models. Hence, this Thesis

goes one step beyond studying the aerosol-radiation-cloud interactions through an ensemble

of online-coupled regional models. After studying several episodes and the whole of 2010 by

different online-coupled models, the inclusion of the aerosol feedbacks did not improve the bias,

but its inclusion improved the spatio-temporal variability and correlation coefficients. These

results confer value to the computational efforts made to include ARI and ACI in the models,

which justifies the computational times and costs. This conclusion was reached from the partial

conclusions that are disclosed below.

133
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6.1.1 Sensitivity analysis of the microphysics scheme

Despite many aspects related to the microphysics processes are still not completely understood,

it is well-known that they play an important role in how moist convection develops and evolves,

and also in the radiative energy budget of the Earth–atmosphere system. Parameterization of

cloud microphysics is a crucial part of fully–coupled meteorology–chemistry models. Consider-

ing this, the sensitivity of the selection of the microphysics scheme within WRF–Chem model

has been assessed in Chapter 2. The impact on several variables is estimated when selecting

two different microphysics parameterizations: Morrison (MORRAT) vs. Lin (LINES). This

study covers the difference between the simulations for two 3–month periods (cold and a warm)

during the year 2010, which thus allows a seasonal analysis.

• MORRAT provides a higher cloud water mixing ratio in winter, mainly over remote areas,

where the CCN concentrations are lower; while LINES provides higher values over most

polluted areas.

• MORRAT simulations indicate higher values for the droplet number mixing ratio during

winter and summer for nearly all the simulation domains. This fact indicates that smaller

and more numerous cloud droplets are simulated by the Morrison parameterization and

therefore, this scheme is more effective for scattering shortwave radiation (as clearly ob-

served when assessing both the differences in the mean upwelling shortwave flux and the

downwelling shortwave flux at the bottom).

• The spatial pattern of differences for the droplet number mixing ratio and the 2–m tem-

perature are highly correlated for wintertime. The MORRAT simulations with higher

levels of cloud droplets allow less shortwave radiation to reach the ground, but also higher

longwave radiation to be reflected towards the ground. Of these two effects, the latter

prevails and, thus, the daily average temperature increases in northern areas (50◦N to

70◦N) in MORRAT compared to LINES.

• Despite the differences found in the behaviour of both simulations, the sensitivity of the

results to microphysics scheme selection is very limited when comparing the results to

observations.

• No significant benefits from selecting microphysics schemes can be derived from the results

neither in northernmost areas nor in southern-Mediterranean Europe.

• Because of the limitations in this sensitivity analysis (restricted to just two simulations im-

plemented into just one model), future research on this topic should be devoted to further
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studies that examine the impact of aerosols on cloud properties using other microphysics

and convective parameterizations, and also in other target domains.

6.1.2 Biomass burning aerosol impact on surface winds

As seen in Chapter 1 the radiative effects of atmospheric aerosols are widely known to affect

radiation, temperature, stability, clouds and precipitation through their radiative effects, which

depend mainly on the aerosol optical properties. Wind fields affect aerosols levels by different

processes, which result in wind-dependent emission over land or ocean (e.g. Boucher et al.

(2013); Prijith et al. (2014); Li et al. (2015)). So Chapter 3 covers the topic of the BB aerosol

impacts on wind (and other meteorological variables). Apart from the studies of Jacobson and

Kaufman (2006) and Péré et al. (2014), scientific literature about aerosol effects on wind is

scarce. A reason of the lack of these studies could be the difficulty understanding the physical

causes of the feedbacks between aerosols and winds.

The results shown in Chapter 3 go one step beyond previous studies by including the

online feedbacks between aerosols and meteorology in a regional climate-chemistry coupled

model, and by solving online ARI in addition to ACI and, hence, considering aerosol feedbacks

with meteorology).

• BB aerosols can affect surface winds not only where emission sources are located, but also

further away from the release areas.

• Local winds decrease due to reduced SWDNB, which leads to drops in T2.

• Atmospheric stability increases when considering aerosol feedbacks, inducing a lower

PBLH.

• Presence of BB aerosols in the atmosphere can change the SLP, by producing changes in

mesoscale circulations and an increase of surface winds over distant regions.

• Considering BB aerosols feedbacks could play a key role when simulating surface winds.

• Including aerosols feedbacks when simulating surface winds could contribute to both

weather prediction skills and improve climatological studies. For instance, better un-

derstanding of feedbacks between aerosols and winds could help the decision making on

fires management and could condition the planning on wind energy.

• Albeit this promising conclusion, this work only analyzes one particular episode and more

case studies will be needed to support these conclusions.
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6.1.3 Atmospheric aerosol effects on temperature

The variable 2-m temperature considered in Chapter 4 is crucial to understand the effect of

the aerosol interactions with clouds and radiation. In this sense, this study complements other

several other analyses (e.g. Brunner et al. (2015); Forkel et al. (2015); Makar et al. (2015a)) by

analyzing whether the inclusion of the radiative feedbacks improves, or not, the representation

of the temperature field (maximum, mean and minimum) in an ensemble of simulations by

covering the COST Action ES1004 episodes. The two considered episodes are: the Russian

heatwave and wildfires episode (25 July-15 August 2010) and a Saharan dust episode (2-15

October 2010).

• In both episodes, the bias is the studied variables is generally underestimated, and is more

noticeable in maximum temperature. In general, there is not a straightforward conclusion

about the improvement, or not, of the bias when introducing aerosol radiative feedbacks.

• Broadly speaking, the biases are improved when including ARI or ARI+ACI in the dust

case, but no evident improvements have been found for the heatwave/wildfires episodes.

• Although the ensemble does not outperform the individual models in general, the im-

provements found when including ARI and ARI+ACI are by far more remarkable for the

ensemble than for the individual models.

• Maximum and mean temperatures in the fires and dust episodes display higher temporal

correlations over most of the domain when no aerosol effects feedbacks are considered,

compared to the E-OBS database than minimum temperature.

1. The ensemble of simulations always outperforms the representation of the temporal

variability of the series

2. The ρ2 coefficient improves when considering the ARI or ARI+ACI feedbacks (in

both episodes).

• During the fire episode, a generally marked overestimation of the standard deviation of

the studied variables took place. Here, the inclusion of aerosol feedbacks largely improved

the representation of the temporal variability of the three studied variables (reducing

the bias of standard deviation), with the best skills shown for the cases that included

the ARI+ACI interactions, with as much a 75% reduction in the bias of the standard

deviation.
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• During the dust episode, the inclusion of the aerosol radiative feedbacks for temporal

variability displayed the greatest improvements and resulted in an added value of the

computational efforts made to include direct aerosol radiation interactions and aerosol

cloud interactions in models.

• For maximum and mean temperatures, the inclusion of radiative effects reduced the spa-

tial variability and improved the spatial patterns for both episodes. For the minimum

temperature, the improvement achieved by including the radiative feedbacks was less

evident.

• To further investigate the impact of including the aerosol interactions in online-coupled

models, episodes with stronger effects on the ACI should be considered as the episodes

selected during EuMetChem Cost Action were related mainly to ARI.

• During the dust episode, most of the ARI+ACI differences found in the models compared

to the base case were found over the Mediterranean Sea, but observational data E-OBS

only has values over land. Unfortunately part of the interpretation of the results may

have been missed due to the unavailability of this database over the ocean.

• Modeling issues still remain as to representing the temperature field, where maximum

temperatures are underestimated and minimum temperatures are overestimated, and the

inclusion of the aerosol feedbacks does not improve this situation. Nevertheless, in this

study, a general improvement of the temporal variability and correlation has been seen.

These improvements may be important for not only certain episodes, like those ana-

lyzed here, but also for representing the climatology of temperatures. However, climatic-

representative periods should be covered in further studies.

6.1.4 Aerosol-cloud interactions representation in online-coupled models

The presence or the absence of the cloudiness must be well represented as clouds play an im-

portant role in the Earth’s energy balance (Boucher et al., 2013; Myhre et al., 2013b). A better

understanding of the aerosol-cloud processes would reduce the uncertainty in anthropogenic

climate forcing and provide a clear understanding and better predictions of the future impacts

of aerosols on climate and weather (Rosenfeld et al., 2014). This study shown in Chapter 5,

complements other collective analysis such as Baró et al. (2017); Brunner et al. (2015); Forkel

et al. (2015), Makar et al. (2015a,b), by adding an analysis of how coupled models represent

ACI in an ensemble of simulations in the AQMEII Phase 2 and EuMetChem COST Action

context.
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• Underestimation (overestimation) of CFR is observed over land (ocean) areas. The latter

could be related to satellite retrieval missing thin clouds. Lower bias and MAE are found

in the ensemble mean.

• COD shown a general underestimation over the whole domain. MAE was in line with the

bias.

• There is an overall underestimation of the CIP but for UK4. The differences found here

could mean that the number of ice hydrometeors is relevant.

• Higher CWP mean model levels were found, which resulted in a general overestimation

of CWP. Differences found in CWP could be related to the treatment of the variable

(prognostic/diagnostic).

• Generally, temporal r points to a general positive correlation between models and satellite

observations.

• CFR, has the best skill when capturing the spatial variability. COD, CIP and CWP

indicate a lower skill for representing the spatial correlation.

• Differences found in models may be related to the different microphysics scheme used.

• High temportal correlation as well as good skill when capturing the spatial variability

(specifically for CFR) has been seen. However, further comprehensive studies are needed

for a better understanding of these interactions and to help us to improve the knowledge

of the climate and air quality interactions.

6.2 Future works and development

As a future work, there are several aspects that would be of much interest to complement the

results of this Thesis. Some of them are ongoing works and others are possible future research

lines.

• As seen in Chapter 2, in order to model the indirect effects, the cloud scheme needs to be

coupled with a double moment microphysical parameterization. One main limitation with

using WRF–Chem when assessing ACI is that only couplings are computed in explicitly

resolved clouds, rather than convective clouds simulated by cumulus parameterization

(Chapman et al., 2009; Yang et al., 2011a). The works of Grell and Freitas (2014); Berg

et al. (2015) have included aerosol interactions with parameterized clouds. However, these
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developments were not available for when WRF-Chem was released at the time of writing

this Thesis. Furthermore, according to Berg et al. (2015), high-resolution simulations

using horizontal grid spacing less than 10 km can explicitly represent convective clouds

and ACI. By considering the foregoing, future studies should be in line with using aerosol

interactions with parameterized cloud with higher resolution.

• In line with the previous point, the aerosol–cloud–precipitation framework must be ex-

panded to flexibily represent the effect of environmental conditions, in addition to the

microphysics. We have started this line by quantifying the influence of including dust

interactions on precipitation in a regional online-coupled climate/chemistry model over

convective precipitation, as well as other cloud related variables. This work is presented

in the European Geosciences Union (EGU) Conference, April 2017.

• This Thesis falls in line with the main objectives of the Project REPAIR (CGL2014-

59677-R), funded by the Spanish Ministerio de Economía y Competitividad (MINECO)

and by the FEDER European program, which is currently ongoing. Its main objective is

to study the potential impact of an increased use of renewable energies, particularly wind

and solar, on European climate and air quality in Europe until mid-century, through its

role in mitigating projections of climate change that consider the interactions of aerosols

and climatic system (radiative feedbacks). The undertaken of this Thesis has helped to set

the basis for studying the air quality-climate interactions, using a regional online-coupled

climate/chemistry model, which will serve to fulfill the objectives of REPAIR.

• In order to improve aerosol prediction, future studies should use data assimilation. Some

studies (Pagowski et al., 2010; Liu et al., 2011b; Schwartz et al., 2012) have shown the

improvements made by using aerosol and chemical data assimilation. Moreover, in the

field of improving the aerosol representation by taking into account the aerosol feedbacks

in online-coupled systems, Wang and Niu (2013) suggests the importance of taking into

account the aerosol assimilation and radiation forcing in modeling aerosols.

Overall, we highlight the relevance of including aerosols feedbacks in the regional modeling

field, as formerly stated by several authors (such as Forkel et al., 2015; Kong et al., 2015; Makar

et al., 2015b; San José et al., 2015). Albeit a growing number of studies of meteorology and

chemistry feedbacks employing online-coupled models are available in the scientific literature,

further studies are needed in order to improve the representation of these interactions.





Bibliography

Ackerman, S. A. (1997). Remote sensing aerosols using satellite infrared observations. Journal

of Geophysical Research: Atmospheres, 102(D14):17069–17079.

Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar,

U. (1998). Modal aerosol dynamics model for Europe: Development and first applications.

Atmospheric environment, 32(17):2981–2999.

AIAA (1999). Guide to global aerosol models. American Institute of Aeronautics and Astro-

nautics, Reston, United States of America.

Akay, A., Brereton, F., Cunado, J., Ferreira, S., Martinsson, P., Moro, M., and Ningal, T. F.

(2013). Life Satisfaction and Air Quality in Europe. Ecological Economics, 88:1–10.

Alapaty, K., Mathur, R., Pleim, J., Hogrefe, C., Rao, S. T., Ramaswamy, V., Galmarini, S.,

Schaap, M., Makar, P., Vautard, R., Makar, P., Baklanov, A., Kallos, G., Vogel, B., and

Sokhi, R. (2012). New Directions: Understanding interactions of air quality and climate

change at regional scales. Atmospheric Environment, 49:419–421.

Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science,

245(4923):1227–1230.

Avey, L., Garrett, T. J., and Stohl, A. (2007). Evaluation of the aerosol indirect effect using

satellite, tracer transport model, and aircraft data from the international consortium for

atmospheric research on transport and transformation. Journal of Geophysical Research:

Atmospheres, 112(D10).

Baidya, S. and Sharp, J. (2013). Why atmospheric stability matters in wind assessment. North

America Windpower, pages 29–29.

Baklanov, A., Korsholm, U., Mahura, A., Petersen, C., and Gross, A. (2008a). ENVIRO-

HIRLAM: on-line coupled modelling of urban meteorology and air pollution. Advances in

Science and Research, 2(1):41–46.

141



142 Bibliography

Baklanov, A., Korsholm, U., Woetmann, N., and Gross, A. (2008b). On-line coupling of chem-

istry and aerosols into meteorological models: advantages and prospective. Technical report,

Project no. 516099. Danish Meteorological Institute (DMI), Copenhagen.

Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S.,

Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G.,

Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U.,

Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A.,

Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos,

S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y. (2014). Online coupled

regional meteorology chemistry models in Europe: current status and prospects. Atmospheric

Chemistry and Physics, 14(1):317–398.

Baltensperger, U. (2010). Aerosol Composition and Radiative Properties. Lecture given at the

WMO-BIPM Workshop, Geneva, Switzerland.

Bangert, M., Kottmeier, C., Vogel, B., and Vogel, H. (2011). Regional scale effects of the

aerosol cloud interaction simulated with an online coupled comprehensive chemistry model.

Atmospheric Chemistry and Physics, 11(9):4411–4423.

Baró, R., Jiménez-Guerrero, P., Balzarini, A., Curci, G., Forkel, R., Grell, G., Hirtl, M., Hon-

zak, L., Langer, M., Pérez, J. L., Grell, G., Hirtl, M., Honzak, L., Langer, M., Pérez, J.,

Pirovano, G., José, R., Tuccella, P., Werhahn, J., and Zabkar, R. (2015). Sensitivity analysis

of the microphysics scheme in WRF-Chem contributions to AQMEII phase 2. Atmospheric

Environment, 115:620–629.

Baró, R., Palacios-Peña, L., Baklanov, A., Balzarini, A., Brunner, D., Forkel, R., Hirtl, M.,

Honzak, L., Pérez, J. L., Pirovano, G., San José, R., Schröder, W., Werhahn, J., Wolke,

R., Zabkar, R., and Jiménez-Guerrero, P. (2017). Regional effects of atmospheric aerosols on

temperature: an evaluation of an ensemble of on-line coupled models. Atmospheric Chemistry

and Physics Discussions, pages 1–35.

Bellouin, N. (2013). Aerosol Modelling. Lecture given at the MACC II Summer School in

Anglet, France.

Berg, L., Shrivastava, M., Easter, R., Fast, J., Chapman, E., Liu, Y., and Ferrare, R. (2015). A

new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol

and trace gases in parameterized cumuli. Geoscientific Model Development, 8(2):409–429.



Bibliography 143

Bergman, T., Kerminen, V. M., Korhonen, H., Lehtinen, K. J., Makkonen, R., Arola, A.,

Mielonen, T., Romakkaniemi, S., Kulmala, M., and Kokkola, H. (2011). Evaluation of the

sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-

climate model. Geoscientific Model Development, 4(4):3623–3690.

Bian, H. and Prather, M. J. (2002). Fast-J2: Accurate simulation of stratospheric photolysis

in global chemical models. Journal of atmospheric chemistry, 41(3):281–296.

Bianconi, R., Galmarini, S., and Bellasio, R. (2004). Web-based system for decision support in

case of emergency: ensemble modelling of long-range atmospheric dispersion of radionuclides.

Environmental Modelling & Software, 19(4):401–411.

Binkowski, F. S. (1999). The aerosol portion of Models-3 CMAQ. in Science Algorithms of

the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, edited by

D.W. Byun and J.K.S. Ching, EPA. Technical report, EPA/600/R-99/030 Environmental

Protection Agency, EPA. United States.

Binkowski, F. S. and Roselle, S. J. (2003). Models-3 Community Multiscale Air Quality (CMAQ)

model aerosol component 1. Model description. Journal of geophysical research: Atmospheres,

108(D6).

Binkowski, F. S. and Shankar, U. (1995). The regional particulate matter model: 1.Model

description and preliminary results. Journal of Geophysical Research, 100(D12):26191–26209.

Bond, T. C., Doherty, S. J., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner, M.,

Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P., Sarofim, M., Schultz, M.,

Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S., Hopke, P.,

Jacobson, M., Kaiser, J., Klimont, Z., Lohmann, U., Schwarz, J., Shindell, D., Storelvmo, T.,

Warren, S., and Zender, C. (2013). Bounding the role of black carbon in the climate system:

A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11):5380–5552.

Boucher, O. (2015). Atmospheric Aerosols: Properties and Climate Impacts. Springer, Nether-

lands.

Boucher, O. and Lohmann, U. (1995). The sulfate-CCN-cloud albedo effect. Tellus B, 47(3):281–

300.

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-

M., Kondo, Y., Liao, H., Lohmann, U., Rash, P., Satheesh, S., Sherwood, S., Stevens, B., and

Zhang, X.-Y. (2013). Clouds and Aerosols. In: Climate Change 2013: The Physical Science



144 Bibliography

basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern-

mental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom

and New York, USA.

Brasseur, G., Hauglustaine, D., Walters, S., Rasch, P., Müller, J.-F., Granier, C., and Tie,

X. (1998). MOZART, a global chemical transport model for ozone and related chemical

tracers: 1. model description. Journal of Geophysical Research: Atmospheres (1984–2012),

103(D21):28265–28289.

Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Badia, A., Balzarini, A., Baró,

R., Bianconi, R., Chemel, C., Curci, G., Forkel, R., Jiménez-Guerrero, P., Hirtl, M., Hodzic,

A., Honzak, L., Im, U., Knote, C., Makar, P., Manders-Groot, A., van Meijgaard, E., Neal,

L., Pérez, J. L., Pirovano, G., José, R. S., Schroder, W., Sokhi, R. S., Syrakov, D., Torian,

A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y., Hogrefe, C.,

and Galmarini, S. (2015). Comparative analysis of meteorological performance of coupled

chemistry-meteorology models in the context of AQMEII phase 2. Atmospheric Environment,

115:470 – 498.

Buseck, P. and Schwartz, S. (2003). Tropospheric aerosols. Treatise on geochemistry, 4:91–142.

Campbell, P., Zhang, Y., Yahya, K., Wang, K., Hogrefe, C., Pouliot, G., Knote, C., Hodzic,

A., Jose, R. S., Perez, J. L., Guerrero, P. J., Baro, R., and Makar, P. (2015). A multi-

model assessment for the 2006 and 2010 simulations under the Air Quality Model Evaluation

International Initiative (AQMEII) Phase 2 over North America: Part I. Indicators of the

sensitivity of o3 and pm2.5 formation regimes. Atmospheric Environment, 115:569 – 586.

Carter, W. P. (2000). Implementation of the SAPRC-99 chemical mechanism into the Models-3

framework. Technical report, Environmental Protection Agency, EPA. United States.

Chalmers, N., Highwood, E., Hawkins, E., Sutton, R., and Wilcox, L. (2012). Aerosol con-

tribution to the rapid warming of near-term climate under RCP 2.6. Geophysical Research

Letters, 39, L18709, doi:10.1029/2012GL052848.

Chand, D., Wood, R., Anderson, T., Satheesh, S., and Charlson, R. (2009). Satellite-derived

direct radiative effect of aerosols dependent on cloud cover. Nature Geoscience, 2(3):181–184.

Chang, J., Middleton, P., Stockwell, W., Walcek, C., Pleim, J., Landsford, H., Binkowski, F.,

Madronich, S., Seaman, N., Stauffer, D., Byun, D., McHenry, J., Samson, P., and Hass, H.

(1990). The regional acid deposition model and engineering model. Technical report, National

Acid Precipitation Assessment Program, NAPAP Report 4, Washinton D.C.



Bibliography 145

Chapman, E. G., Gustafson Jr, W., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S.,

and Fast, J. D. (2009). Coupling aerosol-cloud-radiative processes in the WRF-Chem model:

Investigating the radiative impact of elevated point sources. Atmospheric Chemistry and

Physics, 9(3):945–964.

Charlson, R., Schwartz, S., Hales, J., Cess, R., Coakley, J., Hansen, J., and Hofmann, D. (1992).

Climate forcing by anthropogenic aerosols. Science, 255(5043):423–430.

Chin, M., Rood, R. B., Lin, S. J., Müller, J. F., and Thompson, A. M. (2000). Atmospheric

sulfur cycle simulated in the global model GOCART: Model description and global properties.

Journal of Geophysical Research, 105(D20):24671–24687.

Chou, M. D. and Suarez, M. J. (1994). An efficient thermal infrared radiation parameterization

for use in general circulation models. Technical report, NASA Technical Memorandum,

Washintong D.C.

Chou, M. D. and Suarez, M. J. (1999). A solar radiation parameterization for atmospheric

studies. Technical report, NASA Technical Memorandum, Washintong D.C.

Chou, M. D., Suarez, M. J., Liang, X. Z., Yan, M. M. H., and Cote, C. (2001). A thermal in-

frared radiation parameterization for atmospheric studies. Technical report, NASA Technical

Memorandum, Washintong D.C.

Chubarova, N., Nezval, Y., Sviridenkov, I., Smirnov, A., and Slutsker, I. (2012). Smoke aerosol

and its radiative effects during extreme fire event over Central Russia in summer 2010. At-

mospheric Measurement Techniques, 5(3):557–568.

Chung, C. E. (2012). Aerosol direct radiative forcing: a review. INTECH Open Access Publisher.

Collins, M., Arblaster, J., Dufresne, J. L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski,

W., Johns, T., Krinner, G., Shongwem, M., Tebaldi, C., Weaver, A., and Wehner, M.

(2013). Long-term Climate Change: Projections, Commitments and Irreversibility. In: Cli-

mate Change 2013: The Physical Science basis. Contribution of Working Group I to the

Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge

University Press, Cambridge, United Kingdom and New York, USA.

Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L.,

Briegleb, B. P., Bitz, C. M., Lin, S. J., and Zhang, M. (2006). The formulation and at-

mospheric simulation of the Community Atmosphere Model version 3 (CAM3). Journal of

Climate, 19(11):2144–2161.



146 Bibliography

Curci, G., Hogrefe, C., Bianconi, R., Im, U., Balzarini, A., Baró, R., Brunner, D., Forkel, R.,

Giordano, L., Hirtl, M., Honzak, L., Jiménez-Guerrero, P., Knote, C., Langer, M., Makar,

P., Pirovano, G., Pérez, J., San José, R., Syrakov, D., Tuccella, P., Werhahn, J., Wolke,

R., Zabkar, R., Zhang, J., and Galmarini, S. (2015). Uncertainties of simulated aerosol

optical properties induced by assumptions on aerosol physical and chemical properties: An

AQMEII-2 perspective. Atmospheric Environment, 115:541–552.

Curry, J. A., Ardeel, C. D., and Tian, L. (1990). Liquid water content and precipitation char-

acteristics of stratiform clouds as inferred from satellite microwave measurements. Journal

of Geophysical Research: Atmospheres, 95(D10):16659–16671.

Curtius, J. (2006). Nucleation of atmospheric aerosol particles. Comptes Rendus Physique,

7(9):1027–1045.

De Meij, A., Pozzer, A., Pringle, K., Tost, H., and Lelieveld, J. (2012). EMAC model eval-

uation and analysis of atmospheric aerosol properties and distribution with a focus on the

mediterranean region. Atmospheric Research, 114:38–69.

Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglus-

taine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias,

P., Wofsy, S., and Zhang, X. (2007). Couplings between changes in the climate system and

biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of

Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Cli-

mate Change. Cambridge University Press, Cambridge, United Kingdom and New York,

USA.

Dodge, M. C. (2000). Chemical oxidant mechanisms for air quality modeling: critical review.

Atmospheric Environment, 34(12):2103–2130.

Doms, G., Förstner, J., Heise, E., Herzog, H., Mironov, D., Raschendorfer, M., Reinhardt, T.,

Ritter, B., Schrodin, R., Schulz, J., and Vogel, G. (2011). A description of the nonhydrostatic

regional COSMO model. Part II: Physical Parameterization.

Dubovik, O. and King, M. D. (2000). A flexible inversion algorithm for retrieval of aerosol

optical properties from Sun and sky radiance measurements. Journal of Geophysical Research,

105(D16):20673–20696.

Easter, R. C., Ghan, S. J., Zhang, Y., Saylor, R. D., Chapman, E. G., Laulainen, N. S.,

Abdul-Razzak, H., Leung, L. R., Bian, X., and Zaveri, R. A. (2004). MIRAGE: Model



Bibliography 147

description and evaluation of aerosols and trace gases. Journal of Geophysical Research, 109,

D20, doi:10.1029/2004JD004571.

EEA (2010). The European Environment. State and outlook 2010. European environmental

agency, Copenhagen.

Emmerson, K. and Evans, M. (2009). Comparison of tropospheric gas-phase chemistry schemes

for use within global models. Atmospheric Chemistry and Physics, 9(5):1831–1845.

Fast, J. D., Gustafson Jr, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G.,

Grell, G. A., and Peckham, S. E. (2006). Evolution of ozone, particulates, and aerosol direct

radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-

aerosol model. Journal of Geophysical Research, 111(D21):D21305.

Fels, S. B. and Schwarzkopf, M. D. (1975). The simplified exchange approximation: A new

method for radiative transfer calculations. Journal of the Atmospheric Sciences, 32(7):1475–

1488.

Forkel, R., Balzarini, A., Baró, R., Bianconi, R., Curci, G., Jiménez-Guerrero, P., Hirtl, M.,

Honzak, L., Lorenz, C., Im, U., Pérez, J. L., Pirovano, G., José, R. S., Tuccella, P., Werhahn,

J., and Zabkar, R. (2015). Analysis of the WRF-Chem contributions to AQMEII phase2

with respect to aerosol radiative feedbacks on meteorology and pollutant distributions. At-

mospheric Environment, 115:630 – 645.

Forkel, R., Brunner, D., Baklanov, A., Balzarini, A., Hirtl, M., Honzak, L., Jiménez-Guerrero,

P., Jorba, O., Pérez, J., San José, R., Schröder, W., Tsegas, G., Werhahn, J., Wolke, R., and

Zabkar, R. (2016). A Multi-model case study on aerosol feedbacks in online coupled chemistry-

meteorology models within the COST Action ES1004 EuMetChem. In Air Pollution Modeling

and its Application XXIV, pages 23–28. Springer, Switzerland.

Forkel, R., Werhahn, J., Hansen, A. B., McKeen, S., Peckham, S., Grell, G., and Suppan,

P. (2012). Effect of aerosol-radiation feedback on regional air quality. A case study with

WRF-Chem. Atmospheric Environment, 53:202–211.

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood,

J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and

Van Dorland, R. (2007). Changes in atmospheric constituents and in radiative forcing. In:

Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the

Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge

University Press, Cambridge, United Kingdom and New York, United States of America.



148 Bibliography

Galmarini, S., Bianconi, R., Appel, W., Solazzo, E., Mosca, S., Grossi, P., Moran, M., Schere,

K., and Rao, S. (2012). ENSEMBLE and AMET: Two systems and approaches to a har-

monized, simplified and efficient facility for air quality models development and evaluation.

Atmospheric environment, 53:51–59.

Galmarini, S., Hogrefe, C., Brunner, D., Makar, P., and Baklanov, A. (2015). Preface. Atmo-

spheric Environment, 53(115):340–344.

Gery, M. W., Whitten, G. Z., Killus, J. P., and Dodge, M. C. (1989). A photochemical kinetics

mechanism for urban and regional scale computer modeling. Journal of Geophysical Research,

94(D10):12925–12956.

Ghan, S. J. and Easter, R. C. (2006). Impact of cloud-borne aerosol representation on aerosol

direct and indirect effects. Atmospheric Chemistry and Physics, 6(12):4163–4174.

Ghan, S. J., Leung, L. R., Easter, R. C., and Abdul-Razzak, H. (1997). Prediction of cloud

droplet number in a general circulation model. Journal of Geophysical Research: Atmospheres,

102(D18):21777–21794.

Ghan, S. J. and Schwartz, S. E. (2007). Aerosol properties and processes: A path from field and

laboratory measurements to global climate models. Bulletin of the American Meteorological

Society, 88(7):1059–1083.

Giordano, L., Brunner, D., Flemming, J., Hogrefe, C., Im, U., Bianconi, R., Badia, A., Balzarini,

A., Baró, R., Chemel, C., Curci, G., Forkel, R., Jiménez-Guerrero, P., Hirtl, M., Hodzic, A.,

Honzak, L., Jorba, O., Knote, C., Kuenen, J., Makar, P., Manders-Groot, A., Neal, L., Pérez,

J., Pirovano, G., Pouliot, G., José, R. S., Savage, N., Schlöder, W., Sokhi, R., Syrakov, D.,

Torian, A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y., and

Galmarini, S. (2015). Assessment of the {MACC} reanalysis and its influence as chemical

boundary conditions for regional air quality modeling in aqmeii-2. Atmospheric Environment,

115:371 – 388.

Goosse, H. P., Barriat, Y., Lefebvre, W., Loutre, M. F., and Zunz, V. (2009). Introduction

to climate dynamics and climate modeling. Date of consult: 12/20/2013. Available through

http://www.climate.be/textbook.

Grell, G. and Baklanov, A. (2011). Integrated modeling for forecasting weather and air quality:

A call for fully coupled approaches. Atmospheric Environment, 45(38):6845–6851.

http://www.climate.be/textbook


Bibliography 149

Grell, G. A. and Dévényi, D. (2002). A generalized approach to parameterizing convection com-

bining ensemble and data assimilation techniques. Geophysical Research Letters, 29(14):38–1.

Grell, G. A. and Freitas, S. R. (2014). A scale and aerosol aware stochastic convective pa-

rameterization for weather and air quality modeling. Atmospheric Chemistry and Physics,

14(10):5233–5250.

Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and

Eder, B. (2005). Fully coupled “online” chemistry within the WRF model. Atmospheric

Environment, 39(37):6957–6975.

Griffin, R. J., Dabdub, D., and Seinfeld, J. H. (2002). Secondary organic aerosol 1. Atmo-

spheric chemical mechanism for production of molecular constituents. Journal of Geophysical

Research, 107, D17, doi:10.1029/2001JD000541.

Gualtieri, G. and Secci, S. (2011). Comparing methods to calculate atmospheric stability-

dependent wind speed profiles: A case study on coastal location. Renewable Energy,

36(8):2189–2204.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C. (2006).

Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of

Gases and Aerosols from Nature). Atmospheric Chemistry and Physics, 6(11):3181–3210.

Guenther, A., Zimmermanharley, P., Monson, R., and Fall, R. (1993). Isoprene and monoter-

pene rate variability: model evaluations and sensitive analyses. J. Geophys. Res, 98:10799–

10808.

Gustafson Jr, W. I., Chapman, E. G., Ghan, S. J., Easter, R. C., and Fast, J. D. (2007). Impact

on modeled cloud characteristics due to simplified treatment of uniform cloud condensation

nuclei during NEAQS 2004. Geophysical Research Letters, 34(19):L19809.

Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., and Russell, G. (1981).

Climate impact of increasing atmospheric carbon dioxide. Science, 213(4511):957–966.

Hansen, J., Sato, M., and Ruedy, R. (1997). Radiative forcing and climate response. Journal

of Geophysical Research: Atmospheres, 102(D6):6831–6864.

Hansen, J. e., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G., Russell, G., Aleinov,

I., Bauer, M., Bauer, S., Bell, N., Cairns, B., Canuto, V., Chandler, M., Cheng, Y., Del Genio,

A., Faluvegi, G., Fleming, E., Friend, A., Hall, T., Jackman, C., Kelley, M., Kiang, N., Koch,



150 Bibliography

D., Lean, J., Lerner, J., Lo, K., Menon, S., Miller, R., Minnis, P., Novakov, T., Oinas, V.,

Perlwitz, J., Perlwitz, J., Rind, D., Romanou, A., Shindell, D., Stone, P., Sun, S., Tausnev,

N., Thresher, D., Wielicki, B., Wong, T., Yao, M., and Zhang, S. (2005). Efficacy of climate

forcings. Journal of Geophysical Research: Atmospheres, 110(D18).

Hauck, H., Berner, A., Frischer, T., Gomiscek, B., Kundi, M., Neuberger, M., Puxbaum, H.,

and Preining, O. (2004). AUPHEP-Austrian project on health effects of particulates-general

overview. Atmospheric Environment, 38(24):3905–3915.

Haylock, M., Hofstra, N., Klein Tank, A., Klok, E., Jones, P., and New, M. (2008). A European

daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006.

Journal of Geophysical Research: Atmospheres, 113(D20).

Haywood, J. and Boucher, O. (2000). Estimates of the direct and indirect radiative forcing due

to tropospheric aerosols: A review. Reviews of Geophysics, 38(4):513–543.

He, S. and Carmichael, G. R. (1999). Sensitivity of photolysis rates and ozone production in the

troposphere to aerosol properties. Journal of Geophysical Research, 104(D21):26307–26324.

Herman, M., Deuzé, J., Devaux, C., Goloub, P., Bréon, F., and Tanré, D. (1997). Remote

sensing of aerosols over land surfaces including polarization measurements and application to

POLDER measurements. Journal of Geophysical Research: Atmospheres, 102(D14):17039–

17049.

Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of airborne

particles. John Wiley and Sons, New York, United States of America.

Holben, B., Tanre, D., Smirnov, A., Eck, T., Slutsker, I., Abuhassan, N., Newcomb, W., Schafer,

J., Chatenet, B., Lavenu, F., Kaufman, Y., Vande Castle, J., Setzer, A., Markham, B., Clark,

D., Frouin, R., Halthore, R., Karneli, A., O’Neill, N., Pietras, C., Pinker, R., Voss, K., and

Zibordi, G. (2001). An emerging ground-based aerosol climatology: Aerosol optical depth

from AERONET. Journal of Geophysical Research, 106(D11):12067–12097.

Hollmann, R., Merchant, C., Saunders, R., Downy, C., Buchwitz, M., Cazenave, A., Chuvieco,

E., Defourny, P., de Leeuw, G., Forsberg, R., Holzer-Popp, T., Paul, F., Sandven, S., Sathyen-

dranath, S., Van Roozendael, M., and W, W. (2013). The ESA climate change initiative:

Satellite data records for essential climate variables. Bulletin of the American Meteorological

Society, 94(10):1541–1552.



Bibliography 151

Hong, S.-Y., Noh, Y., and Dudhia, J. (2006). A new vertical diffusion package with an explicit

treatment of entrainment processes. Monthly Weather Review, 134(9):2318–2341.

Hong, S. Y. and Pan, H. L. (1996). Nonlocal boundary layer vertical diffusion in a medium-range

forecast model. Monthly weather review, 124(10):2322–2339.

Hsu, N., Bettenhausen, C., and Sayer, A. (2011). Time series of monthly average AOD at 550

nm over the Washington, D.C. Region. Technical report, NASA. Washintong D.C.

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins,

W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER

radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13).

Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Baró, R., Bellasio,

R., Brunner, D., Chemel, C., Curci, G., Flemming, J., Forkel, R., Giordano, L., Jiménez-

Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote, C., Kuenen, J. J., Makar,

P. A., Manders-Groot, A., Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G., Jose, R. S., Savage,

N., Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella, P., Werhahn, J., Wolke,

R., Yahya, K., Zabkar, R., Zhang, Y., Zhang, J., Hogrefe, C., and Galmarini, S. (2015a).

Evaluation of operational on-line-coupled regional air quality models over Europe and North

America in the context of AQMEII phase 2. Part I: Ozone. Atmospheric Environment,

115:404–420.

Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini, A., Baró, R., Bellasio,

R., Brunner, D., Chemel, C., Curci, G., van der Gon, H. D., Flemming, J., Forkel, R.,

Giordano, L., Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote,

C., Makar, P. A., Manders-Groot, A., Neal, L., Perez, J. L., Pirovano, G., Pouliot, G., Jose,

R. S., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella, P., Wang,

K., Werhahn, J., Wolke, R., Zabkar, R., Zhang, Y., Zhang, J., Hogrefe, C., and Galmarini, S.

(2015b). Evaluation of operational online-coupled regional air quality models over Europe and

North America in the context of AQMEII phase 2. Part II: Particulate matter. Atmospheric

Environment, 115:421 – 441.

Isaksen, I., Midtbo, K., Sunde, J., and Crutzen, P. (1977). A simplified method to include

molecular scattering and reflection in calculations of photon fluxes and photodissociation

rates. Geophysica Norvegica, 31:11–26.

Jacob, D. (1999). Introduction to atmospheric chemistry. Princeton University Press, Princeton,

New Jersey, United States of America.



152 Bibliography

Jacobson, M. Z. (1994). Developing, Coupling, and Applying a Gas, Aerosol, Transport, and

Radiation Model to Study Urban and Regional Air Pollution. PhD thesis, University of

California, Los Angeles.

Jacobson, M. Z. (2001a). GATOR-GCMM: 2. A study of daytime and nighttime ozone layers

aloft, ozone in national parks, and weather during the SARMAP Field Campaign. Journal

of Geophysical Research, 106(D6):5403–5420.

Jacobson, M. Z. (2001b). GATOR-GCMM: A global-through urban-scale air pollution and

weather forecast model: 1. Model design and treatment of subgrid soil, vegetation, roads,

rooftops, water, sea ice, and snow. Journal of Geophysical Research, 106(D6):5385–5401.

Jacobson, M. Z. (2001c). Strong radiative heating due to the mixing state of black carbon in

atmospheric aerosols. Nature, 409(6821):695–697.

Jacobson, M. Z. and Kaufman, Y. J. (2006). Wind reduction by aerosol particles. Geophysical

Research Letters, 33(24).

Jérez, S., Móntavez, J. P., Jiménez-Guerrero, P., Gómez-Navarro, J. J., Lorente-Plazas, R., and

Zorita, E. (2013). A multi-physics ensemble of present-day climate regional simulations over

the Iberian Peninsula. Climate dynamics, 40(11-12):3023–3046.

Jiménez-Guerrero, P., Montávez, J., Domínguez, M., Romera, R., Fita, L., Fernández, J.,

Cabos, W., Liguori, G., and Gaertner, M. (2013). Mean fields and interannual variability in

RCM simulations over Spain: the ESCENA project. Climate Research, 57(3):201–220.

Jorba, O., Pérez, C., Haustein, K., Janjic, Z., Dabdub, D., Baldasano, J. M., Badia, A., and

Spada, M. (2010). Status of development and firsts results at global scale of NMMB/BSC-

CHEM: an online multiscale air quality model. In EGU General Assembly Conference Ab-

stracts, volume 12, page 5228.

Joseph, J. H., Wiscombe, W., and Weinman, J. (1976). The delta-eddington approximation for

radiative flux transfer. Journal of the Atmospheric Sciences, 33(12):2452–2459.

Kazil, J., Stier, P., Zhang, K., Quaas, J., Kinne, S., O’Donnell, D., Rast, S., Esch, M., Ferrachat,

S., Lohmann, U., and Feichter, J. (2010). Aerosol nucleation and its role for clouds and earth’s

radiative forcing in the aerosol-climate model ECHAM5-HAM. Atmospheric Chemistry and

Physics, 10(22):10733–10752.

Kennedy, I. M. (2007). The health effects of combustion-generated aerosols. Proceedings of the

Combustion Institute, 31(2):2757–2770.



Bibliography 153

Kent, G., McCormick, M., and Schaffner, S. (1991). Global optical climatology of the free

tropospheric aerosol from 1.0-µm satellite occultation measurements. Journal of Geophysical

Research: Atmospheres, 96(D3):5249–5267.

Kinne, S., Schulz, M., Textor, C., Guibert, S., Balkanski, Y., Bauer, S. E., Berntsen, T., Berglen,

T. F., Boucher, O., Chin, M., Collins, W., Dentener, F., Diehl, T., Easter, R., Feichter, J.,

Fillmore, D., Ghan, S., Ginoux, P., Gong, S., Grini, A., Hendricks, J., Herzog, M., Horowitz,

L., Isaksen, I., Iversen, T., Kirkevåg, A., Kloster, S., Koch, D., Kristjansson, J. E., Krol, M.,

Lauer, A., Lamarque, J. F., Lesins, G., Liu, X., Lohmann, U., Montanaro, V., Myhre, G.,

Penner, J., Pitari, G., Reddy, S., Seland, O., Stier, P., Takemura, T., and Tie, X. (2006).

An AeroCom initial assessment–optical properties in aerosol component modules of global

models. Atmospheric Chemistry and Physics, 6(7):1815–1834.

Kioutsioukis, I., Im, U., Solazzo, E., Bianconi, R., Badia, A., Balzarini, A., Baró, R., Bellasio,

R., Brunner, D., Chemel, C., Curci, G., van der Gon, H. D., Flemming, J., Forkel, R.,

Giordano, L., Jiménez-Guerrero, P., Hirtl, M., Jorba, O., Manders-Groot, A., Neal, L., Pérez,

J. L., Pirovano, G., San Jose, R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D.,

Tuccella, P., Werhahn, J., Wolke, R., Hogrefe, C., and Galmarini, S. (2016). Insights into the

deterministic skill of air quality ensembles from the analysis of AQMEII data. 16(24):15629–

15652.

Kniffka, A., Stengel, M., Lockhoff, M., Bennartz, R., and Hollmann, R. (2014). Characteristics

of cloud liquid water path from SEVIRI onboard the Meteosat Second Generation 2 satellite

for several cloud types. Atmospheric Measurement Techniques, 7(4):887–905.

Knote, C., Tuccella, P., Curci, G., Emmons, L., Orlando, J. J., Madronich, S., Baró, R.,

Jiménez-Guerrero, P., Luecken, D., Hogrefe, C., Forkel, R., Werhahn, J., Hirtl, M., Pérez,

J. L., José, R. S., Giordano, L., Brunner, D., Yahya, K., and Zhang, Y. (2015). Influence

of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the

AQMEII Phase 2 intercomparison. Atmospheric Environment, 115:553 – 568.

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl, G. A. (2010). Challenges in

combining projections from multiple climate models. Journal of Climate, 23(10):2739–2758.

Kong, X., Forkel, R., Sokhi, R. S., Suppan, P., Baklanov, A., Gauss, M., Brunner, D., Barò, R.,

Balzarini, A., Chemel, C., Curci, G., Jiménez-Guerrero, P., Hirtl, M., Honzak, L., Im, U.,

Pérez, J. L., Pirovano, G., San Jose, R., Schlünzen, K. H., Tsegas, G., Tuccella, P., Werhahn,

J., Zabkar, R., and Galmarini, S. (2015). Analysis of meteorology–chemistry interactions dur-



154 Bibliography

ing air pollution episodes using online coupled models within AQMEII phase-2. Atmospheric

Environment, 115:527–540.

Konovalov, I., Beekmann, M., Kuznetsova, I., Yurova, A., and Zvyagintsev, A. (2011). Atmo-

spheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of

an extreme air pollution episode in the Moscow region. Atmospheric Chemistry and Physics,

11(19):10031–10056.

Kuenen, J., Visschedijk, A., Jozwicka, M., and Denier Van der Gon, H. (2014). TNO-MACC_II

emission inventory; a multi-year (2003–2009) consistent high-resolution European emission

inventory for air quality modelling. Atmospheric Chemistry and Physics, 14(20):10963–10976.

Kulmala, M., Hämeri, K., Aalto, P., Mäkelä, J., Pirjola, L., Nilsson, E. D., Buzorius, G., Rannik,

Ü., Maso, M., Seidl, W., Hoffman, T., Janson, R., Hansson, H., Viisanen, Y., Laaksonen, A.,

and O’dowd, C. (2001). Overview of the international project on biogenic aerosol formation

in the boreal forest (BIOFOR). Tellus B, 53(4):324–343.

Kumar, R., Barth, M. C., Pfister, G. G., Naja, M., and Brasseur, G. P. (2013). WRF-Chem

simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol

optical properties and radiation budget. Atmospheric Chemistry and Physics, 13(8):21837–

21881.

Lacis, A. A. and Hansen, J. (1974). A parameterization for the absorption of solar radiation in

the earth’s atmosphere. Journal of the Atmospheric Sciences, 31(1):118–133.

Landgren, O. A., Haugen, J. E., and Førland, E. J. (2014). Evaluation of regional climate model

temperature and precipitation outputs over Scandinavia. Climate Research, 60(3):249–264.

Lattuati, M. (1997). Contribution à l ‚étude du bilan de l ‚ozone troposphérique à l ‚interface

de l ‚Europe et de l ‚Atlantique Nord: modélisation lagrangienne et mesures en altitude. PhD

thesis, Université Paris.

Legrand, M., Bertrand, J., Desbois, M., Menenger, L., and Fouquart, Y. (1989). The potential

of infrared satellite data for the retrieval of saharan-dust optical depth over africa. Journal

of Applied Meteorology, 28(4):309–319.

Li, G., Wang, Y., and Zhang, R. (2008). Implementation of a two-moment bulk microphysics

scheme to the WRF model to investigate aerosol-cloud interaction. Journal of Geophysical

Research: Atmospheres, 113(D15).



Bibliography 155

Li, S., Wang, T., Xie, M., Han, Y., and Zhuang, B. (2015). Observed aerosol optical depth and

angstrom exponent in urban area of Nanjing, China. Atmospheric Environment.

Li, Z., Lee, K.-H., Wang, Y., Xin, J., and Hao, W.-M. (2010). First observation-based esti-

mates of cloud-free aerosol radiative forcing across China. Journal of Geophysical Research:

Atmospheres, 115(D7).

Liao, H., Yung, Y. L., and Seinfeld, J. H. (1999). Effects of aerosols on tropospheric photolysis

rates in clear and cloudy atmospheres. Journal of Geophysical Research, 104(D19):23697–23.

Lin, Y.-L., Farley, R. D., and Orville, H. D. (1983). Bulk parameterization of the snow field in

a cloud model. Journal of Climate and Applied Meteorology, 22(6):1065–1092.

Liu, H., Crawford, J. H., Considine, D. B., Platnick, S., Norris, P. M., Duncan, B. N., Pierce,

R. B., Chen, G., and Yantosca, R. M. (2009). Sensitivity of photolysis frequencies and key

tropospheric oxidants in a global model to cloud vertical distributions and optical properties.

Journal of Geophysical Research, 114, D10, doi:10.1029/2008JD011503.

Liu, Y., Daum, P. H., and McGraw, R. L. (2005). Size truncation effect, threshold behavior,

and a new type of autoconversion parameterization. Geophysical research letters, 32(11).

Liu, Y., Wu, W., Jensen, M., and Toto, T. (2011a). Relationship between cloud radiative

forcing, cloud fraction and cloud albedo, and new surface-based approach for determining

cloud albedo. Atmospheric Chemistry and Physics, 11(14):7155–7170.

Liu, Z., Liu, Q., Lin, H.-C., Schwartz, C. S., Lee, Y.-H., and Wang, T. (2011b). Three-

dimensional variational assimilation of MODIS aerosol optical depth: Implementation and

application to a dust storm over East Asia. Journal of Geophysical Research: Atmospheres,

116(D23).

Lohmann, U. and Feichter, J. (2005). Global indirect aerosol effects: a review. Atmospheric

Chemistry and Physics, 5(3):715–737.

Lorente-Plazas, R., Jiménez, P. A., Dudhia, J., and Montávez, J. P. (2016). Evaluating and

improving the impact of the atmospheric stability and orography on surface winds in the

WRF model. Monthly Weather Review, 144(7):2685–2693.

Lovett, G. M., Tear, T. H., Evers, D. C., Findlay, S. E., Cosby, B. J., Dunscomb, J. K.,

Driscoll, C. T., and Weathers, K. C. (2009). Effects of air pollution on ecosystems and

biological diversity in the eastern United States. Annals of the New York Academy of Sciences,

1162(1):99–135.



156 Bibliography

Lurmann, F. W., Carter, W. P., and Coyner, L. A. (1987). A surrogate species chemical reaction

mechanism for urban-scale air quality simulation models. Technical report, EPA/600/3-

87/014a. Environmental Protection Agency, EPA. United States.

Madronich, S. (1987). Photodissociation in the atmosphere: Actinic flux and the effects of

ground reflections and clouds. Journal of Geophysical Research, 92(D8):9740–9752.

Madronich, S. and Weller, G. (1990). Numerical integration errors in calculated tropospheric

photodissociation rate coefficients. Journal of Atmospheric Chemistry, 10(3):289–300.

Makar, P., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Zabkar, R., Milbrandt, J., Im, U.,

Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak,

L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M., Pabla, B., Pérez, J., Pirovano,

G., José, R. S., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S. (2015a). Feedbacks

between air pollution and weather, Part 2: Effects on chemistry. Atmospheric Environment,

115:499–526.

Makar, P., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G., Zabkar, R., Im, U.,

Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M., Honzak,

L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M., Pabla, B., Pérez, J., Pirovano,

G., José, R. S., Tuccella, P., Werhahn, J., Zhang, J., and Galmarini, S. (2015b). Feedbacks

between air pollution and weather, Part 1: Effects on weather. Atmospheric Environment,

115:442–469.

Mann, G. W., Carslaw, K. S., Ridley, D. A., Spracklen, D. V., Pringle, K. J., Merikanto, J.,

Korhonen, H., Schwarz, J. P., Lee, L. A., Manktelow, P. T., Woodhouse, M. T., Schmidt,

A., Breider, T. J., Emmerson, K. M., Reddington, C. L., Chipperfield, M. P., and Pickering,

S. J. (2012). Intercomparison of modal and sectional aerosol microphysics representations

within the same 3-D global chemical transport model. Atmospheric Chemistry and Physics,

12(10):4449–4476.

Mashayekhi, R. and Sloan, J. (2013). Effects of aerosols on precipitation in north-eastern North

America. Atmospheric Chemistry and Physics, 13(10):27937–27969.

Mathur, R., Pleim, J., Wong, D., Otte, T., Gilliam, R., Roselle, S., Young, J., Binkowski, F.,

and Xiu, A. (2010). The WRF-CMAQ integrated on-line modeling system: development,

testing, and initial applications. Air Pollution Modeling and Its Application, 20:155–160.

Maurizi, A., D‚Isidoro, M., and Mircea, M. (2011). BOLCHEM: An integrated system for



Bibliography 157

atmospheric dynamics and composition. In Integrated Systems of Meso-Meteorological and

Chemical Transport Models, pages 89–94. Springer, Berlin Heidelberg.

McComiskey, A., Feingold, G., Frisch, A. S., Turner, D. D., Miller, M. A., Chiu, J. C., Min, Q.,

and Ogren, J. A. (2009). An assessment of aerosol-cloud interactions in marine stratus clouds

based on surface remote sensing. Journal of Geophysical Research: Atmospheres, 114(D9).

Mcgarragh, G., Poulsen, C., Thomas, G., Povey, A., Sus, O., Schlundt, C., Stapelberg, S.,

Proud, S., Christensen, M., Stengel, M., and Grainger, R. (2017). The Community Cloud

retrieval for CLimate (CC4cL). Part II: The optimal estimation algorithm. To be submitted

to Atmospheric Measurement Techniques.

Meier, J., Tegen, I., Heinold, B., and Wolke, R. (2012). Direct and semi-direct radiative effects

of absorbing aerosols in Europe: Results from a regional model. Geophysical Research Letters,

39, L09802, doi:10.1029/2012GL050994(9).

Menon, S., Genio, A. D. D., Koch, D., and Tselioudis, G. (2002). Gcm simulations of the

aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden. Journal of

the atmospheric sciences, 59(3):692–713.

Menon, S., Unger, N., Koch, D., Francis, J., Garrett, T., Sednev, I., Shindell, D., and Streets,

D. (2008). Aerosol climate effects and air quality impacts from 1980 to 2030. Environmental

Research Letters, 3, 024004 doi:10.1088/1748-9326/3/2/024004(2).

Mishra, A. K., Koren, I., and Rudich, Y. (2015). Effect of aerosol vertical distribution on

aerosol-radiation interaction: A theoretical prospect. Heliyon, 1(2):e00036.

Mitchell, D. L., Rasch, P., Ivanova, D., McFarquhar, G., and Nousiainen, T. (2008). Impact of

small ice crystal assumptions on ice sedimentation rates in cirrus clouds and gcm simulations.

Geophysical Research Letters, 35(9).

Mlawer, E. and Clough, S. (1998). Shortwave and longwave enhancements in the rapid radiative

transfer model. In Proceedings of the Seventh Atmospheric Radiation Measurement (ARM)

Science Team Meeting, Rep. CONF-970365.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A. (1997). Radiative

transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the

longwave. Journal of Geophysical Research, 102(D14):16663–16682.

Monahan, E. C. and Mac Niocaill, G. (1986). Oceanic Whitecaps: And Their Role in Air-Sea

Exchange Processes. D. Reidel Publishing Company, Dordrecht, Holland.



158 Bibliography

Morcrette, J., Jones, L., Kaiser, J., Benedetti, A., and Boucher, O. (2007). Toward a forecast

of aerosols with the ecmwf integrated forecast system. ECMWF Newsl, 114:15–17.

Morcrette, J.-J., Barker, H., Cole, J., Iacono, M., and Pincus, R. (2008). Impact of a new

radiation package, McRad, in the ECMWF Integrated Forecasting System. Monthly Weather

Review, 136(12):4773–4798.

Morrison, H., Thompson, G., and Tatarskii, V. (2009). Impact of cloud microphysics on the

development of trailing stratiform precipitation in a simulated squall line: Comparison of

one-and two-moment schemes. Monthly Weather Review, 137(3):991–1007.

Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H.,

Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D.,

Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G.,

Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier,

P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H.,

Zhang, K., Zhang, H., and Zhou, C. (2013a). Radiative forcing of the direct aerosol effect

from Aerocom Phase II simulations. Atmospheric Chemistry and Physics, 13(4):1853–1877.

Myhre, G., Shindell, D., Breon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D.,

Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura,

T., and H, Z. (2013b). Anthropogenic and Natural Radiative Forcing. In: Climate Change

2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment

Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,

Cambridge, United Kingdom and New York, USA.

Nagaraja Rao, C., Stowe, L., and McClain, E. (1989). Remote sensing of aerosols over the oceans

using AVHRR data Theory, practice and applications. International Journal of Remote

Sensing, 10(4-5):743–749.

Nakajima, T., Tanaka, M., and Yamauchi, T. (1983). Retrieval of the optical properties of

aerosols from aureole and extinction data. Applied Optics, 22(19):2951–2959.

Neggers, R. A. (2009). A dual mass flux framework for boundary layer convection. part ii:

Clouds. Journal of the Atmospheric Sciences, 66(6):1489–1506.

Neu, J. L., Prather, M. J., and Penner, J. E. (2007). Global atmospheric chemistry: In-

tegrating over fractional cloud cover. Journal of Geophysical Research, 112, D11306,

doi:10.1029/2006JD008007.



Bibliography 159

Ogren, J., Andrews, E., McComiskey, A., Sheridan, P., Jefferson, A., and Fiebig, M. (2006).

New insights into aerosol asymmetry parameter. In Proceedings of the Sixteenth ARM Science

Team Meeting, Albuquerque, United States of America.

Ogren, J. A. (1995). A systematic approach to in situ observations of aerosol properties. In

Aerosol Forcing of Climate, edited by Charlson, R.J., and Heintzenberg, J., pages 215–226.

John Wiley and Sons, New York, United States of America.

Okuda, T., Isobe, R., Nagai, Y., Okahisa, S., Funato, K., and Inoue, K. (2015). Development of

a high-volume pm 2.5 particle sampler using impactor and cyclone techniques. Aerosol and

Air Quality Research, 15(3):759–767.

Pagowski, M., Grell, G., McKeen, S., Peckham, S., and Devenyi, D. (2010). Three-dimensional

variational data assimilation of ozone and fine particulate matter observations: some results

using the Weather Research and Forecasting–Chemistry model and Grid-point Statistical

Interpolation. Quarterly Journal of the Royal Meteorological Society, 136(653):2013–2024.

Peckham, S. E., Grell, G. A., McKeen, S. A., Barth, M., Pfister, G., Wiedinmyer, C., Fast, J. D.,

Gustafson, W. I., Ghan, S. J., Zaveri, R., Easter, R., Barnard, K., Chapman, E., Hewson, M.,

Schmitz, R., Salzmann, M., Beck, V., and Freitas, S. (2012). WRF-Chem Version 3.4 User’s

Guide. US Department of Commerce, National Oceanic and Atmospheric Administration,

Oceanic and Atmospheric Research Laboratories, Global Systems Division, United States.

Penner, J. E., Quaas, J., Storelvmo, T., Takemura, T., Boucher, O., Guo, H., Kirkevåg, A.,

Kristjánsson, J. E., and Seland, Ø. (2006). Model intercomparison of indirect aerosol effects.

Atmospheric Chemistry and Physics, 6(11):3391–3405.

Péré, J., Bessagnet, B., Mallet, M., Waquet, F., Chiapello, I., Minvielle, F., Pont, V., and

Menut, L. (2014). Direct radiative effect of the Russian wildfires and its impact on air

temperature and atmospheric dynamics during August 2010. Atmospheric Chemistry and

Physics, 14(4):1999–2013.

Péré, J., Bessagnet, B., Pont, V., Mallet, M., and Minvielle, F. (2015). Influence of the aerosol

solar extinction on photochemistry during the 2010 Russian wildfires episode. Atmospheric

Chemistry and Physics Discussions, 15(5):7057–7087.

Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T.,

Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X. (2013).

Recommendations for reporting" black carbon" measurements. Atmospheric Chemistry and

Physics, 13(16):8365–8379.



160 Bibliography

Pierangelo, C., Chédin, A., Heilliette, S., Jacquinet-Husson, N., and Armante, R. (2004).

Dust altitude and infrared optical depth from AIRS. Atmospheric Chemistry and Physics,

4(7):1813–1822.

Planton, S. and Maynard, K. (2004). Météo france prism model adaptation. PRISM Report

Series-10.

Pope, C. A., Ezzati, M., and Dockery, D. W. (2009). Fine-particulate air pollution and life

expectancy in the United States. New England Journal of Medicine, 360(4):376–386.

Pósfai, M., Anderson, J. R., Buseck, P. R., and Sievering, H. (1999). Soot and sulfate

aerosol particles in the remote marine troposphere. Journal of Geophysical Research,

104(D17):21685–21693.

Pósfai, M. and Buseck, P. R. (2010). Nature and climate effects of individual tropospheric

aerosol particles. Annual Reviews, 38:17–43.

Pouliot, G., Pierce, T., Denier van der Gon, H., Schaap, M., Moran, M., and Nopmongcol, U.

(2012). Comparing emission inventories and model-ready emission datasets between Europe

and North America for the AQMEII project. Atmospheric Environment, 53:4–14.

Pouliot, G., van der Gon, H. A. D., Kuenen, J., Zhang, J., Moran, M. D., and Makar, P. A.

(2015). Analysis of the emission inventories and model-ready emission datasets of Europe and

North America for phase 2 of the AQMEII project. Atmospheric Environment, 115:345–360.

Prather, M. J. (2002). Lifetimes of atmospheric species: Integrating environmental impacts.

Geophysical Research Letters, 29, doi: 10.1029/2002GL016299.

Prijith, S., Aloysius, M., and Mohan, M. (2014). Relationship between wind speed and sea salt

aerosol production: A new approach. Journal of Atmospheric and Solar-Terrestrial Physics,

108:34–40.

Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., and Gill, T. E. (2002). Environmental

characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total

Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics,

40(1).

Quaas, J., Ming, Y., Menon, S., Takemura, T., Wang, M., Penner, J. E., Gettelman, A.,

Lohmann, U., Bellouin, N., Boucher, O., Sayer, A. M., Thomas, G. E., McComiskey, A.,

Feingold, G., Hoose, C., Kristjánsson, J. E., Liu, X., Balkanski, Y., Donner, L. J., Ginoux,



Bibliography 161

P. A., Stier, P., Grandey, B., Feichter, J., Sednev, I., Bauer, S. E., Koch, D., Grainger, R. G.,

Kirkevåg, A., Iversen, T., Seland, Ø., Easter, R., Ghan, S. J., Rasch, P. J., Morrison, H.,

Lamarque, J.-F., Iacono, M. J., Kinne, S., and Schulz, M. (2009). Aerosol indirect effects–

general circulation model intercomparison and evaluation with satellite data. Atmospheric

Chemistry and Physics, 9(22):8697–8717.

Ramanathan, V. and Carmichael, G. (2008). Global and regional climate changes due to black

carbon. Nature Geoscience, 1(4):221–227.

Ramanathan, V., Crutzen, P., Kiehl, J., and Rosenfeld, D. (2001a). Aerosols, climate, and the

hydrological cycle. science, 294(5549):2119–2124.

Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J.,

Andreae, M. O., Cantrell, W., Cass, G. R., Chung, C. E., Clarke, A. D., Coakley, J. A.,

Collins, W. D., Conant, W. C., Dulac, F., Heintzenberg, J., Heymsfield, A. J., Holben,

B., Howell, S., Hudson, J., Jayaraman, A., Kiehl, J. T., Krishnamurti, T. N., Lubin, D.,

McFarquhar, G., Novakov, T., Ogren, J. A., Podgorny, I. A., Prather, K., Priestley, K.,

Prospero, J. M., Quinn, P. K., Rajeev, K., Rasch, P., Rupert, S., Sadourny, R., Satheesh,

S. K., Shaw, G. E., Sheridan, P., and Valero, F. P. J. (2001b). Indian Ocean Experiment: An

integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal

of Geophysical Research, 106(D22):28371–28398.

Ramanathan, V. and Downey, P. (1986). A nonisothermal emissivity and absorptivity formu-

lation for water vapor. Journal of Geophysical Research, 91(D8):8649–8666.

Ramanathan, V. and Feng, Y. (2009). Air pollution, greenhouse gases and climate change:

Global and regional perspectives. Atmospheric Environment, 43(1):37–50.

Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman,

A., Shukla, J., Srinivasan, J., Stouffer, R., Sumi, A., and Taylor, K. (2007). Climate models

and their evaluation. In: Climate Change 2007: The Physical Science Basis. Contribution

of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on

Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York,

USA.

Rao, S. T., Galmarini, S., and Puckett, K. (2011). Air Quality Model Evaluation International

Initiative (AQMEII): advancing the state of the science in regional photochemical modeling

and its applications. Bulletin of the American Meteorological Society, 92(1):23–30.



162 Bibliography

Rauscher, S. A., Coppola, E., Piani, C., and Giorgi, F. (2010). Resolution effects on re-

gional climate model simulations of seasonal precipitation over Europe. Climate Dynamics,

35(4):685–711.

Real, E. and Sartelet, K. (2011). Modeling of photolysis rates over Europe: impact on chemical

gaseous species and aerosols. Atmospheric Chemistry and Physics, 11(4):1711–1727.

Remer, L. A., Kaufman, Y., Tanré, D., Mattoo, S., Chu, D., Martins, J. V., Li, R.-R., Ichoku,

C., Levy, R., Kleidman, R., Eck, T., Vermote, E., and Holben, B. (2005). The MODIS aerosol

algorithm, products, and validation. Journal of the atmospheric sciences, 62(4):947–973.

Rosenfeld, D., Lohmann, U., Raga, G. B., O’Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A.,

and Andreae, M. O. (2008). Flood or drought: How do aerosols affect precipitation? science,

321(5894):1309–1313.

Rosenfeld, D., Sherwood, S., Wood, R., and Donner, L. (2014). Climate effects of aerosol-cloud

interactions. Science, 343(6169):379–380.

Rutledge, S. A. and Hobbs, P. V. (1984). The mesoscale and microscale structure and organi-

zation of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study

of precipitation development in narrow cold-frontal rainbands. Journal of the Atmospheric

Sciences, 41(20):2949–2972.

Saarikoski, S. (2008). Chemical mass closure and source-specific composition of atmospheric

particles. PhD thesis, Finnish Meteorological Institute, Helsinki.

San José, R., Pérez, J., Balzarini, A., Baró, R., Curci, G., Forkel, R., Galmarini, S., Grell,

G., Hirtl, M., Honzak, L., Im, U., Jiménez-Guerrero, P., Langer, M., Pirovano, G., Tuccella,

P., Werhahn, J., and Zabkar, R. (2015). Sensitivity of feedback effects in CBMZ/MOSAIC

chemical mechanism. Atmospheric Environment, 115:646–656.

Sanap, S. D., Ayantika, D. C., Pandithurai, G., and Niranjan, K. (2014). Assessment of the

aerosol distribution over Indian subcontinent using CMIP5 models. Atmospheric Environ-

ment, In Press, Accepted Manuscript, doi: 10.1016/j.atmosenv.2014.01.017.

Sanderson, M. G., Collins, W. J., Johnson, C. E., and Derwent, R. G. (2006). Present and

future acid deposition to ecosystems: The effect of climate change. Atmospheric Environment,

40(7):1275–1283.



Bibliography 163

Sarwar, G., Luecken, D., Yarwood, G., Whitten, G. Z., and Carter, W. P. (2008). Impact

of an updated carbon bond mechanism on predictions from the CMAQ modeling system:

Preliminary assessment. Journal of Applied Meteorology and Climatology, 47(1):3–14.

Sathe, A., Gryning, S.-E., and Peña, A. (2011). Comparison of the atmospheric stability and

wind profiles at two wind farm sites over a long marine fetch in the North Sea. Wind Energy,

14(6):767–780.

Sauter, F., van der Swaluw, E., Manders-Groot, A., Kruit, R. W., Segers, A., and Eskes, H.

(2012). LOTOS-EUROS v1.8 Reference Guide. TNO. TNO report TNO-060-UT-2012-01451.

Savage, N., Agnew, P., Davis, L., Ordóñez, C., Thorpe, R., Johnson, C., O’Connor, F., and

Dalvi, M. (2013). Air quality modelling using the met office unified model (AQUM OS24-26):

model description and initial evaluation. Geoscientific Model Development, 6(2):353–372.

Schaap, M., Roemer, M., Boersen, G., Timmermans, R., and Builtjes, P. (2005). LOTOS-

EUROS: Documentation. TNO report B&O-A. Technical report, 2005-296,Apeldoorn.

Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A. (2001). Modeling the

formation of secondary organic aerosol within a comprehensive air quality model system.

Journal of Geophysical Research, 106(D22):28275–28293.

Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher,

O., Dentener, F., Guibert, S., Isaksen, I. S. A., Iversen, T., Koch, D., Kirkevåg, A., Liu, X.,

Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and

Takemura, T. (2006). Radiative forcing by aerosols as derived from the AeroCom present-day

and pre-industrial simulations. Atmospheric Chemistry and Physics, 6(12):5225–5246.

Schwartz, C. S., Liu, Z., Lin, H.-C., and McKeen, S. A. (2012). Simultaneous three-dimensional

variational assimilation of surface fine particulate matter and MODIS aerosol optical depth.

Journal of Geophysical Research: Atmospheres, 117(D13).

Schwartz, S. E. and Benkovitz, C. M. (2002). Influence of anthropogenic aerosol on cloud

optical depth and albedo shown by satellite measurements and chemical transport modeling.

Proceedings of the National Academy of Sciences, 99(4):1784–1789.

Schwarzkopf, M. D. and Fels, S. B. (1991). The simplified exchange method revisited: An

accurate, rapid method for computation of infrared cooling rates and fluxes. Journal of

Geophysical Research, 96(D5):9075–9096.



164 Bibliography

Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold,

G., Ghan, S., Guenther, A. B., Kahn, R., Kraucunas, I., Kreidenweis, S., Molina, M., Nenes,

A., Penner, J., Prather, K., Ramanathan, V., Ramaswamy, V., Rasch, P., Ravishankara, A.,

Rosenfeld, D., Stephens, G., and Wood, R. (2016). Improving our fundamental understanding

of the role of aerosol-cloud interactions in the climate system. Proceedings of the National

Academy of Sciences, 113(21):5781–5790.

Seinfeld, J. H. and Pandis, S. N. (2006). Atmospheric chemistry and physics: from air pollution

to climate change. John Wiley and Sons, New Jersey, United States of America.

Shaw, G. E. (1983). Sun Photometry. Bulletin of the American Meteorological Society, 64(1):4–

10.

Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J.,

Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins,

W. J., Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G.,

Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T.,

Voulgarakis, A., Yoon, J.-H., and Lo, F. (2013). Radiative forcing in the ACCMIP historical

and future climate simulations. Atmospheric Chemistry and Physics, 13(6):2939–2974.

Simpson, D., Andersson-Sköld, Y., and Jenkin, M. E. (1993). Updating the chemical scheme

for the EMEP MSC-W oxidant model: current status. Norwegian Meteorological Institute.

Meteorological Synthesizing Centre-West, Norway.

Simpson, D., Fagerli, H., Jonson, J., Tsyro, S., Wind, P., and Tuovinen, J. (2003). The EMEP

Unified Eulerian Model. Model Description. EMEP MSC-W Report 1/2003. The Norwegian

Meteorological Institute, Oslo, Norway.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang,

X.-Y., Wang, W., and Powers, J. G. (2008). A description of the advanced research WRF

version 3. NCAR technical note, 475:113.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers,

J. G. (2005). A description of the advanced research WRF version 2. Technical report, DTIC

Document.

Soares, J., Sofiev, M., and Hakkarainen, J. (2015). Uncertainties of wild-land fires emission in

AQMEII phase 2 case study. Atmospheric Environment, 115:361–370.



Bibliography 165

Sofiev, M., Vankevich, R., Lotjonen, M., Prank, M., Petukhov, V., Ermakova, T., Koskinen, J.,

and Kukkonen, J. (2009). An operational system for the assimilation of the satellite infor-

mation on wild-land fires for the needs of air quality modelling and forecasting. Atmospheric

Chemistry and Physics, 9(18):6833–6847.

Solazzo, E. and Galmarini, S. (2015). A science-based use of ensembles of opportunities for

assessment and scenario studies. Atmospheric Chemistry and Physics, 15(5):2535–2544.

Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., and Mann, G. W. (2005).

A global off-line model of size-resolved aerosol microphysics: I. Model development and pre-

diction of aerosol properties. Atmospheric Chemistry and Physics, 5(8):2227–2252.

Stanhill, G. and Cohen, S. (2001). Global dimming: a review of the evidence for a widespread

and significant reduction in global radiation with discussion of its probable causes and possible

agricultural consequences. Agricultural and Forest Meteorology, 107(4):255–278.

Stanier, C. O., Khlystov, A. Y., and Pandis, S. N. (2004). Ambient aerosol size distributions

and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). At-

mospheric Environment, 38(20):3275–3284.

Stengel, M., Stapelberg, M., Schlundt, C., Poulsen, C., and Hollmann, R. (2016). ESA Cloud

Climate Change Initiative (ESA Cloud_cci) data: AVHRR-PM CLD_PRODUCTS v2.0.

Deutscher Wetterdienst, 2016.

Stengel, M., Stapelberg, M., Sus, O., Schlundt, C., Poulsen, C., Thomas, G., Christensen,

M., Henken, C., Preusker, R., Fischer, J., Devasthale, A., WillÃ c©n, U., Karlsson, K.-G.,

McGarragh, G., Povey, A., Grainger, D., Proud, S., Meirink, J., Feofilov, A., Bennartz, R.,

Bojanowski, J., and Hollmann, R. (2017). Cloud property datasets retrieved from AVHRR,

MODIS, AATSR and MERIS in the framework of the Cloud_cci project. To be submitted to

Earth System Science Data.

Stensrud, D. J. (2007). Parameterization schemes: keys to understanding numerical weather

prediction models. Cambridge University Press, New York.

Steppeler, J., Doms, G., Schättler, U., Bitzer, H., Gassmann, A., Damrath, U., and Gregoric,

G. (2003). Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorology and

Atmospheric Physics, 82(1):75–96.

Stevens, B. and Feingold, G. (2009). Untangling aerosol effects on clouds and precipitation in

a buffered system. Nature, 461(7264):607–613.



166 Bibliography

Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist, B., Brenguier, J.,

Bretherton, C., Burnet, F., and Campos, T. (2003). Dynamics and chemistry of marine

stratocumulus-DYCOMS-II. Bulletin of the American Meteorological Society, 84(5):579–593.

Stocker, T., Dahe, Q., Plattner, G.-K., Alexander, L., Allen, S., NL, B., Bréon, F.-M., Church,

J., Cubasch, U., Emori, S., Forster, P., Friendlingstein, P., Gillett, N., Gregory, J., Hartmann,

D., Jansen, E., Kirtman, B., Knutti, R., Kanikicharla, K., Lemke, P., Marotze, J., Masson-

Delmotte, V., Meehl, G., Mokhov, I., Rhein, M., Rojas, M., Sabine, C., Shindell, D., Talley,

L., Vaughan, D., and Xie, S.-P. (2013). Technical Summary. In: Climate Change 2013: The

Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report

(AR5) of the Intergovernmental Panel on Climate Change. Cambridge University Press,

Cambridge, United Kingdom and New York, USA.

Stockwell, W. R., Kirchner, F., Kuhn, M., and Seefeld, S. (1997). A new mechanism for regional

atmospheric chemistry modeling. Journal of Geophysical Research, 102(D22):25847–25879.

Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X. (1990). The second generation

regional acid deposition model chemical mechanism for regional air quality modeling. Journal

of Geophysical Research, 95(D10):16343–16.

Sus, O., Jerg, M., Poulsen, C., Thomas, G., Stapelberg, S., Mcgarragh, G., Povey, A., Schlundt,

C., Stengel, M., and Hollmann, R. (2017). The Community Cloud retrieval for CLimate

(CC4CL). Part I: A framework applied to multiple satellite imaging sensors. To be submitted

to Atmospheric Measurement Techniques.

Taketani, F., Miyakawa, T., Takashima, H., Komazaki, Y., Pan, X., Kanaya, Y., and Inoue, J.

(2016). Shipborne observations of atmospheric black carbon aerosol particles over the arctic

ocean, bering sea, and north pacific ocean during september 2014. Journal of Geophysical

Research: Atmospheres, 121(4):1914–1921.

Tanré, D., Bréon, F., Deuzé, J., Dubovik, O., Ducos, F., François, P., Goloub, P., Herman, M.,

Lifermann, A., and Waquet, F. (2011). Remote sensing of aerosols by using polarized, direc-

tional and spectral measurements within the A-Train: the PARASOL mission. Atmospheric

Measurement Techniques, 4(7):1383–1395.

Tao, W.-K., Simpson, J., and McCumber, M. (1989). An ice-water saturation adjustment.

Monthly Weather Review, 117(1):231–235.

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram.

Journal of Geophysical Research: Atmospheres, 106(D7):7183–7192.



Bibliography 167

Tie, X., Madronich, S., Walters, S., Zhang, R., Rasch, P., and Collins, W. (2003). Effect of

clouds on photolysis and oxidants in the troposphere. Journal of Geophysical Research, 108,

D20, doi:10.1029/2003JD003659.

Tiedtke, M. (1993). Representation of clouds in large-scale models. Monthly Weather Review,

121(11):3040–3061.

Tomasi, C., Fuzzi, S., and Kokhanovsky, A. (2016). Atmospheric Aerosols: Life Cycles and

Effects on Air Quality and Climate. John Wiley & Sons, Weinheim, Germany.

Tompkins, A. M., Gierens, K., and Rädel, G. (2007). Ice supersaturation in the ECMWF inte-

grated forecast system. Quarterly Journal of the Royal Meteorological Society, 133(622):53–63.

Twitty, J. (1975). The inversion of aureole measurements to derive aerosol size distributions.

Journal of the Atmospheric Sciences, 32(3):584–591.

Twohy, C. H., Petters, M. D., Snider, J. R., Stevens, B., Tahnk, W., Wetzel, M., Russell,

L., and Burnet, F. (2005). Evaluation of the aerosol indirect effect in marine stratocumulus

clouds: Droplet number, size, liquid water path, and radiative impact. Journal of Geophysical

Research: Atmospheres, 110(D8).

Twomey, S. (1974). Pollution and the planetary albedo. Atmospheric Environment, 8(12):1251–

1256.

Twomey, S. (1977). The influence of pollution on the shortwave albedo of clouds. Journal of

the Atmospheric Sciences, 34(7):1149–1152.

Twomey, S. (1991). Aerosols, clouds and radiation. Atmospheric Environment. Part A. General

Topics, 25(11):2435–2442.

Vautard, R., Moran, M. D., Solazzo, E., Gilliam, R. C., Matthias, V., Bianconi, R., Chemel,

C., Ferreira, J., Geyer, B., Hansen, A. B., Jericevic, A., Prank, M., Segers, A., Silver, J.,

Werhahn, J., Wolke, R., Rao S, T., and Galmarini, S. (2012). Evaluation of the meteorological

forcing used for the air quality model evaluation international initiative (AQMEII) air quality

simulations. Atmospheric Environment, 53:15–37.

Wang, H. and Niu, T. (2013). Sensitivity studies of aerosol data assimilation and direct radiative

feedbacks in modeling dust aerosols. Atmospheric Environment, 64:208 – 218.

Wang, K., Yahya, K., Zhang, Y., Hogrefe, C., Pouliot, G., Knote, C., Hodzic, A., Jose, R. S.,

Perez, J. L., Jiménez-Guerrero, P., Baro, R., Makar, P., and Bennartz, R. (2015). A multi-

model assessment for the 2006 and 2010 simulations under the Air Quality Model Evaluation



168 Bibliography

International Initiative (AQMEII) Phase 2 over North America: Part II. Evaluation of column

variable predictions using satellite data. Atmospheric Environment, 115:587 – 603.

Weil, J., Sykes, R., and Venkatram, A. (1992). Evaluating air-quality models: review and

outlook. Journal of Applied Meteorology, 31(10):1121–1145.

Welsch, H. (2007). Environmental welfare analysis: A life satisfaction approach. Ecological

Economics, 62(3):544–551.

Wesely, M. L. (1989). Parameterization of surface resistances to gaseous dry deposition in

regional-scale numerical models. Atmospheric Environment, 23(6):1293–1304.

Wharton, S. and Lundquist, J. K. (2012). Atmospheric stability affects wind turbine power

collection. Environmental Research Letters, 7(1):014005.

Whitby, E. R. and McMurry, P. H. (1997). Modal aerosol dynamics modeling. Aerosol Science

and Technology, 27(6):673–688.

Whitten, G. Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D. T., Carter, W. P., and

Yarwood, G. (2010). A new condensed toluene mechanism for Carbon Bond: CB05-TU.

Atmospheric Environment, 44(40):5346–5355.

Wild, O. and Prather, M. J. (2000). Excitation of the primary tropospheric chemical mode in

a global three-dimensional model. Journal of Geophysical Research, 105(D20):24647–24660.

Wilks, D. S. (2011). Statistical methods in the atmospheric sciences, volume 100. Academic

press, London, United Kingdom.

Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R.,

O’Donnell, J., and Rowe, C. M. (1985). Statistics for the evaluation and comparison of

models. Journal of Geophysical Research, 90(C5):8995–9005.

Willmott, C. J. and Matsuura, K. (2005). Advantages of the mean absolute error (MAE)

over the root mean square error (RMSE) in assessing average model performance. Climate

Research, 30(1):79–82.

Wilson, D. R. and Ballard, S. P. (1999). A microphysically based precipitation scheme for

the UK Meteorological Office Unified Model. Quarterly Journal of the Royal Meteorological

Society, 125(557):1607–1636.

WMO (2003). WMO/GAW Aerosol Measurement Procedures Guidelines and Recommenda-

tions. Technical report, GAW No. 153. World Meteorological Organization, WMO. Geneva.



Bibliography 169

Wolke, R., Hellmuth, O., Knoth, O., Schröder, W., Heinrich, B., and Renner, E. (2004). The

chemistry-transport modeling system LM-MUSCAT: Description and CityDelta applications.

In Air Pollution Modeling and Its Application XVI, pages 427–439. Kluwer Academic/Plenum

Publishers, New York.

Wolke, R., Schröder, W., Schrödner, R., and Renner, E. (2012). Influence of grid resolution

and meteorological forcing on simulated European air quality: a sensitivity study with the

modeling system cosmo–muscat. Atmospheric environment, 53:110–130.

Wyant, M. C., Bretherton, C. S., Wood, R., Carmichael, G. R., Clarke, A., Fast, J., George,

R., Gustafson Jr., W. I., Hannay, C., Lauer, A., Lin, Y., Morcrette, J.-J., Mulcahy, J., Saide,

P. E., Spak, S. N., and Yang, Q. (2015). Global and regional modeling of clouds and aerosols

in the marine boundary layer during VOCALS: the VOCA intercomparison. Atmospheric

Chemistry and Physics, 15(1):153–172.

Yang, H. and Levy II, H. (2004). Sensitivity of photodissociation rate coefficients and O3

photochemical tendencies to aerosols and clouds. Journal of Geophysical Research, 109, D24,

doi:10.1029/2004JD005032.

Yang, Q., Gustafson Jr, W., Fast, J. D., Wang, H., Easter, R. C., Morrison, H., Lee, Y.-

N., Chapman, E. G., Spak, S., and Mena-Carrasco, M. (2011a). Assessing regional scale

predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx

using WRF-Chem. Atmospheric Chemistry and Physics, 11(23):11951–11975.

Yang, Q., Gustafson Jr, W., Fast, J. D., Wang, H., Easter, R. C., Morrison, H., Lee, Y.-

N., Chapman, E. G., Spak, S., and Mena-Carrasco, M. (2011b). Assessing regional scale

predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx

using WRF-Chem. Atmospheric Chemistry and Physics, 11(23):11951–11975.

Yarwood, G., Jung, J., Heo, G., Whitten, G. Z., Mellberg, J., and Estes, M. (2010). CBM06

Version 6 of the Carbon Bond Mechanism. 9th Annual CMAS Conference, Chape Hill, NC.

October 11-13.

Yarwood, G., Rao, S., Yocke, M., and Whitten, G. (2005). Updates to the Carbon Bond chemi-

cal mechanism: CB05. Final report. Technical report, RT-0400675 Environmental Protection

Agency, EPA. United States.

Yu, F., Luo, G., and Ma, X. (2012). Regional and global modeling of aerosol optical properties

with a size, composition, and mixing state resolved particle microphysics model. Atmospheric

Chemistry and Physics, 12(13):5719–5736.



170 Bibliography

Yu, S., Mathur, R., Pleim, J., Wong, D., Gilliam, R., Alapaty, K., Zhao, C., and Liu, X.

(2013). Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ:

model description, development, evaluation and regional analysis. Atmospheric Chemistry

and Physics, page 25649.

Yu, S. and Zhang, Y. (2011). An examination of the effects of aerosol chemical composition

and size on radiative properties of multi-component aerosols. Atmospheric Climate Science,

1:19–32.

Zanis, P. (2009). A study on the direct effect of anthropogenic aerosols on near surface air tem-

perature over southeastern Europe during summer 2000 based on regional climate modeling.

Annales Geophysicae, 27(10):3977–3988.

Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K. (2008). Model for simulating

aerosol interactions and chemistry (MOSAIC). Journal of Geophysical Research, 113, D13204,

doi:10.1029/2007JD008782.

Zaveri, R. A. and Peters, L. K. (1999). A new lumped structure photochemical mechanism for

large-scale applications. Journal of Geophysical Research, 104(D23):30387–30415.

Zhang, B., Wang, Y., and Hao, J. (2015). Simulating aerosol–radiation–cloud feedbacks on

meteorology and air quality over eastern china under severe haze conditionsin winter. Atmo-

spheric Chemistry and Physics, 15(5):2387–2404.

Zhang, K., Wan, H., Wang, B., Zhang, M., Feichter, J., and Liu, X. (2010). Tropospheric aerosol

size distributions simulated by three online global aerosol models using the M7 microphysics

module. Atmospheric Chemistry and Physics, 10(13):6409–6434.

Zhang, Y. (2008). Online-coupled meteorology and chemistry models: history, current status,

and outlook. Atmospheric Chemistry and Physics, 8(11):2895–2932.

Zhang, Y., Pun, B., Vijayaraghavan, K., Wu, S.-Y., Seigneur, C., Pandis, S. N., Jacobson,

M. Z., Nenes, A., and Seinfeld, J. H. (2004). Development and application of the model of

aerosol dynamics, reaction, ionization, and dissolution (MADRID). Journal of Geophysical

Research, 109(D1):1341–1353.

Zhang, Y., Seigneur, C., Seinfeld, J. H., Jacobson, M. Z., and Binkowski, F. S. (1999). Simu-

lation of aerosol dynamics: A comparative review of algorithms used in air quality models.

Aerosol Science and Technology, 31(6):487–514.


	Dedication
	Acknowledgements
	Resumen
	Abstract
	Publications
	Acronyms
	Table of contents
	Tabla de contenidos
	Índice de figuras
	Índice de tablas

	Introduction
	State of the art of atmospheric aerosol
	Aerosol properties
	Mass concentration and size distribution
	Optical properties

	Aerosol-radiation-cloud Interactions
	Effective radiative forcing by the aerosol-radiation interactions
	Effective radiative forcing by the aerosol-cloud interactions
	Types of aerosols and their radiative effects
	Aerosol and climate change
	Forcing, Rapid Adjustments and Feedbacks

	Aerosol processes
	Radiation schemes
	Nucleation, condensation and coagulation
	Dry deposition
	Wet deposition

	Approaches to study atmospheric aerosols
	Extractive techniques
	In situ or ground-based measurements
	Remote sensing techniques
	Aerosol modeling
	Online-coupled meteorology and chemistry models
	Short description of WRF-Chem model
	Aerosol feedbacks modeling studies


	Objectives
	Scope and structure

	Sensitivity analysis of the microphysics scheme in WRF-Chem contributions to AQMEII Phase 2
	Introduction
	Methodology
	Emissions
	Model configuration
	Microphysics schemes

	Results and discussion
	Sensitivity study
	Numerical model comparison and evaluation

	Summary and conclusions

	Biomass burning aerosol impact on surface winds during the 2010 Russian heatwave
	Introduction
	Simulations and methods
	Model configuration
	Experimental design

	Results
	Base case meteorological situation
	Effects on wind speed
	Causes of wind variation
	Wind correlation


	Conclusions

	Regional effects of atmospheric aerosols on temperature: an evaluation of an ensemble of on-line coupled models
	Introduction
	Methodology
	Participating models
	Emissions and boundary conditions
	Observational database
	Validation methodology

	Results
	Bias
	Temporal correlation
	Temporal variability
	Spatial variability

	Summary and conclusions

	How good are aerosol-cloud interactions represented in online-coupled regional models?
	Introduction
	Methodology
	Model simulations
	Observational data
	Evaluation methodology

	Results
	Cloud fraction, CFR
	Cloud optical depth, COD
	Cloud ice path, CIP
	Cloud water path, CWP
	Spatial correlation and variability

	Summary and conclusions

	Conclusions and future perspectives
	General conclusions
	Sensitivity analysis of the microphysics scheme
	Biomass burning aerosol impact on surface winds
	Atmospheric aerosol effects on temperature
	Aerosol-cloud interactions representation in online-coupled models

	Future works and development

	Bibliography

