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Abstract 
 

 

Climate Services (CS) assign an additional role to Climate Science, aiming to provide 

different kinds of users with usable and actionable information on climate variability, 

climate change impacts and its related risks, opportunities and uncertainties. Thus, to bridge 

the gap between reliable data and their usability, CS research is highly important. 

This interdisciplinary research thesis addresses the climate information distillation 

challenge. Its overall aim is to pave the way for the integration of regional and local climate 

information into CS that support climate adaptation planning and policy-making. The 

novelty of this thesis is that it reflects on the user-oriented approach of CS, i.e., as well as 

quantitative climatological analysis, it also uses qualitative social data to better understand 

the needs of practitioners and academics engaged in climate-related knowledge co-

production.  

The thesis uses various datasets, including remotely sensed land surface temperature data, 

ground-measured meteorological data and temperature simulations obtained from a high 

resolution (12.5 km) regional climate model. The recommendations are supported by 

practical experience. 

The local scale case study offers valuable new insights into the urban heat hazard in the city 

of Valencia (Spain), revealing the considerable nighttime urban heat island effect along 

with unfavourable thermal comfort in the densely built-up urban areas. This underlines the 

need for climate-resilient urban planning, especially in light of the projected gradual 

warming trend over the entire Iberian Peninsula towards the end of the 21st century.  

To explore the factors that influence the efficiency of transdisciplinary collaborations 

working on urban climate adaptation and planning, in-depth interviews were conducted 

with academics and practitioners. This thesis demonstrated that integrating different 

disciplines and perspectives is vital for efficient CS. An improved understanding of the 

needs and motives of stakeholders from science and practice communities greatly 

contributes to the development of CS.  
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Resum 
 

 

Els Serveis Climàtics (SC) tenen un rol addicional en la ciència del clima, amb l’objectiu 

de proporcionals als diferents tipus d’usuaris informació útil y processada sobre variabilitat 

climàtica, els impactes i riscos del canvi climàtic, així com les oportunitats i incerteses. Per 

tant, per reduir la distancia entre dades fiables i la seva usabilitat, la investigació de SC és 

de gran importància.  

Aquesta tesis d’investigació interdisciplinària aborda el desafiament de sintetitzar la 

informació climàtica. El seu objectiu general és facilitar la integració d’informació 

climàtica a escala regional dels SC per donar justificació a la planificació i formulació de 

polítiques d’adaptació al canvi climàtic. La novetat és què reflecteix l’enfoc orientat als 

usuaris dels SC, és a dir, a  més de l’anàlisi climatològic quantitatiu, també utilitza dades 

socials qualitatives per entendre millor les necessitats dels professionals i acadèmics 

involucrats en la co-producció del coneixement relacionat amb el clima.  

Aquesta tesis utilitza diversos conjunts de dades, incloent dades remotes de la temperatura 

de la superfície terrestre, dades meteorològiques mesurades en superfície i simulacions de 

temperatura obtingudes d’un model climàtic regional d’alta resolució (12.5km). Les 

recomanacions se suporten en l’experiència pràctica.  

L’estudi de cas a escala local afavoreix nous resultats sobre el risc del calor urbà a la ciutat 

de València. Revelant un considerable efecte d’illa de calor urbana nocturna juntament amb 

un confort tèrmic desfavorable a les zones densament urbanitzades. Això subratlla la 

necessitat d’una planificació urbana resilient amb el canvi climàtic, especialment 

considerant la tendència d’escalfament gradual projectada per a finals del segle XXI a tota 

la Península Ibèrica.  

Per explorar els factors que influeixen en l’eficiència de les col•laboracions 

transdisciplinaries  en els estudis de planificació i adaptació al clima urbà, es realitzaren 

entrevistes amb acadèmics i professionals. Concloent que la integració de diferents 

disciplines i perspectives es vital per a l’eficiència dels SC. Una major compressió de les 

necessitats i motivacions dels actors de les comunitats científiques i professionals 

contribueix a millorar les prestacions dels SC.   
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Resumen 
 

 

Los Servicios Climáticos (SC) desempeñan un rol adicional en la ciencia del clima, con el 

objetivo de proporcionar a los diferentes tipos de usuarios información útil sobre 

variabilidad climática, los impactos del cambio climático y sus riesgos, así como las 

oportunidades e incertidumbres. Por lo tanto, para salvar la brecha entre los datos fiables y 

su usabilidad, la investigación SC es de gran importancia. 

El objetivo general de esta tesis de investigación interdisciplinaria es facilitar la integración 

de información climática a escala regional y local de los SC que apoye la planificación y 

formulación de políticas de adaptación al cambio climático. La novedad es que refleja el 

enfoque orientado al usuario del SC, es decir, además del análisis climatológico 

cuantitativo, también utiliza datos sociales cualitativos para entender mejor las necesidades 

de los profesionales y académicos involucrados en la co-producción del conocimiento 

relacionado con el clima. 

Esta tesis utiliza varios conjuntos de datos, incluyendo datos remotos de la temperatura de 

la superficie terrestre, datos meteorológicos medidos en superficie y simulaciones de 

temperatura obtenidas de un modelo climático regional de alta resolución (12,5 km). Las 

recomendaciones se apoyan en la experiencia práctica. 

El estudio de caso a escala local ofrece nuevos resultados sobre el riesgo del calor urbano 

en la ciudad de Valencia. Revelando un considerable efecto de la isla de calor urbana 

nocturna junto con un confort térmico desfavorable en las zonas densamente urbanizadas. 

Esto subraya la necesidad de una planificación urbana resiliente al cambio climático, 

especialmente considerando la tendencia de calentamiento gradual proyecta para finales del 

siglo XXI en toda la Península Ibérica. 

Para explorar los factores que influyen la eficiencia de las colaboraciones 

transdisciplinarias en los estudios de planificación y adaptación al clima urbano, se 

realizaron entrevistas con académicos y profesionales. Concluyendo que la integración de 

diferentes disciplinas y perspectivas es vital para la eficiencia de los SC. Una mejor 

comprensión de las necesidades y motivaciones de los actores de las comunidades 

científicas y profesionales contribuye a mejorar las prestaciones de los SC.  
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Introduction 

 

 

 

 

1.1 The global challenge 

More than half of the world’s population live in urban areas and rapid urban growth is 

predicted to continue; by 2030, 60 percent of the global population will live in cities (UN 

DESA, 2014). This widespread urbanisation has many consequences. Cities are key 

contributors to many environmental problems, such as air and water pollution, and more 

than 70 percent of global greenhouse gas emissions (GHG) can be traced back to cities (UN 

HABITAT, 2011), as can around 80 percent of the world's energy production (KPMG, 

2014). 

At the same time, cities are highly vulnerable to climate change impacts, due to the fact that 

many urbanized settlements are located in highly exposed coastal areas and riverbanks, 

which are prone to sea level rise, storm surges, tropical cyclones, flash floods and landslides 

(UNDP, 2016). Reports on climate change-related disaster impacts (e.g., IFRC, 2010; 

UNISDR, 2013) point out that a high proportion of the people and economic activity 

affected by extreme weather events is concentrated in urban areas. 

According to the latest Intergovernmental Panel on Climate Change (IPCC) report, global 
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mean temperatures are expected to increase by as much as 5.5 °C by the end of this century 

(IPCC, 2013b), which is, in turn, expected to increase heat risk imposed on human and 

natural systems around the world (IPCC, 2014b). The impacts of higher temperatures 

include intensification of droughts, diminished crop yields, increased evapotranspiration, 

increased energy consumption, direct effects on human health and increased economic 

losses related to all of the aforementioned (Basu, 2009; Dell, Jones and Olken, 2014; 

Mazdiyasni and AghaKouchak, 2015; Park, 2016). As cities can substantially increase local 

temperatures (IPCC, 2012), additional risk is posed on the rapidly growing urban 

population, having a real impact on human society. 

The Paris Agreement (UNFCCC, 2015) is a major step forward in setting tangible goals to 

minimize anthropogenic climate change, aiming to keep the increase in average global 

temperature to well below 2 °C and requiring substantial reductions in global GHG 

emissions. Besides the GHG mitigation effort, climate adaptation action is required to 

prevent and minimise the impacts of climate change. The Cancun Adaptation Framework, 

adopted in 2010 under the UN Framework Convention on Climate Change (UNFCCC), 

establishes that climate change adaptation has the same level of priority as mitigation of 

GHG emissions (UNFCCC, 2010). The EU climate change adaptation strategy adopted 

in 2013 encourages countries to develop their own adaptation strategies, promotes local 

action towards climate-resilient cities, mainstreams adaptation in EU policies, facilitates 

research and information-sharing, and provides funding (European Commission, 2013). 

1.2 How to make climate information actionable? 

To limit climate-related economic, social and ecological impacts and damages, there is an 

increasing demand for easily accessible, timely, and decision-relevant scientific 

information (JPI Climate, 2011). According to the Climate Services Roadmap by the 

European Commission, Climate Services (CS) refer to the “transformation of climate-

related data—together with other relevant information—into customized products such as 

projections, forecasts, information, trends, economic analysis, assessments (including 

technology assessment), counselling on best practices, development and evaluation of 

solutions and any other service in relation to climate that may be of use for the society at 

large”, and include “data, information and knowledge that support adaptation, mitigation 

and disaster risk management” (European Commission, 2015, p10).  
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Other definitions of Climate Services (AMS, 2012; Hewitt, Mason and Walland, 2012; 

WMO GFCS, 2014) emphasize the collaboration and engagement with users to respond to 

their exact needs, but they do not identify a set of priority areas and sectors (Lourenço et 

al., 2015). In turn, Lourenço et al. (2015) suggest that to lead CS to flourish, “climate 

services need to move from science-driven and user-informed to demand-driven and 

science-informed practices”. This means that providers need to adopt the preferred 

terminologies of their clients and gain a proper understanding of the regulatory and cultural 

systems of their users (Kirchhoff, Lemos and Kalafatis, 2015; Lourenço et al., 2015). Thus, 

more intensive forms of knowledge exchange and collaboration across traditionally divided 

scientific-practice-policy communities is essential to ensure that scientific information can 

be used for meaningful action (Lemos and Morehouse, 2005; Vogel et al., 2007; Hering et 

al., 2014). 

However, the gap between science, practice and policy-making in relation to environmental 

issues has been hindering climate action for a long time (Dramstad and Fjellstad, 2011; 

Lemos, Kirchhoff and Ramprasad, 2012; Kirchhoff, Lemos and Dessai, 2013; Faragó, 

2016). Policy-makers and environmental managers often complain that they do not receive 

the information they need, while scientists are frustrated when their information is not being 

used or is misinterpreted (Vogel et al., 2007). Thus, finding the way to make climate 

information useable and actionable, i.e. creating climatic products that have practical value 

so that decision-makers are able to take legal action is crucial. 

Moving beyond the traditional climatological products, Goosen et al. (2013) pointed out 

that not only should primary impacts of climate change be produced, e.g., the disclosure of 

precipitation and temperature data trends, but also the consequences of climate change in 

terms of vulnerability and potential risk. These products should meet the specific needs and 

perceptions of municipal or provincial level spatial planners as they play a critical role in 

promoting robust adaptation to climatic changes (Wilson, 2006; Ford, Berrang-Ford and 

Paterson, 2011). Therefore, the term of Climate Adaptation Services is defined as an 

integrated approach supporting decision-making and spatial planning, that not only provide 

information for vulnerability and risk assessment, but also support the identification, 

evaluation and implementation of adaptation options in a multi-stakeholder setting (Goosen 

et al., 2013).  

The complexity that accompanies climate change adaptation planning and policy-making 
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translates into a need for inter- and transdisciplinary approaches, to achieve an integrated 

and comprehensive vision of the issues (Blanchard and Vanderlinden, 2010). Furthermore, 

applied science addressing complex problems should account for different types of 

knowledge (beyond technical/scientific frames) to co-develop solutions in the scientific-

practice-policy communities (Vogel et al., 2007; Regeer and Bunders, 2009; Bruno Soares, 

Alexander and Dessai, 2017). Therefore, climate change adaptation planning and decisions 

are made within a complex web that includes local, regional, and national government, 

elected officials, technical and strategic consultants, sectoral agencies and associations, 

business people, members of the public and scientists. 

1.3 Transdisciplinary collaborations for urban climate 

change adaptation 

To address socially relevant, complex problems, such as climate change adaptation and 

mitigation, crossing disciplinary borders is necessary. Pursuing the demand-based and 

solution-oriented approaches in Climate Services requires more intensive communication 

and collaboration between service providers and users (Lourenço et al., 2015). These 

collaborations should promote and facilitate opportunities for co-production of knowledge 

(Kirchhoff, Lemos and Dessai, 2013) that enables users to be active participants in 

knowledge creation with valid expertise of the particularities of their decision-making 

context (Vaughan and Dessai, 2014).  

The integration of different types of knowledge, e.g., scientific and practical expertise via 

co-production is delivered by transdisciplinary (TD) approaches (Regeer and Bunders, 

2009). The principles of TD methodologies include joint problem definition; creating 

connections between areas of specialization; searching for solutions to complex problems; 

knowledge integration and collaboration; participation and mutual learning; and 

connections between ‘science’ and its application to the ‘real world’ (Wiesmann et al., 

2008; Lelea et al., 2014). Thus, the outcomes of TD collaborations include not only new 

knowledge, but also practical activities or products that help improve the problematic 

situation the TD project focuses on (Hirsch Hadorn et al., 2008; Lelea et al., 2014). 

Since climate adaptation and planning requires a high level of integration between 

academic and practical knowledge, TD collaborations are essential to address the related 

complex urban issues (Hansson and Polk, 2016; Mistra Urban Futures, 2016; May and 
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Perry, 2017). However, TD efforts require mastery of specific competences from the 

collaborators (Stokols et al., 2008; Larson, Landers and Begg, 2011). There are various 

contextual factors that influence the effectiveness of TD collaborations, they can flourish 

or struggle depending on the competence and attitude of team members, as well as the 

availability of organizational, political and financial incentives and support (NAS/NAE/IM, 

2004; Stokols et al., 2008; Larson, Landers and Begg, 2011; Nancarrow et al., 2013). 

Furthermore, engaging in activities that aim towards societal problem solving and 

transformations, calls scientists to challenge their conventional researcher roles (Wittmayer 

and Schäpke, 2014). 

1.4 Aims and objectives of this thesis 

The research design and development of this thesis was motivated by questions such as: 

How does climate change affect the heat conditions of the Iberian Peninsula? How can we 

provide reliable, understandable and useful information to decision-makers? What does 

heat risk mean in a local context? How can the heat risk be reduced? How can researchers 

and practitioners successfully collaborate in solving climate-related urban issues?  What is 

the role of climate science in climate action? How can this role be addressed through 

Climate Services? 

The research project is developed with an interdisciplinary approach based on a broad 

literature review including climate and sustainability science, environmental management 

and team science. The overall aim is to pave the way for the integration of regional and 

local scale climate information into CS that supports climate adaptation planning and 

policy-making. The interdisciplinary research thesis addresses the climate information 

distillation challenge, i.e. how to provide the users with understandable and useful climate 

information. The novelty of the thesis is that it reflects on the user-oriented approach of 

Climate Services, i.e. besides quantitative climatological analysis it uses qualitative social 

data too, to better understand the needs of academics and practitioners engaged in climate-

related knowledge co-production. 

Regional scale information on future temperature changes over the Iberian Peninsula is 

produced by using climate simulations from a high-resolution regional climate model after 

evaluating the performance of the model. To explore the local scale heat hazard in the 

Spanish city of Valencia, the urban heat island effect and thermal comfort is quantified 
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using remotely sensed data and in-situ meteorological measurements. To understand better 

the factors that influence TD collaborations focusing on climate-related problems, in-depth 

interviews are conducted with academics and practitioners involved in urban climate 

adaptation projects. Practical experience is also incorporated in the implications to aid the 

development of CS. 

The hypothesis can be defined as: 

Through the development and use of Climate Services along with transdisciplinary 

approaches urban climate adaptation and planning can be improved. 

The research is split into four specific objectives: 

1) Assess climate projections over the Iberian Peninsula via a high-resolution regional 

climate model ensemble and evaluate model performance to provide scientifically 

solid and easily understandable illustrations of future temperature change and its 

uncertainties. 

2) Evaluate the intensity and spatial pattern of the urban heat island and thermal 

comfort over the city of Valencia to create solid foundations for urban climate 

change adaptation planning. Analyse the locally observed temperature extremes. 

3) Analyse the factors that influence and foster transdisciplinary collaborations in 

urban climate adaptation projects and map the voices of stakeholders in regard to 

their motivations, challenges and needs. 

4) Provide practical insights to facilitate the development of actionable climate 

information based on user-focused Climate Services research and practical 

experience. 

Exploring the diverse needs of CS users involved in projects using climate information is 

identified by the Climate Services agenda (EC CS Roadmap, JPI Climate) as a research gap 

needing to be addressed. The objectives of thesis are in line with the activities defined as 

“Competences for provision of climate services” determined by the World Meteorological 

Organization Global Framework for Climate Services (WMO GFCS) (WMO, 2015) and 

with the Joint Programming Initiative “Connecting Climate Knowledge for Europe” (JPI 

Climate) – Strategic Research Agenda (JPI Climate, 2011). 
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1.5 Structure of thesis 

The structure of the thesis is illustrated in Figure 1.1. This introductory chapter has outlined 

the motives and some key concepts for the thesis, including the general background of 

research (section 1.1), defining Climate Services (section 1.2), connecting transdisciplinary 

collaborations and Climate Services (section 1.3), as well as outlining the general research 

method and aims (section 1.4) that will be followed by detailed methodologies and 

objectives in each main chapter. 

The background to research areas relevant to the thesis and conceptual frameworks are 

introduced in Chapter 2. After presenting Climate Services in more detail (section 2.2), 

literature reviews are provided on the three main topics addressed in the thesis: regional 

climate model projections (Section 2.3.) relevant for Chapter 3; urban heat island, thermal 

comfort, temperature extremes and climate adaptation (Section 2.4.) relevant for Chapter 4 

and Chapter 6; and the transdisciplinary approach (Section 2.5.) relevant for Chapter 5. 

There are three main analysis components in this thesis, presented in Chapters 3, 4 and 5, 

that constitute the core of this work. In the first component (Chapter 3) I evaluate the 

performance of a high spatial resolution (12.5 km) regional climate model ensemble based 

on simulations with the Rossby Centre model of RCA4. I describe the future changes in 

seasonal mean features of near surface temperature over the Iberian Peninsula and assess 

the uncertainties. 

To analyse the impact of excessive heat on a local scale, in the second component 

(Chapter 4), I analyse the urban heat island effect and human comfort in the city of 

Valencia (Spain), during summer hot days, combining thermal remote sensing techniques 

and in-situ meteorological observations. Daily mean temperature, as well as warm and 

cold extremes are also examined from a long-term climatological perspective. 

The third analysis component (Chapter 5) offers a qualitative social research based on 

fieldwork in Lisbon and Cascais (Portugal). This highly urbanized coastal region was 

chosen for this research because of the long tradition of adaptation efforts, and 

stakeholders’ considerable expertise and experience in cross-sectoral climate adaptation 

and planning projects. Informant interviews were conducted to map the voices of various 

stakeholders and draw the key determinants that has influenced the TD collaboration 

focused on urban climate adaptation and planning in Portugal. 
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Chapter 6 is a brief summary of projects that I have participated in during the thesis 

development. These works provided insights into the practical use of climate information 

that enrich the research and help to formulate recommendations. The three related projects 

are market research to design a living lab (section 6.2), multi-expert team work on 

sustainable urban mobility and green design (section 6.3) and addressing climate risk and 

adaptation through the asset management of the city (section 6.4). 

The thesis finishes (Chapter 7) with a summary and critical reflection alongside ideas for 

further work. 
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Figure 1. 1 Structure of thesis 
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Chapter 2  
 

Background and conceptual frameworks 

 

 

 

 

2.1 Overview 

The Introduction (Chapter 1) presented the motives and objectives of thesis as well as 

introduced some key ideas and concepts that the thesis focuses on. Chapter 2 aims to give 

a detailed background to the research topics addressed in the thesis, and to connect these 

topics with the objectives of the CS research agenda (JPI Climate, 2011; European 

Commission, 2015).  

Section 2.2 places CS Research into context (2.2.1) and explains how CS can support 

decision-making (2.2.2).  

Section 2.3 presents climate models as tools to obtain climate information for the future. 

The subsections provide background to climate modelling in general (2.3.1), to evaluate 

regional climate model outputs (2.3.2), to assess uncertainty in simulations (2.3.3) and to 

communicate future climate model projections (2.3.4).  

Section 2.4 provides background to Chapter 4 and it is formulated around the topic of 

excessive heat in urban areas. Section 2.4.1. describes temperature extremes, section 2.4.2 

introduces the phenomenon of urban heat island and describes thermal comfort. In section 
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2.4.3 some concepts are clarified in relation to climate adaptation and climate risk 

management that lead us to the topic of Chapter 5 and provides theoretical background to 

the practical projects introduced in Chapter 6. 

The final section in this chapter defines the conceptual framework for the social case 

study in Chapter 5 and explains the significance of transdisciplinary (TD) approaches in 

climate adaptation projects. Section 2.5.1 describes the connection between climate 

science and TD research, section 2.5.2 defines multi- inter- and transdisciplinary 

approaches, section 2.5.3 reveals the various market actors in Climate Services and section 

2.5.4 describes the different researcher roles in TD collaborations. Section 2.5.5 introduces 

the conceptual framework of factors influencing the effectiveness of TD collaborations that 

forms the spine of the social study. 

2.2 Climate Services  

2.2.1 The need for Climate Services Research 

Climate Services (CS) assign an additional role to climate science, aiming to develop, 

translate and customize climate information to the various user needs, including knowledge 

for understanding the climate, climate change and its impacts, as well as guidance in its use 

to researchers and to decision-makers in policy and business (European Commission, 

2015). The demand-driven and solution-oriented Climate Services provide the stakeholders 

with usable and actionable information on climate change related risks, opportunities and 

uncertainties as well. These stakeholders include academics, practitioners—e.g. NGOs, 

decision-makers in enterprises and administrative bodies, policy makers from various levels 

(transnational, national, regional and local)—as well as citizens (JPI Climate, 2011; 

European Commission, 2015).  

Depending on the target sector the climate information requirements may differ 

significantly. For this reason, user oriented market research is indispensable in order to 

identify the different user needs as well as investigation is needed to explore good practices 

and shortcomings of academic information distillation. As Street (2016) suggests we need 

to understand better the existing and potential demand (i.e. market potential), but also need 

to discover why the market is relatively unknown and fragmented at present.  

Using different perspectives and disciplines CS research addresses research gaps that exist 
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between the diverse needs of user communities and climate system science (European 

Commission, 2015). Based on the solution-oriented approach of CS strategies users should 

contribute to the development of climate products via collaborations, co-development and 

feedback loops. The use of transdisciplinary approaches such as knowledge co-production 

(see section 2.5.1) is critical when delivering CS research and innovation (Kirchhoff, 

Lemos and Dessai, 2013; Street, 2016). 

Figure 2.1 illustrates Climate Services described as the bridge between data and users by 

the EC Roadmap. The “user community” of Climate Services represent a wide range of 

organisations (public, private and civil society) and actors (e.g. end-users, intermediary 

organisations) that functions with very different institutional settings and information 

requirements to support their activities (Bruno Soares, Alexander and Dessai, 2017). The 

provision of CS can be pursued by various actors such as National Meteorological and 

Hydrological Services, private consultancies, research institutes, and even in-house 

development within organisations (European Commission, 2015). The chain of information 

supply can include intermediary organisation (or purveyors) that link information producers 

and end-users or other purveyors (Vaughan and Dessai, 2014; Kirchhoff, Lemos and 

Kalafatis, 2015).  

There are a couple of reports that aims to map the Climate Services provider landscape, and 

the climate information and tools that they produced. For example Máñez, Zölch and 

Cortekar (2014) provides a German case study by the Climate Service Centre combining 

theoretical and empirical results. Banos de Guisasola (2014) reports about the Italian case 

study of CS providers and Göransson and Rummukainen (2014) summarizes results from 

the Netherlands and Sweden. 

The main European initiatives that foster the development of CS are for example the 

Horizon2020 SC5 Actions, the Joint Programming Initiative (JPI) on Connecting Climate 

Knowledge for Europe (JPI Climate), the European Copernicus Climate Change Service, 

the European Research Area for Climate Services (ERA4CS), the European Institute of 

Innovation and Technology – Knowledge and Innovation Communities (EIT/Climate-

KIC), and at a global level the World Meteorological Organisation’s Global Framework for 

Climate Services (WMO GFCS). 
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Figure 2. 1 The essence of Climate Services adopted from EC Roadmap for Climate Services 
(European Commission, 2015). 

The JPI is a European Joint Programming Initiative of EU Climate aiming to develop and 

coordinate a pan-European research programming platform to provide useful Climate 

Services for transnational and national climate strategies as well as contributions to the 

UNFCCC and the UN Sustainable Development Goals (UN SDGs, 2015). This thesis 

places Climate Services Research into context through the JPI Climate Strategic Research 

Agenda (JPI Climate, 2011). 

There are only few studies on the specific climate information needs of users, e.g. 

Turnpenny et al. (2004) addressed the needs of UK organisations regarding information 

from integrated assessments of climate change and Dessai and Bruno Soares (2015) 

summarised the sector specific user needs regarding seasonal to decadal climate predictions 

across Europe in the framework of the EUPORIAS project. A recent study by Bruno Soares, 

Alexander and Dessai (2017) provide a synoptic overview of the sectoral use of climate 

information in Europe based on a comprehensive online survey and interviews with 

(potential) users from sectors including agriculture, forestry, energy, water, tourism, 

insurance, health, emergency services and transport sectors. 

According to their study (Bruno Soares, Alexander and Dessai, 2017), 37 % and 23 % of 

the sampled organisations stated that current weather and climate information is either not 

useful or fails to suit their needs. This suggests that questions need to be addressed urgently 

on how to tailor this information to the user requirements. Furthermore, 26 % cited a lack 
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of in-house expertise suggesting that either there should be some form of 

organisational/institutional capacity building to ensure appropriate resources are in place, 

or information needs to be provided in a way that is compatible with in-house systems 

(Bruno Soares, Alexander and Dessai, 2017). Another interesting insight from this study is 

that 67 % of survey respondents needed information to be presented in a way that helps 

inform dichotomous (yes/no) decision-making. 

2.2.2 Climate Services as decision-support 

Besides improving the scientific expertise on climate variability, risks and adaptation 

options, CS aims to provide relevant knowledge to decision-making on safety and major 

investments in climate-vulnerable sectors. According to the JPI Climate Strategic Research 

Agenda (JPI Climate, 2011), in order support decision-making CS research should focus 

on (i) the development and deployment of CS (including data accessibility and commercial 

versus non-commercial approaches) (ii) communication of climate knowledge to users 

(including understanding users’ needs, developing proper tools and communicating 

uncertainty), and (iii) improving the interface between climate research and its application 

(i.e., improving science-society interfaces and knowledge exchange) (Fig. 2.2). 

 

Figure 2. 2 The JPI Climate Strategic Research Agenda. The thesis delivers Climate Services 
Research (module 2) that connects climate system knowledge and socio-ecological context 

knowledge. (Adapted from: http://www.jpi-climate.eu/) 
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These science-society interfaces (or science-practice-policy interfaces) are defined as a 

“complex terrain that it is best described as a multi-level system of governance and 

knowledge production among a range of actors engaged in understanding and managing 

environment–society interactions” (Vogel et al., 2007, p351). They play an important role 

in connecting scientific insights with the demands of policy makers and other stakeholders 

from local to international levels, leading to more effective policies (Cash et al., 2003). 

A climate adaptation decision support tool was developed by Goosen et al. (2013) aiming 

at bridging the gap between the sources of primary climate information (e.g., the disclosure 

of precipitation and temperature data) and the local spatial planning level. They introduced 

the term Climate Adaptation Services (CAS) that not only support vulnerability 

assessments but include the design and appraisal of adaptation options (Goosen et al., 2013; 

Masselink et al., 2017).  

The CAS approach is a stepwise elaboration of climate maps through assessing primary, 

secondary and tertiary impacts of climate change. The approach by Goosen et al. (2013) 

operationalises the different steps within the vulnerability assessment framework by Füssel 

and Klein (2006) to produce policy-relevant indicators that support the design of adaptation 

strategies. In Figure 2.3 the CAS approach is presented that I combined with the climate 

risk concept by Carter et al. (2015), explained in detail in section 2.4.3. 

 

Figure 2. 3 Urban Climate Adaptation Services addressing heat related risk based on the 
operational stepwise elaboration of the vulnerability assessment framework by Goosen et al., 

(2013), Füssel and Klein (2006) and the climate risk concept by Carter et al. (2015). 
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Step 1 assesses and discloses the primary impacts of climate change through downscaling 

of climate scenarios that can cover for example mean temperature or temperature extremes. 

Step 2 performs impact modelling (and/or further calculations) to determine secondary 

impacts such as excessive urban heat or strong nighttime urban heat island. Step 3 identifies 

and visualise climate change vulnerabilities linked to socio-economic (tertiary) impacts 

according to the needs of spatial planners. For example, health impacts or thermal 

discomfort can be presented. Step 4 is the assessment of challenges that happens through 

interactive design workshops with spatial planners, policy makers and researchers to 

evaluate vulnerability, adaptive capacity and identify policy challenges. Step 5 includes the 

identification and integration of adaptation strategies.  

The steps followed in the thesis chapter by chapter is in synchrony with the CAS approach. 

In Chapter 3, I provide maps of “primary impacts” (temperature projections and 

uncertainties) (Step 1) and in Chapter 4, I disclose information of “secondary and tertiary 

impacts” by mapping the urban heat island (Step 2) and thermal discomfort (Step 3) in the 

city of Valencia. Finally, in Chapter 5, I discuss some aspects of the challenges of 

adaptation planning and policy making (Step 4) by highlighting the different perspectives 

of stakeholders involved in such projects. Further insights to the concepts of vulnerability, 

adaptive capacity, climate risk and climate resiliency can be found in section 2.4.3.  

2.3 Regional climate model projections  

As explained in Chapter 1 and in section 2.2, there is an increasing demand for practical 

information about climate change and its impact on different sectors in different 

geographical regions. The users, including policy-making communities, have long sought 

reliable regional- and local-scale projections to provide a solid basis for guiding response 

options (Giorgi, Jones and Asrar, 2009). Traditionally, most of the general knowledge on 

climate and weather impacts was based on earlier experienced events, weather 

observations, forecasts and reanalyses of historical data, nonetheless, in the last decades 

future climate projections have become increasingly important to all sectors dealing with 

the impacts of climate change (Persson et al., 2007). The exploitation of the vast amount of 

data derived from the climate models should be focused to transform them into Climate 

Services, meaning by this to make these data relevant for a wide range of users.  

Communicating the expected climatic changes and the uncertainties of projections is a 
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challenging task. In the following subsections, after giving a general overview on climate 

modelling (section 2.3.1) and model performance (section 2.3.2), I address the different 

sources of uncertainty in climate simulations (section 2.3.3) and discuss the interpretation 

of future projections and the related uncertainties (section 2.3.4). 

2.3.1 Climate modelling 

Since the beginning of climate modelling in the 1960s a range of varying complexity of 

models have been developed, from simple energy-balance models to 3-dimensional 

coupled global models (Edwards, 2011). On a global scale GCMs (general circulation 

models or global climate models) are used to describe the atmosphere, land surface, sea, 

lakes and ice, as well as the atmosphere-ocean interactions and some aspects of the 

biosphere. To achieve a higher spatial resolution over a specific region regional climate 

models (RCMs) are applied to downscale the results from the GCMs. As the calculation of 

meteorological and hydrological parameters over a global grid requires a lot of computing 

capacity, the GCMs operate on a relatively coarse horizontal resolution (100–300 km), 

while RCMs run on a finer grid placed over a smaller area (e.g., Europe), forced by the 

GCM that provides boundary conditions for the regional scale simulation. The RCM’s finer 

resolution (10–50 km) allows for a better description of local topography, land-sea 

distribution or vegetation, and a simulation of regional-scale features in the atmosphere 

(Strandberg et al., 2014). 

RCM simulations are essential for various impact studies, such as hydrological (Hay and 

Clark, 2003; Andréasson et al., 2004; Wood et al., 2004; Beldring et al., 2008), ecological 

(on ecosystem productivity: Morales et al. (2007)) and health—e.g., on malaria 

transmission: Paaijmans et al. (2014), on mortality and heat waves: Lowe et al. (2015)—

research. Moreover, they provide a reliable base for climate vulnerability assessments (e.g., 

Sekulić et al., 2012; Kane et al., 2013), climate risk management (e.g., Andersson-Sköld et 

al., 2015), and adaptation strategies, e.g. sustainable way of urban planning based on RCM 

projections (e.g., Andersson-Sköld et al., 2014). 

The connection between climate models and Climate Services can be illustrated with the 

Swedish example (Persson et al., 2007; Kjellström et al., 2016). In some sectors there is a 

high awareness that specific weather conditions may play a major role in the present 

climate, but they have a rather limited knowledge regarding possible impacts of future 
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climate change (Rummukainen et al., 2005 via Persson et al., 2007). Thus, co-operation 

was facilitated with a wide range of authorities, regional governments and communities as 

well as with representatives from trade and industry, scientific institutions and organisations 

across the Swedish society to discuss what information was needed by the stakeholder 

groups and how this could be provided (Persson et al., 2007).  

As a result of this long experience of collaborating with a wide range of users, the Swedish 

Meteorological and Hydrological Institute (SMHI) provides a useful example of building 

Climate Services centred on regional climate model results, presented by Kjellström et al. 

(2016). They confirmed that involving the users in the development of the climate service 

products has been effective as the service is widely used and is an important source of 

information for work on climate adaptation in Sweden. Thus, learning from the good 

practice they shared, I applied their methodology in illustrating and presenting the climate 

projection results, described in detail in section 2.3.3. 

2.3.2 Evaluating the climate models 

Evaluating the ability of a climate model to simulate the mean climate, and the slow, 

externally forced change in that mean state has been a key topic of climate research for 

decades (IPCC, 2013b). A model’s ability to simulate climate variability is central to 

achieving skill in climate prediction, hence, in-depth comparisons of simulations against 

observations is indispensable. According to the Fifth Assessment Report (AR5) 

improvements in climate models since the IPCC Fourth Assessment Report (AR4) are 

evident in simulations of various components and phenomena of the climate system, e.g., 

continental-scale surface temperature patterns, large-scale precipitation, atmospheric 

chemistry and aerosols, the El Niño-Southern Oscillation. Climate models reproduce—to 

a reasonable extent—the observed multi-decadal temperature trends, including the 

cooling immediately following large volcanic eruptions and the more rapid warming 

since the mid-20th century (IPCC, 2013b). 

To obtain climate variability and climate change information on a finer scale nested high-

resolution regional climate models (Giorgi and Mearns, 1999) are commonly used. There 

are numerous studies of regional model performance over Europe (e.g., Sanchez et al., 

2009; Lorenz and Jacob, 2010; Vautard et al., 2013; Jacob et al., 2014) and over the 

Mediterranean region (e.g., Díez et al., 2005, 2011; Dasari et al., 2014). Evaluations of 
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individual regional climate models, e.g. Jones et al. (2004), Bergant, Belda and Halenka 

(2007), Samuelsson et al. (2011), Torma et al. (2011) focus on the model performance over 

a chosen domain to represent the regional scale climate features.  

A joint evaluation of RCMs at European scale was carried out by Kotlarski et al. (2014), in 

which the RCA4 model (Rossby Centre regional climate model, subject to present study) 

was also assessed. They compared the skills of 7 different RCMs based on performance 

metrics calculated from spatial mean values over 8 subdomains of the European continent 

—one of them was the Iberian Peninsula (IP). The RCA4 had good results in comparison 

to other RCMs over the IP, however, no detailed spatial evaluation of the fine-resolution 

version (12.5 km) of RCA4 was addressed. Thus, in order to gain a comprehensive view 

on the uncertainties in RCA4 temperature simulations over the IP an in-depth comparison 

of temperature simulations against observations is performed (Chapter 3). 

2.3.3 Uncertainty 

There are three main sources of uncertainty in future climate projections: a) the natural 

variability of climate; b) uncertainties in climate model parameters and structure; and c) 

uncertainties in the projections of future greenhouse gas emissions (IPCC, 2012). Each 

specific uncertainty is handled similarly by performing several simulations in targeted 

experiments. Projections have historically been conditioned upon ‘‘scenarios’’ of 

greenhouse gas emissions, each associated with a particular ‘‘storyline’’ of global 

economic and societal development during the twenty-first century (Nakicenovic and 

Swart, 2000; Northrop and Chandler, 2014), although recently these scenarios have been 

replaced by a set of representative concentration pathways (RCPs) (Moss et al., 2010).  

The RCPs or radiation scenarios are based on assumptions about how the greenhouse effect 

will increase in the future, depending on the course of greenhouse gas emissions throughout 

this century (Moss et al., 2010). They are identified by their approximate total radiative 

forcing (W/m²) in year 2100 relative to 1750: 2.6 W/m² for RCP2.6, 4.5 W/m² for RCP4.5, 

6.0 W/m² for RCP6.0, and 8.5 W/m² for RCP8.5 (IPCC, 2013b). The RCPs can thus 

represent a range of 21st century climate policies, in contrast to the no-climate policy of the 

Special Report on Emissions Scenarios (SRES) used in the Third and the Fourth 

Assessment Report (IPCC, 2001, 2007). In case of the RCP2.6 (mitigation scenario) the 

radiative forcing peaks and declines before 2100, for RCP4.5 it stabilizes by the end of 
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century, while for RCP6.0 and RCP8.5 radiative forcing does not peak by year 2100 (Moss 

et al., 2010). In present study, two different RCP scenarios are used, one stabilization 

scenario (RCP4.5) and the high-end scenario (RCP8.5).  

For the next 2–3 decades, regional temperature projections for differing scenarios do not 

strongly diverge, but uncertainty in the sign of change is relatively large over this time 

frame because climate change signals are expected to be relatively small compared to 

natural climate variability (IPCC, 2012). Towards the end of century, the uncertainty 

originating from the differing scenarios is growing while the fraction related with climate 

variability is decreasing. In Figure 2.4 green regions represent scenario uncertainty, blue 

regions correspond to model uncertainty, and orange regions to the internal variability 

component. As Hawkins and Sutton (2009) explained, with the reduction of the size of 

region, the relative importance of internal variability in the uncertainty increases, and 

scenario uncertainty only becomes important at multi-decadal lead times.  

Earlier studies have shown that a large fraction of the uncertainties in regional climate 

change simulations is connected to the GCM that is used for driving the regional climate 

model (e.g., Christensen et al., 2007; Hawkins and Sutton, 2009). Indeed, this uncertainty 

depends both on model formulation and internal variability since different RCMs can 

respond differently to the forcing boundary conditions by the GCM and the course of 

unforced internal variability in specific model simulations differs (Kjellström et al., 2011). 

These uncertainties can be characterized by using multiple models, forcing scenarios and 

runs. The different sources of uncertainties and their relative role in different temporal and 

spatial contexts are discussed in detail by Hawkins and Sutton (2009). 

An ensemble is a collection of estimates of the future climate (combination of a radiation 

scenario, a global climate model, a regional climate model and the modelled time period) 

where the individual estimates (i.e., members) are different from each other. An ensemble 

can be used to illustrate uncertainties on the regional scale or to derive probabilistic climate 

change information in a region (Kjellström et al., 2011). An ensemble gives a good 

overview of the spread of the difference between the members, and highlights some of the 

uncertainties associated with simulating the future climate, thus it is frequently used as a 

tool to indicate the robustness of the results (e.g., SMHI website). If many different climate 

runs give similar results, then the results are relatively more robust than if they pointed in 

different directions. Depending on the type of ensemble, the significance of the choice of 
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climate models (multi-model ensembles) and the dependence on initial conditions 

(perturbed physical ensembles) can be studied (Knutti, 2010). 

 

 

Figure 2. 4 Sources of uncertainty in global decadal mean annual (top) and European decadal 
mean winter (bottom) temperature projections, expressed as a fraction of the total variance. 

Source: Climate Lab Book (https://www.climate-lab-book.ac.uk/2013/sources-of-uncertainty/) 
Credit: Ed Hawkins (accessed 6 September 2017) 

In different applications, the use of an ensemble has been shown to provide better 

estimations than those coming from a single model (e.g., Doblas-Reyes, Pavan and 

Stephenson, 2003; Thomson et al., 2006). Using a 16-member ensemble of RCM 

simulations with the previous version of the Rossby Centre model (RCA3) over Europe, 

Kjellström et al. (2011) found that the ensemble mean for temperature is generally better 

than the individual simulations conforming it. These evidences suggest that even adding a 
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model below the state-of-the-art can improve a future projection if the individual models 

tend to be overconfident (Weigel, Liniger and Appenzeller, 2008). However, Knutti (2010) 

warns, that ensemble means should be assessed carefully, because usually the models are 

not completely independent (as several institutions have contributed to a set of two or three 

models by sharing expertise, parts of the code and datasets), that is, parts of model biases 

are similar in some or all models (Tebaldi and Knutti, 2007; Knutti et al., 2010). 

Furthermore, averaging models leads to unwanted effects like smoothing of spatially 

heterogeneous patterns (Knutti et al., 2010).  

To further reduce uncertainties some studies proposed to down-weight or eliminate some 

“bad” climate models, recalibrate projections or estimate uncertainties based on metrics of 

model skill (e.g., Giorgi and Mearns, 2003; Tebaldi et al., 2005; Perkins, Pitman and Sisson, 

2009). Nevertheless, climate projections are inherently uncertain, and part of uncertainty in 

relation to variability is irreducible (Hawkins and Sutton, 2009), and could, in fact, further 

increase due to added complexity of models (Knutti, 2010). Thus, there is a need for 

decisions and decision-support tools that are robust against alternative future outcomes 

(Dessai et al., 2009; Knutti, 2010). 

In order to help policy making, the IPCC established a specific language to communicate 

uncertainty. Here I clarify those terms because I will use them later to present the state-

of-art on observed climatic changes and future climate projections as a background to the 

thesis research. The following summary terms are used to describe the available evidence: 

limited, medium, or robust; and for the degree of agreement: low, medium, or high. A 

level of confidence is expressed using five qualifiers: very low, low, medium, high, and 

very high. For a given evidence and agreement statement, different confidence levels can 

be assigned, but increasing levels of evidence and degrees of agreement are correlated 

with increasing confidence. Furthermore, the following terms have been used to indicate 

the assessed likelihood of an outcome or a result: virtually certain 99–100 % probability, 

very likely 90–100 %, likely 66–100 %, about as likely as not 33–66 %, unlikely 0–33 %, 

very unlikely 0–10 %, exceptionally unlikely 0–1 %. Additional terms (extremely likely: 

95–100 %, more likely than not > 50–100 %, and extremely unlikely 0–5 %) may also be 

used when appropriate (IPCC, 2013a) 
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2.3.4 Assessing future projections 

The time periods used for analysing climatological changes differ much throughout the 

literature. Traditionally, current climate (better said recent past climate) is defined based 

on the reference period 1961–1990, and observations are compared to the mean value of 

this reference period to measure how they differ. WMO defined this period as the 

Standard Reference Period for Climate Change studies, for the sake of comparability. But 

it is necessary to point out that since the climate has been changing rapidly in the last 

decades, the period 1961–1990 is not fully representative for what we consider to be the 

current climate (SMHI website). Hence, more recent reference periods have started to be 

used, and many projects are now working with the years 1971–2000—especially in terms 

of climate projections (SMHI website).  

I followed the routine that is the most commonly used in the specific fields of the research 

questions addressed in the thesis in order to obtain comparable results to the literature. 

Thus, the mid-term (2041–2070) and long-term (2071–2100) climate projections are 

compared to the 1971–2000 reference period (Chapter 3) and the temperature indices of 

observations in Valencia are calculated based on the 1961–1990 reference period 

(Chapter 4). 

All climate models produce some systematic errors (biases) that affect both mean climate 

and climate variability (Persson et al., 2007). By calculating the difference between the 

mean climatologies of the future period and the current period there is no need for bias 

correction, since by subtracting the reference run from the future run the structural error 

of models is eliminated (Szépszó et al., 2014). In this case we assume that the model bias 

is stationary in time. This approach is widely used when assessing future changes of 

climate variables on a monthly, seasonal or yearly scale (e.g., Krüzselyi et al., 2011; Önol 

et al., 2014). However, when one deals with daily data and/or indices associated with 

threshold values, bias correction is recommended as the frequency distribution of daily 

observations and model outputs might be very different (Dosio, 2016). 

When assessing future projections, rather than speaking generally about ‘‘uncertainty”, it 

is more useful for communication with the wider community outside of climate sciences to 

discuss ‘‘spread” and ‘‘robustness” of climate projections under a given scenario 

(Kjellström et al., 2016). Moreover, presenting the calculated change in the mean of a given 
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climate variable (e.g., temperature) between its future and current state, provides the user 

with the direct information of expected changes. The representation of climatic changes in 

the nearest decades (2011–2040), in the middle of the century (2041–2070) and at the end 

of the century (2071–2100) all reflecting different time horizons with different interest to 

different users depending on their respective planning horizon (Kjellström et al., 2016). 

The choice of maps that are the most informative to be displayed in the Swedish web 

application has been decided upon dialogue with the users as described by Kjellström et al. 

(2016). In the service site of SMHI, data are presented both as ensemble means and in 

terms of spread and robustness. The spread is given as the standard deviation calculated 

from the different runs, as well as, maps disclose how many of the ensemble members 

show changes in the same direction (defined as “robustness criterion”). Assessing all this 

information together, the main direction and amplitude of climate change as well as the 

spread around the central value can be seen, and an indication of the robustness of the 

results is also provided (Kjellström et al., 2016). Furthermore, by displaying results 

separately for each scenario, users of climate information can compare between what 

‘‘business-as-usual”, ‘‘some reduction in emissions” or ‘‘stronger reduction in 

emissions” would imply for the regional climate change signal (Kjellström et al., 2016).  

2.4 Excessive urban heat as hazard 

This chapter provides background to Chapter 4. In section 2.4.1 temperature extremes are 

described in terms of defining indicators, observations and projections. Section 2.4.2 

introduces the phenomenon of UHI, and describes different measures to characterize 

thermal comfort. In section 2.4.3 some concepts are clarified in relation to climate 

adaptation and climate risk management. 

In heat risk assessments, the excessive urban heat is identified as hazard (i.e., a factor that 

may cause risk) to the vulnerable segments of the urban population (e.g., Tomlinson et 

al., 2011; Buscail, Upegui and Viel, 2012; Dong et al., 2014). Excessive heat negatively 

influences not only human health (Patz et al., 2005)—including increasing mortality rates 

due to heat stress (Zanobetti and Schwartz, 2008; Nastos and Matzarakis, 2012; Chung et 

al., 2015; Mazdiyasni et al., 2017), more frequent insomnia events during hot nights 

(Vineis, 2010)—but it has an impact on the labour productivity (Pérez-Alonso et al., 

2011; Mazon, 2014; Zander et al., 2015) and the urban metabolism (Kennedy, Pincetl and 



Chapter 2: Background and conceptual frameworks 

26 

Bunje, 2011; van Timmeren, 2014) and built environment (Wilby, 2007) as well.  

In terms of impacts on health the projections by Fischer and Schär (2010) indicate that 

the harmful effects of excessive heat (e.g., heat waves) are much more severe for low-

altitude river basins in Southern Europe and for the Mediterranean coasts, and the 

frequency of dangerous heat conditions also increases significantly faster and more 

strongly in these regions—affecting many densely populated urban areas. As evidence 

suggests (Kenney, DeGroot and Alexander Holowatz, 2004; Lin et al., 2015), there are 

upper limits to human adaptation to temperature. It is, therefore, important to measure the 

consequences of increased temperature, and provide precise information to urban 

planners to reduce heat risk in the city (Blumberg, 2014; Andersson-Sköld et al., 2015; 

EEA, 2017). 

As urban heat islands (UHI) pose an additional risk to urban inhabitants (IPCC, 2012), 

quantifying the extent and intensity of UHI as well as describing the spatial pattern of 

thermal discomfort in the city is important. According to the Climate Adaptation Services 

approach introduced in section 2.2.2 (Fig. 2.3), producing “secondary and tertiary 

impacts” maps, such as the UHI and thermal discomfort in the city, can support the design 

of adaptation strategies. In light of increasing global temperatures, in Chapter 4 I 

investigate the local scale observed changes in mean and extreme temperatures that 

provides context to the spatial studies of urban heat hazard.  

2.4.1 Discussing temperature extremes through indices, observations 

and projections 

An extreme (weather or climate) event is defined as “the occurrence of a value of a 

weather or climate variable above (or below) a threshold value near the upper (or lower) 

ends of the range of observed values of the variable” in the Special Report on Managing 

the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation 

(SREX) by IPCC (IPCC, 2012). To enable global analysis of extremes a set of climate 

indices has been developed by the Expert Team on Climate Change Detection and Indices 

(ETCCDI) in the framework of WMO WCRP project CLIVAR (Peterson et al., 2001; 

Peterson, 2005). 

The ETCCDI climate indices of temperature are based on daily values, and they are used 

worldwide by research groups to detect and attribute of changes in climate extremes 
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(ETCCDI; Peterson and Manton, 2008). Some of them are based on fixed thresholds that 

are of relevance to particular applications, e.g. health impact studies—in these cases the 

thresholds are same for any station. Other indices are based on thresholds that vary from 

location to location, typically defined as a percentile of the relevant data series (Peterson, 

2005). The advantage of using these indices is that the results for different regions are 

comparable across the globe (ETCCDI; Karl, Nicholls and Ghazi, 1999), especially for 

those indices that use percentiles as thresholds instead of absolute values. 

Regarding heat waves/warm spells there is a variety of indices in the literature, differing 

from each other in terms of which aspect of the extreme event it measures (e.g., frequency, 

persistence, intensity). Orlowsky and Seneviratne (2012) showed that the magnitude of 

changes in heat wave length were highly dependent on the choice of index used for the 

assessment of heat wave and warm spell duration. This dependence is due to the large 

geographical variations in the variability of daily temperature (Alexander et al., 2006). 

Perkins and Alexander (2013) also highlighted the ambiguity and inconsistency of heat 

wave definitions and measurements by comparing an extensive set of indices employed 

in the literature. Based on their results, they advocate the use of percentile-based 

calculations, so long as the percentile is not set too low or too high (Perkins and 

Alexander, 2013).  

Based on the evidences gathered by the SREX (IPCC, 2012), it is very likely that there 

has been an overall decrease in the number of cold days and nights, and an overall increase 

in the number of warm days and nights, at the global scale, and it is likely that these 

changes have also occurred at European scale (Kiktev et al., 2003; Klein Tank and 

Können, 2003; Alexander et al., 2006). The IPCC states with high confidence that there 

has been (likely) increase in warm days and warm nights and (likely) decrease in cold 

days and cold nights in most of Southern Europe and the Mediterranean region (Bartolini 

et al., 2008; Kuglitsch et al., 2010; Hirschi et al., 2011). The likely strongest and most 

significant trends were detected in southern France and the Iberian Peninsula (Alexander 

et al., 2006; Brunet et al., 2007; Della-Marta et al., 2007a, b; Rodríguez-Puebla et al., 

2010). 

Furthermore, there is medium confidence that the length or number of warm spells or heat 

waves has increased globally since the middle of the 20th century (IPCC, 2012). An 

overall consistent positive trend of Warm Spell Duration Index was detected across 
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Europe (Alexander et al., 2006). The IPCC states with high confidence, that there has 

been likely overall increase in heat waves in summer (JJA) in Southern Europe and the 

Mediterranean region. Della-Marta et al. (2007a) detected significant increase in heat 

wave indices in West-Central Europe and the Iberian Peninsula. 

One of the most comprehensive analysis focusing on the Iberian Peninsula was conducted 

by Brunet et al. (2007), using daily maximum (Tmax), minimum (Tmin) and mean 

(Tmean) temperatures from the 22 longest and most reliable Spanish records over the 

period 1850–2005. According to their results, the overall warming trend is associated 

with higher rates of change for Tmax (0.11 °C/decade) than Tmin (0.08 °C/decade), and 

with reductions in cold extremes, as opposed to increases in warm extremes (Brunet et 

al., 2007). Taking a closer look at the Mediterranean coastal region of the Iberian 

Peninsula, Miró, Estrela and Millán (2006) examined the daily summer temperatures 

(July and August) over the Valencia Region, taking into account time series of 8 sites, but 

excluding urban centres as Valencia and Elche. They found increasing frequency of days 

with tropical characteristics over the period 1958–2003 (Miró, Estrela and Millán, 2006). 

Climate models project substantial warming in temperature extremes by the end of the 

21st century (IPCC, 2012, 2013b) at global scale. The IPCC states with high confidence 

that there will be very likely increase in frequency and intensity of warm days and warm 

nights (Fischer and Schär, 2009, 2010; Giannakopoulos et al., 2009) and very likely 

decrease in cold days and cold nights (Goubanova and Li, 2007; Kjellström et al., 2007; 

Sillmann and Roeckner, 2008) in Southern Europe and the Mediterranean region. 

Furthermore, the number of days with combined hot summer days (Tmax > 35 °C) and 

tropical nights (Tmin > 20 °C) is very likely to increase (Sillmann and Roeckner, 2008; 

Fischer and Schär, 2010).  

It is very likely that the length, frequency, and/or intensity of warm spells or heat waves 

will increase, with likely largest increases in southernmost Europe (Beniston et al., 2007; 

Diffenbaugh et al., 2007; Koffi and Koffi, 2008; Giannakopoulos et al., 2009; Clark, 

Murphy and Brown, 2010). According to Fischer and Schär (2010) the frequency of 

heatwave days is projected to increase from an average of about two days per summer for 

the period 1961–1990 to around 13 days for mid-century and 40 days for the end of 

century, over the Iberian Peninsula and the Mediterranean region. The affected areas by 

the most severe heat waves are some of the most densely populated European regions, 
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such as the urban areas of Athens, Marseille or Rome, where, indeed, the impact of 

extreme heat might be even stronger, due to the urban heat island effect (Fischer and 

Schär, 2010). 

2.4.2 The urban heat island effect and thermal comfort 

The well-documented phenomenon of the urban heat island (UHI) effect refers to cities 

being warmer than their rural surroundings because of the built environment absorbing, 

retaining, and/or producing more heat than the natural landscape it replaces (Oke, 1982). 

The UHI intensity is greatest at night, and it may disappear by day or the city may be 

cooler than the rural environments (Arnfield, 2003). The effect has been mainly described 

in large cities and towns with high concentration of populations, nevertheless, even rural-

villages—small built-up urban areas—can have considerably higher temperatures than 

their surroundings as a recent study showed (Lindén, Grimmond and Esper, 2015). 

The UHI is traditionally defined as the difference between the air temperature (AT) within 

the city and the AT of its surroundings, measured in the urban canopy layer, i.e. at 

standard screen height 2 m above ground and below the city’s mean roof height (Stewart 

and Oke, 2012) (Fig. 2.5). The phenomenon can also be studied via land surface 

temperatures (LST) with the increased spatial coverage offered by satellite remote 

sensing techniques in comparison to weather station data (Mendelsohn et al., 2007)—

however to the cost of  a larger uncertainty. When the urban heat island effect is estimated 

from LST measurements it is called surface UHI (sUHI), and usually has a different 

magnitude than the UHI. Remote sensing data are especially useful when there is no 

sufficient amount of in-situ measurements over the heterogeneous urban area and its 

surroundings, or when the few stations are not ideally located, so that, their 

representativeness is limited. 

This human-induced modification of the local climate is principally caused by alterations 

to the energy balance influenced by variations of landuse, surface properties (e.g., surface 

roughness, albedo, emissivity) and geometry of the urban area (Oke, 1982; Tomlinson et 

al., 2011). The heating-cooling systems of buildings, as well as the vehicles in traffic also 

promote warmer thermal environment in cities (Taha, 1997). The cumulative effect of 

these factors can result in a maximum air UHI of significant magnitude as large as 7 °C 

in London (Watkins et al., 2002) or 8 °C in New York (Gedzelman et al., 2003). UHI 
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research was carried out in more than 17 cities over the Iberian Peninsula in the 1990s 

(Cuadrat and Martín Vide, 2007) finding a maximum intensity of 8–9 °C in Madrid 

(López Gómez et al., 1993), 8 °C in Barcelona (Moreno-Garcia, 1994), and 5 °C in 

Zaragoza (Cuadrat, 2004). 

 

Figure 2. 5 The urban heat island profile. Source: Urban Sectoral Information System by 
Copernicus and Climate Change Service (http://climate.copernicus.eu/urbansis, accessed 5 

September 2017) 

There are many attempts to quantify the changes of UHI under climate change scenarios, 

however, research on the topic is still in an early state. A modelling study on the UHI of 

Paris during the severe heat wave of 2003 summer showed that the UHI intensity 

increases during heat wave days, and that for the cooler parts of the urban fabric (e.g., 

parks), the UHI intensification is around half of that of the dense urban fabric (De Ridder 

et al., 2017). In contrast, a study on the UHI of Brussels employing very high spatial 

resolution (250 m) modelling experiments (Lauwaet et al., 2016) found that the 

magnitude of the UHI is expected to decrease slightly due to global warming. 

Furthermore, they showed that presence of the UHI has a significant impact on the 

frequency of extreme temperatures in the urban area, i.e. heat wave days in the city 

increases twice as fast as in the surroundings (Lauwaet et al., 2016). A comprehensive 

study on 8 cities from different continents found that urban and rural air temperatures 

increase strongly by the end of century, however, the UHI intensity in most cases 
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increases only slightly, often even below the range of uncertainty (Lauwaet et al., 2015). 

In case of the study region of this thesis, an early study on the heat island effect of 

Valencia (Pérez Cueva, 2001) examined the phenomenon in relation to human comfort in 

the city in the late 1980s, to express the need for more environmentally-conscious urban 

planning. A measurement campaign carried out in the same year found significantly 

higher temperatures in the inner city—based on AT transect measurements by car (+3 °C) 

and LST values from NOAA satellite thermal images (+4.5 °C)—during two winter 

nights (Caselles et al., 1991).  

Many indicators have been developed to estimate thermal comfort, including simple 

ones such as predicted mean vote (PMV, e.g., Ye et al., 2003; Mazon, 2014), standard 

effective temperature (SET*, e.g., Mazon, 2014), humidex (H, e.g., Rainham and 

Smoyer-Tomic, 2003; Callejon-Ferre et al., 2011; Giannopoulou et al., 2014) or 

Discomfort Index (DI or THI, e.g., Toy, Yilmaz and Yilmaz, 2007) that are based on 

relative humidity, air temperature and/or equivalent temperature measurements, and more 

complex ones such as physiologically equivalent temperature (PET, e.g., Cohen, Potchter 

and Matzarakis, 2013; Mazon, 2014) or Universal Thermal Climate Index (UTCI, e.g., 

Mazon, 2014) that are based on air temperature, relative humidity, wind speed and mean 

radiant temperature. The PET developed by Mayer and Höppe (1987) is based on a heat-

balance model of the human body, and has been employed in several studies (e.g., Gómez 

et al., 2013) characterizing indoor and outdoor human thermal comfort. 

Thom’s Discomfort Index (DI, Thom, 1959) estimates effective temperature and 

describes the degree of discomfort at various combinations of temperature and relative 

humidity. It is a commonly used bioclimatic index in urban climate studies (Clarke and 

Bach, 1971; Unger, 1999; Poupkou et al., 2011; Papanastasiou, Melas and Kambezidis, 

2015) and to assess heat stress in relation to animal welfare (Bouraoui et al., 2002; García-

Ispierto et al., 2007). For example, Toy, Yilmaz and Yilmaz (2007) compared the human 

bioclimatic conditions in rural, urban and urban forest areas in the city of Erzurum 

(Turkey), applying the DI on hourly in-situ temperature and relative humidity data over 

a 10-month period. Sobrino et al. (2013) calculated the DI from nighttime land surface 

data obtained by remote sensing, to evaluate the general bioclimatic comfort conditions 

over the metropolitan area of Madrid (Spain). In present work, I also use the DI as it 

deemed to be simple but adequate tool to estimate urban bioclimatic comfort.  
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It is worth mentioning the Tourism Climatic Index (TCI, Mieczkowski, 1985) that is 

developed especially for the tourism sector based on climatic aspects relevant for tourists, 

such as daytime comfort, average (or daily) comfort, sunshine, precipitation and wind 

(Perch-Nielsen, Amelung and Knutti, 2010). It is used to evaluate climatic conditions of 

cities/regions in light of tourism attractiveness and appropriateness (Ramazanipour and 

Behzadmoghaddam, 2013; Kovács and Unger, 2014), and to explore the impact of 

projected climate change on the tourism climate resources (Amelung and Viner, 2006; 

Perch-Nielsen, Amelung and Knutti, 2010; Scott et al., 2016). Another specific index is 

the Wet Bulb Globe Temperature (WBGT, National Weather Service), that is a specific 

measure of heat stress in direct sunlight, taking into consideration: temperature, humidity, 

wind speed, sun angle and cloud cover (solar radiation). It is commonly applied to manage 

workload in direct sunlight (e.g., study on greenhouse-construction industry in SE Spain 

by Pérez-Alonso et al. (2011)). The heat index is a similar indicator calculated for shady 

areas, which takes into account temperature and humidity. 

Quantifying the additional hazard that the UHI poses on the urban population and 

illustrating the intra-urban variability of the thermal environment and discomfort (Hart 

and Sailor, 2009) is among the first steps towards designing climate adaptation strategies. 

As Eliasson (2000) pointed out, urban climate knowledge is much needed all along the 

urban planning process, and climatologists should meet the planners’ needs by providing 

them with good arguments, suitable methods and tools. In section 2.4.3 the concept of 

urban climate adaptation and climate risk management are further discussed. 

2.4.3 Urban climate adaptation and climate risk management 

According to the definition of the IPCC climate adaptation is “the process of adjustment 

to actual or expected climate and its effects. In human systems, adaptation seeks to 

moderate or avoid harm or exploit beneficial opportunities. In some natural systems, 

human intervention may facilitate adjustment to expected climate and its effects” (IPCC, 

2014a). This definition highlights that adaptation is not solely future-oriented, that it is 

not purely anthropocentric, and that there are potential benefits associated with adaptation 

efforts.  

Another term that is strongly associated with climate adaptation is climate resilience. 

“Resilience means the ability of a system, community or society exposed to hazards to 
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resist, absorb, accommodate to and recover from the effects of the hazard in a timely and 

efficient manner, including through the preservation and restoration of its essential basic 

structures and functions.”, as the United Nations Office for Disaster Risk Reduction 

(UNISDR) defines it. The IPCC provides similar description of resilience, adding 

“maintaining the capacity for adaptation, learning and transformation” as further 

components (IPCC, 2014a). Note, that climate adaptation refers to the process of 

adjusting to changes, while climate resilience describes the subject’s ability to adjust. 

In recent years, climate adaptation is increasingly conceived as the management of 

climate risk (Carter et al., 2015). According to Crichton’s risk triangle (Crichton, 1999) 

risk is a function of hazard, exposure and vulnerability. This concept is used for various 

risk assessments, including natural hazards disaster management and the insurance 

industry, as well as the IPCC and the UNISDR also adopted this. Here I introduce a 

slightly modified version by Carter et al. (2015) that emphasises adaptive capacity and 

integrates exposure in vulnerability (Fig. 2.6). As Carter et al. (2015) argues, it is 

important to separate out adaptive capacity from vulnerability when trying to formulate 

targeted policies or assessing barriers to implementing adaptation responses in urban 

context. 

In Figure 2.6 hazard is the potential occurrence of a natural or human-induced physical 

event or trend or physical impact that may cause loss of life or other health impacts, as 

well as damage and loss to property, service provision and environmental resources 

(IPCC, 2014a). Hence, weather and climate events that a city experiences, for instance 

floods, heat waves or urban heat island are assessed as hazards in this framework. Carter 

et al., (2015) sees the vulnerability of city residents, the infrastructure and the built and 

natural environment as a state, irrespective of whether they experience a hazard that could 

cause harm. Vulnerability constraints of physical and socio-economic factors, which 

influence the sensitivity and exposure of elements to climate change hazards (Alcamo 

and Olesen, 2012; EEA, 2012). Adaptive capacity then refers to “the ability of city 

governors, businesses and residents, and associated structures and systems to prepare for 

and moderate potential harm from climate change hazards and exploit any emerging 

opportunities” (Carter et al., 2015).  
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Figure 2. 6 The concept of climate risk, adapted from Carter et al. (2015). 

The risk assessment conceptual framework of Carter et al. (2015) is based on the 

framework by Rosenzweig et al. (2011), and has been applied in a range of cities 

worldwide, and is underpinned by World Bank research (Mehrotra et al., 2009). In 

general, risk-based management approaches to climate adaptation includes the 

assessment of impacts, vulnerabilities, the potential threats, and their causes (Kettle et al., 

2014). 

To enhance risk assessment and climate adaptation the integration of scientific and local 

knowledge is essential (Grêt-Regamey et al., 2013; Kettle et al., 2014). Local knowledge 

on the complex details of community characteristics, such as infrastructure design and 

performance, governance structures, and vulnerable populations need to be incorporated 

in the assessments of local risks and potential impacts, and at the same time, local 

managers need to be assisted with information of climate change impacts and projections 

for their regions (Amundsen, Berglund and Westskog, 2010; Kettle, 2012; Picketts, Curry 

and Rapaport, 2012; Kettle et al., 2014). This implies, that the co-production of 

knowledge (see section 2.5.2) is key in climate risk assessment and designing adaptation 

strategies (Moser and Dilling, 2007; Kettle et al., 2014). In the next section I describe the 

role of transdisciplinary approaches such as knowledge co-production in climate 

adaptation planning. 
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2.5 Urban climate adaptation and transdisciplinary 

collaboration  

The inherent complexity of contemporary challenges of health, migration, climate change, 

poverty, equality, new technologies or sustainable development, and the realization that an 

integration of multiple disciplinary perspectives is required to better understand and solve 

these problems prompted increasing commitment to TD collaboration in science and 

training (Klein, 1996; Stokols et al., 2008).  

This chapter provides background to the social study presented in Chapter 5. In section 

2.5.1 I explain the connection between climate science and transdisciplinary approaches, 

section 2.5.2 defines multi- inter- and transdisciplinary approaches, section 2.5.3 aims to 

clarify the different actors relevant to the studied TD collaborations, section 2.5.4 describes 

the different researcher roles in TD collaborations and section 2.5.5 introduces the 

conceptual framework of factors influencing the effectiveness of TD collaborations.  

2.5.1 Facing complex global challenges, towards societal problem 

solving 

The role of science as serving society has gained new ground in relation to sustainability 

transitions (Future Earth website; Lang et al., 2012; Miller, 2013; Wittmayer and Schäpke, 

2014). Inter- and transdisciplinarity, as well as social relevance are key elements of a 

science that aims to ameliorate pressing global issues, and support sustainability transitions 

(Loorbach, 2010; Wiek et al., 2012; Wittmayer, Roorda and Steenbergen, 2014; van der 

Hel, 2016). In recent years, an innovative collaboration form, knowledge co-production, 

has emerged as a rewarding approach for addressing the complex problems of sustainable 

urban development (Hansson and Polk, 2016; Mistra Urban Futures, 2016). As the “Mistra 

Urban Futures” project defined it, knowledge co-production refers to collaboratively based 

processes where different actors and interest groups come together with researchers to share 

and create knowledge that contributes to creating viable solutions for today’s problems, and 

increase the research capacity for societal problem-solving in the future (Mistra Urban 

Futures, 2016). "Co-" stands for collaborative, or working together cooperatively. 

Diverse—climate and non-climate related—global challenges generated a need to integrate 

different types of knowledge from different disciplines (Klein, 1996; NAS/NAE/IM, 2004; 
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Miller, Muñoz-Erickson and Redman, 2011; Scholz, 2011), and a great need for closer 

collaboration at different decision-making levels and across organisational borders that 

historically were cut off from one another institutionally and administratively (Weart, 2012, 

2013). Especially in health research the importance of teamwork including various 

disciplines has been realised long ago, based on the evidences that in terms of scientific, 

training, policy, and health outcomes these collaborations are more efficient, especially 

relative to smaller-scale, discipline-based research projects (Stokols et al., 2003, 2008; 

Klein, 2008).  

The connections between climate science and policy makers were limited during the last 

decades of the 20th century and started gaining momentum with the appearance of the 

IPCC’s First Assessment Report (IPCC, 1990). In its early ages, it focused mainly on 

regional statistical studies and providing local and regional information on rainfall rates, 

flood recurrence, and seasonal temperatures to farmers, planners and engineers (Weart, 

2013). This shows, that in its nascence, much of climatology was a service for industry, and 

intrinsically interdisciplinary (Shaman et al., 2013). However, as the field expanded thanks 

to post-war funding of meteorology and geophysics, individual researchers grew more 

specialized and the field became fragmented (Shaman et al., 2013; Weart, 2013).  

The diverse disciplines that had something to say about climate started to contact each 

other in the 1960s and 1970s, due to the increasing worries about climate change and the 

growing impact of humans on the Earth system (Mooney, Duraiappah and Larigauderie, 

2013; Shaman et al., 2013). In the 1990s and 2000s the integration of climate related 

disciplines had been advancing, but none of the cooperation could solve entirely the 

problem of fragmentation. To address this problem in an international policy level, the 

Intergovernmental Panel on Climate Change (IPCC) was established around the turn of 

the 21st century that finally institutionalized an unprecedented process of exchanges, and 

became a centre of integrated interdisciplinary cooperation in climate (Weart, 2013). 

2.5.2 Terminology: Multi-, Inter- and transdisciplinary 

A wide range of terms—such as interdisciplinary, transdisciplinary, multidisciplinary, or 

multi-expert—are used to describe collaborative working arrangements between different 

professionals (Thylefors, Persson and Hellstrom, 2005; Aboelela et al., 2007; Nancarrow 

et al., 2013). Although these terms are often used interchangeably, there are some 
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distinctions determined in the literature. A common consideration is that the prefixes multi-

, inter- and trans- refer to the intensities of integration of various disciplines (Klein, 1996; 

NAS/NAE/IM, 2004; Blanchard and Vanderlinden, 2010), however the use of terms are 

not always consistent through the literature of various fields. (Throughout the thesis when 

referring to the literature, I kept the original terms (TD, ID) used by the authors.) 

The Fig. 2.7 adapted from Blanchard and Vanderlinden (2010) illustrates the four level of 

cross-disciplinary interaction as four points on a scale. Still, according to the Network for 

Transdisciplinary Research – Swiss Academies of Arts and Sciences (td-net website), the 

boundaries between interdisciplinarity and transdisciplinarity are fuzzy, thus a broader 

definition might be more helpful when studying such collaborations.  

 

Figure 2. 7 Four levels of cross-disciplinary interaction. Adapted from Blanchard and 
Vanderlinden (2010), inspired by Klein (1996) and Jakobsen, Hels and McLaughlin (2004). 

The US National Academy of Sciences proposed a definition that considers 

interdisciplinary research as the umbrella of transdisciplinary research: “Interdisciplinary 

(ID) research is a mode of research by teams or individuals that integrates information, data, 

techniques, tools, perspectives, concepts, and/or theories from two or more disciplines or 

bodies of specialized knowledge to advance fundamental understanding or to solve 

problems whose solutions are beyond the scope of a single discipline or area of research 

practice” (NAS/NAE/IM, 2004, p188). This broad definition has two main concept that is 

worth to point out. It emphasizes that such ID/TD research approach integrate knowledge 

not only from different scientific disciplines, but also from other bodies of specialised or 

expert knowledge, furthermore, it assigns two main purpose: advancing fundamental 
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understanding and solving problems (td-net website; Pohl and Hirsch Hadorn, 2007; Regeer 

and Bunders, 2009; Klein, 2010).  

Based on the concepts summarised by the Network for Transdisciplinary Research, TD 

research integrates two processes in the co-production of knowledge: a scientific process 

of answering research questions and a societal process of addressing challenges according 

(Fig. 2.8) (td-net website; Pohl and Hirsch Hadorn, 2007; Regeer and Bunders, 2009). As 

none of the mentioned processes are seldom capable to solve complex and diverse 

challenges of today, it is essential that researchers from different disciplines collaborate 

with actors from civil society and the private and public sector to jointly produce knowledge 

that leads to adequate solutions (td-net website). According to Lemos and Morehouse 

(2005), highly interactive models of research fosters higher levels of innovation and social 

impact.  

There is a growing amount of studies that consider Climate Services within the conceptual 

framework of transdisciplinarity (e.g., Lemos and Morehouse, 2005; Kirchhoff, Lemos and 

Dessai, 2013; Bruno Soares, Alexander and Dessai, 2017). In regard to seasonal climate 

forecasts Dilling and Lemos (2011) found that nearly all of the examined cases of successful 

use of climate information involved some kind of iteration between knowledge producers 

and users. 

 

Figure 2. 8 Linking societal problem solving with scientific knowledge production in a process 
of co-producing knowledge in TD research. The process encompasses three tasks: problem 
framing (identifying and structuring a problem), problem analysis, and co-development of 

solution. (Adapted from td-net website with slight modifications.) 

Problem	
framing

Problem	
analysis

Co-development	
of	solution	

Science	
handles	
research	
questions

Society	
handles	

sustainability	
challenges

Science-society	interface



Chapter 2: Background and conceptual frameworks 

39 

2.5.3 Science-practice-policy interface: who is who? 

There is a growing consensus that knowledge exchange and user engagement is essential 

to build effective Climate Services for all sectors and contexts (AMS, 2012; Lemos, 

Kirchhoff and Ramprasad, 2012; Bruno Soares, Alexander and Dessai, 2017). Lourenço et 

al. (2015) pointed out, potential—climate and non-climate—impacts, risks, ways to reduce 

them, and opportunities that the adaption options create are often more important for 

decision-makers than the raw or even transformed climate data. Nevertheless, decision-

makers are not a coherent entity, but a collection of individuals, each of whom uses different 

information to address different goals in a unique context (Morss et al., 2005). To satisfy 

the diverse needs of users/decision-makers, opportunities for interaction and co-production 

of knowledge should be promoted and facilitated by building science-practice-policy 

interfaces (Kirchhoff, Lemos and Dessai, 2013).  

In the next paragraphs, I clarify some terms used in the cross-sectoral case study, and 

connect them to the Climate Services market. The term ‘actor’ refers to a category of person 

who performs a certain function within a system or process (Long, 1990) while 

‘stakeholder’ is a term commonly used to identify those actors who have a stake or an 

interest in a particular issue (Grimble and Wellard, 1997). This interest belongs to those 

affected or who can affect a particular decision or actions (Lelea et al., 2014).  

Another term to clarify is the ‘practitioner’. In the case study of climate adaptation planning, 

I use the term practitioners to those stakeholders that have relevant professional expertise 

in relation to the issue and they work outside of the academy, e.g., technical/strategic 

consultants, municipality representatives. They are classified as primary stakeholders, 

because they are directly involved with the issue at hand (Lelea et al., 2014).  

‘Policy maker’ is a person with power to influence or determine policies and practices at 

an international, national, regional, or local level. They are classified as secondary 

stakeholders, as they are indirectly affecting (by setting rules) or being affected by the issue 

at hand (Lelea et al., 2014).  

The term ‘decision-makers’ is used inconsistently in the literature, depending on the sector 

and discipline. For instance, some studies refer only to policy-makers as decision-makers, 

while others use the term equivalent to stakeholders. To avoid confusion between the use 

of various terms, in this work I refer to all participants as stakeholders, and make a clear 
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distinction between academics, practitioners and policy makers.  

Nevertheless, in real life cases one might discover that there are individuals who fit in 

multiple categories. Tools to graphically assess and represent stakeholders of different 

categories can be found e.g., Zimmermannn and Maennling (2007). Considering the above 

classification of market actors, the providers of Climate Services (detailed in section 2.2.1) 

correspond to the academic stakeholders, and the users are the practitioners.  

2.5.4 Roles of researchers 

Wittmayer and Schäpke (2014) established an in-depth understanding of the activities and 

roles of researchers in sustainability transitions based on action research and transition 

management approaches. In light of the emerging complex global challenges, the 

understanding of what a researcher does and is supposed to do is changing, as researchers 

more and more often face the demand to “recognise and accept their social responsibility” 

(Cornell et al., 2013, p67). Thus, researchers tend to engage in process and action-

oriented activities, e.g. they guide collective learning processes, put sustainability into 

practice or commit themselves to knowledge co-production serving various stakeholders 

with scientific information (Pohl et al., 2010; Loorbach, Frantzeskaki and Thissen, 2011). 

These are emerging activities for researchers that could lead to confusion of roles and 

responsibilities, or tension due to the need to adjust for the new requirements, or 

inefficient collaborative work (Stokols et al., 2008; Pohl et al., 2010). 

Five ideal-type roles of researchers are identified by Wittmayer and Schäpke (2014) in 

the scientific arena of sustainability transitions, which are: reflective scientist, process 

facilitator, knowledge broker, change agent and self-reflexive scientist. The role of 

reflective scientist is the closest to what is conventionally understood as ‘research’. They 

systematically collect, analyse, interpret and report data from an observer point of view 

(Wittmayer and Schäpke, 2014).  

The role designation of process facilitator refers to the activity of initiation and 

facilitation of processes and concrete short-term actions (Pohl et al., 2010). The 

knowledge broker is a scientist that wants to hold an active role in (sustainability) 

transitions, thus mediates between different perspectives and pursues relevant and 

tangible outcomes (Loorbach, Frantzeskaki and Thissen, 2011; Miller et al., 2013). The 

change agent’s role also includes the explicit participation of the researcher in processes 
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aiming to address real-world problems; the researcher seeks to motivate and empower 

partners, and networks with stakeholders to address local environmental/sustainability 

challenges (Miller et al., 2013; Wittmayer and Schäpke, 2014). The role of self-reflexive 

scientist refers to being reflexive about one’s positionality and normativity, and to seeing 

oneself as part of the dynamic that one seeks to change (Wittmayer and Schäpke, 2014). 

In case of Climate Services there is a higher need for additional researcher roles besides 

reflective scientist, as engaging with stakeholders is demanding in terms of time and 

requires extra learning (Stokols et al., 2008; Bennett, Gadlin and Levine-Finley, 2010; 

Wittmayer and Schäpke, 2014). 

2.5.5 Key determinants of effective TD collaborations 

Stokols et al. (2008) provided basic guidelines on how to establish a strategic basis for 

designing, managing and evaluating team science initiatives, by reviewing the literature 

of transdisciplinary collaborations with a special focus on the health care sector. By the 

analysis of the ecology of team science, they established six categories of contextual 

factors that influence the effectiveness of TD collaborations in research, training, and 

cross-sectoral settings. The typology of these a) intrapersonal, b) interpersonal, c) 

organizational, d) physical environmental, e) technologic and f) other political and 

societal factors with slightly modified descriptions is drawn in Figure 2.9. The complex 

web of contextual determinants defined by Stokols et al. (2008) is based on the 

comprehensive review of four distinct areas of research on team performance and 

collaboration. These areas cover studies of cyber-infrastructures designed to support TD 

collaborations across remote sites, research on community-based coalitions for health 

promotion, investigations about practices of TD research centres and training programs 

as well as social psychology and management studies. 

A framework of competencies for effective interdisciplinary team work by Nancarrow et 

al. (2013) was also deemed to be useful for present study. They identified ten principles 

for good interdisciplinary team work based on a systematic review of literature on 

interdisciplinary collaborations and the perceptions of over 200 staff from health care 

teams in the UK. They found that the characteristics underpinning effective 

interdisciplinary team work are (1) positive leadership and management attributes; (2) 

communication strategies and structures; (3) personal rewards, training and development; 
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(4) appropriate resources and procedures; (5) appropriate skill mix; (6) supportive team 

climate; (7) individual characteristics that support interdisciplinary team work; (8) clarity 

of vision; (9) quality and outcomes of care; and (10) respecting and understanding roles.  

The framework on contextual factors that influence TD collaborations (Stokols et al., 

2008) and the framework of competences that support effective interdisciplinary team 

work (Nancarrow et al., 2013) have several common points and similarities, however the 

former provides a broader view by including different social and political levels of 

analysis (individual, team, institutional, national, global), meanwhile the latter mainly 

focuses on the level of individual acting in a team. Thus, both frameworks are taken into 

consideration in the present study, but the former one provides the backbone for the 

analysis. A brief description of the different contextual factors and the corresponding 

principles is given below. 

 

Figure 2. 9 Typology of contextual factors influencing TD collaboration. The figure is adapted 
from Stokols et al. (2008). The text in red is added as another important factor by the author of 

this thesis (discussed in detail in Chapter 5). 
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methodologic flexibility and their willingness to devote substantial amounts of time both 

to learn about other’s expertise and to develop intellectual and personal relationships (td-

net website; Israel et al., 1998; Stokols, 2006; Stokols et al., 2008). TD success is further 

enhanced when members support a culture of sharing (responsibility, common goals), and 

embrace TD ethical conduct and egalitarian values (Wray, 2002; Stokols et al., 2003). 

Furthermore, the extent of previous collaborative experience as well as empowering, 

inclusive and transformational leadership style appears to be crucial to effective TD 

collaborations (Bennis, 1997; Lantz et al., 2001; Hall, Stokols and Moser, 2008). 

Eight from the ten principles of effective interdisciplinary team work described by 

Nancarrow et al. (2013) have common implications with the Intrapersonal Factors (Table 

2.1). The principle of Individual characteristics (7) includes necessary knowledge, 

experience, listening skills, reflexive practice and desire to work on the same goals. It is 

necessary to have a clear leader of the team with clear direction and management, 

democratic, shared power, support and supervision, leader who acts and listens—also 

correspond to the Intrapersonal Factors. 

2.5.5.2  Interpersonal Factors 

Earlier studies on teamwork found that interpersonal communication is a critical 

determinant of collaborative effectiveness (e.g., Molyneux, 2001; Aboelela et al., 2007; 

Xyrichis and Lowton, 2008; Bennett, Gadlin and Levine-Finley, 2010). Regular and 

effective intellectual and social communications are necessary so members can build 

trusted partnership, set common goals, learn about their colleagues and understand their 

perspectives, clarify roles, and eventually transcend disciplinary boundaries to develop 

novel conceptual frameworks to solve complex problems (NAS/NAE/IM, 2004; Xyrichis 

and Ream, 2008). 

The most important determinant that contribute to good interdisciplinary team work via 

Interpersonal Factors is the principle of Communication (2) (Nancarrow et al., 2013). 

Individuals with communication skills, as well as appropriate systems to promote 

interaction within the team are essential (Xyrichis and Lowton, 2008; Nancarrow et al., 

2012). In general, most of those principles identified by Nancarrow et al. (2013) that 

belong to the Intrapersonal Factors, also relate to the Interpersonal Factors (see table 2.1).  
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2.5.5.3  Organizational Factors 

A prerequisite for sustaining motivation among participants in TD collaborations is the 

presence of strong organizational incentives (Aboelela et al., 2007; Xyrichis and Lowton, 

2008; Wittmayer and Schäpke, 2014). As team projects require substantial time 

expenditure for group meetings, workshops, brainstorming sessions, organizations need 

to recognize participating in TD projects and reward members for engaging in 

collaborative activities by providing organizational, environmental, and technologic 

support and incentive structures (Olson and Olson, 2000; NAS/NAE/IM, 2004; Rhoten 

and Parker, 2004; Stokols, 2006). 

Considering the framework of principles by Nancarrow et al. (2013), the principal of 

Appropriate resources and procedures (4) include structures such as team meetings, 

organizational competences, and team members’ workspaces, that should be ensured by 

the institution. The principal (3) of Personal rewards, training and development also 

belong to the Organizational Factors. This principle correspond to the learning, training 

and career development opportunities, incorporates individual rewards (e.g. merit and 

promotion procedures in academic settings) and opportunity, morale and motivation 

(Nancarrow et al., 2012, 2013) (Table 2.1). Nonetheless, the latter mentioned principal 

(3) is also related to the Intrapersonal Factors. 

2.5.5.4  Physical Environmental Factors 

One effective strategy for fostering communication and encouraging the integration of 

intellectual ideas is to maximize spatial proximity among members’ offices (Steele, 1986; 

Stokols, 2006). If this arrangement is not feasible, scheduling regular face-to-face 

meetings, social gatherings and opportunities to interact personally become more 

important. Studies of team environments (e.g., Sundstrom, DeMeuse and Futrell, 1990; 

Brill and Weidemann, 2001) highlighted that proper environmental support is necessary 

to improve performance. For instance, access to distraction-free work spaces and 

comfortable meeting areas are indispensable to facilitate members’ participation in both 

individualized tasks requiring high levels of concentration or confidentiality and 

collective activities involving group discussion or ideation (Stokols et al., 2008).  

As mentioned in section 2.5.5.3, the principle (4) Appropriate resources and procedures 

include working environmental factors such as team members working from the same 
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location or via remote connections (Nancarrow et al., 2013) (Table 2.1). It also refers to 

the appropriate communication systems, which are related to the Technological Factors.  

2.5.5.5  Political and Societal Factors 

Easing of political barriers through cooperative international policies can encourage the 

initiation and long-term success of TD collaborations (Sonnenwald, 2007; Andonova, 

Betsill and Bulkeley, 2009; Börner et al., 2010). As the global environmental changes 

impose more pressure on the socio-economic systems, the need for transformative 

environmental policies towards global sustainability become more evident (van der Hel, 

2016). Thus, new forms of cross-border and cross-sector collaborations are emerging, 

such as large-scale international research/practice co-operations (Future Earth website, 

td-net website, Climate-ADAPT website), transnational environmental political 

organizations (Andonova, Betsill and Bulkeley, 2009), public-private partnerships (Link, 

1999) and cooperative research centres between science and industry (Adams, Chiang 

and Starkey, 2001; Boardman and Gray, 2010).  

The socio-political factors are not taken into account in the framework of principals by 

Nancarrow et al. (2013), as the principal competences studied by them are focused on the 

individual and team level of analysis, and not looking at external influences on the 

collaboration. 

2.5.5.6  Technologic Factors 

An organization’s technologic infrastructure and members’ technologic readiness 

strongly influence remote as well as place-based collaborations (Olson & Olson, 2000). 

Linkages between sites, electronic networking capabilities, access to necessary band-

width, data security and technical support provided by an organization are essential to 

improve a team’s prospects to achieve its goals (Lipnack and Stamps, 1997; Xyrichis and 

Lowton, 2008). Members’ technologic readiness, including their familiarity with various 

electronic information and communication tools, protocols, and codes of conduct has 

been found to enhance teamwork (Sonnenwald, 2007; Stokols et al., 2008).  

In the framework by Nancarrow et al. (2013) the Technologic Factors are marginally 

incorporated as the principles of Appropriate resources and procedures (4) and 

Communications (2), that both refer to the proper communication systems and technical 



Chapter 2: Background and conceptual frameworks 

46 

facilities that foster cooperation between team members. The Technologic Factors were 

not measured directly in this study. The technologic readiness is partly described in 

relation to the Physical Environmental Factors, however, evaluating the full spectrum of 

technologic preparedness (both the organization’s and the member’s) requires deeper 

investigation with different methods, that is beyond the scope of this analysis. 

Table 2. 1 Common points of the framework on contextual factors that influence TD 
collaborations (Stokols et al., 2008) and the framework of competences that support effective 
interdisciplinary team work (Nancarrow et al., 2013). 

Principles  Corresponding Contextual factors 

1. Leadership and management Inter- and Intrapersonal 

2. Communication Interpersonal 

3. Personal rewards, training and 
development 

Intrapersonal, Organizational 

4. Appropriate resources and procedures Organizational/Physical Environmental, 
Technologic 

5. Appropriate skill mix Inter- and Intrapersonal 

6. Climate Inter- and Intrapersonal, Organizational 

7. Individual Characteristics Intrapersonal 

8. Clarity of vision Inter- and Intrapersonal, Organizational 

9. Quality and outcomes of care  
» Beneficiary Stakeholder relations* 

Inter- and Intrapersonal, Organizational 

10. Respecting and understanding roles Intra-and interpersonal 

– Societal and Political 

*The beneficiary stakeholders in present case study are the municipalities and their citizens. 
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Chapter 3  
 

Evaluating the performance of the RCA4 regional 

climate model and analysing the temperature 

projections over the Iberian Peninsula 

 

 

 

 

3.1 Introduction 

The Mediterranean region has been identified as one of the Earth’s most sensitive regions 

to global warming (Giorgi, 2006) as it is pronounced in the high number of evidences, such 

as intensification of heat stress (Diffenbaugh et al., 2007), longer summer heat waves (Paul 

M. Della-Marta et al., 2007a), growing number of temperature extremes (Brunet et al., 

2007; Huhne and Slingo, 2011) and marked decrease in river discharges (López-Moreno et 

al., 2011). The region is particularly responsive to the climate system’s changes due to 

increased GHG forcing, that is manifested in large decrease in precipitation, increase in 

inter-annual warm season variability and pronounced mean warming (Giorgi, 2006).  

The Iberian Peninsula (IP) is situated in the western Mediterranean region, between 

subtropical and mid-latitude. It is characterized by a complex topography and its climate is 

mainly influenced by the Atlantic Ocean, the Mediterranean Sea and air masses from the 

Sahara Desert (Dasari et al., 2014). These results in complex interactions and feedbacks 
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involving ocean atmosphere-land processes, which play a prominent role in climate and, in 

turn, heavily impact on human activities (MED-CORDEX website). Since most global 

coupled climate models are still run at coarse (one to a few hundred kilometres) horizontal 

resolutions, they are not able to accurately describe these smaller scale regional differences 

(e.g. the Pyrenees or the river basins). 

EURO-CORDEX (EURO-CORDEX website) is the European branch of the CORDEX 

(COordinated Regional climate Downscaling Experiment) initiative aiming at producing 

ensemble climate simulations based on multiple dynamical and empirical-statistical 

downscaling models forced by multiple general climate models from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) (Jacob et al., 2014). As the Mediterranean region 

is a good case study for climate regionalization and was naturally chosen as a CORDEX 

sub-domain (MED), the Med-CORDEX framework endorsed by Med-CLIVAR and 

HyMeX was established (Herrmann et al., 2011; Ruti et al., 2016). Thanks to this there is 

an emerging number of downscaling and RCM based impact studies for the whole 

Mediterranean basin (e.g., Flaounas, Drobinski and Bastin, 2013; Tramblay et al., 2013). 

The present study focuses on dynamically downscaled regional climate simulations by an 

RCM ensemble over the Iberian Peninsula. To describe future changes in seasonal mean 

temperature (section 3.4), in the first part of the study, I evaluate the performance of a 

GCM-RCM ensemble to reproduce the general features of near surface temperature over 

the domain (section 3.3). The high resolution (0.11°, ca. 12.5 km) version of the Regional 

Climate Model RCA4 developed by the Rossby Center (SMHI, Sweden) is chosen for this 

analysis provided by the EURO-DORDEX experiments. Given the model-user perspective, 

I pursue an application-driven evaluation of the generic aspects of the model in terms of 

capturing the mean climatology over the Iberian Peninsula, and do not delve into in-depth 

analysis of the representation of physical processes. Data and methods are described in 

section 3.2. 

As a first step of evaluation, the performance of the RCA4 is examined by given “perfect 

boundary conditions” from reanalysis data. As studies (Hawkins and Sutton, 2009) have 

shown that a significant fraction of the uncertainties in regional climate simulations is 

connected to the GCM that is used for deriving the regional climate information, as a second 

step, I quantify the contribution of GCMs to the overall bias structure. Third, the ensemble 

of RCA4 simulations driven by five GCMs is compared to the observations. Evaluation 
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metrics that integrate information over the domain as well as maps are used to reveal 

geographical details in the bias pattern. 

In the second part of the study (section 3.4), the seasonal mean temperature change 

projected for the mid- and long-term future is analysed in an ensemble of RCA4 simulations 

taking boundary conditions from the five GCMs under two emission scenarios. The 

uncertainties in future climate change related to the different boundary conditions and 

emissions are assessed through characterizing the robustness and spread between 

projections. It is clear that there is a growing demand for future climate information from 

different sectors, thus, the development of easily understandable and useful climate 

products is urgent. The study aims to facilitate the integration of regional climate model 

outputs into Climate Services by highlighting a good practice of illustrating future climatic 

changes. 

The objectives of study are as follows: 

(i) evaluate the performance of RCA4 driven by “perfect boundary conditions” in 

terms of reproducing mean seasonal temperature features over the IP, in 

comparison to different observational datasets; 

(ii) evaluate the overall bias in the ensemble of five GCM-driven RCA4 

temperature simulations compared to observations; 

(iii) evaluate the contribution of driving GCMs to the overall bias structure in the 

RCA4 temperature simulations; 

(iv) assess seasonal mean temperature projections and uncertainties from different 

driving GCMs and emission scenarios on mid- and long-term timescales; 

(v) provide easily understandable illustration of future temperature change and its 

uncertainties over the Iberian Peninsula to improve the communication of 

climate knowledge to users. 

3.2 Data and Methods 

According to the objective of present study, analysis of future temperature projections for 

the IP is carried out after a thorough evaluation of the performance of the climate models. 

In the “Data and Methods” section first the study area (3.2.1), afterwards the simulations 

from the RCM (3.2.2.1), the driving GCMs (3.2.2.2), and the observational data (3.2.2.3) 

is presented, furthermore, the regridding method of model output data (3.2.3.1) and the 
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metrics used for model evaluation (3.2.3.2) are described.  

The monthly near-surface (2 m) temperature data were analysed over the 25-year period 

of 1981-2005 (evaluation period). The evaluation period was chosen based on the 

availability of historical climate model simulations and observations. The mid-term 

(2041-2070) and long-term (2071-2100) future projections are compared to current 

climate that is represented by the 1971-2000 reference period. Even though the latest 

IPCC report (IPCC, 2013b) started to use 20-year periods, I selected 30-year periods 

based on the common practice recorded in the literature, so that the results of this study 

are comparable to previous works. For more details on reference periods see section 2.3.4 

in Chapter 2. 

3.2.1 Study area 

The IP is the westernmost Southern European peninsula with an area of approximately 

582 000 km2, bordered on the southeast and east by the Mediterranean Sea, and on the 

north, west, and southwest by the Atlantic Ocean. The Pyrenees mountains are situated 

along the northeast edge of the peninsula, forming a natural border from the rest of 

Europe. The peninsula is divided between Spain and Portugal, but it also includes the 

mini state of Andorra and smaller territories of France (on the NE) and United Kingdom 

(Gibraltar). The advection of Atlantic air masses dominates the precipitation regime in 

winter, while in summer it is determined by convective processes which depend on land 

surface conditions (Font-Tullot, 2000). There is a marked climate gradient of increased 

diurnal and seasonal thermal variation from the coastal areas to the centre of the peninsula 

(Dasari et al., 2014). 

The IP is a largely mountainous terrain (Fig. 3.1). A major part of the peninsula consists 

of the Meseta, a highland plateau rimmed and dissected by mountain ranges, such as the 

Central System in the heart of the Meseta, Sierra Morena on the south, the Cantabrian 

Mountains on the north, and the Iberian System in the central/eastern region. The vast 

plateau ranges from 610 to 760 m in altitude, staggered slightly to the east and tilted 

slightly toward the west (Font-Tullot, 2000). The major lowland regions are the 

Andalusian Plain in the southwest (the river valley of Río Guadalquivir), the Ebro Basin 

in the northeast (the river valley of Río Ebro), the Tejo Valley on the west and the coastal 

plains. 
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Figure 3. 1 The topography of the Iberian Peninsula. (Base of map: Google Earth) 

The northern parts of the peninsula have temperate climate while southward the climate 

gradually becomes subtropical. The north-western region (Galicia and North Portugal) 

can be characterized with temperate oceanic climate (Cfb in Köppen–Geiger climate 

classification system, Kottek et al., 2006), while the Pyrenees (2000–3000 m high) has 

alpine climate classified as “tundra type” (group E by Köppen–Geiger). The inner parts 

and the “southern half” of the peninsula are characterised by hot-summer Mediterranean 

climate (Csa by Köppen–Geiger), with smaller regions (e.g. around Zaragoza) 

characterised by cold semi-arid climate (BSk, by Köppen–Geiger). Andalucía region (on 

the south of peninsula) represents the warmest part of the domain, as the winters are mild 

(mean T = 8–12 °C) and the summers are hot (mean T = 24–26 °C) across the region. The 

subtropical conditions turn into arid, i.e. cold desert climate (BWk by Köppen–Geiger) in 

the foreground of Baetic Mountains and Sierra Nevada, on the SE coast.  

Considering all the seasons, the warmest regions of the domain are the SW region—

especially the basin of Guadalquivir—, the Mediterranean coast and the Ebro Basin in the 

foreground of Pyrenees. Relatively colder regions correspond to higher orographic 

features, such as the Cantabrian Mountains on the NW, the Pyrenees on the NE border, 

the Iberian System and Central System in the inner part of the peninsula and the Baetic 

Mountains along with Sierra Nevada on the SE. 

Cantabrian Mountains
Pyrenees

Sierra Nevada

Valencia

Lisbon

Mediterranean SeaNorth Atlantic 
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3.2.2 Climate Model Simulations 

3.2.2.1  The RCM 

The simulations of the regional climate model RCA4 (Rossby Centre Atmosphere version 

4) are available from the EURO-CORDEX framework (EURO-CORDEX website). The 

RCM is based on the numerical weather prediction model HIRLAM (Undén et al., 2002) 

and this version, RCA4, was built on its predecessor RCA3, described by Samuelsson et 

al. (2011). During the development of RCA4 various criteria were addressed to improve 

the model and its usability. A criterion was that it should be easily transferable and 

applicable for any domain worldwide without retuning it (Kjellström et al., 2016).  

Furthermore, RCA has been improved both in physical and technical characteristics 

(Kupiainen et al., 2011). The global physiography data read by RCA include Gtopo30 

orography, ECOCLIMAP land-use and soil information, soil carbon and lake depth which 

make possible that RCA4 can be applied globally. Among other updates and 

improvements of its globally applicable routing scheme (Berg, P., Döscher, R., Koenigk, 

2013), some parameterization schemes have been modified, mainly the land and 

hydrological processes. The Kain-Fritsch convective scheme (Kain and Fritsch, 1990) has 

been updated to the Bechtold Kain-Fritsch scheme (Bechtold et al., 2001) which separates 

the shallow and deep convective processes. The technical modifications in going from 

RCA3 to RCA4 and the model performance in hindcast experiments are documented by 

Strandberg et al. (2014).  

The choice of RCA4 is supported by the good validation results of the RCA3 (Samuelsson 

et al., 2011) and RCA4 (Kotlarski et al., 2014; Strandberg et al., 2014). In the high-

resolution experiment design carried out in the EURO-CORDEX framework, RCA4 was 

setup on a rotated latitude-longitude grid over Europe with a horizontal resolution of 

0.11°, corresponding to approx. 12.5 km. The integration domain includes all Europe, and 

I extracted the Iberian Peninsula (9.8°W– 3.8°E, 35.7°S – 43.8°N) as study region.  

For the evaluation run, the RCA4 model was driven by “perfect boundary conditions” 

provided by the ERA-Interim reanalysis (Dee et al., 2011) covering the period 1981-

2005. Reanalysis means the analyses of temperature, wind, and other meteorological and 

oceanographic quantities, created by processing observational data using fixed state-of-

the-art weather forecasting models and data assimilation techniques (IPCC, 2014b). Thus, 
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a reanalysis yields complete, global gridded data that are as temporally homogeneous as 

possible to serve e.g. as input data (“perfect boundary conditions”) to climate models. In 

present case, for the evaluation run of the RCA4, the ERA-Interim provided the required 

atmospheric lateral boundary conditions, sea surface temperature and sea ice cover over 

ocean surfaces.  

The ERA-Interim is considered to be of very high quality (Dee et al., 2011), particularly 

in the Northern Hemisphere extratropical area where reanalysis uncertainty is considered 

to be negligible (Brands et al., 2013). To evaluate the RCM performance over the IP, the 

RCA4 driven by ERA-Interim was compared to observations and to the ERA-Interim 

reanalysis itself. 

3.2.2.2  Boundary data from GCMs and emission scenarios 

As a next step of evaluation, the RCA4 has been given boundary conditions from five 

different GCMs: CNRM-CM5, EC-EARTH, HadGEM2-ES, IPSL-CM5A-MR, MPI-

ESM-LR. All of them are fully coupled atmosphere–ocean General Circulation Models 

forced by different emission scenarios. The list of the GCMs and the RCM with references 

can be found in Table 3.1. Throughout this study, the individual RCM simulations driven 

by GCMs will be identified by a shorter version of the GCM acronym used by EURO-

CORDEX (referring to the institution that took part in the development of the model). 

The simulations have been performed by SMHI for i) 1961–2005 with historical forcing 

and ii) for 2006–2100 under different Representative Concentration Pathway (RCP) 

scenarios (Moss et al., 2010). 

GCMs may simulate quite different responses to the same forcing, simply because of the 

way certain processes and feedbacks are modelled. For this reason, it is important to 

evaluate the performance of different GCMs under historical forcing. In these simulations 

(historical runs) time-varying external forcing—such as GHG and aerosol concentrations, 

solar input—is applied based on historic records from a given year up to the present. As 

these forcing elements change over time, the GCM simulates the evolution of the climate 

over this period in these historical runs. 
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Table 3. 1 Overview on the models used in this study. All simulations were performed by SMHI 
and model outputs are provided by the EURO-CORDEX framework (EURO-CORDEX website). 

Climate 
model 

Acronym 
in EURO-
CORDEX 

Institute (country) 
Acronym 

in this 
study 

Reference Website 

RCM RCA4 

Swedish 
Meteorological and 

Hydrological 
Institute (Sweden) 

RCA4 

Samuelsson 
et al. 

(2014), 
Strandberg 

et al. (2014) 

www.smhi.se 

Driving 
GCM 

CNRM-
CERFACS-

CNRM-
CM5 

Météo-France and 
Centre Européen de 

Recherche et de 
Formation Avancée 

en Calcul 
Scientifique (France) 

CNRM Voldoire et 
al. (2013) www.cnrm-game.fr 

ICHEC-
EC-

EARTH 

Irish Centre for 
High-End 

Computing and EC-
Earth consortium of 
weather services and 

universities in 
Europe (EU) 

ICHEC Hazeleger 
et al. (2010) www.ec-earth.org 

MOHC-
HadGEM2-

ES 

Met Office Hadley 
Centre (UK) HADGEM2 Collins et 

al. (2011) www.metoffice.gov.uk 

IPSL-IPSL-
CM5A-MR 

Institut Pierre Simon 
Laplace (France) IPSL Dufresne et 

al. (2013) www. icmc.ipsl.fr 

MPI-MPI-
ESM-LR 

Max-Planck-Institut 
für Meteorologie 

(Germany) 
MPI 

Giorgetta et 
al. (2013) 

and Popke, 
Stevens and 

Voigt 
(2013) 

www.mpimet.mpg.de 

For the future (scenario runs) the external forcing is set to vary according to one of the 

future scenarios, e.g. the Representative Concentration Pathways (RCP) applied in the 

latest IPCC report (AR5). The RCP scenarios are expressed as changes in equivalent 

carbon dioxide concentrations as interpolated from one year to the next (Kotlarski et al., 

2014). Here two different pathways are used, the RCP4.5 and the RCP8.5, in order to 

represent a stabilization and a high-end scenario. The RCP4.5 assumes GHG peak by 

2040 and the RCP8.5 is the “business-as-usual” pathway (that is the closest to reality at 

the moment), their detailed description is given in section 2.3.3 in Chapter 2.  

To quantify the bias introduced by the GCMs, the RCA4 historical runs driven by 

different GCMs were compared to the RCA4 runs driven by ERA-Interim and to the 

observational datasets for the evaluation period 1981–2005. For the future projections 



Chapter 3: Evaluating the RCA4 regional climate model and temperature projections 

55 

two 30-year periods, the middle (2041–2070) and the end of the century (2071–2100), 

were used for both scenarios (RCP4.5 and RCP8.5.), and a 30-year reference period 

(1971–2000) was selected from the historical runs. 

3.2.2.3  Observations 

The RCM simulations (driven by the ERA-Interim and by GCMs with historical forcing) 

are compared to three datasets listed in Table 3.2. For the evaluation of seasonal and spatial 

patterns of the simulated near-surface temperature, the driving ERA-Interim reanalysis 

dataset (ERA-Interim website; Dee et al., 2011) itself was used as one of the reference 

datasets, so that the analysis reveals to what extend the model distort the large-scale flow 

imposed by the boundary conditions (Kotlarski et al., 2014).  

Table 3. 2 Reference datasets for the evaluation of the model simulations. 

Dataset Description Resolution: time Resolution: space Reference 

ERA-Interim 

European Centre 
for Medium range 
Weather Forecasts 

(ECMWF) 
reanalysis 

daily 0.75° Dee et al. (2011) 
 

E-OBS 
European, gridded 
from observations 

(version 10.0) 
daily 0.25° Haylock et al. 

(2008) 

CRU 

Climate Research 
Unit, gridded from 

observations 
(version CRU 

TS3.21) 

monthly 0.50° Harris et al. 
(2014) 

The RCM run was also evaluated against the gridded observational dataset E-OBS (E-OBS 

website; Haylock et al., 2008) which was produced as part of the ENSEMBLES project and 

provided by the European Climate Assessment & Dataset (ECA&D) project. This dataset 

covers the entire European land surface and it is based upon an extensive station network. 

It is available at daily scale and four different resolutions; I used the regular 0.25° version 

(highest resolution). The 0.25° grid corresponds to a horizontal resolution of about 25 km. 

Several previous studies have questioned the quality of E-OBS in regions of sparse station 

density (e.g., Hofstra et al., 2009; Hofstra, New and McSweeney, 2010; Kyselý and 

Plavcová, 2010), as the gridding procedure tends to smooth the spatial variability. This is 

especially undesirable when analysing daily extremes (Rajczak, Pall and Schär, 2013). 

However, as in this work monthly mean temperature values are examined, the potential 

effect of inaccuracies is considered to be low over most of the domain. 
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The Climatic Research Unit (CRU) TS 3.21 dataset (CRU website; Harris et al., 2014) 

provided by the University of East Anglia was also considered for RCA4 validation. CRU 

is a land-only dataset with a 0.50° regular grid and monthly temporal resolution. Both the 

E-OBS and the CRU datasets utilise partly the same underlying station data, which makes 

them, and consequently our comparisons, not fully independent (Lorenz and Jacob, 2010). 

3.2.3 Methods and metrics of comparing datasets 

To quantify the bias originating from different sources, the validation was carried out in 

three phases for the common period 1981–2005: 1) RCM driven by reanalysis (“perfect 

boundary conditions”) vs. observations, 2) RCM driven by GCMs vs. RCM forced by 

reanalysis and 3) ensemble mean of five GCM-driven RCA4 vs. observations. Figure 3.2 

illustrates the process and the different sources of uncertainty. Phase 1 estimates the bias of 

RCM, i.e. to what extend the RCA4 distort the large-scale flow imposed by the “perfect 

boundary conditions”. In Phase 2, I evaluate the additional contribution of GCMs to the 

overall bias structure and in Phase 3, the overall bias of the ensemble mean of five GCM-

driven RCA4 simulations is quantified compared to the observations. Through the RCM 

experiments assessed here we cannot separately quantify the uncertainty originating from 

different sources like the imperfection of reanalysis data or the internal climate variability 

inherent in model simulations, thus present results on the model biases are interpreted and 

discussed accordingly. 

 
Figure 3. 2 The uncertainty cascade from observations to climate model simulations. In the 

three phases of model evaluation the bias is attributed to different sources. Figure developed by 
the author. 
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3.2.3.1  Regridding 

Before starting the analysis, the gridded datasets and model outputs were transformed from 

their native grids to a common regular grid of 0.25° (the E-OBS grid) using first-order 

conservative (Jones, 1999) and bilinear interpolation (Nikulin et al., 2012). I chose the 0.25° 

grid as a compromise between the coarser resolution observational datasets (ERA-Interim: 

0.75°, CRU: 0.50°) and the finer resolution RCM outputs (0.11°), as Kalognomou et al. 

(2013) suggests. The remapping was carried out with special attention according to the 

recommendations of the EURO-CORDEX community, Haylock et al. (2008) and 

McGinnis et al (2010). Conservative projection in the context means that the value of target 

grid cell is calculated by an area-weighted average of all overlapping grid cells of the 

original grid, conserving area mean values. Bilinear interpolation (McGinnis, Mearns and 

McDaniel, 2010) is a simple linear interpolation in two directions.  

When going from finer to coarser grid, the conservative interpolation is recommended, 

while in the opposite case the bilinear (NCAR-UCAR website; Nikulin et al., 2012; 

Kalognomou et al., 2013). Nevertheless, in case of monthly-scale mean temperature there 

were no or negligible difference between the resulted regridded maps—as I tested both 

methods. In case of CRU and ERA-Interim, data on a coarser grid was interpolated onto 

the 0.25° regular grid, however we need to keep in mind that the climatic information did 

not improve with the higher resolution grid. 

In order to study the annual cycle and spatial patterns in the temperature simulations 

compared to reference datasets, monthly and seasonal mean values were calculated in every 

grid point. For each season, I derived climatologies of air temperature for the evaluation 

period 1981-2005 and the spatial variability of systematic error (bias) between simulated 

and reference fields was analysed.  

3.2.3.2  Evaluation metrics, spatial bias assessment and ensemble 

characteristics 

To assess the quality of regional climate simulations various evaluation metrics were 

applied to monthly and seasonal (winter: DJF, spring: MAM, summer: JJA, autumn: SON) 

mean values of temperature. The chosen metrics are commonly used distance measures to 

compare model outputs against gridded observational data (i.e., reference). These are the 

BIAS, BIASSD, MAE and 95%-P which are defined below following Kotlarski et al. (2014): 
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a) BIAS: the difference (model – reference) of spatially averaged climatological 

seasonal mean values for the domain; 

b) BIASSD: the spatial standard deviation of the bias field. The bias field is calculated 

as the difference between the climatological seasonal mean fields (model – 

reference); 

c) MAE: the mean absolute error (model – reference) of spatially averaged 

climatological seasonal mean values for the domain; 

d) 95%-P: the 95th percentile of all absolute grid cell differences (model – reference) 

across the domain based on climatological seasonal mean values. 

To describe the evaluation metrics with exact mathematical formulas, the following 

definitions should be clarified first: 

Let Mnki and Rnki be the seasonal mean value of temperature of the model simulation (M) 

and the reference data (R) of year i at grid point n with n = 1, …, N; N is the number of grid 

points of the domain D. k = 1, …, K; K is the number of analysed periods per year: K = 4 

for seasonal. i = 1, …, I; I is the number of years (25 in present case).  

The simulated spatial mean of period k and year i across the domain is defined as  

𝑀"# = 	
&
'

𝑀("#(∈* .        (Eq. 3.1) 

The climatological mean of period k at grid point n is defined as  

𝑀(" = 	
&
+

𝑀("#
+
#,& .        (Eq. 3.2) 

The climatological mean of period k averaged across the domain D is then computed as  

𝑀" = 	
&
'

𝑀("(∈* = 	 &
+

𝑀"# =	+
#,& 𝑀".     (Eq. 3.3) 

The corresponding means for the reference data R are defined accordingly. Seasonal means 

of year i are calculated as an average of three consecutive monthly means beginning with 

December of year i-1 for the winter season (DJF). Using these definitions by Kotlarski et 

al. (2014), for climatological seasonal (k = 1, …,4) mean values averaged across the domain 

the evaluation metrics are as follows: 

a) Mean bias (BIAS) 

𝐵𝐼𝐴𝑆" = 𝑀" − 𝑅" =
&
'

𝐵𝐼𝐴𝑆("(∈*     (Eq. 3.4) 
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with the bias field: 𝐵𝐼𝐴𝑆(" = 𝑀(" − 𝑅(".    (Eq. 3.5) 

b) Spatial standard deviation of bias (BIASSD) 

𝐵𝐼𝐴𝑆𝑆𝐷" =
&
'

(𝐵𝐼𝐴𝑆(" − 𝐵𝐼𝐴𝑆")6(∈*  .    (Eq. 3.6) 

c) Mean absolute error (MAE) 

𝑀𝐴𝐸" =
&
'

𝐵𝐼𝐴𝑆("(∈* .      (Eq. 3.7) 

d) 95 % percentile of the absolute value of grid point differences (95%-P) 

95% − 𝑃" = max
(∈?

𝑀(" − 𝑅("      (Eq. 3.8) 

  𝑋 = 𝑛 ∈ 𝐷 𝑅𝑎𝑛𝑘 𝑀(" − 𝑅(" ≤ 0.95𝑁 . 

Spatial average analysis was carried out considering the same grid points over land only 

in each dataset. 

The interpretation of metrics is as follows. The average model bias is measured by the BIAS 

(also known as Mean Bias Error, MBE) that is calculated as the difference (error) between 

model simulations and the reference, without removing the signs of the error. It conveys 

useful information about the main direction of error over the domain, however, it should be 

interpreted cautiously because positive and negative errors will cancel out. BIASSD gives 

additional information on the spatial variability of the model bias (BIAS). MAE measures 

the absolute difference between model simulations and the reference, i.e. the average 

magnitude of errors in the simulations, without considering their direction. In MAE all 

individual differences have equal weight in contrast to other model-evaluation metrics such 

as RMSE (Root Mean Squared Error) that gives a relatively high weight to large errors. 

95%-P provide information on the high-end of MAE without considering the extreme large 

values and outliers. 

Besides the metrics that provide a single value to measure the model skills, the seasonal 

mean biases at grid-point scale were also analysed in case of the RCM forced by ERA-

Interim. The spatial variability of mean bias is presented in form of seasonal maps. 

Furthermore, the temporal correlation of each grid point of the two seasonal fields (model 

vs. observations) was visualised for spatial assessment. To obtain the mean seasonal 

correlation field, the following formula was applied (Schulzweida, Kornblueh and Quast, 

2012): 



Chapter 3: Evaluating the RCA4 regional climate model and temperature projections 

60 

𝑇𝐼𝑀𝐶𝑂𝑅(" =
KLMN∙PLMN	–(∙N∈R(L) KLMN∙PLMN

KLMN
S

N∈R(L) T(∙KLMN
S ∙ PLMNSN∈R(L) T(∙PLMN

S
  (Eq. 3.9) 

𝑆 𝑛 = 𝑖,𝑀("# ≠ 𝑁𝐴 ∪ 𝑅("# ≠ 𝑁𝐴  , where S(n) represents the time series at n grid 

point, NA = missing value, i.e., for every grid point n only those time steps i (years) belong 

to the sample, which have value (not missing value). 

For the evaluation of RCM driven by GCM the temporal correlation was not calculated. 

Since climate models develop their own climatology, a specific month should not 

necessarily relate exactly to the corresponding measured point in time from observations. 

When the RCM is driven by reanalysis data for the evaluation run, the regional climate 

model has a lower degree of freedom to alter the conditions imposed by the boundary 

forcing, consequently the temporal correlation between model simulations and observations 

should be high if the model is good. When the RCM is driven by GCM, the degree of 

freedom is higher, hence the year-to-year variability of simulations not necessarily 

correspond to the year-to-year variability of observations. Thus, in case of evaluating the 

RCM driven by GCM, instead of measuring temporal variability, the mean climatological 

statistics are comparable among datasets (Landgren, Haugen and Førland, 2014).  

In present case of RCM runs driven by 5 GCMs, after evaluating the mean seasonal biases 

of each GCM-driven run, seasonal ensemble means and the standard deviation of the 

ensemble (indicating the spread of ensemble members around the mean) were calculated in 

order to describe the robustness and spread of the GCM-driven simulations. The following 

formulas were applied (Schulzweida, Kornblueh and Quast, 2012):  

A. Ensemble mean (ENSMEAN) 

𝐸𝑁𝑆𝑀𝐸𝐴𝑁(" = 𝒎𝒆𝒂𝒏 𝐺𝐶𝑀1(", 𝐺𝐶𝑀2(", … , 𝐺𝐶𝑀5(" ,  (Eq. 3.10) 

where GCM1nk , … , GCM5nk are the 30-year mean value of temperature projections 

by the RCM driven by 5 GCMs for each k season and at each grid point n. The 

mean{…} is the statistical function of computing the average of the sample without 

weighting, and it is not calculated in case of missing values. 

B. Ensemble standard deviation (ENSSD) 

𝐸𝑁𝑆𝑆𝐷(" = 𝑺𝑫 𝐺𝐶𝑀1(", 𝐺𝐶𝑀2(", … , 𝐺𝐶𝑀5(" ,   (Eq. 3.11) 

where the variables are same as in A. The SD{…} is the statistical function of 

calculating the standard deviation of a sample without weighting, and it is not 
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calculated in case of missing values. 

The goal of this study is not to produce an overall skill score but to document different 

aspects of model performance. As I assess the models from the point of users, I do not aim 

to look into model dynamics and parametrizations for detailed explanation. I pursue a 

general evaluation of the RCM and GCMs to gain a good estimate of the uncertainties 

(originating from the models and the different future scenarios) in the RCA4 simulations.  

I keep to the idea of “model democracy”—discussed by Weigel, Liniger and Appenzeller 

(2008), Knutti (2010) and section 2.3.3—, not giving a preference to any GCM when 

evaluating future projections, though, there are studies that propose that future GCM 

simulations should be weighted based on the model skills (e.g., Giorgi and Mearns, 2003; 

Tebaldi et al., 2005; Perkins, Pitman and Sisson, 2009). To enhance the robustness of the 

results I use an ensemble of maximum available number of GCM-driven runs for 

projections, bearing in mind the different model uncertainties. For this reason, I quantify 

the spread of model ensemble and also comment the robustness of results based on the sign 

of the projected temperature change by each GCM-driven run. To visualise the future 

projections and uncertainties I follow the methods recommended by SMHI for Climate 

Services (Kjellström et al., 2016).  

For calculating and visualising the results different climate data visualising and statistical 

computing tools were applied: Grid Analysis and Display System (GrADS website) and 

Climate Data Operators, version 1.5.9. (CDO website; Schulzweida, Kornblueh and Quast, 

2012). 

3.3 Evaluating the models (1981–2005) 

In this section, the evaluation results of the GCM-RCM are presented to gain an overview 

of the model bias in climate model simulations. To quantify the climate model 

contributions to the overall bias structure, the evaluation was carried out in three phases 

illustrated in Fig. 3.2. The evaluation period (1981–2005) was chosen as the common 

period of simulations. The results of model evaluation are presented according to the three 

phases: 1) RCM driven by reanalysis vs. observations (section 3.3.1), 2) RCM driven by 

GCMs vs. RCM forced by reanalysis (section 3.3.2) and 3) RCM driven by GCM ensemble 

vs. observations (section 3.3.3).  
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3.3.1 Evaluation of RCM: reanalysis-driven simulation 

First, the evaluation was carried out on the RCM simulation driven by the ERA-Interim 

reanalysis data (so-called evaluation run) against the observational datasets, using the 

0.25° regular grid of E-OBS for the comparisons. This analysis reveals to what extend the 

model distort the large-scale flow imposed by the boundary conditions (Kotlarski et al., 

2014).  

3.3.1.1  Mean annual cycle 

As a first step of evaluation, the annual cycle of simulated mean temperature averaged 

over the Iberian Peninsula (IP) are compared to the E-OBS and CRU observations, as 

well as to the ERA-Interim reanalysis data which were used to drive the RCM. The 

spatially averaged values of mean monthly temperature over the IP and over the 

evaluation period 1981-2005 are shown in Fig. 3.3. Compared to the observations, the 

RCA4 model tends to systematically underestimate the temperature in each month, with 

a well-pronounced cold bias in the cold half of the year. The largest biases occur in 

February and March (-2.1 and -1.8 °C, respectively), depending on the reference dataset. 

During summer (JJA) the RCM reproduces reasonably well the observed temperature, 

giving the smallest bias (< 0.1 °C) against the E-OBS in July and August. 

There are also slight differences between the two observational and the reanalysis 

datasets. Even though the E-OBS and the CRU are built on almost the same station 

network, the E-OBS tends to be slightly cooler (with approx. 0.2 °C, SD = 0.1 °C) than 

the CRU. This discrepancy might be due to the regridding process because of the different 

resolution of datasets—the 0.5° CRU and the 0.75° ERA-Interim were interpolated onto 

0.25° E-OBS grid—, the interpolation methods applied when constructing the datasets 

(Kotlarski et al., 2012) and the different number of stations included in the datasets 

(Haylock et al., 2008). 

The CRU and the ERA-Interim have similar monthly mean values throughout the year, 

the difference between their annual cycle is negligible (±0.03 °C, SD = 0.1 °C). As the E-

OBS have the lowest monthly mean temperatures among the observational datasets, the 

RCA4 simulations tend to be closest to the E-OBS observations (yearly mean bias = -1.1 

°C, SD = 0.7 °C). When comparing to ERA-Interim—the reanalysis dataset that provided 

the boundary conditions for the RCA4 run—the yearly mean bias is -1.2 °C (SD = 0.6 
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°C). This general bias characteristic reveals to what extent the individual RCA4 alternate 

the large-scale flow imposed by the ERA-Interim driving database. When comparing to 

the CRU the same annual mean bias value is obtained, i.e. -1.2 °C (SD = 0.6 °C).  

Since there is negligible difference between the observational and reanalysis datasets, for 

the next phase of the evaluation study (evaluation of GCM-RCM, section 3.3.2–3) only 

the E-OBS dataset is used with the specific reasons of a) the E-OBS data can be used on 

its native grid (no need of regridding), b) it has a reasonably good resolution (0.25° against 

the 0.50° of CRU and the 0.75° of ERA-Interim) and c) it provides gridded and 

assimilated observations unlike ERA-Interim that is a reanalysis dataset, i.e. product of 

weather forecasting models based on observations.  

 

Figure 3. 3 The mean monthly temperature averaged over the Iberian Peninsula for the period 
1981-2005. The details of the datasets can be found in Table 3.2. 

3.3.1.2 . Spatial patterns of seasonal temperature variability 

In this section, the patterns of seasonal temperature means are analysed over the Iberian 

Peninsula, based on monthly gridded data averaged over the evaluation period 1981–

2005. The main focus of this study is to assess the ability of the regional model to simulate 

the surface climate in response to large-scale forcing imposed by the ERA-Interim 
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reanalysis and by local topographical features. I evaluate the regional scale spatial 

distribution and temporal correlation of bias between the RCA4 simulations and reference 

datasets (ERA-Interim reanalysis, E-OBS and CRU observations). A special focus is 

placed on the cold and warm season of the year (summer and winter), nevertheless, the 

transition seasons are also evaluated—but less extensively. To quantify the average bias 

over the whole domain, evaluation metrics (BIAS, BIASSD, MAE, 95%-P) are calculated.  

The climatic conditions of the Iberian Peninsula are determined by various factors, such 

as the Atlantic Ocean influence from the west, the Mediterranean Sea from the east, and 

various topographical features, for instance the high mountainous region of Pyrenees on 

the northeast border. Based on the E-OBS observational dataset, the seasonal temperature 

means for the evaluation period 1981–2005 are 6.9 °C in winter, 12.2 °C in spring,  

21.6 °C in summer and 14.6 °C in autumn, respectively. The spatial differences of mean 

temperature are illustrated in Figure 3.4. 

WINTER SPRING 

  
SUMMER AUTUMN 

  

 
Figure 3. 4 The climatology of seasonal near surface temperature over the Iberian Peninsula 

for the evaluation period 1981–2005 based on the E-OBS dataset. Unit: °C 

The Figures 3.5–3.8 show the seasonal mean temperature bias and the temporal 

correlation of seasonal temperature over the Iberian Peninsula. The seasonal mean 
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temperature bias is calculated as the difference between the seasonal mean temperature 

from RCA4 driven by ERA-Interim and the seasonal mean temperature from ERA-

Interim/E-OBS/CRU datasets (left column). The temporal correlation of seasonal 

temperature is calculated between seasonal temperature time series from RCA4 driven by 

ERA-Interim and the seasonal temperature time series from ERA-Interim/E-OBS/CRU 

datasets (right column). At first sight on the Figures 3.5–3.8 we can observe that summer 

is the only season, when warm and cold biases are almost equally represented over the 

peninsula. In the rest of the seasons, the cold bias is prevalent all over the domain. 

Figure 3.5 shows the spatial distribution of mean temperature bias and the temporal 

correlation of temperature for winter. Generally, the RCM underestimates the mean 

temperature over most of the domain, specifically, the cold bias against the E-OBS and 

the CRU is typically between -3 °C and 0 °C. Compared to the ERA-Interim the model 

gives slightly bigger negative biases, with a maximum cold bias over the Pyrenees  

(-8 °C). In every map, there are slightly higher cold bias values on the S–SW part of the 

peninsula. The correlation coefficient (r) is lower than in summer, but typically higher 

than 0.8 over the entire domain. The amplified cold bias over high mountainous areas 

(e.g., Pyrenees) (r = 0.6–0.8), is probably due to the relative lack of high-elevation 

observing stations and the scarcity of fine-scale modelling over complex terrain. Also, 

the imperfect reanalysis representation of orographic features and the different resolutions 

in the datasets might contribute to the higher absolute bias, as Torma et al. (2011) pointed 

out in the case of Alps in a similar study for the Carpathian Basin. 

In summer (Fig. 3.7), the RCM temperature bias against E-OBS observations is typically 

between -1 °C and 1 °C across most of the domain, with more warm bias around the 

central areas and towards the south. Comparing the RCM simulations to ERA-Interim 

and CRU, the bias is typically between -2 °C and 1 °C, with more heterogeneous pattern. 

On the northern edge of the peninsula along the coast the cold bias reaches -3 °C and, on 

the contrary, on the SW part of the domain there are some spots with warm bias reaching 

2 °C. These are generally related to topographic features, such as the Pyrenees on the 

northeast (cold bias), the Ebro basin in the foreground of Pyrenees (warm bias), or the 

basin of Guadalquivir (warm bias) in between the Sierra Morena and Baetic Mountains 

on the south. Comparing the RCM simulations to ERA-Interim, noticeably high 

deviations (> -6 °C) occur over the mountainous areas of Pyrenees and near to the high 
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mountains of Sierra Nevada on the SE. The correlation coefficient between the seasonal 

temperature from RCM simulations and from the observational datasets is the highest on 

the SW part of the IP (r > 0.9), that slightly weakens towards NE. 

The transition seasons, spring and autumn (Fig. 3.6, 3.8), have very similar bias patterns 

and correlation values. The difference maps with E-OBS show a more homogenous 

pattern of bias, with a prevalent cold bias of typically -2–0 °C for both seasons. The 

comparison with CRU resulted in similar values. Comparing the simulations to ERA-

Interim, slightly larger bias values are present, with maximum cold bias over the Pyrenees 

(> -5 °C) and warm bias in the basin of Ebro and Guadalquivir (typically 1–2 °C) in both 

seasons. The temporal correlation of seasonal temperature is higher than 0.9 over most of 

the domain for both transition seasons suggesting a very good performance of the RCM 

in reproducing the year to year variability in these seasons. 

The evaluation metrics support the previous findings that the RCM has highest spatial 

mean bias values (BIAS) as well as spatial variability of bias (BIASSD) against the ERA-

Interim as reference, in each season. The highest spatial mean bias occurs in spring (BIAS 

= -1.7 °C, MAE = 1.8 °C) with a spatial variability of BIASSD = 1.5 °C and highest 

absolute value of grid-point difference (95%-P = 4.1 °C). The 95% percentile indicates 

the highest absolute bias values without considering the 5 % of extremities that in present 

case mainly occur in the mountainous regions.  

The lowest values of evaluation metrics are found when comparing the RCM simulations 

to E-OBS. The lowest spatial mean bias occurred in summer (BIAS = -0.1 °C), however, 

the bias pattern had a high variability (BIASSD = 1.1 °C, 95%-P = 2.4 °C). As the higher 

mean absolute error (MAE = 0.8 °C) shows, the fairly equal amount of ±signs over the 

domain cancelled out resulting in a smaller BIAS. The second lowest value of spatial mean 

bias is -1.1 °C, with 0.4 °C of spatial variability (BIASSD), and 1.8 °C of 95 % percentile 

(95%-P) in autumn. It is worthwhile mentioning that the BIAS and MAE indicated fairly 

the same magnitude of bias regarding each reference and each season except summer, 

when MAE was considerably higher than the BIAS. The seasonal values of evaluation 

metrics are summarised in Table 3.3 at the end of section 3.3, as on overview of the 

evaluation results. 

To sum up, the RCA4 driven by “perfect boundary conditions” reproduced well the 
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seasonal mean temperature climatology over the Iberian Peninsula, however considerable 

deficiencies are also revealed by this analysis. A predominant cold bias occurs in most of 

the seasons all over the domain, except summer, when warm and cold biases are present 

in a fairly equal amount over the peninsula. The seasonal absolute bias value is typically 

1–2 °C, with larger bias values (up to 5–8 °C) over high mountainous regions, e.g. the 

Pyrenees. Based on the evaluation metrics, in general, the simulations show larger bias 

against the ERA-Interim reanalysis than the CRU and E-OBS observational data. 
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Figure 3. 5 The winter mean temperature bias and the temporal correlation of winter 

temperature over the Iberian Peninsula for the evaluation period 1981–2005. The winter mean 
temperature bias is calculated as the difference between the winter temperature mean from 

RCA4 forced by ERA-Interim and the winter temperature mean from ERA-Interim/E-OBS/CRU 
datasets (left column, unit: °C). The temporal correlation of winter temperature is calculated 

between the winter temperature from RCA4 forced by ERA-Interim and the winter temperature 
from ERA-Interim/E-OBS/CRU datasets (right column). 
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Figure 3. 6 The same as Figure 3.5 but for spring. 
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Figure 3. 7 The same as Figure 3.5 but for summer. 
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Figure 3. 8. The same as Figure 3.5 but for autumn. 
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3.3.2 Evaluation of GCM-RCM: GCM-driven RCM simulations vs. 

evaluation run 

In this section (evaluation Phase 2), to evaluate the performance of RCM under different 

driving GCMs, five individual GCM-driven RCM simulations and the ensemble mean of 

these GCM-driven simulations are analysed. For this, historical runs (RCA4 simulations 

driven by GCMs with historical forcing, see description in section 3.2.2.2) are compared 

to the evaluation run (reanalysis-driven RCA4 simulations) over the evaluation period 

1981–2005. In this way, the bias introduced by the GCM in the RCM model output can 

be estimated. First, the annual cycle is analysed, in order to gain an overview on the model 

bias averaged over the IP for each month. Second, the seasonal spatial pattern of mean 

temperature bias (GCM-RCM historical runs vs. RCM evaluation run) is described in 

form of difference maps. The comparison was carried out on the native high-resolution 

grid (0.125°) of the RCA4 model simulations. For the sake of comparability between 

evaluation phases, the seasonal mean temperature bias maps are drawn with the same 

colour scale as in the previous and forthcoming sections.  

3.3.2.1  Mean annual cycle 

To analyse the mean annual cycle of the GCM-driven RCM simulations, I calculated the 

spatial averages of monthly mean temperatures over the Iberian Peninsula for the 

evaluation period 1981–2005. In Figure 3.9 the five historical runs and the ensemble mean 

(Eq. 3.10) of these historical runs are compared to the RCM evaluation run. As Fig. 3.9 

shows, each of the five GCM-driven simulations systematically underestimates the 

monthly mean temperature, with a strong cold bias in the warm part of the year. The 

flattening of the annual cycle can be observed as the winter temperatures are only slightly 

underestimated (and in some cases even overestimated) in contrast to the strongly 

underestimated summer temperatures. 

Figure 3.10 presents the mean bias introduced to the simulations by the GCMs, calculated 

as the difference of the five GCM historical runs versus the RCM evaluation run. By 

subtracting the RCM simulation forced by “perfect boundary conditions” from the GCM-

driven RCM simulations the magnitude of error attributed to the GCMs can be evaluated. 

CNRM and ICHEC tend to be at the high end of the bias range in each month, while 

HADGEM2, IPSL and MPI give moderated biases. 
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Figure 3. 9 Spatial averages of monthly mean temperatures over the Iberian Peninsula for the 
evaluation period 1981–2005. The evaluation run, the five GCM-driven historical runs and the 
ensemble mean of the five historical runs are compared here. The details of the models can be 

found in Table 3.1. 

 

Figure 3. 10 The mean bias introduced to the simulations by the GCMs, calculated as the 
difference of the five GCM historical runs versus the RCM evaluation run. The estimated bias of 

the ensemble mean is also added. The details of the models can be found in Table 3.1. 

In most of the cases, the GCM-driven RCM simulations are biased in the same direction 

(underestimation), however they have a wide spread in the amount of bias. For this reason, 
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the ensemble mean of the five GCM-driven runs is also added to the graphs to evaluate 

the joint performance of the five historical runs. Based on the ensemble, the estimated 

mean bias attributed to the GCMs is -0.7 °C (SD = 0.5 °C) during the year, with the 

highest value in June (-1.6 °C) and the lowest in January (0 °C). 

3.3.2.2  Spatial patterns of simulated seasonal temperature variability 

To examine the bias pattern over the IP attributed to the GCMs that provided boundary 

conditions to the simulations, the seasonal mean temperature bias maps are drawn similar 

to the previous section 3.3.1.2. The seasonal mean temperature of each GCM-driven 

historical run was calculated, and the seasonal mean of the evaluation run was subtracted. 

The ensemble mean of the five historical runs was also added to the analysis to see the 

level of agreement between the GCM-RCM simulations.  

The bias maps (Figures 3.11 to 3.14) show the seasonal mean temperature bias for the 

five historical runs and for the ensemble of these runs. In each season, all the GCM-driven 

runs have a prevailing cold bias of different magnitudes over the domain. The only 

exception is the MPI in winter, which can be associated with a warm bias of typically 

about 0–1 °C over the peninsula. In winter (Fig. 3.11), most of the GCM-driven runs 

have a cold bias around -1–0 °C, and over the Pyrenees an absolute bias of 1–2 °C 

magnitude with a positive sign in IPSL and MPI, and negative sign in CNRM and ICHEC. 

The ensemble mean shows warm bias (typically 0–1 °C) over the Ebro basin and the 

northern coast. In summer (Fig. 3.13), an extensive cold bias (typically -4– -3 °C) can be 

seen in case of CNRM over the whole domain, while HADGEM2 has a warm bias of 

around 0–2 °C on the northern part of the peninsula. The ensemble mean shows a cold 

bias around -2–0 °C in general, with a rather small peak of negative values indicating the 

Pyrenees. 

The transition seasons have similar patterns, shown in Fig. 3.12 and Fig. 3.14. CNRM, 

ICHEC and MPI have a homogenous cold bias over the peninsula typically between -2–

0 °C. HADGEM2 and IPSL can be attributed with warm bias of around 0–1 °C on the 

northern and eastern parts of the peninsula, respectively. The Pyrenees appears as a 

relatively cold spot (up to -2 °C) in the ensemble mean of spring, but not autumn. 

The evaluation metrics for the ensemble mean give the spatial mean bias for winter  

-0.1 °C (BIASSD = 0.3 °C), for spring -0.9 °C (BIASSD = 0.2 °C), for summer -1.3 °C 
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(BIASSD = 0.4 °C) and for autumn -0.8 °C (BIASSD = 0.3 °C). The low absolute value of 

BIAS in winter is probably mainly related to the MPI, that alone had a high positive value 

against the relatively smaller negative biases of other GCM-driven runs. The MAE gives 

slightly bigger value for winter (MAE = 0.3 °C), but for the other seasons it is equal to 

the absolute value of BIAS. The highest mean absolute bias appears in summer (MAE = 

1.3 °C), that is not surprising looking at the extremely high cold bias in case of CNRM 

alone (Fig. 3.13). The 95 % percentile of mean absolute bias in the ensemble is the highest 

in summer too, 95%-P = 1.8 °C. An overview of the evaluation metrics can be found in 

Table 3.3, at the end of section 3.3. 

To sum up, in general, the ensemble of GCMs introduced more cold bias to the RCA4 

simulations, especially in the warm half of the year. The spatial pattern and amplitude of 

bias differ among historical simulations, indicating the differences in structure and 

representation of climate mechanisms in the GCMs. Although with the averaging among 

simulations some geographical features disappeared from the bias map, the ensemble 

mean fairly illustrates the main direction of GCM biases. Hence, the ensemble mean is a 

robust tool for future projections, balancing between the capabilities and drawbacks of 

different GCMs. Nevertheless, when using the ensemble for future projections, the spread 

between simulations need to be assessed to indicate the level of agreement among the 

future GCM-RCM runs. 
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Figure 3. 11 Winter mean temperature bias of the five GCM-driven historical runs versus the 
evaluation run. The winter mean temperature bias is calculated as the difference between the 

winter temperature mean from RCA4 forced by the five GCMs and the winter temperature mean 
from RCA4 forced by ERA-Interim. The bias map of the ensemble mean is also added. Unit: °C.  
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Figure 3. 12 The same as Figure 3.11 but for spring. 
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Figure 3. 13 The same as Figure 3.11 but for summer. 
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Figure 3. 14 The same as Figure 3.11 but for autumn. 
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3.3.3 Evaluation of ensemble mean of five GCM-driven RCM 

simulations vs. observations 

In the last phase of the evaluation, to give an estimate of the overall bias of the GCM-

driven RCA4 simulations, the ensemble mean of historical runs (ensemble of five GCM-

driven RCA4 simulations, Eq. 3.10) is compared to the observations. Based on the 

comparison of the observational and reanalysis datasets in the section 3.3.1, the E-OBS 

database is used as a reference. First, the annual cycle of the ensemble mean of five 

historical runs is compared to the observations. Second, the seasonal mean temperature 

bias maps illustrate the overall bias pattern over the IP. The analysis was carried out on 

the 0.25° grid of E-OBS. For the sake of comparability between validation phases, the 

seasonal bias maps are drawn with the same colour scale as the previous bias maps. 

3.3.3.1  Mean annual cycle 

In Figure 3.15 the annual cycles of the RCA4 evaluation run, the ensemble mean of the 

five GCM-driven historical runs and the E-OBS observations are drawn. It is clear, that 

the RCM simulations—either forced by “perfect boundary conditions” or by GCMs—

underestimate the mean temperature over most of the domain, however, the magnitude of 

the bias attributed to the RCM and GCMs is different. As Fig. 3.9 shows, the individual 

GCM-driven simulations have their strongest cold bias in the warm half of the year. For 

the evaluation run, the case is the opposite, RCA4 has its strongest cold bias in the cold 

part of the year, as Fig. 3.3 and Fig. 3.15 show. Consequently, the ensemble mean of the 

five GCM-forced RCA4 simulations against the observations (including the bias from 

both models) have an evenly distributed overall bias over the seasons.  

The ensemble mean of the five GCM-forced RCA4 simulations systematically 

underestimates the mean temperature throughout the year, with an average of -1.8 °C (SD 

= 0.5 °C), compared to E-OBS. For the sake of comparison, the mean bias attributed to 

the RCA4 compared to E-OBS in section 3.3.1 was -1.1 °C (SD = 0.7 °C) and the mean 

bias attributed to the driving GCMs in section 3.3.2 was -0.7 °C (SD = 0.5 °C). 

Nevertheless, the exact bias values given here should not be “over-interpreted” since to 

some degree they could originate from internal random variability (Kotlarski et al., 2014) 

not assessed here. 
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Figure 3. 15 The annual cycles of the RCA4 evaluation run, the ensemble of GCM-driven 
historical runs and the E-OBS observations (line chart). The overall mean bias of the ensemble 
of GCM-forced RCA4 simulations versus observations (E-OBS) is presented as column chart. 

3.3.3.2  Spatial patterns of simulated seasonal temperature variability 

Figure 3.16 presents the seasonal mean temperature bias maps calculated from the 

ensemble of GCM-driven simulations versus E-OBS (Fig. 3.16 left panel) and the same 

bias maps for the reanalysis-driven RCA4 versus E-OBS (Fig. 3.16 right panel). 

Comparing the left and right panel, we can see to what extent the GCM ensemble 

enhanced the RCM bias when compared to the same observational reference. In general, 

the GCMs introduced more cold bias to the simulations, increasing the absolute bias 

values of RCM with about 0.5–1.0 °C, especially in the cold half of the year. In the RCM 

evaluation run in summer the cold and warm biased areas covered almost equal parts of 

the domain, but with the GCM-forcing the warm bias weakened—in some cases even 

turned into negative values—, and the cold bias became stronger and widespread over the 

domain. Overall, the bias pattern did not change substantially due to the boundary 

conditions introduced by the GCMs, for example, the topography related biases such as 

the cold spot over the Pyrenees are still clearly recognizable, if not intensified. 

Looking further into the overall bias of the ensemble of GCM-forced RCA4 simulations, 

we shall take a closer look at the left panel of Fig. 3.16. The systematic error is a general 
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cold bias, typically between -1 °C and -3 °C. According to the evaluation metrics, the 

overall spatial mean bias of GCM-RCM is slightly lower in summer (BIAS = -1.4 °C, 

BIASSD = 1.1 °C) and winter (BIAS = -1.8 °C, BIASSD = 0.7 °C), and higher in the 

transition seasons, spring (BIAS = -2.3 °C, BIASSD = 0.7 °C) and autumn (BIAS =  

-1.9 °C, BIASSD = 0.5 °C). In each case the MAE is equal to the absolute value of BIAS 

except summer, when it is slightly higher (MAE = 1.6 °C) than the BIAS (as it is expected 

due to the sign cancellation explained in section 3.3.1.2). The 95 % percentile of absolute 

bias is the highest in spring, 3.2 °C. An overview of evaluation metrics is presented in 

Table 3.3, summarizing the model biases in the RCM simulations in response to different 

forcing data. 

To sum up, the ensemble of GCM-driven RCA4 simulations systematically underestimate 

the temperature over the Iberian Peninsula, with an absolute bias typically between 1 °C 

and 3 °C. The spatial pattern of bias depends on the season—except the cold spot of the 

high mountainous region of Pyrenees that can be identified in each season. Because of 

the predominant cold bias, the direct values of future climate projection cannot be used 

without correcting for this systematic error. When examining changes in the mean 

climatologies—the difference between the mean temperatures of the future period and 

the current period—there is no need for bias correction, since by calculating the difference 

between the two periods (i.e. subtracting the 30-year seasonal temperature mean of 

current climate (1971–2000) from the 30-year seasonal temperature mean of the future 

climate) the structural error of models is eliminated (Szépszó et al., 2014). Through this 

method it is assumed that the model biases are stationary in time (discussed in section 

3.5.3). The so-called delta-approach is used widely when assessing future changes of 

climate variables on a monthly, seasonal or yearly scale (Krüzselyi et al., 2011; Önol et 

al., 2014; Szépszó et al., 2014). 
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Figure 3. 16 The seasonal mean temperature bias maps calculated from the ensemble of GCM-
driven simulations versus E-OBS (left panel) and the same bias maps for the reanalysis-driven 

RCA4 versus E-OBS (right panel). Unit: °C. 
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Table 3. 3 Summary of evaluation metrics by seasons and by phases of the evaluation. The 
second column contains the model or dataset that provided boundary conditions for the RCM 
simulation and the third column further specifies this by the name of dataset/model in brackets. 
The evaluation metrics are defined in section 3.2.3.2. 

 

 

 

Seas. Eval.
Driving 
Model Simulation Eval. grid Reference BIAS BIASSD MAE 95%-P

ERA-Interim -1.7 1.3 1.7 3.7
EOBS -1.6 0.7 1.6 2.7
CRU -1.7 1.1 1.8 3.4

RCA4(CNRM) -0.2 0.4 0.3 0.9
RCA4(HADGEM2) -0.2 0.3 0.3 0.5

RCA4(ICHEC) -0.7 0.4 0.8 1.2
RCA4(IPSL) -0.1 0.5 0.4 0.9
RCA4(MPI) 0.5 0.3 0.5 0.9
ensemble -0.2 0.3 0.3 0.6

Phase 3 GCM ensemble 0.25 EOBS -1.8 0.7 1.8 2.8
ERA-Interim -1.7 1.5 1.8 4.1

EOBS -1.4 0.6 1.5 2.3
CRU -1.5 1.1 1.6 3.3

RCA4(CNRM) -1.5 0.4 1.5 1.9
RCA4(HADGEM2) -0.1 0.3 0.2 0.6

RCA4(ICHEC) -1.5 0.3 1.5 1.9
RCA4(IPSL) -0.6 0.5 0.7 1.5
RCA4(MPI) -0.6 0.4 0.6 1.2
ensemble -0.9 0.2 0.9 1.1

Phase 3 GCM ensemble 0.25 EOBS -2.3 0.7 2.3 3.2
ERA-Interim -0.3 1.6 1.2 3.1

EOBS -0.1 1.1 0.8 2.4
CRU -0.3 1.4 1.1 2.9

RCA4(CNRM) -2.5 0.8 2.5 3.5
RCA4(HADGEM2) 0 0.7 0.6 1.4
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Phase1
“perfect 

boundary 
cond.”

RCA4(ERA-Int.) 0.25

Phase 2 GCM 0.125

0.25

Phase 2 GCM 0.125

RCA4(ERA-Int.)

Phase 1
“perfect 

boundary 
cond.”

RCA4(ERA-Int.) 0.25

Phase 2 GCM 0.125 RCA4(ERA-Int.)

W
I
N
T
E
R

S
P
R
I
N
G

S
U
M
M
E
R

A
U
T
U
M
N

RCA4(ERA-Int.)

Phase 1
“perfect 

boundary 
cond.”

RCA4(ERA-Int.) 0.25

Phase 2 GCM 0.125 RCA4(ERA-Int.)

Phase 1
“perfect 

boundary 
cond.”

RCA4(ERA-Int.)



Chapter 3: Evaluating the RCA4 regional climate model and temperature projections 

84 

3.4 Future projections  

Since the ensemble mean of GCM-driven RCM simulations can provide robustness to the 

results, the projected change in temperature is analysed by using the ensemble of five 

GCM-driven RCA4 simulations for the mid-term (2041-2070) and long-term (2070-

2100) future. As the evaluation results indicated a significant cold bias throughout the 

year, I calculated the change between the future and current climatologies using delta-

approach, to rule out the systematic error of models, assuming that the bias is stationary 

in time (discussed in section 3.3.2). Thus, the future projections are quantified in form of 

seasonal change values and the calculated difference between the mean temperature fields 

are illustrated as change maps. The RCA4 took boundary conditions from five GCMs 

under two emission scenarios (RCP4.5, RCP8.5) from which the ensemble mean (Eq. 

3.10) and spread (Eq. 3.11) of models was calculated. The ensemble is used to (a) assess 

future climate change over the Iberian Peninsula and (b) illustrate uncertainties in future 

climate change related to boundary conditions and emissions. 

3.4.1 Analysis of spatially averaged mid- and long-term temperature 

change 

In general, gradual increase in temperature is widely evident during the twenty-first 

century for each GCM and scenario simulation. A spider chart diagram (Fig. 3.17) was 

produced to show monthly climatologies of temperature change for the mid-term (2041-

2070) and long-term (2070-2100) periods in respect to the current climate (1971-2000). 

Furthermore, the ensemble mean of spatially averaged monthly and seasonal temperature 

change was also calculated, to evaluate the robustness and spread of model results (Fig. 

3.18, Table 3.4). 

The future simulations in case of both scenarios indicate rising temperatures in all 

seasons, with a significant contrast between winter and summer. In general, the projected 

changes are 1–2 °C higher in summer months than those in winter months. More 

specifically, the warming signal is strongest in June-July-August-September-October and 

weakest in February and March. The RCA4 simulations driven by HADGEM2 and IPSL 

in general showed higher increase than the ensemble mean of the five GCM-driven RCM 

simulations, while the lowest values of temperature change was projected by the CNRM-

driven simulation. 
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The monthly ensemble means under the RCP4.5 scenario indicate temperature rise of 

1.1–2.5 °C for the mid-century and 1.6–3.1 °C for the end of the century. The change 

values under RCP8.5 scenario are 1.8–3.3 °C and 3.1–5.5 °C, respectively. The strongest 

increase in temperature is expected for September (5.5 °C by the end of century, RCP8.5), 

however this month has the highest spread of model simulations too (SD = 0.7–1.1 °C), 

as Fig. 3.17 and 3.18 show.  

Looking at the seasonal scale, in general, the strongest warming is expected for summer 

that is followed by autumn, spring and winter, respectively, summarised in Table 3.4. The 

warming expected for summer under RCP4.5 is 2.2 °C and 2.7 °C for the mid- and long-

term future, respectively, while under RCP8.5 it is 3.0 °C and 5.2 °C, respectively. The 

expansion of summer season warming effect is quite revealing since the autumn season 

has a stronger warming signal than winter and spring for both periods. Towards the end 

of century, the spread of the projected changes among the five members of ensemble 

increases in case of RCP8.5 in all seasons. In case of RCP4.5 the spread also increases in 

two seasons and in the other two seasons it does not change.  

It is worth mentioning that the 2 °C global warming threshold marked in the Paris 

Agreement—aiming to limit global GHG emissions to keep global temperature rise well 

under this threshold (UNFCCC, 2015)—is expected to be exceeded in three seasons under 

RCP8.5 (in two seasons under RCP4.5) until mid-century. By the end of century 

following the RCP8.5 trajectory the target will be overrun in every season—in summer 

and autumn expecting more than doubled amount of temperature increase than the 

threshold. Even though he RCP4.5 stabilization scenario projects more moderated 

warming effect, the temperature rise is expected to reach the threshold in winter and 

spring, and even exceed the 2 °C in summer and autumn. 
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Figure 3. 17 Spatially averaged monthly temperature change [°C] for the mid-term and long-
term 30-year periods under RCP4.5 and RCP8.5 climate scenarios over the Iberian Peninsula. 

The GCMs driving RCA4 are described in Table 3.1. 
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Figure 3. 18 Ensemble mean of spatially averaged monthly temperature change [°C] for the 
mid-term and long-term 30-year periods under RCP4.5 and RCP8.5 climate scenarios. The 

standard deviation bars represent the spread of the projected changes among the five members 
of ensemble. 
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Table 3. 4 The ensemble mean (ENSMEAN) and standard deviation (ENSSD) of spatially 
averaged seasonal mean temperature change [°C] based on five GCM-driven RCA4 simulations 
for the mid-term (2041–2070) and long-term (2071–2100) future in respect to current climate 
(1971–2000). The definition of ENSMEAN and ENSSD is given in section 3.2.3.2. 

Scenario Season 
Mid-term (2041–2070) Long-term (2071–2100) 

ENSMEAN ENSSD ENSMEAN ENSSD 

RCP4.5 

DJF 1.3 0.4 1.8 0.5 
MAM 1.4 0.5 1.9 0.5 
JJA 2.2 0.5 2.7 0.5 
SON 2.0 0.5 2.6 0.7 

RCP8.5 

DJF 1.9 0.4 3.3 0.5 
MAM 2.1 0.3 3.6 0.6 
JJA 3.0 0.5 5.2 0.6 
SON 2.9 0.6 4.7 0.9 

 

3.4.2 Spatial pattern of seasonal temperature changes 

Regarding the illustration of climate projections, I followed the recommendations of 

SMHI on presenting climate information in an easily understandable form to Climate 

Services users (SMHI website; Kjellström et al., 2016). The ensemble mean (ENSMEAN) 

and the standard deviation of the ensemble (ENSSD, indicating the spread of ensemble 

members around the mean) are visualised in separate maps to provide information on the 

spread and robustness of climate projections in a simple way. An important indicator of 

robustness is the sign of change that can be presented through the proportion of models 

that point to the same direction (Kjellström et al., 2016). Since in this case all the model 

projections pointed to the same direction regardless of the driving GCM or emission 

scenario (Fig. 3.19–3.22), here I do not dedicate a separate figure to this aspect. 

Under the RCP4.5 scenario for the 2041–2070 period a quite homogeneous warming 

pattern is projected for the Iberian Peninsula, with an increase of about 1 °C in winter (Fig. 

3.19) and spring (Fig. 3.20) and about 2 °C in summer (Fig. 3.21) and autumn (Fig. 3.22). 

By the end of century, general increase of temperature is expected to occur, with the highest 

value of around 3 °C in summer in the central part of the peninsula and in the high 

mountainous region of Pyrenees (Fig. 3.21). The standard deviation of the ensemble 

simulations has more heterogeneous pattern, with highest values (0.6–0.8) in the eastern 

and central part of the peninsula, as well as over the Pyrenees, in all seasons. Although 

significant modification in the pattern of SD cannot be seen, a slight increase in the 

amplitude of spread across model simulations occurs in winter and autumn towards the end 
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of the century. 

Under the RCP8.5 scenario, a well-pronounced contrast can be noticed between the mid-

term and long-term periods. Similar to the RCP4.5, for the 2041–2070 period winter and 

spring have modest values of temperature change over the peninsula (about 2 °C), with the 

highest values in the central and southeast parts, while in summer and autumn the 

temperature rise reaches approx. 3 °C over most of the IP. For the period 2071–2100, the 

projected changes exceed 6 °C in summer and 5 °C in autumn in the central part of the 

peninsula. These regions with the strongest warming signal correspond to the central 

mountainous terrain of the peninsula (Meseta), the Baetic Mountains and Sierra Nevada on 

the SE as well as the Pyrenees on the NE (Fig. 3.1). 

Similar to RCP4.5, the lowest spread across GCM-driven simulations is in winter, the SD 

value remains under 0.4 over most of the domain. Again, summer and especially autumn 

have the highest spread, with more than 0.8 and 1.0 SD values in the central-eastern 

mountainous part of the peninsula, respectively. The SD pattern is similar in all seasons, 

showing larger spread in the central-eastern part. In addition, the SD clearly increases 

towards the end of the century. 

According to the reference maps (top panel in Fig. 3.19–3.22), under current climate 

conditions, the Andalusian Plain (valley of Río Guadalquivir) on the south is the warmest 

part of the peninsula, with 8–10 °C and 24–26 °C mean temperature of winter and summer, 

respectively. Based on the projections of this study, not only the current sub-tropical 

regions, such as the Andalusian Plain, but the major part of the peninsula—especially the 

central and south-eastern parts—will be dominated by hot conditions in general. 

To sum up, the warming signal is strongest in the central and south-eastern part of the 

peninsula according to most of the simulations, but there are some differences between 

seasons, scenarios and time scales. These parts partly overlap with the areas marked by high 

SD too. The strongest warming is expected to occur in the central mountainous terrain of 

Meseta and its mountain ranges of Central System and Iberian System, in the Baetic 

Mountains and Sierra Nevada on the southeast and in the Pyrenees on the northeast that can 

be identified in almost all maps. Under both scenarios, summer and autumn seasons are 

projected to experience the most warming, but also the highest spread of simulations is 

found here.  
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Figure 3. 19 The projected temperature change for winter over the IP based on the ensemble of 
five GCM-driven RCA4 simulations for the mid-term (2041-2070) and long-term (2070-2100) 
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future under RCP4.5 and RCP8.5 scenarios. Top panel: the simulation of current climate for 
reference period 1971–2000. First row after top panel: the projected mid-term temperature 

change (left panel) and long-term temperature change (right panel) calculated as the ensemble 
mean under RCP4.5 scenario, unit: °C. Second row after top panel: the spread across the 

ensemble members measured as standard deviation of the ensemble of five GCM-driven RCA4 
projections corresponding to the temperature change maps above them. The third and fourth 

row present the same maps as the first and second rows, but under scenario RCP8.5. 
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Figure 3. 20 The same as Fig. 3.19, but for spring. 
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Figure 3. 21 The same as Fig. 3.19, but for summer. 
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Figure 3. 22 The same as Fig. 3.19, but for autumn. 
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3.5 Discussion 

3.5.1 On the RCA4 skill to reproduce IP near-surface temperature 

The RCA4 reproduces the basic features of observed near surface air temperature over the 

Iberian Peninsula quite well, however, systematic biases do still exist. According to the 

comparison of 16 RCM experiments over Europe by Kotlarski et al. (2014) the RCA4 was 

not the best, neither the worst performing RCM over the IP subdomain concerning seasonal 

mean temperature simulations. The predominant cold bias over most parts of Europe is a 

common model bias found in majority of experiments with 6 different RCMs included in 

the EURO-CORDEX project. In correspondence to earlier RCA model versions, the RCA4 

has equally good, or better skills in simulating mean temperature, as Strandberg et al. 

(2014) showed for the entire European domain including the IP.  

The most prominent deficiencies revealed by this RCA4 evaluation over the Iberian 

Peninsula is the predominant cold bias (typically 1–2 °C) in most seasons—with higher 

absolute values in the cold part of the year—in line with the findings by Kotlarski et al. 

(2014). The bias can be larger in individual cases, for example over complex topographic 

terrain. For regions with higher elevation and the high-mountain areas such as the Pyrenees, 

this cold bias might be related to the pronounced topography, associated with large 

elevation differences between the RCM and the E-OBS reference at grid point level—as 

several studies noted this (López-Moreno, JI, Goyette and Beniston, 2008; Minder, 2010; 

Torma et al., 2011; Kotlarski et al., 2012).  

An exception to the general picture of a predominant cold bias is summer, when 

underestimations and overestimations of temperature occur almost equally, typically 

between -2 and 2 °C. These results are consistent with previous findings for the RCA4 and 

the previous model version RCA3 (Samuelsson et al., 2011; Kotlarski et al., 2014; 

Strandberg et al., 2014) over the Iberian Peninsula. Indeed, according to Kotlarski et al. 

(2014), one of the improvements of the EURO-CORDEX simulations with respect to the 

previous framework of ENSEMBLES is the reduced overestimation of southern European 

summer temperatures. Nevertheless, it is worth noting that even though summer seems to 

have the smallest absolute bias based on the evaluation metrics (Table 3.3), the analysis of 

spatial patterns of bias reveals that the low absolute error is caused by the fact that biases 

of opposite signs in the models tend to cancel each other when added (Kjellström et al., 
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2011). 

The causes for the winter-spring-autumn cold bias over the Mediterranean region is still not 

clear. An overestimate in the intensity and/or frequency of winter anti-cyclonic conditions 

might contribute to the problem, since wintertime anti-cyclonic circulation is generally 

associated with dry, clear-sky conditions, and hence relatively strong surface cooling in 

form of long-wave radiation (Samuelsson et al., 2011). Some of the systematic biases in 

temperature simulations have been linked to problems in representing cloud and radiation 

processes in RCA3, that have been mitigated somewhat in the latest version of RCA4 

(Barrett, Hogan and O ’Connor, 2009; Samuelsson et al., 2011). 

Concerning the spatial variability of the bias, the alterations do likely not only reveal true 

model biases but also deficiencies of the reference observational datasets related to the 

spatial smoothing and an effective resolution lower than the nominal grid resolution in 

regions of a low network density (Hofstra, New and McSweeney, 2010; Kyselý and 

Plavcová, 2010; Kotlarski et al., 2014). As the regridding process from coarser to finer grid 

in case of CRU and ERA-Interim also enhanced the undesirable smoothing effect, E-OBS 

on its native 0.25° grid was used for most of the comparisons. Nevertheless, for further 

detailed examinations of small-scale climatological features and the added value of the 

0.125° fine scale model simulations, high-resolution regional observations, such as the 

Spain02 gridded dataset (Herrera et al., 2012) should be applied in future studies. (At the 

time of this study the dataset was not fully available.) 

The analysis of the temporal variability by the correlation between the simulated and 

observed seasonal mean values over the 25-year evaluation period found weaker correlation 

in summer and winter (mostly between 0.7–0.9) than in the transition seasons (mostly larger 

than 0.9). The most heterogeneous pattern occurs in winter, with lower correlation values 

in the western-central part of the peninsula and in the high-mountainous region of Pyrenees. 

In general, the lower correlation in summer can be explained by the fact that the European 

summer climate is strongly controlled by local- to regional-scale processes than by large-

scale atmospheric drivers, giving the RCM a higher degree of freedom to alter the 

conditions imposed by the boundary forcing (Déqué et al., 2005).  

3.5.2 The overall picture 

The comparison of GCM-driven simulations to the reanalysis-driven run (evaluation Phase 
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2) revealed that the relative ranking of GCMs with respect to seasonal mean temperature 

bias is relatively stable, i.e. mostly independent of the season. The historical simulations 

driven by CNRM and ICHEC systematically underestimate temperatures as opposed to the 

systematic overestimations by the RCA4 forced by HADGEM2, IPSL and MPI. Each 

GCM introduced further cold bias to the simulations—except MPI in winter—, with higher 

absolute value of bias in the warm part of the year. The two coldest GCMs, CNRM and 

ICHEC are responsible for the largest fraction of the seasonal bias range in the ensemble 

mean of the five GCM-driven RCA4 simulations. The bias attributed to the GCMs might 

be related to errors in the representation of the large-scale circulation in the GCMs and to 

biases in SSTs and sea-ice cover in them, discussed in studies e.g., Van Ulden and Van 

Oldenborgh, (2005), Kjellström et al. (2011), Bozkurt et al. (2012) and Önol et al. (2014). 

When comparing the ensemble of GCM-forced simulations to the E-OBS observations 

(evaluation Phase 3), the overall bias of the GCM-RCM combination is quantified, thus the 

capability of the ensemble to reproduce current climate could be assessed. Seasonal biases 

are larger (typically between -1 and -3 °C) when RCA4 was forced by the ensemble of 

GCMs compared to when it was forced by reanalysis data, in line with the findings of a 

similar study of 16-member ensemble with the RCA3 (Kjellström et al., 2011). In case of 

GCM-forced simulations against EOBS the summer warm biases became weaker or turned 

into weak cold biases, and in the rest of the seasons the cold biases strengthened compared 

to the biases of the reanalysis-driven simulations against EOBS. This often occurs during 

downscaling, i.e. the opposite signs weaken each other, that can be revealed by the detailed 

attribution of bias (Hawkins and Sutton, 2009). 

It is important to note, that besides the description of systematic errors originating from the 

model structures and uncertain future scenarios, there are further sources of uncertainty that 

have not been quantified in the present study, such as a) internal climate variability, b) 

uncertainties in the observational reference data, c) deficiencies of the driving reanalysis. 

The internal variability of the climate models can influence the simulated mean climatology 

even in multi-decadal RCM experiments that are subject to an identical boundary forcing 

(Deser et al., 2012). As only one experiment was considered (the only available in the EUR-

11 setup), this effect of internal random variability could not be quantified. Thus, as 

Kotlarski et al. (2014) suggests, slight nuances of bias characteristics should not be “over-

interpreted” since to some degree they could originate from internal climate variability. The 
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uncertainties of the E-OBS observational reference should be handled in a similar way.  

Furthermore, the model evaluation run carried out in a perfect boundary context assumes a 

bias-free representation of the lateral atmospheric boundary conditions and sea surface 

temperatures. Since the driving data was the ERA-Interim reanalysis in the studied 

experiment, a certain influence of a biased boundary forcing on the evaluation results 

should be accounted, even though studies documented negligible reanalysis uncertainty 

(Brands et al., 2013). 

Despite the described shortcomings in the representation of specific climate features over 

the IP domain, the model evaluation indicates a considerable skill of the studied GCM-

driven RCA4 ensemble to reproduce regional scale horizontal variability of seasonal mean 

temperature values. Also, the shape and amplitude of regionally averaged mean annual 

cycles are reproduced to a large extent by both the evaluation run of RCM and by the GCM-

driven runs.  

3.5.3 Climate change sign and uncertainty of projections 

Different sources of uncertainty (described in detail in section 2.3.3 in Chapter 2) is a 

frequently discussed topic in the modelling literature (e.g., Walker, Lempert and 

Kwakkel, 2008; Hawkins and Sutton, 2009), as the uncertainty in simulations limits the 

ability to give precise answers about the course of future climate at both global and 

regional scale. In future scenarios, uncertainty is addressed related to the choice of GCM 

driving the RCA4 simulations by using an ensemble of five GCMs. The uncertainty 

related to future emissions of GHGs was assessed by using a stabilization (RCP4.5) and 

a high-end (RCP8.5) scenario. The ensemble is a powerful tool as it indicates the strength 

of the evidences for a certain climate change signal, thus, they are appropriate for Climate 

Services purposes (Kjellström et al., 2016). 

To assess the expected future changes in temperature, the delta-approach was applied, 

assuming that the identified model biases are stationary in time. It is a widely used 

practice when only working with monthly and seasonal mean values of climate variables 

(e.g., Jacob et al., 2014; Szépszó et al., 2014), however, the question of whether model 

biases are temporally stable is a research frontier. For example, Boberg and Christensen 

(2012) showed that most RCMs tend to have temperature-dependent biases. On the other 

hand, Bellprat et al. (2013) pointed out, that even bias corrected RCM simulations are 
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object to the non-stationary nature of bias. 

The future simulations in case of both scenarios indicated gradual rising temperatures in 

all seasons throughout the 21st century. By the end of century stronger warming is 

expected in summer than in winter, under RCP4.5 and RCP8.5 JJA: 2.7 °C (ENSSD =  

0.5 °C) and 5.2 °C (ENSSD = 0.6 °C), and DJF: 1.8 °C (ENSSD = 0.5 °C) and 3.3 °C 

(ENSSD = 0.5 °C), respectively (Table 3.4). (The ENSSD is the standard deviation across 

ensemble members, i.e., the spread of projections.) It can be explained by the changes in 

large-scale circulation over Europe and lower cyclonic activity in the Mediterranean 

discussed by Pinto et al. (2007) and Kjellström et al. (2011). Warming of similar 

amplitude over the IP by the end of century was shown by Kjellström et al. (2011) based 

on a 16-member ensemble of RCA3 simulations on coarser horizontal resolution grid 

(0.44°). 

Under both scenarios, summer and autumn seasons are projected to experience the most 

warming, but also the highest spread of simulations. Robustness and spread are often 

referred to as various aspects of the uncertainty in climate scenarios, and are used to 

illustrate reliability of model projections (Kjellström et al., 2016). Since in this study all 

the simulations pointed to the same direction, the climate change signal can be considered 

highly robust based on the robustness criterion applied by SMHI. (The robustness 

criterion is simply calculated by adding the number of models indicating an increase in 

the index in question.) However, the spread of simulations increased towards the end of 

century in case of both scenarios, that is mainly associated with the uncertainty of emission 

scenarios.  

As Hawkins and Sutton (2009) explained, the relative contribution from internal variability 

is largest in the nearest few decades and in a regional perspective, while forcing conditions 

by the GCMs and emission scenarios as well as the climate system response have a 

dominant role on longer time scales in the overall uncertainty. Thus, the main direction and 

amplitude of climate change as well as the spread around the ensemble mean need to be 

assessed by taken together the information of robustness and spread. Kjellström et al. 

(2016) also recommends that for communication with the Climate Services users it is 

more useful to discuss “spread” and “robustness” of climate projections rather than 

referring only to “uncertainty”.  
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As Morss et al. (2005) also pointed out, the perception of “uncertainty” can be very 

different in the user communities of different sectors, thus, better explanation and 

illustration of the terms in use by various disciplines is essential. They also add that the 

discussion of uncertainty from a scientific perspective sometimes confused the 

practitioners involved in flood risk management projects, as the two communities see 

uncertainty in a different way. Academics tend to look at uncertainty as something that 

can be conceptualized, calculated, and addressed, and to do so, they generally seek for 

additional data and carry out more sophisticated analysis (Morss et al., 2005). On the 

other hand, the practitioners interviewed for the same study, view uncertainty as an 

unavoidable factor in their everyday decision-making process in a complex, continuously 

changing social, institutional, and political environment. Hence, the term “uncertainty” 

and its interpretation can act as a linguistic barrier that limits knowledge exchange between 

academic researchers and practitioners (Fothergill, 2000). 

As briefly explained above, the quantification and proper communication of uncertainty of 

climate change projections is important to help practitioners to make right decisions under 

high level of uncertainty (robust decision-making). As uncertainty about climate risks (e.g., 

floods, heat waves) often must be translated into dichotomous decisions (e.g., where 

construction should be restricted or regulated and where it should not), scientific 

information should be provided in an easily understandable, decision-relevant form, such 

as the robustness and spread of future projections presented above. In Chapter 5 this topic 

is addressed in more detail in relation to the challenges that academics and practitioners 

face when collaborating on urban climate adaptation projects. 

In order to fully explore the uncertainty ranges a larger ensemble containing more RCMs, 

forcing GCMs, emission scenarios and ensemble members initiated with slightly different 

conditions and/or modified physical parameters (to sample the internal climate 

variability) is needed. However, it must be noted that a broader ensemble (e.g., by adding 

all available high-resolution RCMs from the EURO-CORDEX framework) would not 

necessarily improve the projections, but would increase the uncertainty range. Here I 

demonstrated that such a small ensemble of climate simulations may be useful to illustrate 

uncertainties from various sources and to provide insights to the future climate of IP using 

an RCM with the highest spatial resolution available now. 
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3.6 Summary and Conclusions 

In this study, I evaluated the performance of a GCM-RCM ensemble and described future 

changes in seasonal mean features of near surface temperature over the Iberian Peninsula 

based on a 5-member ensemble of RCM simulations with the Rossby Centre model RCA4. 

In the first part, the simulated climate for the period 1981–2005 is I analysed both when 

forced by reanalysis data and when forced by boundary data from GCMs. The uncertainty 

in simulations originating from the RCM and the driving GCMs is quantified, and the 

additional contribution of GCM to the overall bias structure is separated from the intrinsic 

RCA4 contribution. Evaluation metrics (integrated information over the domain) and maps 

are used to reveal the geographical details in the bias pattern. 

Based on the first part of the study the findings are as follows: 

– Given the “perfect boundary conditions” from ERA-Interim the RCA4 tends to 

systematically underestimate the mean temperature over most of the IP, except 

during summer, when warm and cold biases are equally present. The seasonal 

absolute bias value is typically 1–2 °C, with larger bias values (up to 5–8 °C) over 

complex terrain, e.g. the Pyrenees. 

– In general, the GCMs introduced more cold bias to the RCA4 simulations, 

increasing the absolute bias values of RCM with about 0.5–1.0 °C, especially in 

the warm half of the year. The summer warm biases of RCM are turned into cold 

biases over most of the domain. 

– The ensemble of five GCM-driven RCA4 simulations have a well-pronounced 

cold bias over most of the IP throughout the year, compared to the E-OBS 

observations. The seasonal overall absolute bias value is typically 1–3 °C.  

Taken together, the ensemble of GCM-driven RCA4 simulated the seasonal mean features 

of the temperature patterns over the IP reasonably close to the observations, however, the 

systematic underestimation should be kept in mind when using the model for future 

projections. Thus, to assess the future changes in seasonal mean temperature based on the 

ensemble of RCA4 simulations, the difference between future and current climatologies 

was calculated (delta-approach). 

In the second part of the study, I gave an overview of the climate change signal in the 

ensemble of future simulations by presenting the change in the seasonal means of 
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temperature, including the illustration of the spread of ensemble. The scenario uncertainty 

is addressed by using two different Representative Concentration Pathways, the 

stabilization scenario of RCP4.5 and the high-end scenario of RCP8.5. 

From this part of work the findings and conclusions are: 

– In general, each projection shows a gradual warming trend over the whole IP in 

every season throughout the 21st century. Under both scenarios, summer and 

autumn seasons are projected to experience the highest temperature rise (up to  

3–6 °C by the end of century), but also the highest spread of simulations (SD =  

0.5–0.9 °C) is projected in these seasons. Warming more than 2 °C (threshold 

signed in Paris Agreement) is expected to occur over the IP in these seasons already 

by mid-century. 

– The warming signal is strongest in the central and south-eastern mountainous part 

of the peninsula and in the Pyrenees according to most of the simulations, but there 

are some differences in the amplitude and pattern across seasons, scenarios and time 

scales. Areas with high spread of simulations are the central and eastern regions, 

partly overlapping with the regions with the strongest warming signal. 

– Taken together, the projected temperature changes imply that summers are 

becoming longer and warmer while winters are becoming shorter and milder over 

the IP. Spring and autumn shift in time with the spring season occurring earlier and 

autumn later. 

Identifying possible reasons for model-specific bias characteristics is beyond the scope of 

this study, as it would require a deeper and dedicated analysis, as well as additional metrics, 

and explicitly taking into account uncertainties in the observational reference and the 

internal climate variability. These tasks need to be accomplished with specific expertise in 

model-developing and also would require running more experiments.  

Here I gave an example of a simple evaluation of model skills before future scenarios are 

included in Climate Services products. The future changes along with the robustness and 

spread of projections are presented in an easily understandable way, based on the good 

practice applied in Climate Services by SMHI. The user-focused development of climate 

change maps for the Iberian Peninsula has started only recently, in spite of the growing 

demand for future climate information from different sectors. Further work should consider 
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sector-specific variables and indicators (e.g., indices of vegetation period or heat waves) on 

different time-scales, in order to tailor the climate products to the exact needs of users. 

3.7 Practical Implications 

The study presented here is based on climate information derived from an ensemble of 

simulations with the Rossby Centre regional climate model (RCA4). Inspired by the SMHI 

climate scenario web pages (SMHI website) I presented traditional climate change 

information in form of maps that not only show the ensemble means, but the spread between 

the different simulations too, for different time-scales and under different scenarios. 

The spread is calculated as the standard deviation of the five different GCM-driven runs, 

indicating to what extend the ensemble members deviate from the ensemble mean. The 

direction of projections is also an important information on the robustness of the results, 

indicating how many of the ensemble members point to the same direction of change.  (In 

present case it is not shown in a separate map as all the projections showed an increase in 

the mean temperature over the entire domain.) Taken together this information one can get 

an indication of the robustness of the results by assessing the main direction and amplitude 

of climate change as well as the spread of projections around the mean value of change. 

Next to the temperature change maps the simulated current climate is also presented, that 

helps to get a consistent information about how the regional and local climate change signal 

compares to the climate that we experience today. The observations for the same period can 

be shown here too, to get a picture on the inter-annual and/or spatial variability of the 

variable in relation to the future variability as projected by the climate model. 

As the SMHI website exemplifies, the climate change maps and diagrams can be completed 

with detailed information on site and guiding documents on how the results could be 

interpreted and further used. The website also displays materials along several dimensions 

such as area (different levels of administrative units), season, scenario or climate 

variable/index. For this study, I used two from the latest generation of RCPs 

(Representative Concentration Pathways) that were used in the most recent IPCC 

assessment reports (IPCC, 2013b, 2014).  

Mean temperature change maps were produced for the four seasons to highlight the 

usefulness of producing such illustrations explained above. Further sector-specific 
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variables and indices should be chosen based on the interest of the users (e.g., impact 

studies, risk assessment). Another criterion is that the basic variable or index should 

represent features for which the RCM performance has been evaluated against the 

observations. To ensure that the climate products are tailored to the specific needs frequent 

interaction between service providers and users as well as co-development of products are 

essential.  
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Chapter 4  
 

Urban heat island, thermal comfort and temperature 

extremes – the case of the city of Valencia  

 

 

 

 

4.1 Introduction 

Besides the general warming trends in the Mediterranean region (e.g., Giorgi, 2006; 

Brunet et al., 2007), an increase in warm extremes and decrease in cold extremes were 

detected since 1950 (Alexander et al., 2006; Paul M. Della-Marta et al., 2007a). These 

trends are expected to continue throughout the 21st century (e.g., Fischer and Schär, 

2010), as I explained in detail in Chapter 2. Since the Valencian summer is characterized 

by humid heat that makes hot weather less comfortable, it is important to understand the 

evolution of Urban Heat Island (UHI) effect that imposes even higher heat stress on the 

urban environment. Realising the growing demand on urban climate and spatial thermal 

comfort information for climate change adaptation planning, the aim of this study is to 

analyse the intensity, spatial extent and evolution of the UHI during hot summer days.  

The present work combines two methods, thermal remote sensing techniques and in-situ 

meteorological observations, to measure the UHI over the city of Valencia. As the 

positive temperature contrast between the city and its surroundings tend to be the largest 
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after sunset, and strong UHI nights impose more severe heat stress on the human body 

(e.g., Vineis, 2010; Stevens, Thomas and Grommen, 2015), the main focus of the present 

study is the nighttime UHI and thermal comfort. To facilitate the involvement of UHI in 

urban adaptation strategies the more favourable and less pleasant parts of the city are 

identified using the Discomfort Index (Thom, 1959). Additionally, a year-round calendar 

is prepared to describe the general thermal comfort of an average day, month by month. 

In order to evaluate the urban climatological context, long-term historical data are also 

analysed. Besides the mean temperature, the warm and cold extremes are examined 

during the period 1906-2014. Finally, the study aims at providing recommendations to 

advance climate-resilient urban planning. 

The specific objectives of this study: 

(i) Analysing the long-term temperature conditions in Valencia in terms of mean 

temperature, as well as warm and cold extremes; 

(ii) Examining the evolution, intensity and spatial extent of UHI effect during 

summer hot days via remote sensing and in-situ meteorological data; 

(iii) Describing the general thermal comfort in the city and assessing the spatial 

pattern of Discomfort Index during summer hot nights; 

(iv) Practical implications to enhance Climate Services contribution to climate 

adaptation planning and decision-making. 

4.2 Data and Methods 

4.2.1 Study area 

The metropolitan area of Valencia is the third largest conurbation in Spain. The city of 

Valencia has 787 266 inhabitants, distributed over an area of 137.5 km2, with a population 

density of around 7 966 inhabitants/km2 (Figure 4.1) (Statistical Analysis of Census 2011, 

Stat. Of. website). The city is located on the Spanish Mediterranean coast on a small 

alluvial plain formed during the Quaternary by the carriage of the Turia River. The flat 

relief has a maximum E-W increase in height of 40 m from the sea to the beginning of 

alluvial fan (Caselles et al., 1991). The geographical area of the city can be characterized 

by sub-arid Mediterranean climate with “hot dry-summers” (Csa according to the updated 

Köppen-Geiger climate classification, Kottek et al., 2006). The dominant local wind 
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flows perpendicular to the shoreline (E-W) and shows a typical daily periodicity of a sea-

breeze. Sunshine duration is 2 660 h per year, with an average above 10 h per day in July 

(AEMet website). 

 
Figure 4. 1 The map of Valencia city (Statistical analysis of Census 2011, Stat. Of. website) 

(diamond: Viveros meteorological station, triangle: Airport meteorological station). 

The city is distributed into 19 districts with very different characteristics regarding both 

the building density and height, as well as green areas. The continuous urban surface 

extends over 36.3 km2, while green surfaces cover more than 4.5 km2, to which gardens 

contribute with 2.5 km2, urban parks with 0.6 km2 and the Turia riverbed with 1.2 km2 

(Lozano Esteban, 2010). Valencia went through a star-shaped growth in the last few 

decades as it has spread over the surrounding farmland and has absorbed several small 

towns and villages nearby (e.g., Campanar—District 4). Thus, the type of urban area 

greatly varies throughout the city, from the ancient central nucleus (Ciutat Vella—District 

1) which is densely urbanized (only small urban parks can be found here), to the outskirts 

of the city where a few farmland areas still remain within the city borders (Caselles et al., 

1991). This unique farmland called “Huerta” is a socio-cultural heritage that organically 

connects the traditional agriculture to the urban metabolism. During the urban expansion 
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in the second part of the 20th century the “Huerta” was reduced to a belt around the city 

consisting of small farms and vegetable gardens with dispersed habitat dedicated to crops, 

mainly green vegetables (Caselles et al., 1991; Lozano Esteban, 2010). 

4.2.2 Climatological data 

The study area of Valencia has only one long-term weather station (Viveros, AEMet ref. 

8416, N 39°28′50″ W 0°21′59″; 11 m) within the city limits despite its size, and another 

one in the suburbs (Airport, AEMet ref. 8414A, N 39°29′06″ W 0°28′29″; 56 m) that 

could provide reliable and sufficiently long data for the study. For the Viveros station the 

data were obtained from the SDATS homogenized dataset, provided by the Centre for 

Climate Change (Brunet et al., 2006), and for the Airport station the data were retrieved 

from the Agencia Estatal de Meteorología (AEMet website). The Viveros station is located 

ca. 1 km from the old city centre, at the side of a green park and next to a main road and 

high built residences. The airport is ca. 10 km away from downtown, in the outskirts of 

Valencia, at the edge of a small town which is a medium dense built-up area.  

The instruments are placed in the open field over bare soil, with few asphalt surfaces 

nearby (ca. 200 m). The Airport station is significantly further away from the sea than the 

urban station, which can lead to higher temperatures especially in the mornings and early 

afternoon, as the sea breeze front only reaches a few km inland. Air temperature 

measurements at both stations are taken at 2 m in standard Stevenson shelter. Daily 

maximum and minimum temperature (Tmax, Tmin) data series of Viveros cover more 

than a century (1906–2014), while the Airport extends between 1966 and 2014. As the 

latter station is not included in the SDATS dataset, thorough quality control and 

homogenisation procedures were carried out using best practice software RClimDex-

extraQC (Aguilar and Prohom, 2011) and HOMER (HOMogEnization software in R) 

(Mestre et al., 2013) before analysing the time series. Furthermore, in order to evaluate 

the meteorological conditions during the studied 3-day period in August 2014, hourly 

temperature (AT), relative humidity (RH) as well as wind speed and wind direction data 

were involved into analyses from both stations, provided by the AEMet. The general 

thermal comfort in the city was described based on hourly AT and RH time series of a 4-

year period (March 2012 – December 2015) made available by AEMet too. 
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4.2.3 Climate indices 

To gain general overview on the long-term climatic conditions in the Valencian region, 

the yearly mean temperature was calculated from the daily Tmin and Tmax time series 

over the 1906-2014 period. To detect temporal changes linear trend was fit by using the 

least squares method and tested for statistical significance at the 0.01, 0.05 and 0.1 level. 

For the long-term evaluation of changes in climate extremes, the ETCCDI (Expert Team 

on Climate Change Detection and Indices, ETCCDI) were applied (see description in 

Chapter 2, section 2.4.1). Seven indices were chosen, most of them percentile based, and 

thus suitable for interregional comparisons. The indices are defined as follows (Peterson 

et al., 2001): 

a) Cool days (TX10p), Percentage of days when Tmax < 10th percentile: 

Let Tmaxij be the daily maximum temperature on day i in period (year or month) 

j and let Tmaxin10 be the calendar day 10th percentile centred on a 5-day window 

for the base period 1961–1990. The percentage of time for the base period is 

determined where: Tmaxij < Tmaxin10 

b) Cool nights (TN10p), Percentage of days when Tmin < 10th percentile: 

Calculated in the same way as for Tmax, see section a). 

c) Warm days (TX90p), Percentage of days when Tmax > 90th percentile: 

Let Tmaxij be the daily maximum temperature on day i in period j and let Tmaxin90 

be the calendar day 90th percentile centred on a 5-day window for the base period 

1961–1990. The percentage of time for the base period is determined where: 

Tmaxij > Tmaxin90 

d) Warm nights (TN90p), Percentage of days when Tmin > 90th percentile: 

Calculated in the same way as for Tmax, see section c). 

e) Warm spell duration indicator (WSDI): Annual count of days with at least 6 

consecutive days when Tmax > 90th percentile 

Let Tmaxij be the daily maximum temperature on day i in period j and let Tmaxin90 

be the calendar day 90th percentile centred on a 5-day window for the base period 

1961–1990. Then the number of days per period is summed where, in intervals of 

at least 6 consecutive days: Tmaxij > Tmaxin90 

f) Cold spell duration indicator (CSDI): Annual count of days with at least 6 

consecutive days when Tmin < 10th percentile 

Let Tminij be the daily maximum temperature on day i in period j and let Tminin10 
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be the calendar day 10th percentile centred on a 5-day window for the base period 

1961–1990. Then the number of days per period is summed where, in intervals of 

at least 6 consecutive days: TNij < TNin10 

g) Tropical nights (TR20): Annual count of days when Tmin > 20 °C. 

Let Tminij be daily minimum temperature on day i in year j. Count the number of 

days where: Tminij > 20 °C. 

For computing the indices the RClimDex statistical package in R (Aguilar and Prohom, 

2011) was used. 

4.2.4 Remote-sensing data 

The MODerate resolution Imaging Spectroradiometer (MODIS) sensor was deemed to 

be the most suitable for this study for different reasons. The MODIS sensor is carried on 

both NASA’s Aqua and Terra satellites that have near polar orbits resulting in three 

images per satellite per day. Image acquisition on Aqua is two per night and one per day 

and on Terra is vice versa. This is a high temporal resolution, meanwhile the spatial 

resolution is only ca. 1 km that is considered coarse compared to other alternatives such 

as the Advanced Thermal Emission and Reflection Radiometer (ASTER), the Landsat 

series as Enhanced Thematic Mapper Plus (ETM+) or the Thermal Infra-Red Sensor 

(TIRS), all of which have spatial resolutions below 100 m. However, the number of 

images available from ASTER or Landsat is significantly less than MODIS, and in this 

case there were hardly any images suitable. A strength of the MODIS sensor is the 

compromise between regular image acquisition and reasonable spatial resolution, in 

comparison to other sensors that offer higher spatial resolution but lower temporal 

resolution (e.g., Landsat), or higher temporal resolution but lower spatial resolution (e.g., 

SEVIRI) (Tomlinson et al., 2012). In spite of the coarse resolution of the MODIS LST 

product, the high temporal resolution of MODIS makes it reasonable for UHI studies 

(Tomlinson et al., 2012; Sobrino et al., 2013). 

The MODIS data are available from the EOSDIS Reverb ECHO—NASA (NASA website) 

and useful land surface temperature (LST) products include MYD11 (Aqua) and MOD11 

(Terra) at 1 km resolution. As MODIS data have a limited number of useful images (clear 

sky conditions and not too high zenith angle of the observing sensor are needed), detailed 

study of the development of UHI can be carried out in a limited number of consecutive 
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days. Potential cases have been selected by analysing the nighttime heat conditions of the 

summer semester (May, June, July, August, September), by highlighting the days when 

the Tmin exceeded the 90th percentile of the MJJAS daily data calculated on the base of 

109 years. Accordingly, a 3-day period of August 2014—with a record hot day in the 

middle of the period—was chosen based on the climatological criteria and the availability 

of MODIS images. Eleven MODIS products (two MODIS images from both satellites for 

day and night) were eligible for the study as these products provided LST data with 

moderate bias due to the image acquisition angle. The thermal products were obtained 

directly from the NASA, then they were georeferenced and multiplied by the MOD11 

scaling factor of 0.02. Depending on the angle of image acquisition, the error was between 

1.5–2 °C, as Wang, Liang and Meyers (2008), Sobrino and Skoković (2016) described it. 

To evaluate more precisely the spatial structure of the UHI and DI, a high resolution (90 

m) nighttime image of ASTER was retrieved for a summer day (28 June 2014, 22:06 

GMT). This was the only appropriate image that could be used as an example for further 

studies, because of the limited number of available high-resolution images: ASTER 

collects nighttime data only on request and the couple of available LANDSAT images 

did not have sufficient quality. Although the ASTER image covers only the ca. 80 % of 

the studied region, fortunately the MODIS and ASTER data are gathered at the same 

time—both sensors are carried on the same platform (Terra) —, that enabled us to pursue 

a comparison. 

4.2.5 NDVI 

Three regions (Urban, Semi-Urban and Rural) were determined to calculate the surface 

UHI (sUHI) across Valencia. The areas with human constructions and areas covered with 

vegetation were distinguished according to the NDVI (Normalized Difference Vegetation 

Index) (Figure 4.2). The index was calculated using the infrared and red bands of the 

Terra satellite thermal image on 26th of August 2014. The Urban area (U) (NDVI ≤ 0.20) 

is a relatively homogenous built up area considering the resolution of MODIS image, 

where the average NDVI value was 0.18 (SD = 0.02). The western zone shows a Semi-

Urban (SU) inhomogeneous area around the airport, with a mixture of rural and urban 

surfaces (NDVI ≈ 0.26; SD = 0.06). The relatively homogenous Rural area (R) north from 

the city (NDVI > 0.27) had the highest NDVI, an average of 0.34 (SD = 0.04). The three 

regions were chosen to have equal areas of 34 020 km2 (including 40 pixels). 
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Figure 4. 2 The different regions determined according to the calculated NDVI on 26th of 
August. (U: Urban, SU: Semi-Urban, R: Rural region; diamond: Viveros meteorological 
station, triangle: Airport meteorological station, black border: administrative border of 

Valencia). 

4.2.6 Discomfort Index 

Although there are many complex and multi-variant based methods for determining 

bioclimatic comfort, one of the best indices for estimating the effective temperature is the 

DI index (Toy, Yilmaz and Yilmaz, 2007), also known as Thom’s discomfort index (THI) 

(Thom, 1959). This index is based on the effective temperature and humidity conditions 

and describes the degree of discomfort by categories covering the whole spectrum from 

cold to tropical climates. DI is defined as  

𝐷𝐼 = 𝐴𝑇 − 0.55 − 0.0055	𝑅𝐻 	(𝐴𝑇 − 14.5)    (Eq. 4.1) 

where AT is air temperature expressed in °C and RH stands for relative humidity in 

percentage. 

To evaluate the average annual and daily cycle of DI in Valencia, 4-year (March 2012 – 

December 2015) hourly AT and RH data were analysed both at the Airport and Viveros 

stations. A color-coded calendar was prepared to illustrate the thermal comfort throughout 

the year, during daytime-nighttime. 
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4.3 Long-term temperature in Valencia 

4.3.1 Observed mean temperature  

To detect the long-term changes in climatic conditions in Valencia I analysed the 109-

year (1906–2014) homogenised temperature time series registered at Viveros. A 

significant increasing trend was found in the annual average of daily mean air 

temperature, with a rate of 0.2 °C per decade (p < 0.05) (Figure 4.3). Around the mid-

century (from late 1940s until late 1960s) a warm period interrupted the positive trend of 

temperature. This warm period can be found in most Spanish and Northern Hemisphere 

stations (see Brunet et al., 2007). In the last 2 decades, the yearly mean temperatures had 

the highest values considering the whole 11 decades, even though the pace of warming 

decreased in this period. 2014 was a record warm year with +2 °C anomaly compared to 

the reference period (1961–1990). 

 
Figure 4. 3 The mean temperature in Valencia over the period 1906–2014. 

4.3.2 Temperature extremes 

To evaluate the frequency of temperature extremes during the studied period, different 

climate indices were analysed based on Tmin and Tmax times series. Figure 4.4 shows 

the extreme climate indicators describing the frequency of warm days (TX90P, panel a), 
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warm nights (TN90P, panel b), cool days (TX10P, panel c), cool nights (TN10P, panel d) 

and a simple index to monitor heat and cold waves, based on the persistence of warm 

days (WSDI, panel e) and cool days (CSDI, panel f). 

First, we look at the indices based on Tmax, which characterise the warm days (the 

percentage of days when Tmax > 90th percentile, panel a) and the cool days (the 

percentage of days when Tmax < 10th percentile, panel c) (see section 4.2.3 for a detailed 

description). The cold extremes significantly decreased with -0.15 % average annual rate 

(p < 0.01) in the last 11 decades, and warm extremes significantly increased with an 

average annual rate of +0.11 % (p < 0.01) (Table 4.1). Consequently, cool days have 

become less frequent and warm days more frequent during 1906–2014. The TX90P 

(warm days) and TX10P (cool days) showed simultaneous opposite behaviour, i.e. the 

constant increasing (decreasing) trend of warm days (cool days) was interrupted with a 

period (from late 1940s until late 1960s) of slight decrease (increase) as it was the case 

with the mean temperature too. 

Second, the indices based on Tmin are evaluated to characterize the nighttime conditions, 

i.e. warm nights (the percentage of days when Tmax > 90th percentile, panel b) and the 

cool nights (the percentage of days when Tmax < 10th percentile, panel d) (see formula 

in section 4.2.3). Similarly to Tmax, a long-term decreasing trend with an average annual 

rate of -0.23 % (p < 0.01) in the cold extremes (TN10P) and an increasing trend with a 

rate of +0.18 % (p < 0.01) in the warm extremes (TN90P) was found (Table 4.1). As a 

consequence, cool nights have become less and warm nights more frequent in the 

examined period. As we saw in case of warm days–cool days, the course of warm nights 

follows a “mirrored” tendency compared to cool nights throughout the examined period.  

In the bottom panels of Fig. 4.4 the Warm Spell Duration Index (WSDI) and Cold Spell 

Duration Index (CSDI) are presented to attribute the persistence of warm and cool days 

during the period 1906–2014. WSDI is defined as the annual count of days with at least 

6 consecutive days when Tmax > 90th percentile (see formula in section 4.2.3). CSDI is 

calculated in a similar way as WSDI, but with the threshold Tmin < 10th percentile. 

The WSDI (panel e) showed low frequency of warm spells throughout the last century, 

with a couple of outstanding years in the mid-century (e.g. 1928, 1947). However, after 

1997 warm spells become more frequent at an inter-annual level. The spike in WSDI in 
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2003 indicates the extreme long and intense heat wave that occurred across Europe. As 

the number of warm spell days in a year did not increase significantly but the inter-annual 

frequency, the fit linear trend (slope = +0.06 day per year, p < 0.06) is less powerful and 

dominated by the outstanding value of 2003 (Table 4.1). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. 4 Warm and cool temperature extremes in Valencia over the period 1906–2014. The 
“percentage of days” refers to monthly values that are averaged for every year. 

According to the duration index of cold spells (panel f), persisting cold days were more 

common at the first half of the century. After 1956 cold spells gradually became less 

frequent, and in the last 2 decades—except 2012—there was no period with at least 6 

consecutive days when Tmin < 10th. During 1906–2014 there was a significant decrease 

in CSDI with a rate of -0.37 day per year (p < 0.01) (Table 4.1). In addition, it is 

remarkable to see how the sequence of years without a cold spell increases and how the 
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number of years with warm spells decreases. 

Table 4. 1 Summary of trends detected in the extreme indices. * Indicates significance at 1 % 
confidence level, ** indicates 10 % confidence level. 

Extreme index Indicator name Trend slope Confidence level 
TX90P warm days 0.11 * 
TX10P cool days -0.15 * 
TN90P warm nights 0.18 * 
TN10P cool nights -0.23 * 
WSDI Warm Spell Duration Index 0.06 ** 
CSDI Cold Spell Duration Index -0.38 * 

To sum up, based on the studied indices warm extremes have become more frequent and 

the occurrence of cold extremes decreased during the examined period. The point 

estimates of trends suggest a larger change in cold extremes indices (TN10p, TX10p, 

CSDI) compared to their warm extremes counterparts (TN90p, TX90p, WSDI) and a 

larger change in nighttime indices (TN10p, TN90p, CSDI) compared to their daytime 

counterparts (TX10p, TX90, WSDI).  

4.4 The urban heat island effect 

4.4.1 The long-term estimation of nighttime UHI and Tropical Nights 

To describe the nighttime temperature conditions in the city centre and surroundings of 

Valencia five decades (1966–2014) of daily minimum temperature (Tmin) records were 

analysed. (Here I use this period of five decades because data is available at the airport 

station only from 1966.) As the positive AT contrast between the urban and rural areas 

tends to be the largest in the late night–early morning hours, the daily Tmin can be used 

as an indicator of the general heat conditions of the night. Thus, a rough estimate can be 

given for the nighttime UHI by calculating the difference of Tmin time series at the two 

meteorological stations. 

As shown in Figure 4.5a, the intensity of the estimated nighttime UHI was most 

frequently between +1.5 and +2.0 °C, with an extreme value of +9.0 °C on the 26th of 

January 1978 (quality controlled). Furthermore, the most intense positive contrast 

between the city centre and the airport usually occurred in the cold half of the year, 

especially in December and January (Figure 4.5b). During summer (MJJAS) the average 

value was +1.4 °C (SD = 3.0 °C), however negative values also occurred. The two 
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“extreme” outlier values in the summer (8.5 °C, 7.7 °C) were recorded in the early 

morning on days with summer storms with precipitation of 26.5 mm and 123 mm, 

respectively. The annual number of tropical nights (Tmin > 20.0 °C, ETCCDI) 

significantly increased at both stations, at the Airport from 10 to 76 between 1966 and 

2014 (slope of linear trend: 1.12 per year), at Viveros from 64 to 88 between 1906 and 

2014 (slope of linear trend for 11 decades: 0.48, for the last 5 decades: 1.10 per year) 

(Figure 4.6).  

 
Figure 4. 5 The frequency distribution of the temperature contrast between the Viveros and the 

Airport station calculated from daily in-situ measurements of Tmin (1966-2014): (a) The 
probability density; (b) Monthly statistics. 

 
Figure 4. 6 The annual number of tropical nights (Tmin > 20.0 °C) at the airport and at the city 

centre (Viveros). 
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4.4.2 Case study of the evolution of sUHI 

In August of 2014 the region of Valencia experienced its 5th largest daily maximum air 

temperature on record (26th of August, 42.2 °C measured at Airport) that was 

accompanied by tropical nights throughout the month and followed by extreme hot nights 

with Tmin > 22.0 °C (i.e., exceeding the 90th percentile of Tmin data as described in 

section 4.2.3). The LST images (Figure 4.7) present the evolution of the surface urban 

heat island over the city of Valencia during 3 consecutive days around the hot record (25–

27 of August).  

The daytime images (Figure 4.7a,b,e,f,j,k) taken in the early and middle afternoon show 

the so-called negative sUHI in the city. During the day the surrounding fields—

characterized mostly by bare soil and low level vegetation—warmed up faster due to the 

direct insolation, meanwhile the urban areas stayed relatively cooler thanks to the 

shadows provided by the buildings, the higher specific heat capacity of the urbanized soil 

and the breeze coming from the direction of the sea (Table 4.2). The right column images 

(Figure 4.7c,d,g,h,l) presenting the nighttime conditions were taken around midnight and 

early morning. This well-pronounced positive temperature anomaly of the urban surface 

temperature is the phenomenon that is conventionally defined as sUHI. 

Table 4. 2 The weather conditions during 25–27 August 2014 at the Airport and temperature at 
Viveros. (ATv: AT measured at Viveros, ATa: AT measured at Airport, v.a.: veering around, 
lower index a: measured at the Airport). 

Date ATv (°C)  
min/max 

ATa (°C)  
min/max 

RHa (%) 
min/max 

Solar Time 
(GMT) 

Wind 
Directiona 

Wind 
Speeda (km 

h−1) 
Description 

25 
August 22.7/30.2 21.1/32.4 32/88 

0–5  
6–8  

9–16  
17–20  
21–24 

NW-W  
Calm  
SE–E  
NE-E  

variable 

2–5  
0  

4–19  
15–21  

0–5 

light air  
calm  

gentle breeze  
mild/gentle 

breeze  
calm/light air 

26 
August 22.2/41.6 20.5/42.2 8/90 

0–10  
11–16  
17–20  
21–24 

v.a. W  
SW  

NE-E  
variable 

2–6  
21–33  
8–20  
0–8 

light air  
mild breeze  

gentle breeze  
calm/light 

breeze 

27 
August 23.1/30.5 22.6/32.4 41/87 

0–4  
5–8  

9–18  
19–24 

E  
variable  

E  
SE 

6–9  
3–9  

8–22  
2–6 

light breeze  
light air  

mild/gentle 
breeze  

light air 
 

The previous day of the record heat (25th) was a common, cloudless August day, with a 

gentle breeze from the sea cooling the city during the day, and having light air flow after 
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sunset. In the afternoon the highest negative value of sUHI occurred near Viveros (Figure 

4.7a, black rectangle) and in the eastern part of the city (−2 °C), meanwhile SW-NE 

gradient can be noticed over the city (SW: 37 °C, NE: 34 °C). 1.5 h later the differences 

between the urban and rural areas became negligible, hence the “island of city” cannot be 

clearly distinguished in the Figure 4.7b. The nighttime images taken approximately 4 and 

6 h after sunset (Figure 4.7c) show a generally warmer city (+2 °C). Around midnight the 

western and eastern residential areas of the city were the warmest, while 2 h later the 

warmest spots were the densely built old city centre in the vicinity of Viveros and the 

harbour (Figure 4.7d). The pixels with outstanding low/high values near the beach should 

not be considered as they might be influenced by the sea (Baghdadi and Zribi, 2016). 

On the 26th wind was blowing from west all the morning indicating the arrival of the so-

called “Poniente” (meaning “westerly wind”) that usually brings hot air from the inner 

plateau which warms more, by adiabatic compression, when descending into the coast. 

The Poniente prevailed all the afternoon as a mild breeze from SW—with the maximum 

velocity of 33 km h−1 at early afternoon (11 GMT)—resulting in a warm air advection to 

the city. The MODIS image in the early afternoon (Figure 4.7e) also captures this 

phenomenon as the LST was generally higher (42–46 °C) than the previous day at similar 

time (Figure 4.7a). The image 1.5 h later has a similar pattern and presents the rapidly 

warming surroundings, however there is less precision due to the high angle of the 

measuring sensor (Figure 4.7f). By twilight the wind had turned 180° and the NE-E gentle 

breeze from the sea started to refresh the city. The early night image (Figure 4.7g) presents 

an extended sUHI effect (2.5 °C) with the highest LST values in the inner city  

(25.5–26.5 °C). Later on in the night (Figure 4.7h) the city started to cool down, however 

still keeping its contrast with the surroundings (+1.5 °C). Furthermore, thanks to the 

northerly winds over open land the northern agricultural area of the city—the “Huerta”—

stayed significantly cooler than the rest of the city.  

The afternoon images for the next day (27th) are similar to those from the 25th, with 

strong negative sUHI in the early afternoon that became weaker as the city warmed up 

and the breeze fostered the heat transport from the surface to the air (Figure 4.7j,k). The 

early night image of 27/28 (Figure 4.7l) shows a similar sUHI pattern than the late night 

the day before (Figure 4.7h), with an average +2 °C. Later the night became cloudy, 

resulting in extreme high Tmin (24.5 °C) by early morning. 
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As the Figure 4.7 maps show, even though the Airport weather station is set up over bare 

soil and away from buildings, its surrounding is affected by artifical surfaces that 

influence the thermal radiance data. Hence, in order to evaluate the sUHI quantitatively, 

the differences between the average LST of the Urban and Rural, as well as the Urban 

and Semi-Urban (i.e., the surrounding of the airport) regions were calculated (Table 4.3). 

As the defined Rural region is a good representative of the agricultural belt around the 

city, using it as a reference resulted in the most precise estimation of the sUHI of Valencia. 

Further qualitative evaluation is provided in form of “difference maps” where the average 

LST value of the Rural region is subtracted from all the pixels (Figure 4.8a-l). These maps 

also support the findings that during daytime the urban area was generally cooler than the 

rural area (−0.6–−3.3 °C), and during nighttime the city area was a relatively homogenous 

warm spot (+1.7–2.6 °C). It should be noted that the western suburbs (including the 

airport) were also warmer during night, but showed more heterogenous pattern than the 

city. 

Table 4. 3 The average LST over the three regions and the sUHI with Semi-Urban (SU) and 
Rural (R) references. (The best estimation of sUHI [Urban vs. Rural] is marked in bold. Letters 
in brackets correspond to the images of Figure 4.7a–l.) 

Image 
Acquisition 

Time (GMT) 

View 
Zenith 

Angle (°) 1 

Pixel Size 
(km) 

Urban 
(°C) 

Semi-
Urban (°C) 

Rural 
(°C) 

sUHI  
Ref.: SU (°C) 

sUHI  
Ref.: R 

(°C) 
25 August 2014. 

11:35 (a) 54 2.7 35.8 37.9 36.3 −2.2 −0.6 

25 August 2014. 
13:15 (b) 14 1.0 41.7 42.6 41.8 −0.9 −0.1 

25 August 2014. 
22:40 (c) 53 2.7 23.9 22.2 21.9 1.7 2.0 

26 August 2014. 
01:15 (d) 61 3.6 22.0 21.0 20.9 0.9 2.0 

26 August 2014. 
10:40 (e) 28 1.2 43.8 44.9 45.5 −1.1 −1.7 

26 August 2014. 
12:20 (f) 61 3.6 42.0 45.4 45.2 −3.3 −3.1 

26 August 2014. 
21:45 (g) 30 1.3 26.1 24.3 23.5 1.8 2.6 

27 August 2014. 
02:00 (h) 7 1.0 24.6 23.1 22.9 1.6 1.7 

27 August 2014. 
11:25 (j) 42 1.7 37.4 39.6 38.5 −2.2 −1.1 

27 August 2014. 
13:05 (k) 12 1.0 41.5 42.1 41.9 −0.6 −0.4 

27 August 2014. 
22:30 (l) 41 1.7 24.7 23.6 22.7 1.2 2.0 

1 Pixel size is estimated from the view zenith angle based on the calculations of (Wolfe et al., 

1998).  
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Figure 4. 7 The evolution of sUHI during three hot summer days (25–27 August 2014). (U: 

Urban, SU: Semi-Urban, R: Rural region; diamond: Viveros meteorological station, triangle: 
Airport meteorological station, white border: administrative border of Valencia, black pixels: 

missing value/sea). (a–l): MODIS LST images, see the corresponding data in Table 4.3. 
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Figure 4. 8 The evolution of sUHI during three hot summer days (25–27 August 2014) 

presented in form of “difference maps”: the average LST value of the Rural region is subtracted 
from all the pixels in order to have a general view on the urbanized landscape in the region of 

Valencia. (U: Urban, SU: Semi-Urban, R: Rural region; diamond: Viveros meteorological 
station; triangle: Airport meteorological station; white border: administrative border of 

Valencia, white pixels: missing value/sea, dark blue-black pixels: values significantly influenced 
by the sea). (a–l): MODIS LST difference images, see the corresponding data in Table 4.3. 
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4.4.3 Comparison of AT and LST 

In order to evaluate the differences between the urban heat island effect in terms of surface 

and air temperature observations during the studied 3-day period, LST data (point values 

retrieved from pixel as well as regional averages) and AT time series from the two 

weather stations were analysed (Figure 4.9). The point LST values were obtained from 

the nearest pixel to the stations to compare them directly with the air temperature 

measurements. During daytime the differences between AT and LST at the Airport 

reached more than 10 °C, however during the night the difference was not greater than 

2.5 °C. This discrepancy was due to the different physical nature of AT and LST as it has 

been studied in several settings (Boudhar et al., 2011; Gallo et al., 2011; Tomlinson et 

al., 2012).  

 

Figure 4. 9 Comparison of the LST and AT values during 25–27 August 2014. (AT Airport: air 
temperature from the in-situ measurements at the Airport; AT Viveros: air temperature from the 

in-situ measurements at Viveros; LST Airport: LST of one pixel nearest to the Airport; LST 
Viveros: LST of one pixel nearest to Viveros; LST Urban: average of LST over the Urban 

region; LST Semi-Urban: average of LST over the Semi-Urban region; LST Rural: average of 
LST over the northern Rural region). 

 

 

15

20

25

30

35

40

45

50

00 06 12 18 00 06 12 18 00 07 13 19

Te
m

pe
ra

tu
re

 (°
C

)

Hour (GMT)

LST vs AT

AT Airport AT Viveros LST Airport LST Viveros
LST Urban LST Semi-Urban LST Rural



Chapter 4: Urban heat island, thermal comfort and temperatures extremes 

124 

At Viveros the difference between AT and LST was more moderated, during daylight less 

than 6 °C, and during nighttime less than 2 °C. This is a consequence of the altered 

surface-atmosphere interaction resulting in the urban canopy layer (UCL, the lower 

atmosphere from the surface until the mean building height) and the urban boundary layer 

(UBL, the lower atmosphere above UCL) that function as “buffer” layers over the surface 

of the city (Stewart and Oke, 2012). 

The regional LST averages characterizing the 3 regions defined by the NDVI (Figure 4.2) 

provide a further description of the surface heat conditions over the different (Urban, 

Semi-Urban, Rural) regions. Similar to the point LST values during the day the regional 

LST values were much higher than the corresponding AT, showing the lowest difference 

in the city (LST Urban - AT Viveros). There were smaller differences between the 

regional values than between the point values during night, and the point LST values were 

the closest to the AT values. Additionally, in most of the cases the point LST value at 

Viveros fit well to the Urban regional average, meanwhile the point LST at the Airport 

had larger discrepancies compared to the Semi-Urban regional average.  

The evolution of the urban heat island effect estimated from LST and AT measurements 

is presented in the Figure 4.10. The “biphasic” day-to day rhythm of the urban heat island 

effect is clearly seen in the air temperature measurements, showing a maximum difference 

between the Viveros and Airport station right before sunrise (5 GMT) with values of 1.6, 

2.3 and 1.4 °C on the 3 consecutive days. On the other hand, the LST measurements 

suggest that the differences between the Urban and Semi-Urban region (Figure 4.10, blue 

triangles), as well as the Urban and Rural region (Figure 4.10, green triangles) were 

generally larger than the contrast in AT, showing the highest value (Urban - Rural:  

2.6 °C) after sunset on the record hot day. Interestingly, on the 26th, a higher value of 

sUHI was found right after sunset (ca. 22 GMT) than at 2 GMT, probably due to the 

intense heat transport from the surface to the atmosphere. 

The sUHI estimations from the regional LST values were in accordance with the sUHI 

estimations from point LST values, however during the day the point values suggest 

extreme sUHI values that is not representative for the region. Another relevant point to 

highlight is that in the afternoon the estimated UHI and sUHI had maximum 

discrepancies, while at night reasonable agreement was found between both effects  

(< 0.6 °C in case of point LST). Thus, during nighttime land surface data may indicate 
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not only the sUHI pattern but the UHI pattern as well. 

 
Figure 4. 10 Comparison of the estimated UHI and sUHI. (UHI from AT in-situ Viv. and Airp.: 
the difference between the in-situ measurements of AT recorded at Viveros and AT recorded at 
Airport; sUHI from LST at Viv. and Airp.: the difference between the LST obtained from one 

pixel nearest to the meteorological stations at Viveros and the Airport; sUHI (Semi-Urban ref.): 
the difference between the LST averages over the Urban region and the Semi-Urban region; 
sUHI (Rural ref.): the difference between the LST averages over the Urban region and the 

Rural region). 
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SD = 4.7 °C). The standard deviation of hourly mean data in every month is higher at the 

airport than in the city, indicating more extensive daily range of DI—following the daily 

cycle of temperature (Figure 4.11). 

Table 4. 4 The DI categories based on Toy, Yilmaz and Yilmaz (2007). 

DI Category DI temperature (°C) 
Hyperglacial <-40 

Glacial −39.9 to −20 
Extremely cold −19.9 to −10 

Very cold −9.9 to −1.8 
Cold −1.7 to 12.9 
Cool 13–14.9 

Comfortable 15–19.9 
Hot 20–26.4 

Very hot 26.5–29.9 
Torrid >30 

 

 

Figure 4. 11 The annual cycle of daily mean Discomfort Index at Viveros and Airport station in 
Valencia. The error bars indicate the standard deviation of hourly DI in the average day of 

each month. 

At each station five DI categories were detected throughout the year: cold, cool, 

comfortable, hot and very hot (defined in Table 4.4). In general, the majority of cold and 

cool hourly values were found in the cold part of the year (NOV-DEC-JAN-FEB-MAR-

APR) and the majority of comfortable, hot and very hot values in the warm half (MAY-

JUN-JUL-AUG-SEP-OCT). The Airport station has more values in the cold and very hot 
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categories (the low and high end of the range) than the Viveros station, indicating that the 

suburban station has a larger daily and annual range of temperature (Table 4.5). The more 

frequent occurrence of cool and comfortable categories at Viveros are due to the milder 

wind in the city. Very hot hours were detected slightly (about 1 %) more often at the 

airport—in contrast, hot hours slightly (about 1 %) more often in the city—that is due to 

the negative urban heat island effect, i.e. in the hottest part of the day the rural areas warm 

up more, than the built-up areas (see section 4.4). 

Table 4. 5 Percentage of days falling in the different DI categories  
at Viveros and Airport station. 

DI Viveros Airport 

COLD 16.3 21.2 

COOL 12.2 10.7 

COMFORTABLE 33.8 30.4 

HOT 37.1 36.1 

VERY HOT 0.6 1.7 

In Table 4.6 the colour-coded average daily cycles can be seen for each month. As there 

were not many differences between the urban and sub-urban stations, only one table is 

shown here, marking those data that alter between the two stations. According to the 

monthly mean value of daily average cycle (Table 4.6, last column), in the city 4 month 

belong to the comfortable category (APR, MAY, OCT, NOV), 4 months to the hot (JUN, 

JUL, AUG, SEP), 3 months to the cool (JAN, FEB, MAR) and 1 month to the cold (DEC). 

The airport has similar category map over the year, however, the slightly colder 

wintertime can be noticed: JAN and FEB belong to the cold category instead of the cool, 

and NOV to the cool instead of the comfortable. In Table 4.6 the colours marked with 

vertical stripes belong to higher category (warmer) in the city than in the airport, while 

the ones marked with horizontal stripes refer to colder hours in the city compared to the 

airport. 
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Table 4. 6 A year-round calendar of the average daily thermal comfort based on the Discomfort 
Index calculated at Viveros and at the Airport in Valencia. The colors with vertical stripes 
indicate when Viveros has a higher DI category (i.e. warmer) than the Airport. The colors with 
horizontal stripes indicate the opposite case. The hours by columns are expressed in GMT. 
Spain belongs to the GMT+1 time zone, but during summertime GMT+2 is applied. 
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In general, in the cold part of the year, daytime hours are comfortable or cool, while 

nighttime hours are cold or cool. During the warm half of the year, daytime hours are 

mainly hot and occasionally comfortable, while during nighttime hot hours are still 

common, with a slight increase in the frequency of comfortable hours in some months. In 

June and September hot hours are prevailing the major part of the day, however, in the 

early morning conditions become comfortable for a couple of hours. July and August are 

characterized by hot hours all day, without relaxation period in the night. This means 

general discomfort and continuous increased heat stress on the human body during at least 

2 months. 

Comparing the suburban and urban stations, a couple of differences should be mentioned. 

First, looking at the cold part of the year, most of the differences can be seen during 

nighttime (early night and early morning, depending on the month). The common 

differences are that the city is one category higher than the suburban, i.e., instead of cold, 

the hourly values belong to the cool category, and instead of cool, to the comfortable. 

This difference is probably due to the often-occurring intense nighttime heat island effect, 

that was shown in Fig. 4.5. In November, more than half of the day the city has higher DI 

values than the airport, indicating milder conditions and less discomfort than outside the 

city. 

In the warm part of the year, similarly to the rest of the year, the city has higher DI values 

during nighttime—however only in a few cases. These cases occurred between 1 and 3 

GMT, indicating unfavourable conditions, i.e. hot in the city instead of comfortable 

outside the city. Nevertheless, during daytime, in some cases (May, late morning and late 

afternoon) the city had lower DI values than the airport, that suggest more favourable 

conditions inside the city. This can be partly due to the negative urban heat island effect, 

that implies lower temperature in urban areas—mainly thanks to the shadows of 

buildings—, illustrated in Figure 4.7 and 4.8 MODIS images. 

4.6 Spatial analysis – the case study 

The spatial variability of human thermal comfort in the city was assessed using the DI 

discomfort index. As the DI formula (Eq. 4.1) originally involves AT and RH data, the 

index was calculated only at nighttime when the AT and LST were in reasonable 

agreement (see Figure 4.9 and Sobrino et al., 2013). Accordingly, the index was estimated 
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using the nighttime LST images and the average RH values calculated from the in-situ 

measurements at Viveros and the Airport (Table 4.2). Although using an average RH 

value for the entire region introduced a moderated spatial bias to the DI, it did not affect 

the index significantly as there were only slight differences between the RH values  

(< 12 %) at the two stations. The DI values throughout the 3 nights of the observed period 

ranged between 19.5 and 24.2 that fell into the categories of comfortable (15.0–19.9 °C) 

and hot (20.0–26.4 °C) (Table 4.3). 

On the night 25/26th of August the major part of the region was characterized by hot 

conditions (Figure 4.12a,b). About 4 hours after sunset the DI in the city was around 22.5 

and slightly decreased by early morning, while some rural spots had values at the upper 

limit of the comfortable category. The midnight image of the night 26/27 (Figure 4.12c,d) 

expresses the higher heat stress after a hot day. The inner densely built-up areas of the 

city (District 1, 2, 3 in Figure 4.1) experienced hot conditions characterized with the 

highest DI (24.2), and the > 23 values extended to the outskirts of the city as well. By 

early morning the region became less hot, and some comfortable rural spots appeared. 

The night of 27/28 (Figure 4.12e) similar conditions occurred than the night before, 

probably due to the increased nighttime temperature and humidity. 
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Figure 4. 12. The DI discomfort index during the 3 nights of the examined period (25–27 August 
2014). (Diamond: Viveros meteorological station, triangle: Airport meteorological station, 
white border: administrative border of Valencia, white pixels: missing value/sea). (a–e): DI 

based on MODIS nighttime LST images.  

(a) 2014.08.25. 22:40 GMT 

(d) 2014.08. 27. 02:00 GMT 

(b) 2014.08.26. 01:15 GMT 

(e) 2014.08.27. 22:30 GMT 

(c) 2014.08.26. 21:45 GMT 

19    20    21    22    23    24        [°C]
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4.7 Extended analysis with high-resolution image of sUHI 

and DI 

As it has been shown in the MODIS images, the values of the sUHI vary throughout the 

city depending on the different surface materials and building-density, nonetheless, the 

chosen rural reference point—that is better to define as sub-urban area—also significantly 

influence its values. Therefore, in this section I add a different estimation of sUHI by 

changing the reference point to an agricultural field with no buildings in the vicinity—

the “huerta” —on the north edge of the city. Furthermore, a thermal image retrieved from 

ASTER measurements with a resolution of ca. 90 m is compared with the image of 

MODIS (ca. 1 km resolution), that were taken at the same time (28 June 2014, 22:06 and 

22:05 GMT, respectively). Due to the limited number of high-resolution satellite images 

over the study region (mentioned in section 4.2.4), the only usable nighttime image for 

this study was the ASTER product on the aforementioned day. Thus, this section offers 

an example for further work. 

Using the airport as reference (Fig. 4.13, first column) the ASTER image presents a 

detailed “structural map” of the city, highlighting the avenues and highways with wide 

asphalt cover and high traffic, the industrial zones and the densely built residential areas. 

The highest UHI values occur on the SE edge of the city indicating the line of highway 

(+3.2–4.0 °C), the main “ring” avenues around the city (2.1–3.5 °C), the “Bioparc” 

industrial area (2.5–3.0 °C) and the airport building with its asphalt runways (2.5–3.5 °C). 

Viveros, the biggest green park of the city, is cooler than most of the inner city and the 

airport (-0.5– -1.7 °C). Another identifiable object is the new channel of the Turia river 

on the west boarder of the city that is (-1.0– -1.6 °C) cooler than the reference point. The 

agricultural belt around Valencia, the “huerta”, is also cooler than the rest of the city. 

This pattern shows, that even though the airport weather station is set up over bare soil 

and away from buildings, its surrounding is affected by artificial surfaces that influence 

the thermal radiance data. Hence, sUHI values were also calculated by using a different 

reference point that was representative of the agricultural belt (Figure 4.13, second 

column, asterisk symbol). On the retrieved image the city centre is less distinguished from 

its surrounding as the reference spot is 2.5 °C cooler than the airport area. On one hand 

this gives a more realistic image of the temperature contrast in the whole region around 
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midnight (urbanised vs. agricultural fields), but the differences inside the city are blurred. 

In both of ASTER images some sporadic extreme cold spots (dark blue) are notable, that 

are originated from the estimation uncertainties of the surface emissivity parameter. 

“Over-radiated” spots of very light surfaces can cause this type of error that can be ruled 

out by better estimations of e, but it was beyond of the scope of this study. 

The MODIS images (Figure 4.13, second row) capture the main pattern of the sUHI, with 

a “hotspot” on the SW part of the city (+0.7 °C) indicating the highways, and a slightly 

warmer spot in the vicinity of Viveros (+0.4 °C), compared to the airport. The rest of the 

city has similar or slightly cooler temperatures than the airport, with the coolest part in 

the north “huerta” (around -3 °C). Using the “huerta” as reference the city is represented 

by higher sUHI values (+1.5–3.0 °C) and also the villages on the NW ca. 1 km from 

Valencia are +2.5 °C warmer. In general, the MODIS images show lower sUHI values as 

the surface variances are averaged out due to the rougher resolution.  

The discomfort index in the city (Figure 4.13, third column) varied following the 

temperature patterns, mainly characterized by values around 22–23 °C that indicates hot 

category. The large SE highway shows the highest values (around 24.5–25 °C) that is 

close to the upper limit of the category. The only comfortable spot in the inner city around 

midnight is Viveros, that has some values around 18 °C. The north fresh part of the city 

is well pronounced in the MODIS image as well, with values around 19–20 °C. The 

comfortable regions with values of 18–19 °C are generally farther from the city boarder, 

typically occurring in the agricultural fields. 
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Figure 4. 13 The-high resolution structure of the sUHI and the DI discomfort index during a 
summer night (28 June 2014). 
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4.8 Discussion 

4.8.1 Long-term heat conditions 

A strong local warming trend was identified in the long-term (1906–2014) near-surface 

temperature time series in Valencia (0.2 °C per decade) as it is expected due to the human 

induced global climatic changes. This is accompanied by changes in both the cold and 

warm extremes. The Valencian region has experienced more intense warming than the 

global average, as the global surface temperatures increased with 0.85 °C between 1880 

and 2012 (IPCC, 2013b), that indicates a warming rate of 0.07 °C per decade. This 

pronounced mean warming in the Mediterranean region has been documented by several 

studies, e.g., Giorgi, (2006) and Brunet et al. (2007). Over mainland Spain warming of 

0.1 °C per decade was detected based on an average of 22 stations for the period 1850–

2005, and for southeastern and eastern Spain—the region of Valencia—it was 0.13 °C for 

the period 1901–2005 (Brunet et al., 2007). According to this study—using different 

methods and extended time period (1906–2014)—the individual station of Valencia 

showed stronger warming than the rest of the country.  

Warm days (1.1 % per decade) and warm nights (1.8 % per decade) have become more 

frequent while the occurrence of cool days (-1.5 % per decade) and cool nights (-2.3 % 

per decade) decreased during the studied period 1906–2014. This implies positive shift 

of frequency distribution of daily Tmin and Tmax, indicating generally warmer 

conditions. Similar trends in temperature extremes have been observed in the Western 

Mediterranean region (e.g., Kiktev et al., 2003; Klein Tank and Können, 2003; Brunet et 

al., 2006; Bartolini et al., 2008; Rodríguez-Puebla et al., 2010), and globally (e.g., 

Alexander et al., 2006).  

As the absolute value of average annual rate of trends in cold extremes was higher than 

in warm extremes, the rightward shifting of cold tail was bigger than of warm tail in case 

of both Tmax and Tmin. This is in line with the global trends (Alexander et al., 2006), 

i.e. a positive shift in the distribution of daily minimum and maximum temperature was 

observed throughout the globe for the period 1951–2003—but with smaller magnitudes 

in case of Tmax. Over mainland Spain Brunet et al. (2007) found similar tendency, 

showing that the overall warming during the period 1850–2005 has been more associated 

with reductions in cold extremes, as opposed to increases in warm extremes.  
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Significant trends of more warm days and fewer cool nights over the Iberian Peninsula 

were connected to large scale-variables by the study of Rodríguez-Puebla et al. (2010). 

According to their results, changes in the warm days indicated by TX90P are connected 

with the Scandinavian teleconnection index and a preferred mode of geopotential height 

at 500 hPa over the North Atlantic. Changes in cool nights (TN10P) are connected with 

the East Atlantic teleconnection index and the leading mode of Sea Surface Temperature 

(SST) variability over the North Atlantic area (Rodríguez-Puebla et al., 2010). 

In present work, slightly larger changes were detected in nighttime conditions (increase 

of warm nights and decrease of cool nights), than in daytime. This suggest more 

comfortable (less cold) winter nights but increased heat stress during summer nights as 

similar studies (e.g., Unger, 1999) discussed this. The latter is an important contextual 

factor to be considered when discussing the harmful impacts of summer urban heat island 

effect (see section 4.8.2 and 4.8.3).  

The occurrence of cold spells decreased drastically in the second half of the 20th century 

according to the presented calculations. However, a detailed comparison of results is not 

possible since there are only a few studies available investigating long-term changes in 

characteristics of cold spells or cold waves in Europe. In case of the United States, Kunkel 

et al. (2008) found that the country has experienced a general decline in cold waves over 

the 20th century, with a spike of more cold waves in the 1980s. During the period 1950–

2003 a significant decrease of cold spells was documented in the Middle East too, based 

on data from 52 stations (Zhang et al., 2005). Lhotka and Kyselý (2015) analysed the 

spatial extent, temperature magnitude and duration of cold spells over Central Europe, 

however still there is a lack of research on the frequency of cold spells/cold waves from 

long-term perspective in Europe. 

Warm spells have become more common after 1997, with a record number of days in 

2003. As Castellà and Brunet (2011) described, the summer of 2003 was unprecedented 

(at the time of the study) in terms of both warm days and nights, as well as the warm 

spells along the Mediterranean coast, including Valencia. This remarkable 2003 heat 

wave and its impact was well-documented all-around Europe, e.g. in France (Poumadère 

et al., 2005 and De Ridder et al., 2017), in Italy (Conti et al., 2005, 2007) or in Switzerland 

(Beniston and Diaz, 2004). In general, the increasing number of warm spells is in 

accordance with the findings of Della-Marta et al. (2007a), showing that the length of 
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summer heat waves over western Europe has doubled over the period 1880 to 2005. Heat 

wave events over western Europe were explained in the context of large scale forcing and 

teleconnections between atmospheric circulation, sea surface temperature and 

precipitation by Della-Marta et al. (2007b). 

4.8.2 Urban heat island 

The growing number of tropical nights indicates a general warming trend at both the city 

centre and the countryside. The temperature contrast between the two sites has not 

changed in the last 5 decades, suggesting that the intensity of the urban heat island effect 

is not sensitive to the growth of the city or the warming trend. It is worth noting that the 

UHI effect is independent of the warming trends experienced by the studied locations in 

relation to global atmospheric dynamics, as the latter happens independently of the urban 

or rural nature of the measurement sites. Nevertheless, the Tmin as an indicator of 

nighttime conditions has limitations, providing more accurate information about the early 

morning, but less of the early night. 

A measurement campaign carried out during two winter nights in 1988 (Caselles et al., 

1991) first quantified the UHI in Valencia, taking ground-based air temperature 

measurements along transects and using remote sensing NOAA data. According to 

Caselles et al. (1991) in a winter morning (5 GMT) 3.0 °C of heat island effect was 

estimated by transect AT measurements and 4.5 °C by satellite LST data. This agrees 

with results of this study presenting 2.3 °C of heat island effect estimated by in-situ AT 

data at 5 GMT and 2.6 °C by remotely sensed LST data at ca. 22 GMT after the record 

hot summer day. Our slightly lower values—besides the use of improved satellite 

sensors—were due to the seasonal difference, as the cool winter nights provide more 

favourable conditions for the development of UHI (Figure 4.5b). 

Furthermore, Caselles et al. (1991) found that the heat island effect obtained from satellite 

data is 1–2 °C higher than the value obtained from air temperature measurements. This 

also supports the findings of this study that in general the nighttime sUHI was higher 

(with 1.5–2.2 °C, Figure 4.10) than the corresponding UHI. Nonetheless, our results 

emphasise that the “urban” and “rural” reference locations in an extensively urbanised 

landscape have a high impact on the estimations of the urban heat island effect (Table 

4.3, Figure 4.8), hence should be chosen prudently. The NDVI provides a good base to 
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distinguish surfaces with or without vegetation, however an objective, universally 

applicable landscape classification scheme is needed for further higher resolution sUHI 

studies (Stewart and Oke, 2006). 

According to an early analysis on the urban climate of Valencia (Pérez Cueva, 2001), the 

heat island effect of the city decreases the discomfort of winter cold, but it increases the 

discomfort of summer heat. In the present case study the sea breeze played a main role in 

refreshing the city after the record hot day. It is notable that the prominent SW continental 

wind (“Poniente”) blocked from early morning the beneficial sea breeze from E on the 

26th of August 2014, resulting in a severe warm advection all day, that was overtaken by 

the NE sea breeze only in the early evening hours. Consequently, the nighttime UHI after 

the unusually hot day was more intense as we might expect from other cases, e.g., 

Birmingham, UK (Tomlinson et al., 2012), Beijing, China (Li et al., 2015), and Madison, 

USA (Schatz and Kucharik, 2015). 

Regarding the sUHI pattern, using low resolution NOAA images Caselles et al. (1991) 

found a similar structure to that identified in the MODIS images, namely higher values 

in the city centre and the eastern part of the city. They also identified a maximum SW 

temperature gradient from the city centre, which occurs thanks to the unfragmented 

agricultural fields and forests on the SW (Figure 4.7). A similar spatial pattern was found 

in Barcelona, another Mediterranean coastal city, with higher intensity (Moreno-Garcia, 

1994), probably due to the larger population of the city. For further spatial assessment of 

the intra-urban variability of UHI in a district or neighbourhood level spatial resolutions 

greater than 50 m are needed, and the recommended satellite overpass time is immediately 

before sunrise, as Sobrino et al. (2012) suggests. 

4.8.3 Human comfort 

The discomfort index is an important indicator to evaluate the heat stress imposed on the 

human body and well-being. The annual and diurnal cycle of DI shows that urban areas 

are more temperate than the rural, that is line with studies comparing climatic factors 

between urban and rural areas, such as Unger (1999) and Toy, Yilmaz and Yilmaz (2007). 

In the city four months—the second and third months of spring and autumn—belong to 

the comfortable category and four months—summer and early autumn—to the hot. Three 

months (second and third months of winter and the first of spring) are characterized by 
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cool conditions, and the first month of winter falls to the cold category. In contrast with 

the mild winter in the city, the suburban areas are attributed by one category less (i.e. they 

are colder) in January, February and November. Accordingly, during winter the city offers 

more favourable conditions than the rural region, where people are exposed to less 

comfortable conditions. A similar study on the city of Erzurum (Turkey, continental 

climate) found that during winter—considering the number of cold and very cold 

months—the most advantageous area is the urban area compared to rural regions (Toy, 

Yilmaz and Yilmaz, 2007). 

I found that in the warm part of the year the DI conditions were similar at both stations. 

July and August were characterized by hot hours all day, without relaxation period in the 

night. This means general discomfort and increased heat stress on the human body during 

at least two months. Apart from July and August, there are a couple of cases (occurring 

between 1 and 3 GMT) when it’s hot in the city and comfortable outside the city, 

indicating warmer nighttime conditions in the urban area. This implies that people living 

inside the city—and resting home during night—are exposed more frequently to hot 

conditions, than those having their home outside. The higher exposure time might impose 

higher heat risk on the vulnerable segment of the population, as Tomlinson et al. (2012) 

showed for the case of Birmingham.  

Thermal discomfort on an hourly scale was studied in the Spanish cities of Malaga and 

Barcelona (Balafoutis, Ivanova and Makrogiannis, 2004), but not in Valencia. 

Considering the geographical locations of these three cities, all lay along the 

Mediterranean coast: Barcelona in the north, Malaga in the south and Valencia around 

half-way between the two. Based on the Relative Strain Index—that applies temperature 

and relative humidity data similarly to DI—calculated for July 2003, Malaga was more 

comfortable than Barcelona, where some days had very unpleasant conditions 

(Balafoutis, Ivanova and Makrogiannis, 2004). However, I need to note, that the more 

frequent distress conditions in Barcelona compared to Malaga cannot be generalized for 

all summers, as the 2003 summer had unprecedented heat waves that were more intense 

on the northern part of the Iberian Peninsula (Castellà and Brunet, 2011) than on the south. 

For this reason, our results based on the Discomfort Index calculated for the 4-year period 

2012–2015 provide a more comprehensive overview of the annual cycle of human 

comfort in Valencia. 
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Nevertheless, it is important to mention that non-ideal locations of the meteorological 

measurements probably influence the DI results. As the airport station is placed close to 

a medium built-up suburban region and the urban station is installed at the side of a large 

urban park, both meteorological data are influenced by its surrounding for some degree, 

as I described in section 4.2.2. Probably, with more and better located stations (for 

instance one in the surrounding agricultural fields and others in the densely built-up areas 

such as the old town) more accurate results could be achieved. Furthermore, other indices 

that take into account more variables (such as wind, sunshine hours, precipitation, etc.) 

could provide further, sector-specific information of thermal comfort in the city. For 

example, the Tourism Climatic Index (Mieczkowski, 1985; Perch-Nielsen, Amelung and 

Knutti, 2010; Kovács and Unger, 2014) and Holiday Climate Index (Scott et al., 2016) 

are widely used for the tourism sector. 

To evaluate the heat stress that the increased nighttime temperatures impose on the urban 

population the spatial pattern of DI was analysed. It is notable that the inner city and 

surrounding residential areas (with the highest number of inhabitants in the SW districts 

of 2, 3, 7, 8, 9, in the N districts 5, 15, 16 and the E districts of 12, 13, 14, Figure 4.1) 

generally tended to be warmer than the surroundings during the usual sleeping period of 

night in summer in Valencia (02–08 GMT+2). This increases the discomfort of habitants, 

and might cause more frequent insomnia events (Vineis, 2010). According to the DI 

maps, the hot zones with the highest DI were in the densely built-up city centre, while the 

cooler areas that were categorized as comfortable corresponded to non-urban zones. An 

airborne measurement campaign over Madrid (Sobrino et al., 2013) found similar 

patterns on a summer dawn, corroborating that most of the hot areas are inside the city, 

while the cooler ones (categories of comfortable, cool and cold) are outside of it. 

When looking at the high-resolution ASTER image, a more detailed map of the city can 

be drawn in terms of sUHI and DI. Based on the map obtained from the ASTER image it 

can be noticed that the highest values of DI are related to artificial surfaces in general, 

such as asphalt and densely built-up areas, or the high traffic multi-lane roads (the main 

arteries of the city transport). The cooler areas—categorized as comfortable—correspond 

to non-urban zones (mainly on the SW) and some spots with extensive green vegetation 

in the city, such as the park of Turia and Viveros. These findings support the concept that 

a city with more vegetation is considered to have more comfortable urban climate (e.g., 
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Lafortezza et al., 2009). 

According to an urban planning study from 2010 (Lozano Esteban, 2010), an 

interconnected green area throughout the city and joint to the sea could significantly 

improve the ventilation of the city. The daytime negative urban heat island in summer is 

conserved partially thanks to the morning fresh sea breeze. As soon as the morning breeze 

stops penetrating the city (at around 11–12 h local time), the temperature between the city 

and the countryside equalizes, as it was shown in Figure 4.7b,f,k. Based on the proven 

value of the already existing green urban areas throughout Europe (e.g., Dimoudi and 

Nikolopoulou, 2003; Bowler et al., 2010) as well as the park of the Turia riverbed and 

the green road Blasco Ibáñez towards the sea in Valencia, the extension of these green 

lanes would be highly beneficial for a climate-resilient city. As an ecological design 

research showed on the case of Valencia (Gómez et al., 2013), trees are the best way to 

protect open spaces against thermal stress and UV rays.  

This case study on the urban heat island of Valencia provides essential knowledge to help 

urban designers mitigate the combined effects of climate change and UHI. As a next step, 

higher resolution satellite images will be analysed to provide a more detailed thermal map 

of the city for strategic urban planning and for modelling studies to estimate the effect of 

the different measures. As the use of green spaces could alleviate the perception of 

thermal discomfort during periods of heat stress (Lafortezza et al., 2009), increasing the 

urban greenery as well as promoting light coloured building design are highly 

recommended (Hoverter, 2012). Moreover, both public opinion and expertise from 

different municipal departments, literature surveys and life cycle assessments should be 

considered in an integrated urban planning process (Eliasson, 2000; Andersson-Sköld et 

al., 2015; Cortekar et al., 2016). This has been already initiated through various cross-

sector projects in relation to the Valencia Smart City Strategy (Valencia Smart City 

Strategy website) 

4.9 Summary and Conclusions 

In present study, the urban heat island effect and human comfort is evaluated in the city 

of Valencia, in case of hot summer days. To put the results into time context, the 

temperature conditions of Valencia were analysed from a long-term climatological 

perspective. Daily mean temperature as well as warm and cold extremes were examined 
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for the 1906–2014 period. Furthermore, a year-round calendar was prepared based on 

hourly values of the Discomfort Index calculated from 4-year data. 

The results are summarized as follows: 

– Significant increasing trend in mean temperature (0.23 °C per decade) was 

detected in Valencia over the studied period 1906–2014. The number of warm 

days and warm nights increased, while the number of cool days and cool nights 

decreased during 1906–2014. The occurrence of cold spells drastically decreased 

in the second part of 20th century, while warm spells have become more common 

after 1997. 

– The urban heat island effect in Valencia estimated from AT and LST 

measurements showed a good agreement regarding the intensity and evolution of 

the effect during hot summer days. The UHI estimated from AT measured at the 

two stations was highest just before sunrise (2.3 °C). The sUHI calculated as the 

difference between the urban and rural region LST was the most intense after 

sunset on the record hot day (2.6 °C).  

– The MODIS satellite images provided valuable insights to the heat conditions 

over the region of Valencia, but because of its moderate resolution the differences 

inside the city were blurred. For this reason, as we exemplified by an ASTER 

image, higher resolution satellite images with more frequent data acquisition time 

are needed, especially over cities.  

– Based on the Discomfort Index the city has milder winter conditions than the rural 

areas, especially during nighttime. In the warm part of the year the DI is similar 

at both stations, however, the city was occasionally warmer in the early morning 

hours. Hot nighttime conditions are prevailing from June to September, that might 

impose higher heat risk on the vulnerable segment of urban population. 

– The spatial analysis of DI in the nighttime MODIS and ASTER images revealed 

less comfortable areas in the densely built up city centre, main traffic arteries and 

industrial zones in contrary to the rural regions. 

These findings are consistent with previous studies and provide novel contribution to the 

literature in several specific aspects. By examining the long-term changes in temperature 

extremes over eleven decades and describing the nighttime temperature contrast between 

the city and its surroundings over five decades this work offers new, specific information 
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on the climate of Valencian region. As the time series examined here are one decade 

longer than those in the existing literature, this work is able to update the previous 

findings. The presented results on the urban heat island effect calculated from in-situ and 

remote sensing data extend our knowledge on the case of Valencia, due to the 

simultaneous description of UHI and sUHI and the improved quality of satellite sensors 

since previous studies. Characterizing the diurnal cycle of thermal comfort throughout 

the year and the spatial pattern during hot summer nights, resulted in novel information 

too that can be useful to urban planners in the design and distribution of green areas in 

the city. 

4.10 Practical implications 

In order to facilitate the mitigation of urban heat risk, detailed thermal maps of UHI and 

DI should be considered in urban planning and modelling, and measures need to be taken 

to reduce the discomfort of the humid heat in the summer period, such as those that 

improve the natural sea breeze to ventilate the city. Furthermore, more green areas 

(interconnected parks, rooftops, etc.) as well as high albedo building materials (e.g., cool 

roofs and cool pavements) need to be installed throughout the city. As an answer to the 

increasing demand of city scale environmental data, the presented results provide 

essential information on the urban climate and thermal comfort that can provide a solid 

foundation for the design of climate change adaptation strategy in Valencia. 

Climate Services could contribute to the climate adaptation efforts by providing detailed 

city maps of sector specific indices, e.g. Tourism Climatic Index or Discomfort Index, as 

this work showed through the example of thermal comfort. For mid- and long-term 

strategic planning the region-specific results of climate projections need to be taken into 

account. To support the urban planning and decision-making processes, user-friendly 

metrics and maps (as we exemplified) need to be prepared taking into account public 

opinion and expertise from different municipal departments. To analyse the stakeholders’ 

different needs and perspectives in terms of climate information, market research is 

recommended. As an example, in the next chapter a cross-sectoral case study is presented 

mapping the different interests of actors in urban climate adaptation projects.  

As adaptation is increasingly conceived of as the management of climate risk, the 

potential threats, vulnerabilities and impacts need to be assessed hand-in-hand with 
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practitioners. For instance, by identifying the residential areas of vulnerable groups of 

urban population, and combining this information with the spatial urban climate 

knowledge, detailed heat risk maps can be produced. Integrating scientific and local 

knowledge is key in the process. Co-development of these projects is a way of securing 

that the different perspectives and needs off stakeholders (e.g. urbanists, architects, the 

municipality, citizens, local businesses, etc.) are included in the planning and decision-

making process. The urban thermal comfort information can be combined with other 

types of high-resolution data from the city (e.g., real-time traffic, air pollution data) 

tailored to the needs of citizens or other stakeholders. 
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Chapter 5  
 

Transdisciplinary collaborations in Climate Services: 

cross-sectoral case study on urban climate 

adaptation planning 

 

 

 

 

5.1 Introduction 

Numerous studies are available on the team science of transdisciplinary (TD) collaborations 

from the health, business and education sectors (e.g., Aboelela et al., 2007; Klein, 2008; 

Stokols et al., 2008; Nancarrow et al., 2013), but only a few on the team dynamics of 

climate-related problem-focused collaborations. Most of the literature on TD collaborations 

focusing on environmental/climate issues are framed as sustainability science (e.g., Lelea 

et al., 2014; Leventon et al., 2016) or environmental resources management (Reed, 2008; 

Reed et al., 2009). Such studies provide useful methodologies for stakeholder analysis in 

TD research projects. In recent years, various sector-specific multi-stakeholder studies were 

published, focusing on, for example, food supply chains (Lelea et al., 2014), flood risk 

management (Morss et al., 2005), water planning and irrigation (Granados et al., 2015; Hall 

et al., 2016), soil degradation projects (Leventon et al., 2016) or coastal defence research 

(Merkx and van den Besselaar, 2008). The publication of the BASE project (BASE Project, 
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2017) also presented a diverse collection of case studies relating to different aspects of 

climate adaptation planning at a European level (e.g. flood risk and river basin 

management, urban planning, health impact). Participatory action research approaches have 

been widely used in different disciplinary and geographical contexts involving multiple 

stakeholders (Reed, 2008), for example climate adaptation options are examined through 

participatory action research by Campos et al. (2016a,b). 

Despite this, there is still a lack of research on stakeholders’ needs, interests and 

motivations, and the barriers that influence the efficiency of climate-related TD 

collaborations. Because getting to know the needs of climate information users was 

declared as one of the main priorities of Climate Services research (JPI Climate, 2011; 

European Commission, 2015; Vaughan et al., 2016), and now that Climate Adaptation 

Services is a growing market (Goosen et al., 2013), it is considered important and urgent to 

better understand the dynamics of climate-related TD collaborations, and to map the 

different perspectives of stakeholders working on climate adaptation. As Pidgeon and 

Fischhoff (2011) argued, “there is no way to know what information people need without 

doing research that begins by listening to them”.  

The present qualitative social research is designed to analyse the factors that influence and 

foster cross-sectoral collaborations in urban climate adaptation and planning. To evaluate 

TD collaborations I apply the framework developed by Stokols et al. (2008) that helps 

teams to identify interventions in order to improve or optimise their team work and foster 

new collaborations. For this, in-depth interviews are conducted with relevant stakeholders 

(academics and practitioners) involved in climate adaptation planning projects. 

Furthermore, based on the visual tool of the “Empathy Map” (De Vicente Lopez and 

Cristian, 2016), I draw the profiles of the different stakeholders and provide novel insights 

into the market of Climate Services. 

Based on the TD literature and the author’s practical experience in cross-sector projects 

(Chapter 6), several questions were formulated, such as “What are the principles of good 

TD collaborations focusing on climate-related issues?”, “What are the incentives and 

obstacles that climate scientists involved in TD collaborations face?”, “What are the 

benefits of TD collaborations for the academic and practitioner stakeholders?”, and “What 

do practitioners need as users of climate information?”. Accordingly, this cross-sectoral 

case study was designed with the following specific objectives: 
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(i) analyse the factors that influence and foster transdisciplinary collaborations in 

urban climate adaptation projects; 

(ii) map the voices of academic and practitioner stakeholders regarding their 

motivations, challenges and needs; 

(iii) provide practical insights into building effective TD collaborations in Climate 

Services. 

5.2 Data and Methods 

In this section, I provide an overview of data collection and the tools used for the 

evaluation of data. The conceptual frameworks for this analysis are described in detail in 

Chapter 2 (section 2.5.5). 

This case study on the key determinants of a successful TD collaboration in Climate 

Services is based on both primary and secondary data; it consists of an extensive literature 

review (Chapter 2), interviews with key informants and observations in the field. A broad-

range literature review provided a foundation for the study and an understanding of the 

wider context of TD collaborations. During fieldwork in Lisbon and Cascais (Portugal), 

key informant interviews were then conducted with academics and practitioners working 

on urban climate and adaptation planning.  

5.2.1 The interviews 

To carry out these interviews, the qualitative interview method was chosen for the 

following reasons: a) the research questions need a high degree of freedom so that 

question could be answered precisely; b) different stakeholders need differently weighted 

questions; c) it provides space for serendipity (accidental, non-expected findings) (Yates, 

2003). The latter is especially important in this study because the dynamics of TD 

collaborations in relation to climate science have rarely been investigated. The interview 

questions were designed according to the modified framework of “contextual factors 

influencing transdisciplinary collaborations” developed by Stokols et al. (2008) (Fig. 2.9, 

Chapter 2). In the discussion section, additional evaluation is based on further key 

literature: the ten principles of good interdisciplinary (ID) team work by Nancarrow et al. 

(2013) and the roles of researchers by Wittmayer and Schäpke (2014).  

Semi-structured interviews—with questions tailored to the different stakeholders—were 



Chapter 5: Transdisciplinary collaborations in Climate Services 

148 

deemed to be the most appropriate method to explore the core research themes from 

different perspectives. The interviews were transcribed and the information gathered was 

classified manually according to six categories—a) intrapersonal, b) interpersonal, c) 

organisational, d) physical environmental, e) technological and f) other political and 

societal—of contextual factors that influence the effectiveness of TD collaborations 

(described in detail in Chapter 2). These factors, both inside the academic research group 

(internal) and in the cross-sectoral context (cross-sector), are evaluated separately. 

Accordingly, in the tables (Table 5.1–5.5) summarising these factors, information is 

presented—when applicable—in both internal and cross-sector contexts. 

Six in-depth interviews were conducted with key stakeholders, to map the voices of the 

different actors working on urban climate and adaptation planning projects at local, 

national and international levels. Because the aim of this study is not to deliver a complete 

stakeholder network analysis, but rather to examine a specific segment of the TD 

partnership in line with our research questions, I only considered certain actor groups 

when selecting key informants. Thus, on one hand, special attention is paid to the 

academy, in order to explore the researchers’ needs, difficulties and motivations in 

relation to TD collaborations. On the other hand, the interviews with practitioners 

provided insights into the seldom-described market of Climate Services.  

The data collection (carried out in March–April 2017) began by interviewing the head of 

the academic research team, and the sample group was then added using the snowball 

sampling technique, based on the working connections of the academic research group in 

the field of urban climate and planning. Snowball sampling is a commonly used method, 

meaning that initial contact persons are asked for recommendations of people linked to 

them through their work (Lelea et al., 2014; Leventon et al., 2016). A major benefit of 

this approach is being integrated into “trust networks”, however for the same reason, the 

method is heavily influenced by the social networks of the people contacted initially. 

Using snowball sampling thus requires awareness of its limitations. The interviews lasted 

about 1–1.5 hours; the questions are enclosed as Appendix A.  

Following good ethical practice in social research, the anonymity of interviewees and 

institutions are protected, and the interviewees participated in the study voluntarily. Only 

the author of this study dealt with the raw data and carried out the analysis, meaning their 

confidentiality is protected. 
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5.2.2 The stakeholders 

The academic research group was represented by three researchers at different academic 

career levels (two senior and one junior). The group has expertise in environmental 

sciences, such as climatology or geography, as well as urbanism. They all are involved in 

urban climate research and developing climatic guidelines for urban planners. The group 

has therefore had collaborations with several municipalities on a national and 

international level. Here I refer to them as Academic-A, B and C, where the letters do not 

correspond to career levels. 

As a next step the practitioners were identified that have worked together with the 

academic group on urban climate and planning projects. The interviewed practitioners 

represent professionals like urbanists, architects, spatial planners, urban managers and 

consultants. Two municipality representatives (one from Lisbon and one from Cascais, 

Portugal) and a representative of a technical consulting company with project 

coordinating tasks were interviewed. They were chosen based on the relevance of their 

work to the study, and their experience with various urban planning and land use 

management projects. In this case study, I refer to them as Practitioner-A, B and C, where 

the letters do not correspond to any attribute of the practitioner. 

Besides the local scale urban climate adaptation projects with the above-mentioned 

research group, the practitioners also participated in a nationwide collaboration. (The 

interviewed research group got involved in this particular nationwide project in a later 

phase.) Fig. 5.1 shows the partnership structure of the national scale project as an example 

of multi-level and multi-stakeholder collaboration in urban climate adaptation planning. 

The so-called Empathy Map visual tool is used to illustrate stakeholder profiles and to 

examine the different interests, needs, motivations and challenges they face. The tool was 

developed by De Vicente Lopez and Cristian (2016) to facilitate stakeholder analysis in 

projects of sustainability transitions. The map allows us to put ourselves into the 

stakeholder’s shoes and thereby see the common challenges they face from different 

perspectives. It helps to build a general stakeholder profile that can be of help for further 

in-depth market research. Hence, the academic and the practitioner profiles were built 

based on the six interviews, to provide first-hand insights into the market of Climate 

Services. 
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Figure 5. 1 A schematic structure of the multi-level, multi-stakeholder partnership working on 
the nationwide project of climate adaptation planning. The circular arrows refer to the iterative 

process of knowledge co-production (the intensity varies throughout the project lifetime and 
among participants). The figure is developed by the author based on the information given by 

the interviewees. 

5.3 Mapping the voices 

In this section, the results are organised into three subsections. Section 5.3.1 analyses the 

key contextual factors that influenced the TD projects. Section 5.3.2 outlines the 

challenges and drivers of the TD collaboration, while section 5.3.3 presents the Empathy 

Maps that help us to understand the similarities and differences in the diverse perspectives 

of stakeholders as providers and users of CS. Finally, Figure 5.5 provides a schematic 

representation of CS as a decision-support tool for urban development towards climate-

resiliency, as developed by the author. 

5.3.1 Key contextual factors influencing the TD projects of urban 

climate adaptation 

In this section, the results are structured based upon the key contextual factors (described 

in Chapter 2, Fig. 2.9) that influence TD team effectiveness at each (individual, team, 

socio-political) level of analysis. Through this analysis, we can explore which factors 

hindered or fostered the success of the TD projects that interviewees have participated in. 
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5.3.1.1  Intrapersonal Factors 

Individuals who are opened to other disciplinary perspectives, who value collaborative 

teamwork and embrace a culture of sharing, are well-suited for TD teams (Stokols et al., 

2008). The intrapersonal factors relevant in the case of the examined collaboration are 

classified in Table 5.1. In general, both academics and practitioners had a positive attitude 

towards TD collaborations, for instance the Practitioner-C emphasised the need for 

cross-sectoral cooperation, as “we have a lot of sectoral areas of impact and we need a lot 

of thematic expertise to prepare a thematic plan”. 

The members’ collaborative preparedness is evaluated based on their previous 

experience with TD collaborations. Apart from the junior academic, all the interviewees 

have considerable experience of working on projects involving several stakeholders; one 

of the academics also had working experience in a geo-informatics service company too. 

The interviewees expressed similar opinions regarding the principal differences between 

the partners: “there is a gap between the scientists and the technicians because sometimes 

there is a lack of information and understanding; our schools [of thought] are different” 

said the Academic-A. The Practitioner-B commented that “it was kind of like a [gut] 

feeling as we went through [...] because there was nobody doing this before us”, also 

adding that not all the partners were completely ready for such challenging collaboration. 

All the interviewed stakeholders referred to the projects as a learning process that needed 

patience and flexibility.  

In terms of leadership, both groups found it important to connect with people and 

empower them: “What I like the most is finding a way that we can open our minds and 

can talk to everyone without constraint, although it’s very challenging.”, stated the 

Academic-A. The Practitioner-B emphasised that working closely with partners is 

indispensable: “This is so ‘transversal’ [cross-sectoral]; there are a lot of things that are 

not our responsibility, but that of other institutions. Because of this, I have a meeting 

every week”. For instance, participatory workshops are frequently organized with local 

experts in an open-table system; the aim of this is to improve local climate adaptation 

measures involving the local particular knowledge of stakeholders. The Practitioner-A 

added that “it’s very important to know to how to talk to engineers, with landscape 

architects, with physicians, geographers, everybody, because we are working for the 

others”. Creating a common understanding and serving others were therefore considered 
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important qualities of inclusive leadership in the examined TD projects. 

Most of the stakeholders mentioned that they built the partnerships based on previous 

work relationships and/or a similar vision. For example, the Practitioner-C referred to the 

“confidence with the mayors” that joined the project, the “sympathy” and “the friendly 

relationship” because “it was very important to us to have some mayors (...) that can also 

support our flag”. Accordingly, the strategic choice of partners based on a previously 

established positive relationship and/or sharing similar values was important for building 

a trustful partnership. Note, that the classes of factors have several common points, for 

example, members’ collaborative experience with each other (Intrapersonal Factor) also 

implies Interpersonal Factors. 

Table 5. 1 Intrapersonal factors based on six interviews with academics and practitioners. 
“Internal” refers specifically to the studied academic group, i.e. it is a description of the 
collaboration among the research group members. “Cross-sector” refers to the collaboration 
between academics and practitioners. 

Intrapersonal Factors Academics Practitioners 

Members’ attitudes to 
collaboration and their 

willingness to devote substantial 
time and effort to 

transdisciplinary activities 

Internal: members are motivated to 
collaborate and they often help each 
other in their research. 
Cross-sector: they are motivated to 
transfer scientific results into 
climatic guidelines for urban 
planners. 

Cross-sector: they conducted 
various workshops with 
stakeholders and organised extra 
workshops. 

Members’ preparation for the 
complexities and tensions 

inherent in transdisciplinary 
collaboration 

Internal: 
Senior members have considerable 
experience in collaborating with 
academics in TD projects, 
nationally and internationally. 
Cross-sector: Apart from the junior 
academic, they have various 
experiences in collaborating with 
practitioners, as consultants and as 
a geo-info service provider. 

Cross-sector: they have vast 
experience with multi-stakeholder 
projects, including collaborations 
with universities and research 
centres, as well as administrative 
bodies and decision-makers. 

Participatory, inclusive and 
empowering leadership styles 

Internal: The members find it 
important to connect with people, 
assist in the implementation of the 
strategic plans and learn from the 
experience. They feel involved and 
appreciated. 
Cross-sector: the scientific 
information provided by academics 
is appreciated, i.e. plays an active 
role in developing the policy. 

Cross-sector: they put huge effort 
into capacity building and training. 
They empower mayors and 
municipality servants to play an 
active role in climate adaptation 
planning and sharing their expertise 
with each other. They all agree that 
tasks and responsibilities must be 
shared in the TD project, and that 
science plays an important role in 
the process. 

Members’ collaborative 
experiences with each other, 

earlier projects 

Internal: they have been working 
together in the same research group 
for years. 
Cross-sector: a chain of projects on 
urban climate planning have 
already been completed. 

Cross-sector: a chain of projects on 
urban climate planning have 
already been completed. All the 
interviewees emphasised that 
previous trusting relationships are 
important when looking for TD 
project partners. 
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5.3.1.2  Interpersonal Factors 

When examining Interpersonal Factors (Table 5.2), internal communication within the 

TD collaboration should first be mentioned. Regular interpersonal communication 

enables members to develop a shared vision and set common goals that drive the TD 

collaboration in the same direction. The TD partnership established a hospitable 

conversational space through frequently scheduled personal meetings and workshops, 

which helped to narrow the gap between the “worlds” of academics and practitioners. The 

members of the academic research group worked closely together, even when they were 

in different countries. The Academic-C explained that social interaction with colleagues 

was crucial, “I need to meet and talk about science and research often, because this is how 

I learn.” According to the academics, these professional interactions were frequent, and 

the group members helped each other with various tasks inside the group. In the cross-

sectoral context, the frequency of interaction between academics and practitioners 

depended on the phase of the TD project. The practitioners also found the regular 

communication with the partners important, because they benefitted greatly from the 

knowledge and skills of the cross-sector partnership.  

Considering the qualities that the academics and practitioners value in their colleagues 

(as an indicator of presence/absence of mutual respect and appreciation of diverse 

perspectives), similar skills and attitudes were mentioned. Both groups referred to 

honesty, open-mindedness and availability, mutual respect for each other’s time and 

diversity of opinions. The Academic-B appreciated when colleagues were “able to discuss 

about anything without restriction or taboo”. The academics also mentioned scientific 

ethics, capacity and delivering on time, all of which are more related to professional 

competences (Intrapersonal Factors) than interpersonal relations. On the other hand, the 

practitioners group mainly talked about soft skills, such as tolerance, attention to others, 

empathy and straightforwardness. The Practitioner-A found empathy especially 

important, saying that “everybody must be a chief for six months of their lives […] 

because it’s very important to see things from another point of view”. 

The academic researcher’s previous experience in collaborating with practitioners and 

working in different geographical and cultural contexts helped them to adapt to changing 

circumstances, be open to different perspectives, and accept the formal and informal rules 

of the other sectors. The practitioners navigated comfortably in various stakeholder 
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environments, probably due to their considerable experience with various partners and 

the diverse soft skills they possess. The Practitioner-C evaluated the collaboration as a 

“rich experience”. The diversity of members’ perspectives and abilities empowered the 

partners to surpass obstacles and develop novel local and national frameworks for climate 

adaptation planning. “I think one of the main values of our partnership was how we 

connected all these different experiences and skills, and from this, created a common 

project”, stated the Practitioner-C. 

The familiarity inside the academic group empowered the researchers to openly discuss 

challenging tasks and request help when necessary. The hospitable working environment 

of both stakeholder groups probably helped them develop trustful relationships between 

the members of the cross-sectoral collaboration. The mutual respect and shared vision 

among the partners contributed to the creation of a supportive atmosphere, which was 

indispensable for easing interdisciplinary tensions. 

Table 5. 2 Interpersonal Factors. Description same as Table 5.1. 

Interpersonal Factors Academics Practitioners 

Regular and effective 
communication among members 
to develop common ground and 

consensus about shared goals 

Internal: personal and e-mail 
communication on a weekly (or 
occasionally daily) basis. 
Cross-sector: regular meetings and 
workshops (depending on the phase 
of the project). 

Cross-sector: personal and e-mail 
communication, regular personal 
meetings (a couple of times a 
month) and workshops. 

Establishment of a hospitable 
conversational space through 
mutual respect among team 

members 

Cross-sector: the members value 
the following qualities in their 
colleagues: honesty, open-
mindedness, availability, scientific 
ethics, capacity, respectfulness, 
friendliness, spirit, delivering on 
time, non-competitive atmosphere. 

Cross-sector: the members value the 
following qualities in their 
colleagues: honesty, open-
mindedness, availability, tolerance, 
long-term vision, attention to others, 
empathy, straightforwardness, soft 
skills. 

Diversity of members’ 
perspectives and abilities 

Internal: members have similar 
scientific background. The group 
also has international members and 
projects. 
Cross-sector: They have diverse 
experience with external 
collaborators, mainly technicians. 

Cross-sector: they have various 
professional competences in project 
management, technical 
implementation and policy 
evaluation. They are able to 
communicate with various actors, 
such as mayors, decision-makers, 
national agencies and academics.  

Ability of members to adapt 
flexibly to changing task 

requirements and environmental 
demands 

Internal: the group has had projects 
in different geographical and 
cultural contexts. 
Cross-sector: the senior researchers 
have worked on non-academic 
tasks, one of them even had a full-
time non-academic job. 

Cross-sector: they are comfortable 
in the different working 
environments of various 
stakeholders. One of the 
interviewees is doing doctoral 
research as well as their everyday 
job. 

Members’ familiarity, 
informality, and social 

cohesiveness 

Internal: friendly and hospitable 
working environment, with regular 
social activities, forming a 
community. 

Cross-sector: friendly and 
hospitable working environment, 
ease with informal conversation. 
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5.3.1.3  Organisational and Institutional Factors 

An organisation’s collaborative readiness (Table 5.3) contributes in important ways to 

the effective TD work. Academics were supported in their TD activities; for example, as 

the Academic-A claims, “Portuguese universities are obligated to open their doors” for 

cross-sectoral projects. One of the main reasons for such openness is the lack of financing 

due to the 2009-2010 economic crisis; this prompted inter-sectoral and international 

transdisciplinary collaborations in scientific research and training—as it happened in the 

field of public health research too. Thus, the institute is “very supportive of applying 

things to real life” added the Academic-A, thereby acknowledging that academic research 

with practical applications is more appealing to private and public funding bodies. In this 

way, a Socio-Political Factor—the economic crisis—fostered TD initiatives through the 

Organisational Factor. 

The examined chain of projects in urban climate adaptation planning includes several 

disciplines/professions, for example, academic researchers in urban climate, urbanists, 

architects, spatial planners, urban managers, public servants, politicians, communicators 

and consultants. As the Practitioner-C commented, “it is really important to have a large 

team with different capacities to answer the questions of climate change adaptation”. The 

organisational climate of sharing was measured only in terms of sharing information. 

The research group shared their scientific results in meetings and workshops, as well as 

helped to apply their methodologies in different geographical contexts (e.g., the urban 

climatic guidelines are transferred to other cities). They also published their results in 

scientific journals. The outcomes of the nationwide cross-sectoral urban planning project 

are available online. Furthermore the sharing of best practices between municipalities was 

one of the main goals of the project. 

During these cross-sectoral projects, several workshops for various stakeholders (e.g., 

local companies, citizens, mayors), training activities for public servants, and assemblies 

for decision-makers and national sectoral agencies were organised. The examined 

academic research group had workshops with the municipalities too. As part of the 

nationwide project, different types of workshops were organised: a) local workshops for 

stakeholders to discuss the local adaptation options/measures and to prepare the local 

communities for the adaptation challenges; b) regional capacity building workshops for 

local public servants to prepare them to design and manage the municipal adaptation 
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strategies; c) national seminars at the beginning and end of the project, which were open 

to everyone, and d) specific workshops to specific stakeholders on themes such as how 

to finance adaptation—as the practitioners explained. 

The academics briefly mentioned that when organising TD workshops/courses in the 

university, they faced bureaucratic barriers. Further investigation of the types of existing 

or lacking institutional incentives and administrative routines supporting TD activities 

was beyond the scope of this study. 

Table 5. 3 Organisational and Institutional Factors. Description same as Table 5.1. 

Organisational/Institutional 
Factors Academics Practitioners 

Presence of strong organisational 
incentives to support collaborative 

teamwork 

Cross-sector: the university is 
supportive, there are institutional 
incentives that foster cross-sector 
collaborations. 

Cross-sector: the involved 
municipal departments (and their 
directors) are supportive. 

Non-hierarchical organisational 
structures to facilitate team 

autonomy and participatory goal 
setting 

Not measured. Not measured. 

Breadth of disciplinary 
perspectives represented within the 
collaborative team or organisation 

Cross-sector: the chain of projects 
involved in urban climate 
adaptation planning needs several 
disciplinary perspectives (e.g., 
urbanism, climatology, geography) 
that are provided by the research 
group. 

Cross-sector: the chain of projects 
involved in urban climate 
adaptation planning includes 
several disciplines and professions 
(e.g., urbanists, architects, spatial 
planners, urban managers, public 
servants, politicians, 
communicators and consultants). 

Organisational Climate of Sharing 
(e.g. sharing of information, credit 

and decision-making 
responsibilities is encouraged) 

Cross-sector: sharing scientific 
results and methodology is 
encouraged. The guidelines are 
available online. 

Cross-sector: Sharing best practice 
between municipalities at a 
national and international level is 
one of the main goals of the 
project. Products are available 
online. 

Frequent scheduling of social 
events, and other center-wide 
opportunities for face-to-face 
communication and informal 

information exchange 

Cross-sector: the group has 
frequent internal social events, and 
from time-to-time there are 
professional workshops and 
afternoons, e.g., with the 
municipalities. 
 

Cross-sector: Workshops for 
public servants and local 
stakeholders, general assemblies 
for decision-makers and national 
public agencies. 

 

5.3.1.4  Physical Environmental Factors 

In the academic setting, the research group was provided with appropriate environmental 

resources (Table 5.4) that allow for distraction-free work. Most of the members were 

based in the same building; although some of the researchers were in a different building 

but at the same campus, and a couple of members were abroad. The academics mentioned 
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that they preferred to be in the same building as all the members of the group, as face-to-

face interaction with colleagues helped them in their daily tasks. In terms of the cross-

sector collaboration, most of the partners involved in the local projects were in the same 

city (e.g., Lisbon or Cascais), thus regular face-to-face meetings were feasible. In the case 

of the nationwide project, even though the national scale meetings and training (e.g. 

participants from the Portuguese islands were also involved) required more time and 

resources, they were organised a couple of times. 

To facilitate collective activities involving group discussion and brainstorming, 

comfortable meeting areas are needed (Stokols et al., 2008). The academic research 

group was provided with a small meeting room in the department, although this was 

sometimes overbooked during working hours. To organise wider events, other meeting 

halls were available in the campus buildings. Most of the work places—in the university 

and municipality buildings where the interviews took place—were open-plan offices with 

workstations separated by panels. The interviewees felt comfortable in these settings, 

however one of them mentioned that sometimes the open-plan office can be busy and 

noisy. 

Table 5. 4 Physical Environmental Factors. Description same as Table 5.1. 

Physical/Environmental Factors Academics Practitioners 

Spatial Proximity of team 
members’ workspaces to 

encourage frequent contact and 
informal communication 

Internal: Most of the members 
were in the same building; there 
were some in a different building 
but on the same campus, and a 
couple of members were abroad. 

Cross-sector: To develop local 
adaptation strategies, local 
stakeholders worked together, 
scheduling regular meetings. 
National level meetings/training 
activities were organised 4-6 
times/year. 

Access to comfortable meeting 
areas for group discussion and 

brainstorming 

Internal: There was one small 
meeting room in the main building 
of the group, but it was sometimes 
“overbooked”. 

Not measured. 

Availability of distraction-free 
work spaces for individualised 

tasks requiring concentration or 
confidentiality 

Internal: There were different 
types of offices; in the biggest one, 
the workstations were separated by 
panels. 

Internal: Three locations were 
visited for the interviews. There 
were both small offices and open 
plan offices with workstations 
separated by panels. 

Environmental Resources (e.g. 
workstation panels) to facilitate 

members’ regulation of visual and 
auditory privacy 

Internal: Mostly workstation 
panels. 

Internal: Mostly workstation 
panels. 
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5.3.1.5  Political and Societal Factors 

The socio-political landscape (Table 5.5) has a significant impact on the initiation and 

survival of TD projects. Cooperative international policies facilitated the exchange of 

scientific information and co-operation between the different sectors in the nationwide 

climate adaptation project. One of the main financial instruments that supported the 

development of the project was a European level international grant that promotes 

policies for the equity of countries. As it was discussed in the section 5.3.1.3, one of the 

main reasons that the academic research institutes were opened to cross-sectoral 

collaborations was the lack of financing as a result of the economic crisis. On the other 

hand, in recent years, various international funding opportunities have become available 

for innovation programs that support TD teams working on complex challenges, such as 

local climate adaptation planning. The administrative and business sector also realised 

the opportunities available in climate change-related development projects, and started to 

build public-private partnerships to strengthen their connections with research institutes.  

In different ways, all the interviewed stakeholders perceived that there is a momentum 

for developing climate adaptation measures. As the Practitioner-A commented, by the 

moment that climatic aspects were approved to be included in the master plan, 

“everything was in place”. This was the result of continuous progress made by various 

initiatives in recent years.  

Nevertheless, the general political landscape in the country also influences the 

implementation (and continuation) of the projects, since national level policies could 

support or hinder the development of a new climate adaptation policy. The Practitioner-

A expressed worries in relation to the upcoming governmental elections, which might pull 

back the implementation of the strategy, stating that “all this work may be put in the 

drawer”. The Practitioner-C argued that the climate adaptation policy is not an 

ideological approach, it is more a technical question, hence “it is not felt by the politicians 

as a problem, I don’t feel tension”. A continuation path for the project is the nationwide 

network of municipalities that collaborate to develop local climate adaptation measures, 

to exchange experience, and to help other municipalities to develop their own plan.  

The latter factor of the national political landscape was not included explicitly in the key 

factors identified by Stokols et al. (2008), however in this case—and this is true of most 
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of the countries—government politics might have a significant impact on the 

implementation of national environmental strategies. Thus I found it important to include 

this aspect in this evaluation. 

Table 5. 5 Political and Societal Factors. Description same as Table 5.1. 

Socio-political Factors Academics Practitioners 

Cooperative international policies 
that facilitate exchanges of 
scientific information and 

transdisciplinary collaboration 

Cross-sector: the group have been 
involved in several international 
collaborations and TD projects. 

Cross-sector: one of the main 
financial instruments of the climate 
adaptation project was an 
international grant. 

Environmental and economic 
crises that prompt inter-sectoral 

and international 
transdisciplinary collaboration in 

scientific research and training 

Cross-sector: with the economic 
crisis, the university faced lack of 
funding, and a good way to finance 
research activities is to work on 
cross-sectoral projects. 

Cross-sector: in recent years, there 
are a lot of international funding 
opportunities available for TD 
projects, such as local planning of 
adaptation and innovation 
programmes. 

Enactment of policies and 
protocols to support successful 

transdisciplinary collaborations 
(e.g., those ensuring ethical 

scientific conduct, management of 
intellectual property ownership, 

and licensing) 

Not measured. 
 

Not measured. 

General political landscape in a 
country. Supporting or 

counterproductive national 
governmental policies and local 

political/civil influence in 
environmental issues 

Not measured. 

Cross-sector: There is a momentum 
for the development of climate 
adaptation plans. The 
municipalities and decision-makers 
approved the plans without 
difficulty. However, governmental 
elections might influence the 
implementation process. 

 

5.3.2 Insights into the difficulties and drivers of the TD collaboration 

5.3.2.1  Challenges 

The question “What was challenging in the collaboration?” was directly asked of the 

interviewees in order to learn from their personal perceptions of “TD challenge” (Table 

5.6). Exploring the difficulties that participants faced during the collaboration helps to 

identify aspects of TD collaborations that could be managed better, skills that needs to be 

improved, and collaborators that might need more assistance.  

Academics 

The academic researchers found it challenging to create a common language and 

understanding with the collaborating partners; the Academic-A for example mentioned at 
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first place the challenge “to create a language that can be useful to urban planning”. They 

worked to provide understandable, useable and useful tools and metrics (e.g., in the form 

of maps and indices) for the practitioners—mainly the municipality technicians—that 

apply the climatic information. The academics referred to this aspect of their role as that 

of science translators and knowledge brokers, “my goal is to interpret the science and to 

give the right information to everyone”, as the Academic-A commented. The Academic-

B argued that it was easier for decision-makers to decide on an issue when there is a single 

number or metric provided; thus “the biggest challenge is to provide an instrument to 

create a law”. The Academic-C found it challenging to demonstrate the relevance of the 

topic to the stakeholders, and felt that this was a big responsibility.  

The academics were concerned with helping the partners, but they admitted that 

sometimes it was not easy because of the different schools of thought. According to the 

Academic-A, in general, academics did not have problems with the collaboration, indeed, 

“the difficulty sometimes is to implement the policies”. The academics were aware that 

the practical implementation of their guidelines is a complex urban planning task; “it’s a 

process of understanding; it’s like a negotiation”, added the Academic-A. 

Practitioners 

Similar to the academics, the practitioners also found the development of a common 

understanding both important and challenging. Further specific challenges mentioned by 

the practitioners are briefly described below in a non-exhaustive overview, without 

ranking of importance.  

One of the main challenges was the development of a strong and coherent policy 

instrument with a comprehensive document. As the Practitioner-A said, “now the real 

challenge is to put it [the climatic assessment results] in plans”. Another challenging 

aspect of the project was to connect the different actions that already exist in the city and 

to develop connections between the different administrative structures, such as between 

the municipality and the “Juntas Frequesias” (neighbourhood level administrative units). 

Because the “Juntas Frequesias” have more power than the municipality in certain areas 

of urban management and maintenance, it is important to reach them. 

A further challenge was to convince the municipality decision-makers (i.e. mayors and 

the executive board) and local stakeholders (e.g., local companies and citizens) about the 
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benefits of climate adaptation measures. According to the Practitioner-B the climate 

strategy is not a priority in the city plans, it is only an additional factor that the decision-

makers should take into account. Another difficulty explained by Practitioner-B is that 

municipal structures are not designed to work on climate change: “We don’t have the 

knowledge, we don’t have the time, we don’t have the resources, so we have to get them 

from others.”  

The lack of public awareness was also mentioned as a barrier to implementing the local 

climate adaptation strategies. As the practitioners emphasised, there is a lack of 

understanding on the topic, its relevance to daily life, and the benefits of action. For this 

reason, the communication strategy of the project was a challenging component. 

Furthermore, capacity building among public servants was also a key issue, because the 

municipality employees were not prepared and/or appropriately skilled to work on the 

climate adaptation strategy.  

Table 5. 6 A non-exhaustive list of challenges and barriers that participants faced during the 
TD collaboration based on the six interviews. 

Academics Practitioners 

- to create a common 
language and 
understanding 
- to develop 
understandable, useable 
and useful tools and 
metrics 
- to help technicians and 
decision-makers 
- to show the relevance 
of the topic 
 

- to overcome technical language barriers and differences in interpretation 
- to develop a strong and coherent instrument 
- to develop connections between different administrative structures 
- to connect various actions in the city 
- to convince decision-makers and stakeholders about the benefits of climate action 
- to create a completely new policy for climate adaptation 
- to coordinate between municipalities on a national level 
- to create public awareness 
- to work closely with the partners because municipal structures are not designed to 
work on climate adaptation projects 
- to upskill public servants that are not prepared to work on projects that involve 
comprehensive research tasks 
- to distribute resources between academic analysis and assessing the implementation 
- to deal with legislation and create new conditions on how the urban space is used 
- to deal with the complexity of planning and the different realities in terms of 
municipalities 
- to change local authorities’ investments 

 

According to Practitioner-C, an interesting and challenging phase was the creation of a 

new climate adaptation policy that had no antecedent; “So we have the freedom to design 

it”. However, local level legislation was also mentioned as a barrier to the implementation 

of local climate adaptation strategies, as “these instruments (for climate adaptation) are 

sometimes not compatible with the existing rights of landowners”, explained the 
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Practitioner-B. Moreover, the beneficiary municipalities represented quite “different 

realities” in terms of the complexity of planning and what the local communities expect 

from the local municipalities. Hence the diversity of the TD project created a range of 

diverse challenges to be dealt with. 

5.3.2.2  Motivations 

Positive experiences during the collaboration and the sense of achievement in relation to 

the accomplished goals are important indicators of a good collaboration. To map the 

participants’ personal motives, they were asked about what they liked the most about the 

collaboration. 

Both academics and practitioners enjoyed the collaboration, describing it as an interesting 

and rich learning process. Some of those interviewed mentioned that building 

relationships and connections between people was essential for them, “What I like the 

most is finding a way that we can open our minds and can talk to everyone without 

constraint”, commented the Academic-A. The Practitioner-A expressed a similar opinion, 

stating “I like to contact people, to connect things”.  

The real-life impact was also mentioned by several stakeholders. The Academic-B 

enjoyed developing solutions to real-life problems, reacting to the question with “I’m 

very enthusiastic”. The Academic-C added that reducing air pollution in cities has a 

visible impact that drives the research ambitions of the interviewee: “it’s very important 

to believe in what you are doing”. The practitioners also referred to the noticeable change 

that the project brings to the city. The Practitioner-C was proud of the social 

transformation that the project generated, especially regarding the communities’ 

awareness on the topic; stakeholders have started to consider climate change not only as 

a threat, but also as an opportunity for developments: “I feel that lot of the political 

representatives want this, they feel it as something with value. (…) It’s interesting how 

we changed that.”  

5.3.2.3  Need for capacity building 

The necessity for a diverse range of professional competences and skills was mentioned 

by all the interviewees. The Practitioner-C pointed out that “it’s really important to have 

a large team with different capacities to answer the questions of climate change 
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adaptation”. To develop these competences and to establish a mutual understanding 

between the partners, “capacity building is key”, said the Practitioner-B, and “we are 

depending on others, and vice versa” to deliver the project goals. The practitioners 

mentioned that the partners were not always completely prepared to deal with the 

circumstances of the broad-scale project, thus several workshops and training activities 

were organised (detailed in section 5.3.1.3). 

The academics had provided a couple of professional training activities for other partners 

in previous projects, and had participated in short workshops organised by the 

municipality. However, they see the need for more capacity building in TD research, 

especially for students. The Academic-B found it necessary to take part in TD training 

and workshops, because these are the best occasions for conversations with technicians 

to discuss and clarify roles, tasks, needs and methods.  The Practitioner-A also believes 

that training is needed—especially for students—to be prepared for TD collaborations in 

climate adaptation. The interviewee has built and participated in several cross-sector 

projects over the course of a long period working on urban planning; thus “I know the 

cost of it”, referring to the long learning process. 

The practitioners mentioned public servants’ lack of time and preparedness to work on 

climate assessment as a key issue that the project had to address. (Public servants are 

trained for administrative type of work.) For this reason, several workshops were 

organised over the course of the project to upskill the public servants, so that later they 

could develop the plan with little (or no) support. This was a type of knowledge exchange 

process, because these capacity building events provided skills and competences to the 

local public servants, and the locals supported the project with their local territorial 

knowledge. 

The assurances of long-term funding were essential for capacity building and to have time 

for building trust between the partners. As the practitioners stated, the international grant 

that funded the nationwide climate adaptation project provided opportunities for 

implementing innovation programmes. This financial instrument played an important role 

in supporting the TD project, “because the ministries will not feel pressed to satisfy some 

kinds of clients”. Interestingly, “some of the main public policy projects were supported 

by this tool” in recent years, explained the Practitioner-C. 



Chapter 5: Transdisciplinary collaborations in Climate Services 

164 

5.3.3 Empathy Maps 

Empathy Maps help us understand the different interests, needs and priorities of 

stakeholders, and to find common points of view that can connect their efforts and 

motivate them to collaborate. First we need to clarify how the stakeholder relates to the 

challenge: whether the actor is a service provider, a user, or an intermediate player. 

Following from this, we need to answer the following questions to map the drivers and 

forces that influence the stakeholder’s perspectives and decisions (Table 5.7). 

Table 5. 7 Questions for the Empathy Map based on the Visual toolbox for system innovation by 
De Vicente Lopez and Cristian (2016). 
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Figure 5. 2 The Empathy Map of Academics, drawn on the canvas from the Visual toolbox for 
system innovation by De Vicente Lopez and Cristian (2016). Yellow box: ideas of the 

academics; Orange box: common ideas of the interviewed academics and practitioners  
(Fig. 5.2–5.4). 
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Figure 5. 3 The Empathy Map of Municipality Representatives, drawn on the canvas from the 
Visual toolbox for system innovation by De Vicente Lopez and Cristian (2016). Blue box: ideas 
of the representatives of municipality; Blue frame: common ideas of the practitioners (Fig.5.3 

and Fig. 5.4); Orange box: common ideas of the interviewed academics and practitioners  
(Fig. 5.2–5.4). 
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Figure 5. 4 The Empathy Map of the Representative of consulting company, drawn on the 
canvas from the Visual toolbox for system innovation by De Vicente Lopez and Cristian (2016). 
Green box: ideas of the representative of consulting company; Blue frame: common ideas of the 
practitioners (Fig. 5.3 and Fig. 5.4); Orange box: common ideas of the interviewed academics 

and practitioners (Fig. 5.2–5.4). 
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5.3.3.1  The Empathy Map of academics 

Empathy Maps of three market actors were drawn up based on the six interviews. The 

general profile of the academic stakeholder group is shown in Figure 5.2. The general 

profile of Municipality Representative is drawn in Figure 5.3 and the last Empathy Map 

(Figure 5.4) shows the profile of the representative of consulting company. 

The three academics (Fig. 5.2) have several common ideas among them, such as 

– think: about climate change and environmental problems, academic career, 

funding, impact factor, reputation, social impact of research; “I have knowledge 

that can be applied in different ways” 

– see: general scarcity of financial resources 

– hear: that the international scientific community is concerned about the 

challenge; the call “hey, could you help me to improve the city?” 

– do: developing useful, useable and understandable tools 

– feel: enthusiastic and empowered; inspired by the “real-life” impact 

– have pain: “I need to translate my knowledge”. 

5.3.3.2  The Empathy Map of practitioners 

The ideas that we can find in both practitioner Empathy Maps (boxes with blue frame in 

Fig. 5.3 and Fig. 5.4) are the following. They 

– think: about a better urban environment, a liveable city, practical solutions, 

“What are the risks and opportunities for the municipality?” and “How can I 

convince the local decision-makers and stakeholders?” 

– see: funding opportunities for cross-sectoral collaborations 

– say: development and innovation opportunity 

– hear: inspiring international examples through network connections 

– do: dealing with the legislation; organising/participating in workshops 

– feel: “there is a momentum now”; “Market players are interested, we need to 

engage them” 

– have pain: it’s difficult to change the legislation 

– gain: urban socio-economic development 

From the practitioner group, the municipality technicians are responsible for including 
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the climatic guidelines in the urban master plan, thus they have first-hand experience in 

how problematic it is to deal with local legislations, and how tough it is to convince local 

decision-makers such as the executive board of the municipality and the mayor. 

Furthermore, the municipality representative is concerned about high-level political 

changes that might influence the implementation of the plans, although the representative 

of the consulting company does not share these worries.  

5.3.3.3  Common ideas between academics and practitioners 

According to the Figures 5.2, 5.3 and 5.4 (orange boxes), the three market players share 

several common ideas. They all 

– think: “How can I help to solve these problems?”  

» practice oriented approach 

– do: creating a common language, organising/participating in workshops 

» willingness for TD collaboration, crossing disciplinary borders 

– believe: that living in a healthy environment is a right for everyone 

» shared vision 

– have pain: they need time and opportunity to learn about other disciplines  

» embracing the need for personal development and extra effort for TD 

collaboration 

– gain: further collaboration opportunities, visible positive impact of the job, and 

improving the city  

» shared goals. 

To sum up the results of the Empathy Maps, it first should be mentioned that all the 

partners were concerned about the same problem, but that they approached it in different 

ways. They realised the necessity for different resources that they did not possess, hence, 

to address the complex challenge, they built a cross-sectoral collaboration based on their 

common vision. They reached their shared goals by creating a common language and 

understanding between the different disciplines, by sharing their academic and practical 

knowledge and by embracing the “pain” and stepping out of their personal and 

professional comfort zone.  
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5.3.3.4  Climate Services as decision-support tool 

As the Empathy Maps (Figures 5.2-5.4) show, the challenge is to develop and implement 

an urban climate adaptation plan. The relationship to the challenge differs between the 

stakeholder groups: the academics are the Climate Service providers as their task is to 

develop climatic guidelines and useful tools for urban planning. From this aspect, they 

play a knowledge broker role (according to the classification of researcher roles by 

Wittmayer and Schäpke (2014)), and they deliver this service through the co-development 

of technical and policy instruments in the TD collaboration. The direct users of Climate 

Services are the municipality technicians, thus the climatic products are tailored to their 

needs. These climatic tools are co-developed with the urban planners through continuous 

feedback loops. The schematic representation of CS as a decision-support tool to enhance 

climate-resiliency of the city can be seen in Figure 5.5, as developed by the author. 

 
Figure 5. 5 Climate Services as decision-support tool for urban development towards climate-

resiliency. Circular arrows refer to knowledge co-production and the red bracket indicates 
collaborative learning and action. Figure developed by the author. 

In the case of the nationwide project, the technical consulting company was an 

intermediate player that facilitated knowledge transfer and capacity building in the 

municipalities so that their own climate adaptation plans could be developed. The 

municipalities were beneficiary users of the products that were co-developed by the 

academics and the urban planners, with the example and support of front-runner cities 

(e.g., Cascais, Figure 5.1). The TD collaboration was built to develop innovative solutions 

for the complex challenge of urban climate adaptation involving the relevant 

stakeholders. 
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5.4 Discussion 

5.4.1 Understanding roles and competences 

Re-framing the role of the academics in Climate Services requires thoughtful examination 

and lively discussion within and beyond the scientific arena. While the need for TD 

training and capacity building became clear by analysing the interviews, the role of 

understanding of the members has been passed over until now. In general, a natural 

opposition of perspectives was observed between the two main groups—academics and 

practitioners—that was described as the tension between the “descriptive-analytical and 

transformational mode” by Wiek et al. (2012). In the examined case, the academics 

focused mainly on the research methodology and outcomes, while the practitioners were 

concerned with the practical implementation of plans and engaging with the relevant 

stakeholders. Hence the former group takes on the general role of “descriptive analyst” 

and the latter, the “activist”. As the Figure 2.8 (section 2.5.2) of TD knowledge co-

production shows, both types of knowledge are indispensable for developing a viable 

solution.  

The practitioners expressed their appreciation for the scientific knowledge that they 

applied; they also believed that it adds credibility to their actions. They highly appreciated 

the results focusing on the risk and opportunities. Most of the stakeholders mentioned 

that creating a common language and understanding between the various disciplinal 

perspectives and professional practice was a challenging part of the collaboration. 

Nevertheless, thanks to the collaborative preparedness and willingness of interviewees, 

effective communication, and clear leadership and management, these differences were 

anticipated and handled successfully.  

Taking a closer look at the interviewed academics, it is clear that among them, it is not 

only the reflective scientist role that is evident, but the alternative activities represented 

by the ideal-type roles (Wittmayer and Schäpke, 2014). They acted as process facilitator 

– organising workshops, facilitating the development process and experiments; change 

agent – motivating and empowering participants and supporting policy formulation; and 

knowledge broker – making meaningful climate knowledge in the urban planning context 

and mediating between different perspectives. It has to be noted that the aforementioned 

alternative activities are performed by scientists—especially individuals with 
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coordinating and leading responsibilities—in the general climate community, however, 

the importance of these activities need to be better recognized (NAS/NAE/IM, 2004). 

All the interviewed academics emphasised their intention to help the technicians, and they 

were highly motivated to provide “understandable, usable and useful” climate knowledge 

(maps, metrics) that would aid the work of urban planners. This kind of approach certainly 

leads to the baseline of demand-based Climate Services. Similar skills (such as project 

management, facilitating, building relationships) are included in the Guidelines for 

Trainers in Meteorological, Hydrological and Climate Services by WMO (WMO, 2013) 

and are referred to as “transferable skills or core competences”; however, have not yet 

been discussed in the context of TD teamwork. 

Another interesting aspect in terms of roles and professional motivations is the high sense 

of responsibility and ownership of the problem; these are important attributes for 

researchers who are active in sustainability transitions, according to Wittmayer and 

Schäpke (2014) and Loorbach (2010). All the interviewed stakeholders expressed not 

only professional interest, but also personal motivations for working on the projects. They 

talked enthusiastically about the topic, felt the positive social impact as a priority, and 

evaluated their job as more like a vocation than simply a profession. Working on real-life 

problems empowered the academics to take an active role in the partnership and pursue 

alternative activities besides the reflective scientist role. This approach provides a new 

insight into the motives of academics to participate in climate-related TD collaborations. 

5.4.2 Contextual Factors and Policy 

At the beginning of this research, I addressed the question “What were the contextual 

factors that influenced the dynamics of TD collaboration?”. When reviewing the 

categories, there are none that can be distinguished as the most important based on the 

collected data. In order to compare the results to the literature of team and TD/ID science, 

some important factors are highlighted here.  

From the Intrapersonal Factors category members’ preparedness and positive attitudes 

toward TD should be mentioned. These skills and behaviours are mainly due to members’ 

previous experience in TD collaborations and the strategic selection of project 

participants. From the Interpersonal Factors category, soft skills (including effective 

communication) as well as member’s diverse skills and their respect for each other should 
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be highlighted. According to a review of ID research in the education, business and health 

care sectors, 61.9 % of papers found “Team factors” such as “Communication/trust/ 

interpersonal relationships” (54.8 %), “Composition of team/balance of power” (50.0 %), 

“Shared values and goals” (35.7 %), and “Leadership” (26.2 %) important (Aboelela et 

al., 2007). In the same review, the “Individual characteristics of team members” factor, 

for example, commitment, agreeability and flexibility, was found to be important by  

19.0 % of the reviewed studies. These team and individual factors have also arisen this 

study, but obvious comparisons are not possible because the basis of classification is not 

the same. 

Among the Organisational and Institutional Factors, the presence of strong incentives to 

support TD collaborations should be mentioned. The supporting attitude of the university 

is mainly due to the economic crisis (Socio-Political Factor) that prompted the building 

of cross-sectoral collaborations as a way of financing research projects. From the Physical 

Environmental Factors category, the spatial proximity of team members who are working 

on the same tasks (e.g. the researchers in the same academic group) was positively valued. 

The review by Aboelela et al. (2007) combined the environmental and institutional 

factors. The combination of these factors was found important by 54.8 % of studies, 

including “Interdisciplinarity explicit in mission” (42.9 %), “Resources for ID work 

provided” (38.1 %) and “Rewards and promotion related to ID work” (28.6 %). In the 

present case, none of the interviewed stakeholders mentioned explicitly the latter factors, 

since the questions were prepared based on different frameworks. 

The importance of Socio-Political Factors was also articulated by the stakeholders, 

especially in terms of cooperative international policies that facilitate the exchange of 

expertise and TD collaborations. Most of them mentioned that there is a momentum for 

TD collaborations in climate adaptation at both national and international levels, as there 

are various financial and technical resources available to support these cross-sector 

projects. Nevertheless, national governmental politics might support or hinder the 

implementation of environmental strategies, thus I added this aspect to the typology of 

contextual factors as general national political landscape. Due to changing government 

policies on research funding, the uncertainty of funding continuation can be a real 

pressing issue (Muscio, Quaglione and Vallanti, 2013). NAS/NAE/IM (2004) and 

Bennett, Gadlin and Levine-Finley (2010) also emphasised that the assurances of 
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continuous funding are essential to have enough time for trust-building in TD 

collaborations. Fortunately, in recent years there is a Europe-wide tendency for an 

increasing number of climate adaptation projects, thanks to international programmes and 

networks such as the ones mentioned in section 2.2.1. 

5.4.3 Shared vision, common goals and outcomes 

Shared vision and shared goals are the foundations of high-functioning teams. As the 

Empathy Maps show, the interviewed academics and practitioners shared views that were 

important for the project, such as believing that “living in a healthy environment is a right 

for everyone”. Furthermore, their common perception of benefits—further collaboration 

opportunities, visible positive impact of the job, improving the city—helped set common 

goals for the collaboration. Each team member had a deep sense of problem ownership 

that motivated them to contribute to the development of joint solutions. Stauffacher et al. 

(2008) and Wittmayer and Schäpke (2014) also noted that ownership notions are strongly 

related to the intensity of stakeholder involvement in TD research collaboration and 

action for societal transformations. 

Even though the team members may each have a slightly different sense of the team’s 

vision, depending on their roles and responsibilities or their stage of career development 

(NAS/NAE/IM, 2004; Bennett, Gadlin and Levine-Finley, 2010), it is important that the 

overall goals and individual responsibilities are understood and that a collective effort is 

made.  

Achieving of balance between research needs and community interests was identified as 

a key challenge by a public health study on an intersectoral community coalition (Lantz 

et al., 2001). Other studies (Israel et al., 1998; Stokols, 2006; Stokols et al., 2008) also 

demonstrated that while practitioners’ goals are more pragmatic and community-oriented, 

as well as favouring quick decisions and the implementation of problem-solving 

strategies, researchers generally have a longer-term orientation, and are more concerned 

with research questions and pursuing publications and grant funds. In this case, as well 

as the pragmatic approach, practitioners managed to combine the long-term vision with 

short-term goals and implementation strategies. Academics did not need to worry about 

seeking highly competitive research grants on the topic, since the international grant was 

handled by a partner. As well as research focused on methodology, academics embraced 
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the solution-oriented approach, and focused on developing user-friendly climatic 

products. These findings indicate that the examined cross-sectoral collaboration was able 

to agree on goals and objectives perceived to be attainable, and was able to narrow the 

gap between science and practice.  

The stakeholders’ profiles provided us with interesting insights into the market of Climate 

Services. The academics were in direct contact with urban planners (represented by the 

profile of municipality technicians) in order to develop climatic products that are 

understandable and useful for urban climate planning. The consulting company was an 

intermediate player that facilitated knowledge transfer, strategic planning and policy 

development between the municipalities, policy-makers and academic groups. Both 

academics and practitioners found it challenging to create a common understanding and 

language, as Aboelela et al. (2007) found in other sectors. Nonetheless, they described 

the collaboration as a rich learning experience that opened up more opportunities for 

them. 

The “think” and “gain” boxes in the Empathy Maps help us to identify what the 

practitioners—Climate Service users—care about, what they need from the collaborators, 

and what outcomes they expect from the cross-sectoral collaboration. Analysing the 

“pain” boxes, we get an overview of what they are concerned about and what barriers 

they need to overcome. For example, both the practitioners and academics feel the “pain”: 

that they need more time and opportunities to learn about other disciplines and practices. 

To serve these needs, more TD training and workshop opportunities, as well as stronger 

institutional support for TD activities (e.g., changing academic procedures, policies and 

rewarding system) is suggested by several studies (Bennett, Gadlin and Levine-Finley, 

2010; Larson, Landers and Begg, 2011).  

By focusing on the “gain” box, we can get ideas about what motivates stakeholders to 

participate in cross-sectoral collaborations concerning climate issues. By promoting the 

benefits gained via TD work experience, stakeholder groups can be engaged more 

effectively. The highlighting of successful practices is highly appreciated by those new 

to the TD field, as was also suggested by graduate students of an ID course (Larson, 

Landers and Begg, 2011). Even though the Empathy Maps do not provide an exhaustive 

list of stakeholder attributes, it certainly provides more information about the interests 

and needs of both the climate service provider and user. Other innovative tools for 
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stakeholder analysis can be found, for instance in De Vicente Lopez and Cristian (2016). 

5.4.4 Communication 

Communication emerged as an important topic throughout the literature in terms of Intra- 

and Interpersonal factors of TD collaborations (Stokols et al., 2008), as a principle of 

good interdisciplinary team work (Nancarrow et al., 2013), as a personal skill in project 

management (IPMA, 2015), and as a necessity for sectoral innovation (Klein Woolthuis, 

Lankhuizen and Gilsing, 2005). Rosales Carreón (2015) highlighted that the poor 

communication between actors led to inefficient multi-stakeholder collaboration in a 

retrofitting project. Listening and communicating skills were also mentioned in the WMO 

Guidelines for Trainers (WMO, 2013), referred to as “transferable skills or core 

competences”. Furthermore, the “Competences for provision of Climate Services” 

defined by WMO GFCS (WMO, 2015) outlined communication of climatological 

information in partnership with users, as a core competency for institutions providing CS. 

Much of what determines success in team communication relies on trust (Bennett, Gadlin 

and Levine-Finley, 2010); this is further discussed in section 5.4.6. 

Regular internal communication (among team members) and external communication 

(communication beyond the core team, e.g. with end-users) are both important for 

enhancing team performance (Nancarrow et al., 2013). As well as electronic 

communication, thanks to frequently scheduled meetings, the studied partnership could 

build trust among team members, and develop a common understanding of the project. 

The geographically disperse cross-sectoral collaboration, the diversity of members and 

the size of the team made it challenging to maintain good team dynamics and efficiency. 

To overcome these barriers, good communication among team members was key, as this 

encourages feelings of trust, and enables teams to better manage issues of size, 

compatibility and cohesion (Edmondson, 1999). 

Regarding interactions with decision-makers (e.g. mayors and politicians), the 

communication strategy included marketing elements and traditional public relations 

tasks. As the practitioners explained, to convince decision-makers, the direct benefits and 

financial savings for the municipality was the most relevant information to be 

communicated. These arguments are commonly used in environmental communication 

strategies. According to the practitioners, the main interest of the municipality is the 
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development opportunities that come with the climate adaptation project. In addition, the 

“climate-friendly image” could provide promotional value for the city. For this reason, 

flexible personal communication skills (soft skills) in various working environments was 

indispensable for the cross-sectoral collaboration.  

Communicating the results to the public was the task of the communication NGO. They 

kept in contact with local, regional and national media as well as managed the project 

website and social media platforms. It is important to mention that a separate entity was 

responsible for the external communication of the project, however analysing their role 

was beyond the scope of this study.  

5.4.5 Capacity building 

The importance of capacity building and the need for workshops and training on TD 

collaboration were articulated by all the interviewees. Their opinion is in line with the 

findings of Bennett, Gadlin and Levine-Finley (2010) for the biomedical sector, i.e. 

people are rarely introduced to skill sets that can help them to establish and maintain 

strong collaborative relationships. Nevertheless, one might question whether ID skills can 

be taught and learned, or whether the interest and competences in such work were intrinsic 

to one’s personality and value system. Larson, Landers and Begg (2011) develop 

controversial opinions in their writings. Based on their investigation, there are researchers 

engaged in collaborative work who believe that ID skills had to be experienced and 

learned “on the job”. On the other hand, Gebbie et al. (2008) identified a set of core 

competences essential to IR teamwork, which Larson, Landers and Begg (2011) argued, 

can be taught.  

Accordingly, Larson, Landers and Begg (2011) developed and implemented a graduate 

didactic course that is open to students and faculty members in any discipline across the 

campus (health care sector). From their experience of running the course, they concluded, 

that the most challenging aspect was working through institutional structures that made it 

difficult to offer cross-school courses. Furthermore, interpersonal challenges among a 

diverse group of students from several disciplines also occurred. Bennett, Gadlin and 

Levine-Finley (2010) also pointed out that the challenges imposed by institutions are 

among the most difficult to overcome, as making changes in policies and procedures that 

have been in place for decades takes hard work, negotiation, and lots of meetings. In this 



Chapter 5: Transdisciplinary collaborations in Climate Services 

178 

case, the academics described a similar situation, stating that the university leadership is 

very supportive regarding cross-sectoral collaborations; however, the institutional 

bureaucracy makes it hard to achieve the necessary changes. 

As Hall, Stokols and Moser (2008) suggested, to move team science forward, it is vital to 

develop more effective ways to train scientists. A didactic course such as the one 

described by Larson, Landers and Begg (2011) is a promising approach to enhancing the 

ID/TD skills of scholars-in-training in an academic setting, and could also be further 

developed by adding solution-oriented, practice-based learning experience. The National 

Academy of Science in its handbook, “Facilitating Interdisciplinary Research”, also 

recommended immersion courses and IR curricula for undergraduate and graduate 

students (NAS/NAE/IM, 2004). A study by Borrego and Newswander (2010) identified 

five categories of learning outcomes for ID graduate education: (1) disciplinary 

grounding; (2) integration; (3) teamwork; (4) communication; (5) critical awareness. 

5.4.6 Building trust 

As well as capacity building, fostering trust in a TD collaboration is indispensable. Trust 

is not a one-dimensional variable, it is based on an assessment of the other member’s 

honesty, abilities, reliability and intentions (Bennett, Gadlin and Levine-Finley, 2010). 

When interviewees were asked about the qualities that they find important in each other, 

most of the ideas (e.g. honesty, open-mindedness, availability, empathy) were related to 

trust and respect. Trusted partnership also requires the belief that members will be truthful 

in their communications and in the conduct of their scientific research; this was expressed 

as “scientific ethic” by the Academic-A. Members need to have confidence in the abilities 

of their colleagues to produce reliable results and to openly share and discuss them. The 

interviewed persons shared similar ideas on trust and reflected the views provided in the 

literature (Stokols et al., 2008; Larson, Landers and Begg, 2011; Nancarrow et al., 2013). 

I would like to note that some of the findings might seem obvious because the 

fundamentals of collaborative work are supposed to be common sense. However, self-

awareness of these topics is very important. As Bennett, Gadlin and Levine-Finley (2010) 

explains, sometimes in everyday situations, people act in a very different way than what 

they would have themselves recommended. Practical guidance such as the one provided 

by Bennett, Gadlin and Levine-Finley (2010), can aid self-assessment and self-
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development as well as the improvement of team dynamics. The framework of factors 

established by Stokols et al. (2008) functions in a similar way, as it helps to design, 

improve and foster TD collaborations. I found this framework useful tool for evaluating 

the cross-sectoral case of urban climate planning. 

5.5 Summary and Conclusions 

Climate change adaptation planning and decisions are made within a complex web that 

includes local, regional and national government employees, elected officials, technical 

and strategic consultants, sectoral agencies and associations, business people, members 

of the public and scientists. In the example of present case study, I explained the 

differences in opinion of scientific researchers and practitioners when working on the 

same issue and dealing with different types of knowledge. Informant interviews were 

conducted to map the voices of various stakeholders and to establish the key determinants 

that influenced TD collaboration in the context of urban climate planning. By analysing 

the motivations, challenges and needs of stakeholders, we gained novel insights into the 

market of Climate Services in the field of climate adaptation. Furthermore, an 

understanding of roles and competences needed for effective TD collaborations can help 

academics to analyse their own research practice and to become aware of the kind of roles 

that fit personal skills and interests, as well as tasks and the situations at hand.  

The lessons learnt are summarised as follows: 

– Practitioners were constrained by others in the decision-making web of climate 

adaptation planning. They had to balance the needs and expectations of multiple 

constituencies—for example the elected board of municipalities, local businesses 

and citizens—and respond to their decisions and demands.  

– Practitioners had to act within national-local regulations and guidelines, and in 

order to build a new policy for climate adaptation, the already existing sectoral 

regulations need to be revised and mutually aligned with the new strategy. 

– Academics took on various “non-traditional” researcher roles during the co-

development of urban climatic products such as knowledge broker, process 

facilitator and change agent. 

– Academics were inspired and motivated by the real-life impact of their research, 

driving them to engage in cross-sectoral projects aimed at problem-solving. They 
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showed a great interest in serving practitioners with useful climatic information. 

– The university leadership supported cross-sectoral collaborations, however there 

are still some institutional barriers to overcome, e.g. providing TD training for 

students/university staff. 

– Both practitioners and academics embraced the opportunity and challenge of 

mutual learning and developing a common language; additionally, they managed 

to build a trusted partnership that continues to function in the form of further 

projects. 

– The international and national political system enabled for the development of the 

examined projects, providing professional and financial resources for climate 

adaptation planning. 

– Capacity building was essential among stakeholders. The practitioners needed an 

update on climate-related risks and opportunities, and the academics needed to 

learn about the legislative context of climatic planning. To incorporate climate 

information in municipality strategies, public servants needed technical 

upskilling.  

– Communication was one of the most powerful contextual factors that fostered 

efficient teamwork. Open-mindedness, availability, honesty and empathy were 

among the qualities that both academics and practitioners considered important. 

Through the real-life case of urban climate adaptation planning, important lessons are 

being learnt about bridging science and practice; this knowledge then can contribute to 

other arenas where scientists seek to connect scientific research and information to 

societal decision-making and sustainability transformations. This study calls for more TD 

collaborations supporting multi-stakeholder, climate-smart decision-making, 

incorporating both academic and practical knowledge. The lessons and observations 

presented here are novel in the context of Climate Services. The practical implications 

provide recommendations for those academics who wish to engage in TD collaborations 

focusing on climate-related issues, and for those who create science policy. 

5.6 Practical Implications 

New insights are provided to Climate Services research through this study by mapping 

the voices of the different stakeholders, and their attitudes to transdisciplinary 

collaboration in climate adaptation planning. Based on the results, practical implications 
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and recommendations are formulated to help stakeholders to build and manage efficient 

cross-sectoral collaborations in the field. Furthermore, we gained novel insights into the 

market of Climate Services, through analysing stakeholder profiles using the visual tool 

of Empathy Map. 

The following recommendations are formulated: 

– Academics and practitioners need to interact on a regular basis to build trust, 

credibility, common understanding and a shared vision; this is essential for 

effective TD collaborations that facilitate climate-smart decision-making and 

societal transformations. If regular face-to-face meeting is not possible, several 

online tools exist to aid remote teamwork. 

– Academic groups need members who facilitate the dissemination and 

communication of scientific issues, for instance helping interested practitioners 

avail of new methods and information, and demonstrating that using science has 

value, and/or it is authoritative. 

– Assumptions (originating from the different schools of thoughts) of both 

academics and practitioners need to be softened by developing interactive 

relationships based on mutual respect, openness, an appreciation of different 

perspectives and constraints, as well as a willingness to learn from each other.  

– By promoting frequent feedback and long-term partnerships, the iterative 

approach of knowledge co-production can significantly contribute to overcoming 

the challenges and barriers of cross-sectoral projects on climate. Building one 

successful partnership may then open up a range of additional opportunities. A 

useful practical guide for multi-stakeholder involvement in environmental 

problem-solving is e.g., Lelea et al. (2014). 

– Integrated TD research is indispensable to advancing climate-smart planning and 

decision-making, thus the participation of various disciplines as well as 

participatory action research and transition management approaches need to be 

encouraged. A recommended network to learn more about the TD methodology 

is the Swiss td-net (td-net website). 

– Education and Training programmes play an important role in developing 

personal competences to aid cooperation in TD teams. TD capacity building also 

prepares persons/groups for the role of intermediaries who facilitate knowledge 
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co-development. The WMO provides Guidelines for Trainers in Meteorological, 

Hydrological and Climate Services (WMO, 2013) and also defines competences 

for the provision of CS targeting institutions (WMO, 2015). To develop personal 

and team competences in TD collaborations, for example the well-written 

practical guide by Bennett, Gadlin and Levine-Finley (2010) is recommended. 

– Inside academies, stronger institutional support is needed. Changing procedures 

and policies to enable TD activities is hard work, but is necessary. The rewarding 

system for academic achievements and the evaluation system for career 

advancements need to be revised in order to support TD and cross-sectoral 

activities. 

– The exchange of experiences and best practice need to be encouraged inside the 

TD team as well as between projects, on both national and international levels. 

What can we learn, for example, from other cities or communities that face similar 

challenges? Recommendable international platforms and programmes in the field 

of local climate adaptation and sustainability include C40 Cities Climate 

Leadership Group, ICLEI Local Governments for Sustainability, Mayors Adapt, 

Climate-ADAPT, EIT Climate-KIC, Future Earth, etc. 

– Climate Services function as an interface between science and society, thus 

following the “demand-driven and science-informed” approach (European 

Commission, 2015), further market research and the co-development of climatic 

products need to be encouraged. This requires more intense communication across 

sectors and embracing alternative researcher roles and tasks. 

As Climate Services literature echoes, generating useable scientific information requires 

connecting academic research to practical applications and decision-making. Hence, 

academics and practitioners need to co-develop climate information products that clearly 

apply to practitioners’ specific decision-making settings, in this example of urban climate 

adaptation, such as climatic guidelines, metrics and maps. This requires long-term 

partnerships among scientists, product developers, and different groups of stakeholders 

to mutually learn about opportunities and needs, develop trust, and build credibility. It is 

hoped that the offered recommendations based on informant interviews and the literature 

review can help facilitators of transdisciplinary research processes, and academics who 

wish to develop more efficient Climate Services. 
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Chapter 6  
 

Practical projects relevant to the thesis 

 

 

 

 

6.1 Overview 

As the thesis aiming to facilitate the development of actionable climate information 

(Objective 4), I took part in various TD projects. These short projects provided practical 

experience in co-developing solutions and the opportunity to explore the perspectives, 

priorities and needs of a diverse set of stakeholders. This chapter briefly summarizes the 

aims and outcomes of three projects.  

Section 6.2 describes the individual project related to an Innovation & Knowledge Lab that 

served as a real-life example of “science-society” interfaces. Here practical experience is 

gained on conducting market research and stakeholder mapping. In section 6.3 a multi-

expert project is presented that addressed urban complex issues through enhancing 

sustainable mobility and greening the city. Section 6.4 introduces a project that addresses 

climate adaptation via improved asset management in the intelligent city. 
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6.2 Executive Summary: Knowledge & Innovation Lab 

Individual fieldwork, LDE Centre for Sustainability (joint institute of Universiteit Leiden, 

Delft University of Technology and Erasmus University Rotterdam), Pioneers into 

Practice Programme Climate-KIC, the Hague (the Netherlands), 1–31 October 2016 

Project title: Demand-driven innovation and knowledge lab on Circular Cities of 

the future 

Living labs are defined as “user-centered, open innovation ecosystems based on a 

systematic user co-creation approach in public-private-people partnerships, integrating 

research and innovation processes in real-life communities and settings” (ENoLL, 2006; 

Steen and van Bueren, 2017). In recent study the Knowledge and Innovation Lab is 

considered as a science-society interface that connects real-life urban sustainable 

challenges with the goals of practice-oriented Climate Services. There are several 

examples especially from Northern European countries that these interfaces create 

successful synergies between the participating stakeholders (academics, NGOs, 

municipalities, entrepreneurs, companies). Furthermore, such co-creation spaces e.g. 

urban living labs, green offices and impact hubs offer great potential for climate-

innovation in form of multi-stakeholder collaborations. 

The Happy City Lab (HCL website) was set up in 2014 providing honour courses for 

students from three universities (TU Delft, Erasmus University Rotterdam and Leiden 

University) under the umbrella of the Centre for Sustainability (CfS). Since then it has 

been growing successfully and a new lab was going to be set up by the end of 2016 

focused on Circular Economy. The HCL connects outstanding students, researchers in 

philosophy, human geography, urban sociology, positive psychology and urban design, 

as well as innovative start-ups, aiming to link positive design with science that engages 

in designing for subjective well-being and happiness, with contemporary urban issues. 

In order to improve the communication and marketing strategy, as well as to foster 

community building around the HCL, this work focused on the question: “How to engage 

students, academics and NGOs to participate in a living lab?” Three groups of 

stakeholders were interviewed in accordance with the research scope: a) student based 

organizations/green university groups, b) academics (scientists and PhD students), c) civil 

initiatives, NGOs. The interviews provided insights into the different motives and needs 
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of stakeholders and also highlighted the underlying barriers and institutional incentives 

that influence the engagement of stakeholders in co-designed projects. Finally, the work 

specifically aims at affording recommendations to advance the set-up and development 

of the Knowledge and Innovation Labs. Here the outcomes are briefly summarised by 

stakeholder groups. 

In terms of student based organizations/green university groups (6 interviews) the most 

surprising finding was the lack of communication and collaboration between these 

organisations. In some cases, even when they are based in the same building, they do not 

know much about each other’s activities. Furthermore, almost all of them commented that 

they suffer from poor internal communication and the unclear/undefined short- and long- 

term vision of the group. In order to eliminate these drawbacks more conscious 

networking and well-organized PR is needed. Using social media and promotion on the 

campus screens, as well as expositions at campus proved to be the most efficient 

communication channels in many cases. 

The interviewed academics (scientists and PhD students, 4 interviews) considered the 

lack of time as one of the main barrier to participate in living lab activities. Other main 

concern is that the academic rewarding system is immensely based on indicators that do 

not take into account cross-sectoral activities (e.g., the number of published papers), 

furthermore in several research institutes still negative connotation surrounds those 

researchers who start their own business or any collaboration with the industry, or 

pursuing outreach activities. PhD students are often overloaded by academic obligations, 

and sometimes does not find the proper organisations when they want to do 

extracurricular activities. For these reasons changes are needed at both sides: on one hand 

the academics need to be positively evaluated for cross-sector collaborations (change of 

the academic rewarding system), on the other hand academics need to be provided with 

special trainings or courses to help them link their research with the needs of the industry 

(offering help to improve certain skills). In the latter task the living lab could play a 

significant role, for example providing practical courses for the academics and students 

to improve their TD skills. 

Finally, a couple of civil organisations were involved in the research (2 interviews), that 

confirmed the fact that urban living labs definitely need to include such bottom-up 

initiatives, as they provide real-life challenges for student/company projects and 
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academic research. All in all, urban living labs provide unique networking opportunity 

for all the stakeholders, and also create a growing community working for better city life 

via circular cities. This is undoubtedly a win-win situation for all actors. 

I was responsible for the design and implementation of the market research. I conducted 

the interviews and explored interested stakeholders to extend the network around the 

kick-starting Happy City Lab.  

6.3 Executive Summary: Sustainable Mobility and Green City 

Multi-expert teamwork, Pioneers into Practice Programme Climate-KIC, Valencia 

(Spain), 16 May – 16 November 2016 

Project title: Bike Generation – how to improve the sustainable mobility in the city 

of Valencia? 

Most of European cities have not been planned taking into account energy and 

environmental aspects that are crucial to sustainable urban mobility. Considering the 

social, economic, technological and environmental aspects of the multifaceted challenge, 

we propose some strategic changes in the transport system by adding new smart features 

built upon the already existing innovations in the city of Valencia. The developed joint 

solution is aligned with the goals of the Sustainable Urban Mobility Plan, Sustainable 

Energy Action Plan, the 2020 Strategy, the Adaptation Plan to Climate Change and the 

Smart City Strategy. 

The aim of the project is to develop innovative solutions to tackle urban issues addressing 

the following specific topics, proposed by the Valencian InnDEA Foundation (InnDEA 

website): a) reduce CO2 and NOx emissions; b) reduce urban heat island and noise; c) 

promote sustainable alternatives in mobility; d) change user mobility pattern; e) claim the 

public space for people and improve the quality of life. 

The challenge 

Based on the above described urban sustainability challenges we addressed the following 

specific questions:  

(i) How to reduce the traffic congestion and daily use of cars in the city? 
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(ii) How to attract more people to enjoy every day a healthy and fun biking 

experience? 

(iii) How to improve the biking infrastructure while making the city greener and 

reducing heat stress and air pollution? 

Problem approach 

In order to reduce the GHG emissions due to the daily movements of citizens using their 

private cars, we foster the use of bikes and public transport. To reduce heat stress and to 

enhance the interconnectivity of different parts of the city, new green and safe bike lanes 

are proposed. It would not only create more inclusive society but also engage people of 

any age to do more exercise and enjoy riding their bike through gamification. 

To tackle the complex challenge of building a more sustainable urban mobility system, 

we developed a joint solution that can be implemented separately or jointly. In our idea 

we integrated the theme of Mobility, Energy, Climate and Environmental Awareness that 

are key elements in the urban development agenda of InnDEA and the Municipality of 

Valencia. 

Thus, our joint solution (Fig. 6.1) is as follows: 

A) Gamification using a bonus based system to reward using the bike. A virtual currency 

will be created that users could change for tickets to public transport, access to cultural 

activities in the city, parking hours out of the city, local shops and restaurants, etc. 

B) Bike = Transport + Energy Generation. A removable battery element will be designed 

to a) charge the user’s devices and b) supply energy to the grid to illuminate bike lanes.  

C) Improved and extended bike lanes: a) more secure lanes and bike sheds b) innovative 

lighting system with special pavement that utilizes solar energy and c) green corridors 

with vegetation cover. 
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Figure 6. 1 The joint solution of BIKE GENERTION (Credit: Áxel Pena López, team member) 

Additional benefits of the idea are self-sustaining bright lanes (additional energy supply 

not needed), enhancing the green image of the city, economic revitalization in the vicinity 

of the bike lanes, improving social cohesion and community building through 

gamification, R&D in batteries and supercapacitors, awareness raising: e.g. the user 

appreciates the value of energy by seeing what it costs to generate it. 

We cannot just change the existing transport system to a “green transport” without the 

citizens. Awareness raising on the benefits of a sustainable mobility system is key besides 

the improvement of infrastructure. We believe that Valencia can be a biking city just as 

for instance Copenhagen, but we need to make the routes safer and comfortable to provide 

an enjoyable cycling experience for everyone. 

The project has been presented to InnDEA (16 November 2016) and in the Innovation 

Festival of Climate-KIC in Frankfurt, Germany (7-9 November 2016). 

Team members: Maribel Cano Domínguez (Architect), Áxel Pena López (Industrial 

Engineer), Vicente Ramón Tomás López (Computer Science Engineer) and the author of 

this thesis. I took part in the co-development of creative ideas through systems thinking, 

and I was responsible for providing climatic information on the urban thermal comfort 

and managing public relations. 
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6.4 Abstract: Addressing climate adaptation through 

intelligent cities 

Advising the project of PMM Business School, May–August 2017 

Title of conference paper (originally in Spanish): Climate change adaptation strategy 

through the development of intelligent and sustainable cities 

Climate change has emerged as one of the defining global issues of today, but negotiations 

to deliver a supra-national climate change mitigation strategy post-Kyoto have been 

progressing slowly. The Paris Agreement formulated at the COP21 (Conference of 

Parties) in Paris, 2015 was a breakthrough event, as 195 countries adopted by consensus 

the main aim of the convention: „holding the increase in the global average temperature 

to well below 2 °C above pre-industrial levels”. 

Urban municipalities play a leading role in the implementation of the Paris Agreement 

through sustainability projects and programs in various fields, e.g., urban mobility, health, 

energy, water, transport infrastructure. These cities vision themselves as intelligent or 

smart cities, including sustainability and enhanced physical/digital connectivity in their 

development agenda. However, still there is a gap in connecting the various projects with 

the strategic plan of the municipality. 

For this reason, it is necessary to develop a conscious Asset Management, aligned to ISO 

55001 and UNE 178303:2015 – Smart Cities. The Asset Management of the City—in 

terms of projects developing new infrastructure and improving the already existing one—

is need to be aligned with life-cycle models (Amendola, 2016) and embedded in the 

Philosophy of Cradle-to-Cradle (C2C) (McDonough and Braungart, 2002). This 

philosophy describes that from the conception and design of any product (that can also 

mean strategy or policy), the entire life cycle of the product has to be taken into account, 

optimizing material health, recyclability, renewable energy use, water efficiency and 

quality, as well as social responsibility. 

Adaptation to climatic changes in cities is a necessity, and require radical social and 

economic transformation. Front-runner cities have already realised that „climate change 

adaptation is an opportunity for social reform, for the questioning of values that drive 

inequalities in development and our unsustainable relationship with the environment” 
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(Pelling, 2011). Thus, enhancing adaptive capacity of a city is essential and can be 

addressed through improved Asset Management of the City. 

Reference: Sánchez, A.; Amendola, L.; Depool, T.; Lehoczky, A. (2017): Estrategia de 

Adaptación al Cambio Climático a Través del Desarrollo de la Ciudad Inteligente y 

Sostenible. XIX Congreso Internacional de Mantenimiento y Gestión de Activos, Bogotá, 

Colombia, 16-18 August 2017. Full article in the conference issue, 8 p. 

I was responsible for translating the goals of the Paris Agreement into locally relevant 

information that supports urban climate adaptation through asset management in the city. 

The paper was presented in the XIX International Congress on Maintenance and Asset 

Management. Bogotá, Colombia, 16-18 August 2017, and can be accessed here: 

http://www.aciemmantenimientoygestiondeactivos.org/home/files/Trabajos/17090_TRA

_USA_A_SANCHEZ_CIMGA2017.pdf 
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Chapter 7  
 

Summary 

 

 

 

 

7.1 Overview 

In this chapter, the main results and conclusions of the core chapters are summarised to 

provide a comprehensive overview of the interdisciplinary work. Each chapter individually 

offers interesting results, but it is the combination of multiple data from a variety of 

disciplines in this thesis that has enabled novel research on the climate information 

distillation challenge. To link science and practice, practical insights are formulated at the 

end of Chapters 3, 4 and 5 supported by practical experience. This chapter reviews the 

outcomes of the project, describing the results in relation to the four research objectives 

outlined in Chapter 1. Further potential research lines are also discussed. 

The overall aim of this thesis was to pave the way for the integration of regional and local 

scale climate information into Climate Services that support climate adaptation planning 

and policy-making. Regional and local scale climate information was produced via 

analysing climate model projections over the Iberian Peninsula (IP) and the urban heat 

island (UHI) in the city of Valencia (Spain). This work has been carried out using various 

datasets, including remotely sensed land surface temperature, ground measured 

meteorological data and climate simulations from a high resolution regional climate model 
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that has no urban component. To learn about the needs of climate information users and the 

challenges that academics and practitioners face in climate-related transdisciplinary (TD) 

collaborations, in-depth interviews were conducted with relevant stakeholders involved in 

urban climate adaptation projects in Portugal.  

7.2 Fulfilment of the objectives of the thesis 

The hypothesis, i.e. “through the development and use of Climate Services along with 

transdisciplinary approaches urban climate adaptation and planning can be improved” 

was supported by the results of the climatological analysis and the qualitative social study. 

Each of the four main objectives, introduced in section 1.4, is detailed below, with a short 

discussion summarising the outcomes in relation to this thesis. This thesis was sure to 

explicitly discuss the uncertainty related to data and methodologies to ensure readers are 

aware of the situation. Critique of research is also formulated for each objective below.  

7.2.1 Objective 1 

Assess climate projections over the Iberian Peninsula via a high-resolution regional 

climate model ensemble and evaluate model performance to provide scientifically 

solid and easily understandable illustrations of future temperature change and its 

uncertainties. 

This thesis evaluated the performance of a regional climate model (RCM) ensemble and 

described the future changes in seasonal mean near surface temperature over the IP for the 

mid-term (2041–2070) and long-term (2071–2100) future in Chapter 3. The high spatial 

resolution (12.5 km) RCM simulations with the Rossby Centre model RCA4 were provided 

by the EURO-CORDEX framework. First, the thesis analysed the simulated temperature 

for the period 1981–2005 both when forced by “perfect boundary conditions” and when 

forced by boundary data from five different General Climate Models (GCM). Various 

evaluation metrics and maps were used to reveal geographical details in the bias pattern 

compared to different observational and reanalysis data. 

The GCM-driven RCA4 simulated the seasonal mean features of the temperature patterns 

over the IP reasonably close to the observations, however, a prevailing cold bias was found, 

similar to the performance of other RCMs over the IP in general. Given “perfect boundary 

conditions” from ERA-Interim, the RCA4 systematically underestimated the mean 
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temperature over most of the IP, except summer, when warm and cold biases were equally 

present. The seasonal absolute bias value was typically 1–2 °C, with larger bias values (up 

to 5–8 °C) over complex terrain, e.g., the Pyrenees. In general, the GCMs introduced 

additional cold bias to the RCA4 simulations, increasing the absolute bias values of RCM 

with about 0.5–1.0 °C, especially in the warm half of the year. The summer warm biases of 

RCM were additionally turned into cold biases over most of the domain. The ensemble of 

five GCM-driven RCA4 simulations had a well-pronounced cold bias over most of the IP 

throughout the year, compared to the observations (E-OBS). The seasonal overall absolute 

bias value was typically 1–3 °C. 

To fulfil the second part of the Objective 1, future change maps of seasonal mean 

temperature (using the so-called delta-approach) were produced. To address model and 

scenario uncertainty, an ensemble of RCA4 simulations driven by five GCMs were 

analysed under a stabilization (RCP4.5) and a high-end scenario (RCP8.5). As expected, 

each projection showed a gradual warming trend over the whole IP in every season 

throughout the 21st century. Under both scenarios, summer and autumn seasons were 

projected to experience the highest temperature rise (up to 3–6 °C by the end of century), 

but also the highest spread of simulations (0.5–0.9 °C) was projected in these seasons. This 

implies that summers are becoming longer and warmer while winters are becoming shorter 

and milder over the IP. The warming signal was strongest in the central and southeastern 

mountainous part of the peninsula and in the Pyrenees according to most of the simulations, 

but there were some differences in the amplitude and pattern across seasons, scenarios and 

time scales. 

The work demonstrated the capabilities of RCA4 to reproduce the mean temperature 

features over the IP as well as its systematic errors. The identification of the possible 

reasons for the model-specific bias characteristics would require a deeper and dedicated 

analysis that was not the aim of this thesis. Furthermore, to fully explore the uncertainty 

ranges a larger ensemble is needed containing more RCMs, forcing GCMs, emission 

scenarios and ensemble members initiated with slightly different conditions and/or 

modified physical parameters (to sample the internal climate variability).  

The user-focused development of climate change maps for the Iberian Peninsula has started 

only recently, in spite of the growing demand for future climate information from different 

sectors. The thesis presents the future temperature changes in the form of seasonal maps, 
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including the spread of projections, based on the good practices applied in Climate Services 

by SMHI. A strength of this study is that future projections are produced by the high-

resolution version of the RCA4, which can be regarded as an added value of regional 

climate simulations over the IP.  

7.2.2 Objective 2 

Evaluate the intensity and spatial pattern of the urban heat island and thermal 

comfort over the city of Valencia to create solid foundations for urban climate 

change adaptation planning. Analyse the locally observed temperature extremes. 

The urban heat island effect and human comfort in the city of Valencia was quantified in 

case of summer hot days, detailed in Chapter 4. To provide context to the case study, the 

mean temperature conditions of Valencia were analysed from a long-term climatological 

perspective using homogenised daily observations. Temperature extremes that might 

contribute to the heat risk in the city were also investigated. The work revealed a 

significantly positive trend in mean temperature (0.23 °C per decade) as well as a 

significant increase in warm extremes (warm nights, warm days, tropical nights) and 

decrease in cold extremes (cool nights, cool days, cold spells) over the period 1906–2014.  

The magnitude and spatial extents of the Valencia urban heat island is quantified during 

three consecutive summer hot days based on MODIS remotely sensed land surface 

temperature (LST) data and in-situ air temperature (AT) measurements at two 

meteorological stations. The UHI estimated from AT measured at the urban and rural 

stations was highest just before sunrise (2.3 °C). The sUHI calculated as the difference 

between the urban and rural region LST was the most intense after sunset on the record 

hot day (2.6 °C). 

A year-round calendar was produced to describe the thermal comfort in the city based on 

hourly values of the Discomfort Index (DI). The city had milder winter conditions than 

the rural areas, especially during nighttime. In the warm part of the year the DI is similar 

at both stations, however, the city was occasionally warmer in the early morning hours. 

Hot nighttime conditions are prevailing from June to September, which might impose 

higher heat risk on the urban population. The spatial analysis of DI in the nighttime 

MODIS and ASTER images revealed less comfortable areas in the densely built up city 

centre, main traffic arteries and industrial zones in contrary to the rural regions.  
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Compared to previous studies this work used satellite data measured with improved 

sensors, however a limitation of the study is that due to the moderated resolution of 

MODIS (approx. 1 km), the details inside the city were blurred. Thus the 1 km scale and 

the variety of groundcover in a heterogeneous urban area is a limitation of the current 

approach. However, in spite of the moderated resolution of the MODIS LST product, the 

high temporal resolution of MODIS made it reasonable for the present UHI study. This 

highlights the need for higher spatial resolution satellite images with more frequent data 

acquisition time, especially over cities. Due to the limited availability of higher spatial 

resolution satellite images (e.g., LANDSAT, ASTER) over the study region during 

nighttime, a more detailed study could not be pursued. 

Another limitation to the approach of this study is the non-ideal locations of 

meteorological stations that probably had an influence on the quantification of UHI and 

DI. As the airport station (used to represent rural conditions) is placed close to a medium 

built-up suburban region and the urban station is installed at the side of a large urban park, 

both sets of meteorological data are influenced by its surrounding for some degree. 

Probably, with more and better located stations (e.g., one in the surrounding agricultural 

fields and others in the densely built-up areas such as the old town) more accurate results 

could be achieved. Thanks to the spatial coverage of satellite images and the availability 

of NDVI data, regions with predominant urban and natural surfaces could be defined, that 

enabled an accurate calculation of surface UHI. 

This part of the thesis also provides novel information on the long-term changes in 

temperature extremes in the city of Valencia, partly thanks to the extended time series 

with over a decade since previous studies on the subject. The use of ETCCDI climate 

indices makes the results comparable with any other region around the globe. 

Furthermore, this section illustrates the importance of including the UHI in climate 

models as it can make a significant difference to urban temperatures, where the majority 

of people live. The work also extended our knowledge on the diurnal cycle of thermal 

comfort throughout the year that complements the results of other studies in the city 

limited in time (e.g., limited field works). The illustration of spatial variability of 

increased heat and discomfort via the UHI and DI maps can be useful to urban planners 

in the design and distribution of green areas in the city. 
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7.2.3 Objective 3 

Analyse the factors that influence and foster transdisciplinary collaborations in 

urban climate adaptation projects and map the voices of stakeholders in regard to 

their motivations, challenges, needs. 

In Chapter 5 the thesis explores the social dimension of transdisciplinary (TD) 

collaborations focusing on urban climate adaptation. The work presented the view 

differences and similarities of scientific researchers and practitioners working on the 

same climate-related issue and dealing with different types of knowledge explained in 

Chapter 2. The case study based on informant interviews with various stakeholders 

identified the key determinants that influenced the TD collaboration in the context of 

urban climate adaptation and planning. Furthermore, it revealed the different interests, 

motivations and needs of stakeholders to provide insights into the market of Climate 

Adaptation Services. Several lessons were learnt through the case study (detailed in 

section 5.5), here the novel contributions to CS research are summarised.  

In TD collaborations, academics took various researcher roles beyond the reflective 

scientist such as knowledge broker, process facilitator and change agent during the co-

development of urban climatic products. They were inspired and motivated by the real-

life impact of their research, driving them to engage in cross-sectoral projects aimed at 

problem-solving. They showed high interest in serving practitioners with useful and 

useable climatic information.  

Capacity building was essential among stakeholders. The practitioners needed updates of 

climate risks and opportunities, and the academics needed to learn about the legislative 

context of climatic planning. To incorporate scientific results in municipality strategies, 

public servants needed technical upskilling. Both practitioners and academics embraced 

the opportunity and challenge of mutual learning and developing a common language. As 

expected, open communication was one of the most powerful contextual factors that 

fostered efficient teamwork. Open-mindedness, availability, honesty and empathy were 

among the qualities that both academics and practitioners considered important. 

This study demonstrated that integrating climatic guidelines in the master plan of a city 

or formulating a new policy concerning climate adaptation is as challenging as providing 

climate knowledge in a user-friendly form. Practitioners were constrained by others in 
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the decision-making web of climate adaptation planning. They must balance the needs 

and expectations of multiple constituencies, for instance, the elected board of 

municipalities, local businesses, citizens; and respond to their decisions and demands. 

Furthermore, they must act within national-local regulations and guidelines, and to build 

a new policy for climate adaptation the already existing sectoral regulations should be 

revised and mutually aligned with the new strategy.  

At the time of the study (spring 2017) the international and national political system was 

enabling for the development of the climate adaptation projects, providing professional 

and financial resources. I added the national political landscape to the contextual factors 

separately, as practitioners made important explicit comments on it. According to the 

academics, the university leadership supported cross-sectoral collaborations, however 

there were still some institutional barriers to overcome, for example, providing TD 

trainings for students/university staff. This is a common problem in other TD fields too, 

for example in health research. Nevertheless, recent years more and more TD initiatives 

and partnerships aim to fill this gap at both regional and global scale. 

The qualitative method applied in this chapter allowed space for some degree of 

subjectivity, however, to avoid researcher bias and to maintain as much objectivity as 

possible, all the interviews were conducted by the author following a semi-structured 

interview guide. In contrast to multiple choice survey questions the interview method 

with predominant open-ended questions enabled the interviewees to better explain their 

opinions and ideas relevant to their expertise as well as provided space for serendipity 

(accidental, non-expected findings). This was essential to explore such a barely touched 

research area that Objective 3 addressed. 

Through the real-life case of urban climate adaptation planning, important lessons are 

learnt on bridging science and practice, that can contribute to other arenas where scientists 

seek to connect scientific research and information to societal decision making and 

sustainability transformations. The thesis calls for more TD collaborations to support 

multi-stakeholder, climate-smart decision-making, incorporating both academic and 

practical knowledge.  
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7.2.4 Objective 4 

Provide practical insights to facilitate the development of actionable climate 

information based on user-focused Climate Services research and practical 

experience. 

The overall aim of thesis was to pave the way for the integration of regional and local 

scale climate information into Climate Services that provide easily understandable and 

useful climate products to the users. Thus, as well as the rigorous scientific studies the 

thesis formulated practical implications at the end of Chapter 3, 4 and 5. The 

recommendations were addressed to academics interested in Climate Services in general, 

and besides the academics, Chapter 3 provided additional insights concerning the sector 

of urban planning. Chapter 4 outlined some recommendations to practitioners too.  

Chapter 3 presented “traditional” climate change information in the form of maps that not 

only show the ensemble means, but the spread between the different simulations as well, 

for different time-scales and under different scenarios. The way of illustrating the 

seasonal changes in temperature and the uncertainty of future projections was inspired by 

the SMHI climate scenario web pages (SMHI website). As Kjellström et al. (2016) also 

recommended, the communication of uncertainty in future climatic changes is better 

through discussing “spread” and “robustness” of climate projections rather than referring 

only to “uncertainty”. One can get an indication of the robustness of the results by 

assessing the main direction and amplitude of climate change as well as the spread of 

projections around the mean value of change. Other ways of visualising robustness (e.g., 

integrating the information into the same climate change map) are available in the 

literature, however their appropriateness for CS purposes have not been tested and 

documented yet. 

As an answer to the increasing demand of city scale environmental data, Chapter 4 

provided essential information on the urban climate and thermal comfort in the city of 

Valencia to be considered in climate adaptation planning. To support the urban planning 

and decision-making processes, user-friendly metrics and maps need to be produced on 

sufficiently high resolution (e.g., LANDSAT and ASTER images), as exemplified in the 

thesis. In designing measures to reduce the thermal discomfort (e.g., greening the city, 

using high albedo building materials) a wide range of relevant stakeholders (e.g., 
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urbanists, architects, the municipality, citizens, local businesses, etc.) need to be involved 

to ensure the integration of scientific and local practical knowledge as well as the 

alignment of interests.  

Pursuing the CS research agenda, to explore science-society interfaces and users’ needs, 

Chapter 5 mapped the voices of different stakeholders, and their attitudes towards 

transdisciplinary collaboration in climate adaptation planning. The formulated practical 

implications in section 5.6 aim to help stakeholders to build and manage efficient cross-

sectoral collaborations in the field, and encourages both academics and practitioners to 

engage in co-development of climatic products. This requires more intense 

communication across sectors and embracing alternative researcher roles and tasks. 

I participated in practical projects that additionally helped to better understand the tasks 

of Climate Services. The Knowledge & Innovation Lab project highlighted the 

importance of thorough market research to find and engage relevant stakeholders. The 

project on sustainable urban mobility and green design demonstrated that multi-expert 

collaborations are essential to create innovative climate solutions that address various co-

benefits (social-economic-environmental) at the same time (e.g., reducing air pollution 

and urban heat, improving citizens’ lives, vitalising neighbourhood businesses). The 

project on linking intelligent cities and climate adaptation showed how the asset 

management of the city can actually facilitate and deliver adaptation strategies. 

7.3 Future work 

Following the results presented in this thesis, there is considerable scope for further work 

in the growing research area of Climate Services.  

Regarding regional climate projections, further work can consider sector-specific variables 

and indicators (e.g., indices of vegetation period or heat waves) on different time-scales, in 

order to tailor the climatic products to the exact needs of users. The chosen variables and 

indices should represent features for which the RCM performance has been evaluated. To 

ensure that the climate products are customized, frequent interaction between service 

providers and users as well as opportunities for co-development of products need to be 

facilitated. 

Considering urban climate products, besides high-resolution satellite images with more 
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frequent time resolution, other indices that take into account more variables (such as wind, 

sunshine hours, precipitation, human activities, etc.) could provide further, sector-specific 

information on the thermal comfort in the city. For example, the Tourism Climatic Index 

or Holiday Climate Index are widely used for the tourism sector as well as the 

physiologically equivalent temperature (PET) for more specific human thermal comfort. 

Climate model projections integrating an urban climate module could further enhance our 

knowledge on what we can expect locally due to global climatic changes. 

As adaptation is increasingly conceived as the management of climate risk, the potential 

threats, vulnerabilities and impacts need to be assessed hand-in-hand with practitioners. 

For instance, by identifying the residential areas of vulnerable groups within the urban 

population, and combining this information with the spatial urban climate knowledge, 

detailed heat risk maps can be produced. This could provide useful information for 

example to the health and insurance sector. 

To develop more efficient Climate Services there is an increasing need to explore the 

market and its actors, as well as cultivate cross-sectoral partnerships. Both academics and 

practitioners need to be prepared for such TD activities that requires skills different than 

the reflective researcher role or the one-direction provider-customer interaction. 

7.4 Final remarks 

In an increasingly urbanised world, the urban influence on temperatures and its associated 

effect on health are significant issues, especially in light of the general warming trend. 

Cities are strongly threatened by the harmful impacts of climate change, nevertheless, 

they have high potential to turn these risks into opportunities for development and 

innovation. Offering reliable and useful climate information is an important first step 

towards climate-resilient urban planning. This thesis demonstrates that integrating 

different disciplines and perspectives is vital to efficient Climate Services. 
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APPENDIX 
 

 

 

 

Appendix A: Interview Guide for the academics 

 
Brief introduction and signing the letter of consent. 
 
General Data  
Name: 
Contact Information: (e-mail)  
Age: 
Background (profession): 
Position (and years in this position): 
Nationality (and ethnic group): 
 
1. What is your current position? 
2. Since when do you hold that position? 
3. What are your recent research interests?  
4. Do you have non-academic work experience?  
5. (If yes) where and when? 
6. You are involved in various urban climate projects with your [research group]. I’m 

especially interested in those that you worked together with stakeholders outside of 
the academy. Could you please describe these projects briefly? 

7. What is your contribution to the project? 
8. With which different institutions/companies have you been in contact during the 

project? 
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9. How did you find the collaboration with different professionals? 
10. Did you face any difficulties during the collaboration? If yes, how did you deal with 

it? 
11. What is the most challenging for you in this project? 
12. What do you like the most in it? 
13. Do you feel supported by your research unit/institute?  
14. Do you think that TD collaborations are good for your career? Could you please 

explain your answer? 
15. Have you ever participated in any workshop/training involving different 

professionals? If yes, could you please share your experience? 
16. Do you think you have enough training/workshop/networking events in this field? 

Do you need more or different ones? 
17. How do you communicate with each other (e-mail, personal contact, phone call, 

messaging app, etc.)? 
18. How frequently do you have meetings with the team? 
19. Are you satisfied with your working environment? (Facilities of the office, common 

areas, cafeteria, building services, technological)? 
20. Do you spend leisure time (lunch, coffee break, weekend activity, etc.) with team 

members? 
21. What qualities do you consider important in your colleagues?  
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Appendix B: Interview Guide for the practitioners 
 
Brief introduction and signing the letter of consent. 
 
General Data 
Name: 
Contact Information: (e-mail)  
Age: 
Background (profession): 
Position (and years in this position): 
Nationality (and ethnic group): 
 
1. What is your current position? 
2. Since when do you hold that position? 
3. What is your academic background?  
4. Have you ever done academic research?  
5. (If yes) where and when? 
6. You are involved in various urban climate projects collaborating with the 

[research group]. Could you please describe these projects briefly? 
7. Could you please tell me about your contribution to these projects? 
8. How did you find the collaboration with different professionals? academic 

researchers)? 
9. Did you face any difficulties during the collaboration? If yes, how did you deal 

with it? 
10. What is the most challenging for you in this project? 
11. What do you like the most in this project? 
12. Do you feel supported by your institute/company?  
13. Have you ever participated in any transdisciplinary workshop/training that 

involved different professionals? If yes, could you please share your experience? 
14. Do you think you have enough training/workshop/networking events in this field? 

Do you need more or different ones? 
15. How frequently do you have meetings with the project members? 
16. What qualities do you consider important in your colleagues?  

 








