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Abstract

The application of the sliding mode control in power converters has a well-known incon-
venient from the practical point of view, which is to obtain fixed switching frequency
implementations. This thesis deals with the development of a hysteresis band controller
in charge of fixing the switching frequency of the sliding motions in power electronics ap-
plications. The proposed control measures the switching period of the control signal and
modifies the hysteresis band of the comparator in order to regulate the switching frequency
of the sliding motion. The proposed structure becomes in an additional control loop aside
from the main control loop implementing the sliding mode controller. In the first part
of the thesis, the switching frequency control system is modelled and a design criteria for
the control parameters are derived for guaranteeing closed-loop stability, under different
approaches and taking into account the most expectable working scenarios. In the second
part of the thesis, the proposed strategies are validated in several power converters. Spe-
cifically, DC-to-DC and DC-to-AC power converters are assembled and the experimental
results are shown. In this part, the procedures used for implementing the controllers are
also deeply discussed.
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Chapter 1

Introduction

1.1 The switched power converters

The energy conversion systems have played a key role in the technological development in
the recent years. All the energy sources that currently exist such as oil, gas, nuclear or
renewable (solar, hydropower, wind power, etc.) require some level of transformation in
order to generate and distribute the electrical energy through the alternate current (AC)
grid. The energy distribution system is based on AC since it allows the employment of
electrical transformers for voltage conversions, being simple to adequate the voltage levels
with a very good efficiency. The aforementioned energy sources can generate electricity
by different ways. Mostly, the power plants are based on turbines connected to an AC
generator which directly injects the energy to the AC grid (this is the case for power plants
of fossil fuels, nuclear energy, hydropower or wind power). Alternatively, the photovoltaic
power plants generate direct current (DC), that requires to be converted to AC for being
injected to the grid through a DC/AC converter. Besides, some energy systems as wind
turbines generate AC that cannot be directly injected to the grid due to the different
frequency they produce, requiring an AC/AC conversion.

The necessity of power conversion is not only present in the generation and distribution
stage, but also in the final consumption stage. Both for industrial or domestic use, a lot
of equipment work with DC and require an AC/DC conversion when consume energy
from the grid. In all households can be found a lot of systems like TV, PC or different
appliances that include AC/DC converters. Even such systems include more than one
converter, using a main AC/DC converter firstly, and several DC/DC converters to supply
different subsystems. Generally speaking, the power conversion is required in everywhere:
transport, industrial, communication, residential, etc.

A power conversion process scheme is depicted in Figure 1.1. The desirable scenario
would be a conversion with no losses, in the sense that all the input power of the conversion
process is successfully delivered at the output. Unfortunately, this is not physically realiz-
able. Indeed, one of the most important characteristic of the power converters is its energy
efficiency. The energy costs money and if the power conversion wastes energy, then wastes

Fixed-Switching Frequency Sliding Mode Control Applied To Power Converters 3



CHAPTER 1. INTRODUCTION

money as well. Not only the cost is the inconvenient, the lost energy produces heat, and if
this heat is not properly dissipated, it can incur in a reduction of the system reliability and
life time. Initially, the first developed power supplies were based on linear structures [1],
but the excessive power losses limited their use. Those linear structures use transistors
working in the active zone, being the voltage-current product different from zero in all the
cases, leading to the aforementioned low efficiency.

The switched power converters [2-4] have the capability to transform the energy with
a good efficiency. Their operation is based on to control, at high frequency, transistors
acting as switches (with only two possible states, open or closed), where ideally the voltage-
current product always remains null. Together with the transistors, the switched power
converters include reactive elements as inductors and capacitors. These elements do not
dissipate active power (from an ideal point of view) providing the possibility to perform
the power conversion with low power losses (ideally speaking, without losses). Although
neither the transistors can operate as ideal switches nor the reactive components do not
dissipate power, the achievable efficiencies are really high. Nowadays, the good efficiency
of the switched power converters have become predominant their utilization in the energy
conversion field.

PLosses

Pin Pout |

Converter

Control Input

Figure 1.1: Power conversion scheme.

A design key point of the switched power converters is their operation switching fre-
quency. As it was introduced previously, the transistors work as switches, commutating
between two states at high frequency. In general, to increase the switching frequency leads
to a smaller reactive components, which, in turn, reduces the size, weight and cost of the
converter. As a consequence, the switching frequency has to be fixed as high as possible. In
fact, the switching frequency of a power converter is usually limited by the switching tran-
sistors. These devices are selected according to the converter voltage and current levels,
their maximum switching frequency and their conduction and switching losses. Once the
switching elements have been selected, the converter switching frequency is accordingly
defined.

With a given switching frequency, the rest of the converter elements can be optimized.
Mainly the design of the capacitors and the inductors can be optimized in order to pro-
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CHAPTER 1. INTRODUCTION

duce low losses at the working switching frequency, since the current and voltage ripples
are totally determined. Even the copper wires, circuit board, power connections and used
transistors drivers have implications with respect to the working switching frequency. Be-
sides, the converters sometimes include line filters, which are also designed for a known
switching frequency. Therefore, for operating a power converter with a different switching
frequency than the one it was designed for can incur in a loss of efficiency, a noise incre-
ment and even a converter malfunctioning. Therefore, it is clear the relevance of keep the
switching frequency fixed.

1.2 Control techniques in Switched Power Converters

As systems exposed to disturbances, the switched power converters require controllers in
order to suitably perform their tasks. For instance, an AC/DC power converter connected
to the grid have to regulate a DC output voltage in order to supply a specific load. Such
regulation has to be robust with respect to variations in the grid voltage and also to the
supplied load in the DC side, which could suffer variations in the power consumption.
Another example where the inclusion of a control system is required could be a DC/AC
converter injecting energy from a photovoltaic installation to the AC grid, where the power
generation is variant, and the synchronization with the grid frequency is essential.

The most common control technique used in the switched power converters is the linear
control theory [5,6]. This control can be applied to power converters through a pulse width
modulation (PWM), which in turn imposes a fixed switching frequency. The Figure 1.2
shows the PWM modulation idea. The power transistors have to be driven by a digital
waveform, u, with two possible discrete states, which will be the control signal, in order
to act them as switches. The PWM modulation will generate this control input using
a sawtooth signal, f., known as carrier signal, that fixes the switching frequency, and a
modulation signal, which corresponds to the average values of the control input, d, known
as duty cycle. The duty cycle can be considered a continuous-time signal, since it does not
have discontinuities as the real control signal has. Such consideration is the basis for the
application of linear control theory to the power converters.

In general, the converters can be described in the state space as bilinear systems, with
discontinuities in the right-hand side. The discontinuities are produced by the transistors
control inputs, u. In order to remove the discontinuity from the equations, an averaged state
space modelling is performed, substituting such discontinuous signal by the corresponding
duty cycles, d. As a consequence, the resulting state space vector of the averaged models
does not include high frequency ripples. Moreover, very often, an additional small signal
analysis is required in order to get linear models, which restricts the expected dynamics
to specific working conditions. This strategy is the most popular technique for controlling
power converters, where the desired performance is in general achieved using a linearized
model, and the duty cycle is generated by a linear controller. In [2] can be found such
procedures, together with the resulting transfer functions for the most popular DC/DC
converters.

Fixed-Switching Frequency Sliding Mode Control Applied To Power Converters 5
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Switched
Power Converter
Pin _| I_ _fW\_ Pout
PWM L
fe u
1 i Control Input
d —

Figure 1.2: Switched power converter scheme, where the real control input, u, and the
averaged control input, d, are depicted.

For most of the applications, the PWM-based linear control theory is enough to provide
a desirable performance in the systems, but, for specific applications, a different control
technique could be necessary. Mainly, the drawbacks of the PWM-based linear control
techniques come from the used linearized model. Since the considered models for the
controllers design are local, when the power converter moves away from the nominal con-
ditions the performance can be compromised. Additionally, the averaged models assume
known the elements affecting the systems dynamics as inductors and capacitors. Whatever
drift in these values from the nominal ones can also negatively affect the control perform-
ance. The Sliding Mode Control (SMC) [7] constitutes an alternative to the classical
PWDM-based linear controllers. This methodology, which can be classified as a nonlinear
control technique [8,9], provides benefits to the power converters control. Besides the well-
known robustness, the order reduction and a fast transient response, the first order SMC
uses as control outputs non-continuous signals with two allowable states, which perfectly
matches with the physical structure of the power converters, transistors acting as switches.
Moreover, the methodology works with the system state space equations without linear-
ization process, and as a consequence, the provided stability conditions are, in general,
more global. Of course, it exists an important inconvenient that historically has limited
its practical application: how to achieve a bounded switching frequency of operation.

This chapter briefly introduces the main idea of the sliding mode control theory. This
analysis not only help us to demonstrate that in a real application the switching frequency
under sliding motion becomes variable but also to justify the basis of the new proposal in
order to get a fixed switching frequency. Finally, a short list of the proposed approaches
for solving this inconvenient found in the literature until now is reviewed.
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1.3 Ideal Sliding Motion

First of all, an affine nonlinear system is considered

i = f(x) + g(a)u (L1)

where the control signal u takes values from a discrete set with two values {u~,u™}. The
state space equation matches with whatever switched power converter with a single control
input. Indeed, such equation could represent arbitrary systems, not only power converters.

The basis of the SMC is to design a switching function, o(x), which depends on the
state vector, and enforces this function to be in a state space region where the desired
system dynamics is achieved, in general o(z) = 0. The most simple switching function
definition is o(z) = e,, where e, = x* — x is the tracking error, being x* the desired value
of the state space vector. It is immediate to demonstrate that if the control guarantees
that o(z) = 0, the desired and real state space vector are equal. Therefore, the control
objective is to ensure that the function o(z) = x* — z always converges to the space region
defined by o(z) = 0. This condition is satisfied when

o(z)o(x) <0 (1.2)
is fulfilled.

The previous consideration can be proved just taking the Lyapunov function candidate
V(z) = 0.50(x)?, where the first time derivative yields V(z) = &(z)o(z). As the function
V(x) = 0.50(z)? fulfils all the conditions to be a Lyapunov function [8], the condition
defined in (1.2) is enough to ensure that o(z) = 0 is an attractive region for o(x). When
the switching function o(z) is on the desired switching surface o(z) = 0, it is called that
the system is under sliding motion.

Nevertheless, according to the system relative degree [7], the construction of the surface
may include higher orders elements of the tracking error. It is simple to figure out that
the way to impose the condition &(x)o(z) < 0 will be through &(x), since o(z) does not
depend on control. In other words, in order to enforce sliding motion on o(z) = 0, the
control action, u, has to appear in ¢(z). The equation (1.3) shows the case where the
switching function includes the tracking error and its first time derivative

0'(1’) - ¢1€m + ¢2ez (13)

where ¢1, ¢ are strictly positive constants. In the initial case, where o(z) = e,, when the
system is under sliding motion automatically implies that e, = 0 and x tracks x* without
dynamics. This fact does not happen for the switching function defined in (1.3), since,
when the switching function is on the surface o(x) = 0, the following first order linear
differential equation governs the error dynamics:

P1€y + P26y =0 (1.4)

Fixed-Switching Frequency Sliding Mode Control Applied To Power Converters 7
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which has e, = 0 as unique asymptotically stable equilibrium point. Therefore, it is clear
that the error dynamics under sliding motion will be determined by the selected switching
surface. Regardless of the switching function order, the control law of u has to ensure that
condition (1.2) always holds. The previous condition will be guaranteed by a discontinuous
control law, taking the available discrete values, previously defined (u™ and u™). It is very
common to use a sign function as the control, since this function generates the values 1 or
-1, which match with values for u* and u~ for several converters. In general, the control
law will be of the form

u = sign(o(z)) (1.5)

where the function sign() provides 1 when ¢ > 0 and -1 when o < 0. Nevertheless,
some converters have control input states that do not correspond to 1 or -1, being for
instance 1 or 0. In these cases, the control law will be modified accordingly. In any case,
since u is discontinuous, from a theoretical point of view, this signal will switch at infinite
switching frequency when o(z) is zero. This assumption allows to analyse the ideal sliding
dynamics, since at infinite switching frequency the switching function will be placed exactly
on o(z) = 0. Studying the ideal sliding dynamics is the process to derive the dynamics
of the system defined in (1.1) with the dynamics imposed by o(z) = 0. This task can be
carried out using the equivalent control method proposed by Professor Vadim Utkin [7].
The equivalent control, .4, is defined as the solution of the equations

o=0, &(x,uy) =0. (1.6)

ES

Taking as switching function an expression depending on the error, e, = v — z*, as:

o(x) = les), (1.7)
the switching function first time derivative is found as:
., Oo(x) Oo(x)

o(r) = 70 () + 27 gy (1.9

According to (1.6), the equivalent control can be obtained solving the equation

_ Oo(z) o (x)
0= pe flz)+ o () Ueg, (1.9)
which yields »
wa=— |2 g0)| 2 1), (1.10)

Notice that (1.10) implies a continuous-time solution, which u cannot attain. Finally, u
is replaced by ., in (1.1) in order to find the ideal sliding dynamics. Placing (1.10) into
(1.1), one gets:

i = f(2) + 9(x) . (1.11)

8 Fixed-Switching Frequency Sliding Mode Control Applied To Power Converters
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Furthermore, according to [7], the space region where the sliding motion occurs, which is
called sliding domain, is characterized by the inequality

U < Ugg(m,t) <u’. (1.12)

1.4 Real Sliding Motion

The real sliding motion can be understood as the system dynamics that arises when the
control action, wu, is forced to operate at finite switching frequency. The employment of
a sign function in real systems leads to a finite switching frequency, due to unmodelled
dynamics and delays. However, this switching frequency can be too high for some systems,
like power converters. Substitute the sign function on (1.5) by a comparator with hysteresis,
allows to bound the switching frequency. The control law, therefore, will be of the form:

+ s _
u:{u if o< —-A, (1.13)

u- if o> A,

being A the hysteresis width. This approach can be found in sliding mode control literature
in order to study the real sliding dynamics [10-12]. From a rigorous point of view, the
previous control law is not defined within the hysteresis bands, so an alternative expression
can be used instead:

u_{u+if og<—=A or (o] <A&sc>0)

u if o>A or (Jof<A&d<0). (1.14)

The different behaviour of the system trajectories on the phase plane can be observed in
Figure 1.3.

o(x)=0

A
Y

¢
+
!

(a) (b)

Figure 1.3: Phase plane system trajectories. (a) Ideal sliding motion. (b) Real sliding
motion within a boundary layer A.

Fixed-Switching Frequency Sliding Mode Control Applied To Power Converters 9
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As Figure 1.3 shows in the right side, the real switching function, o(x), is not on the
sliding surface, ¢ = 0, but chatters in its vicinity. In this scenario, the condition |o(z)| < A
holds. It is a designer task to keep the hysteresis band value small enough, in the way that
this dynamics can be neglected with respect to the low frequency dynamics, determined
by the equivalent control. Analysing the high frequency dynamics of o(z) provides the
expression that allows to study and control the switching frequency of the control action.
A good approach consists in defining the control action as a continuous low frequency
component, which is w4, plus a high frequency component, u¢, which takes values in the
set {u™,u"}.

U = Ueq + Unf (1.15)

Let us just combine the expressions (1.15) and (1.8).

Jo do do
o(x) = 8icx) f(z)+ 82:33) 9(T)ueq + 851:3:) g(z)ups (1.16)
By definition, ¢(x,u.,) = 0, therefore
o(z) = 8((795:) g(x)upy (1.17)

The motion of o(x) in the vicinity of o(x) = 0 is governed by (1.17). From this expression
it is clear that this dynamics depends on the system. Of course, the dynamics of the state
space vector can be also stated as:

&= F(2) + g(&) g + 9(2) [8‘;;“ g(xﬁ_ 5(x). (1.18)

The switching function trajectories within the hysteresis band are governed by the last
term of the right hand side of equation (1.18). Figure 1.4 depicts the expected behaviour.

Figure 1.4: Switching function behaviour within the hysteresis band in the vicinity of
o(x)=0.

10 Fixed-Switching Frequency Sliding Mode Control Applied To Power Converters
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From Figure 1.4 the switching period of the control action is derived:

2A 2A
T =t +ty= - - (1.19)

Uu:u+ Uu:u*

Expression (1.19) can be written in different ways. One interesting approach is to formulate
it as a function of the equivalent control. Recalling (1.15) and (1.17), one gets:

, do(x)
() = 270 gy ) (1.20)
and, therefore, assuming that ™ =1 and v~ = —1, (1.19) boils down to
1 Jdo(x) -
T=4A . 1.21
) [ 2

Notice that from (1.21) the hysteresis band of the comparator can be calculated as a
function of the equivalent control and the desired switching period, T, as:
_ Oo(x) T*

A= o g(:c)z(l—ugq). (1.22)

However, this approach has an important limitation, which will be discussed later. Moreover,
expression (1.21) confirms the well-known problem of the SMC applied to switched power
converters, the switching frequency is variable and system dependent, as (1.21) states.

A very important aspect should be remarked at this point. In the previous method-
ology, it has been assumed that the slopes of o(z) remain constant along the switching
interval, that is &(x) = 0. This is a very reasonable assumption that is often taken in the
sliding mode control literature [11,13,14]. The basis of this hypothesis relies in consider the
switching period of the control action small enough with respect to the system time con-
stants. If this consideration holds, it is reasonable to assume that the switching function
slopes are locally constant during a switching interval. Indeed, the switching frequency
in the power converters are designed as high as possible, due to the reason introduced in
Section 1.1, which perfectly fits with this assumption.

1.5 Proposed Solutions to the Variable Switching Fre-
quency Problem

At this stage, some solutions proposed in the literature in order to set the switching fre-
quency in the power converters under SMC are reviewed.

Fixed-Switching Frequency Sliding Mode Control Applied To Power Converters 11
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1.5.1 Variable Hysteresis Band

An intuitive solution is to adjust the comparator hysteresis band using the expression
(1.22), modifying its level in accordance with the system state. Such approach has been
proposed by different authors [15-21]. An equivalent scheme is depicted in Figure 1.5.

= JANE )
() =~ .
r — > Y s |Equation (1.1) |-
 —— _A x
A

. e Ucq
Equation (1.22 T

Figure 1.5: System for operating at fixed switching period under sliding motion based on
a variable hysteresis band.

From Figure 1.5, and as equation (1.22) shows, the hysteresis computation requires a
high level of the plant knowledge since the term

agf) g(z)

should be known. Furthermore, the measurement of the equivalent control or, alternatively,
its estimation based on expression (1.10) should be also performed, which entails an evident
complexity.

The procedure provides good results in general, although it is difficult to achieve the
desired switching frequency accurately, due to the complexity for generating the hysteresis.
This complexity is, in fact, its main drawback. Additionally, it is evident that if in the
hysteresis calculation some system parameters are assumed known and constant, the system
will not be robust in the face of parametric variations. In order to improve the robustness,
additional sensors and/or observers have to be included to get a proper adaptation of the
hysteresis band amplitude, leading to a further system complexity, decreasing the reliability
and increasing the cost up to unmanageable levels.

1.5.2 External Synchronization Signal

Fixed switching frequency can also be achieved by using an external signal to force the
switching instants [22,23]. The idea is sketched at Figure 1.6, specifically in the left side.
The synchronization signal, D(t), is added to the switching function in the way that such
signal controls the switching events. As it is depicted in the Figure, the peak values
of signal D(t) should be higher than the hysteresis values, A, as D(t) can control the
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switching events. Through a complicated tuning process, it is possible to adjust the signal
D(t) fixing the switching frequency of the control action. However this process is extremely
sensitive, and it is usual that steady-state errors appear in the system when the working
conditions change. The right part of Figure 1.6 tries to show this phenomenon. Notice
how the switching function (grey lines) does not reach the upper bound of the hysteresis
band, entailing an average value different from zero of o(x), leading to the aforementioned
steady-state error.

. Tk . s Tk :
<—> i -
D(t) I A -H\ t
t \
7t Ji, CS Y |
\
. ° ~ D)

Figure 1.6: External Signal Synchronization scheme for a fixed frequency sliding mode
control.

Moreover, this approach needs some additional hardware on the controller in order to
generate the synchronization signal. As a consequence, the usage of this method is, in
general, not recommended.

1.5.3 Zero Average Dynamics

As it was introduced in the previous Section, and noted in different works available in the
literature, a switching function describing piecewise linear behaviour within a symmetric
hysteresis band comparator implies that its average value, along the switching interval,
is zero. This is the concept exploited by the Zero Average Dynamics (ZAD), which was
presented in [24]. The method computes a duty cycle that guarantees zero T-periodic
mean value of the switching function, with 7" denoting the switching period. The Figure
1.7 shows this idea.

From the Figure, it is possible to develop the formulation delivering the duty cycle to
be used in the next switching interval that leads to a zero averaged value of o(x). The
results are shown in Table 1.1.

Therefore, fixed switching frequency is reached in the steady-state, and the averaged
behaviour is close to the ideal sliding mode one. The ZAD strategy has been successfully
implemented in [25]. The results presented therein show a good performance of the ZAD,
but also point out the requirement of a fast digital processor to solve the complex calcu-
lations involved in the duty cycle computation, as expressions in Table 1.1 corroborate.
In fact, such computation complexity constitutes the main drawback of ZAD-based SMC
fixed switching frequency implementations.
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o(x,t)

d(x, t)u:u+

|
dgT |
|
T/2 J
Ti—1 T},

Figure 1.7: Zero Average Dynamics trajectories detail.

Table 1.1: Zero Average Dynamics control action formulas

T
o (z(Ty), Ty) and o (x(Ty), Tx) + Eé’|k’u+ >0 w(Ty) =ut; dpy =1

T
o ((Ty), Tty) and o (x(Ty), Tx) + §d|k7u+ <O | w(Th) =ut;dp,=1—

. o[z (T, Ty)]|
|0t | I —

|0ty + [ (acum) |

T
o (x(Ty), Ty) and o (z(Ty), Ty) + §d|k,u+ <0 w(Ty) =u";dp =1

T
o (x(Tk),Tk) and o (x(Tk),Tk) + §é—|k,u+ >0 ’U,(Tko) =u dk =1-

. o (T 7o)
|‘7|(K,u+)| - 2#

|0y | + [l |
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1.5.4 PWM-Based SMC

This proposal is based on the use of PWM at fixed switching frequency to implement the
so-called PWM-SMC. Initially proposed in [26,27], the method directly implements the
equivalent control and obtains the switching instants by comparing the equivalent control
with the fixed frequency sawtooth waveform at the PWM. The method is equivalent to
the traditional PWM implementation according to a linear controller design, but using
the equivalent control u., instead of the duty cycle provided by the linear controller. The
corresponding scheme is depicted in Figure 1.8.

T

Figure 1.8: PWM-based sliding mode controller.

It should be noted that the expression for the equivalent control depends on the system
state and on its parameters for a given working conditions, as (1.10) states. It is important
to notice that this equation holds from the ideal point of view.

The results presented in [28] show overall good performance, but it should be highlighted
that the same solution can also be derived by calculating the required duty cycle to obtain
the desired system dynamics. Indeed, from our point of view, the equivalent control is
more a theoretical concept than a practical method. From its definition, the equivalent
control is the continuous control action that places the system trajectories exactly on
the sliding surface. In a practical implementation, this includes whatever unmodelled
dynamics, delays and uncertainties in the power converter. Besides, power converters
commonly suffer external disturbances, which generally can only be bounded. In other
words, there is no way to determine the equivalent control a priori. The equivalent control
could be measured low pass filtering the hysteretic control action enforcing sliding motion
in a certain switching surface (|o(z)| < A), but not vice versa. Hence, equation (1.10)
should be used only for theoretical issues. Moreover, in this method, some sliding mode
properties, such as order reduction or robustness in the face of disturbances, could be lost.

1.5.5 Additional Control Loop

Hysteretic controllers are often applied to power converters without using SMC theory.
However, like occur in SMC approaches, the switching frequency becomes variable. Indeed,
in most of the hysteretic controllers, sliding motion naturally occurs. Under this research
field, some interesting solutions in order to fix the switching frequency were provided
[20-32]. These proposals are based on adding an additional loop in order to properly
adjust the hysteresis band, as Figure 1.9 shows. The system uses a period sensor or a
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switching frequency sensor, generating an outer loop in charge of adjusting the hysteresis
band of the comparator.

%

0%
}

utoT

% o |Equation (1.1)

v

Figure 1.9: Closed loop regulation of the hysteresis band.

However, in the works previously cited, the additional loop analysis was not deeply
treated, being the stability conditions only useful under strict conditions. Generally, the
loop is tuned with extremely slow dynamics, and such loop behaviour is not related with
the main system. Moreover, the problem has been addressed exclusively from a regulation
point of view, not dealing with the tracking problem scenario.

1.6 Thesis objectives

This thesis proposes a solution to solve the problem of the variable switching frequency in
SMC. The idea consists in using an additional loop capable of regulating such switching
frequency to the desired level. The complete control structure is shown in Figure 1.10. The
SMC will be designed and implemented as it was described in Sections 1.3, 1.4, adding
a second loop for the purpose of controlling the switching frequency. The main parts of
this second loop are, basically: a variable hysteresis band comparator, a switching period
sensor, and the controller, called SFC (Switching Frequency Controller). The control
structure responds to a classical feedback loop, measuring the signal to be controlled, T,
comparing it with the desired value, T*, and generating the hysteresis band value, A,
through a properly designed controller, SFC.

This solution is similar to be one proposed in the Subsection 1.5.5 but, in this case,
the sliding mode control theory will be applied, and the SFC stability conditions will be
found for regulation and tracking scenarios. Therefore, the objectives of the thesis can be
divided in two main subjects, namely, the theoretical developments and practical applica-
tions, which are detailed as follows:
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Figure 1.10: Overall controller architecture of the proposed solution for switching frequency
regulation.

1. Theoretical contributions

(a) Modelization of the proposed control loop for the switching frequency regulation.

(b) Study of different possibilities for the SFC, which contains a discrete-time ap-
proach and a continuous-time one.

(c¢) Analysis of the resulting SFC dynamics of the proposed approaches to the most
expectable SMC working scenarios, namely: regulation and tracking tasks.
These cases include some configurations of the power converters, specifically:
DC/DC and DC/AC.

(d) Derivation of the stability conditions of the SFC dynamics for the different
approaches and working scenarios.

(e) Establish design guidelines for the different SFC approaches.

(f) Validation of the aforementioned objectives through numerical simulations.

(g) Study of the real sliding dynamics when the SFC is included in the classical
implementation of a SMC.

2. Power electronics applications

(a) Implementation of the SFC by means of analog circuitry and by digital devices
as uC (micro-controller) or FPGA (Field Programmable Gate Array).

(b) Application of the SFC to a DC/DC Buck converter.

(c) Application of the SFC to a DC/DC multiphase converter.

(d) Application of the SFC to a DC/DC Boost converter.

(e) Application of the SFC to a DC/AC VSI (Voltage Source Inverter).
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1.7 Thesis structure

The thesis is organized in four parts, being the first one this introductory part. The second
part is dedicated to the theoretical developments and stability analysis, and the third one
is focused on the experimental evaluation of the SFC in power converters. Finally, the
fourth part contains the conclusions of the thesis and the future researches. Within the
parts, the thesis is structured in Chapters, where all the previous objectives defined in
Section 1.6 are addressed. Specifically, the thesis structure is:

e Part I. Introduction and Problem Statement. Containing the present Chapter, where
the SMC concepts and the open problem regarding the switching frequency has been
introduced.

e Part II. Theoretical Analysis of the Proposed Solution and Study of the resulting
Sliding Dynamics.

— Chapter 2. Modelling and stability analysis of the switching frequency control
loop. This Chapter deals with the objectives 1a, 1b, 1c and 1d. In the Chapter,
the theoretical tools needed to design the SFC that ensures the proper switching
frequency regulation are provided.

— Chapter 3. A case of study: SFC design and simulation results. In this Chapter
the objectives le and 1f are achieved. Apart from the simulation results cor-
roborating the proper operation of the SFC, this Chapter also includes design
guidelines for the SFC approaches contemplated in the thesis.

— Chapter 4 Real sliding dynamics in a switching frequency control loop. The
objective 1g is developed in this Chapter. Additionally, some interesting results
about the real sliding mode and the piecewise linear behaviour of the switching
function are also obtained.

o Part III. Application to power converters.

— Chapter 5 Voltage Regulation in a Buck Converter. This Chapter, as its name
indicates, essentially meets the objective 2b. The SFC in a regulation control
problem, employing the discrete-time approach, is validated through experi-
mental tests. In the same way, the objective 2a is partially contained in this
Chapter, since the practical implementation of the SFC is detailed. Indeed,
Objective 2a is distributed along Chapters 6, 7 and 8. With regard to the SMC,
its design and implementation are discussed as well.

— Chapter 6 Voltage Regulation in a Multiphase Buck Converter. Objective 2c
is addressed in this Chapter, where a 8 phases synchronous Buck converter
with interleaving operation is assembled in the laboratory. The SFC is designed
and implemented using the continuous-time approach, thus providing additional
results to the Objective 2a. With respect to the SMC, eight different switching
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functions are designed, one regulating the output voltage and the remaining
seven ensuring interleaving operation. The implementation of these switching
functions are also discussed in the Chapter.

Chapter 7 Voltage Regulation in a Boost Converter. The nonlinear structure of
a Boost converter is tested in the Chapter, covering the results stated in the
Objective 2d. In this case, the used structure for the SFC is the continuous-
time approach, as it was employed in Chapter 6. Again, the SMC design and
its implementation is duly justified.

Chapter 8 Voltage Tracking in a Voltage Source Inverter. The performance of
the SFC under a tracking control problem is confirmed in this Chapter, valid-
ating Objective 2e. Despite of the design of the SFC in the tracking case from
a theoretical point of view, the Chapter deals with the issues related to digital
implementation of the SFC. To do that, some approximations are required in
order to successfully implement the SFC, leading to additional results for the
Objective 2a. Moreover, in the Chapter, a switching function with a low out-
put impedance sensitivity is designed for the SMC, making possible to connect
different types of impedances at the inverter output with a good tracking per-
formance. Both controllers (SMC and SFC) are implemented using the same
pC (micro-controller), providing a compact solution for sliding mode controllers
operating at fixed switching period.

e Part IV. Conclusions and Future Research. In the Final part, the Conclusions of the

work and the generated research lines are commented.
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Part 11

Theoretical Analysis of the Proposed
Solution and Study of the resulting
Sliding Dynamics
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Chapter 2

Modelling and stability analysis of
the switching frequency control loop

This chapter deals with the modelling and the analysis of the structure for the SFC presen-
ted in the Chapter 1. As it was previously introduced, the control methodology is based
on the adjustment of the hysteresis band value of the comparator through an additional
control loop, as Figure 1.10 shows. Since the control loop will vary such hysteresis band,
the analysis of the switching period presented in Section 1.4 needs to be revisited. Fur-
thermore, this structure has an additional peculiarity: the SFC structure used to adjust
the hysteresis band value will affect the relation between the applied hysteresis and the
corresponding switching period. In this thesis two different approaches have been applied,
namely:

1. A discrete-time approach, where the hysteresis band can be updated just once per
switching cycle.

2. A continuous-time approach, assuming that the hysteresis band will be a time-varying
signal.

The chapter is structured as follows: In Section 2.1, the analysis of the time invariant hys-
teresis case done in Section 1.4 is revisited, being used to define some essential parameters
for the analysis performed hereafter of the SFC structure. In Section 2.2 the discrete-time
approach is presented and the two most expectable working scenarios in power convert-
ers, the regulation and the tracking case problems, are analysed. Finally, in Section 2.3
a continuous-time approach for the SFC, particularizing it only to the regulation control
problem, is presented.

2.1 Open loop case: The fixed hysteresis band com-
parator

The time invariant hysteresis band amplitude case was already analysed in the Section 1.4.
However, the resulting expression for the switching period (see equations (1.19), (1.21)) is
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redefined at this point, including some important definitions.

Assume that a switching function, o(x), has been defined in order to enforce sliding
motion in the subspace o(x) = 0, with the objective to control the dynamics of a power
converter (voltage, current,..). Suppose also that the control law provided by the SMC
theory, which guarantees convergence of o(x) to o(x) = 0, is implemented using a fixed
band hysteresis comparator, as (1.13) states. Once the sliding motion is reached, the
expected behaviour of o(x) within the hysteresis band is shown in Figure 2.1. Notice
that, as it was justified in Chapter 1, the switching function o(x) has been represented by
straight lines.

Under these conditions, the k-th switching period, T}, can be deduced from Figure 2.1.
The subindex k holds for any switching interval that will occur.

T =T + T, =2A(pf = p) s (2.1)

where p and p, are defined as the inverses of ¢(x) for each control input state:

P = Py = (2.2)

Figure 2.1: Switching function behaviour within a time invariant hysteresis band.

The time derivative of o(z) was already shown in the Chapter 1, specifically by equation
(1.20). From the definitions of pi, it is required to evaluate & (x)* at any switching interval
k for the two possible control input states, u™ and u~. Therefore the expressions for &(x)f

respond to
o)t = () olole (uf = wele)) 23)

o) = (P50 olole (o = vele)) 2.9

where the subindex k£ holds for the corresponding sampled counterparts of the original
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signals in the specific time instant. In Chapter 1, it was introduced that for the sliding
motion to exist, the equivalent control, w.,, has to be within v~ and u* (see inequality
(1.12)). As a consequence, the right hand sides of expressions (2.3) and (2.4) are always
different from zero. Furthermore, taking into account the fulfilment of the transversality
condition (see for details [33]), which defines

o (x)
Ox

g(x) #0, (2.5)

it is obvious that condition &(z);f # 0 V& holds under sliding motion.

Therefore, from (2.3), (2.4) and (2.5) it results that the values of p; and p; always
exist under sliding motion, according to their definitions in (2.2). Assuming that (2.5) is
not only non null but positive, and u™ > 0 and v~ < 0, it follows immediately that

pr >0, p. <0, Vk>0. (2.6)

The analyses developed in the next subsections assume that p; is always positive defin-
ite, meanwhile p, is negative definite, as the inequalities in (2.6) state. However, in some
applications the term

82553) g(z)

could result negative definite. In these cases, in order to keep the methodologies developed
in this work, a slightly different definition for &(z); must be used as:

o)t = (5) atah (0 = o)) 27)
o) = (52) atoh (" = wfe). (25)

Which such alternative definitions, the inequalities defined in (2.6) always hold.

2.2 Closed-loop case: A discrete-time modelling.

According to (2.1), the switching period becomes in a series of discrete-time measurements.
Thus, it is reasonable to modify the hysteresis band amplitude only at the beginning of
each switching period. Assuming that the hysteresis band amplitude is updated at the
beginning of each switching interval and remains constant up to the next switching event,
the expected switching function behaviour within the hysteresis band can be depicted as
the Figure 2.2 shows.

In order to stablish a standard methodology, the beginning of the switching interval
will be considered when the slope of o(z) changes from the negative value to the positive
one, as Figures 2.1, 2.2 display, regardless of the control action state. As it was commented
in the previous Section, the values of p; will be always strictly positive and p; strictly
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Figure 2.2: Switching function behaviour within a time-varying hysteresis band.

negative. Therefore the beginning of the switching interval is fully determined.

Since, in this approach, the hysteresis value will change between two consecutive switch-
ing intervals, the expression found in (2.1) should be revisited. From Figure 2.2 the new
relation between Ay and T} can be found

Ty =T + T = pf (Ak+ Dio1) = 205 A = preli + (P — pr) Dkt (2.9)
with

Pr =Py — 203,
pr =2 (pf — ) -

Expression (2.9) constitutes the discrete-time model for the switching frequency control
loop, and relates the k-th switching period and the hysteresis band value. Due to the used
methodology to update the hysteresis band, such relation includes the hysteresis band
values in the interval £ and k£ — 1. In Figure 2.3 the resulting model of the SFC, which
includes the model found in (2.9), is shown. From Figures 2.2, 2.1 an important aspect to
be taken into account can be deduced. It is easy to figure out that the measured value of T},
will not be available until the k-th switching interval ends. This phenomenon is included
to the system through an asynchronous discrete delay, z=* (see bottom part of Figure 2.3).

* A T,
—>©—> SFC —kb Equation (2.9) k >

Th

Figure 2.3: Detail of the switching frequency control loop. Discrete-time model.

At this point, using the loop shown in Figure 2.3, the closed-loop behaviour of the
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system can be studied. Let us define the switching period error as e := T* — T, where T™
is the reference switching period. From (2.9), the error equation of the SFC can be easily
found as

er — ep—1 = pr (Dp_1— Ap) + pi (Ako — Ap—1) + (Pr—1 — pr) Di—1. (2.10)

Once the discrete-time model is achieved, the control objective will be the proper design
of the SFC in such a way that e, converges to zero, thus implying 7} tends to 1. The
controller design procedure and the corresponding stability condition derivation will be
carried out in the next subsections particularizing expression (2.10) in two different working
conditions, namely: the regulation case and the tracking case. The analysis will be based
on to substitute the expression provided by the SFC, which will be of the form A, = f(ey),
in equation (2.10) and analyse the conditions for e, to converge to zero as k — oo. It is
clear that a specific controller expression, A, = f(ex), could deliver arbitrary values in
presence of power converter transients, compromising the SMC itself (A could become
too high or negative). Moreover, in Chapter 1 it was explained that in order to approximate
the real sliding motion to the ideal one, it is required that the A value should be small
enough (see Section 1.4). As a consequence, it is important to define an allowable range of
the hysteresis band values used by the SFC in order to preserve the good performance of
the SMC. This idea is expressed in the Remark 1.

Remark 1. Arbitrarily hysteresis band values may take the system far away from the real
sliding regime. Hence, a specific range Ta = [Apin, Amaz| such that Ay, € Ta, Vk > 0, has
to be defined for preserving the existence of the sliding motion. In order to establish the
suitable hysteresis range for a certain system, the following design criterion is proposed:
Ain may be obtained from the mazimum allowable switching frequency, while the mazx-
imum acceptable ripple for the state variables would be used to set A, and, consequently,
the minimum switching frequency. In turn, the switching frequency reference should be
accordingly selected within these limiting values.

2.2.1 The regulation case

In the power electronics field, it is very common to regulate the output voltage of a given
converter to a DC value. In some applications the output current of a converter is also
controlled to a fixed value, acting the converter as a constant current source. These two
cases correspond to a regulation case. In the regulation case the state vector reference, x*,
is constant. Assume that a SMC has been designed to regulate such voltage or current,
and that through a proper design of the Za (see Remark 1), the oscillations of o(x) in the
vicinity of o(x) = 0 are small, such that x ~ z* holds. Therefore, considering the state
vector x constant, the switching function derivatives and their inverses are also constant
under steady-state sliding motion. Hence, from a certain discrete-time instant ko the
following relations are fulfilled:

A~k

pr = p (a5, u") = pF, pri=p" pri=pt, Yk > ko, (2.11)
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for a given steady-state working point. With these definitions, (2.10) can be simplified up
to the following expression:

er —er1 = p (Ap_1 — Ag) + pf (Apa — Apy). (2.12)

Now the goal is to properly design the SFC generating the value for Ay as a function
of the measured switching period error, e, in order to get the convergence of the error to
zero. Let us try as SFC controller a pure discrete-time integrator, which corresponds to:

Ak = Ak—l + YEk—1, (213)

being v > 0 the integral constant. Replacing the control action, (2.13), in the closed-loop
error dynamics, (2.12), one gets

ex = (1= 7p") er—1 — Py ep— (2.14)

The arisen equation in (2.14) is an homogeneous linear difference equation, which implies
that the only solution of the equilibrium is e, = 0. The integral gain ~, is the design
parameter which should be selected to get the equilibrium point of (2.14) stable. In order
to rigorously define the conditions for v to achieve a stable behaviour of the equilibrium
point e = 0, the Assumption A is defined.

Assumption A. A real sliding motion has been enforced over a specific switching surface,
o(x) = 0, in such a way |o(x)] < A with a given control law defined as (1.5) depicts.
Moreover, after the sliding mode transient, the system reaches the steady-state where x ~
x*, and the relations shown in equations (2.11) are fulfilled.

Once the Assumption A is defined, the Theorem 1 states the condition for v to achieve
stability of the SFC.

Theorem 1. Let Assumption A be fulfilled, and let the hysteresis band amplitude, Ay, be
updated according to (2.13). If v fulfils that

-1 —
2 | P

O<'y<min{p*+

‘1} , (2.15)

with pE defined in (2.11), then the switching period, Ty, converges asymptotically to the
reference value, T, in the steady-state.

Proof. 1t follows applying Jury stability criterion [34] to the characteristic polynomial
associated to the difference equation (2.14), which results in

p(z) = 2%+ 2 (vp" = 1) +yp1. (2.16)
The conditions to be fulfilled, according to the criterion, are:

L.p(1)>0 — >0
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2. p(=1)>0 — y<|po|"

3. [vp* =1 <lyptl = v <lptl™
0

In this case, since the values of pF can be considered parameters, the z transform has
been used in order to find the stability conditions of (2.14). Finally, the equivalent model
in the z domain is shown in Figure 2.4. Notice how the inherent delay produced when the
switching period is measured has been considered for the proper implementation of (2.13).

1,
eq (2.9) " 5>

Equivalent to (2.13)

Figure 2.4: Equivalent model in the z domain of the control loop for the discrete-time
approach in the regulation case.

2.2.2 The tracking case

The power converters usually have to work connected to the AC grid, sometimes injecting
power from a renewable plant, sometimes consuming power from the grid. In these cases,
the power converters are working with references (of voltage or currents) that vary with
time. These applications are classified as tracking control problems. When the SMC is
tracking a time-varying reference, x* = f(t), it exists a variation of the switching function
time derivatives with k, i.e. pf # pi 1, pp # pr_,- As a consequence, the simplification
made in (2.11) does not apply.

Before progressing with the tracking case stability analysis, an important consideration
about the variations of p with k is discussed in Remark 2.

Remark 2. Although in the tracking case it is assumed that the values of plf vary with
k, such variations must be sufficiently slow so that these values can be considered locally
constant during a switching interval. This fact will be achieved when the effective switching
period of the control action s small enough with respect to the system time constants.
This hypotheses is equivalent to assume that the behaviour of o(x) in Figures 2.1, 2.2 can
be considered piecewise linear even when the system s tracking a time-varying reference
x* = f(t). Therefore, the switching period has to be small enough as the condition:

df(t) _ f(T) — f(Th1)
dt T, =0
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is met. Notice how in this case the last term on the right side in equation (2.10) does not
vanish.

The chosen SFC structure for the regulation case was a pure discrete-time integrator
(equation (2.13)), which was characterized by:

Ap = Ag_1 + vek-1.

Keeping such structure as SFC, and without the aforementioned simplifications for p,f,
the new expression for the error dynamics in the tracking case is found. The dynamics is
governed by (2.17):

er = (1 —=vpr) €1 — Vpp_1€h—2 + Di1 (Pr1 — i) - (2.17)

The difference between expression (2.12) and (2.17) is the last term on the right side
of expression (2.17). It should be highlighted that this term makes the expression (2.17)
non-homogeneous and, as a consequence, it losses e, = 0 as equilibrium solution. Thus, in
order to recover the homogeneous characteristic of expression (2.14), this work proposes
the design of a feedforward action in order to cancel this term in the closed-loop dynamics.
This idea is sketched in Figure 2.5.

T*
—O—{>
Th—
Equivalent to (2.19)
Iz‘l |<

Figure 2.5: Switching frequency regulation control loop with feedforward action. The

inherent time delay due to the switching period measurement is represented by 271

T,
eq (2.9) ; >

The analysis is simple, the new control action includes the feedforward term €2, as
Ap =V + Qp, (2.18)
where Uy keeps the structure of a discrete-time integrator
‘Ilk = \I/k,1 —+ YEk—1- (219)

The value for €, is derived placing (2.18) in (2.10) and equalling all the terms that do not
depend on e, to zero. The result of the proposed procedure is given by equation (2.20):

A~ 4 + ~ =
Q=21 "Peq 4 Pr—1 o PR B T (2.20)
Pk Pk Pk
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The proposed modified structure for the tracking control problem is depicted in Figure
2.6, according to (2.18), (2.19) and (2.20), where the detail of §2; computation has been
highlighted.

—>leq (2:20) [a

Q

T

Equivalent to (2.19)

2_1

Figure 2.6: Switching frequency regulation control loop with feedforward action. Detail of
new controller structure including the feedforward action.

From the obtained expression for {2, some considerations should be taken into account,
which are mainly noted in Remark 3.

Remark 3. An important remark should be made at this point with regards to the expres-
sion found for Q in (2.20). Looking carefully the expression, it is simple to note how the
k-th value for Q. depends on the k-th values of p, p and p*. Such result is not realiz-
able from a practical point of view since it depends on samples that are not available yet.
Besides, the values p, p and p™ should be properly estimated. As a consequence, some
approzimations will be required when the proposed controller is implemented, both in the
simulation and in the experimentation cases, which will be discussed later.

Assuming that the expression for 2, can be properly obtained, the final error dynamics
for the proposed controller with feedforward action can be evaluated. It follows replacing
(2.18), (2.19) and (2.20) in (2.10), which provides the resulting closed-loop error dynamics
in (2.21).

er = (1= yPr) ex-1 — VPi_1€n—2. (2:21)

Now the equation of the switching period error boils down to an homogeneous time-varying
discrete-time linear system, recovering e, = 0 as the equilibrium solution. It should be
noted that pr, p{_, cannot be treated as constant parameters in this case.

Although the pf are not constant with k, it can be defined an expectable range of values
related to a certain working conditions. Under steady-state sliding motion, the state vector
profile z* = f(t) will produce the following time-varying values:

(@ (1), ") =
(JZ (t)au ) - p*k7 (2_22)

*

X

(2"
w (2(

PE = pr
Pr = Pk
k= Pk
k
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Vk > ko, and the previous error definition is particularized to such specific steady-state
sliding motion as:

ex = (1= 7P}) ex1 — Yl exa- (2.23)

In this case, the error expression to be analysed, (2.23), is considerably different than
(2.14). In the previous analysis, the z transform was used in order to derive the stabil-
ity conditions for the regulation case, as Theorem 1 states. Since, in the tracking case,
the values of pfk vary with k, they cannot be treated as constant values in steady-state,
hindering the usage of the z transform. A different procedure is applied instead. The
stability conditions for the tracking control case are found by means of a Lyapunov-based
discrete-time approach [35]. The Theorem 2 enunciates the stability conditions according
to this Lyapunov-based criterion.

Theorem 2. Let Assumption A be fulfilled, with o* = f(t) being a time-varying reference
signal, and assume that the hysteresis band amplitude, A, is calculated according to (2.18),
(2.19) and (2.20). If the integral gain 7 is selected within the range values delimited by
Vm <Y < Y, with:

Ak Ak 2
Pr — % <Pk2 - ij>

Ym 1= mMax —~ 5 , Vk>0 5, (2.24)
i+
g3 (8 - o)
Y = min — , VE>0 3, (2.25)
i + P:l:

being defined py., p; and pfk according to (2.22), the switching period, Ty, converges asymp-
totically to the reference value, T*, in the steady-state.
Proof. 1t follows using a Lyapunov-based discrete-time criterion according to [35]. Using

the change of variables yi1, = ex_1, yor = €, and defining y = (yl,yg)T, the second-order
difference equation (2.23) can be equivalently written as the first order system

Ye+1 = Ay, (2.26)
with
0 1 0 1
Ap = . = ) 2.27
g ( —ypt =0 ) ( o Bt ) (2.27)
Hence, the problem boils down to the stability analysis of the trivial solution y = 0 of
(2.26).

Following [35], let us consider the Lyapunov function candidate

. 202+ 2 0
Vi = yl;eryk, with Qj = ( ko 2 1 ) ) (2.28)
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0 > 0 being a real constant.

On the one hand, as { pjk} belongs to a closed interval in R™ by hypothesis, for any
~v € R there exist n;, 7, € RT such that, Vk > 0,

mlly < Qp < ol (2.29)

with I, standing for the 2 x 2 identity matrix. On the other hand, the Lyapunov equation
Al Qri1 Ay — Qr < —nlly, with n >0, Vk >0,

becomes

(O‘%""%_n — Byt S ) >0
—apfr1 1— 2ai+1 - B£+1 —5—N)

A Schur complement-based sufficient condition for the preceding matrix to be positive
semidefinite is:

5
ap+35-n>0 (2.30)
2, 0 _ 1—2ai,, — B2 o > a2 2.31
Oék+2 n Q1 — Pt = 5 =1 ) Z Glicyr- (2.31)

Recalling again the hypothesis on the evolution of pf,, the fulfillment of (2.30) follows
selecting 0 > 2n. In turn, it is sufficient for (2.31) to be satisfied that

5
T (2.32)
5
L =205 = Bin — 5 =1 = B (2.33)

Notice that § > 2n also guarantees (2.32), while for small enough values of 8,7 inequality
(2.33) is guaranteed by the demand

1—2 (0} + Bep) >0

or, equivalently,

1 2 ~sk 2
3 > VP T (1= 700n)"

Therefore, v has to be selected within the interval with bounds given by the roots of
the corresponding second-order equation, namely

A% 1 [ ~x2 +2
Pr1 £ \/5 (Pk+1 - /O*k—H)
)

+2
Prt1 Tt Piks1

. VE > k. (2.34)

It is then immediate that the selection of v within (v,,,vyas) implies asymptotically conver-
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gence of T}, to the reference value 7™, Vk > k. ]

The result of Theorem 2 differs from the obtained in Theorem 1 for the regulation
case in the sense that, in this case, the values for v ensuring stability have a lower bound
besides an upper one. Moreover, the found condition is sufficient but not necessary, which
means that values outside this range could also produce stable behaviour of the SFC in
the proposed structure.

2.3 Closed-loop case: A continuous-time modelling.

The previous solutions perfectly fit with a controller implementation by means of discrete-
time devices, as FPGA (Field Programmable Gate Array), DSP (Digital Signal Processors)
or 1C (micro-controllers). An alternative approach would be to adjust the hysteresis band
value by means of a classical linear controller, as it could be the well-known PID (Pro-
portional Integral Derivative action), implemented by analogue circuitry. This approach
could be cheaper than the solution based in digital devices (FPGA, DSP) and it becomes
the optimum solution for low power converters.

Unlike the discrete-time approach, to use a P type, PI type or whatever combination
present in the continuous-time linear control theory, will demand a specific analysis, since
the dynamics of A will affect the switching period itself. In this thesis only the I-type based
controller has been analysed, under the regulation control case, but, of course, following an
equivalent procedure to the one developed hereafter, different models for different linear
control structures could be also derived.

As it was proposed in the previous Section, the first approximation for the SFC is an
integral type action. The expected behaviour of the switching function with a SFC based
on a continuous-time integrator generating the hysteresis band values is depicted in Figure
2.7.

AV A 7 AV — Ay,
t =t o (t) t=tr1 t =1,
Figure 2.7: Switching function behaviour within a continuous-time variant hysteresis band.

The expression which determines the value of A(t) is given by:

A() = / e(r)dr (2.35)
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where v, > 0 is the integral gain and e is the switching period error. It should be noted
that although the hysteresis band is a continuous-time function, both the switching periods
and the period errors result again in a set of discrete-time values. As a consequence, the
evolution of A(t) will be characterized by sections of constant slopes. For instance, in the
time interval [t;_1, ) one gets:

A(t) :Ak,1 -+ YLEEL—1 (t — tkfl) for tk,1 S t < tk (236)

where Ag_1, Ay are the values of A(t) at the corresponding time instants (see Figure
2.7). According to the Figure, and assuming that the switching function, o(x), keeps the
piecewise linear behaviour, the k-th switching period can be obtained as follows:

—2A 2Ak 4

T, = — = .
Yrer—1— (pr) ' 9 - VLEk-1

(2.37)

Equation (2.37) constitutes the model relating Ay and T}, in this approach. Using the
expressions (2.35) and (2.37) the resulting control loop for this SFC structure can be
obtained, which is shown in Figure 2.8.

T*_>©_. b A0 eq (2.37) Ty
Tr1

2 e

Figure 2.8: Switching frequency control loop model with a continuous-time integrator.

Expression (2.37) gives a nonlinear relation between Ay and T}, which entails a certain
level of complexity in the derivation of the stability conditions. In order to facilitate
such procedure, the non-linear response is approximated by a linear one by applying the
Assumption B.

Assumption B. Let Assumption A be fulfilled, also assume that under a regulation con-
trol problem the values of pf can be replaced by the corresponding steady-state values pr.
Assume also that the following inequality holds:

—1
)

Py o

i lew] << min{ ‘1} Y k> ko (2.38)

which entails that the rate of change of A is much slower than the o(x) one from a specific
time instant kg > 0.

Under Assumption B, the term 7, |ex| can be neglected and the expression (2.37) can
be simplified up to (2.39)
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T(t) = AA(t) (2.39)

where
A=2(pf—p.). (2.40)

The resulting linearised continuous-time model is shown in Figure 2.9. For the linearization,
the discrete delay has been modelled using the Padé approximation [36], assuming that the
real switching periods, T}, will be always close to the reference one, T*. Moreover, since
the switching period will be measured by analog electronics, a first order transfer function
has been considered in order to include the dynamics added by the sensor.

T A(s) T(s)
YL
—+C> > — > A
1 2—-T*s
<
14+7s 24+T*s

Figure 2.9: Switching frequency control loop linearized model with a continuous-time in-
tegrator in the s domain.

Taking into account the closed-loop system in the s domain (see Figure 2.9), the stability
conditions can be deduced, which are stated at Theorem 3.

Theorem 3. Let Assumption B be fulfilled. Let also the SFC be implemented as expression
(2.35) denotes and assume that the discrete delay and the dynamics of the switching period
sensor can be modelled as it is shown in Figure 2.9. Then, the switching period of the
sliding mode controller tends asymptotically to the reference value T when

2(T* + 27)
_— 2.41
LS NI + 4r) (241)
15 fulfilled.

Proof. Tt follows from the characteristic polynomial of the closed-loop system shown in
Figure 2.9, which is given by:

p(s) =7T*s® 4+ (T + 27) 8 + (2 —YAT*) s + 29\ (2.42)
and applying the Routh’s stability criterion, taking into account that 7™, 7 > 0. [

In the experimental results shown later in this thesis, the used sensor adds dynamics
to the system, being the reason why it is considered in the preceding stability analysis.
However, the stability condition found in (2.42) could be also particularized for the cases
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where the added dynamics related to the switching period sensor could be neglected, i. e.
7 = 0. This scenario would correspond for example to the simulation case shown in this
document, or if a resettable digital counter together with a digital to analog converter were
implemented instead of an analog sensor in an experimentation. In such cases, it results
evident that the stability condition is given by:

2
VA
It is important to note the implications of the linearised method shown above, since not
only the stability conditions in (2.42), (2.43) have to be evaluate but also the fulfilment
of Assumption B. The following Remark states the recommended design steps when this
approach is employed.

L < (2.43)

Remark 4. It has to be remarked that the aforementioned equivalent model can be used
only when Assumption B can be taken as a fact, specifically, the relation between the grade
of changes of A and o(x). The recommended design rule is to select a value of vy such
that (2.38) is ensured for the expected working point, where a range of A has been defined
according to Remark 1, leading to a bounded values for ey as |ex| < enVk, where ey is
the mazimum allowable period error. Once the Assumption (2.38) is ensured, the stability
condition given by the Theorem 3 has to be evaluated as well.
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Chapter 3

A case of study: SFC design and
simulation results

In this Section, a very simple system is introduced in order to show the complete process
for the SFC loop design, including the aforementioned practical approaches. The design
and simulation of the proposed strategies will be tested in a linear system. Firstly, an
sliding mode controller will be designed using the classical approach, through the equivalent
control method, as it was introduced in Sections 1.3 and 1.4. Such SMC controller will
be applied for both regulation and tracking tasks. The next step shows the derivation
of the expressions for the p*, allowing to properly design the SFC in the different cases,
namely: the discrete-time approach for regulation and tracking cases, and the continuous-
time approach in a regulation scenario. Finally, the simulations results of all the designed
approaches are presented.

3.1 Design of the sliding mode controller

Let us introduce the single-input single-output linear system

i?l = —T1 + T2, (31)
Ztg = - + Mu, (32)

where M is a system parameter, which could be interpreted as the system gain and v is
the discontinuous input, taking values in the discrete set {—1,1}. The control objective
is to control the dynamics of x5 to a desired behaviour, x3(¢). Taking into account the
relative degree of the system (3.1), (3.2) (see Section 1.3), a switching surface based on the
tracking error is enough. Therefore, the switching surface is chosen as (3.3) states.

o(x,t) :=xe — x3(t) = 0. (3.3)
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The desired dynamics for zs is
x5(t) == A+ Bsinwt, (3.4)

with A, B > 0. It should be noticed that the switching function can create a regulation
control case, (B = 0), or a tracking control case, (B # 0). The sliding motion will be
enforced in |o(z,t)] < A with a hysteretic control law of the type shown in equation
(1.13), being u™ =1 and v~ = —1.

As it was presented in Section 1.3, the sliding mode control design is based on the
first time derivative of the switching function. Once the first time derivative is found, the
equivalent control can also be derived (see expressions (1.9) and (1.10)). These operations
result in:

0=Mu— (x1+123), (3.5)
and, hence,
1 .
Ueg = 37 (x1 + &3) . (3.6)

From (3.5) the control law can be derived. The control law enforcing oo < 0 is:

+ _
_{u if o< —-A, (3.7)

) w if o> A,

Recalling the sliding mode domain condition defined in (1.12), the ideal sliding motion on
o = 0 (or the real sliding motion on |o(z,t)| < A) can be enforced if

1 .
-1< M(Il—i-xQ) <1
holds. The ideal sliding dynamics is determined placing the equivalent control in the state
space equations. Therefore using (3.6) in (3.1), (3.2) one gets

Ty = w5(t),

I"l = —x1 + .]Tg(t)

The dynamic of x5 is directly imposed by the sliding motion, which is equal to z3(t).
The remaining dynamics characterizing x; on sliding motion, x7, is asymptotically stable.
Hence, it is also possible to find the steady-state solution of the differential equation (3.9)
in the time domain, x7(¢), which is

xi(t)=A+ (sinwt — w coswt) . (3.10)

14 w?

Once the ideal steady-state sliding regime z* = (z7, xE)T has been reached, the switching
function time derivatives allow to find the values for p£, which can be derived using (3.4),
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(3.5) and (3.10), resulting in

)= (+M - A—

-1
(sinwt + w’ cos wt)) (3.11)

for the tracking case. The regulation case is determined by B = 0, and therefore

1

+ _
pi= T (3.12)

Notice that the previous values, pT, are the key for the SFC design, as it was presented in
Chapter 2.

Thereupon, the simulation results for the system defined in (3.1),(3.2) with the different
approaches presented in Chapter 2 for the SFC will be shown. Specifically, the regulation
control problem is simulated for the discrete-time approach (Section 2.2.1) and for the
continuous-time one (Section 2.3). Analogously, the tracking case is simulated for the
discrete-time approach using the feedforward action (Section 2.2.2). The simulations have
been performed with Matlab-Simulink using the following parameters: M =3, A =1, and
w = 27 - 0.02, while the desired switching period is T* = 0.1 s. The parameter B will be
selected depending on the used approach.

3.2 The regulation case in the discrete-time approach

First of all, the design of the SFC for the discrete-time regulation control case is performed.
In this case, the value of B is set to 0. For the design of the  value of the SFC, it is required
to use the values of p* at the corresponding steady-state sliding motion. As it was derived
in (3.12), the values of p* at the specific steady-state sliding motion, pZ, can be evaluated
with the given data for M and A. Therefore, it stems from (3.12) that pf = 0.5 and
p. = —0.25. Recalling Theorem 1, the characteristic polynomial detailed in (2.16), for the
case of study is found:

p(z) =22 +2z(y—1)+0.57. (3.13)

Hence, following Theorem 1 and equation (2.15), under the SFC with the structure given
by (2.13), the closed-loop system of the SFC is stable for values in the range 0 < v < 2.
Furthermore, using the equation (3.13), the root locus for different values of 4 can be
studied. Figure 3.1 depicts the poles placement in the complex plane for different v values,
together with the responses, in the time domain, of the system in front of a step reference
(from 7% = 0.05 s to T* = 0.1 s). From the Figure 3.1, it can be seen how values below
~v = 0.3 deliver responses with the poles in the real axis, being such responses underdamped
for values from 0.3 to 2. For v > 2 the SFC loop reaches the unstable region. Notice that
the response for v = 2 is omitted due to the oscillating behaviour, showing the one for
~v = 1.8 instead. It is obvious that, for this case, the system is close to the stability limit.

In Figure 3.2 it can be seen the response of the SFC and the SMC for two values of
~v and T*, specifically for v = 0.1 and v = 1 with a reference value that changes, again,
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Figure 3.1: Left Plot: Root locus of p(z) for the simulation case of study. Right Plot:
response in the time domain for different values of ~.

=
o 0.2k s s ............ o e s i
- ¢ | e

0 2 4 6 8§ 10 12 14 16
t(s)

Figure 3.2: Regulation: performance of the SFC, with the discrete-time approach, for
different values of v and T™.
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between 7™ = 0.1 s and 7™ = 0.05 s. The values that take 7™ and ~ during the simulation
are depicted in the top of Figure 3.2. The top plot of the Figure contains the switching
period of the simulated system (3.1),(3.2), i.e. T}, as well as the switching period arising
from the model developed in Section 2.2.1 and detailed in Figure 2.4, which is labelled as
T7". The mid plot shows the resulting dynamics of =1, while the x5 one is directly derived
from o (see equation (3.3)), which is plotted at the bottom plot of the Figure. Notice in
the zoomed view of this mid plot how the ripple of x; changes as the switching period
does. This ripple is the consequence of the different value of A generated by the SFC for
different desired switching periods. However, in all the cases such ripples are small with
respect to the DC value of x1, as expected.

The third plot illustrates how A, is updated until 7T}, attains the reference value T,
confirming that the desired switching period is achieved in steady-state. Moreover, the
model response, 1}, always fits with the real switching period, T}, except for the start-up,
where the steady-state sliding motion is still not reached and, as a consequence, p* # p=.
Once the system reaches the steady-state sliding motion, i.e. p* = pF, both responses
perfectly match, even under switching period reference variations occurring at ¢ = 8 s
and t = 12 s; thus validating the mathematical model of the switching period behaviour
presented in Section 2.2. Finally, it has to be noted that the hysteresis band amplitude
achieves a constant value in the steady-state, as it can be inferred from (2.13). The
asymptotic convergence of the state variable x; to the reference one 7 is illustrated in
the mid part of the Figure 3.2, thus corroborating an overall good performance of the full

system (SMC+SFC).

3.3 The regulation case in the continuous-time ap-
proach

In the continuous-time approach, the main difference with respect to the analysis performed
in the previous section are focused in the SFC implementation. The analysis of the SMC
is shared by the two approaches, since the control goal is the same for both, that is to
regulate x5 to 3. Even the evaluation of the parameters pf are exactly the same, because
such values are related to the same steady-state sliding motion. The analysis differences
rely on the SFC approach. In this case, the stability conditions and the design guideline of
the SFC were defined in Section 2.3. It should be remembered that in the continuous-time
approach, an important assumption was taken (Assumption B) in order to develop the
equivalent model of the SFC loop. Thus, the equivalent diagram in the s domain shown
in Figure 2.9 only can be used under certain conditions, when Assumption B is met. At
this stage, we assume that the error of the switching period in the simulation performed
hereunder, will be limited by a known value, being this bound |e;| < 0.05 s. Let us study
the grade of fulfilment of the Assumption B, which is:

-1
)

DA S A =Y

v ler] << min{
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In this case, a factor of 20 is proposed. This implies the following relation

o

According to Section 3.2, the values for pF are pJ = 0.5 and p; =-0.25, therefore:

-1
)

P px

20 - |ex| YLy = min{

20 - |ex| Y, = 2.

Hence,
2

T = 507005
Thus, ensuring that the designed value for ~;, is within the range 0 < v, < v1,,, the model
of Figure 2.9 holds. Additionally, Theorem 3 allows to check if the equivalent model is
stable. Since in the simulations presented hereafter the switching period sensor is ideal,
the stability conditions must be determined by (2.43). This stability condition is stated

as:
< 2
7 AT ’

being A = 2 (p} — p, ), yielding
2

< ~ 13.3,
TS 5(05+0.25) - 0.1

In the following simulation the switching period reference will be also varied to T*= 0.05
s, thus the corresponding stability condition is also checked

2
< — 26.667.
TS 505+ 0.25) - 0.05

From this result, the stability for values of 7, < 2 are guaranteed. Notice that in this case,
it does not make sense to show the resulting root locus for different values of v, since the
model not always applies.

The simulation shown in Figure 3.3 corresponds to the same simulation set-up of the
previous Section, but in this case, the SFC is implemented by means of a continuous-time
integrator, as it has already commented. In the test, two different values of ~; are used,
specifically v, = 1 and v, = 10, corresponding one to a value within the values where
Assumption B is fulfilled, and another outside this range. In the simulation, the ideal
response of the switching period according to Figure 2.9, labelled as T}, is shown. During
the simulations, two transients in the reference switching period are applied, specifically
from T* =0.1 s to T* = 0.05 s and vice versa. In fact, from these transients arise the bound
for the period error, previously used in the analysis performed over the v, values fulfilling
Assumption B.

During the start-up, the real period, T}, and the ideal one, T}", do not match since
the steady-state sliding motion has not been established, and p,f # pE. Once the system
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Figure 3.3: Regulation: performance of the SFC, with the continuous-time approach, for
different values of v and T™.

reaches the steady-state, the responses T}, T;" converge. Despite of the start-up, the
behaviour during the transients at time instant ¢ = 8 s and ¢ = 12 s deserve a special
attention. In the first transient (reference change at t = 8 s), the value for integral gain
is v, = 1. During this transient, it is evident that 7} and 7}" match, thus validating
the model and also confirming that, in this case, the Assumption B is met. It should
be noted that since the response is underdamped, the fulfilment of the hypothesis in the
initial condition (|eg| < 0.05 s) implies that the transients are exactly the same for T}, and
T7". However, this does not happen in the second transient (reference change at ¢t = 12s),
where a gain of v = 10 is used, and, as expected, the responses of T} and 7}" do not
overlap. Indeed, since the initial error does not meet the Assumption B, the responses T}
and T}" will not fit along the transient, as it could be observed from the zoomed view of
the top plot. As a conclusion, with a reasonable known bound for |eg|VEk, it is possible
to successfully design the SFC in the continuous-time approach, obtaining the expected
dynamics for 7). Notice that the no fulfilment of Assumption B does not imply an unstable
response, it just means that the developed model is not valid.

Despite of the range of application of the model developed in Section 2.3, the switching
period is properly regulated (even when «;, =10) in the entire test, being negligible the
impact over the SMC which regulates x5, and as a consequence, ;. In the zoomed area
of the mid plot, it can be appreciated the different ripple levels in x; according to the
variation in the switching period, being in both cases negligible when comparing with the
DC value.
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3.4 The tracking case

A tracking performance is obtained when B # 0. It should be noticed again that the SMC
design is the same as the one presented in Section 3.1 so, it is omitted here for the sake of
brevity. Since the reference for x5 is a time-varying signal, the values for p; will also have
dependency with k. It is simple to evaluate the expected values for pZ(t) just replacing the
given values of M, A, B and w in (3.11). The values for the p% will be the corresponding
ones of pE(t) at the specific time instant k. As a result, the functions j; and p}, can be
derived, following their definitions in Section 2.2 (equation (2.9)). The expression for pF(t)
are:

—1
(sin wt + w?> cos wt))

+ — J— —

The values for M, A and w were already defined, being the selected amplitude of the
reference signal B = 0.5. Therefore:

0.5
1+ (27 - 0.02)

pE(t) = (:t3 —-1- 5 (sin (27 - 0.02) ¢ + (27 - 0.02)" cos (2 - 0.02) t)) B :

The previous expressions are the tools required for the SFC design in the tracking case.
From these expressions p; and p; are computed, and the stable range for v according to
Theorem 2 is found. With the goal of clarifying the result provided by Theorem 2, and
how to apply it, a graphical approach is shown in Figure 3.4. In this plot can be seen,
from top to bottom, the reference signal, 3(t), the resulting signals p},, p,, and the set of
solutions obtained applying Theorem 2. The mid plot corroborates the expected variations
of p%, with k and also shows that the time evolution of such values are slow with respect
to the desired switching period. Once such signals are plotted, the solution according to
Theorem 2 can be graphically found, finding the minimum value and the maximum one of
the corresponding solutions (see bottom plot of Figure 3.4). Notice how in the bottom plot
the minimum value, 7,,, and the maximum one, 7,;, delimiting the stable range for v are
graphically determined. These values result in 0.314 < v < 1.0315. It is worth remarking
that numerical simulations show that stability is indeed guaranteed for 0 < v < 1.6. The
reader has to keep in mind that the stability condition provided by Theorem 2 is sufficient
but not necessary.

Once the stable range for v is found, the remaining task is to implement the feedforward
action. Recalling the Subsection 2.2.2, the SFC for tracking cases includes a feedforward
action € (see equation (2.18)). As it was commented in Remark 3, the implementation
of such function implies an important limitation, since due to the inherent delay of the
switching period measurement, it is not possible to exactly implement the theoretical
value found for €2;. Besides, the feedforward action needs to estimate the values of p2 (see
equation (2.20)) which also inherit the problem of the measuring delay of Ty. In order to
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overcome these problems the following approximation is used:
Qk ~ Qkfh (314)
where the corresponding values for pf_l are estimated using the expressions:

p+ _ Tl:r—l . p— _ le—l
LA A TR 2 Ay

The basis of this approximation is again the idea expressed in Remark 2, in the sense
that the system dynamics is slow enough with respect to the switching period, and, hence,
the variation between consecutive k£ samples is small. Such phenomena will be highlighted
lately in the simulation results.
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Figure 3.4: From top to bottom: Reference signal x3; temporal evolution of the signals
pi s pr , measured from the system; solutions according to Theorem 2.

For the evaluation of the performance of the designed SFC for the tracking case, differ-
ent tests are performed. The results are detailed in the simulations shown in Figures 3.5,
3.6 and 3.7. The selected value for the integral gain of the SFC is v = 0.4.

Figure 3.5 compares the performance of the system without and with SFC action, and
highlights the effect of the SFC. The SMC operates with fixed hysteresis band for the first
150 s. The SFC with v =0.4 is enabled at t =150 s. It should be noticed that it is not
until the activation of the SFC that T}, is able to attain the reference value 7% = 0.1 s.
Indeed, the switching period with a fixed band value is time-varying, as expected from
(1.19), taking into account that the values of dki vary with k. Notice how, in the same way,
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for the correct regulation of the switching period, a time variant hysteresis band value is
produced by the controller, as it can be extracted from the o envelope in the bottom plot
of Figure 3.5. Another drawn conclusion from the result is that the switching period model
response, which is obtained solving (2.18)-(2.23), and represented by T;" perfectly fits with
the real switching period, Ty. Similarly, the piecewise linear behaviour of the switching
function can also be appreciated in the zoomed area that plots the switching function.

SFC =0OFF i SFC =0OFF
<— A =0.0667 > Y =04 ——
. S
&~
0.05 Looeer i i AICEIIE RS N — T | i
!‘ L] i .......... T]:”
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0 : - A— : :
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Figure 3.5: Tracking: evolution of T} and o(x,t) with fixed hysteresis for ¢ < 150 s and
SFC for t > 150 s. Step change reference, v = 0.4.

The test shown in Figure 3.6 presents the transient response of the SFC. Specifically,
the Figure shows the behaviour when 7™ suddenly varies from 7% = 0.1 s to 7" = 0.05
s. The result illustrates the good performance of the SFC under transients, since the
switching period is regulated to the new value with a fast dynamics. Again the responses
T}, and 1} are essentially the same, even in the transient.

Figure 3.7 presents the dynamics of x5, T}, and o for changes in frequency and amplitude
of the reference signal x3(¢). From the Figure, a good behaviour of the state variables
and a proper regulation of the switching period are confirmed, validating the proposed
SFC structure for tracking cases. As it happened in the regulation case, small differences
between 77" and T}, only arise in sliding mode transients. Through the presented simulation
results, the SFC in tracking cases is successfully evaluated.

The final test is aimed to show the effects that can arise if the key condition assumed
along the work is not fulfilled, which is that the switching period is small enough with
respect to the system time constants. For such purpose, the desired switching period and
the fundamental frequency of the tracking signal are varied along the simulation shown in
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Figure 3.6: Tracking: evolution of T} and o(x,t) when 7™ is changed from 0.1 s to 0.05 s.
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Figure 3.7: Tracking: evolution of Ty, xo and o(z,t) when the frequency and amplitude of
x3(t) are changed from w = 0.02 to w = 0.08 and from B = 0.5 to B = 0.75, respectively.
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Figure 3.8. From the result, different effects can be identified according to the following
scenarios:

1. From ¢t =0 to t = 50 s.

At the beginning, from the initial time to ¢ = 50 s, the relationship between T
and the signal period is high enough as the aforementioned piecewise linear of the
switching function and the approximations made by (3.14) hold. As a result, the
proper regulation of T is achieved.

. Fromt=50stot=100s

At time instant ¢ = 50 s the frequency of the tracking signal is increased ten times.
Notice how in this part of the simulation an steady-state error appears in the switch-
ing period, which can be seen in the top plot and, specifically, in the zoomed view
in the left top side of Figure 3.8. In this case, according to the zoomed view of the
switching function in the bottom plot, the switching function keeps the piecewise be-
haviour and, therefore, the steady-state error is produced by the approximation given
by (3.14) when the feedforward action is implemented. We can conclude that the sig-
nal period is not low enough with respect to the value of T* and the approximations
is inaccurate.

. From ¢t =100s to ¢t =200 s

In this part, the desired switching period is reduced (from 7%= 0.1 s to 7" = 0.05
s), in order to do again useful the approximations of (3.14). The simulation result
confirms how the expected behaviour is recovered, since the steady-state error in the
switching period disappears.

. From ¢t =200s tot =300s

In the final part, the desired switching period is considerably increased (from 7%=
0.05 s to T* = 0.4 s). With this action, the piecewise linear behaviour of o(z) is
lost, as it can be inferred from the zoom view on the right bottom part of Figure
3.8. Additionally, it is evident that the approximation given by (3.14) is neither
fulfilled. The consequence of these effects in the switching period regulation are
clearly observed in the top plot and, in detail, in the top right zoomed view, where a
considerably steady-state error is produced in the switching period. It is clear from
these results that when the assumption stated along the thesis is not fulfilled, the
SFC fails in its objective. This confirms the importance of keep the relation between
the system time constant and the switching period always high enough, in order to
get a good switching frequency control.

90
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Figure 3.8: Performance of the SFC when the relation between the system time constant
and the switching period varies between values high enough and not high enough.
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Chapter 4

Real sliding dynamics in a switching
frequency control loop

In Chapter 2 a control architecture for regulating the switching frequency under sliding
mode has been proposed. The idea can be summarized as a variable hysteresis comparator
with an additional control loop. The structure has been particularized for two different
approaches, the discrete-time one and the continuous-time one. The stability conditions
for the new loops have been obtained taking into account the most expectable working
scenarios: regulation and tracking tasks. The question that this Chapter will answer
is: How does a variable hysteresis band comparator affect the real sliding dynamics? The
ideal sliding dynamics was studied by Professor V. Utkin in [7] by proposing the equivalent
control method, which takes advantage of that the switching function is perfectly confined
in the desired space region, o(z) = 0. This method assumes therein infinite switching
frequency, which is not realizable in real systems. In the implementations it is common to
add a hysteresis comparator instead of the sign function, and then the switching frequency
becomes bounded. This substitution leads to the so-called real sliding dynamics, where
lo(z)| < A holds, being A the width of the hysteresis used in the comparator (see Section
1.4 for details). According to this interpretation, in [37], it can be found the following
result:

In a system with a hysteretic implementation of the control law, for any solution de-
scribing a real motion within the boundary layer, |o(z)| < A, it exists a solution describing
the ideal motion on the switching surface which differs from the real one within the range
of A, and when A tends to zero, the difference between the real and the ideal solutions
converges to zero.

This procedure is so-called the classical approach for the analysis of the real sliding
motion. Therefore, if A — 0 cannot be realizable (in general, this is the case), it will exist
an error between the real and the ideal solutions, which depends on A. Moreover, since the
proposed SFC modifies the hysteresis band values, the final impact in the aforementioned
accuracy of the solutions must be studied. In [38], an alternative approach was presented
in order to study the real sliding dynamics, and in that case, o(z) becomes the ”virtual”
input to the real dynamics instead of &(x) (as it happens in the classical approach, Section
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1.4, equation (1.18)). Such description, based on the regular form, will be used in this
Chapter in order to analyse the impact of a hysteresis band on the real sliding dynamics.

The chapter is structured as follows. In Section 4.1, the approach based on the regular
form is briefly introduced. In Section 4.2, the case A /4 0 is considered, leading to an in-
teresting result regarding the mean value of the switching function and its piecewise linear
behaviour. Some simulation results are introduced in Section 4.3 with the aim to validate
the result provided in Section 4.2. Finally, in Section 4.4 the case for time-varying A is
considered, leading to some conclusions about the real sliding mode in systems using SFC,
which will be corroborated through numerical simulations as well.

4.1 The regular form approach

Consider the following linear system shown in (4.1).
&= Ax + Bu+g(t), (4.1)

where © € R*, A € M, (R), B € M,x: (R), g € R" is a vector function representing a
smooth external disturbances, and u € R is the control action. An associated switching
surface to this system would be:

o(x)=Cx =0, (4.2)
where C' € My, (R).

Let the state space equation of the system given by (4.1) be expressed as it is shown
in (4.3),(4.4) through a specific state transformation:

&1 = Anxy + Arpxs + g1 (1), (4.3)
To = Anx1 + Agxs + Biu + ¢o(t).

This description is call the regular form ( [37]). Taking into account the performed change
of variables, the switching function, o(z), can also be written in the transformed state

Space as
0'(33'1, 33'2) = Cll'l + CQ.I'Q, (45)

where z; € R"™™, 29 € R™, and matrices A;;, C;, By have appropriate dimensions. Then,
the computation of (1, x2) (from now on &) yields:

o :Cljfl + Cgi'g = Ol (Anl’l + A12ZE2 + gl(t)) +
+ Cy (Ag1xy + Agexs + Biu+ ¢2(t))
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which allows u to be expressed as follows:

u=— B'Cy'Cy (Anzy + Ay + g1(t)) +
— By (Agizy + Agoxs + go(t)) + ByPCy 6. (4.6)

Notice that the previous expression for the control law includes both the low frequency
component (related to the equivalent control) and the high frequency one (related to the
real sliding motion). The equivalent control is easily found assuming that & = 0, according
to its definition in Section 1.3, equation (1.6), as:

Ueqg = — Br'Cy'Cy (A + Avars + g1 (1)) +
— By (Agix1 + Agaxa + g2(1)) - (4.7)

Then, (4.6) can be updated up to:
U=+ By 'Cy o (4.8)
As a consequence, the real dynamics is governed by the reduced order system:

iy = Apxy + Appxs + g1 (1),
o = Cixy + Cozy,

It is obvious to see that if (4.6) is replaced in (4.3)-(4.4), the second state space equation
becomes the desired dynamics imposed by (4.5), since it consists of a linear combination
of x1 and z5. Hence, the previous system can also be expressed as:

T = (An - A1QC{101) T+ gl(t) + A12C;1 o, (4.9)
Ty = —Cy 01y + Cyt o (4.10)

The ideal dynamics can be obtained setting o = 0 in (4.9),(4.10), which results in the ideal
sliding dynamics for z;, x2, denoted as 7, z3:

71 = (An — 4Gy 'Cr) ot + o (1), (4.11)
vy = —Cy 'Oyt (4.12)

Notice that now the input signal in the real dynamics is ¢ = o(t), where o(¢) is the real
evolution of the switching function chattering in the vicinity of ¢ = 0. Meanwhile, in the
approach presented in Section 1.4 this role was played by & (see equation (1.18)).

Remark 5. Notice that initially, in Section 1./ a more general nonlinear system was
considered in equation (1.1). In this chapter a linear system has been considered in the
analysis. As a consequence, the results found hereafter only hold for linear systems.
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4.2 Fixed hysteresis band

Both on the regular approach and on the classical one, it has been proved that the real and
the ideal trajectories of the sliding mode are related in such a way that ||z(t) — 2*(¢)|] <
NA, being N a positive number (see [38], [37] for details). Moreover, as the switching
function is enforced to chatter around the desired space region o(x) = 0, it is reasonable
to think that x(¢) will chatter around the ideal response z*(t). Assuming that in the
real sliding dynamics x(t) = 2*(¢) cannot be attained, let us see if at least, under certain
conditions, the average values of both responses match. One could think that if the average
value of the switching function, o(z), is zero, the average value of x(t) — x*(¢) should
converge to zero as well. The analysis of such hypotheses is developed at this stage using
the regular form approach shown in the previous section.

First of all, the average value of the switching function in the case of a fixed hysteresis
band is analysed through the averaging operator defined in (4.13).

=7 0 a (113

Recalling Figure 2.1, and assuming a piecewise linear behaviour of o, its time evolution
can be modelled as:

o(t)=0c(0)+ca(x)ft for 0<t<T
o(t)=0c(T))+o(x), (t—=TF) for T},) <t <Tj (4.14)

Applying the averaging operator, the mean value of o(t) is found integrating for the two
time intervals: 0 < ¢t < T} and T} < t < T:

(/0 ' (o(0) + () t) dt) + (/ k (o(Ti) + o(=), (t—T,j))dt)] . (4.15)

+
Tk

@) =7

Solving the previous integrals one gets:

+

(o) = Tik ([U(O)t + @ﬁ} OTJ + [U(T,j)t + d(g)’; (t— T,j)ﬂ " ) : (4.16)

+
Tk

According to Figure 2.1 the following relations hold: o(0) = —A, o(T}") = A and o(T},) =
—A. Moreover, it is also obvious that T} = 2A/6(x){ , T, = —2A/6(x), and T} =
T,F + T, . Therefore, the resulting mean value is:

(o) (4.17)

1 ( 207 | 2N 2’ 2N O 2A2)_0
T\ o(2)y ooy ole)y  ox)y  o(z), o) |

Expression (4.17) confirms the suggested result with regard to the average value of o
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when it is confined within a fixed and symmetric hysteresis band. Notice that this result
holds assuming a piecewise linear behaviour of o.

Once the null average value of the switching function is confirmed, the next step is
to see if (o) = 0 entails that (z) = (z*) in steady-state. For such purpose, the following
assumption is made:

Assumption C. Once the sliding mode steady-state has been reached, the switching func-
tion, o, becomes T-periodic, with T € R, from a certain time instant.

Theorem 4. Assume that equations (4.9), (4.10) and (4.11), (4.12) characterize the real
sliding dynamics and the ideal sliding dynamics, respectively. Consider also that Assump-
tion C is fulfilled and that Matriz Ay, defined as Ay = (AH — AlgC;Cl) (see equations
(4.9), (4.11)), is a Hurwitz matriz. Then, both systems admit asymptotically stable, T'-
periodic solutions T, T*, respectively, such that

(@) =T"{0u(1)) (4.18)
(@) = (#*) + T (o(2)), (4.19)

where

e
[ = ( —lAl -1 ) )
Cy CiA]
r_ — AT ALCY!
T\ G (GiATT ARG +T) )
then, since (o) =0, (Z) = (T*) holds, with (T*) given by (4.18).
The proof of Theorem 4 is outlined hereunder [38].
Proof. As Ay is Hurwitz and Assumption C is fulfilled, the existence of T-periodic, asymp-
totically stable solutions " = (z],2;), &*7 = (z}7,#3") for (4.9), (4.10) and (4.11),

(4.12), respectively, is ensured by basic linear systems theory ( [39]). In turn, these solu-
tions satisfy:

1%1 = Ali‘l + a1 (t) + A1202_10', (420)
Ty = —Cy 1013 + Cyto, (4.21)
and
= A+ (), (4.22)
Ty = —Cy 'O, (4.23)

Applying the averaging operator (4.13) to (4.20), (4.22) while taking into account its
linearity and the fact that <i1> =0, <:i’f> = 0, because neither z; nor 7 have continuous
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component but just zero averaged terms, it results that

0= Ay (Z1) + (91(1)) + ACy " (o),

Then, it follows immediately from the Hurwitz character of A; that

(1) = —AT (g1 (1)),
(T1) = (T7) — AT ARCy ! (o)

and, subsequently from (4.21),(4.23),

(T5) = Cy ' CLAT (g (1))
<Zi’2> = <[i;> + 02_1 (C’lAl_lAuC';l —+ ]I) <0'> .

Now, gathering terms appropriately, (4.18), (4.19) follow immediately. ]

The previous result confirms that if (o) = 0, and o is T-periodic, for a linear system
the relation (x) = (2*) is fulfilled in steady-state. This result can be applied as long
as the average value of o becomes null in a T-periodic window. It is evident that for
regulation cases, i.e. * = ct, once the steady-state sliding motion has been achieved and
the switching period has been successfully regulated to the desired switching period T,
appears a T*-periodic behaviour of o(x). Since under these conditions A becomes constant,
the mean value of ¢ is null and the previous result applies. Equivalently, in the tracking
case scenario, this result could also be applied, even when the switching function does not
have a T*-periodic behaviour it exists a T-periodic behaviour of ¢ in a larger time window,
T,. In order to fit the conditions of Theorem 4, at steady-state sliding motion and with
the SFC properly regulating the switching period, T, must be a multiple of T and the
mean value of ¢ during T,, should be also zero.

However, notice that the previous result does not apply in transients, neither under
regulation task nor in the tracking case. Section 4.4 deals with this case, in order to see
its impact in the real sliding mode.

Remark 6. The null mean value of o obtained in (4.17) and used in Theorem 4 takes an
important relevance in this thesis, due to the fact that such null mean value was achieved
under the assumption of piecewise linear behaviour of the switching function within a fized
hysteresis band. In all the theoretical developments shown in Chapter 2, the piecewise
linear characteristic of o was the hypothesis supporting the validity of the developed models.
Hence, with the last result, a switching function with constant slopes in steady-state is not
only useful for the validity of the SFC developments but also to guarantee that x* — x, has
a null mean value under certain conditions.
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4.3 Case study: the Buck converter

In order to highlight the importance of the result provided by Theorem 4, some simulations
are included below using a similar system than the proposed in (3.1), (3.2).

4.3.1 Mathematical model
The proposed system is given by (4.24), (4.25), where the factor 5 has been included and

the control action, u, takes values in the se {0,1}, being u™ =1, u= = 0.
Ztl = _BZEI + T, (424)
j?g = - + MU, (425)

where M and [ are real positive system parameters. Unlike the simulation shown in
Chapter 3, in this case the regulated state variable is z; instead of xy. According to
the relative degree, the switching function includes the regulation error and its first time
derivative:

* d *
o=o0(x)=a(x] —x)+ pr (2] — x1), (4.26)

being o > 0 a surface parameter and x] the reference value. Assume at this point that,
following the procedure discussed in Section 3.1, the control law for u ensuring sliding
motion on |o| < A has been properly designed. Let us directly follow with the application
of the regular form method introduced in Section 4.1.

The new variables are based on the errors e = (eq, eg)T, defined as:

e =] —xy, eg=Px] — To. (4.27)

The selection of the new variables arise from x, x5 related to the steady-state equilibrium
point of (4.24), (4.25), which are x; = z} and zy = pa}. Therefore, the error dynamics
can be found as:

él = €2 — 561 (428)
ey = —e1 — Mu+ a7, (4.29)

and the switching function becomes:
o(er,e2) = (a— ) ey + ea. (4.30)

System (4.28), (4.29) is already in regular form and matches (4.3), (4.4), and so does
the switching function (4.30) with (4.5). Hence, following the procedure detailed in Section
4.1, the real dynamics (4.9), (4.10) reads in this case as:

é1 = —aey + o, (4.31)
ea=(f—a)e +o, (4.32)
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while the ideal dynamics (4.11), (4.12) boils down to

el = —aej, (4.33)

es = (6 —a)e. (4.34)

Notice that, in this case, g(t) = 0 and a > 0; consequently, when o = o(t) is T-
periodic within the hysteresis bandwidth (|o| < A), the hypotheses of Theorem 4, including
Assumption C, are fulfilled. Hence, the solutions of (4.31), (4.32) tend asymptotically to
the periodic solution € = (él,éZ)T, with é;, é; related by (4.32). As for é;, a T-periodic
solution for (4.31) is given by (see, for example, [40]):

e—at

é1(t) = /0 : e o (1)dr + e /0 t "o (1) dr. (4.35)

eeT — 1

In turn, the solutions of (4.33), (4.34) tend asymptotically to the equilibrium point é* = 0.
Then, according to Theorem 4, since the disturbance vector g(t) is null in this case,
(4.18) becomes (€*) = 0, while (€) is fulfilling (4.19), i.e.

(o), (4.36)
(o) (4.37)

Therefore, in case that (o) = 0, (4.36), (4.37) yield (€¢) = 0. This implies that (x;) = 27
and (zy) = fzi, meaning that the average value of the real signal is exactly equal to the
reference one.

4.3.2 Simulation results

A numerical analysis of system (4.24), (4.25) has been carried out with the parameter
values M = = 3. For the switching function in (4.26) we have chosen a@ = 1, while the
reference value for x; has been set to 27 = 1. In accordance with (4.27), this selection
entails that the ideal steady-state value for x5 is z} = 3.

The simulation consists in implementing the control law of the form denoted in equation
(1.13), with three different values for the hysteresis bandwidth,

0.1 when 0<t<16s,
A=< 0.04 when 16s <t < 30s,
0.01 when 30s <t < 40s,

and checking that (4.36), (4.37) are fulfilled, i.e. that the average steady-state errors (e;),

(e9) verify:
{er) = (o), ({ea) =3(0).

Let us assume that during the last instants of the time windows in which each of the three
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values of A is active the variables have achieved a steady-state.

The tests have carried out with the software package MATLAB/Simulink (R2016b)
using an ODE 5 solver with a fixed step of 107°. As for the average values, they have been
extracted using a low-pass filter with transfer function

100 10
H(s) = .
(s) (32 185+ 100)

0.2
A =0.1
A =0.04 A £0.01
0 |\‘\‘lliyiy\‘|’||1‘|’II]‘IIJ AR \
T
\ o
-0.2
0 ) 10 15 20 25 30 35 40
1 Va
0.5 / o
| r1 —
0 1
0 ) 10 15 20 25 30 35 40
1 W
0.995 | o
xr1 —
0.99 '

20 25 30 35 40
time (s)

Figure 4.1: System response with different hysteresis band values. Top plot: switching
function. Mid plot: state variable z; and its reference, zj. Bottom plot: zoom of the mid
plot.

The top plot in Figure 4.1 depicts the switching function, o. As expected, the chattering
amplitude is higher when A = 0.1, and decreases while A does. In turn, the mid plot
depicts the behaviour of the state variable x; with respect to its reference value and the
ideal sliding dynamics one, 7. The zoom in the bottom plot reveals that x; stabilizes
closer to the reference, i.e. with less average steady-state error, and also with decreasing
chattering amplitude, for lower values of A. From here it is confirmed how z; — 27 as
A — 0. According to Theorem 4, if this exists a regulation error in x; with respect to z7
(as Figure 4.1 depicts, mainly when A = 0.1), the mean value of o should not be zero. Let
us see such result with detailed zoomed views of the three cases appeared in Figure 4.1.

The top plots in Figures 4.2, 4.3 and 4.4 show the switching function and its mean
value for A = 0.1, A = 0.04 and A = 0.01. Notice that the signal envelope allows an easy
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Figure 4.2: Performance for A = 0.1 in the steady-state. Top plot: switching function.
Mid plot: (e;) matching (o). Bottom plot: (e3) matching 3 (o).

identification of the current hysteresis value. It is also worth emphasizing that, as we are
in a regulation control problem and the hysteresis band is symmetric with respect to zero,
the switching period of the control action achieves a constant value, T', in the steady-state,
and the switching function becomes T-periodic, thus meeting Assumption C.

It is clear from the top plot in Figure 4.2 that, for the highest value of the hyster-
esis, namely A = 0.1, the switching function does not show a piecewise linear behaviour.
Consequently, its mean value is not zero, as confirmed by the mid plot, where it is shown
to match that of ey, this resulting in the steady-state error for x; observed in the first
part of the bottom plot in Figure 4.1. In turn, one can observe in Figures 4.3 and 4.4
that lower values of A enforce the piecewise linear character of o within the hysteresis
band, this yielding lower mean values for the respective switching functions and also for
the steady-state errors of x; arising in Figure 4.1. In all these cases (e;) matches (o). In
turn, (ey) always coincides with 3 (o), as expected.

Hence, this confirms the theoretical predictions of Theorem 4. When the piecewise
linear assumption for o(z) is closer to be fulfilled, the average values of o tend to zero,
and so do the average state errors, (e;), (es). Conversely, steady-state errors appear in the
state variables when the piecewise linear assumption for o does not hold and (o) # 0. In
any case (e1), (es), match the expected values (o) and 3 (o), respectively.
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Figure 4.3: Performance for A = 0.04 in the steady-state. Top plot: switching function.
Mid plot: (e;) matching (o). Bottom plot: (e2) matching 3 (o).
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Figure 4.4: Performance for A = 0.01 in the steady-state. Top plot: switching function.
Mid plot: (e;) matching (o). Bottom plot: (e2) matching 3 (o).
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4.4 Time-varying hysteresis band

In the face of system transients the hypothesis of T-periodicity of ¢ does not hold. Thus,
the mean value of the solutions for the real and the ideal sliding dynamics could not be
equal. Nevertheless, some conclusions can be drawn in these conditions. For the purpose
of studying those cases, the mean value of ¢ is derived for the approaches analysed in
Chapter 2 in a transient scenario.

4.4.1 The regulation case

In the regulation case, regardless of the used approach (discrete-time or continuous-time),
the mean value of ¢ will differ from zero only during transients. In the steady-state, as
equations (2.13) and (2.36) reveal, the value of A becomes constant once the transient
has disappeared and the switching period error has vanished. As a consequence, the mean
value of ¢ is now evaluated when Ay # Ay ;.

The discrete-time approach

Related to the discrete-time approach, and as Figure 2.2 reflects, the new relations which
arise are 0(0) = —Ag_1, o(T}}) = Ay and o(T},) = —Ay. Also, from the Figure, one gets
that

AL+ Ay _ —2Ay
W=—r L=
Of course, T, = T;” + T,_. Therefore, replacing such values in (4.16), the average value is
found: A2 A2
1 kT Bk-1
== | —— 4.38
and replacing (2.13) in (4.38), one gets:
€l
(o) = Tt 2A4—1 + vep—1] (4.39)

2T oF

Figure 4.5 plots the expression in (4.39) as a function of ye,_1, with Ay_; = 2, and
(2Tx 67)~" =1-103 (notice that these chosen values are not relevant, they are only used
to show the function tendency). It is simple to find out that the function in (4.39) has a
minimum on ye,_; = —A;_1.

Recalling the controller expression of the SFC:

Ap = DNp_1 + vep—1,

and according to Remark 1, the hysteresis values have a minimum on A,,;, > 0, and
therefore:
Apy+ver—1 > Apin,  — ver—1 > —Ap1.
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Figure 4.5: Evolution of the mean value of ¢ as a function of ve,_; for the discrete-time
approach.

As a consequence of this restriction, the value of ve,_; will always live in the black zone
of the curve shown in Figure 4.5. In such area, the tendency of (o) with respect to the
value of v increases monotonically in absolute value. Then, it is clear that under certain
conditions, (e;_; can be understood as an initial condition) increasing the value of ~ a
higher average value (in absolute value) of o will be produced. This means that with a
proper (low enough) design of 7, the effect in the real sliding mode could also be neglected
in transients.

The continuous-time approach

Let us now analyse the case for the continuous-time approach. First of all, according to
Figure 2.7, the following expressions hold for this case: o(0) = —Ay_1, o(T}7) = AP and
0(Ty) = —Ag. In the same way, we have:

AP+ Ay _ A= AY
Recalling (4.16), the mean value for this case is found as
1 A™ 2 _ A2 A2 — (A™ 2
(@) (B — By | A= (A7) (4.41)

T T 267+ 26,

For a proper evaluation of (o), the point A}* is required (see Figure 2.7). Such point can
be expressed, taking into account the A(t) slope given by (2.36), as a function of both Ay,

Fixed-Switching Frequency Sliding Mode Control Applied To Power Converters 65



CHAPTER 4. REAL SLIDING DYNAMICS IN A SWITCHING FREQUENCY
CONTROL LOOP

Ak,y
of + e O + Yrek—
AP — A (H_—m) _a, (fm _ (4.42)
* YLEk—-1 O« YLEk—1

From (4.42) it could also be derived that:

(65 +yrew—1) (07 —yrer—1)

Ay = ANp_17- — . 4.43
' (U;F - 7L€k—1) (0* + ’YLek—l) ( )

Besides, using the controller expression (see (2.36)) it is possible to find that:
Ak = Ak,1 + ’YLek,lTk. (444)

Replacing equations (4.42), (4.43) and (4.44) in (4.41) the averaged values of ¢ boil down
to:

(U*_ + U:—) + 2")/[/6]{,1
(df — 7L6k—1) (d*_ +'7L@k—1)

<O‘>k = Ak—l'YLek—l (445)

The goal now is to study the tendency of the average value of o according to (4.45)
depending on 7, value. Notice that both A;_; and e,_; can be treated as initial conditions
for the analysis.

First of all, it is difficult to derive a conclusion from (4.45), since it results in a division
of polynomial functions where the term of interest, yrex_1, appears both in the numerator
and denominator. Notice that expression (4.45) is equal to zero in two points, in yrex_; = 0

(the origin) and in ypex_1 = —0.5 (6, + &), complicating the analysis. Moreover, in (4.45)
appears the switching function slopes 6%, 6~ ( 6~ is negative definite). These functions
can be interrelated by a « parameter since, recalling (2.3), (2.4) and with v~ = —1 and
u™ =1, one gets
ol =T = ueg ()]
Q==
ol 1 — teq ()

Under sliding motion the inequality —1 < u., < 1 holds (see Section 1.3). Therefore, a
reasonable existence range for o will be 0.1 < o < 10. Thus, expression (4.45) is revisited

as
(1—a)+2z

(o) :x(l —z)(r —a)’

where ¢ = 67, x = yrep_1/¢. Notice that in this case, a two variables (z, «) function is
obtained. Figure 4.6 shows the different curves resulting from (4.46) when the o parameter
is modified. The value of Ay_; is fixed to 1 in order to obtain a per unit analysis with
respect to A.

(4.46)

As expected from the obtained expression, all the curves pass through the origin. Let
try to find out the region where the term e, will live taking into account the design
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Figure 4.6: Per unit evolution of the mean value of ¢ as a function of x = ype;_1/¢ with
o as a parameter.
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restrictions imposed by Assumption B. From:

YL€k—1
Tr =
¥

(4.47)

it is obvious that tending the v, value to zero, the mean value of ¢ also does. Moreover,
according to Assumption B the design rule to be fulfilled for ~;, is:

[Yrer—1| << min {67, |07 [}

which yield for a > 1

Vrer—1] << ¢,

and for o <1
zer—a| _
Q@

<¢

From the previous expressions, it can be seen that with a v, meeting with Assumption B
implies a = small, according to (4.47), even when e;_; # 0. Therefore, in the allowable
range of v, all functions in Figure 4.6 move very close to the origin. It is also clear from
the curves that, in this range, the tendency is that the mean value of o grows in absolute
value when v, does.

4.4.2 The tracking case

In this case we have Ay # Aj_; in the steady-state sliding motion. Taking into account
that this case was studied under a discrete-time approach, equation (4.38) holds and the
mean value for each switching period interval can be computed using (2.18), (2.19) as:

1 (ver—1)? + 27er 1 (U + Tp 1) + Q2 — Q2 + 205y (% — Qy)
Ty 25,

<0>k

(4.48)

Here, e;_1 and W;_q, can be considered as initial conditions, so they do not depend on
7. Similarly, the values of €, 21 do not vary with 7, as (2.20) confirms. The above
result contemplates the steady-state and the transients and, in general, €, # ;1 and
(o) is always different from zero. However, the function in (4.48) has again a minimum on
ver—1 = —(2% + Yg_1). In the same way, the controller expression for this approach is:

Ap = + Vi +yep—1,
which, according to Remark 1, it is bounded by A,,;, > 0 since:

ANp =+ Vg +ve,m1 > Din = Yek—1 > Appin — (Q+ Wgq),
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thus implying that:
Yep—1 > —(Q + \Ijk—l)‘

Therefore, in the SFC transients, where e,_; # 0, if v is increased the absolute value of
(o) grows, as (4.48) states (this result coincides with the one shown in (4.39) and Figure
4.5).

Moreover, it is possible to derive the expression that arises once the steady-state sliding
motion is reached and the switching period has been properly regulated to the reference
value. Thus, in this case, it could be considered that e;_; = 0, and accordingly, that
Uy, = U,y = U, (see equation (2.19)), yielding:

1 [OR -0 420, [0 — O]
T, 267 ’

(0), (4.49)
which does not depend on ~. Therefore, the value of v values has not effect in the steady-
state sliding motion. However, (4.49) discloses that in tracking scenarios there exists a
mean value in ¢ produced by the variations of {2 with k.

As it was previously stated, in some conditions where this exists a periodicity T,,, the

result of Theorem 4 could be also applied in tracking cases. Assuming that
T,

Ny = —

T*

and N,, € N, using (4.49) it is possible to evaluate the mean value of ¢ along the time
interval T,, as

Nw+2 2 2
1 [QF —QF 4+ 2V, [Q; — Q4]
(O, =D 7 { — 7 1 (4.50)
i=2 7 @

If the previous expression becomes null, the T;,-average value of the ideal and real sliding
dynamics converges.

Taking the results obtained in equations (4.39), (4.45) and (4.50) it might seem that the
implementation of the SFC always affects the real sliding dynamics. The only logical con-
clusion that can be drawn from these results is that the real sliding dynamics is modified by
the SFC with respect to fixed hysteresis band implementations, mainly during transients.
However, it is difficult to state if the SFC improves or degrades the performance of the
sliding mode control with respect to the classical approach, i.e the fixed hysteresis band.
Nevertheless, such mean value is bounded by the hysteresis band used, as the following
Remark indicates.

Remark 7. The mean value of o under sliding motion is bounded by the maximum hys-
teresis band value, A,,q.. Thus,

| <0> | < Anaz-

According to Remark 1, the maximum value of A must be defined so that the produced
high frequency ripple on the state variables (x) is small with respect to the low frequency
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dynamics of x. As a consequence, whatever mean value appearing on x due to the variation
of the hysteresis band, as (4.49) states, will be negligible with respect to x*.

4.4.3 Simulation results

In order to show the effect of the SFC transients in the SMC performance, a simple sim-
ulation is done. Using the system introduced in Section 4.3.2, a sudden variation of the
switching period reference is applied enforcing a SFC transient. The values of v (vz) will
be designed in order to show how higher values of v () will imply a higher impact in the
state variables behaviours. The simulation depicts the transient detail of T} following the
variation of 7*. This transient will be tested with two different values of 7y (1), designed so
that one of them produces a soft transient in 7}, and the other an underdamped one. Let
us calculate the values of pF (related to the steady-state sliding motion) for the simulated
system in Section 4.3.2. Using (4.26) the first time derivative of o for the steady-state
sliding motion can be found assuming that x; = =] and z,=0£x7:

0" =z] — Mu. (4.51)

Using the values provided in Section 4.3.2 for #} and M, and according to the p definition
in (2.2), one gets:

Hence,

Regulation case: the discrete-time approach

Firstly, the discrete-time approach is simulated (Section 2.2.1, equation (2.13)).The char-
acteristic polynomial of the SFC for this case is (according to (2.16)):

p2) =2"+z(2y -1+,

and the selected values for v for the aforementioned purpose are: v = 0.05 and v = 0.5,
which lead to the following closed-loop poles:

v =005 p, =0.8405, p,, = 0.0595

v=20.5; p, =0.7071i, p,, = —0.7071z.

Notice how the chosen values for v provide poles in the real axis for a soft transient response
for the case v = 0.05, becoming complex for v = 0.5. The resulting poles are within the
unit circle in both cases, thus confirming stable SFC responses. The simulation for both
cases are shown in Figures 4.7, 4.8. The signals depicted in the Figures are structured as
follows. In the top plot the switching function, o, and the hysteresis bandwidth generated
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by the SFC are depicted. In the mid plot the switching period reference, T, and real
switching period, T}, are shown. Finally, the bottom plot presents the behaviour of z; and
the mean value of ¢. In this case, the low pass filter detailed in Section 4.3.2 measuring
the average value is substituted by the operator shown in (4.13) computed one time per
switching period. As a consequence, such mean value is delayed one switching interval.

0.05 = i ' ' ' |
0 V |
A —> |
-0.05 L : 1 . .
14 15 16 17 5 m )
01 r —
- _T*
AR Y T,
0.05 . ! ! i - i
14 15 16 17 5 m .
i 107
0 WWWWAMMMWMMAMAMM/WW\AMW
— Iy I
2T | , ] e (0. i
14 15 16 17 s n o

Time (s)

Figure 4.7: Mean value impact on ¢ in the face of a switching period transient with the
discrete-time approach. y= 0.05.

First of all, it should be noted that sliding motion is preserved during the entire test,
since o is perfectly confined within the hysteresis bandwidth during the transients (see top
plots of Figures 4.7 and 4.8). Similarly, the proper regulation of T} to 7" in the transients
is also confirmed from the mid plots of Figures 4.7, 4.8. From the results on the bottom
plots, it is obvious that the signal z; is highly perturbed when the transient in the SFC is
faster (Figure 4.8, v =0.5), being such perturbation smaller when  =0.05 is used (Figure
4.7). This result coincides with the result obtained in (4.39), as the mean value of o is
proportional to the used «. Furthermore, it is worth remarking that the simulations in
Figures 4.7 and 4.8 corroborate the result of Theorem 4, since the mean values of ¢ and
x] — x7 only match at steady-state, when A is constant and o becomes T™-periodic.

Regulation case: the continuous-time approach

The same simulation has been performed using the SFC in the continuous-time approach
(see Section 2.3, equation (2.35)). The previous calculus for pF hold for this approach,
which yields & = 2 (6] = 1, 6, = -2). The initial condition of e;_; is 0.05 and the values
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Figure 4.8: Mean value impact on ¢ in the face of a switching period transient with the
discrete-time approach. y= 0.5.

for vz, in order to produce a smooth and a fast transient in T} are v, = 0.5 and v, = 2.5,
respectively.

From the direct comparison of the results in Figures 4.9, 4.10, the analysis made in
Section 4.4.1 can be validated, since the use of a higher value of 7, increases the mean
value of ¢ during the transient.

The tracking case

The system simulated in Section 4.3.2 is now tested with a time-varying reference for z1,
in order to check the mean value of ¢. In this case, the simulation results are focused in
the steady-state operation, as the transient effects are essentially the same than the ones
shown in Figures 4.7, 4.8, because the approach to adjust the hysteresis values is the same.
The objective here is to check if the mean value of ¢ during a larger time interval, T,
presents a periodic behaviour, and it could become zero when averaging it in 7T,,. The
time-varying reference for this case is:

x]=2sin(2-0.0271),

keeping T = 0.1 s as the desired switching period. For the tracking case, the system is
slightly modified, including a control action taking u™ = 1 and u~ = —1 (see (4.24), (4.25)).
With this configuration, the system is able to track references without offset. The SFC
structure is the corresponding to a tracking approach, (Section 2.2.2, Figure 2.6, Equations
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Figure 4.9: Mean value impact on o in the face of a switching period transient with the
continuous-time approach. y,= 0.5.
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Figure 4.10: Mean value impact on ¢ in the face of a switching period transient with the
continuous-time approach. ;= 2.5.
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(2.18), (2.19) and (2.20)). The control gain is set to v = 0.5 according to Theorem 2.

01 . 4 : . 4 4 4 . .
0
-0.1 . i | A i . i i i
100 120 140 160 180 200
0.2 T T T T T T T =T
0.1

Figure 4.11: Steady-state mean value of o in the tracking case with SFC, v = 0.5.

Figure 4.11 shows: the switching function and the hysteresis band in the top plot, the
desired and real switching periods in the mid plot and the tracking error together with
the average value of ¢ in the bottom plot. It should be noticed that the mean value of o
has been calculated using the operator shown in (4.13) at any switching period, 7. From
Figure 4.11, the proper SFC function is confirmed, since 7* and T" perfectly fit (mid plot).
The interesting result is located in the bottom plot, where a periodic behaviour of (o) is
observed (the showed time interval corresponds exactly to a two periods of T,, = 50 s).
Due to the symmetry of the signal, it is not unreasonable to assume that the mean value
of o along a time interval of T}, = 50 s is null.

Notice how (o) is close to the averaged tracking error defined as e, = z} — z1, since the
expression enforced by the sliding motion (see (4.26)):

0 = Qey + €y,

always holds. Performing the Laplace transform, the previous expression reveals that (o)
is the result of low-pass filtering e,.

Finally, it has been considered interesting to show the same result in Figure 4.11 but
with a fixed hysteresis band. The results are shown in Figure 4.12. The difference, aside
that a fixed hysteresis value produces time-varying switching periods, relies in the different
mean values produced in . By direct comparison with Figure 4.11, it can be noted that
the maximum value of the mean value is slightly higher when the hysteresis band is fixed.
Again, the mean value of ¢ matches the averaged tracking error.
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A = 0.05.
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Chapter 5

Voltage Regulation in a Buck
Converter.

At this stage, the discrete-time approach of the SFC is experimentally tested in a DC-DC
Buck converter for evaluation purpose. The state space equations modelling the Buck
converter behaviour correspond to a linear system. In this case, the SMC will regulate the
converter output voltage, becoming a regulation task for a time invariant linear system.
The SFC will be implemented by a mid-range micro-controller (uC), whereas the SMC
will be assembled by means of analog circuitry. The Chapter is structured as follows: in
the first Section the power converter is presented, where its state space equations and
parametric values are introduced. Then, the SMC controller is designed for regulating the
output voltage. The next step develops the studies required for properly tuning the SFC.
Finally, the implementation issues and the experimental results are presented.

5.1 The Buck Converter

The Buck converter circuit scheme is shown in Figure 5.1. Table 5.1 lists the parameter
values of the experimental prototype.

Figure 5.1: Buck converter.
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The linear state space equations [2] of the Buck converter are:

dv., . v,

— - 1

C dt (2] R (5 )
di

Ld—?:Eu—vc, (5.2)

where the control action u takes values from the set {0, 1}, E is the input voltage, v.
the output voltage and L, C', R are the inductance, the capacitance and the resistive load,
respectively. The power switches M1 and M2 work in a complementary manner, remaining
closed when u takes the value showed in Figure 5.1.

Table 5.1: Buck converter parameters

Parameter Symbol  Value
Input voltage E 48V
Desired output voltage vr 12-24 'V
Inductor L 22 uH
Output capacitor C 50 pF
Nominal load resistance R 20
Switching period reference T 10 us

The Buck converter is characterized by its input-output step-down property, and the
output voltage, v, is always lower than its input, £. This converter is widely used in sev-
eral fields such industrial, communications, appliances, etc [41-45]. The control objective
usually comes from the necessity to regulate its output voltage for different load levels.

5.2 Sliding mode control of the Output voltage

5.2.1 Switching surface design

Because of the relative degree of the control input with respect to the output voltage is
two, in order to make possible the existence of the sliding motion, the chosen switching
surface for regulating the output voltage is (see Section 1.3):

U(Uc,il) = )\161, + C)\Qév = O, (53)

being A; 2 > 0. The voltage error has been defined as e, = v.* — v., responding v.* to the
desired output voltage.
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5.2.2 Sliding dynamics

Following the methodology shown at Sections 1.3, 1.4, the switching function time deriv-
ative is calculated and shown in (5.4):

0 (ve,iy) = f1(ve, 1p) — T Eu, (5.4)

where

) ) .. ) A2 A A1 Ao Ao
e, 1) = A\0s + C Aot —_— = | =— +—— : 5.5
fi(ve, i) = Aol + QUC—FZZ(RC O)—l—v ( + (5.5)
In general, ¥} and ¢ can be considered null since a regulation control problem is considered.
According to equation (5.4), the sliding motion can be enforced in o(v,,4;) = 0 if
A FE
0< f1 <22 (5.6)
L

The ideal sliding dynamics can be studied through the equivalent control method, which
assumes that the system trajectories are exactly on the surface and remain there, entailing
0(ve, i) = 0 and (v, 4;) = 0. Hence, the equivalent control is found in (5.7).

L
 E )\

fi(ve, ). (5.7)

Ueq

Under sliding motion, the output voltage dynamics is characterized by (5.3), thus:

dvc——ﬁv —i—ﬁ
At X & Ay

v+ C (5.8)

The remaining dynamics of the inductor current can be derived placing (5.7) in the system

equations (5.2), yielding
dil L 1 )\1 . Ve
Ay e WA
it  C (R AQ) (“ R)

Therefore, the system dynamics under sliding motion is governed by:

dvc o )\1 )\1 * -k
i )\QUC + )\2% + Cv; (5.9)

dil L 1 )\1 . Ve
L9 = (2 =2 (- %) 1
it C (R Az) (” R) (5.10)

The equilibrium point of the previous system, (v. = v¥, i; = v}R™!), is asymptotically
stable if

C

Y
0< - <2 5.11
R (5.11)
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is fulfilled.

5.2.3 Control law
The control law that guarantees sliding motion on o (v.,4;) = 0 is:

0 o< —=Ay or (Jo| <Ar &5 >0)
YTl it o> A, or (lo| <A & ¢ <0).

Once the SMC has been designed, the values of the switching function can be now set
according to a desired dynamics for the output voltage, employing (5.8). Using the values
listed in Table 5.1, the selected values are A\; = 0.2 and Ay = 0.38, which deliver a good
transient response with a time constant of 100 us.

5.3 Switching frequency regulation

As it was briefly introduced, the discrete-time approach is used for regulating the switching
frequency of the control action previously designed.

5.3.1 Evaluation of pf

In order to select the parameter gain v for the SFC, p/ and p; are required. Since
the problem is intended for regulating a constant voltage at the converter output, such
values are particularized to a specific working point, where such values will be treated as
parameters, i.e. pi and p,. Recalling again (5.4) and (5.7) one gets:

o (ve, 1p) = % E (ueq — u). (5.12)

It should be remarked that in this case the working point (v. = v¥, 3 = v*R™1) leads to an
equivalent control that only depends on v} and E (see equation (5.7)). Therefore, (5.12)

boils down to:
A2

(v, 57) = 7 (v; = Bu) (5.13)
where u = ut =1 or u = u~ = 0. According to Section 2.1, the values for p are defined
as follows:

L
* ek -1
Psx = [U(vazl)u:u*] - )\2/U$
L
X ok -1
Psx = [O-(Umll )u:u+] )\2 (U: . E)
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Using the data given by Table 5.1, the values are:

=12V — pf =4.82-107% p- = —1.61- 1079,
=24V — pt =241-107%; p; = —2.41 - 105

*
C
*
C

5.3.2 SFC design

The value of v has to be chosen to guarantee stability of the SFC loop, hence, according to
Theorem 1, v values below 2.07 - 10° implies stability for the 12 V case, being such bound
equal to 4.15-10° for the 24 V one. Therefore, the stability range becomes 0 < v < 2.07-10°.
The preferred used value for the experimental evaluation will be v = 2 - 10%, although it
will be varied for a specific test, as it will be explained. Specifically, for the 12 V case and
v = 2-10% the characteristic polynomial results in:

p(2) = 2% — 0.842 + 0.0972

where the poles result real and equal to z,; = —0.138 and z,, = —0.7. Similarly, for 24 V
the polynomial results in
p(z) = 2% — 0.885z + 0.048

also with real poles equal to z,; = —0.058 and z,, = —0.825. As a consequence, an
overdamped response is expected in all the cases.

5.4 Implementation Details

Before showing the experimental results, some aspects about the implementation methodo-
logy are briefly discussed. The implementation of the switching function and the hysteresis
comparator have been carried out with analog electronics, as Figures 5.2 depicts.

i 5V :

I 1 I 1 —* '

1 51k | | 20k | MCP6567 i

= U

S —1

e8] Q ]

1

6k8 5V R Q|

+ :

51k d MCP6567 E

i i

2.5V ; ;
Variable Hysteresis

Switching function comparator

Figure 5.2: Implementation details: the SMC with a variable hysteresis comparator is
implemented using analog circuitry.
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As it is shown in Figure 5.2, the output voltage is measured through a resistive voltage
divider. With regard to the time derivative of v., which is required by (5.3), it should
be remarked that to perform the time derivation directly over the measured v, is quite
problematic due to the amplification of the switching noise. Instead, a very common
strategy [46] is used here, which consists in to measure the current flowing by the output
capacitor, ., since:

dv,
i.=0C o
Such measurement is performed with a high frequency current transformer, as it is repres-
ented in Figure 5.2. In fact, this is the reason to include C' in the switching surface (see
(5.3)). The Figure also shows the switching function implementation, which it is based
on a common configuration with operational amplifiers (AO). Finally, in the right side
block of the Figure, the chosen structure of the variable hysteresis band comparator can
be observed, where two high speed comparators together with a Set-Reset flip flop provide
the desired operation.

Power Stage a1 I
K5 A
1Y1 e ]
—] u
u ic +
—> | LM5106 E(D JE%S Cl::R e
M2 -
T, =
—> | TIM =5 SFC —> DAC| _x,
STM32F407
Ay, x P
U Ue
Q S o(v.) -
—Ak (Zc
SMC

Control Stage

Figure 5.3: Implementation details: the SFC is implemented using the DSP STM32F407.

With regard to the SFC implementation, it is carried out using digital resources. Spe-
cifically, the switching period measurement and the generation of hysteresis band values
have been performed with the pC STM32F407. Nevertheless, any mid-range performance
1C can be used for this purpose, because the system only needs a capture timer peripheral
for the switching period measurement, and a digital to analog module (DAC), for updating
the hysteresis value. For the switching period measurement, a 32 bits timer (TIM) is pro-
grammed as an input capture timer, in the sense that is able to measure the period of w.
This TIM is clocked at 168 MHz (CPU clock), which delivers a resolution of 9 ns, enough
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for the desired value of T* = 10 us. Figure 5.3 details the main parts of both controllers
(SMC and SFC) denoting the complete scheme of the experimental setup.

The TIM used for measuring the switching period is also employed to synchronize the
SFC operation with the control signal u, since for each capture event (rising edge of u)
a CPU interrupt is generated. A control routine is associated to such interrupt, where
the SFC is implemented. Although the ¢ code routine only needs to do a subtraction,
an addition and a multiplication to compute the new hysteresis value, it is important to
take into account the amount of time, t., that the CPU spends for the execution of the
SFC code. In the analysis developed in Section 2.2 this effect was not considered. This
computing time, t., is shown in Figure 5.4.

- A

Figure 5.4: Implementation details: effect of the computing time, t., in the discrete-time
approach of the SFC.

From the Figure, it can be inferred that in conditions where ¢, exceeds T}, from a
rigorous point of view, the expression (2.1) should be revisited. For example, in the
simplest case where ¢, > T, and t. < T} the equation (2.1) should be replaced by
T, =20A, [pz — p,;] +pp [Ak—1 — Ag]. For that expression, all the stability study should
be revisited for the SFC stability conditions, as it was presented in Section 2.2. Indeed,
whatever relation between t. and T} could be considered and analysed in an equivalent
procedure.

The expected value for T, in this experimental evaluation can be estimated using the
equivalent control method and the desired switching period. From (5.5) and (5.7), taking
into account that the equilibrium point for the designed system is (v. = v¥, i, = v}R™!),
the equivalent control in the steady-state sliding motion for the 12 V case at the output
becomes:

hence
T,j =0.25-T" = 2.5 us.
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In that case, the computing time results in t.= 1.4 ps (empirically measured using an
oscilloscope), while the expected value of T} is 2.5 ps, thus confirming the usefulness of
(2.1).

Finally, and additional aspect about this implementation methodology is discussed. It
exists a relation between the resolutions of the used TIM and DAC devices [29]. If the
resolution of the DAC is higher than the resolution of the TIM, the hysteresis values could
oscillate between two values in steady-state. For this reason, is advisable to use a TIM
with a higher resolution than the DAC one in order to ensure that the hysteresis value
becomes constant in steady-state. This effect is also related with the integral gain ~, since
the grade of change of A ( Ay — Ag_1) is, from (2.13), ey, and ej inherits the timer
resolution. Therefore, in order to avoid oscillations in the system due to the resolutions of
the used peripheral, the inequation (5.14) has to be fulfilled:

being DACE and T'IMpg the corresponding peripheral resolutions.

5.5 Experimental results

The experimental results are presented at this stage. In the following oscilloscope captures,
the switching period, T}, appears converted to voltage with a rate of 0.35 V/us. Due to
implementation aspects, ¢ has an offset of 2.5 V (as it was shown in Figure 5.2). Unless
otherwise noted, the SFC gain is set to v = 2 - 10%.

1. SMC performance

The star-up of the converter is illustrated for two different initial values of A in
Figures 5.5 and 5.6. In these cases the output voltage is regulated to 12 V. The
initial values of A have been selected as they become smaller and higher than the
steady-state one.

Notice that both v, and T} attain their references with a good transient response,
while the hysteresis band is adapting till 7} reaches T™. From both responses, the
expected overdamped characteristic can also be confirmed, according to the designs
developed at Sections 5.2, 5.3. The switching period, T}, can be easily measured
observing the switching function in the zoomed windows (green signals at the bottom
parts of the Figures). As it is noted in (2.13), once T} reaches the desired value, the
hysteresis band Ay becomes constant.

In Figure 5.7 a voltage regulation from 12 to 24 V and vice-versa, with R= 4 (),
is tested. In this case v} is step changed and, consequently, the switching function
suddenly drops the hysteresis amplitude value and recovers it again in less than one
switching period, with a brief and smooth transient of 7). Again, the expected
overdamped behaviour of v, is confirmed.
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Figure 5.5: Start-up for v}= 12 V with R= 2 2 and A lower than the steady-state value.
ve: blue; o: green; |Ag|: magenta; Ty: red.
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Figure 5.6: Start-up for v;= 12 V with R= 2 2 and A, higher than the steady-state value.
ve: blue; o0 green; |Ag|: magenta; Ty: red.
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Figure 5.7: Voltage reference, v¥, variation from 12 V to 24 V and vice-versa, with R= 4

Q.

v.: blue; o: green; vi: magenta; T}: red.

2. SFC performance

In order to evaluate the proper performance of the SFC, several reference step vari-
ations are tested in the following. First of all, Figure 5.8 shows the result for a step
change of T™ between 12.5 us and 8.3 ps with a desired output voltage of 12 V and
R=4 Q. The Figure confirms a good performance of the SFC with an overdamped
behaviour, as expected with the used value of v (y = 2 - 10%).
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Figure 5.8: Overdamped responses for v = 2 - 10* with R=4 Q and a T* variation from
12.5 ps to 8.3 ps. ve: blue; o0 green; |Ag|: magenta; Ty: red.

Figure 5.9 shows the result for the same test (step change of T*), when the integral
gain is selected close to the unstable values (v = 2 - 10°, being the stability limit of
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2.07 - 10°). In this case T™ is varied from 12.5 us to 14 us and R is kept at 4 €.
The modification of the step values is required to avoid the effects of A saturation
and the computing time influence that would modify the expected dynamics (see
Section 5.4). As «y is now closer to the upper stability limit, both T} and A exhibit
underdamped transient responses with very low damping ratio, thus confirming the
theoretical prediction. It is evident that such response fits with the expected one, as
Figure 3.2 denoted in Section 3.1
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f
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Figure 5.9: Underdamped responses for v = 2 - 10° with R=4 Q and a T™* variation from
12.5 ps to 14 ps. v.: blue; o: green; |Ag|: magenta; Ty: red.

Finally, the previous test is repeated with different values of v, in order to confirm
the validity of the model developed in Chapter 2. In Figure 5.10 the root locus of
the SFC in the case of 12 V is shown, where the poles placement for different values
of v are depicted. Related with such poles, the corresponding responses in the time
domain are also shown. All the test are made with a step of 7% from 12.5 us and 8.3
s, except for the v = 2 - 10° case, which is from 12.5 us to 14 us.

The switching period (red signal in Figure 5.10) is measured with an analog sensor,
which adds some dynamics to the measure. The performance has to be analysed
from the A response (magenta signal), which is generated through a DAC by the uC,
without any delay. From the results shown in Figure 5.10, the SFC model developed
at Chapter 2 is fully corroborated.

3. System robustness

Finally, a load transient test is performed at the converter output, in order to confirm
that one of the main benefits of the SMC (its robustness) is preserved under the SFC
operation. The test consists of suddenly variations of the linear load applied, from 0
to 6 A in the 12 V and 24 V cases. In the Figures 5.11, 5.12, the variable i, responds
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Figure 5.10: Poles placement in the complex plane and the corresponding time domain
step responses, with R =4 . v.: blue; o: green; |Ag|: magenta; Tj: red.
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Figure 5.11: Load Transient: responses for v = 2-10* with R from no load to 2 Q, T* =10
ps and vi =12 V. v.: blue; o: green; i,: magenta; Tj: red.

From Figures 5.11 and 5.12, the good transient response of the SMC is confirmed,
since the regulated output voltage is hardly disturbed. In the same way, it is also
confirmed that in this design the values of p do not depend on the output current,
since before and after the transient, the steady-state hysteresis values are essentially
the same. This fact confirms the theoretical values found for pf in Section 5.3.1, as
expression (5.12) does not depend on the output load R.
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Figure 5.12: Load Transient: responses for v = 2-10* with R from no load to 2Q, T* = 10us
and v} =24 V. ve: blue; o: green; 7,: magenta; Tj: red.

5.6 Conclusions

In this Chapter the design and implementation steps of the SMC and SFC have been de-
scribed, and several experimental results have been presented corroborating the validity
of the proposed procedures, and the models developed in Section 2.2.1. Additionally, a
digital implementation of the SFC has been developed using a puC from ST Microelec-
tronics (STM32F407) allowing to demonstrate the expected behaviour of the SFC in the
discrete-time approach. The experimental results confirm the output voltage regulation,
the operation at fixed switching period, and the system robustness with respect to load
and output voltage variations.
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Chapter 6

Voltage Regulation in a Multiphase
Buck Converter.

The continuous-time approach of the SFC, found in Section 2.3, is applied to a multiphase
synchronous Buck converter in the following. The Chapter is structured as follows, in
the first Section the power converter data and the sliding mode interleaving operation are
briefly introduced. Then, the SMC controller is designed for regulating the output voltage
with interleaving operation, followed by the design of the SFC in the continuous-time
approach. Finally, the implementation details and the experimental results are presented.

6.1 The multiphase converter

The multiphase synchronous converter is made up by the parallel connection of m Buck
converters. Such topology is shown in Figure 6.1. Since this topology is based on the
connection of several synchronous Buck converters with their outputs joined in parallel,
the corresponding state space equations are equivalent to the ones presented in Chapter 5,
extended to a multi-input case.
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Figure 6.1: Circuit scheme of the m-phase synchronous Buck converter.
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Therefore, for the multiphase structure the equations result in:

di

L%z—vchEuk; k=1,..,m (6.1)
dv, U Ve

_ _ 2

O —~ """ R (62)

where the control actions wuy take values from the set {0, 1}, F is the input voltage, v.
the output voltage, ix is the current flowing through the k-th phase and L, C, R are the
inductance, the capacitance and the resistive load, respectively.

An important benefit of the multiphase topology is the possibility to implement inter-
leaving operation. This technique is based on phase shifting the control actions of each
converter in such a way that the high frequency current ripple of each inductor are can-
celled in the common output connection, thus generating an ideally free ripple current to
the output voltage. This technique allows to reduce considerably the output capacitor
value, since, in the ideal case, there is no high frequency current ripple to be filtered at
the output. Moreover, the distribution of the power through different converters permits
the reduction of the component features, as the allowable conduction current of the power
switches, or the required heat sinks for losses dissipation, which in some cases can be
directly removed from the system. The reduction of the current flowing by the switches
also allows to increase the switching frequency, which in turn, would lead to an additional
reduction of the value of the reactive components. As a consequence, the multiphase struc-
tures have gained interest within the industrial community for different applications due to
their high efficiency, good power density, fast transient response, and ability of interleaving
operation [47-51].

The control objective is again the output voltage regulation, with the additional task
of guaranteeing the interleaving among the phases, which is also controlled by a sliding
mode technique. The SMC and the SFC will be implemented by means of analog circuitry,
meanwhile the interleaving control is implemented with an FPGA. The parametric data of
the assembled multiphase converter are detailed in Table 6.1.
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Table 6.1: Multiphase Buck Converter Parameters

Parameter Symbol Value
Input Voltage E 48 V
Desired Output Voltage Range vr 12-24 V
Output Capacitor C 100 pF
Phase Inductance L 22 pH £10%
Number of phases m 8

Load Range I, 0-65 A
Desired switching period T 10 us
Current transformer parameters L., M 800 uH, 6.4 uH
Current transformer burden resistor R, 10 ©

6.2 Interleaved sliding mode control of the output
voltage

The interleaved sliding mode control corresponds to a Master-Slave strategy. One of the
Buck converters regulates the output voltage, the Master converter (or Master phase),
while the rest of the phases track the control signal of the Master one with the proper
phase shifting.

6.2.1 Master switching surface design

The Master switching surface o), for output voltage regulation is designed as:

om =P (Ve — U:) + Yo xpr = 0, (6.3)

where 9 o are the switching surface constants and v} is the desired output voltage. Com-
paring it with the surface designed for the single Buck converter (see Section 5.2), the
first time derivative of e. is replaced by the signal x,;. As it was discussed in the Section
5.4, it is usual to employ the measured current flowing by the output capacitor instead of
time differentiate the output voltage in the implementation set-up. In this case, it is not
possible to use the current ripple of the output capacitor since it is ideally cancelled by the
interleaving operation. As a consequence, a current transformer is placed in series with
the Master phase inductor. The signal x,; is the output of this current transformer, which
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adds the following dynamics to the system:

LM _ R RyM M. 6.4
dt bTa + M =g (6:4)

where 7, is the Master phase current and M and L, are the mutual inductance and the
transformer secondary inductance, respectively. Notice how using the signal x; the relative
degree of the switching function is equal to one, and therefore, the sliding mode can be
enforced in o) = 0.

6.2.2 Sliding dynamics of the Master phase

The sliding mode equation for the Master phase becomes:
“ R
which, assuming that the phases are equal ()", i; = miy), it boils down to:

. s im, YoM VYo Ry Yo Ry M
om = —P10; + o e I L. +RC I Tar + IL.

_%be Yo Ry M
L, ML,

— 0] [—v. + Euyl, (6.5)

Euy. (6.6)

Therefore, (6.6) can be expressed as:

. Ry M
. ) m . Ry M R ,
being f1 = =10} + wlc I — Ve {wz Lbl, + géi — wszxM. It is clear from (6.7) that
the sliding motion can be enforced in o3; = 0 when
RyM
Sy

is fulfilled. In the same way, the equivalent control is found when 7,; = 0 and o), = 0:

. Ve ¢1L « L - .
Upg,, = Z + BN (vF —ve) + aE (0F — 0.) (6.8)
where
_ @Dle
a= )
o Ry M

Placing (6.8) in the original system (6.1), (6.2) as the control inputs, the ideal sliding
dynamics is found in (6.9), (6.10):
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d*v. 1] dve | mapy myy
CW + [ma + E} 7t M Ve = M¢2UC’ (69)
dip o v, .am o
E—'UC (ﬁ) + M1/}2 (UC —Uc)—lkT‘i‘OfUc, k—l,..,m. (610)

Since all the coefficients in (6.9) and (6.10) are non null and positive, the resulting
equilibrium point

*

P
Ve = Vg, = i =

is asymptotically stable, confirming that in steady-state v, converges to v}. In order to
design the switching function parameters v, and vy, the dynamics given by (6.9) for
different working conditions of the converter are employed. Specifically, the converter is to
undergo variations of the output load, R, and the desired output voltage v¥. A strategy
adjusting the phase number to the output power could be applied, but in this thesis is not
considered, and m = 8 always holds. In order to achieve a time constant around 500 us for
all the cases and keep the overshoot below 20 % for all the load conditions, expression (6.9)
allows to design the switching surface constants as ¥; = 0.078 and ¢, = 2.97. With such
parameters, and with v =24 V, at the worst case (which occurs at low load R = 1kf2)
an overshoot around the 20 % is obtained, while for the full load case (R = 0.4(), the
response has real poles in s, = —43761 and s, = —7502. The response is dominated by
Sp2, providing a settling time of 533 s (47). It has to be remarked that these results are
essentially the same for 12 V.

6.2.3 Master phase control law

Finally, the control law enforcing real sliding motion in the vicinity of oy, = 0 is:

u—{ lif o<—=A or (lo|]<A&d>0)

0if o>A or (Jo|]<A&d<0). (6.11)

6.2.4 Slaves switching surfaces design. Interleaved Sliding Mode

Assuming that the Master phase corresponds to the phase number 1, the interleaved sliding
mode operation is achieved by using the following Slaves switching surfaces:

o9 : =K [ (upy —uz)dt =0
: (6.12)
O i= Kf (Upp—1 — Up) dt =0
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with u; being the control laws. The hysteretic control laws enforcing sliding motion on the
m — 1 surfaces are:

_J1if o< =6 or (loi] <0 &G >0)
YTV 0it o>6 or (joy| <8 & d; <0),

for i from 2 to m, being § the hysteresis width of the comparators (the value of § in the
slaves phases will be, in all the cases, a fixed value). Once the sliding mode occurs in all
the surfaces, it holds that

o i (Ueq) = 0,

and the low dynamics (average) of the discontinuous controls (us, -+ ,u,;,) converge. This
can be demonstrated equalling all surfaces in (6.12) to 0. Additionally, these surfaces
generate a phase shift among the different control signal. Such phase shift among the
phases, which leads to an interleaving operation, can be controlled through K, as T), = § /K
(see [14], [52] for details) being T}, the phase shift among phases. Such phase shift, T, =
Ty /m, depends on the switching period of the master phase, Ty;. In the implementation
presented hereafter, the interleaving will be assumed perfect, since the FPGA in charging
of implement the aforementioned interleaving control measures the switching period of the
Master phase at any time, computing on-line the correct value of K for a proper phase-
shifting. This methodology improves the interleaving operation during transients.

6.3 Switching frequency regulation

The switching frequency controller is only designed for regulating the switching period of
the Master phase. The slave surfaces presented in (6.12) imply that the switching period
of the Master control signal is automatically replicated by all the Slaves ones. Thus, the
SFC is only designed for the Master phase. The SFC chosen approach for this case is the
continuous-time one, hence, the procedure explained in Section 2.3 is applied.

6.3.1 Evaluation of ,OkjE

From (6.7), and using the equivalent control (6.8), the steady-state values for pF in the 12
V and 24 V cases are obtained as follows. The sliding mode equation can be expressed as:

on = BE (up —un,,) (6.13)

with g = (’f—i Additionally, the steady-state sliding mode entails that v. = v¥, which

simplifies (6.8) to upreq = % Thus, the expressions providing the expected values of 7,
in the steady-state sliding motion are

dM?L:1 = [E _*UZ] ) (6.14)
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Once the expressions in (6.14) are found, the values of p¥ and \ are evaluated for the
expected working conditions and the values of Table 6.1. For v} = 12 V arises

pr=26-10"% p; = —-78-10% X =2.1-10"7, (6.15)
and for v} = 24 V:

pr=39-10%p, =-39-10% X =1.6-10". (6.16)

6.3.2 SFC design

First of all, the values of v, that fulfil the Assumption B should be derived. The assumption
stated that the linear model developed (see (2.39)) holds when

-1
9

pr| s les

v lex| << min{ 71}, Yk >k

is met.

The implemented SM controller has a hardware limited switching period of 4 us. In
the same way, the limiting values of A (see Remark 1) ensure a maximum switching period
of T, = 50 ps, and recalling that 7*= 10 us, this leads to a maximum period error of 40
us. As it was chosen in the simulation of the SFC in the continuous-time approach (see
Section 3.3), the factor between the grade of change of A and o), is set to 20, in order to
fulfil the requirement of Assumption B. Therefore, the value ~;,, is calculated:

i |40 - 1075 = 20 - (7.8-107%) "

delivering vz,, = 6.4 - 10'. As a consequence, if 7y, is selected smaller than vy,,, the real
response of the switching period will fit with the model derived in Section 2.3. Moreover,
since the switching period is measured by an analog circuit, the characteristic polynomial
that determinates the expected response is the one shown by equation (2.42), with 7 =
65-107% (empirically measured). According to (2.42) and Theorem 3, the stable values for
~r, have to satisfy:

2(10 - 1076 +2- 65 - 107°)
2.1-107%)- (10-106)- (10- 106+ 4-65 - 10-9)

vL <
(

for the 12 V case and

2(10 - 106 +2- 65 - 10~°)
1.6-1075) - (10-10-5) - (10 - 106 + 4 - 65 - 10-6)

L <
(

for 24 V. Which result in vz = 5 - 10° and v, = 6.5 - 10°, respectively.

Finally, according to the previous results, the chosen value is v;, = 1.25-10% which meets
the previous conditions. With this value, the theoretical model delivers a response with a
transient response of around 2.5 ms without overshoot, for both 12 and 24 V regulated at
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the output.

6.4 Implementation Details

At this stage, several important aspects about the analog implementation are discussed.
As it was explained earlier, the controllers are implemented by two different blocks: an
analog block containing the SMC of the Master phase and the SFC, and a block based on
a FPGA in charging of guaranteeing the interleaving operation among the phases. In this
thesis, the first block is detailed hereafter, omitting the FPGA part for the sake of brevity
(see [53] for details).

For the design of the converter itself, a modular strategy is used. On the one hand,
each Buck converter is built in a single board, and on the other, a motherboard where the
phases can be plugged in is designed. This strategy facilitates an eventual maintenance of
the converters. The pictures shown at Figures 6.2 and 6.3 depict these boards.

L
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¥

Figure 6.2: Single phase picture. Figure 6.3: Motherboard picture.

As it can be appreciated from Figure 6.2, the single boards are designed being possible
the placement of the inductor on both sides, reducing the required space when they are
connected in the motherboard (see Figure 6.3).

Each single board includes the power stage and a current transformer in series with
the power inductor, in such a way that whatever phase could act as the Master one. The
Mosfet circuit driver and a small regulator are also embedded in the converter boards,
making possible its supply directly from the main input power (48 V).

The motherboard accommodates the SMC and the SFC control circuits, among other
secondary parts (as filters, regulator, etc). The SMC circuit is sketched in Figure 6.4, where
the sensing part, the switching function and the variable hysteresis comparator are easily
identified. For the output voltage sensing, a voltage divider with an Operational Amplifier
(AO) in voltage follower configuration is used. The signal x,;, coming from the Master
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current transformer, is directly employed by the AO. For the control law implementation,
two high speeds voltage comparators are used.

v,
2.5V —_ 20k }—

Variable Hysteresis
Comparator

Master switching
function

Figure 6.4: Circuit scheme of sliding mode controller using a variable hysteresis comparator.

The SFC circuit contains the switching period sensor and the hysteresis generator,
which are depicted in Figure 6.5.

Period Sensor i Integrator . Hysteresis
ton=100ns g i generation
o : 33V BATS4
4HC123 /]/] l =
Uy —P @

< i
! ! sV T
ton=100ns H ?
i . TL274

'
Tk
74HC123 H

S s
.

Period
Error

Figure 6.5: Circuit scheme of the period sensor and the analog structure implementing the
SFC for the multiphase converter.

The switching period sensor is based on the charge of a capacitor by a constant current
source. From the capacitor characteristic equation

dv,,

ic = C'c )
¢ dt

it is obvious that with a constant current applied, the resulting voltage is a sawtooth
waveform, where the slope is determined by 4., and C.. The circuit uses two monostable
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circuits, one of them is in charging of synchronizing the capture of the voltage value of the
capacitor in a rising edge of the control signal u, while the second one controls the switch
that resets this voltage just after the value has been acquired. This behaviour is depicted in
the left block of Figure 6.5, called Period Sensor. The system works as a sample and hold
circuit synchronized with u,;, holding the last measurement until the circuit is triggered
again. Although the system delivers discrete-time measurements, the time used to capture
the voltage value (1 us) together with the finite value of the sample and hold capacitor
(Csg = 1 nF) add dynamics to the measurement, which can be modelled by a first order
response. This model is characterized by 7, which was empirically found to 65 - 107 and
used in the previous stability analysis. Such designed circuit is intended to generate 5 V
when the switching period is of 10 us.

The parts called Integrator and Period Error make up the SFC. Indeed, as it can be
inferred form the Figure, they use standard configuration based on AO for computing the
period error and the integral action. Notice how due to the electronics used are unipolar, all
the circuits are polarized with a 5 V offset. Despite of the integral action itself, such circuit
includes a hardware saturator for the hysteresis value, conformed by a Schottky diode in
anti series with a zener diode. This structure implements the maximum increment of A,
ALz, being the block called Hysteresis generator who fixes the minimum value of A, A,;,.
Again using AO the A and —A are generated, ensuring their symmetrical characteristic.

6.5 Experimental results

Finally, the experimental results obtained in the laboratory with the built prototype are
shown at this Section. Firstly, the measured system features as efficiency, line regulation
and load regulation are summarized in Table 6.2.

Table 6.2: Experimental results of the Multiphase converter

Efficiency (%)  Load Regulation (%)  Line Regulation (%)  Line Regulation (%)
@Q65A, v.=12/24. E=48 V, v.=12/24. @Quv,=24V, P,,=1 kW. @Quv.=24 V, No load.
E=48V 0-65A E=36 to 55 V E=36 to 55 V

94.8/97.1 <0.97/1.1 <17 <05

The data shown at Table 6.2 certify a good performance of the prototype, achieving
good levels of efficiency. It should be remarked that such efficiency includes all the power
consumption of the system (including, FPGA, drivers, etc). The system also presents a
good robustness, which can be inferred from the line and load regulation results.

In order to check the expected features provided by the designed controllers, several
tests have been performed in the following. They are organized in four groups, namely:
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SMC performance, interleaving, SFC performance and system robustness.

1. SMC performance

The first test consists in step-change variations of the reference voltage from 12 V to
24 V and reversely, with a resistive load of 1 €2 connected at the output. Figure 6.6
portrays the responses of the output voltage, the load current, the switching function
and the measured switching period (scaled by 0.5 V/us). The bottom windows show
a zoom view of the transient behaviour when the output voltage reference changes
from 12 V to 24 V (left window) and when it decreases from 24 V to 12 V (right
window). Notice how the output voltage behaves with a smooth transient response,
which corresponds to the ideal sliding motion, and the hysteresis values are adapted
such that the switching period reaches the desired value at steady-state.

@ 2015/02/26 02:35:18 NormHi-Res  Edge CH3 £20.4 V
T 15 12.5MS/s Normal |

Stopped

D 2.00 Vzgom ] D 10.0 Va0 KEDRORONN
T Woin 125 k 1ms/div
M_'
Ve
L witieh e
i N
. Zooml : 1.5 k 10us/div Zoowz : 1.5 k 10us/div
ZO
f
{ \
|
\ =
. N N o s o M

Figure 6.6: Reference change 12-24-12 V with a load of 1 €2 at the output.

2. Interleaving

Figure 6.7 shows the behaviour of the current transformer signals of the 8 phases
in the start-up, when the converter supplies a load of 21 A and the output voltage
is regulated to 24 V. As it can be seen in the oscilloscope capture, the interleaving
operation is started from the second switching period (see current waveforms on the
left bottom window) and achieves interleaving at the desired switching frequency of
100 kHz in the steady-state (see right bottom window). Figure 6.8 shows the steady-
state behaviours of the current transformer signals of the 8 phases for a load of 65 A
with an output voltage of 24 V. From the previous Figures, the proper interleaving
operation is fully corroborated.

3. SFC performance

The two following tests are designed with the purpose to validate the SFC operation.
In Figure 6.9 the start-up of the multiphase converter for an output voltage reference
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Figure 6.7: Start-up of the current transformer signals of the 8 phases with a load of 21 A
for an output voltage of 24 V.
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Figure 6.8: Steady-state of the current transformer signals of the 8 phases with a load of
65 A for an output voltage of 24 V.
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of 24 V delivering 21 A to the load (at steady-state) is presented. Notice that the
initial value of A is far away from the steady-state one. Again, the Figure shows the
behaviours of the output voltage, the switching function, the Master control signal
and the measured switching period. The bottom windows detail the waveforms in the
transient state (left window) and in the steady-state (right window). As it can be seen
in the Figure, the output voltage reaches the desired voltage with a smooth transient
and with a small overshoot. Furthermore, the hysteresis bands are adapted such that
the steady-state switching frequency achieves the desired value of 100 kHz with the
theoretically predicted overdamped response in the switching period transient (see
Section 6.3).

YOKOGAWA ¢ 2015/07/01 19:50:32 Normal Edge CH3 £23.8 V
12.5MS/s Normal

e L TR B

= ﬁM‘

Figure 6.9: Start-up with a load of 21 A for a desired output voltage of 24 V.

The second test is devoted to highlight the switching period tracking of a step-type
reference. The switching period reference varies from 8 us to 12 ps and vice-versa.
The output voltage is regulated to 24 V and there is no load at the output. Figure 6.10
shows the behaviours of the output voltage ripple, Av,., the switching function, the
switching period, and the switching period reference. The SFC adjusts the hysteresis
band value in order to achieve the desired steady-state switching period with the
expected motion according to the model derived in Section 6.3. From the Figure, it
can be seen how the expected settling time of around 2.5 ms of T} is qualitatively
fulfilled in the real system, validating the developed models and assumptions taken.
Besides, the output voltage is not affected by the switching period reference variation,
implying that the real sliding mode is not being perturbed by the action of the SFC.
This effect can be also inferred from the low output voltage ripple, Awv,., observed
during the entire test. The waveforms detailed in the bottom windows correspond
to the steady-state dynamics at 8 us (left window) and at 12 ps (right window).
Such Figures also confirm the assumption of the piecewise linear behaviour of the
switching function.
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Figure 6.10: Switching period variation from 8 us to 12 us with a desired output voltage
of 24 V and no load.

4. System robustness

Finally, the robustness of both controllers are evaluated through sudden variations
of the load applied at the output. The following Figures depict the responses of
the output voltage, the switching function and the switching period (scaled by 0.5
V/us) when the load changes from 21 A to 65 A (Figure 6.11) and from 65 A to 21
A (Figure 6.12). In both cases, the output voltage reference is set to 24 V. From
these Figures it can be inferred how the converter recovers the desired output voltage
after a smooth transient and the switching period is not affected by the load changes.
Moreover, it is confirmed that the values of p= and A are almost insensitive to load
changes, since the hysteresis value, A, is nearly the same in both cases.
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Figure 6.11: Load change from 21 A to 65 A for a regulated output voltage of 24 V.
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Figure 6.12: Load change from 65 A to 21 A for a regulated output voltage of 24 V.
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6.6 Conclusions

Through the experimental results shown above, the proper performance of the SMC to-
gether with the SFC is confirmed in a multi input linear system. The expected proper-
ties of the full system as output voltage regulation, interleaving operation, steady-state
fixed switching period and robustness with respect to load variations have been confirmed.
Moreover, the continuous-time approach of the SFC has been successfully implemented by
analog circuitry, thus confirming the expected dynamics according to the developed model
in Section 2.3.
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Chapter 7

Voltage Regulation in a Boost
Converter.

The converters implemented in the previous Chapters (Chapters 5 and 6) respond to linear
systems with respect to the control input. However, there are power converters that do
not fit with this description, as the Boost converter. The equations describing the Boost
converter respond to a nonlinear ones, and it is interesting to evaluate the performance of
the SF'C in this type of structure.

Therefore, the SFC is implemented for regulating the switching period of a Boost
converter. The Chapter is structured as follows: firstly the nonlinear equations of the
converter and the parametric data of the Boost converter are presented. Then, the SMC will
be designed to regulate its output voltage. Next, the design of the SFC in the continuous-
time approach is detailed. Finally, the implementation details and the experimental results
will be shown.

7.1 The Boost Converter

The circuit scheme of a Boost converter is shown in Figure 7.1. The Boost converter can
be understood like a Buck converter where the input is used as the output, and this one
as the input. Nevertheless, the state space equations derived from this structure become
nonlinear.

The equations describing the dynamics of the Boost converter are shown in (7.1), (7.2).

di;

L— =F —wv.(1— 1
di 'Uc( u)7 (7 )
dv. . Ve

Cdt —zl(l—u)—ﬁ, (7.2)

where FE is the input voltage, v. the output voltage and L, C, R are the inductance, the
capacitance and the resistive load, respectively. In the previous equations, the discontinu-
ous control input, u, takes again the values {0,1}. M1 and M2 work in a complementary
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Figure 7.1: Boost converter.

manner, remaining one closed while the other one is open and vice versa. The parametric
data of the converter built in the laboratory are shown in Table 7.1.

Table 7.1: Boost converter parameters

Parameter Symbol  Value
Input voltage E 12V
Output voltage reference vl 48 V
Output capacitor C 132 pF
Inductance L 20 puH
Nominal resistive load R 20 Q
Switching period reference T 10 ps

The Boost converter, due to its step-up voltage conversion property, is extensively
employed in different industrial applications [54-57]. In general, the control of this topology
(and other similar ones) involves a complex task due to its nonlinear characteristics, which
becomes a challenge from the control point of view.

7.2 Sliding mode control of the output voltage

7.2.1 Switching surface design

The sliding mode controller is designed for regulating the output voltage of the Boost
converter. Due to the non minimum phase property of the Boost converter, the direct
output voltage regulation using the natural switching function o(v.) = v} — v, is not
possible, since it results in an unstable behaviour of the inductor current in sliding motion
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[10].  Alternatively, an indirect output voltage regulation is proposed with the sliding
surface:

o (ve, 11) = K16y + Iig/ev (1)dr — k31, =0, (7.3)

where the voltage error has been defined as e, = v} — v, and the switching surface para-
meters k93 are assumed positive. Some readers could identify the previous surface as
the typical control structure with two nested loops, the inner one regulating the inductor
current, and the outer one generating the proper inductor current reference for the inner
loop, in order to keep the output voltage at the desired level. In that sense, the terms in
(7.3) depending on e, constitute the outer controller, delivering the aforementioned cur-
rent reference. In these types of control structures, in order to study the system stability,
the inner loop is assumed to be much more faster than the outer one [7]. The difference
between that analysis and the one performed here resides in the fact that such hypothesis
is not employed.

7.2.2 Sliding dynamics

The time derivative of the switching function is

0 (ve, i) = =1 (ve, p) + (1 — w) a(ve, 1), (7.4)
where B
) K K ) K K1 .
¢1(Uca Zl) = Tg - R—EUC — R2€y, ¢2(UC>ZZ) = fs"Uc - 5121- (7-5)

From (7.4) it is clear that the sliding mode exists when

[$2(ve, i) | > [ (ve, ).

Using the equivalent control method [7], it is possible to find the ideal sliding dynamics.
The u.,, which is found with o (v, 4;) = 0 and o(v., ;) = 0, is determined by:

Ya(ve, i) — 1 (ve, 1)

Upg = - , 7.6
! s (e, ir) (7.6)
leading to an existence range of the sliding mode as:
¢1 (/UC) Zl)
0< ———= < 1. 7.7
Valve ) (r7)
The sliding mode dynamics are derived replacing the equivalent control in (7.1)-(7.2):
di, (vc, i)
L—=F— )
dt Uo(ve,ir) (7.8)
dvc ¢1 (Um l) Ve
C— = e 7.9
dt Uo(ve,i)) R’ (7.9)
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*

yielding also a nonlinear state space equations. The point (i}, v}) is an equilibrium point

of (7.8), (7.9) that fulfils

,U*Z

== 7.10
As a consequence, the system stability can be locally disclosed by analysing the stability
of the linearized system around this equilibrium point. The linearized system in the error

variables e; = 4; — 1], e2 = v, — v}, is given by:

d€1 E2/ﬁ71 E 2"£1
L=t =~ - Siia 7.11
dt = Cuti i) (o il) ( RC) (7-11)
d€2 E2K,3 1 2E/€3
C—2=—"1 4~ (vky— 7.12
it~ Logtnip) T Ren(on i) (“ L )™ (7.12)

where the expressions 1y (v}, i}), ¥2(v}, if) can be taken from the evaluation of (7.5) under
sliding motion, resulting:

2

Ers K1 - (v* Z*) K3 K1V
— - 5 2(Ves Yy
L RC ¢ ¢

1% RCE

(v, i) = (7.13)

Stability conditions of (7.11),(7.12) can be derived from its characteristic polynomial:

1 E?k, KoV  2FEkK3 E?ky
P(s) = 52 — c . 7.14
() ="+ T (LCU’C" rRC T RLC )T TCwi (i) (7.14)

Therefore, assuming that v} > 0, the origin of (7.11),(7.12) is locally asymptotically stable
when

Eviks  Kv?

>0 7.15
F%k;  kou'? 2FEv*kg
— < ¢ . 1
7 i + 7l > 0 (7.16)

Taking into account the values of the converter parameters shown in Table 7.1 and the
stability conditions given by (7.15), (7.16), the control parameters are set to k1 = 2.2,
ko = 2000, k3 = 0.33. The goal is to achieve a dominant pole response, being governed
essentially by a first order dynamics. Replacing these values in (7.14), the roots of P(s)
are: s, = —923, s,, = —15583. With these selected gains, the system exhibits a good
robustness in the face of load variations, as it will be confirmed in the following experimental
results.
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7.2.3 Control law

Finally, the control law that enforces sliding motion on the space region given by |o (v, 4;)| <
A is found using (7.4) as:

u:{()lf o -sign () < —A or (Jo| <A & 5 >0) (7.17)

Lif  o-sign(ie) >A  or (Jo| <A &d<0).

It has to be remarked that, from a practical point of view, the design can ensure a constant
sign of 1 for a given working conditions, thus avoiding its evaluation by the control law.

7.3 Switching frequency regulation

7.3.1 Evaluation of pf

The key point for the SFC design is to find the expressions for pkjE for a given steady-state
sliding motion. Employing the equivalent control derived in (7.6), the equation of (v, 7;)
in (7.4) is rewritten as:

G (Ve, 1) = P2(ve, i) (Ueg — ). (7.18)
Therefore, the steady-state values of (v, ;) within the hysteresis band boil down to:
o(08.07) = walotif) (1- 2 — ).

Thus, the values of pJ and p, result in:

1 EN
+ * sk —1
= —-————— 1 _——
P d(vz,i?)uzo ¢2(Uc7ll) ( /UZ)
- 1 v 1V
b= = i)

O.-(Uzv i;)uzl E
Merging these expressions with the values of the parameters listed in the Table 7.1, one
gets:

(pf.p7)=1(21-107°-6.3-107°). (7.19)

7.3.2 SFC design

Firstly, let us to validate in what conditions the Assumption B is fulfilled, which permits
to find the stability conditions through an equivalent linear model of the SFC (see Section
2.3). In the practical implementation, the variable hysteresis band is bounded, leading
to a limitation of the feasible switching periods within the range [2 us, 20 ps], arising an
expected maximum error of 10 ps. As it was shown in the simulation part (see Section
3.3), using a relation of 20 between the grade of change of A and o(v,, ;) the fulfilment of
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Assumption B is guaranteed, then

—1
)

Py Py

"

207,, - 10-107° = 1.59 - 10° — ~1,, = 7.95 - 10°.

207y, |maxeg| = min{

and, therefore

Notice that for v, < ~i,,, the response of the equivalent model shown in Figure 2.9
will match with the response obtained with the built electronic prototype.

The stability conditions obtained from the linearized model can be found using the
Theorem 3 and the equation (2.41). In this case, since the SFC is implemented by analog
circuitry, the time constant (7 = 65 us, empirically measured) of the period sensor has to
be taken into account. For the proper evaluation of (2.41), the desired switching period,
which is T* = 10 ps, is also required. Hence, from Theorem 3 and equation (2.41) the
stability of the linearized system is guaranteed by

L AT 420 2(10-1076+2-65-1079)
ES AT (T +47)  1.6-106-10-1075-(10- 106+ 465 - 10-6)’

g

which yields vz < 6.14 - 10°.

Finally, the value of the control parameter is set to v, = 5-10%. In this case, the value of
~1, has been tuned close to the limiting value guaranteeing the compliance of Assumption
B. With the selected value of vy, an overdamped response with low overshoot is expected
in the implemented system, as it will be detailed in the experimental part.

7.4 Implementation Details

The Boost converter prototype has been built with the MOSFET power switches PSMN034
from ST Microelectronics (M1 and M2 in Figure 7.1), the inductance SER2918H-223 from
Coilcraft, and 4 electrolytic capacitors of 33 uF arranged in parallel in order to obtain a
total capacitance of 132 uF with low equivalent series resistance. The employed MOSFET's
driver is the LM5105 from Texas Instruments.

The aforementioned controllers (SMC and SFC) are implemented in a completely analog
manner. The switching function, o(v,,14;), is generated using a circuitry based on AQO, as
Figure 7.2 depicts. From this Figure, it can be seen how for the output voltage sensing, v.,
a voltage divider is used together with and AO in voltage follower configuration, ensuring
a stage with low output impedance. For the inductor current measurement, 7;, a shunt
resistor of 10 m ) with an AO with a high common mode voltage capability is chosen.
The selected resistive value for the shunt provides a compromise between low effect Joule
losses and a good signal-noise relation. In general, the allowable common mode voltage of
a standard AO is equal or close to the used supply voltage. Since the switching function
will be, in steady-state, a triangular signal of 100 kHz, a high bandwidth is needed in the
AO. A high bandwidth AO usually implies a reduced supply voltage range, as it is the case
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here. Therefore, the common mode voltage at the AO inputs should be lower than 5 V
(see Figure 7.2). The common mode voltage on both shunt resistor terminals is at least the
output voltage (whose desired value is 48 V) plus eventual ringings caused by the Mosfet
commutations. It results evident why an AO with a high common mode voltage feature is
required. The selected chip is the AD8216 from Analog Devices.

CONVERTER
o I
Q TLV27‘| Vg 1] — 20k}
U
25\/—': - S Q | M1
driver M2
1
{ 1k8_} R Q
+ —
10 mOhm AD8216 25V — 1ok
= G=3
—J 10k
“ 12
Ve — 10k -
« TLV271
Ve — 10k +
o T0K

Figure 7.2: Analog electronics implementation of the switching function and the variable
hysteresis band comparator.

The variable hysteresis comparator is again built using two high speed comparators
from Microchip, specifically the MCP6567 together with a Set-Reset Flip-Flop. For the
Flip-Flop implementation a pair of NOR gates are needed (chip 74LS02 or similar) [58].
The selected configuration facilities the variation of the hysteresis band for the comparator.

The circuitry implementing the switching function has an integral action that could
integrate its output prior the start-up of the system. In order to avoid such undesirable
effect, which would degrade the expected response, a special circuit has been designed
in order to keep the integrator output null until the system starts. Besides, a soft-start
strategy has been implemented consisting in an output voltage reference growing linearly
from the initial voltage at the output (12 V) up to the desired steady-state one (48 V).
The usage of a soft-start is usual in applications with the Boost converter in order to avoid
dangerous overvoltage at the output, particularly when the load resistance reaches high
values [59]. These systems, have been omitted in Figure 7.2 for the sake of brevity.

Finally, the SFC is implemented with the same structure shown in Section 6.4, but with
the updated resistor and capacitor values according to the designed value for v = 5 - 108.
The resulting circuit scheme is shown in Figure 7.3.
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Period Sensor i Integrator i  Hysteresis
for-1o0ns i i generation
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..
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Figure 7.3: Circuit scheme of the period sensor and the analog structure implementing the
SFC for the Boost converter.

7.5 Experimental results

The experimental results obtained with the designed system are discussed in this last
Section of the Chapter. The results are organized in three groups: SMC performance, SFC
performance and system robustness.

1. SMC performance

Figure 7.4 shows the start-up of the converter. The oscilloscope capture illustrates
the behaviours of the output voltage, v., the switching function, o(v,,%;), the control
signal, u, and the switching period, Tj; as it was noted in the previous Chapter, the
signal corresponding to the switching period appears converted to voltage with a rate
of 0.5 V/pus. In the test, the load resistance is R=100 €2, which could be understood as
a light load condition, being in general the worst scenario for the converter start-up.
Notice that the initial value of the output voltage is the value of the input one due to
the anti-parallel diode of the M2 switch (see Figure 7.1). From the Figure, it can be
seen how the output voltage linearly rises up and how the amplitude of the hysteresis
band (see the behaviour of o(v,,1;)) is adjusted to the required value that provides
the desired switching period (see zoomed areas of the steady-state of the waveforms
shown in the bottom right window). Besides, the switching period converges to the
reference value after a brief transient with a small undershoot. Finally, the bottom
left window shows the transient response of the switching function. Notice how in
the start-up the switching function reaches quickly the hysteresis region bounded by
—A and A, from its initial condition. It should be also remarked that the piecewise
linear assumption can be taken as a fact almost from the beginning of the test (see
the zooms views in the bottom part of the figure).

2. SFC performance
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Figure 7.4: Converter start-up. v.: red, u: blue, o: magenta, T green.

The following test is devoted to highlight the switching period regulation capability
of the system, with a tracking of a step-type reference. Specifically, the switching
period reference varies from 7% = 8 us to T* = 12 ps and vice-versa. For this test
the load resistance is of R = 20 €, corresponding to the full load condition. Figure
7.5 shows the behaviours of the output voltage ripple, Awv,, the switching function,
o(ve, 1;), the control signal, u, and the switching period, T}, again scaled at a rate of
0.5 V/us. The SFC properly adapts the hysteresis band value (see the envelope of
o) in order to achieve the desired steady-state switching period. The experimental
result overlaps with the theoretical one. Specifically, the resulting closed-loop transfer
function of the model of Figure 2.9 is

T(s)  Mp(2+Ts)(rs+1)
T*(s) p(s) ’

where p(s) is given by (2.42). In fact, according to the data presented in the Table
7.1, and the designed value 77, = 5 - 10®, the transfer function results in

T(s) 5.483 - 107652 + 1.181s + 1.687 - 10*
T#(s)  6.5-10710s3 +1.4-10"452 4 1.916s + 1.687 - 104’

which fits the experimental oscilloscope capture of Figure 7.5. Notice also that the
switching function does not leave the hysteresis band region, and therefore the output
voltage is not affected by the switching period reference variation. This fact can be
confirmed from the output voltage ripple behaviour, Av,., observed during the entire
test. The waveforms detailed in the bottom windows correspond to the steady-state
dynamics at T* =8 us (right window), and at 7% =12 us (left window).
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Figure 7.5: Switching period regulation for a step change from 7™ = 8 us to 7™ = 12 us
for v} =48 V and R = 20 Q. Awv,.: red, T: blue, o: magenta, u: green.

3. System robustness

The two last results show the robustness of the controllers in front of load transients
at the converter output. Again, the responses of the output voltage, v., the load
current, i, = %, the switching function, o(v,,;), and the switching period (scaled by
0.5 V/us), Ty, are shown in Figures 7.6 and 7.7, when the resistive load changes from
R =200 to R =100 €2, and from R = 100 €2 to R = 20 €2, respectively. In these
Figures, one can see how the converter recovers the desired output voltage after a
very smooth transient (with a maximum deviation of 2 V around the desired value
of 48 V), as expected from the design of Section 7.2, while the switching frequency
is only slightly affected by the load change.
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Figure 7.6: Load variation from R = 20 Q to R = 100 2 for v} =48 V. v,:
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YOKOGAWA 2016/10/12 02:00:06 Normal EdgeCH2 £1.14 A
25MS/s Normal
> 10.0 Vaiv @ kD> 2.00 Vi E KD 5.00 Vv M8
Hein = 125 k 500us/div
Picset -

p—

i N
ZO

90 ¥
V2 420V N 730V

Figure 7.7: Load variation from R = 100 €2 to R = 20 Q for v} =48 V. v.:
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7.6 Conclusions

The experimental results confirm an overall good performance of the system under the
control of the SMC and SFC, and most importantly, they corroborate that the SFC is
able to regulate the switching frequency in steady-state without degrading the well-known
features of the SMC, as the robustness or the high transient response. The dynamics
observed in the laboratory results, highlight the usefulness of the theoretical developments
described along the Chapter, for both SMC and SFC controllers. Moreover, the developed
model in Section 2.3 is validated for a nonlinear system as the Boost converter is.
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Chapter 8

Voltage Tracking in a Voltage Source
Inverter.

The applications of the SFC presented in the previous chapters belong to cases where the
SMC is under a regulation control task. In this Chapter, the application of the switching
frequency regulation strategy in a tracking control problem is set out. Specifically, a
voltage source inverter (VSI) is assembled for experimental evaluation in the laboratory.
A sliding mode control will be designed in order to generate a sinusoidal voltage at the
converter output, thus leading to a tracking control problem. In this experimentation,
both controllers, the SMC and the SFC, are digitally implemented by a micro-controller.
Moreover, with the purpose of showing results as realistic as possible, the VSI developed
in the laboratory has been designed with a medium power-handling capability (up to 2.2
kW). Another important characteristic of the work presented hereafter is that the SMC
has been designed with the aim of operating with linear and nonlinear loads connected at
the VSI output. Such property allows us to test further the performance of the SFC under
a new working scenario.

The Chapter is organized as follows: in the first Section the VSI structure, its paramet-
ric data and the corresponding state space equations are introduced. The second Section
tackles the sliding mode generation of the AC signal (220 V RMS / 50 Hz) at the VSI
output, supporting linear and nonlinear loads. Then, the SFC is designed according to the
theory developed at Section 2.2.2. Subsequently, the implementation of both controllers
in a digital platform is addressed and discussed. Lastly, the main experimental results are
shown in the last Section.

8.1 The voltage source inverter

The VSI circuit scheme is depicted in Figure 8.1. This circuit is commonly employed to
generate a sinusoidal signal at its output and it is classified as DC/AC converter. With
regard to its structure, the VSI can be understood as a traditional Buck structure with a
full bridge of switches. As a consequence, the VSI is able to generate voltages at its output

Fixed-Switching Frequency Sliding Mode Control Applied To Power Converters 121



CHAPTER 8. VOLTAGE TRACKING IN A VOLTAGE SOURCE INVERTER.

between E to —F. The VSI dynamics are described by the following state space equations:

M1 M3 I
— —
M
Fe 23
I—% Jl—gs = | i
E U= u=—1 +
[
M4 |

M2
l_
e
H H
1 u=1

Figure 8.1: Voltage source inverter structure.

CCZC — i — iy, (8.1)
i
L% = —v.+ Eu, (8.2)

where 4; is the inductor current, v. is the output voltage, i, is the load current, L is the
inductance, C' is the capacitor and FE is the input voltage. The discontinuous control input
u takes values in the discrete set {—1,1}. This strategy corresponds to the well-known
two level modulation in the pulse width modulation (PWM) techniques [60]. The power
switches are represented by M, My, M3, and My. As it is shown in Figure 8.1, M; and M,
are short circuited when v = 1, and remain open when u = —1, whereas M, and M5 work
in a complementary way. Table 8.1 presents the specific values of the converter parameters
used in the experimental setup.

The voltage source inverter is the most used DC/AC converter in the industry [61-65].
Because of its simple structure, the converter has the capability to work with high voltage
and manage high powers. As an example of application, VSIs are used in the photovoltaic
plants injecting the power generated by the solar cells to the AC power grid. Another
application of VSIs can be found in the uninterruptible power supply (UPS) systems,
where is common the employment of back-to-back structures [66], being the VSI one of
its most important parts. Similarly, the VSI converter is the preferable option for AC
machine drives. The AC motors are used, among other, in air conditioner’s compressors,
refrigerators, water pumps, electric saw, conveyor belts, electric traction in trains and,
increasingly, in the growing market of the electric vehicle.
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Table 8.1: Voltage Source Inverter parameters.

Parameter Symbol  Value
Input voltage E 420 V
Desired output voltage amplitude A 220v2 V
Output voltage frequency f 50 Hz
Inductor L 440 pH
Output capacitor C 100 puF
Nominal output power (Linear Load) P 2.2 kW
Peak output power (Linear Load) P, 3.3 kW
Switching period reference T 50 ps

8.2 Sliding mode tracking of the output voltage

8.2.1 Switching surface design

In this case, the control objective is to track a time-varying reference voltage at the output.
The signal to be tracked is:
v = Asinwt. (8.3)

Once the functionality of the VSI has been defined, the following task is to design a
switching function that fulfils the desired performance. In the traditional SMC schemes
applied to this converter, since the relative degree of the output voltage, v., with respect to
the control, u, is two, the following first order linear switching surface is typically used [46]:

o (’UC, Uc) = wlev -+ wQCéU = O7 (84)

where e, = v. — v}. Notice how (8.4) contains the first time derivative of the output
voltage. As it was explained in Section 5.4, it is usual to take the current flowing by the
output capacitor as the first time derivative of the output voltage, avoiding the direct dif-
ferentiation of the measured voltage which always brings noise problems (even in digital
differentiation). Such measured current is properly replaced in the switching function writ-
ten in (8.4), leading to an equivalent expression. However, this technique usually provides
good results only with linear loads, degrading its performance with other types of loads.
Moreover, from the sliding mode control design, the substitution of the first time derivat-
ive by the output capacitor current can compromise the piecewise linear behaviour of the
switching function when the load is not pure resistive. As a consequence, in order to design
a switching function less sensitive to the type of load applied at the output, an alternative
switching function is proposed. The new switching function uses the output signal gener-
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ated by a Current Transformer (CT), measuring the inductor current, ¢;. Specifically, the
proposed switching function is:

L,

0 (Ve, Tar) 1= =16y + Yo C0; — %MRI,

T (8.5)

where again v} is the desired output voltage, z); the signal coming from the current
transformer output and 1,1, > 0 are the switching function parameters. L,, M and R,
are CT parameters, and C' is the capacitance of the output VSI filter. As it was already
introduced in Section 6.2, the state space equation generated by the CT inclusion is:
dx M dll
L,—— = —Ryx Ry M —. 8.6
N b+ L i (8.6)
In order to illustrate the lack of piecewise linear behaviour in the switching function if i,
is used as C'0,, a simulation of the system designed and experimented in this Chapter is
early introduced at this step. Figure 8.2 depicts the simulation result for a nonlinear load,
where the signal ¢, and Zj; are shown, being z,;:

L,
MR,

Ty = Tm
Therefore, expression (8.5) can be rewritten as:

o (Um xM) = _wlev + %OU: - wZ'@M

The behaviour of the CT can be understood as a high pass filter, since, from (8.6), it can

be derived that:
sL, + R,

SR[,M

The gain of the previous filter in the band pass can be found solving the following limit:

II(S) = XM(S)

I sL,+ Ry L,
im =
s—oo SRy M RyM’

and hence I, is proportional to the high frequency ripple of ;.

The nonlinear load used in the simulation corresponds to a diode rectifier with a filtering
capacitor supplying a resistor (see Figure 8.10). When the diodes are closed (|v.| > V),
the load connected at the VSI is a capacitor in parallel with a resistor (assuming ideal
diodes). When the diodes stay open (|v.| < Vj.), the VSI is in no load condition. From the
result in Figure 8.2, it is clear that when the diodes are switched on and there is current
flowing to the load, i. loses the piecewise linear behaviour while z,; does not. Such results
justify the selection of the switching function shown in (8.5).
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Figure 8.2: Details of the signals ¢, and z,; when the inverter is loaded by a nonlinear
load.
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8.2.2 Ideal sliding dynamics

The SMC design is derived from the first time derivative of the switching function:

o (UC,JZ'M) = _wlév + wQC/U: + %.TM — % [EU — Uc} . (87)

Moreover, the dynamics enforced by the sliding motion on o (v., ) = 0 can be found
from (8.5) as

par = o [ (0 = v0) + ¥aCi]. 53
and, therefore
b (e a) = —thé, + Ui — B (W, —aC) — 2 [Bu-u]  (89)

where 8 = R". Thanks to the inclusion of x) in (8.5), the relative degree between the
switching functlon and the control input is one, as it corroborates the fact that u appears
in ¢ (v, xp). Arranging terms in (8.9) one gets (notice that e, = v, — v}):

%

0 (veyxpr) = fF+ fC— (8.10)

where f* = 1CO5 + BiheCO} —l—% vy, f¢ = (1/)2 ﬁ%) — 16,. From (8.10) it can

be figured out that a sliding motion can be enforced in o (v, 23) = 0 when the term
depending on control dominates the rest of terms, or

Bps it

From (8.10) the equivalent control is easily found:

= (") (8.11)

w2

Once the equivalent control and the sliding mode equation have been found, it is time to
analyse the resulting sliding dynamics in order to check if the desired tracking of v} by v,
is achieved. Replacing the equivalent control, (8.11), in the original system (8.1), (8.2),
the state space equations that arise are:

di

L Y (512
dvc o

C o = . (8.13)

Let us analyse the sliding dynamics for the tracking error e,. Combining equations
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(8.12) and (8.13), the resulting dynamics for the tracking error, e, = v. — v}, can be found:

Grg, o, BC
T/Jz ! w2Lm ! Lx ¢ .

As expected, the sliding mode dynamics of the output voltage includes the evolution of
the load current. In this thesis, three types of loads are studied, namely: resistive loads,
reactive loads and nonlinear loads. Each of those cases are analysed separately in the
coming Sections 8.2.4, 8.2.5 and 8.2.6 for further understanding.

Cé, +

(8.14)

8.2.3 Control law

The control law that ensures sliding motion in o(v., xyr) = 0 regardless of the type of load
applied to the VSI, is obtained from (8.10) as:

u—{ —1if o< —=Ar or (o] <Ay &5 >0)

Lif o=Ap or (o] <Ap&d<0). (8.15)

8.2.4 Sliding dynamics for pure resistive load

Ve . .
The specific case for a pure resistive load is characterized by i, = ik which, using (8.14),

boils down to the equation:

C@+%@+%& = By T (8.16)
2

Gl L. R

The dynamics in (8.16) depends on the VSI parameters and the controller gains. The
selection procedure of L and C' values is omitted for the sake of brevity, but, summarizing,
it follows setting the cut-off frequency of the output LC filter at least a decade below the
switching frequency, thus reducing the output voltage ripple [2]. Therefore, the parameters
to design are 11, ¥9, L, and R;,. Notice that the CT parameters are treated as switching
surfaces gains, including the sensor dynamics in the design. Let us define the following
parameters in order to clarify the future developments:

RN R
¢2a an g RO’

Replacing those definitions in the sliding mode dynamics, (8.16) results in:

Cé, + [a+~vC|é, + afe, = CU.[B—1]. (8.17)

From (8.17) it can be easily derived that if § = « a perfect tracking of the output voltage is
achieved, since (8.17) has e, = 0 as an asymptotic stable equilibrium point. The problem is
that the output load is not fixed and can vary under different situations. As a consequence,
the strategy followed in this study is to adjust § for the worst load case, which corresponds
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to the output peak power. Hence, the value of 3 is fixed as:

1
5 - Ran
being 2
R, =—.
P 2P,

The value of « is the remaining design parameter. The design criterion for a has several
implications in the tracking error dynamics. One of the design criteria for this value is the
amplitude and phase error committed in v. with respect to v} at steady-state. From (8.17)
it can be derived the transfer function that relates v, and v;:

Vo(s)  *C+sla+pC)+ap
Vi(s) s2C+s[a+~0] +ap’

(8.18)

Figure 8.3 shows the frequency response of (8.18), for a values from 0.5 to 2, for a condition
where the applied load is not the maximum one (R # R,). Specifically, in these curves
R =200 €2, being such value far away from the used value for designing 3, which is i, =14.7
Q). This value implies one of the worst-case scenarios from the tracking error point of view.
In the graph, the desired frequency of the VSI output voltage (50 Hz) is highlighted. From
the Figure, it is clear that both amplitude and phase error at 50 Hz decrease as « increases,
being such error acceptable when o > 1.

Bode Diagram

—
—

1.08 ..}
1.04 L
1.02 |

Magnitude (abs)

Phase (deg)

Frequency (Hz)

Figure 8.3: Bode plots of expression (8.18) with « as a parameter. 3C = 1/R, = 0.068,
~C' = 0.005.

The « parameter has also influence in the transient response of the error dynamics.
From equation (8.17), it is obvious that the characteristic polynomial governing such dy-
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namics is:

Cs* + [a+7C] s+ aB = 0. (8.19)

Using (8.19), an equivalent closed-loop system can be found as its closed-loop poles coincide
with the roots of (8.19). This methodology allows us to plot the root locus as a function
of a value. Notice that (8.19) is equivalent to:

a s+p

———F =0. 8.20

C s2++Cs (8.20)
Figure 8.4 depicts the resulting root locus using a load value satisfying v = 0.5 3. On the
Figure, it can be seen the values of the breakaway and break-in points, s;, so, and the
corresponding values of « for those points.

Root Locus
[ ' ' ' ' f
=B+ VBB -
ag, =C (28—~ —2VBVB—7)

Imaginary Axis
N

52:—5—\/3\/5—7
a5, =C (28 =7+ 2VBVB —7)

Real Axis
Figure 8.4: Root locus of system shown in (8.20). v = 0.5 /.

The interesting point is se (break-in point), since the closed-loop poles becomes higher
in absolute value, providing a fast transient response. Let us analyse the conditions for a
in the working range of ~ such that the closed-loop poles departure always from s,, thus
providing overdamped responses. Selecting R, as the minimum resistive load, the working
range for v is defined according to the expected load level in the inverter:

R, <R — 0<y<g.

The value of a corresponding to the break-in point s, is (as it is shown in Figure 8.4):
Qs =C<25—7+2\/5\/ﬁ—7>,
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which results, for the limiting values:
’Y:O — 52:_2ﬁ7 U, :4507

v=8 = s=—B, a,=pC.

Therefore, if the o parameter fulfils

4
a> 460 = R
the responses will be overdamped for all the loads conditions. For the case analysed in
this thesis, using the data shown at Table 8.1, the requirement for a results in o > 0.26.
Additionally, according to Figure 8.4, it is clear that (8.19) will have a root in the range
(s2, —f), thus entailing a transient response with a time constant, 7, at least equal or
higher than 1/(2 ) and always smaller than 1/0.

According to the previous discussion, it is reasonable to use an o > 1. However, it exists
an inconvenient from a practical point of view that could appear if « is too high, which is
the lack of piecewise linear behaviour of o. This nondesirable effect is related to the high
frequency ripple in the state variables i; and v,, produced by the switched characteristic of
u. Let us study such phenomena through expression (8.10). At this point, it is important
to remind that the switching frequency is designed as high as, in a switching interval, the
system dynamics related to w (frequency of the desired VSI ouput voltage v*, equation
(8.3)) can be considered constant (7" << 27 /w). Unlike v}, that only has harmonics in
w, in the real sliding mode v. and 7#; have harmonics at the switching frequency. This
can be easily proved from (8.1) and (8.2). From (8.2), it is evident that the action of
the discontinuous action u induces high frequency harmonics in 4; (E is a constant value).
Similarly, such ripple in i, produces a high frequency ripple in v, as (8.1) states.

Recalling (8.10), it can be observed that f* only depends on v} and, as a consequence,
it can be treated as a constant value, I*, during a specific switching interval. This does
not happen with f€¢ since it depends on v., which has high frequency ripple. Therefore,
the expression for the switching function time derivative in the real sliding motion can be
approximated as:

0 (ve, xpy) = F* — anhg (Be, + €,) — %(Eu —ey). (8.21)

The error e, appearing on the right term in (8.21) is not worrying since £ >> e, and,
in practise, e, can be neglected. Nevertheless, it is evident how with high values of « the
term on the middle could take relevance, since e, has high frequency components due to
ve. As a result, a high « amplifies the effect of e, in (8.21), compromising the assumption
of piecewise linear behaviour of the switching function.

Therefore, in order to select an « value providing: a good transient response in the
overall load range, a low phase and amplitude tracking error in steady-state and preserving,
as far as possible, the piecewise linear characteristic of o, & = 1 is chosen.
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Finally, the resulting frequency responses of (8.18) with the «, § selected for different
loads are shown in Figure 8.5. The bode plots correspond to load values, from R = 15
up to R = 20082. From the curves, it can be inferred how with the designed values the
best responses are obtained when the output power increases (as expected). However, it
is clear also from the Figure that with light load conditions the phase and amplitude error
are really small at the working frequency of 50 Hz, being of 1.5° and 1%, respectively, in
the worst case. It should be remarked that the maximum load case (y = SC') has been
omitted since the response becomes a straight line equal to one (perfect tracking).

50 Hz

Magnitude

<]
[3S)
T

1 =

Phase (deg)

N R TR S RS 1T R SRS P R S R T T TN RN RT T W SE R ERTTT
3 4 S

10 10 10 10 10 10
Frequency (Hz)

Figure 8.5: Bode plots of expression (8.18) with the applied load at the output as a
parameter.

8.2.5 Sliding dynamics for reactive linear load

The previous Section has shown how to design the switching function parameters when the
loads applied to the VSI are purely resistive, and how to minimize the tracking error for a
given load range. However, it is also interesting to analyse the sliding mode dynamics for
different loads connected at the VSI output. Let us define a general impedance, Z(s), as:

pS™ + ap_18" -+ ag
by 8™ + A1 8™ 4+ by

Z(s) = (8.22)
The function shown in (8.22) can be treated as a positive real function, (from now on
PR) [67], [68]. As it is stated in Chapter 3 of reference [67], whatever realization of an
impedance network consisting of resistors, capacitors or inductors delivers a PR function.
Therefore, a general analysis carried out considering that the output impedance of the
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inverter Z(s) is a PR function would apply for whatever type of load, as R-L, R-C, R-
L-C, etc. The main properties of a PR function, among others (see [67] for details) are
summarized in the Definition 1.

Definition 1. A PR function, Z(s), fulfils that:
1. No poles or zeros must be in the right half of the s-plane.

2. Poles of Z(s) and poles of 1/Z(s) on the finite imaginary axis must be simple and
have real and positive residues.

3. |n—m| < 1; no poles and zeros at infinity must be simple.
4. |larg Z(s)| < /2 for |larg s| < w/2.
5. A sum of PR functions is also PR.
6. Being Z(s) PR, 1/Z(s) is also PR.

The PR characteristic does not only belong to linear impedances, whatever function
can be PR if some requirements are fulfilled. The Definition 2 states the conditions for a
rational function with real coefficients, Q(s), to be PR [67].

Definition 2. A rational function, Q(s), is PR if:
1. Q(s) must have no poles in the right-half side of the complex plane.

2. Q(s) may have only simple poles in the imaginary axis (jw) with positive and real
residues.

3. Re Q(jw) >0 Vw.

At this step, a general analysis of the output voltage dynamics is performed. The
output current is characterized in the s domain as follows:

Using such expression, and applying the Laplace transform to (8.14), one gets:

S2CE,(s) + saB,(s) + aBE,(s) = sBCV(s) — sV.(s) 76) (8.23)
Since E,(s) = Ve(s) — V¥ (s)
s*’CE,(s) + saB,(s) + aBE,(s) = sBCV(s) — s [Ey(s) + Vi (s)] ! (8.24)

Z(s)
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Using expression (8.24) the equivalent block diagram of the resulting dynamics is sketched
in Figure 8.6. From Figure 8.6 the closed-loop transfer function can be also deduced, which
results in

G(s)

T(s) = D(S)WS)H(S)’ (8.25)
where
H(s) = 1/Z(s), D(s) = {RLLC—%} G(s) = <o wm
r o S% Y2Ly

First of all, from the defined transfer function D(s), it is clear that the zeros of the imped-
ance connected to the output become closed-loop poles. The function D(s) is intended to
represent realizations of real impedances, having always a dissipative characteristic, res-
ulting in roots with real parts lower than zero. Therefore, from the PR characteristic of
Z(s), and assuming always real parts lower than zero, all the zeros and poles of Z(s) will
be located in the left side of the complex plane, which does not compromise the system
stability.

V*(S) RbC’ . 1 S
e Z(s) s2C' + sa+ af
Ey(s)
1 <
Z(s) |

Figure 8.6: Equivalent diagram of the ideal sliding mode dynamics in the s domain. General
case in function of Z(s).

The remaining poles of (8.25) are determined by:
P(s) =1+ G(s)H(s). (8.26)

The stability analysis could be performed over the equation described in (8.26) for a
specific load applied to the VSI, substituting the corresponding impedance in the s domain.
However, it is interesting to perform a general analysis trying to take advantage of the early
presented properties of a PR function.

It has already been noted that Z(s) is PR due to its construction, an also its inverse
H(s) =1/Z(s). According to (8.26), in order to obtain a phase margin greater than zero
(which implies stability), the argument of G(s) H(s), should be within +7. From the PR
characteristic of H(s), its phase fulfils |arg H(s)| < m/2. If G(s) would respond to a PR
function, its phase would be within |arg G(s)| < w/2 as well, and |arg G(s)H (s)| < .

The requeriments for a function to be PR were detailed in Definition 2. The function
G(s) has no poles in the right-half side since its denominator is a second order expression
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with positive coeficients, implying that G(s) is Hurwitz [69] and the conditions 1 and 2 of

Definition 2 are meet. Let us check the third condition in Definition 2. The evaluation of

the real part of G(jw) is presented as follows:
jw

21/)1 —|—jw (zﬁ;fgb _ w20>

G(jw) = = (8.27)

FETRETEE (s ) vl

2

being the real part of the complex impedance,
W2
Re G(jw) = v = (8.28)
1R
<¢;Lb w20> —I—w2w;

always positive. Therefore, the condition 3 of the Definition 2 is also met and G(s) is PR.
As a consequence, the phase of G(s)H (s), fulfils |argG(jw)H (jw)| < 7.

The stability of the resulting system can also be found through the Nyquist stability
criterion. Since |argG(jw)H (jw)| < m, the resulting path of G(jw)H (jw) in the complex
plane describing the contour —jw to jw, with 0 < w < 0o, cannot cross from the second
to the third quadrant or vice versa, and it is therefore impossible that the point —1 + 50
be encircled [6].

In Figure 8.7 a table with different configurations of loads, Z(s), connected to the VSI
is shown. The objective is to demonstrate that the Nyquist diagrams of G(s)H (s) with
these loads do not encircle the point —14-j0. Such results are depicted in Figure 8.8. With
the aim of assigning values to the different load configurations in Figure 8.7, the loads have
been designed to provide an approximate apparent power between 0.5 and 1.5 kVA at 50
Hz in all the cases. Figure 8.8 confirms that the Nyquist curves in the complex plane do
not encircle the point —1 + j0. For the derivation of the plots shown in Figure 8.8, the
designed values for 11, 19 and [ obtained in Section 8.2.4 have been used. Notice, however,
that such values could be redesigned in order to achieve a optimized tracking performance
for a specific impedance connected at the VSI.

Finally, the bode diagrams of the frequency responses of the transfer functions, 7'(s),
defined in (8.25) are shown in Figure 8.9. From such frequency responses, it can be
corroborated that in all the cases the tracking errors are small in magnitude, being around
of 2.5 % in the worst case for the load Z,(s).

8.2.6 Sliding dynamics for nonlinear load

There are different types of loads that exhibit a nonlinear consumption from the power
source they are connected. In the power electronics field, some rectifiers (converters from
AC to DC voltages) produce nonlinear currents, as the uncontrolled rectifier (diode rec-
tifier), which is the nonlinear load studied in this Section. The diode rectifier, shown in
Figure 8.10, is widely used in industry, appliances, etc. The rectifier provides a DC voltage

134 Fixed-Switching Frequency Sliding Mode Control Applied To Power Converters



CHAPTER 8. VOLTAGE TRACKING IN A VOLTAGE SOURCE INVERTER.

TS
— R =80
+—
Zu(s) = FLt et sCLRurs v 0y R, |re=300
1+ sCLR;, _ T Cp =0.1mF
- R, =109Q
F—>— L=
Zos) = DBt slo ot B) | we P 3 N, [ =300
Ry +sLy, i} L, =2mH
Ry
1+ sCrry T Ry =609
L) = —a, v T | =0tmr
Ry =500
Z4(s) = rs + sL
s(s) =rotsle L, = 50mH
— R, =40Q
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SCL _ CL = 6mF

Figure 8.7: Several configurations of output impedance, Z(s), connected at the VSI output
with their parametric values.
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Nyquist Diagram
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Figure 8.8: Nyquist diagram for the different conditions for the output impedance shown
in Figure 8.7. The case of Z,, is the pure resistive case with R = 25 ().
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Figure 8.9: Bode responses of the tracking errors of the SMC with the output impedances,

Z(s), shown on the table of Figure 8.7. The case of Ty(s) is the case for the pure resistive
load of R =25
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from an AC input voltage, which in this case will be the output voltage of the VSI designed
in this Chapter.

Ry Ve

£
-

DI\ D,I\

Figure 8.10: Diode rectifier topology.

The nonlinear characteristic of this structure comes from the behaviour of the diodes
together with the output capacitor, C,. The diodes act as switches, taking two discrete
states, closed or open. According to this behaviour, the rectifier dynamics can be divided
in two alternating topologies: one when the load is connected to the output of the VSI
through the diodes (diodes ON) and other when the diodes remain in open circuit and
the VSI is in no load condition (diodes OFF). The resulting topologies of the VSI with
the rectifier connected at its output for the two states of the diodes are shown in Figure
8.11. When the diodes are closed (ON), the resulting load is linear and reactive, and the
analysis developed in Section 8.2.5 can be applied. When the diodes remain open (OFF),
the equivalent output resistor is R = oo, which fits with the analysis of Section 8.2.4. Since
the generated output voltage, v., is a sinusoidal waveform, the aforementioned topologies
occur two times per cycle. Specifically, there exist 4 different time intervals, two of them
corresponding to a no load condition (i, = 0 A) and two corresponding to a reactive load
(see top plot of Figure 8.2).

From the stability conditions stated in Sections 8.2.4 and 8.2.5, it is clear that the closed-
loop systems of the resulting topologies are stable. Therefore, the nonlinear tracking error
in steady-state will be bound by known values if the settling times of each topology, with
respect to the duration of the expected time interval, are fast enough. In the case that
only one of the settling times is fast enough to achieve the steady-state error, such tracking
error at least will reach a known value two times per cycle, corresponding to a tracking
error which can be also bounded. In the case when both topologies present slow settling
times with respect to their time intervals, the stability of the system is not guaranteed.

Notice that the found stability conditions depend on several aspects as the expected
topologies, their corresponding settling times and the time interval application of each
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Figure 8.11: Resulting topologies with the VSI and a diode rectifier connected as output
load.
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topology. In that sense, the stability conditions should be checked for a certain system.
Let us analyse the rectifier used in the laboratory. The values of the nonlinear load are
(see Figure 8.10):

Ry =132Q, r,=1Q, Cp=6.6mF.

For the calculations, the diodes are assumed ideal. According to the equivalent systems
in sliding motion obtained in (8.18), (8.25) the expected tracking errors, e;, and settling
times at 95 % of the final value, ¢, , for each state are found (it should be noticed that
the parameters a and 3 have been already designed to o =1, 8 =680):

Diode OFF — e, =2.7%1
Diode ON — ¢, =30%t

= 4.1 ms,

= 30 ms.

595%
595%

The case for the diodes connected produces a very slow transient and a considerable
tracking error, due to the load capacitor, Cp, is really big in value. As a consequence,
taking into account that the period of the output voltage will be 20 ms, it is clear that
this state will not reach the steady-state behaviour. The corresponding case to the diodes
switched off provides a faster settling time, producing also a smaller amplitude error. This
second settling time is of 4.1 ms, and assuming that the signal period is of 20 ms, it is
reasonable to figure out that the resulting time interval for this topology would be larger
than 4.1 ms, making possible to achieve the steady-state amplitude error of 2.7%. This
result will be corroborated in the experimental part.

8.3 Switching frequency regulation

The next step is to design the SFC controller in order to provide steady-state fixed switching
frequency to the VSI. Again, the parameters p* should be derived for the steady-state
sliding motion. Since in this case the control problem belongs to a tracking scheme, the
SFC structure defined in Section 2.2.2 applies. Firstly, the expression yielding the evolution
of pif for the steady-state sliding motion, pi., are found from (8.10). In the previous
Sections, it has been explained that the perfect tracking performance can be only achieved
when a resistive load of a specific value, R,, is connected at the output. Anyhow, it was
also demonstrated that although the load varies, even including elements as capacitors and
inductors at the output load, it is possible to adjust the control parameters such as the
tracking error becomes negligible. As a consequence, in the following study, it is assumed
that, under steady-state sliding motion, v. = v} holds.

Recalling (8.10), the first time derivative of the switching function at steady-state
sliding motion becomes:

o (v, 2p) = wBCO A cos(wt) — w?ihC Asin(wt) + % (Asin(wt) — FEu) . (8.29)

From (8.29), it is immediate to derive the expressions for pT just replacing the two
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possible values of the control signal «, which are u™ = 1 and u~ = —1. Notice that once

the discontinuous control input is replaced by one of its possible states, the expressions for
pE become continuous functions of time, p(t)f. The sampling of these functions at any

switching period interval, T, yields:

-1
122 (Asin(wkT™) + E)]

ph =10 (’U:,xM)u:,lrl = {wﬂCAcos(wkT*) — WPy C Asin(wkT™) +

-1
P = 0 (V7 )y = {wBCA cos(wkT™) — w?iho C A sin(wkT™) + zf (Asin(wkT™) — E)] .
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Figure 8.12: From top to bottom. 1- Desired output voltage, v. 2- Dynamic evolution of
p and p,,. 3- Roots of the conditions set in Theorem 2.

Theorem 2 (Section 2.2.2), which is sketched in Figure 8.12. Specifically, in the top plot,
Figure 8.12 shows the desired output voltage, v, and the dynamic evolution of p(t)™, p(t)~
in the mid plot. Finally, the set of solutions of the condition stated at Theorem 2 for the
resulting values of pf,, p,, are presented in the bottom plot. With such signals, it is
straightforward to find the maximum and minimum values guaranteeing stability of the
SFC. The exact values that define the stability margin are numerically found in 7y, =
1.76 - 10" and 7,, = 9.98 - 10%, i.e. 9.98 - 10° < v < 1.76 - 10".

However, through simulations and experimental testing, the stability of the system with
values below the minimum value, 7,,, has been confirmed. It is worth remarking here that
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Theorem 2 gives sufficient but not necessary stability conditions. Indeed, v values below
the range provide a much more reliable performance in practise. As a consequence, in the
experimental evaluation, some different values of v will be tested, including values within
and outside of the range.

Remark 8. In the early developed analysis, it has been assumed that under steady-state
sliding motion the output voltage, v., perfectly tracks the reference signal vi. As it was
explained in the previous Section, just for a certain load condition such perfect tracking
occurs. However, the switching surface parameters are designed to ensure that the output
voltage tracking error can be neglected in all the load conditions, as Figures 8.5, 8.9 depict.
As a consequence, the applied load does not influence in the switching functions slopes, and
the aforementioned stability condition applies for whatever load applied to the VSI.

8.4 Implementation details

In this Section, the methodologies used to implement the designed controllers are explained.
It is important to remark here that the implementation is based on a micro-controller (xC).
The digitalization of the switching function and of the hysteresis comparator will deserve a
special attention. Hence, this Section will be organized in several parts divided as follows:
in the first Subsection the effects of sampling the hysteresis comparator are presented; in
the second Subsection, a strategy able to emulate the operation of the ideal hysteresis
comparator using digital devices is introduced, followed by the third Subsection, where the
discretization of the switching function is detailed. The fourth Subsection deals with the
digital implementation of the SFC in the tracking case. Fifthly, a Subsection describing the
available procedures in order to estimate the switching functions slopes (and their inverse
values, pf) is presented. Finally, the details of the assembled system in the laboratory are
given.

8.4.1 Effects of the hysteresis comparator discretization

As it has been explained in Section 2.1, a sliding motion enforced in a fixed hysteresis band
comparator provides a known switching frequency. From the implementation point of view,
the hysteresis comparator can be accurately built using analog circuitry, as it was made
in the experimental evaluations of Chapters 5, 6 and 7. However, the implementation in
digital processors degrades its performance if the sampling effect is not taken into account.

Figure 8.13 shows the behaviour of a switching function, o, working with an ideal
hysteresis comparator, being T its related switching period. Analogously, the expected
performance of the same switching function under the effect of discretization is sketched
through o, and its corresponding switching period, T’,.

Notice that the sampling process includes a least a delay equal to the sampling time,
ts, since the required actions to be performed cannot be executed up to the next sampling
period. This contemplates that the computing time, ¢., which is the time spent by the uC
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Figure 8.13: Hysteresis comparator discretization effect on the switching surface and re-
lated switching period.

to evaluate a certain algorithm according to the sampled signals, is lower than ¢,. If this
t. is higher than t,, a higher delay should be considered.

This effect produces that the switching function is no longer confined within the hys-
teresis band in sliding motion, inducing stationary errors in the state variables. In this
scenario, as it is illustrated in Figure 8.13, a new and larger boundary layer appears,
defined as |o,| < A + 0. According to Figure 8.13, in the best case the system will switch
with a delay of one sampling period (just one sample within ¢). In the worst scenario the
delay will be of 2t,. Notice that the expected switching period will not be constant even
at steady-state, due to such discretization effect. However, it is possible to qualitatively
analyse these errors. The maximum and minimum values of § are defined in (8.30).

ot =tyot; 8. = —t,0"

min min

5 =t 5t 6o =26,

max max

(8.30)

where ¢ = &, has been assumed. Then, the maximum and the minimum A, values will

be:

A =20+ 46—

Replacing (8.30) in (8.31) the maximum and minimum values are:

A
A

=2A +2t, (6" + 7]
=2A+ts[o" +057].

Zmazx

(8.32)

Zmin

Using the previous expressions, the maximum and minimum switching periods in a fixed
hysteresis band could be found applying equation (2.1), placing A,, .. and A, . instead
of A, respectively. Even though it is possible to bound the switching periods, such bounds
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depend on 61,6, which are time-varying signals in a tracking control case, leading to a
nondesirable situation.

Remark 9. From now on, the subindex n will identify the sampling related with the uC
operation’s, ts, keeping k for the ones related to the switching periods events, T™.

8.4.2 Digital emulation of the ideal hysteresis comparator

In order to recover the ideal switching period derived in Section 2 (see expressions (2.1),
(2.9)) for an ideal hysteresis comparator, an emulation of this ideal behaviour is developed
using a discrete-time algorithm. The control law is properly modified such that the response
shown in Figure 2.1 is recovered in a discretized system. The procedure is able to deliver
the proper control action wu(t), in such a way the switching function, o, changes its slope
sign just when it hits the hysteresis band A. The desired performance is illustrated in
Figure 8.14.

Since the puC is able to perform actions only at the sampling time instants, ¢,,1,t,12, ..,
in order to make the switching action at time instant ¢t = ¢, +1¢,.,1, a pulse width modulated
(PWM) control signal is applied. The definition of the desired values of u(t) in the time
interval ¢,, to t,,3 are (see Figure 8.14):

-1 for tn, <t< thi1
_J—1 for tni1 <t< t1 4ty
U(t) - 1 for tl + tn+1 <t < tn+2 ' (833)
1 for tnio <t< thts

The following duty cycles, computed according to the values presented in ((8.33)), have to
be updated in the pulse width modulator at time instants (¢,,t,.1, tni2), as:

d,, =0 at t=1t,
d= dn+1 = tl/ts at t= tn+1 (834)
dnye = at  t=1n4o

The duty ratio d,,.1 updated at ¢t = ¢,,,; makes possible the commutation at the desired
time instant ¢t = ¢,,,1 + t;. This value, according to Figure 8.14, is defined as:

A — On+1

doiy = (8.35)

On4+2 — On41 .
It is worth remarking that d,,; depends on the future sample o,.5. At this point, a
prediction of the value of o, 5 is required. Furthermore, an additional delay should be
taken into account, due to the computing time ¢.. This means that the duty cycle which
can be applied at ¢ = t,,1, has to be calculated with the available information at t = ¢,,.
Referred to the equation (8.35), this implies a prediction of 0,11 and 0,45 at time instant
t=1t,.
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Figure 8.14: Sampling switching surface desired behaviour.

Summarizing, the digital implementation of the hysteresis comparator is achieved through
the prediction of the next two switching function samples, 6,1, 6,12, and the proper cal-
culation of the next PWM duty cycle. The control law defined in (8.15) is updated for the
time instant ¢ = t,, as:

Grta—Gnti (8.36)

if 60> A then dyyq = —S—onti
if é—n+2 < A then dn+1 =0

The question to answer now is how to perform the switching function predictions. The
strategy proposed to predict the future samples exploits the piecewise linear characteristic
of the switching function. Under this assumption, the required future samples can be easily
estimated according to (8.37).

0A’n+1 = 0, + Myt
On+2 = Op + antsa

(8.37)

where m,, is the time derivative of o at sample n. With the knowledge of the values for
the switching function slopes, m,,, the emulation of the hysteresis comparator is achieved
through (8.36) and (8.35).

The estimation of the switching function slopes is not only required for this emulation
strategy but also by the SFC implementation discussed later. The available possibilities
to estimate these parameters will be addressed in the coming Subsection 8.4.5.

Remark 10. The equations (8.34), (8.35) and (8.36) are developed to produce the com-
mutation when u(t) changes from -1 to 1 at the desired time instant t = t,,1 + t;. Notice
from Figure 8.1/ that the duty cycle for the commutation case of u(t) from 1 to -1 at time
instant t = t, 4 +to is given by d, 4 = to/ts. Following the same procedure used to deduce
equation (8.36), an analogue expression of the duty cycle can be obtained but the switching
of u(t) yields in a complementary form. This fact has to be taken into account in the PWM
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configuration.

Remark 11. The proposed method for the digital emulation of the hysteresis comparator in
sampled systems can be applied as long as the piecewise linear characteristic of the switching
function is met.

8.4.3 Switching function digitalization issues

For the switching function calculation, expression (8.5) has to be digitally evaluated. The
measured signals are v. and x,, since v} and v} are generated by the pC, and the rest of
the parameters are assumed constants. The acquisition of such signals is performed using
an Analog to Digital converter (ADC). The ADC operates at the sampling time, £, it
acquires v, and x); and the uC computes (8.5) one time per sampling period.

= response

U(UCa M ) . -
EXpectea‘ -------
response

....... Expected
- measurement‘f,‘ ......
1 (v —ve) ] : - — 3
i~ Real ™. =~ At
""""" measuremerit--

o222 /\\//\\
EESEEENSEERERRNEY

Sampling instants

Figure 8.15: Noise effect in the measurement of v, in the switching function.

As it was explained in Section 8.2.4, equation (8.21), high frequency harmonics on v,
can compromise the piecewise linear behaviour of ¢. Furthermore, apart from the natural
ripple produced by the switched characteristic of v in v., in the experimental prototype
can appear other effects as switching noise or bus voltage oscillations which could increase
the output voltage ripple, leading to an additional lack of the piecewise linear behaviour
of 0. Figure 8.15 shows such phenomena. In the Figure, the two main terms of (8.5)
are shown for two different scenarios, one according to the theoretical response, and the
other considering an unexpected noise in the output voltage. If this noise is considerable,
the piecewise linear behaviour could be lost, as it was stated in (8.21). It is obvious
that with the switching function represented by dotted lines the expected performance is
compromised.
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The solution chosen hereafter to recover the piecewise linear behaviour of the switching
function consists in performing an averaging of the v. measured values during a switching
period, and use such averaged value in the next switching interval. Therefore, the value of
v, is replaced by its mean value calculated in the previous subinterval as:

(V)1 = Z”:Tw (8.38)

where v,, are the acquired values at each sampling period, n, and N is the number of
acquired values during the & — 1 switching interval. As a consequence, the switching
function samples computed in the time interval from Ty, to Ty by the uC are:

L,
MRy,

0 (e, Tar),, = (07, = (Ve)yy) + 12007, — 1o T, (8.39)
with n going from 1 to N. Using this mean value, the piecewise linear of the switching
function is preserved, even in presence of switching noise or unexpected disturbances.

Remark 12. With regard to the proposed averaging strategy, some considerations must
be taken into account. In the one hand, the mean value used during a switching interval
corresponds to the average of the measured values of the previous switching interval. Such
assumption becomes acceptable if the switching frequency is high enough with respect to
the low frequency component of v.. In the other hand, it is obvious that such methodology
could affect the sliding mode transient response. However, in the experimentation results
presented later (Subsection 8.5), it will be shown that the dynamics provided by the imple-
mented system is very close to the theoretical one, thus confirming that the impact of such
averaging procedure on v. can be neglected.

Theoretically, a sampling time, t,, ensuring a couple of o samples per control signal state
should be enough to properly estimate (v.) and to emulate the hysteresis comparator. It is
clear however, that this only happens in the ideal case without unexpected disturbances.
Conversely, since the normal situation in real system is to have disturbances, decreasing the
sampling period t, with respect to T', leads to a more accurate averaged value calculation,
improving the overall system performance.

8.4.4 Digital emulation of the SFC for a tracking control task

At this stage, the digital implementation of the SFC is addressed. From Section 2.2.2, it
is clear that for a SMC working in a tracking case, for a fixed switching period operation,
Ay, has to be updated according to (2.18). The tracking SFC structure is not only more
complex than the regulation case one but also the generation of A, depends on the pf
values, in order to implement the feedforward action, {2, as (2.20) states. The value of
requires the knowledge of the current switching function time derivatives at period k. It is
obvious that the value Ay should be calculated at the beginning of the period, when the
available information is that of the £ — 1 switching period, and as consequence, €2 has to
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be calculated with this information. Such effect was already noted in Remark 3 (Section
2.2.2). Therefore, the implemented value of ) is approximated by Q_1, as:

Qk ~ Qk—l‘

With regards to the estimation of pki, or equivalently, the estimation of the switching
function slopes, there are several possibilities to do that, as it was noted in the previous
Subsection. In the next Subsection, the alternatives for estimating those parameters are
discussed, explaining which estimation strategy are used for this case.

Finally, the SFC implementation is carried out using (2.18), being v designed according
to Subsection 8.3, and the expression of 2, approximated by 2,_1, using the proper strategy
for pif estimation (explained in the following).

8.4.5 Estimation of switching function slopes

As it was already noted in the previous Subsections, the estimation of p* (or their inverses,
6%) can be carried out through several strategies. The most intuitive approximation can
be derived from Figure 8.14, as:

o = (pF) ' I Tt (8.40)

n ts

This strategy is the simplest one, and does not require any additional hardware, which is its
main advantage. However, this approximation fails considerably if an error measurement
occurs in the acquisition of o, 0, _1.

The values of 6% could also be achieved using the sliding mode control theory. If under
sliding motion, the equivalent control, u.,, is measured through low pass filtering the real
control action, u, [7], using (8.10) one gets

E
0 (Ve, Tpr) = %T (Ueqg — w) (8.41)
and, therefore
. -1 Yk
58 = () = P g, — w0 (8.42)

The estimations based on (8.42) have as main drawback that they require the knowledge
of E, and need a dedicated hardware for measuring the equivalent control.

From the hypothesis of the piecewise linear behaviour of ¢, and assuming known the
values Ay, Aj_1 (indeed, they are generated by the SFC) the switching function time
derivatives can be estimated as (see Figure 2.2, Section 2.2):

) = S =
LA+ Ay’ TR 24

(8.43)

where T} | and T, , periods are measured, cycle by cycle, by the ¢C Timer in charging of
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measure 1}..
Finally, as it was performed for the average value of v, in equation (8.38), the switching
function slopes can be averaged along a switching period interval as:

ZN; ot
&m=l"n (8.44)

o(ve, pr)i = T
T

where N is the number of samples inside T, and

N P

8.45

(j'(’l}c, xM)]: =

with NV denoting the samples within the switching period T}.

The expressions in (8.40), (8.42), (8.43) and (8.44), (8.45) are, from a theoretical point
of view, the same one. However, using one or another entails different implications from a
practical point of view. The following Remarks state such implications.

Remark 13. From a theoretical point of view, whatever approximation can be employed
in order to estimate the slopes of the switching function (or their inverses) and used in
the prediction algorithm and in the SFC. However, from a practical point of view, is not
equivalent to use one or another. Mainly, the differences among them for pf (or their
inverses) estimation are related to the noise immunity of these expressions, and also to the
required signals to be measured.

The first one based on (8.40) does not require anything more apart from the digitalization
of the switching function, which is already done for the SMC, but is the most sensitive to
noise. On the other hand, the estimation based in (8.42) has a better rejection to noise, but
requires the additional measurements for the equivalent control. Finally, (8.43) or (8.44)-
(8.45) lead to a low sensitive noise estimations of p,f, without the necessity to include
additional hardware.

Remark 14. [t is obvious that the estimation based on (8.43) or (8.44)-(8.45) delivers the
result a switching period delayed. As a consequence, such approximation is useful when the
switching period is low enough with respect to the period of v:. Notice that this hypothesis
has been a key consideration throughout the entire work.

Since in this case the desired switching period (7 = 50 us) is low with respect to the
period of the desired output voltage, v (20 ms), the selected approximation for p* are
(8.43) for the SFC and (8.44)-(8.45) for the emulation of the hysteresis comparator in the
SMC. Although both controllers are implemented in the same pC, their sampling ratios
are different. The SFC sampling coincides with the switching period of the control action,
T} and strictly speaking, it is not totally fixed. The SMC one, t,, is the sampling of the
uC itself, and it is fixed. This fact hinders to share the single estimated information of p*

by both algorithms. This is the reason why the p* estimations are performed twice, one
by the SFC and another by the SMC.
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8.4.6 Controller implementation

The SMC and the SFC are implemented using the pC F28377S from Texas Instrument.
The details of this devices can be checked in the datasheet provided by the manufacturer
([70]). This device includes all the peripheral needed by a power electronics implementation
(ADC, PWM, etc.), a CPU with a floating point unit and a dedicated trigonometric unit
(TMU). Moreover, the F28377S provides a second processor able to perform floating point
operations as well, called control law accelerator (CLA). This core is intended to deal
with time-critical control task, having direct access to the main peripherals. Both cores,
together with the TMU, can work up to 200 MHz and in parallel, leading to a very good
computing capability.

The embedded ADC can work with resolutions up to 16 bits, although in our case
the 12 bit resolution is enough. The ADC can be clocked up to 50 MHz, which is fast
enough for this application. In the same way, the PWM embedded in the F28377S has
a lot of programming options, making possible the strategy proposed in Subsection 8.4.2.
Finally, one of the general purpose 32 bit timers of the uC is programmed for measuring
the switching period of the control signal.

The controller routines are programmed in ¢ language. Since the F28377S allows some
level of task paralleling, such feature is exploited in order to obtain an execution as fast as
possible. The Figure 8.16 sketches the structure that implements the SMC and the SFC.
Both the CPU and the CLA execute code. A detailed explanation of what code is executed
for each one is presented hereunder.

F28377

T
— > || TIMER |—> cos(wt)

CPU sin(wt )| TMU
=

Ve ‘%Ovcv v A

—_— u

T ADC » CLA |——| PWM

—

\/

Figure 8.16: Diagram of the peripheral used for the implementation of the SMC and the
SFC in the processor F28377S.

e Main CPU.

The main CPU is in charging of initializing all the system in the start-up, includ-
ing the configuration of the peripherals and the CLA. The initialization procedure
configures the Timer for generating a CPU interrupt at any rising event of the con-
trol signal, where the SFC is implemented. Also the synchronization of the ADC is
configured, which will be triggered with a sampling of 1 MHz (t; = 1 us). Once the
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ADC ends the conversions, a CPU interrupt is generated. The CPU also configures
the CLA to execute code once the ADC has ended the conversion.

Besides the initialization, the main CPU executes the SFC, using the expressions
found in (2.18), (2.19) and (2.20). For the calculation of €2, expressions in (8.43)
are employed for pf estimation. The resulting A, is stored in an accessible memory
region by the CLA. The sampling of this routine is the one generated by the control
action, u. Another task performed by the main CPU is the generation of the voltage
reference for the SMC, v¥, through (8.3). The term ¥,C¥¥ is also computed by the
CPU. For both expressions, the TMU provides a very fast computation of the cos and
sin functions. Such code is placed in the CPU interrupt executed at the sampling of
1 MHz.

Finally, since the CPU has also access to the ADC outputs, a security code is im-
plemented monitoring the IGBT temperature, the bus voltage, the overcurrents and
overvoltages, in order to protect the system in front of fault conditions. Moreover,
in the experimental evaluation the CPU is programmed to take out some internal
signals (as o) through two DACs, in order to be shown by an oscilloscope.

e CLA.

The CLA executes the SMC, including the emulation of the hysteresis comparator
detailed in Subsection 8.4.2. Firstly, the switching function is computed using (8.39),
where the average value of v. has been calculated in the preceding switching interval,
according to (8.38). The resulting value of ¢ is used to perform the predictions
detailed in (8.37), but using the averaged slopes found in (8.44) and (8.45), according
to the state of the control input, u. Therefore the implemented predictions in the
switching interval from 7T},_; to T} are:

N - +
AO'n+1_— On + O-'(/Uca xM)k_;lts (846)
Ont+2 = Op + QU(UC,.TM)kflts

when v = 1 and ( )
OA-n—i-l = 0p + 0(Ve, T Eflts 8.47
{&Hg =0y, + 20 (Ve, Tar )y ts (8.47)

for u = —1.

Once 6,12 and 6,4, are found, the PWMs are properly updated using the control
law defined in (8.36).

8.4.7 Assembled converter and devices employed

The power plant assembled for experimental evaluation is depicted in Figure 8.17. The
converter incorporates two capacitors at its input forming a virtual neutral point which is
connected to the ground. This structure reduces considerably the common mode noise of
the system, improving the quality of the measured signals. These capacitors (2 x 10 uF)
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also help to attenuate the high frequency voltage oscillations at the converter input. For
the same reason, the output inductor is split in two equal inductors, leading to a further
reduction of the common mode voltage. The inductors are built using gapped ferrite cores,
where the windings have been wound with copper litz wire. The used power switches are
the IGBT 50MT060WTHA from Vishay. This device has a breakdown voltage of 600 V,
being able to manage continuous currents up to 50 A. In order to avoid short circuit of the
input source, a dead time of 2 us is included in the control signals by the pC. The output
capacitance is formed by two capacitors (C4AEGBW5500A3LJ) disposed in parallel, in
order to reduce the equivalent series resistance.

oL

L

10 pk | H -
T JL{}L J&?W -

4 x 50MT060WTHA

TFT

420 V

'_—}} e g Wi~
< ° °
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Figure 8.17: Power plant built for experimental evaluation.

Regarding the sensing part, the Figure also sketches the current transformer and the
voltage divider employed for v. and xz,; measurements, respectively. The current trans-
former, CT, is manually wound using a toroidal ferrite core of 3C90 material from Ferrox-
cube. The number of turns is 300, and the required values of M and L, are adjusted
adding an air gap in the core. The CT provides an isolated measurement, so no additional
isolation amplifier is required. A standard structure based in AO is implemented in order
to adapt the measurement to the ADC input, which is identified as Z,;. Such adapting
process is due to the ADC which holds values from 0 to 3 V in its input. The output
voltage is measured using a voltage divider. In this case, an isolation amplifier is required,
using for such purpose the chip AMC1301. Again, the signal 9. is adapted in order to be
acquired properly by the ADC. The standard AO structures adapting v, and & ,; have been
omitted for the sake of brevity.

To conclude, the designed control parameters are summarized in Table 8.2.
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Table 8.2: Controller parameters.

Parameter Value
o 100
Uy 100
M 33 uH
L, 10 mH
Ry 6.8 2
v 1-10t <y <1-107

8.5 Experimentation results

The experimental results obtained with the aforementioned prototype are presented at this
stage. First of all, Table 8.3 summarizes the obtained steady-state tracking errors under
different load conditions. The Table also contains the Total Harmonic Distortion (THD)
of the output voltage related to the fundamental frequency of 50 Hz for each load level.
With regard to the VSI efficiency, a value around 95 % has been measured at nominal load
condition (2.2 kW).

The main features to be experimentally evaluated are the related to the SMC and SFC
dynamics. The experimental results aimed to show the performance of each controller
have been divided in three main blocks, namely: SFC performance, SMC performance and
nonlinear load test.

8.5.1 SFC performance

Firstly, the result of Figure 8.18 shows the converter performance when the SFC is disable,
and the SMC operates with a fixed hysteresis band. Under this scenario, the switching
period becomes variable as the FFT calculated by the oscilloscope evidences (bottom part
of Figure 8.18). The switching frequency harmonics are distributed along the range 12 kHz
- 29 kHz, almost with the same amplitude.

The Figure 8.19 shows the same test but in this case with the SFC enabled. It is
clear how the SFC generates a time-varying hysteresis value (see magenta signal in the
Figure). The resulting FFT for this case is now similar to the expected one assuming a
constant switching frequency of the control action. Thus, the proper performance of the
SFC under a tracking case is confirmed. It should be noticed that in this case the value
of v = 2.5-10° is not within the range found in Section 8.3 (9.98 - 10° < v < 1.76 - 107).
However, the stability of the SFC is confirmed from the experimental result. Moreover,
the results in Figures 8.18, 8.19 also validate the previous implementing methodologies
(switching function predictions and PWM modulations detailed in Section 8.4) developed
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Table 8.3: Experimental results of the VSI

Linear Load

Output Power THD Voltage Voltage error Vout Voltage error
(kW) (%) (Vpp) (Vpp) (%)
0 0.2 3.7 626 0.59
0.5 0.3 4.6 626 0.73
1 0.3 5.6 626 0.89
1.8 0.3 6.1 626 0.97
2.2 0.3 6.6 626 1.04

Nonlinear Load

Output Power THD Voltage/Current Peak Current Crest Factor Voltage error

(kW) (%) (A) - (%)
0.63 1.1/81.2 17.6 3.4 3.3
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Figure 8.18: VSI response with the system tracking the desired output voltage in no load
condition. SFC is disabled and A has a constant value. FFT details on the bottom.
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Figure 8.19: VSI response with the system tracking the desired output voltage in no load
condition. SFC is enabled and v = 2.5 - 105. FFT details on the bottom.

in order to recover the ideal response of the hysteresis comparator in a sampled system.

The test shown in Figure 8.20 shows the same case of Figure 8.19, but with a linear load
of 2.2 kW connected at the VSI output. From direct comparison of the FFT’s responses
depicted at Figures 8.19 and 8.20, it is obvious that the system has essentially the same
response despite of the applied load level.

Figure 8.21 shows the difference between operate with and without SFC. In this case,
the value of v = 1107 is within the range provided by the Theorem 2 (Section 2.2.2),
which was found in Section 8.3 to be 9.98 - 105 < v < 1.76 - 107. The FFT of Figure 8.20
is replaced by the measured switching period, T', in Figure 8.21 for a better understanding
(T is generated by a DAC of the uC, corresponding 1.5 V to 50 pus). From this test two
facts can be observed: on the one hand, the different performances of the system with and
without the SFC, and, in the other hand, the fast transient of the switching period to the
desired value once the SFC is enabled.

Finally, the results of Figures 8.22 and 8.23 present variations of the desired switching
period. From these results, the proper SFC regulation is confirmed in both cases. Notice
how the employment of a smaller value of v than in the previous case (y = 2.5 - 109)
produces a smoother transient in the switching period.

8.5.2 SMC performance

Different tests in order to evaluate the performance of the SMC while the SFC is enabled
are presented below. The first one presented in Figure 8.24 shows the tracking capability of
the designed SMC. Specifically, the Figure 8.24 shows the output voltage, v., the tracking
error, v. — v:, and the output current, ¢,. The tracking error is calculated by the pC and
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Figure 8.20: VSI response with the system tracking the desired output voltage with 2.2
kW at the output. SFC is enabled and v = 2.5 - 10°. FFT details on the bottom.
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Figure 8.21: VSI response with the system tracking the desired output voltage in no load
condition. SFC on-off and v = 1-10".
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Figure 8.22: Switching frequency regulation from 7% = 70 us to T* = 50 ps in no load
condition. SFC is enabled and v = 2.5 - 10°.
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Figure 8.23: Switching frequency regulation from 7% = 50 us to T* = 70 us with 2.2 kW
load at the output. SFC is enabled and v = 2.5 - 106.
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visualized through a DAC output port. The resulting scale is 247.18 V/V in order to pass
from the signal generated by the puC to the real tracking error. As a consequence, the
tracking error for a no load condition is of 3.7 V peak to peak, representing an error of 0.6
% of the nominal value. The result of Figure 8.25 shows the same curves but for a load
condition of 2.2 kW. For that scenario, the voltage error is of 1 %, approximately. The
Table 8.3 details the measured tracking errors for different output power levels.

The results shown in that Table differ from the expected condition according to the
theoretical study developed in Section 8.2.4. According to that Section, the amplitude
of the error should decrease as the load level increases. However, in the experimental
prototype this tendency is not observed. The reader should realize that the system losses
of the reactive components and IGBT switching losses, among others, were not considered
in the theoretical analysis. It should be remarked that these losses increase as the output
power does, thus confirming that with higher load levels the tracking error tends to increase.
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@ 20.0mY v 2@ 10.0 Asgiv 'l
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Figure 8.24: SMC steady-state tracking performance with no load. Detailed voltage error

ve — v}, SFC with v = 2.5 - 10°.

In the result of Figure 8.26, a sudden load change from no load to 2.2 kW is performed
at the VSI output. The maximum error, just after the transient, reaches the 15 V, rep-
resenting a 5 % of the output voltage peak amplitude. Moreover, it should be noted from
the dynamics of the tracking error that the settling time is around 4 ms, which is the
expected value according to the ideal sliding mode derived in Section 8.2.4. This result
confirms the theoretical prediction, validating all the assumptions made in the design and
the implementation stages.

Finally, the Figure 8.27 shows how the SMC rejects during all the tests an input voltage
oscillation of two times the desired output frequency (100 Hz). This oscillation is produced
by the non ideal characteristic of the input power supply. This result gives further evidence
of the system robustness.
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Figure 8.25: SMC steady-state tracking performance with 2.2 kW load. Detailed voltage
error, v, — v}. SFC with v = 2.5 - 10°.

[ad
=
)
f’,‘,

4 2017/06/02 16:35:55 Normal EdgeCH4 £9.2 A
review 1 T 125MS/s N Single
D 100 Vv '@ RO > 20.0 i
H Wein : 6.25 M " 5ms/div
o i
EEEERaes i
At = 4ms :
EEEEE
20 :
Ll . : !
’ .t"w
= 3 i (A
P L i
F ke, | S
o ./
ke

— 7
o
I
1551
O %

P-P(C1) 639 V mm; 221.439 ¥ P-P(C3) 68.8mV
P-P(C4) 30.0 A C4) 6.66635 A

*
c*

Figure 8.26: Load Transient from no load to 2.2 kW load. Detailed voltage error, v, — v
SFC with v = 2.5 - 10°.
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Figure 8.27: Input voltage oscillation rejection by the SMC. No load condition. SFC with
v =2.5-10°.

8.5.3 Nonlinear load test

The influence of a nonlinear load at the output of the VSI is tested at this stage. It should
be remarked that one of the main applications of the VSI designed in this Chapter will be
the emulation of a power grid from an island photovoltaic system or similar. Due to the
different nature of the loads typically connected to the power grid, it is interesting to see
how the SMC and the SFC behave when this type of loads are connected to the VSI. As it
was presented in Section 8.2.6, the evaluated load is a diode rectifier, with the parametric
data provided in Section 8.2.6. Firstly, the general performance of the SMC and SFC with
a nonlinear load producing current peaks around 18 A is shown in Figure 8.28. Notice
that the resulting crest factor is around 3.4, which is considerably high. It can be observed
from the Figure that, although the responses (output voltage and switching period) slightly
differ from the reference ones, the system keeps an overall good performance.

From Figure 8.29 the presented result in Section 8.2.6 can be now corroborated. The
time interval corresponding to the topology where the diodes are OFF (load disconnected
from the VSI) is around 8 ms, which is higher than the expected settling time for this
topology of 4 ms. As expected, the time interval where the diodes are ON is too short to
reach the corresponding steady-state error. However, since one of the alternating topologies
achieves its steady-state value, the tracking error results bounded. From the Figure, it can
be inferred that the maximum tracking error is of 22 V peak to peak, representing a 3.3
% of the desired peak to peak voltage.

Finally, the FFT of the nonlinear case is depicted in Figure 8.30. From the Figure,
the performance shown in Figure 8.20 is qualitatively preserved, although the nonlinear
consumption of the diode rectifier slightly degrades the performance with respect to the
linear case.
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Figure 8.29: System performance with nonlinear load. Tracking error detail.
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Figure 8.30: System performance with nonlinear load. FFT of the control action at the

bottom part. SFC with v = 1-10%.

8.6 Conclusions

All the experimental results shown confirm an overall good performance of the VSI gen-
erating an AC signal at its output, when the SMC operates with the proposed SFC in a
tracking control problem. Through the experimental evaluation, the expected VSI features
as robustness, insensitive to type of load and fixed switching period operation have been
confirmed. In the Chapter, not only the SFC design has been shown. A detailed analysis
of the resulting sliding dynamics has been developed taking into account the different loads
that the VSI could supply, as linear resistive, linear reactive and nonlinear load. The ex-
pected dynamics of the system matches with the theoretical predictions developed in the
design stage, corroborating the validity of the analysis.

Moreover, both controllers have been digitally implemented by a single uC, with the
advantage that this entails as: flexibility, embedded system, communications capabilities,
repeatability, etc. Furthermore, the Chapter has included the implementation details of
each controller in a discrete-time system, which becomes a useful methodology for applying
the designed SFC and SMC controllers in whatever power converter through a digital
platform.
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Chapter 9

Conclusions and Future Research.

9.1 Conclusions

Nowadays, the electric power processing has become a key aspect due to its widespread use
in the industry, in appliances and, increasingly, in the field of renewable energy and elec-
trical vehicles. Therefore, to improve the features of the switched power converters, which
are the most efficient option to process the electric power, is of the utmost importance.
It is well known that the power converters are designed to operate with fixed switching
frequency, for which its performance is optimal. The sliding mode control is a control
strategy that can provide benefits to the power converters features as improved robustness
or faster transient response. The most intuitive and common application of the sliding
mode control comes from the substitution of the sign function by a comparator with hys-
teresis, leading to a bounded but variable switching frequency. This phenomena hinders
the sliding mode control application in power converters. This thesis proposes a simple
control solution that regulates the switching frequency of operation without degrading the
performance provided by the ideal sliding mode to the power converters.

The control structure presented in this thesis adds a control loop measuring the switch-
ing period of the control action, T, and updates the hysteresis bandwidth, A, of the
comparator implementing the sliding mode discontinuous control law. Even though the
switching period regulation structure itself can not be treated as a thesis contribution, since
it was already proposed in some works for hysteretic controllers. However the application
of this structure to the sliding mode control, and the developed analysis about the loop
stability conditions do represent a contribution to the field.

The thesis has been divided in two main parts. The first one deals with the switching
period regulation structure modelling, and the analysis of its stability conditions according
to different working scenarios. The second part is devoted to the application of the proposed
control structure in different power converters. Therefore, it is reasonable to split the thesis
contributions in two main groups.
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9.1.1 Theoretical analysis of the proposed solution and study of

the resulting sliding dynamics

In this first part of the thesis, the theoretical procedures applied to derive the stability
conditions of the new loop and the parametric design of the switching frequency controller
were addressed. Through such studies, the following results were achieved:

e The development of the models describing the behaviour of the switching frequency

control loop were derived in Chapter 2. As a peculiarity of this control structure,
the way to update the hysteresis bandwidth of the comparator affects the equation
relating the control system input, A, with its output, 7. The discrete-time approach,
where A becomes a set of discrete values, and the continuous-time approach, where
A is a function of time, have been presented in this work. In this thesis, a control
structure based on an integral action has been studied for both discrete-time and
continuous-time approaches. However, the models for other controllers can also be
derived following analogous procedures to the ones shown in Chapter 2.

Once the models were achieved, the stability conditions for the resulting closed-loop
dynamics were provided in Chapter 2. Specifically, the stability conditions (and
design guidelines) have been found for the main working scenarios of the sliding
mode control, namely: the regulation case and the tracking case. In the case of the
discrete-time approach in a regulation control problem, the stability conditions were
derived applying the well-known Jury test. The stability conditions of the discrete-
time approach in a tracking scheme were found through the inclusion of a feedforward
action in the control structure, and the application of the Lyapunov discrete-time
criterion. In this case, the stability conditions are sufficient but not necessary. With
regard to the continuous-time approach, a linearization of the resulting nonlinear
system was required, leading to a stability conditions based on ensuring the validity
of the linearized system. Finally, the good performance of the developed structures
were validated through a set of numerical simulations in Chapter 3. In this Chapter,
the proposed approaches (the discrete-time and the continuous-time) were tested in
a simple linear system under the regulation and the tracking cases. The simulation
results not only provide evidences of the proper behaviour of the proposed control
structure but, also, an useful guidelines of how to design the switching frequency
controller.

The last contribution achieved, from a theoretical point view, was the analysis of
how the new control loop affects to the real sliding motion, which was developed in
Chapter 4. Firstly, it was demonstrated that if a piecewise linear switching function
confined in a symmetric boundary layer, A, becomes T-periodic, the mean values
in T of the real and the ideal sliding motion converge both to zero. Therefore,
the piecewise linear characteristic of the switching function not only supports the
validity of the thesis development but also provides a real sliding mode matching,
in average, the ideal one in steady-state. This case can be fully applied to the
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regulation case, where the switching function becomes T-periodic and the hysteresis
value is constant in steady-state. The aforementioned T-periodicity does not occurs
neither in the tracking case nor in transients and, as a consequence, the averaged real
sliding mode differs from the ideal one. However, the Chapter gave some guidelines
for the switching frequency controller design such that its influence in the real sliding
mode can be neglected.

9.1.2 Application of the proposed solution to power converters.

The second part of the thesis deals with the application and experimental evaluation of
the developed control structures in several converter prototypes. Despite of the experi-
mental evaluation itself, during the procedures required to carry out such tasks, additional
contributions, related to implementation issues were also achieved. The power converters
employed, and the approaches applied to each case, were designed with the aim of covering
all the cases analysed in the theoretical part:

e The discrete-time approach in a regulation control case was experimentally tested in
Chapter 5, where an output voltage regulation in a Buck converter was performed
with good results, showing robustness and switching frequency regulation. This con-
verter is characterized by a linear state space equation with a discontinuity produced
by the control action in the right-hand side. The Buck converter is, surely, the most
popular power conversion topology.

e A multiphase Buck structure with interleaving operation was presented in Chapter
6 in a regulation control problem. In this case, the continuous-time approach for
the switching frequency regulator was chosen. With this converter, the switching
frequency control is applied to a multi input structure, which is becoming increasingly
popular due to its good efficiency. The built system achieved very good levels of
efficiency, robustness and, as expected, steady-state fixed switching frequency.

e The popular Boost converter, with a well-known nonlinear characteristic, has been
also tested in this thesis, controlling its output voltage to a desired constant value, en-
tailing a regulation case. For this application, described in Chapter 7, the continuous-
time approach was used. The importance of the good results obtained in this exper-
imental part is not only related to the proper operation of the technique but also to
confirm that the proposed solution can be used in both linear and nonlinear systems.

e A tracking control problem is proposed in Chapter 8, using for such purpose a voltage
source inverter (VSI), which is the most employed DC/AC converter. The results
obtained in the laboratory validated the feedforward action proposed for the tracking
cases. Additionally, the sliding mode control was designed such that different type of
loads can be connected to the converter without a lack of stability. Specifically, the
sliding dynamics were analysed assuming resistive load, reactive load and nonlinear
load, and the corresponding theoretical tracking errors for each scenario were also
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9.2

reported. In the experimental evaluation, the overall good system performance in
all the expected load cases was corroborated, including fixed switching frequency of
operation in all conditions.

The implementation approaches, the discrete-time and the continuous-time, and the
sliding mode control structure, have leaded us to follow different strategies in the
controllers implementation. In the experimentation of the Buck converter, the slid-
ing mode controller was implemented by means of analog circuitry being, the SFC
one completely digital. Otherwise, for the continuous-time approach used in the
multiphase and Boost converters, both the sliding mode control and the switching
frequency regulator was assembled using only analog circuitry.

Finally, a fully digital controller implementation was used in the VSI experimentation.
Included in Chapter 8, the issues related to the implementation of the controllers in a
digital platform were widely detailed and discussed, becoming an useful implementing
guide for the application of the proposed controllers to arbitrary converters under
sliding mode control and switching frequency regulation.

Future research

Through the thesis development, there were several points which represent future research
topics. The open problems have been classified as follows.

9.2.1 Open problems in the theoretical part

e In the thesis, although the proposed control structures have been analysed under

discrete-time and continuous-time approaches, all the studies have been developed as-
suming a simple integral action as switching frequency controller. As a consequence,
it would be interesting to explore the resulting dynamics provided by different con-
trollers.

As regards to the continuous-time approach, the thesis only analysed the regulation
control task, remaining pending the tracking case. It should be noticed that in the
continuous-time approach, the resulting model was nonlinear, which implied a more
difficult analysis, even, in the regulation control problem. Therefore, to find out
stability conditions for a tracking case in the continuous-time approach will be an
additional contribution to the work developed in this thesis.

Another pending aspect is related with the procedure followed for deriving the stabil-
ity conditions in the discrete-time approach when a tracking case is studied, where a
feedforward action was proposed. As it was previously stated, the stability condition
was found using a Lyapunov discrete-time criterion, being such condition sufficient
but not necessary. Indeed, in both numerical simulations and experimental testing,
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it was shown that the additional loop presents stable behaviour with values not ful-
filling the stability criterion. Therefore, it should exist different Lyapunov function
candidates providing wider range of stable values for the switching frequency control
gain. An interesting topic would be to explore new Lyapunov functions yielding new
(and wider) stability conditions.

e The conditions found for the tracking case were based on the employment of a feed-
forward action, removing the non-homogeneous part of the equation that character-
izes the closed-loop dynamics. However, through the simulations one realized that
in some conditions, without the inclusion of the feedforward action, the switching
period error becomes really small, being negligible in practise. As a consequence, the
prediction of the bounds for the switching period error for certain conditions, making
unnecessary the feedforward action usage, constitutes a further research subject.

e In Chapter 4, the impact of the switching frequency controller in the real sliding
dynamics was tackled. The developed analysis provided qualitative results. A pro-
cedure to quantitative analyse such dynamics variations for a specific situation would
lead to a further contribution.

9.2.2 Open problems in the application part

The open problems from the application point of view are focused on the further testing
of the switching frequency regulation control loop to other power converters topologies.
Moreover, since the technique is not only useful for power converters, its application to
another type of systems would become interesting for the applicability of the proposed
solution.
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