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Abstract

Automatic Speech Recognition (ASR) is one of the most important applications in the area
of cognitive computing. Fast and accurate ASR is emerging as a key application for mobile and
wearable devices. These devices, such as smartphones, have incorporated speech recognition as one
of the main interfaces for user interaction. This trend towards voice-based user interfaces is likely
to continue in the next years which is changing the way of human-machine interaction.

Effective speech recognition systems require real-time recognition, which is challenging for
mobile devices due to the compute-intensive nature of the problem and the power constraints of
such systems and involves a huge effort for CPU architectures to reach it. GPU architectures offer
parallelization capabilities which can be exploited to increase the performance of speech recognition
systems. However, efficiently utilizing the GPU resources for speech recognition is also challenging,
as the software implementations exhibit irregular and unpredictable memory accesses and poor
temporal locality. Furthermore, GPUs operate at a high power which make heat dissipation and
battery life a primary concern for these devices.

The purpose of this thesis is to study the characteristics of ASR systems running on low-
power mobile devices in order to propose different techniques to improve performance and energy
consumption. Firstly, we provide a performance and energy characterization of Pocketsphinx, a
popular toolset for ASR that targets mobile devices. We identify the computation of the Gaussian
Mixture Model (GMM) as the main bottleneck, consuming more than 80% of the execution time.
The CPI stack analysis shows that branches and main memory accesses are the main performance
limiting factors for GMM computation. We propose several software-level optimizations driven by
the power/performance analysis. Unlike previous proposals that trade accuracy for performance
by reducing the number of Gaussians evaluated, we maintain accuracy and improve performance
by effectively using the underlying CPU microarchitecture.

We use a refactored implementation of the innermost loop of the GMM evaluation code to
ameliorate the impact of branches. Then, we exploit the vector unit available on most modern
CPUs to boost GMM computation, introducing a novel memory layout for storing the means and
variances of the Gaussians in order to maximize the effectiveness of vectorization. In addition, we
compute the Gaussians for multiple frames in parallel, significantly reducing memory bandwidth
usage. Our experimental results show that the proposed optimizations provide 2.68x speedup over
the baseline Pocketsphinx decoder on a high-end Intel Skylake CPU, while achieving 61% energy
savings. On a modern ARM Cortex-A57 mobile processor our techniques improve performance by
1.85x, while providing 59% energy savings without any loss in the accuracy of the ASR system.

Secondly, after optimizing the ASR application at software level, we focus on improving the per-
formance of these applications by identifying bottlenecks in current processors at microarchitecture
level. We faced many stalls in renaming stage due to lack of physical registers for optimized and
vectorized GMM code. To alleviate the pressure on the register file, we exploit the observation that
for a significant percentage of instructions that have a destination register, the produced value has
only a single consumer. In this case, the RAW dependence guarantees that the producer-consumer
instructions pair will be executed in program order and, hence, the same physical register can be
used to store the value produced by both instructions. We propose a register renaming technique
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that exploits this property to reduce the pressure on the register file. Our technique leverages
physical register sharing by introducing minor changes in the register map table and the issue
queue. We evaluated our renaming technique on top of a modern out-of-order processor. The
proposed scheme supports precise exceptions and we show that it results in 9.5% performance
improvements for GMM evaluation. Our experimental results show that the proposed register re-
naming scheme provides 6% speedup on average for the SPEC2006 benchmarks. Alternatively, our
renaming scheme achieves the same performance while reducing the number of physical registers

by 10.5%.

Finally, we propose a hardware accelerator for GMM evaluation that reduces the energy con-
sumption by three orders of magnitude compared to solutions based on CPUs and GPUs. The
proposed accelerator implements a lazy evaluation scheme where Gaussians are computed on de-
mand, avoiding 50% of the computations. Furthermore, it employs a novel clustering scheme to
reduce the size of the GMM parameters, which results in 8x memory bandwidth savings with a
negligible impact on accuracy. Finally, it includes a novel memoization scheme that avoids 74.88%
of floating-point operations. The end design provides a 164x speedup and 3532x energy reduction
when compared with a highly-tuned implementation running on a modern mobile CPU. Com-
pared to a state-of-the-art mobile GPU, the GMM accelerator achieves 5.89x speedup over a highly
optimized CUDA implementation, while reducing energy by 241x.

Keywords

Automatic Speech recognition, GMM, Hardware Accelerator, Microarchitecture, Register Re-
naming.
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Glossary

Acoustic Model An acoustic model is used in Automatic Speech Recognition to represent
the relationship between an audio signal and the phonemes or other linguistic units that make up
speech. The model is learned from a set of audio recordings and their corresponding transcripts.

ASR. Automatic Speech Recognition, the conversion of a speech signal to a symbolic repre-
sentation by computational means.

Beam. In a heuristic search algorithm, the beam is the range of scores outside of which current
states or paths will not be extended. This is usually done by applying a factor to the best score of
all paths reaching a given point and discarding all paths whose scores are less than the resulting
score.

Continuous Acoustic Model. An HMM-based acoustic model, whose output density func-
tions are Gaussian Mixture Models which each triphone has its own separate weighted Gaussian
distributions.

Decoding. Translation of a message into codewords. In the case of speech, refers to the
translation from a representation of a speech signal into a sequence of words or linguistic units.
Usually, but not always, the input representation is the acoustic signal (for example, we can also
speak of decoding a word lattice). Often used synonymously with search.

HMM. Hidden Markov Model. A statistical model used to exemplify a process which evolves
over time, where the exact state of the process is unknown, or “hidden”.

Hypothesis. A single sequence of words or linguistic units considered by a speech recognizer
as the result of decoding an input utterance. May also refer to one particular component of such a
sequence, as in a “word hypothesis”.

Lattice. A directed acyclic graph representation of the set of hypotheses generated by a speech
recognizer, where both word identities and timing information are represented.

MFCC. Mel-Frequency Cepstral Coefficients, the coefficients of the cepstrum of the short-
term spectrum, downsampled and weighted according to the mel scale, a frequency scale thought
to represent the sensitivity of the human ear.

PTM Acoustic Model. Phonetic Tied-Mixture. An HMM-based acoustic model, whose
output density functions are Gaussian Mixture Models in which triphones that belong to the same
basephone share a single set of Gaussian distributions.



Real-time factor. Often abbreviated as xRT, the measure typically used to report the perfor-
mance of a speech recognizer. This is calculated as the ratio between the amount of time required
to decode an utterance and the length of the utterance. For example, a real-time factor of 0.4 xRT
means that each second of audio requires 0.4 seconds to decode (lower RTF means faster decoding).

Search. In automatic speech speech recognition, the process of searching the set of linguistic or
symbolic representations of an utterance for one (or more) which are considered the most probable
by the statistical models used by the recognizer. Often used synonymously with decoding.

Semi-continuous Acoustic Model. An HMM-based acoustic model, whose output density
functions are Gaussian Mixture Models which share a single set of Gaussian distributions.

Senone. The two most common forms of parameter tying are state tying and mixture tying. In
the former, the state output distributions of all triphones are mapped to a set of acoustic clusters,
usually known as senones. Each senone consists of a complete mixture distribution with its own
set of Gaussian parameters.

Triphone. In large-vocabulary continuous speech recognition, it is common practice to use
context-dependent sub-word units as the basic units of recognition. These are typically phoneme-
like units, consisting of a single phoneme in a particular phonetic context. Most frequently, the
context is defined by the identities of the phonemes immediately preceding and following, in order
to model coarticulatory effects. This unit is known as a triphone.

Tied. When multiple HMM states in an acoustic model share a set of parameters, these
states are said to correspond to a single “tied” state. This is usually done for states that, despite
having different symbolic representations, are acoustically similar. This allows for more compact
and efficient acoustic models and better use of sparse training data.

Utterance. The longest segment of speech operated on at one time by an automatic speech
recognizer. Typically corresponds to an uninterrupted phrase, sentence, or paragraph spoken by a
single speaker.

Vector Quantization. The representation of a continuous vector space with a discrete set of
prototype vectors or codewords.

Viterbi Algorithm. A dynamic programming algorithm to find the probability of the most
likely state sequence.

WER (Word Error Rate). Number of insertions plus deletions plus substitutions that are
required to convert the recognized word sequence into the reference word sequence, divided by the
total number of words of the reference utterance.
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Introduction

This chapter presents the background and motivation behind this work, a brief description of
related work, and an overview of the main proposals and contributions of this thesis.

1.1 Motivation

The way people interact with devices nowadays is dramatically changing. Traditional input
methods like keyboards or mouse are left behind and during the last decade we experienced a
tremendous revolution in the area of human/machine interaction with the introduction of touch
screens. However, a new avenue is being explored towards even more intuitive interfaces based
on image recognition and speech recognition. This technology is emerging as a critical component
in data analytics for a wealth of media data that is being generated everyday. Commercial usage
scenarios are already appearing in industry such as broadcast news transcription [43, 72|, voice
search [88], automatic meeting diarization [10] or real-time speech translation in video calls [91].
Moreover, voice-based user interfaces are becoming increasingly popular, significantly changing the
way people interact with computers.

Assistant tools like Google Now [4] from Google, Siri [11] from Apple or Cortana [64] from
Microsoft rely on ASR as the main interaction system with the user on mobile devices. We can
only expect a broader adoption of this interaction system with the anticipated popularization of IoT
devices and wearables. On the one hand, companies like Google or Apple are actively improving
their software to allow users to interact with tablet and mobile devices using voice. However, the
computation requirements needed to enable speech recognition and natural language processing for
large grammars and dictionaries are very high. These requirements make solutions to rely on the
internet to offload part of the computation to servers in the cloud even for basic control instructions.
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Although this approach is functional, its end-user experience is negatively impacted by the limited
response time in situations of slow internet connection and the impossibility of interacting with the
device even for local commands or dictation if the user is in a place with no internet coverage.

There is a large class of applications which cannot depend on a data connection, or where
security or privacy concerns make it undesirable to entrust voice input to a remote server. In
the consumer realm, this class includes in-car voice control, speech translation, music and contact
search, and potentially other types of on-device search. It is clear that the use cases as well as
the functional requirements of server-based and on-device speech recognition are quite different.
However, these use cases are exclusive neither in time nor space, and it is no longer uncommon to
encounter both types of speech recognition operating on the same device. One may, for example,
use the on-device speech recognition on the Apple iPhone for dialing and other basic control tasks,
while using Google’s server-based voice search application on the same phone for Internet and local
search and Nuance’s server-based dictation application for composing e-mail and text messages.

Nowadays, mobile device hardware has advanced to the point where it is capable of handling
medium vocabulary speech recognition tasks in real-time. This raises the possibility of providing
much lower latency for speech recognition by processing audio data immediately as it becomes
available. However, for the best recognition accuracy, and for inherently network-based tasks such
as Internet search, it continues to make sense to perform recognition remotely, allowing much more
substantial computational resources to be devoted to the problem.

Since the advent of speech recognition, the huge amount of computation required for an accurate
large vocabulary speech recognition system was a serious problem that researchers and users were
faced to. Hence, there are numerous methods and proposals to reduce the computation in many
aspects. Reducing execution time and improving accuracy are two important goals for speech
recognition researchers. However, these two goals are usually contradictory and we faced a trade-
off between accuracy and performance. On the other hand, on mobile devices power consumption
due to limited resources of energy is a very important issue. Accuracy in ASR systems depends
on how much time we can devote to the computation. If we can spend a large amount of time
computing, we can implement more sophisticated models ending up on better accuracy. However,
the execution time needed to get reasonable accuracy on these toolkits when executed on power
constrained cores is prohibitive. Figure 1.1 shows a projection of the expected accuracy with respect
to the amount of time we devote to computation in a Tegra X1 mobile CPU and GPU. Time is
normalized to real-time showed as 1 in the y-axis, which represents the maximum amount of time
we could spend if we want to honor real-time constraints. As the figure shows, the higher the
accuracy of the ASR system, the higher the time required to decode one second of speech.

This figure clearly shows that even modern mobile processors are unable to run sophisticated
ASR models in real-time. Therefore, still improving the performance and energy-efficiency of ASR
systems remains a challenging problem.

In this thesis, we focus on improving performance and energy-efficiency of ASR for mobile
devices. ASR is already an essential feature for smartphones and tablets. Furthermore, speech
technology will be of special interest for wearable computing, becoming a hard requirement for
most mobile devices such as smart watches. Due to their tiny form factor, wearable devices are
extremely constrained in terms of area and power and, therefore, they cannot afford complex
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Figure 1.1: Decoding time for one second of speech vs accuracy of the Pocketsphinx ASR, system
running on a mobile CPU, ARM Cortex-A57, and a mobile GPU, NVIDIA Tegra X1.

hardware solutions like GPUs. Hence, we believe there is a strong case for real-time and energy-
efficient ASR on mobile CPUs, which is the focus of this work.

The objective of speech recognition is the transcription of acoustic signals into a sequence of
words. A state-of-the-art ASR pipeline consists of three main stages which are Feature Eztrac-
tion, Acoustic Scoring and Search Engine. First, the input audio signal is split in frames, where
each frame represents a 10 ms interval of the speech signal. Next, the Feature Extraction stage
transforms the digitized audio samples within a frame into a vector of features. These features are
then converted into a sequence of phonemes by an Acoustic Model in the Acoustic Scoring stage.
The baseline ASR system employed in this thesis uses Gaussian Mixture Models (GMMs) [81] for
acoustic scoring, i. e. each phoneme is modeled as a mixture of Gaussian functions. Finally,
the Search Engine transforms the sequence of phonemes into a sequence of words by executing
the Viterbi beam search. Chapter 2 presents a background for the algorithms used for automatic
speech recognition and Pocketsphinx, our baseline ASR system.

Acoustic scoring is key for the accuracy of the ASR systems. Therefore, accurate ASR systems
employ sophisticated large acoustic models. In such systems, for every frame of speech, hundreds
of thousands of multi-dimensional Gaussians have to be evaluated. Therefore, GMM evaluation
becomes the main bottleneck.

1.2 Problem Statement, Objectives and Contributions

The objective of this thesis is to propose novel techniques that address the issues in ASR
systems, in order to improve their performance and energy-efficiency. In first place, we propose
a set of software-based optimizations for Gaussian evaluation which is the main bottleneck in
ASR system. In second place, our analysis shows that running the optimized ASR software in a
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Figure 1.2: Real Time Factor and Normalized Energy consumption vs Word Error Rate for different
acoustic models in Pocketsphinx running on an ARM Cortex-A57 mobile CPU. Multi-frame shows
our optimized decoder. Energy consumption for different acoustic models are normalized with
respect to the continuous acoustic model.

modern CPU results in considerable stalls in the rename stage of the CPU pipeline due to lack
of physical registers. To overcome this issue, we propose a novel register renaming technique
at microarchitecture level to improve the performance of register-intensive applications like GMM
computation. In third place, we design an ASIC for Gaussian evaluation to improve the performance
and energy-efficiency of ASR systems by orders of magnitude. The following sections outline the
problems we are trying to solve, describe the approach we take to solve the problem and provide a
comparison with related work, highlighting the novel contributions of this thesis.

1.2.1 Software-based Optimizations for ASR Systems

ASR applications deliver real-time, large vocabulary, speaker independent speech recognition.
However, supporting accurate real-time ASR comes at a high energy cost. To illustrate this prob-
lem, Figure 1.2 shows the Real Time Factor (RTF) vs Word Error Rate (WER) for different
configurations of Pocketsphinx [47], a widely used open source toolset for ASR, running on an
ARM Cortex-A57 mobile CPU. As it can be seen, increasing accuracy causes a huge slowdown: the
continuous acoustic model reduces error by 5 percentage points with respect to the simpler PTM
(Phonetic Tied-Mixture) [53] model, while producing a slowdown of 2.4x and increasing energy
consumption by 2.78x. Note that this is not only the case for Pocketsphinx, as other ASR toolsets
exhibit similar power/performance trade-offs [35].

Previous solutions improve ASR performance by reducing the amount of computation required
to convert the speech signal to words. One commonly used strategy is to simplify the acoustic
model. Phonemes are typically modeled by using Gaussian Mixture Models (GMMs). The semi-
continuous and PTM acoustic models of Pocketsphinx, included in Figure 1.2, significantly constrain
the number of Gaussians in each mixture to improve performance. Although highly effective,
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these approaches reduces accuracy to a large extent, as simple acoustic models cannot capture the
complexity of speech.

Recognizing that accuracy is probably the most important parameter in an ASR system, we
take a completely different approach as we improve performance while achieving the same accuracy
of the baseline configuration. We boost GMM computation performance by applying low-level
optimizations to the software in order to maximize the usage of the available CPU resources.

Based on an extensive analysis of the power/performance behavior of Pocketsphinx, we present
several software optimizations in this work. The GMM evaluation, i. e. the acoustic model, is
the main bottleneck consuming more than 80% of the execution time. Furthermore, our detailed
analysis for mobile processors show that the main sources of stalls in the CPU are branch mispre-
dictions and accesses to main memory. Finally, the power breakdown for the same CPU clearly
shows that the DRAM is the main energy consumer.

Our software optimizations target the problems identified during the analysis. Regarding
branch misprediction penalties, we show how the GMM evaluation code can be refactored to remove
the most critical branches. As regards to the DRAM, we propose a multi-framing scheme where
means and variances of a Gaussian are fetched once in the CPU caches and reused for evaluating
the Gaussian in multiple frames of speech, improving the locality of memory accesses.

The main hurdle for implementing multi-framing in modern ASR systems is the interaction
with lazy GMM evaluation. Due to the huge search space, ASR systems employ aggressive pruning
to achieve real-time performance by dynamically discarding unlikely interpretations of the speech
signal. Because of the pruning, only a subset of the Gaussians is active for a given frame of
speech whereas the likelihoods of the other, inactive, Gaussians are not required. Pocketsphinx
employs lazy GMM evaluation to avoid computing and fetching from memory inactive Gaussians.
Combining lazy GMM evaluation with our multi-framing scheme is challenging as only the active
Gaussians for the first frame in the batch are known. In this work, we propose a novel prediction
scheme of active Gaussians that is highly effective and allows the use of both lazy GMM evaluation
and multi-framing, substantially reducing main memory bandwidth usage.

Finally, we introduce SIMD instructions in Pocketsphinx to improve the performance and
energy efficiency of the GMM computation. Furthermore, we propose a novel memory layout to
store the means and variances that increases the amount of vectorizable code. Figure 1.2 shows
that our optimized decoder, labeled as Multi-frame, provides the same accuracy as the continuous
acoustic model while achieving performance and energy consumption close to the simpler PTM and
semi-continuous acoustic models. Chapter 3 extensively describes the analysis, our proposals and
the results in this work. This work has been published in the IEEE Transactions on Multi-Scale
Computing Systems (TMSCS) Journal [95]:

e Hamid Tabani, Jose-Maria Arnau, Jordi Tubella, Antonio Gonzélez, ” Performance Anal-
ysis and Optimization of Automatic Speech Recognition,” Multi-Scale Computing Systems
(TMSCS), IEEFE Transactions on, 2017, DOIL: 10.1109/TMSCS.2017.2739158.
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1.2.2 Modifying Microarchitecture Design

Although our proposals at software level improve the performance and energy-efficiency of the
ASR system significantly, further improvements can be achieved by understanding the performance
limiting factors at microarchitecture level. In this thesis, we try to further improve the performance
of GMM evaluation by applying changes at the microarchitecture level. By running the optimized
and vectorized GMM code that reduces branch mispredictions and cache misses significantly, the
register file becomes under pressure and results in considerable stalls in the renaming stage restrict-
ing the overall performance of the processor.

Dynamically-scheduled superscalar processors exploit instruction-level parallelism (ILP) by re-
ordering and overlapping the execution of instructions in an instruction window. The number of
instructions that can be executed in parallel is highly dependent on the instruction window size
and, thus, wide issue processors require a large instruction window [101]. However, a large in-
struction window has some implications in other critical parts of the microarchitecture, such as
the size of the physical register file [33]. In this thesis, we are concerned with this issue. On the
other hand, in spite of being able to execute instructions out-of-order, the amount of ILP that cur-
rent superscalar processors can exploit is significantly restricted by data dependences. Due to the
limited number of architectural registers, at some point compilers start reusing them, which may
cause name dependences (write-after-read and write-after-write dependences). Dynamic renaming
schemes eliminate these name dependences by assigning a new storage location to the destination
register of each instruction. This increases the amount of independent instructions that can be
executed in parallel, which results in an increase in the ILP.

Larger instruction windows require a higher number of physical registers. However, increas-
ing the size of the register file is challenging and has important implications in terms of energy
consumption, access time and area [33].

This work is motivated by the observation that, in a significant percentage of instructions with
a destination register, this register has a single consumer. Figure 1.3(c) shows that more than 57%
of the instructions in GMM exhibit this property. For other benchmarks we show that more than
50% of the instructions in SPECfp and more than 30% in SPECint exhibit this property. In this
case, the RAW dependence between producer and consumer will force sequential execution of the
two instructions. In addition, since there is only a single consumer then no other instruction will
require the value produced by the first instruction. Therefore, producer and consumer can safely
use the same physical register as their destination.

In this work, based on the aforementioned observation, we propose a register renaming scheme
that implements this reuse of registers in dynamically scheduled processors that implement precise
exceptions. We show that identifying single-use registers can be accomplished with simple hardware.
To be able to recover the state of the processor in a branch misprediction, interrupt or exception,
we propose to use a multi-bank register file with check-pointed register banks using shadow cells
[32]. Check-pointed registers are allocated whenever it is predicted that a register might be reused.
Hence, the former value of a register can be recovered in an event of branch misprediction, interrupt
or exception. Chapter 4 explains our proposed register renaming scheme and provides the details
of our analysis on various benchmarks. This work has been published in the 24th International
Conference on High Performance Computer Architecture (HPCA) [97]:
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Figure 1.3: Percentage of instructions with a destination register that are the only consumers of
the value of a register. We distinguish between instructions that redefine the single-use register
and instructions that redefine a different logical register.
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e Hamid Tabani, Jose-Maria Arnau, Jordi Tubella, Antonio Gonzéalez, ” A Novel Register Re-
naming Technique for Out-of-Order Processors, ” High Performance Computer Architecture
(HPCA), 2/th International Conference on, Feb. 2018, Vienna, Austria.

1.2.3 A Hardware Accelerator Design for Acoustic Scoring in ASR systems

As discussed in section 1.2.1, the most compute intensive component of the majority of ASR
systems, including Pocketsphinx, is the acoustic scoring. In an ASR system, the input audio signal
is split in frames, typically of 10 ms duration. For each frame of speech, the acoustic scoring
computes the likelihood, a.k.a. score, that the frame is part of a particular phoneme, for all
potential phonemes in the language. Despite the increasing popularity of DNNs, GMMs are used
by the majority of ASR systems including Pocketsphinx, Sphinx4, HTK [106], Julius [54] and
some decoders of Kaldi. GMM evaluation is typically the main bottleneck in these systems. Our
measurements on an NVIDIA Tegra X1 show that acoustic scoring takes more than 80% of the
decoding time in Pocketsphinx.

Figure 1.4 shows the power dissipation and execution time for the GMM evaluation stage, i.
e. acoustic scoring, on a mobile CPU and GPU. These numbers were collected using the standard
acoustic model of Pocketsphinx, that requires the evaluation of 160k 36-dimensional Gaussian
distributions for every frame of speech (10 ms). The mobile CPU dissipates 2.4 W, and it barely
reaches real-time performance as it takes 1.08 s to process one second of speech. The mobile GPU
achieves real-time performance, but at the cost of increasing power dissipation significantly (9.2
W), which in turn results in shorter operating times per battery charge. To illustrate this issue, for
a typical smartphone battery of 11.55 WHr (41580 J) [8] the operating time when running ASR
software on the CPU would be less than 4.8 hours, whereas it would be reduced to less than 1.25
hours when using the GPU. Note that CPU and GPU are not the only battery consumers in a
smartphone, so these numbers are upper bounds of the operating time.

In this work, we present a hardware accelerator for GMM computation that includes innovative
techniques to improve the energy-efficiency of ASR systems. Hardware acceleration is an effective
approach to achieve high-performance and low-power ASR in mobile devices.

Our accelerator implements a lazy evaluation scheme that computes Gaussian distributions on
demand instead of evaluating all the Gaussians on every frame, reducing the amount of computation.
Our lazy evaluation scheme introduces and implements in hardware our novel technique to predict
the active Gaussians in the next frames of speech, (as introduced in section 1.2.1), in order to apply
lazy evaluation for multiple frames (batching).

On the other hand, our accelerator includes a novel clustering technique that provides 8x
reduction in the size of the acoustic model. Our clustering works independently for each dimension
of the Gaussian distributions, and we show that it provides better accuracy than the straightforward
approach of clustering the entire GMM together.

Finally, we show that as a side effect, the proposed clustering results in a huge amount of
redundant computations, and we introduce a novel memoization scheme that drastically reduces
the number of floating point operations. Our scheme pre-computes and stores in hardware all
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Figure 1.4: Power dissipation vs execution time for a mobile CPU, ARM Cortex-A57, a mobile
GPU, NVIDIA Tegra X1, and a hardware accelerator for acoustic scoring.

possible results at the beginning of each frame, instead of probing/updating a memoization table
for every individual floating point operation. Figure 1.4 shows the power and performance of our
GMM accelerator. As it can be seen, the accelerator achieves higher performance than the mobile
GPU at ultra low power, as low as 110 mW.

Chapter 5 presents in detail our proposed hardware accelerator. This work has been pub-
lished in the 26th International Conference on Parallel Architectures and Compilation Techniques
(PACT) [96]:

e Hamid Tabani, Jose-Maria Arnau, Jordi Tubella, Antonio Gonzélez, ” An Ultra Low-power
Hardware Accelerator for Acoustic Scoring in Speech Recognition,” Parallel Architecture and
Compilation Techniques (PACT), 26th International Conference on, Sep. 2017, Portland,
USA.

1.3 State-of-the-art in Performance and Energy Improvement for ASR
Systems

Improving performance of GMM computation for speech recognition has attracted the attention
of the research community the last few years. In this section, we review some related work which
are proposed in order to improve performance and energy efficiency of ASR systems at software
level or by proposing hardware designs. Later, we will present alternative types of acoustic models
that have been proposed in order to reduce the complexity of GMM evaluation or to improve the
accuracy of the ASR system.
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1.3.1 Software Solutions

Regarding software improvements, most proposals focus on reducing the amount of compu-
tation at the cost of increasing Word Error Rate. Partial Distance Elimination [76, 19] employs
the top N Gaussians with highest likelihood to compute senone! score instead of using all the
Gaussians. Our work in this thesis is different as one of our objectives is to maintain accuracy and
boost performance by exploiting the Vector Processing Unit (VPU) and saving bandwidth with an
approach to evaluate scores of several frames of speech which is called multi-framing approach.

The use of SIMD instructions for GMM computation has been subject of research for several
years [52, 74, 20]. These proposals do not evaluate the impact of SIMD on energy consumption.
Moreover, these works do not evaluate the interaction of SIMD instructions with hardware prefetch-
ers. Furthermore, the efficiency of SIMD instructions is limited as these works remain significant
amount of code unvectorized. We address this problem in our work by proposing a novel memory
layout to store the GMM parameters which significantly increases the amount of vectorizable code.

Gupta et al. [39, 40] propose a chunk-based technique to compute GMMs that is similar to our
multi-framing approach. They target GPU architectures and very small vocabulary ASRs so that
they can exploit temporal locality in on-chip memory. Our proposals are different in several ways.
First, we target CPUs instead of GPUs. Second, our baseline employs much bigger vocabulary (130k
words vs bk) and acoustic model (164k Gaussians vs 15k), so our datasets significantly exceed the
capacity of the on-chip caches.

Tan et al. [99] explain in detail how Automatic Speech Recognition can be presented in mobile
devices and also over communication networks. In case the ASR is provided in the network, the
voice is captured in user’s device while it is processed in the cloud. Although complex and more
accurate ASR systems can be executed in the cloud, for many tasks it is prefered to provide ASR
in user’s device due to indeterminate response-time in the cloud, inaccessibility to the network or
security reasons.

Dixon et al. [29] implement the GMM evaluation using matrix multiplication and it is considered
as state-of-the-art implementation of the GMM evaluation. Their approach uses a batch size of 256
frames to evaluate the GMMs. This is mainly to improve the efficiency of the matrix multiplication
scheme. The main drawback of using large batch sizes is increasing the response time of the ASR
system. Response time is a key factor for real-time applications. Furthermore, not all the senones
are active every frame and the number of active senones varies smoothly from one frame to the
next. Our analysis shows that in average less than 50% of senones remain active due to pruning of
less probable hypotheses. Our methods can simply skip inactive senones and their corresponding
Gaussians which results in a significant speedup and energy reduction and in section 3.4.1 we show
that our proposed methods outperform their implementation.

A batching technique is proposed in [25, 49] to reduce the memory bandwidth. These works
use small batch sizes of 4 and 8 in order to reduce the latency caused by batching. Our work
is different as we combine batching with lazy evaluation by using a novel prediction scheme of
active senones. Moreover, our technique not only avoids computing the inactive senones, but also

! State output distributions of all triphones are mapped to a set of acoustic clusters, named senones. Each senone
consists of a complete mixture distribution with its own set of Gaussian parameters.
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eliminates memory accesses for inactive senones in a batch. These architectures implement the
straightforward GMM evaluation, whereas our design includes several optimization techniques,
such as clustering and memoization, to reduce memory requirements and improve performance and
energy efficiency significantly.

1.3.2 Alternative Acoustic Models

Some works tried to reduce the complexity of acoustic scoring by reducing number of Mixtures
of Gaussians. Phonetic-Tied-Mixture (PTM) [55] and semi-continuous [46, 45, 30] acoustic models
are among the main contributions. However, they are increasing the WER to a large extent.
In PTM acoustic model [53, 87] triphones that belong to the same basephone share one GMM,
reducing the number of Gaussians evaluated for acoustic scoring manifold. In semi-continuous
acoustic models all the senones share one GMM, reducing the number of Gaussians evaluated for
acoustic scoring in two orders of magnitude.

Some recent works proposed subspace GMMs [77, 78], to perform better than semi-continuous
AMs with less available resources for training. Our experiments show that for large-vocabulary
ASRs in comparison with a continuous acoustic model, an state-of-the-art PTM and semi-continuous
acoustic models increase the WER by 5.5% and 12% respectively?. In this thesis, we focus on con-
tinuous acoustic models which are the most accurate types of acoustic models.

1.3.3 Clustering Schemes

Since the GMM parameters cannot be stored to on-chip caches due to their large sizes, ASR
systems cannot simply exploit temporal locality. Therefore, off-chip memory accesses to read GMM
parameters occupies significant percentage of the memory bandwidth and it consumes most of the
energy. This makes main memory and off-chip memory accesses a performance bottleneck while
consuming significant amount of energy. Hence, reducing the size of GMM parameters has been
exploited using different approaches. Clustering GMM parameters are among the most popular
approaches as they achieve considerable reduction in the size of GMM parameters by representing
the parameters as indexes referring to a codebook of centroids.

There are several proposed scalar and vector clustering techniques [84, 19, 28]. Sub-vector
clustering methods results in higher reduction in GMM parameter’s size while producing thousands
of vectors of centroids which increase the complexity of evaluating the Gaussians. Although these
techniques significantly reduce the size of the acoustic models, they significantly reduce the accuracy
of the ASR system. We explored data patterns in acoustic model parameters and based on that we
proposed a scalar per-GMM component clustering technique which achieves significant reductions in
the size of acoustic model with a negligible impact on the accuracy of the ASR system. Considering
the same compression ratio, our scheme outperforms previous techniques providing significantly less
impact on the accuracy of the ASR system.

2 Experiments done by running entire LibriSpeech test corpus on the latest version of Pocketsphinx
(version 5-prealpha) using 70k-word language model and 130k-word dictionary using latest PTM, semi-
continuous and continuous acoustic models.
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1.3.4 Hardware Solutions

Improving performance and reducing energy consumption of acoustic scoring using especial
hardware designs has attracted the attention of the research community in recent years. Several
hardware solutions for GMM evaluation have been proposed using ASICs or FPGAs.

A hardware co-processor is proposed in [60] to boost the performance of the GMM computation
in Sphinx3. Reducing the size of the mantissa from 23-bits to 15-bits and 12-bits is proposed in [22]
to reduce the acoustic model size, providing a compression ratio of 1.39x and 1.6x respectively. The
technique is evaluated using a small vocabulary size of 5000 words, whereas we propose a novel
clustering technique to achieve 8x reduction in acoustic model size with a 130k words vocabulary
size.

Hardware/software co-design schemes are proposed in [23, 90, 109] to improve the performance
of the ASR system. Our design improves performance by two orders of magnitude in comparison
with their work. Furthermore, we proposed several techniques to reduce the energy consumption,
memory footprint and memory requirements while using much larger datasets.

Our GMM accelerator is different from previous proposals as it includes lazy evaluation com-
bined with batching, clustering and memoization, that provide significant performance and energy
improvements in comparison with the previous designs.

1.3.5 Deep Neural Networks for Acoustic Scoring

GMM has been the mainstream machine learning technique for implementing the acoustic
model in speech recognition systems for decades. The vast majority of ASR systems, such as
Sphinx4, Pocketsphinx, Kaldi or HTK, provide an implementation of acoustic scoring based on
GMMs. In recent years, the use of Deep Neural Networks (DNNs) for acoustic scoring [42] has
become very popular due to its high recognition accuracy. Unlike the conventional idea that these
are two competing approaches for speech recognition, recent research has shown that GMMs and
DNNs complement each other. Swietojanski et al. [94] propose an acoustic model that combines a
GMM and a DNN, achieving higher accuracy than the DNN alone. Rath et al. [83] present a hybrid
and stacked ASR system that also combines a DNN with a GMM to improve recognition accuracy.
These ASR systems combine the frame-level acoustic scores computed separately by a DNN and
a GMM. Other hybrid systems, like the tandem approach [31] or the bottleneck approach [108],
employ DNNs as feature extractors for a GMM. Yu et al. [107] explain in detail fuse DNN and
GMM systems. Recently, Tachioka et al. [98] proposed to use DNN and GMM-based ASR systems
to address variety of noises in a noisy environment. Their results show that combining these
approaches increases the accuracy of the ASR system significantly.

To sum up, GMMs are still among the most common techniques for implementing the acoustic
scoring in ASR systems. Furthermore, previous work has shown the synergy between GMM and
DNN techniques. Therefore, we believe that improving the performance and energy-efficiency of
GMDMs will be of special interest for future speech recognition systems.
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1.4 Thesis Organization

The remainder of this thesis is structured as follows:

Chapter 2 provides basic background information on the speech recognition algorithms. We
mainly describe the ASR toolkit that we employ in this thesis and we detail its different stages.

In Chapter 3, first we present the extensive analysis of the ASR toolkit running on various
general-purpose mobile and desktop processors. Second, we highlight the bottlenecks and the main
performance and energy consumption determinative factors. Third, we present our software-based
proposals to alleviate these bottlenecks.

In Chapter 4, we show that for register-intensive application like GMM evaluation, traditional
register renaming schemes are very conservative which make the registers a limiting factor for the
performance of out-of-order processors. We present a novel register renaming technique in order to
reduce the pressure on the register file. We provide an extensive analysis on variety of benchmarks
to motivate our proposed register renaming technique.

Chapter 5 presents our proposed hardware accelerator for GMM evaluation in ASR systems.
First, we propose a baseline accelerator for Gaussian evaluation in acoustic scoring. Later, we
propose our new scheme for clustering GMM parameters and the way we integrate it in the baseline
accelerator. Furthermore, we introduce our new lazy Gaussian evaluation and a memoization
scheme which provides significant performance and energy improvements.

Finally, Chapter 6 outlines some of the future steps and open research areas and summarizes
the main conclusions of the thesis.

35






Background on Speech Recognition

This chapter presents a brief background to understand the state-of-the-art algorithms used for
automatic speech recognition. Due to the objectives of this thesis, we will focus on hybrid HMM-
based statistical modeling techniques for automatic speech recognition, which is the mainstream
approach for ASR systems. Therefore, first, we provide a comparison between three different state-
of-the-art ASR systems motivating the choose of our baseline ASR system.

Figure 2.1 shows decoding time per second of speech, memory footprint and accuracy for three
popular open-source ASR systems when running on an ARM Cortex-A57. Pocketsphinx [48] uses
Gaussian Mixture Models (GMMs) for acoustic scoring, whereas Kaldi [79] and Eesen [63] employ
a Deep Neural Network (DNN) and a Recurrent Neural Network (RNN) respectively. We use the
most recent pretrained acoustic models provided in their respective websites !. As it can be seen in
Figure 2.1, Pocketsphinx achieves much lower decoding time than the DNN-based systems, at the
cost of a small increase in WER. Furthermore, it exhibits a small memory footprint of less than
a hundred MB, whereas Kaldi and Eesen require hundreds of MB. These numbers suggest that
Pocketsphinx is the most suited approach for ultra low-power, low-cost devices, due to its lower
computational and storage demands, so we chose it as the baseline for this thesis.

The objective of speech recognition is the transcription of acoustic signals into a sequence of
words. Pocketsphinx, similar to almost all the state-of-the-art ASR systems, consists of three main
stages: Feature Extraction, Acoustic Model and Search Engine. In the following sections we describe
this pipeline.

"Higher accuracy can be achieved with even larger acoustic models and multiple rescoring passes [6], but
they result in much larger memory footprint, energy consumption and decoding time.
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Figure 2.1: Decoding time, memory footprint and Word Error Rate (WER) for three popular ASR
toolkits running on an ARM Cortex-A57. Results are collected using the most recent pre-trained
models for each system.

2.1 Signal Processing and Feature Extraction

First, the input audio signal is split in frames, where each frame represents a 10 ms interval of
the input signal. Next, the Feature Fxtraction component transforms the audio samples within a
frame into a vector of features. Signal processing front-end differs in different speech recognition
systems. For instance, in the latest continuous acoustic model in Pocketsphinx, the stream of 16-bit
samples of audio, sampled at 16KHz or 8KHz, is converted into 12-element mel-frequency cepstral
coefficients (MFCC) vectors in each 10 ms frame of audio. We represent the cepstrum vector at
time z by z(t) that contains individual element x(t) , 1 < k < 12. This cepstrum vector is first
normalized and 2 feature vectors are derived in each frame by computing the first and second order
differences in time:

x(t) = Normalized Cepstrum Vector (2.1)
Ax(t) =z(t+2) —z(t —2) (2.2)
AAz(t) = Az(t +1) — Ax(t — 1) (2.3)

Thus in every frame we obtain three vectors of 12 elements and these, ultimately, are the input
to the speech recognition system. Figure 2.2 shows the feature extraction process [85].
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Figure 2.2: Feature Extraction Process [85].

2.2 Acoustic Model

2.2.1 Phones and Triphones

After extracting feature vectors from the audio signal, the features are then converted into a
sequence of phonemes by the Acoustic Model. To accomplish this, there could be different models.
One might wish to create word models from training data. However, in large vocabulary speech
recognition, there are too many words to be trained. This problem is solved by modeling sub-word
units. The important advantage of such modeling is to share modeled sub-units across different
words. Phonetic models are the most frequently used sub-word models. One method, which was
first proposed by IBM [14], is to model a phoneme (normally called a phone) influenced by its
neighbor phones (i.e., a context-based phone). As an example, the AE phone in “man” sounds
different from that in “lack”. The former is more nasal.

ASR systems create acoustic models for sub-word units or phonemes. Due to co-articulation
effects, the production of sound corresponding to a phoneme is influenced by neighboring phonemes.
Hence, most large vocabulary speech recognition systems, including Pocketsphinx, use triphones [13]
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Figure 2.3: First-order Markov chain with three states A, B and C.

or context-dependent phone models as they are able to model such variations. There are only around
50 phonemes in spoken English, so there are around 502 triphones, but only a fraction of them are
observed in practice.

2.2.2 HMM Modeling of Phones and Triphones

Most speech recognition systems use Hidden Markov Model (HMM) to represent the basic unit
of speech. The way of using and training of HMMs is covered in literature [16, 15, 50, 82]. An
HMM is a set of states connected by transitions as shown in Figure 2.3. Transitions model the
emission of one frame of speech. Each HMM state has an associated output probability function
that defines the probability of emitting the input feature observed in any given frame while taking
that transition. The output probability for state i at time ¢ is denoted by b;(¢). Also, each HMM
transition from any state i to state j has a static transition probability, which is denoted by a;; and
is independent of the speech input.

Each HMM state represents a small subspace of the overall feature space and its shape is
complex enough to be accurately characterized by a simple mathematical distribution. Generally,
the most common approach to model the state output probability is by a mixture of Gaussians
which is known to be the most expensive part of an ASR system [60, 39]. In Pocketsphinx, Acoustic
Model is based on Gaussian Mixture Models (GMMs) [81], i. e. each phoneme is modeled as a
mixture of Gaussian functions.

For any HMM state s and feature stream f, the g-th component of the m-th GMM is a normal
distribution with mean vector f,, 4 and standard deviation vector o, 4. Each mixture component
also has a scalar mixture coefficient or weight w,, 4. Hence, the probability of observing a given
frame of speech with feature vector x in the GMM m is given by Equation 2.4, where g ranges over
the number of Gaussians in the mixture. The expression N (.) is the value of the Gaussian density
function at z. In the speech input, x is a vector of features for one frame of speech and z; is its
f-th feature component.

N-1
bo(x) = [[(D wmgN (@, g, 0m.g)) (2.4)
f g=0
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For numerical stability, the multivariate Gaussian distribution N(.) is computed in log-space
by using Equation 2.5. The dimensionality of the Gaussians is equal to the dimensionality of the
feature vector x. During the recognition process, Equation 2.4 has to be evaluated for every GMM
on a frame basis. In these equations, D, M and N are representing determinant, dimensionality of
the feature vector and number of Gaussians respectively.

M-1

N _ (zc — Hm,g76)2
(xv Hm,g» Um,g) = Dm,g - g 720_2 (2.5)
c=0 m,g,c

In a fully continuous acoustic model each triphone has its own separate weighted GMM. How-
ever, computing such a big number of Gaussian functions is completely unfeasible for real-time
speech recognition. In practice, multiple triphones share the same GMM to reduce the compu-
tational cost of the Acoustic Model. In the continuous model of Pocketsphinx HMM states are
grouped into clusters called senones. All the triphones that belong to the same senone share the
same GMM. Senones are just tied triphone HMM states. A context dependent HMM recognizer
has a 3-5 state HMM for every context dependent phone. Conceptually, each different HMM state
in each different phone HMM has its own Gaussian mixture model.

The latest generic acoustic model of Pocketsphinx (en-us-5.2) has 5138 senones. Although the
continuous model offers the highest accuracy in Pocketsphinx, other acoustic models are included
in an attempt to reduce the amount of computation. The PTM model has a GMM for each context-
independent phoneme or basephone. Triphones that belong to the same basephone share the same
GMM. Hence, the number of GMMs is reduced from 5138 in the continuous model to 42 in PTM,
which is the number of basephones in this model. On the other hand, the semi-continuous acoustic
model employs just one GMM that is shared by all the triphones, but each triphone has its own
mixture coefficients, i. e. the weights applied to each Gaussian (wy, 4 in Equation 2.4) are different.

Furthermore, not all the senones are active for a given frame of speech, as some of them may be
pruned away during the search process. Pocketsphinx only computes the GMM for active senones,
as the acoustic likelihood for the other, inactive, senones is not required for the search. By doing
this, the workload for the continuous acoustic model is reduced by approximately one half. In
order to implement this optimization, the Search Engine generates a list of active senones based
on the result of the pruning. The Acoustic Model uses this feedback to avoid GMM computation
for senones that are inactive.

In this thesis, we use the latest continuous acoustic models of Pocketsphinx for our analysis
and evaluations of our proposals. Note that all the proposed techniques are generally applicable to
any acoustic model based on GMMSs, independently of the specific parameters such as the number
of senones or the number of Gaussians.

2.3 Language Models

In addition to an acoustic model to recognize the most likely phonemes, large vocabulary
continuous speech recognition requires the use of language model or grammar to select the most
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Figure 2.4: Language model structure in Pocketsphinx, our baseline ASR system.
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likely word sequence among lots of alternative word hypothesis recognized during the search. While
the acoustic model is the component of a speech recognizer which determines how closely a part of
a spoken utterance matches a word or sequence of phones, the language model is the component
which determines how likely a word or sentence is to have been spoken in the first place. The
most obvious reason why this is necessary is that many words or sequences of words sound very
similar, and it is not possible to decide among them without some prior knowledge of which ones
are admissible or likely for a given language or domain. Mathematically, the language model is a
statistical model of the probability distribution P(.S) over word sequences.

In a large vocabulary system, it is impossible to represent all possible context-free grammars
or possible sequence of words compactly since there are too many of them. Similar to HMMs in
acoustic modeling, practically all modern ASR systems use history-based or N-Gram models for
language modeling. Another justification for the language model arises when we view recognition
in terms of Bayesian Decision Theory. In this framework, speech recognition is the process of
selecting between a (potentially infinite) set of alternate transcriptions for a sentence. Equivalently,
we can think of this as a classification of the acoustic observation, where each class contains all the
realizations of a particular sentence [27].

To model these conditional probabilities efficiently, the observation that the mutual information
between a word and any predecessor word tends to decay with distance can be used. Therefore,
we can consider all histories ending with the same m words to be part of an equivalence class.
This is equivalent to making an assumption of conditional independence of the kind used in other
Markov chains. Since the word and history taken together form a sequence of N words, we refer
to a history-based model as an N-Gram model, though in fact, it is simply an N — 1 order Markov
chain over word sequences.

Because the number of words in a natural language is still extremely large, we encounter a
number of unique problems in estimating the conditional probabilities which make up an N —Gram
model, and these are potential sources of modeling error. The most serious problem is that for any
corpus of text, the majority of the words in the vocabulary may only occur a few times, and the
overwhelming majority of N-Grams, that is, word sequences of length N, will never be observed. If

42



2.4. SEARCH ENGINE

maximum likelihood estimation is used, the variance of the resulting probability estimates will be
quite large, and the model will also assign zero probability to many plausible word sequences [27].

As the size of the basic vocabulary grows, N-Gram models encounter two issues with conse-
quences for speech recognition. The first is that the number of possible N-Grams grows polynomially
in the size of the vocabulary. As the number of N-Grams increases, so does the number of param-
eters to be trained, as well as the storage and memory space needed to store them. The second
is that a larger vocabulary tends to increase the perplexity of the model, which has an adverse
effect on the speed and accuracy of the recognizer, since it increases the size of the search space.
Therefore, bi-gram and tri-gram grammars [85], consisting of word pairs and triples with given
probabilities of occurrence can be created almost entirely automatically from a corpus of training
text to be used as language models as Figure 2.4 shows.

2.4 Search Engine

The Search Engine transforms the sequence of phonemes into a sequence of words by executing
the Viterbi beam search [81, 103, 104, 105] on a pre-compiled Hidden Markov Model (HMM) [81].
There are two main computational expensive components in speech recognition: acoustic prob-
ability computation and search. In the case of HMM-based systems, the former refers to the
computation of the probability of a given HMM state emitting the observed speech at a given time.
The later refers to the search for the best word sequence given the complete speech input. The
search complexity is mostly unrelated to the complexity of acoustic models and it is heavily influ-
enced by the size of the task. The search cost becomes significant for medium and large vocabulary
recognition. In this thesis, the main focus will be on large vocabulary systems. The search problem
has generally been addressed by Viterbi decoding [82, 100] using beam search [59].

2.4.1 Viterbi Decoding

Viterbi decoding is a dynamic programming algorithm that searches the state space for the
most likely state sequence that accounts for the input speech. The state space is constructed by
creating word HMM models from triphone HMM models, and all word HMM models are searched
in parallel. The beam search heuristic is usually applied to limit the search by pruning out the
less likely states due to huge number of states even in a medium vocabulary. Viterbi algorithm
is a time-synchronous search algorithm in that it processes all states completely at time ¢ before
moving on to time ¢ + 1. The complexity of Viterbi decoding is N?T' (assuming each state can
transition to every state at each time step), where N is total number of states and T is the total
duration of the input speech in number of frames.

The abstract algorithm can be understood with the help of Figure 2.5. Y-axis represents the
HMM states in the network and the other dimension is the time axis. Typically, there is one start
state and one or more final states. The time-synchronous nature of the Viterbi search implies that
the 2-D space is traversed from left to right, starting at time 0. The algorithm is summarized by
the following expression where P;(t) is the path probability of state j at time ¢, a;; is the static
probability associated with the transition from state i to j, and b;(¢), which is computed using
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Figure 2.5: Viterbi search as Dynamic Programming [85].

GMM, is the output probability associated with state ¢ while consuming the input speech at time
t.

P;(t) = maz;(P;(t — 1) - ai; - bi(t)),1 € set of predecessor states of j (2.6)

The beam search heuristic reduces the average cost of search by orders of magnitude in medium
and large vocabulary systems. The combination of Viterbi decoding using beam search heuristic is
often referred to as Viterbi beam search.

2.4.2 Tree Structured Lexicons

Even with the beam search heuristic, straightforward Viterbi decoding is still expensive. There
exist numerous solution to reduce the search cost such as the use of a lexical-tree instead of a flat
lexicon as Figure 2.6 shows. In such an organization, if the pronunciations of two or more words
contain the same n initial phonemes, they share a single sequence of n HMM models representing
that initial portion of their pronunciation. Lexical tree is used as a solution to eliminate three main
sources of computational cost in other systems:

e Lexical tree introduces a high degree of sharing at the root nodes which results in significant
reduction in the number of word initial HMMSs that need to be evaluated every frame.

e The tree structure reduces the number of cross-word transitions by orders of magnitude which
is always a dominant part of search in a systems based on flat lexicon.

e In lexical tree growth of the number of active HMMs and the number of word-transitions are
much more slowly with increasing the vocabulary size in comparison with the flat lexicon.

In Figure 2.6, we saw the construction of a lexical tree of base phone nodes. However, it is
preferred to use triphone acoustic models rather than simple base phone models for high recognition
accuracy. Hence, the lexical tree has to be built out of triphone nodes rather than basephone nodes.
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DD | ABOUND

ABOUND AX B AW N DD
ABOUT AX B AW TD
ABOVE AX B AH V
BAKE B EY KD BAKED
BAKED B EY KD TD
BAKER B EY K AXR NG |BAKING
BAKERY B EY K AXR IY
BAKING B EY K IX NG AXR IY |BAKERY
BAKER
(a) Pronunciation lexicon example (b) Basephone lexical tree

Figure 2.6: A basephone lexical tree example.

This basically requires a trivial change to Figure 2.6, except at the roots and leaf positions of the
tree (corresponding to word beginnings and endings), which have to deal with cross-word triphone
models.

In a time-synchronous search, the phonetic right contexts are unknown since they belong to
words that would occur in the future. Therefore, all phonetic possibilities have to be considered.
This leads to a right context fanout at the leaves of the lexical tree.

On the other hand, the phonetic left context at the roots of the lexical tree is determined
dynamically at run time, and there may be multiple contexts active at any time. However, a
fanout at the roots, similar to that at the leaves, is undesirable since the former are active much
more often. Therefore, cross-word triphones at the root nodes are modeled using the dynamic
triphone mapping technique [27]. It multiplexes the states of a single root HMM between triphones
resulting from different phonetic left contexts.

Figure 2.7 depicts the earlier example shown in Figure 2.6, but this time as a triphone lexical
tree. The notation b(l,r) in this figure refers to a triphone with basephone b, left context phone [,
and right context phone r . A question-mark (?) indicates an unknown context that is instantiated
dynamically at run time.

The degree of sharing in a triphone lexical tree is not as much as in the basephone version,
but it is still substantial at or near the root nodes. The degree of sharing is very high at the root
nodes, but falls off sharply after about 3 levels into the tree.

Pocketsphinx, our baseline ASR system, uses a lexical-tree. Lexical trees can be used to reduce
the size of the search space. Since many words share common pronunciation prefixes, they can also
share models to avoid duplication [85].

In a lexicon tree decoder, transitions between phones must also be treated separately from
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AW(B,N) |—>|N(AW,DD) |—>| DD(N,?)
B(AX,AW) ABOUND
AW(B,TD) |—>| TD(AW,?) |ABOUT

B(AX,AH) |—>| AH(B,V) |—>| V(AH,?) |ABOVE

KD(EY,?) |BAKE

EY(B.KD)

KD(EY,TD) |—>| TD(KD,?) |BAKED

K(EY,IX) |—>| IX(K,NG) |—>| NG(IX.?) |

BAKING
BAKER

AXR(K,?)

K(EY,AXR)

AXR(K,IY) |—>| IY(AXR,?) |
BAKERY

Figure 2.7: A triphone lexical tree example.

normal HMM transitions, with propagation of tokens through the lexicon tree. One specific problem
with lexicon tree decoding arises from the fact that the identity of a hypothesized word is not known
until a leaf node in the lexicon tree is reached. If a single, static lexicon tree is used, it is not possible
to apply language model scores until the final phone of a word has been entered.

This results a similar problem to the one encountered with trigram scoring in flat lexicon
search, except that it also occurs for bigram language models. As shown in Figure 2.8, only the
predecessor word with the highest path score is propagated to the point where the language model
score is applied. However it is possible, and in fact quite likely, that another predecessor word
would have been preferred had the language model score been available at word entry [27]. In
order to solve this problem, a multiple pass search strategy is proposed which is explained in the
following section.

2.4.3 Multiple Pass Search

The output of speech recognition systems typically consist not only of a single hypothesized
word sequence but also a word lattice which is an encoding of a very large number of alternative
sentence hypotheses [73]. This word lattice is an approximate, finite representation of the space
of sentences S which has been searched by the decoder. It is also frequently the case that speech
recognition systems use a multi-pass search strategy [89], which implicitly involves a multi-stage
reduction in the search space. For example, in the Pocketsphinx system [47] used as the baseline
in this thesis, a three-pass search strategy inherited from the earlier SPHINX-IT system [44, 85] is
used.

In the Pocketsphinx decoder, an approximate first-pass search, using a static lexicon tree, is first
used to generate a short-list of words at each frame. This search strategy suffers from widespread
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Figure 2.8: Search Problem: A single lexicon tree does not retain N-Gram history.
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Figure 2.9: Pocketsphinx decoder architecture.

search errors. Therefore, the second pass uses a flat lexicon search, but uses the short-list generated
in the first pass to restrict the set of words to be searched in each frame to a manageable number.
However, this search algorithm uses an approximate trigram scoring technique, where only the
best 2-word history is considered when applying language model scores at word transitions. To
compensate for this, then the third pass performs an A* search over the resulting word lattice,
allowing all trigram histories to be considered.

This organization of multiple passes is designed such that each successive pass is more exhaus-
tive than the previous one, but also searches a more restrictive space of hypotheses. In this way,
the known deficiencies of the earlier passes, such as the search error problem in the case of a static
lexicon tree, and the approximate trigram problem in the case of a simple flat lexicon search, are
corrected by a subsequent pass of search. In terms of computation requirements, the first pass is
the most compute-intensive pass whereas the third pass (A* search) consuming less than 1% of the
decoding time.

2.4.4 Pocketsphinx Architecture

The architecture of Pocketsphinx is largely inherited from Sphinx-II, its predecessor. A high-
level overview of the Pocketsphinx decoder is shown in Figure 2.9.

A three-pass search strategy is implemented in Pocketsphinx consisting of the following stages:
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Figure 2.10: Forward search in Pocketsphinx [27].

e Best Path - A word graph search.

The general architecture of the two forward search passes is shown in Figure 2.10. The forward
lattice from lexicon tree search is used to generate a frame-by-frame list of expansion words, which
forms the dynamic vocabulary list which is searched by the flat lexicon search. Finally, A* search
over the generated word lattice considers all the trigram histories and determines the most probable

hypothesis.

In this thesis, unless explicitly stated otherwise, we use a generic English continuous acoustic
model trained and provided by CMU (en-us-5.2), a 70K words trigram language model and a 130K
word dictionary for our experiments. We focus on continuous acoustic models as they provide
the highest accuracy in comparison with PTM and semi-continuous models. We use Pocketsphinx
version d-prealpha and all our proposals and schemes in this thesis are implemented and evaluated
using this version.
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Software Optimizations

In this chapter, we provide our optimizations at software level in order to improve performance
and energy-efficiency of our baseline ASR system. In section 3.1 we presents the results of the
power /performance analysis of Pocketsphinx. Then, section 3.2 presents our software optimiza-
tions for GMM computation and section 3.3 describes our methodology. Section 3.4 discusses the
performance and energy results. Finally, section 3.5 concludes the work presented in this chapter.

3.1 Energy-Performance Analysis

In this section, we provide a detailed power/performance analysis of a CPU when running
Pocketsphinx with the continuous acoustic model. First, we describe the bottlenecks in the software
and the main sources of stalls in the CPU pipeline. Second, we relate those CPU pipeline stalls
with the source code of the GMM computation, identifying the branch instructions and memory
accesses that cause such stalls. Finally, we complete the analysis with an energy characterization
of Pocketsphinx.

3.1.1 Performance Characterization

We first profile the execution time of the different stages in an ASR pipeline. We run Pocket-
sphinx on an ARM mobile CPU with the parameters shown in Table 3.3. The results are provided
in Figure 3.1. As it shows, the Acoustic Model takes up the bulk of execution time, as it requires
82.4% of the total time to convert the speech into words. On the other hand, the Search Engine and
the Feature Extraction take 16.1% and 1.42% of execution time respectively. Therefore, Acoustic
Model is clearly the main bottleneck.
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Figure 3.1: Summary of results for power/performance analysis of Pocketsphinx.

Figure 3.1(b) shows the CPI stack for an Atom-like processor, whose parameters are provided
in Table 3.1, when executing the Acoustic Model. We run Pocketsphinx on the Sniper simulator [21]
to generate the CPI stack. Accesses to off-chip system memory (DRAM) and branch mispredictions
(Branch) are the main sources of stalls in the CPU pipeline as the CPI-stack shows. A more detailed
analysis of the GMM evaluation code provides more insights on the sources of such CPU stalls.

Listing 3.1 shows the Acoustic Model implementation in Pocketsphinx. The function GMM is
called for every senone, i. e. Gaussian mixture, on a frame basis. GMM evaluates the different
Gaussian functions in the m-th mixture for a given feature vector z, implementing the computation
described in Equation 2.5 with a few optimizations that work as follows. First, all the computations
that do not depend on the input feature vector z are precomputed offline. The determinant vector,
det, stores the value of D,, , for every Gaussian in the mixture. In a similar way, the matrix vars
(short for variances) stores the result of 1/20,, 4. for every component in the mixture. Regarding
the second optimization, in an attempt to reduce the amount of computation only the N Gaussians
with highest likelihood are used to compute the senone scores. The default value of N is 4 in
Pocketsphinx. Therefore, the top 4 Gaussians are selected in GMM and only those four will be
used to compute the final score. However, in order to select the top 4 Gaussians all the Gaussians in
the mixture have to be computed. Nevertheless, computing all the components for each Gaussian
might not be necessary as the likelihood is a continuously decreasing function. So if the likelihood
of a Gaussian becomes smaller than the worst likelihood in the current top 4, we are sure this is
not one of the 4 best Gaussians and, hence, we can stop computation for that Gaussian. Lines
9-10 of Listing 3.1 implement this optimization. Furthermore, lines 12-13 take care of inserting the
Gaussian in the corresponding position in the sorted array of best Gaussians.

We computed the average number of iterations of the innermost loop in GMM function (lines
6-10). We found that on average 28.6 components are computed out of 36. This means a reduction
of approximately 20% of the computation. However, this comes at the cost of having an if-sentence
inside the innermost loop of the most critical function, which requires two extra x86 instructions
per loop iteration to do a comparison and a branch. Moreover, we have another if-sentence after
the innermost loop and extra code to insert the Gaussian in a sorted array. We found that the
number of conditional branches when selecting the top 4 Gaussians increases by a factor of 1.42x
with respect to a version that uses all the Gaussians. In addition, the total number of mispredicted
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Listing 3.1: C-like pseudocode for acoustic model computation.

void GMM(int m, float xx, float xout) {
for (i = 0; i < top.N_Gau; i++)
out[i] = worst_Value;
for (g = 0; g < num_Gaussians; g++) {
float val = det[m][g];
for (c = 0; ¢ < num Components; c++) {
float diff = x[c] — means[m][g][c];
val —= diff = diff = vars[m][gllc];
if (val < gauval[top.N_.Gau — 1])
break; // Not in top N

if (val >= gauval[top.N_.Gau — 1])
InsertInSortedList (out, val);

branches increases by a factor of 1.79x. According to our experiments, these branches are the main
responsible for the “Branch” section of the CPI stack in Figure 3.1(b). Section 3.2.1 targets this
issue and proposes a method to remove branches inside the innermost loop.

3.1.2 Memory Characterization

The main source of CPU stalls is the latency of accesses to system memory, labeled as DRAM in
Figure 3.1(b). Those memory accesses are mainly for fetching Gaussian parameters, i. e. means and
variances (vars). These parameters cannot be stored in the on-chip caches due to the big memory
footprint. There are 5138 senones in the generic English continuous acoustic model of Pocketsphinx.
Each senone has its own GMM that consists of 32 Gaussians of 36 components each one. The array
det stores the determinant for each Gaussian, so its dimensions are 5138 senones x 32 gaussians
and it requires approximately 0.63 MBytes. The dimensionality of means and wvars matrices is
5138 senones x 32 gaussians x 36 components, so a total of 22.6 MBytes of system memory per
matrix is required. Therefore, the total memory footprint for the Gaussian parameters is 45.7
MBytes.

As discussed in chapter 2, only Gaussian parameters for active senones in a given frame are
fetched from memory. Figure 3.2 shows the number of active senones vs frames of speech. On
average, 2675 of the senones are active for a given frame out of 5138, which means that 52% of
the GMMs are evaluated per frame. This still requires a total of 23.8 Megabytes of memory per
frame. Even if a senone is active for a sequence of consecutive frames, the CPU cannot exploit
this frame-to-frame reuse due to the big memory footprint for processing one frame of speech.
Figure 3.3 shows the bandwidth usage and memory footprint breakdown in Pocketsphinx. As it
shows, acoustic model parameters consume less than 40% of the total required memory. However,
as the figure shows, 79% of the memory bandwidth is used to fetch the GMM parameters due to
the per-frame GMM evaluation. Note that the aforementioned bandwidth usage is only to fetch
parameters of active senones.
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Figure 3.2: Number of active senones vs frames of speech. Red dotted line shows average number
of active senones per frame, which is 2675 out of 5138.
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Figure 3.3: Memory bandwidth usage and memory footprint in Pocketsphinx.

CPU caches can still exploit some degree of spatial locality. Computing a GMM requires
accessing in row-major order two 2D matrices of 32 x 36 floating point components (means and
vars in Listing 3.1). Due to selection of the top 4 Gaussians some rows are not accessed completely,
but still the average number of columns fetched is 28.61 and, hence, the access pattern to those
matrices is very close to a pure row-major order.

The innermost loop of GMM function (lines 6-10 in Listing 3.1) includes three memory accesses
for fetching the corresponding input vector z, the mean and the variance. The input vector of each
frame requires just 144 bytes (36 fp elements) and exhibits high temporal reuse as it is the same
for all the Gaussians. Memory accesses to means and vars matrices exploit spatial locality at the
line level, so only the first access to a memory line misses in the L1. For a line size of 64 bytes, 16
elements are stored per line, so the miss ratio is 1/16. With those access patterns the miss ratio
in the L1 is close to 4% as illustrated in Figure 3.4. Spatial locality is exploited only in the L1,
and there is no temporal locality for means and variances, so the miss ratios for L2 and L3 caches
are close to 100% if prefetchers are not used. Hardware prefetchers can significantly reduce the
miss ratios for L2 and L3, as illustrated in Figure 3.4. This reduction in miss ratio provides 2.27x
speedup. Due to their huge impact on performance, the baseline CPU configuration that we use
for the experiments always employs hardware prefetchers.

Despite the good hit rate in the L1, an Atom-like processor is not able to completely hide
the memory latency. Note that the FP to memory access ratio is significantly low for GMM
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Figure 3.4: Miss ratios for different levels of memory hierarchy with and without prefetchers.

computation. Processing a component of a Gaussian requires fetching 12 bytes from memory
(vector component, mean and variance) and only 4 fp operations are performed on these data.
Therefore, the FP to mem ratio is 4 flops / 12 bytes = 0.33 flops per byte.

Regarding the memory bandwidth usage, we have previously mentioned that around 2675
senones are active on average. Fach senone has a GMM with 32 Gaussians, and 28.6 components
are processed on average for each Gaussian. So fetching the means requires reading 9.34 Megabytes
from memory (2675 senones x 32 Gaussians/senone x 28.61 means/Gaussian X 4 bytes/mean).
Fetching variances requires an equal amount of bytes from system memory. Furthermore, the
determinants have to be read from memory, which require 0.33 Megabytes, as one floating point
per Gaussian has to be fetched. So a total data of 19 Megabytes are required per frame. Since cache
capacities are smaller (even for the last level cache), the 19 Megabytes are fetched from system
memory every frame by regular memory accesses or prefetch requests. On the other hand, as one
frame represents 10 ms of speech, in order to achieve real-time speech recognition at least 100
frames per second have to be processed. Hence, real-time ASR in Pocketsphinx requires a memory
bandwidth of at least 1.85 Gigabytes/s only to fetch GMM parameters.

3.1.3 Energy Characterization

Figure 3.1(c) shows the energy breakdown for an Atom-like CPU when running Pocketsphinx.
As it can be seen, the DRAM is the main source of energy drain, consuming 83.5% of the total
energy. The CPU represents only 10% of the energy. The main consumers in the CPU are the FP
units and the L1 data cache, requiring 3.1% and 3% of the energy respectively.

The poor temporal locality, which forces memory accesses to fetch Gaussian parameters from
system memory on a frame basis, is the reason why DRAM consumes most of the energy. Sec-
tion 3.2.4 proposes a technique to improve temporal locality in order to reduce the number of
off-chip memory accesses and thus save DRAM energy.
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Listing 3.2: GMM code without selection of top N Gaussians.

void GMM(int m, float xx, float xout) {
for (g = 0; g < num_Gaussians; g++) {
float val = det[m][g];
for (¢ = 0; ¢ < num Components; c++) {

float diff = x[c] — means[m][g][c];
val —= diff % diff x vars[m][g]lc];
gauval[g] = val;

}
}

3.2 Pocketsphinx Optimizations

In this section, we describes our optimizations to boost GMM evaluation performance and
reduce energy consumption.

3.2.1 Removing Branches in GMM Evaluation

As discussed, Pocketsphinx selects the top N Gaussians to reduce the number of iterations
in the innermost loop of GMM function (see lines 6-10 in Listing 3.1) by 20.5%. However, it
requires an additional branch instruction, with its corresponding compare instruction in x86, to
branch outside the loop when a Gaussian is discarded. In other words, this optimization reduces
the number of components computed, with a subsequent reduction in the number of floating point
(FP) operations, but at the expense of increasing the number of conditional branches and compare
instructions.

We used a refactored version of the GMM function to remove all the conditional branches that
are due to the selection of top N Gaussians as Listing 3.2 shows. In this version each iteration is
simpler as we remove the conditional branch and compare instructions that are required to check
whether the Gaussian must be discarded. We refer to this version as All32, as all the 32 Gaussians
in the mixture are always used to compute senone scores.

Listing 3.3 shows the x86 assembly code for the innermost loop of both implementations, the
baseline version using the top 4 Gaussians and All32. Top 4 requires 4 FP operations (2 subtractions
and 2 multiplications) per loop iteration. Furthermore, 2 conditional branches are included, one for
branching at the beginning of the loop and one for branching outside the loop. As 28.6 iterations are
performed on average, this version executes 114.44 FP operations and 57.22 conditional branches
per senone.

On the other hand, All32 version requires the same 4 FP operations, but only one conditional
branch is executed per loop iteration. Since 36 iterations are performed per senone, All32 executes
144 FP operations and 36 conditional branches. Therefore, this implementation increases FP
operations by 25.8%, but it reduces conditional branches by 37%. We found that All32 outperforms
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Listing 3.3: x86 code GMM evaluation.

Top N Gaussians: A1l 32 Gaussians:

add 0x4, rax movss (rdi,rax,4),xmmO
ucomiss xmm2 ,xmml subss (rcx,rax,4),xmmO
jb 42a0cd mulss xmmO ,xmmO

movss (rdx,rax,1),xmmO mulss (ri15,rax,4),xmmO
cmp rsi,rax add Ox1,rax

subss (rcx,rax,1),xmmO cmp eax,esi

mulss xmmO , xmmO subss xmmO, xmm1l

mulss (ri5,rax,1),xmmO jg 429fe0
subss xmmO, xmm1l
jne 42a010
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Figure 3.5: Normalized execution time for different top N Gaussians with respect to top 4.

the version that selects top 4 Gaussians, as reported in section 3.4.

Using the top N Gaussians was proposed as an optimization [76] in 2001, targeting significantly
different pipelines for which FP operations were more expensive and branches were less costly than
in today’s microprocessors. Our experimental results show that this technique is not beneficial for
modern CPUs, as these CPUs excel in FP performance but conditional branches are one of the
main sources of stalls.

Figure 3.5 shows the normalized execution time for selecting different top Gaussians with
respect to the baseline (top 4). As the figure shows, selecting more number of top Gaussians results
in significant increase in the execution time. While selecting the top N Gaussians seems to reduce
the floating-point operations, a significant increase in the number of conditional branches results
in more stalls and performance degradation.

By using All32 version, percentage of execution time due to GMM evaluation is reduced to 72%
of the total execution time. Although removing the branches results in considerable performance
improvements, GMM evaluation is still the main bottleneck in Pocketsphinx.
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Listing 3.4: Vectorized version of GMM evaluation, using Intel SSE.

void GMM(int m, float xx, float xout) {
for (g = 0; g < num_Gaussians; g++) {
~ml28 vval = {0, 0, O, O};
float +gaum = means[m][g];
float xgauv vars[m][g];
for (c = 0; ¢ < num_Components; ¢ += v_Size) {
-ml28 vx = mm_load_ps(x + c);
_ml28 vmeans = mm_load_ps(gaum + c);
-ml28 vvars = _mm_load_ps(gauv + c);
vx = mm_sub_ps(vx, vmeans);
vx = mmmulps(vx, vx);
vval = mm fmadd ps(vx, vvars, vval);

gauval[g] = det[m][g] — AddComponents(vval);

3.2.2 Vectorization

SIMD or vector instructions are widely supported by modern processors. All major vendors
include SIMD instructions in their ISAs (e.g. Intel SSE/AVX [58] or ARM Neon [2]). The VPU
increases performance due to its higher FP throughput. Furthermore, it improves energy efficiency
by reducing the number of instructions fetched and decoded, since multiple FP operations are
packed in one vector instruction.

GMM evaluation code is a good candidate for vectorization as the innermost loop iterations
are independent. However, each iteration only includes four FP operations that must be executed
sequentially and, hence, they cannot be packed in the same SIMD instruction. Due to this lack
of independent FP operations, the innermost loop cannot be efficiently vectorized as it is. One
effective way of exposing more independent FP instructions is using loop unrolling. The unrolled
and vectorized version of the code is shown in Listing 3.4. We use unrolling factor equal to the
SIMD width, i. e. vector size. In addition, we exploit FMA instructions to merge the last two FP
operations performed in the scalar loop, in order to further reduce instruction count.

Our experimental results, discussed in section 3.4, show that the SIMD version provides sig-
nificant speedups and energy savings. However, this version requires a horizontal reduction to add
the components of the vector register vval (see line 14 in Listing 3.4). This reduction implies scalar
operations on individual components of a vector. The presence of scalar instructions constrains the
speedups achieved by vectorization.

3.2.3 Improved Memory Layout

In the SIMD version, multiple components of a Gaussian are computed at the same time by
using multiple SIMD lanes. For a vector size of 4, each one of the 4 SIMD lanes computes and
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Figure 3.6: Memory layout and memory access pattern. (a) the baseline and (b) the transposed
layout.

accumulates the values for 9 components. In order to get the acoustic likelihood, the aggregated
value for the 36 components has to be computed, so we have to add the 4 partial results obtained by
the 4 SIMD lanes. This reduction is performed using scalar instructions. To maximize the impact
of vectorization, the amount of scalar code must be reduced as much as possible.

In an attempt to maximize the amount of vectorizable code, we propose to use the SIMD lanes
to compute multiple Gaussians at the same time, instead of processing multiple components of
one Gaussian. By doing this, the accumulated value on each SIMD lane is the final likelihood for
one Gaussian and, hence, no horizontal reduction is required. This implementation requires some
changes to the memory layout of means and wvars matrices, as it is not possible to fetch the same
component (or column) for different Gaussians (or rows) with one vector load, as they are not
stored consecutively in memory.

We propose to change the memory layout for these matrices to the one illustrated in Fig-
ure 3.6(b). Transposing the matrix solves the problem with the vector load, as now we fetch
consecutive columns (or Gaussians) in the same row (or component). However, by transposing the
matrix we lose some spatial locality, as the traversal is performed in column-major order. Note that
each SIMD lane has to process and accumulate results for one column. Our solution to this problem
is to split the matrix in smaller sub-matrices with a number of columns equal to the SIMD width.
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Listing 3.5: SSE version of GMM with improved memory layout.

void GMM(int m, float xx, float xout) {
for (g = 0; g < num_Gaussians; g += v_Size) {

~ml28 vval = {0, 0, O, O};

float xxgaum = means[m][g/v_Size];

float xxgauv = vars[m][g/v_Size];

for (c = 0; ¢ < num Components; c++) {
~-ml28 vx = -mm-_oad_psl(x + c);
_ml28 vmeans = _mm _load_ps(gaum|c]);
_ml28 vvars = _mm load_ps(gauvic]);
vx = mm_sub_ps(vx, vmeans);
vx = mmmulps(vx, vx);
vval = mm fmadd ps(vx, vvars, vval);

}

- ml28 vdet = _mm_load_ps(&(det[m][g]));

vval = mm_sub_ps(vdet, vval);

-mm_store_ps(gauval + g, vval);

By doing this we store the data in memory in the same order it is accessed by the application,
maximizing spatial locality.

The proposed memory layout eliminates the horizontal reduction, increasing the amount of
vectorizable code. Therefore, we reduce the number of scalar instructions to a large extent, achiev-
ing significant performance and energy savings over the first SIMD version as shown in section 3.4.
On the other hand, we found that GMM evaluation benefits from larger SIMD widths, achieving
better results when using AVX (SIMD width of 8) than SSE (SIMD width of 4).

The proposed memory layout, in addition to eliminating the horizontal reduction, makes vec-
torization independent of the feature vector length. In other words, various sizes of feature vectors
in different acoustic models will not affect the vectorizable code since we are not computing multiple
components at the same time anymore. Therefore, we reduce the number of scalar instructions to
a large extent, achieving significant performance and energy savings over the first SIMD version.
The impact of this technique will be more obvious using larger SIMD widths.

The SIMD implementation of GMM computation using the new memory layout is included in
Listing 3.5. Note that the loop unrolled in this version is the outer loop, which is the one that
iterates on the Gaussians. After processing all the components each element of vval vector contains
the total aggregated value for one Gaussian. We can subtract these values from the corresponding
determinants and store the final likelihoods in memory using SIMD instructions (see lines 15-16
in Listing 3.5). Note that no horizontal reduction is required in this version. Therefore we reduce
the number of scalar instructions to a large extent, achieving significant performance and energy
savings over the first SIMD version, as detailed in section 3.4.
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3.2.4 Multi-Frame Gaussian Evaluation

The power and performance analysis of Pocketsphinx, presented in section 3.1.2, identified
system memory as the main source of both CPU stalls and energy drain. The SIMD implementation
presented in section 3.2.3 exacerbates the problem due to memory latency. Due to the higher
throughput of the VPU, the pressure on the memory subsystem increases because data is requested
earlier than in the scalar implementation. Therefore, the prefetcher has less time to bring the data
from memory and it is not able to achieve timeliness, which leads to an increase in the number of
L2 and L3 misses, as shown in Figure 3.7.

As we describe in section 3.1, most of the memory bandwidth is used to fetch Gaussian pa-
rameters, i. e. means and variances. Those accesses exhibit poor temporal locality due to the big
size of the dataset for one frame of speech. CPU caches cannot exploit frame-to-frame reuse and,
hence, Gaussian parameters have to be fetched from system memory on a frame basis.

One approach to reduce the number of accesses to system memory is to evaluate Gaussians for
multiple frames at the same time. By using multi-framing, means and variances for one Gaussian
are fetched once in the on-chip caches and are used to evaluate the Gaussian in several frames of
speech. For example, if we merge Gaussian evaluation for two frames, then the bandwidth usage is
reduced by approximately one half, as means and variances are fetched from memory every other
frame. Moreover, the number of FP operations per memory access doubles, alleviating the pressure
on the memory subsystem and especially on the prefetcher.

The main hurdle for implementing the multi-frame approach is the lack of information about
active senones for subsequent frames. The list of active senones is generated by the search after the
pruning and it is only available for the current frame. We could decouple GMM evaluation from
the search by ignoring the list of active senones and computing GMM for all of them. By doing this
we could implement the multi-frame approach, but the workload would increase by 2x, as only half
of the senones are active on average. Such a huge overhead renders this naive approach completely
ineffective.
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Figure 3.9: Gray bars show the percentage of senones computed with the multi-frame version, i.
e. percentage of senones computed exploiting temporal locality. Black bars show the percentage
of senones computed with the original single-frame code, i. e. the percentage of senones for which
temporal locality is not exploited. For the versions computing 2-32 frames at a time, the black bars
correspond to the mispredicted senones.

An analysis of the locality of active senones reveals a better strategy. The speech signal is
quasi-stationary when considering small intervals, so the list of active senones tend to be similar
for consecutive frames. Figure 3.8 shows the percentage of active senones that are shared among
consecutive frames, for different window sizes. As we can see, considering a window of 2-3 frames
more than 90% of the active senones are shared among those frames.

We use this observation to implement a simple prediction scheme. Our scheme predicts that
the active senones for the next N - 1 frames will be the same as those in the current frame.
GMM computation is triggered just once every N frames, using the multi-framing approach of
fetching parameters once and computing the Gaussians for N frames. In addition, we include a
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3.3. EVALUATION METHODOLOGY

Listing 3.6: Multi-frame implementation of GMM evaluation.

void GMM(int s, float xxx, float xxgauval) {
for (g = 0; g < num_Gaussians; g += v_Size) {
--m128 vval [num_Frames];
memset(vval, O, num Frames x 16);
float xxgaum = means[s][g/v_Size];
float xxgauv = vars[s][g/v_Size];
for (c = 0; ¢ < num Components; c++) {

_ml28 vmeans = _mm _load_ps(gaum|c]);
_ml28 vvars = _mm load_ps(gauvic]);
for (f = O0; f < num Frames; f++) {

- ml28 vx = mm_load psl(x[f] + c);

vx = mm_sub_ps(vx, vmeans);
vx = mmmul ps(vx, vx);
vval[f] = mm fmadd ps(vx,vvars,vval[f]);
}
}
-ml28 vdet = .mm_load_ps(&(det[s][g]));
for (f = O0; f < numFrames; f++) {
vval[f] = mm_sub_ps(vdet, vval[f]);
_mm _store_ps(gauval[f] + g, vval[f]);

}
}
}

recovery mechanism to handle mispredictions. Two types of mispredictions are possible. The first
type happens when we predict a senone as active but it is inactive. In this case we do not have
to trigger any action, but we pay the overhead of computing an acoustic score that is not used
during the search process. The second type happens when we predict a senone as inactive but
it is active. In this case we trigger the single-frame version of Gaussian Evaluation to compute
the score for the mispredicted senone. Figure 3.9 shows that this scheme is very effective as the
number of mispredictions is very small (mispredicted senones correspond to the black bars, whereas
correctly predicted senones are shown in gray bars), so we can exploit temporal locality for most
of the senones. As we can see in both Figure 3.8 and Figure 3.9, increasing the number of frames
computed at a time, i. e. the window size, increases the number of mispredicted senones, as
the speech signal changes significantly at long distances. We obtained the best performance and
power results by using small windows of 2-3 frames, since bigger windows suffer the overhead of
mispredicted senones and provide diminishing returns in memory bandwidth savings. The multi-
frame implementation of GMM computation is included in Listing 3.6.

3.3 Evaluation Methodology

We have evaluated our proposed techniques using two high-end Intel desktop CPUs, whose
parameters are shown in Table 3.2. We use PAPI [69] hardware performance counters on Haswell
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Core | Atom-like 000, 2-wide, 1.33 GHz
L1-D Cache | 24KB, 6-way, 64B lines, LRU
L2 Cache | 1MB, 16-way, 64B lines, LRU
Main Memory | 4 GB, 12.8 GB/s bandwidth

Branch predictor | Pentium M branch Predictor
15 cycles misprediction penalty
Technology | 22 nm
Prefetchers | GHB, prefetch-degree = 2, table-size = 512

Table 3.1: Hardware parameters employed for the simulations.

Haswell Skylake
Core Intel i5-4210M Intel i7-6700
L1, L2, L3 | 32KB, 256KB, 3MB | 64KB, 256KB, 8MB
Frequency 3.2 GHz 4.2 GHz
Main Memory 8GB DDR3 32GB DDR4

Table 3.2: Intel Haswell and Skylake parameters.

CPU | 4x ARM Cortex A57
L1, L2 | 32KB L1, 2MB L2
Technology | 20 nm
Frequency | 1.9 GHz
Main Memory | 4 GB LPDDR3

Table 3.3: Mobile CPU Parameters.

and Skylake processors to measure execution time, whereas we employ Intel RAPL [102] library
to collect energy consumption. Furthermore, we have evaluated our optimizations on a low-power
mobile ARM Cortex-A57 CPU with parameters shown in Table 3.3. We use the NVIDIA Tegra
X1 [7] SoC to collect execution time. To measure energy consumption, we read the registers of
the TI INA3221 power monitor included in the NVIDIA Jetson TX1 platform, in order to obtain
power dissipation by monitoring CPU power rail as described in [62].

On the other hand, we use Sniper simulator [21] to collect further information of the CPU
pipeline, including a complete CPI stack. We model a modern out-of-order mobile CPU, similar to
an Atom Bay Trail processor [5]. The parameters for the experiments are included in Table 3.1. We
use McPAT [57] to estimate energy consumption of the Atom-like processor. We use GCC version
4.8 in the x86 and ARM platforms and we employ -O3 optimization level.

We use standard audio files commonly employed to test ASR systems as our datasets. More
specifically, we use LibriSpeech [75] test-clean corpus including 5.4 hours of audio files.

Our baseline for the experiments is the unmodified Pocketsphinx GMM implementation. We
have evaluated the effect of our techniques on five different continuous acoustic models trained in
Sphinx. The parameters of the different acoustic models are shown in Table 3.4.
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Acoustic Model | #Mixtures | #Gaussians | Dimension
English 1 5138 32 36
English 2 6126 32 39
German 6198 16 29
Russian 5147 32 36
Greek 5102 32 36

Table 3.4: Parameters for the different continuous acoustic models that are employed to evaluate
our proposed techniques.

3.4 Experimental Results

In this section, we analyze the performance and energy efficiency of the optimizations presented
in section 3.2. The baseline configuration for all our experiments is the unmodified Pocketsphinx.
Figure 3.10 shows the speedup and normalized energy achieved by all the optimizations on an Intel
Haswell CPU, using the English1 acoustic model with parameters shown in Table 3.4. Note that we
build each optimization on top of the previous one and the performance and energy improvements
are measured for the entire application. The speedups and energy savings are reported for the
entire ASR pipeline required to convert the speech into words, including the Feature Extraction
and Viterbi Search in addition to the GMM evaluation. All82 configuration improves performance
by 12.8% and saves 11.2% energy by removing conditional branches in the innermost loop of GMM
evaluation. All32 reduces conditional branches by 37% with respect to the baseline, at the cost of
increasing FP operations by 25%. Our results show that this is a good trade-off for modern CPUs,
as the penalties introduced by branches are bigger than the cost of the extra FP operations.

The results for the straightforward SIMD implementation, introduced in section 3.2.2, are
included for SSE and AVX. SSE employs a SIMD width of 4 and achieves 72.8% speedup and 34.4%
energy savings. AVX version slightly improves the results to 76.9% speedup and 40.8% energy
savings by using a SIMD width of 8. The use of Fused Multiply-Add (FMA) instruction further
improves speedup to 78.8% and energy savings to 47.2% as shown in configuration AVX+FMA.
The speedups of the SIMD version come from the higher FP throughput of the VPU. The energy
savings come from the smaller execution time (static energy) and the reduction in instruction count
(dynamic energy), as multiple scalar operations are packed in just one SIMD instruction.

Configuration AVX+FMA+T implements the improved memory layout presented in section 3.2.3.
By using this layout for matrices that store means and variances the amount of vectorizable code
increases, further improving speedup to 96% and energy savings to 47.5%.

Finally, configurations AVX+2FR and AVX+3FR implement the multi-framing scheme pre-
sented in section 3.2.4 using a window of 2 and 3 frames respectively to compute the Gaussians.
AVX+3FR achieves the best results, providing 2.63x speedup and 61% energy savings. This multi-
framing scheme reduces the number of accesses to system memory as means and variances are
fetched every 3 frames instead of being fetched on a frame basis. This reduces DRAM energy
and also improves performance by alleviating the pressure on the memory subsystem, as memory
latency is the main performance limiting factor (see section 3.1.2).
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Figure 3.10: Speedup and normalized energy on Intel Haswell CPU. Baseline is unmodified Pock-
etsphinx with Englishl acoustic model.
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Figure 3.11: Speedup and normalized energy on Intel Skylake CPU. Baseline is unmodified Pock-
etsphinx with Englishl acoustic model.

The multi-framing approach uses a prediction schemes that assumes that the active senones
do not change for a group of N consecutive frames. This prediction is very effective for small sizes
of N, such as 2 or 3, as the speech signal is quasi-stationary when considering small intervals.
We found that 254 senones are mispredicted on average per frame out of 2929 senones computed,
so misprediction rate is only 8.6%. In the single-frame version 9344 bytes/senone are fetched
from system memory: 128 bytes for determinant array, 4608 bytes for means matrix and 4608
for variance matrix. Since 2675 senones are active on average, 23.83 Megabytes are fetched from
system memory per frame. With AVX+3FR configuration, determinants, means and variances
are fetched from system memory every 3 frames. Hence, the amount of data accessed per frame
is reduced to 23.83/3 = 7.94 Megabytes. For multi-framing, we also have to consider memory
accesses to compute mispredicted senones: 254 mispredicted senones/frame x 9344 bytes/senone
= 2.26 MBytes. So the total amount of data fetched from memory per frame with AVX+3FR is
10.2 Megabytes, a reduction of 57.1% with respect to the single-frame version.

We tested the multi-framing approach using bigger numbers of frames, from 4 to 16. However,
we obtained better results for small windows of just 2-3 frames for several reasons. First, as we
increase the number of frames we get diminishing returns in bandwidth savings and, therefore,
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Figure 3.12: Speedup and normalized energy on Intel Atom CPU. Baseline is unmodified Pocket-
sphinx with English1 acoustic model.
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Figure 3.13: Speedup and normalized energy on ARM Cortex-A57 mobile CPU. Baseline is un-
modified Pocketsphinx with English1l acoustic model.

in speedups and energy savings. Second, the number of mispredicted senones increases for bigger
windows of frames (see Figure 3.8), increasing the overheads. Third, all the data for computing a
Gaussian in multiple frames can be stored in the vector register file for small windows, but for a
big number of frames L1 must be used, increasing memory pressure.

The proposed optimizations achieve similar speedups and energy savings when they are applied
on an Intel Skylake CPU (Intel latest microprocessor), as illustrated in Figure 3.11. The best
configuration, AVX+S3FR, provides 2.68x speedup and 61% energy savings.

Since on of the main targets of Pocketsphinx are mobile devices, we have also evaluated our
optimizations on a state-of-the-art ARM mobile CPU. The performance and energy results are
shown in Figure 3.13. ARM CPUs take advantage of NEON extensions, which provide vector
instructions with SIMD width of 4. Removing conditional branches provides 5.5% performance
improvement while reducing energy consumption to 11%. Similar to the Intel desktop CPUs,
removing conditional branches at the cost of increasing FP operations is also a good trade-off in
the ARM CPU. We get the best results with the multi-frame implementation with window size of
3 frames, that provides 1.85x speedup and 59.65% energy savings.
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Figure 3.14: Speedup and normalized energy on Intel Skylake CPU, using English2 acoustic model.
Baseline is unmodified Pocketsphinx.
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Figure 3.15: Speedup and normalized energy on Intel Skylake CPU, using German acoustic model.
Baseline is unmodified Pocketsphinx.
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Figure 3.16: Speedup and normalized energy on Intel Skylake CPU, using Russian acoustic model.
Baseline is unmodified Pocketsphinx.
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Figure 3.17: Speedup and normalized energy on Intel Skylake CPU, using Greek acoustic model.
Baseline is unmodified Pocketsphinx.
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Figure 3.18: Speedup and normalized energy on ARM Cortex-A57 mobile CPU, using English2
acoustic model. Baseline is unmodified Pocketsphinx.
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Figure 3.19: Speedup and normalized energy on ARM Cortex-A57 mobile CPU, using German
acoustic model. Baseline is unmodified Pocketsphinx.
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Figure 3.20: Speedup and normalized energy on ARM Cortex-A57 mobile CPU, using Russian
acoustic model. Baseline is unmodified Pocketsphinx.
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Figure 3.21: Speedup and normalized energy on ARM Cortex-A57 mobile CPU, using Greek acous-
tic model. Baseline is unmodified Pocketsphinx.

Regarding the use of desktop processors in the evaluations, we consider that it is also important
to optimize ASR for high-end processors. FEnergy consumption is also an important issue for
desktops, due to heat dissipation, and for servers, as it affects the cost of operating data centers.

To illustrate the general applicability of our techniques, we have evaluated the speedups and
energy savings for different acoustic models. Figure 3.14, Figure 3.15, Figure 3.16 and Figure 3.17
show the results on the Intel Skylake CPU for the English2 ,German, Russian and Greek acoustic
models respectively, whose parameters are shown in Table 3.4. As it can be seen, our techniques
provide substantial speedups and energy savings for acoustic models with different parameters that
target different languages. The configuration AVX+3FR achieves the best results, the speedups
for the different acoustic models range between 2.51x (German) and 2.92x (English2). Regarding

the energy savings, AVX+3FR reduces energy by 62.4% and 58.4% for English2 and German
respectively.

Finally, Figure 3.18, Figure 3.19, Figure 3.20 and Figure 3.21 show the speedups and energy
savings on the ARM mobile CPU for the English2, German, Russian and Greek acoustic models
respectively. The results are similar to the benefits reported for Englishl in Figure 3.13: our
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techniques provide consistent performance improvements and energy savings for different acoustic
models.

We have also evaluated our optimizations on an Atom-like mobile CPU by running simulations
on Sniper. The performance and energy results are shown in Figure 3.12. Note that Atom does
not support AVX. Therefore, we are constrained to SSE and vector size of 4 for the experiments on
this CPU. On Atom CPU, our optimizations achieve similar results to the ones obtained in Haswell
and Skylake, but some differences arise. First, All32 configuration achieves a small speedup of
2.7%, but the energy increases by 12.5%. Second, the configuration that employs the improved
memory layout (SSE+FMA+T) reduces energy by 6% with respect to straightforward SIMD im-
plementation (SSE+FMA), but performance decreases by 4%. As in Skylake and Haswell, on Atom
the multi-frame implementation with window size of 3 frames achieves the best results, providing
1.88x speedup and 55.3% energy savings. As Figure 3.12 shows, a slight increase can be seen in
the energy consumption of All32. This outlier is indeed due to the McPAT power model. McPAT
accurately accounts for the energy of the extra FP operations and cache accesses in this configu-
ration. However, it does not properly model the cost of a recovery from a branch misprediction.
Energy for flushing the pipeline or recovering the register map table is not considered in McPAT.

3.4.1 Comparison With Other GMM Implementations

GMM is a machine learning technique used in a wide range of applications in different areas
including, for example, speech recognition or image recognition. A popular implementation of
GMM evaluation consists on using matrix-matrix multiplication as described in [29]. In this imple-
mentation, the Gaussians and the input features are represented as 2D matrices and the acoustic
scores are obtained by performing matrix multiplication, typically by using the BLAS specification
for dense linear algebra. This is the approach employed in other speech recognition toolkits like
Kaldi [79].

In this section, we compare the performance and energy consumption of our GMM implemen-
tation with the matrix multiplication approach. We use OpenBLAS library [1], a high-performance
implementation of the BLAS specification, to implement Pocketsphinx’s acoustic model by lever-
aging the high-performance implementation of the SGEMM operation (single-precision general
matrix multiplication). In our experiments, we use single-threaded OpenBLAS implementation.
Figure 3.22 shows the speedups of different GMM implementations of the last acoustic model for
English language in Pocketsphinx. Baseline is the unmodified Pocketsphinx implementation. Our
version of GMM outperforms the matrix multiplication approach in the Intel and ARM platforms.
We achieve 10%, 22% and 3% speedup when running on ARM, Haswell and Skylake CPUs respec-
tively, when using a SIMD width of 4 (same than OpenBLAS). On the other hand, Figure 3.23
shows the normalized energy for the same configurations and CPUs. Our GMM implementation
provides higher energy savings than the version based on matrix multiplication.

Our optimized decoder achieves higher performance and energy-efficiency than the GMM im-
plementation based on matrix multiplication due to several reasons. First, instruction mix analysis
of the different implementations reveals that 45% of the instructions in our proposed methods are
SIMD instructions, whereas 38% of the instructions in matrix multiplication are vector instructions.
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Figure 3.22: Speedup achieved by matrix multiplication technique using OpenBLAS library vs our
proposed techniques running on different platforms. Baseline is unmodified Pocketsphinx. All the
configurations implement the same acoustic model for English language.
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Figure 3.23: Normalized energy consumption achieved by matrix multiplication technique using
OpenBLAS library vs our proposed techniques running on different platforms. Baseline is unmod-
ified Pocketsphinx.

Second, matrix multiplication implementation requires a preprocessing stage to prepare the matrix
of input features. Although the matrix with the Gaussians, i. e. means and variances, is static and
can be initialized offline, the matrix with the input features has to be created on-the-fly for each
frame of speech as described in [29]. This preprocessing represents a non-negligible overhead. In
comparison with the matrix multiplication, our SSE+FMA+T implementation requires 13% less
instructions.

3.4.2 Discussion

Our proposed methods are applicable for any acoustic model based on Gaussian Mixture Mod-
els, so it works for speech in any language. In this work, we use Pocketsphinx as our baseline ASR
system since we target mobile platforms, but our proposed techniques can be used in the acoustic
models available in Sphinx 4, Kaldi, Julius or HTK. We believe speech recognition will be a feature
supported by the majority of computing devices in the near future, and acoustic models will evolve
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towards more complex ones for the sake of better accuracy.

On the other hand, the proposed techniques can also be used for other applications that are
relevant for mobile devices, especially in the area of computer vision. GMMs are employed for
image segmentation [34, 38|, image retrieval [86], tracking people in images [67] or detecting and
tracking moving objects in video sequences [24].

3.5 Conclusions

In this chapter we present the result of energy and performance analysis of our baseline ASR
system when running on modern CPUs. Gaussian evaluation of the acoustic model is the most
computationally expensive component, representing more than 80% of the total execution time. We
show that most of the CPU stalls are due to mispredicted branches and accesses to main memory.
Furthermore, we show that DRAM is the main source of energy consumption.

To improve the performance and energy efficiency of Gaussian evaluation, we propose multiple
optimizations to alleviate the bottlenecks identified in the analysis. First, we remove conditional
branches from the innermost loop of the Gaussian evaluation code, achieving 12% speedup and
11% energy savings for a generic English acoustic model running on a Haswell processor. Second,
we employ a multi-frame Gaussian evaluation scheme with prediction of active senones to reduce
off-chip memory accesses by 57.1%.

Finally, we used SIMD instruction in the VPU and a new memory layout to further boost
Gaussian evaluation and improve energy efficiency. Our implementation using SIMD instructions
and multi-frame Gaussian evaluation achieves up to 2.92x speedup and 62.4% energy savings on
an modern Intel Skylake desktop CPU. Furthermore, it obtains 1.88x and 1.85x speedup and
reduces energy consumption by 55% and 59% on an Atom-like and a modern ARM mobile CPUs
respectively. All the performance improvements and energy savings are achieved without any loss
in the accuracy of the ASR system.
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A Register Renaming Scheme for Out-of-Order
Processors

In the previous chapter, we presented several optimizations at software level in order to improve
the performance and energy efficiency of ASR systems. We observe that running the optimized
software on modern processors puts significant pressure on the register file which results in consid-
erable stalls at the renaming stage, limiting the performance of the processor. In this chapter, we
focus on improving the performance of modern out-of-order processors at microarchitecture level
by proposing a technique to reduce this pressure on the register file.

First, we present an analysis of several benchmark suites that shows a high opportunity to
reuse physical registers, by exploiting the large percentage of single-use values. Then, we propose a
novel renaming technique that reduces the pressure on the register file by enabling physical register
sharing. We use a cost-effective register file design with check-pointed and conventional registers
to recover the state of the processor in event of branch mispredictions, interrupts or exceptions.
We show that not only for our optimized ASR application the proposed scheme provides significant
improvements, but also for SPEC benchmarks the proposed register renaming scheme results in 6%
speedup with no area overhead, or 10.5% reduction in register file size for the same performance.

In this chapter, section 4.1 reviews the traditional register renaming techniques and section 4.2
presents the analysis that motivates this work. In section 4.3, we describe our register renaming
scheme in detail. Section 4.4 presents our evaluation methodology, and the experimental results
are provided in section 4.5. Section 4.6 reviews some related works and finally, section 4.7 sums up
the main conclusions of this work.
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4.1 Register Renaming

Register renaming is key for the performance of out-of-order processors. Instructions, after
being decoded, are kept in the reorder buffer until they commit. The size of the reorder buffer
determines the maximum number of in-flight instructions. These instructions are usually called
instruction window.

The goal of renaming is to remove register name dependences, write-after-read and write-after-
write dependences for the instructions in the instruction window. This is achieved by allocating
a free storage location for the destination register of every new decoded instruction. The most
common solution to provide the storage locations is a merged register file [37]. In this case,
there is a physical register file that contains more registers than those defined in the ISA, which
are referred to as logical registers. A register map table is used to manage the translations from
logical to physical identifiers. When an instruction commits, the physical register allocated by
the previous instruction with the same logical destination register is freed. This has become the
adopted approach of practically all current microprocessors, due to its energy efficiency, and is the
baseline technique assumed in this work. Other schemes such as renaming through the reorder
buffer [92] are much less commonly used nowadays, since they tend to be less energy efficient.

In the merged register file organization, a number of physical registers close to the number
of logical registers plus the window size is required since the majority of the instructions have
a destination register. A number of physical registers equal to the number of logical registers is
needed to keep the committed state of the processor. In addition, for every instruction whose
destination operand is a register, an additional register is allocated when it enters the window at
rename stage and a physical register is released when it leaves the window at commit stage.

Renaming schemes are conservative to guarantee correct execution. In conventional schemes, a
physical register is released when the instructions that redefines the corresponding logical register
commits. In this manner, it is guaranteed that there is no other potential consumer of this value
stored in the physical register being released, since the redefining instruction is no longer speculative.
Note that many cycles may happen between the last read of the register and its release, which leads
to underutilization of the register file. This results in an unnecessary increase of the register file
pressure.

4.2 Motivation

As discussed in previous chapter, we applied several software optimizations to the baseline
ASR code to improve its overall performance running on CPUs. Although our optimizations are
very effective, our analysis show that the optimized code significantly increases the pressure on
the register file and causes many stalls in the renaming stage due to lack of physical registers.
Figure 4.1 shows the activity breakdown in the renaming stage of the pipeline for both baseline
and our optimized code. For this experiment we model a processor with the configuration in
Table 4.1. It should be mentioned that to clearly show the pressure increase on the register file, we
consider a floating-point register file with only 48 registers. In the baseline code, main memory and
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Figure 4.1: Renaming stage activity breakdown for the baseline GMM evaluation code and the
optimized version.

Listing 4.1: ARM assembly code for the innermost loop of GMM evaluation.

I1: add x4, x7, x1

I2: add x3, x1, x6

I3: add x2, x1, x5

I4: add x1, x1, #0x4

I5: «cmp xl, x8

I16: 1d1 {v3.4s}, [x4]

I7: 1d1 {v0.4s}, [x3]

I8: 141 {v2.4s}, [x2]

I9: fsub v0.4s, v3.4s, v0.4s
I10: fneg v2.4s, v2.4s

I11: fmul vO0.4s, v0.4s, v0.4s
I12: fmla vl.4s, v2.4s, v0.4s
I13: b.ne I1

branches were the main performance limiting factors whereas in the modified version their effect
dramatically reduced. However, as Figure 4.1 shows, running the modified GMM code, results
in considerable stalls in the renaming units due to lack of physical registers. In order to find an
efficient solution to alleviate this issue, we first analyze the assembly code for the innermost loop
of the optimized GMM evaluation.

As Listing 4.1 shows, all the instructions 16, I7, ..., 112 are vector instructions and require
a new physical register. The register written by instruction I7 is only used by instruction I9
and similarly, the register written by instruction I9 is only used by instruction /11. This is the
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of the values are consumed just once in SPEC.
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Figure 4.3: Percentage of Floating point and Integer instructions that require a new physical
destination register.

case for instructions I8 and 110. In other words, the values of these registers have only a single
consumer and the consumer is the redefining instruction which guarantees that there will be no
other consumers. Hence, as far as the true dependences between the aforementioned instructions
are maintained, they can share a physical register. Therefore, only four vector registers are required
instead of seven which can significantly reduce the pressure on the register file.
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We have done an extensive analysis to study the register usage in various set of benchmarks.
This work is primarily motivated by the observation that, in a significant percentage of instructions,
the value stored in a register has only a single consumer (see Figure 4.2). In conventional register
renaming schemes, the single-consumer instruction allocates a new physical register for the destina-
tion register. However, in this case, once the value of the source register is read by the consuming
instruction, the same physical location can be used to write the result since no more consumers
need the previous content of the register. In other words, the source register can be reused for
the destination instead of allocating a new one. As we show in Figure 1.3, for GMM application,
more than 57% of the instructions have this property. Similarly, for SPEC2006 benchmarks, this
happens for more than 50% and 30% of SPECfp and SPECint instructions respectively. Note that,
in average, more than 85% of the instructions require a physical register as a destination as we see
in Figure 4.3.

We often find chains of instructions where a given logical register is both the destination operand
and a single consumer operand of it. This is the case of instructions 11, I, I5 and I6 in Figure 4.5.
In this case, all the instructions in the chain can share the same physical register as destination,
further reducing the pressure on the register file.

Following this idea of physical register sharing for the instructions in a chain, Figure 4.4 shows
the percentage of instructions that can avoid allocating a new physical register if each register
can be reused up to one, two, three or an unlimited number of times. Note that Figure 4.4 only
considers instructions with a destination register, i.e. instructions that require an allocation of a
physical register at renaming. For this reason, the percentage of One Reuse in Figure 4.4 is not
equal to the category One use in Figure 4.2, as it does not include single-uses performed by stores,
comparisons and other instructions without a destination register. However, since the majority of
instructions include a destination register, still more than 50% of the instructions in SPECfp and
more than 30% of the instructions in SPECint can reuse a physical register multiple times. More
specifically, 32.3%, 12.3% and 5.9% of the instructions in SPECfp can reuse a physical register up
to one, two and three times respectively. Two reuses means a chain of three instructions whose
only consumer is the next instruction in the chain. Similarly, three reuses means a chain of four
instructions sharing the same physical register as destination. On the other hand, only 4.1% of
the instructions can reuse a physical register more than three times, i.e. chains of more than four
instructions are unusual. Regarding SPECint benchmarks, 22%, 5.2% and 2.3% of the instructions
can reuse a physical register up to one, two and three times respectively, while only 1.2% of the
instructions can reuse a physical register more than three times.

4.3 Renaming with Physical Register Reuse

In this section, we present our novel register renaming scheme for out-of-order processors that
exploits physical register sharing to reduce the pressure on the register file. First, we illustrate the
technique through an example. Second, we provide the implementation details of the technique,
describing the changes to the different hardware structures of the processor, such as the register map
table or the issue queue. Finally, we extend our renaming scheme to support precise exceptions,
describing the required support in the register file.
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Figure 4.4: Percentage of instructions that can reuse a physical register, if a register can be reused
up to 1, 2, 3 or an unlimited number of times. Note that we only consider instructions with a
destination register.

4.3.1 Proposed Register Renaming Technique

For the sake of clarity, we first explain the proposed register renaming scheme through an
example. Figure 4.5 presents the assembly code for several instructions of an application similar
to the innermost loop of GMM evaluation. To execute the eight instructions in this example,
conventional renaming schemes allocate eight different physical registers, one per instruction, as
illustrated in Figure 4.5(a). The outcome of the register renaming and the step-by-step updates to
the register map table are also shown in Figure 4.5(a). As we can see in this example, four different
physical registers are employed for the same logical register, r1.

In this example, instructions 11, I4, I5 and I6 form a chain of read-after-write dependences
that guarantees that they will be executed in program order and, therefore, they will write their
results in order in the register file. In addition, each instruction is the only consumer of the
previous one. In this case, the same physical register can be used as the destination for these four
instructions, since the RAW dependence guarantees that an instruction produces its value before
the next instruction in the chain is issued and, moreover, the single-use condition guarantees that
the value is not used by any other instruction. In other words, there is no other instruction reading
the value between the producer and the consumer in this chain of instructions that may introduce
a WAR hazard. Hence, there is no requirement of keeping the four values alive in different physical
registers for correct program execution.

In this work, we propose to reuse the same physical register in the aforementioned condition, i.e.
when two instructions exhibit a RAW dependence and the second instruction is the only consumer
of the value. To leverage physical register sharing, we introduce a new hardware structure: the
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Result of Renaming Register Map Table
dst | srcl | src2 PR
@D11: add r1 + r2,13 P1 P2 | P3 0
@12:1d 13 « m(xl) | P5 - - rl |P1 P7 P8 P9
@13 mul 12 <+« 13,14 P6 P5 P4 D@ ®
@®14: add r1 « 11,14 | P7 | P1 | P4 r2 |P2 P6 P11
®15: mul 11 « rl,11| P8 | P7 | P7 0 ®
®16: mul r1 +« r1,r3| P9 P8 P5 3 g g’
@17: add 15 <« 11,12 | P10 | P9 | P6 4 |pa
®18: sub r2 « r5,r1| P11 | P10 | P9 0
r5 | P10
@
I1: add rl « r2,13 1 new register
12z 1d 13 + m(xl) 1 new register
13: mul r2 « 13,14 1 new register
I4: add rl «+ rl, 14 1 new register
I5: mul rl1 « rl,rl 1 new register
I6: mul rl « rl,r3 1 new register
17 add 15 « rl,r2 1 new register
18 sub 12 « 15,rl 1 new register

8 new registers

(a) Register renaming with traditional schemes.

Result of Renaming Register Map Table Physical Register Table
dst | srcl | src2 PR Read bit |2-bit Counter
@D1: add r1 « 12,13 | P10 | P20| P30 0 |- P10 1 01 2 3
@12 1d 13 « m(xl) | P50 | - _ 1 |p1 @ O@®® ®
@13 mul 12 +« 13,14 | P6.0 | P5.0 | P4.0 @ P20 1 0
@ r2 |P2 P6 P7 0o [0)
® 05 P3| 0 1 0
® r3 |P3 P5 0o [0)
[0 J©) P4|0 1 0

@17 add 15 + rl,12 | P6.1 | P1.3| P6.0 2 ps [0 Y6 (o)
®18: sub 12 <« r5,rl | P7.0 | P6.1 | P1.3 0 P50 1 0

15 |P6 @B @

7 P60 01 01
@

I1: add rl <« 12,13 1 new register o7 ® ®®

. 0 0
122 1d 13 « m(x1) 1 new register
I3: mul r2 <+ 13,14 1 new register
172 add 15 « rl,r2
I8 sub 12 « 15,rl 1 new register

4 new registers

(b) Register renaming with our proposed scheme.

Figure 4.5: Step-by-step renaming of several instructions, including the changes in the Rename
Table and Register Map Table. In this example, we assume that physical registers P2, P8 and P4
have been previously assigned to 72, r3 and r4 respectively. (a) conventional renaming scheme,
(b) the proposed renaming scheme.
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Physical Register Table (PRT). The PRT contains one entry per physical register, as shown in
Figure 4.5(b). Each PRT entry includes one Read bit and a 2-bit Counter. The Read bit is used to
identify the first consumer of a register. If the Read bit is set it indicates that the physical register
is the source operand for an in-flight or a committed instruction in the pipeline. On the contrary,
if the Read bit is clear, it indicates that no consumer of the value has been found (i.e. fetched and
renamed) yet.

When the first consumer of a register is being renamed, in order to reuse the source register
for the destination register, we also have to verify that there will be no future consumers. In case
the consumer is also redefining the first-use register, it is guaranteed that there will be no younger
consumer of the value. For example, instruction I5 in Figure 4.5 satisfies this property, as it is
the only consumer of 7! and it also redefines r1. In case the instruction being renamed is not the
redefining instruction (see instruction I8 in Figure 4.5), a simple single-use predictor is employed
to decide whether the same register is reused or a new physical register is allocated. Section 4.3.4
provides more details about the single-use predictor and the actions taken in case of misprediction.

On the other hand, the 2-bit Counter keeps track of the number of instructions sharing the same
physical register, and it is used to maintain the true dependences. Due to the sharing of registers,
the same name, i.e. the same physical register ID, is used to identify different values produced by
different instructions. Therefore, it is not possible to correctly identify which instructions have to
be woken up in the issue stage when a value is produced using only this ID. To avoid this ambiguity,
we append the 2-bit Counter to the register ID, so the source or destination of an instruction is
specified as the N-bits of the physical register ID plus the two bits of the counter. The 2-bit Counter
is increased each time the same physical register is reused and it identifies the different versions of
this register. In this manner, up to four instructions can share the same physical register but yet
RAW dependences can be identified, as different instructions produce or wait for different versions
of the register. As shown in Figure 4.5(b), both instructions 75 and 16 take P1 as source operand,
but they wait for version one (PI1.1) and version two (P1.2) respectively. When instruction I/
produces P1.1 the issue logic only wakes up 15, that is the instruction waiting for version one.

This scheme can be generalized to employ an N-bit counter to allow up to 2N instructions to
share the same physical register as destination. Note that when the counter is saturated we cannot
longer reuse the register, as it would not be possible to differentiate its multiple versions to keep
track of the RAW dependences. We found that in SPEC benchmarks it is uncommon to have more
than three reuses (see Figure 4.4). Furthermore, additional bits represent larger overheads in the
PRT and the issue queue. We found that a 2-bit counter provides a good trade-off between the
degree of physical register sharing and cost.

Figure 4.5(b) shows the proposed renaming technique step-by-step. In this case, instructions /1,
14, I5 and I6 share the same physical register P1. Our renaming scheme only requires four physical
registers, instead of the eight employed by the conventional approach. Next sections provide further
details on the renaming technique, describing how the processor operates and the changes required
to the different hardware structures. In the following we will explain in more detail the actions and
changes applies to each stage of the pipeline.
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Renaming Source Registers

Every time a source operand of an instruction is renamed, the Register Map Table is accessed as
in the conventional approach to get the physical register ID that is assigned to the logical register.
Next, the physical register ID is used to index the PRT. The Read bit of the corresponding entry
is set to indicate that an in-flight instruction will read the value stored in the register. In addition,
the 2-bit counter, that indicates the most recent version of the register, is read from the PRT, so
the renaming logic provides the physical register ID plus the 2-bit counter.

Renaming Destination Registers

Our renaming scheme tries to reuse some of the source registers as the destination for the
instruction being renamed, in order to avoid an allocation of a new physical register. For this
purpose, the renaming logic checks first the Read bit of the source registers in the PRT. If this
bit is zero for some of the sources, it means the instruction being renamed is the first consumer of
the value stored in that register. To identify single-use condition, the renaming logic also checks
whether the instruction is the last consumer of the value. To this end, the source register ID is
compared with the destination register ID of the instruction. If the source register matches the
destination, it is guaranteed that the instruction is the last consumer of the value. On the contrary,
we check whether or not the register was predicted as single-use by the predictor described in
section 4.3.4.

On the other hand, the 2-bit counter of the source register is also accessed to verify that it is
not saturated, i.e. that there are versions of the register available and, hence, the processor will
be able to maintain the RAW dependences for another reuse. If the instruction is identified as the
single consumer of the source register and the 2-bit counter is not saturated, the source physical
register is reused as the destination of the current instruction being renamed, and no allocation of
a physical register is performed. The corresponding entry in the Register Map Table is updated
to map the logical register to the physical register being reused. In addition, the Read bit is set to
zero and the 2-bit counter is increased in the corresponding PRT entry.

In case the instruction cannot be identified as the single consumer of a source register or the
2-bit counter is saturated, a new physical register is allocated. The Register Map Table entry is
updated with the ID of the allocated register, whereas the Read bit and the 2-bit counter are set
to zero in the PRT.

Modern processors are able to rename multiple instruction per cycle. Therefore, the logic must
check for RAW dependences between instructions renamed in the same cycle. In our renaming
scheme if a register is being reused, the PRT and the Register Map Table have to be updated
accordingly in order to maintain the true dependences. Figure 4.6 shows the operations for renam-
ing two instruction in one cycle in our scheme and in the baseline renaming scheme. Figure 4.7
shows a simplified logic for renaming these two instructions which demonstrates the feasibility of
implementing our renaming technique. Note that modern processors are able to rename multiple
serially-RAW-dependent instruction per cycle.
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Figure 4.7: A logic implementation for renaming two instructions in one cycle in the baseline
register renaming scheme and in our scheme.
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Releasing a Physical Register

When a physical register is being reused, no register allocation is required for the new instruc-
tion. This technique is equivalent to a release-on-rename scheme. Although no modification is done
to the list of free registers, the result of the technique is identical to releasing the physical register
and immediately allocating it to the new instruction.

In case the physical register cannot be reused, a new one is allocated. The old register is
released when the redefining instruction commits. Therefore, if a physical register can be reused the
technique mimics the behavior of a release-on-rename scheme, otherwise it works as the conventional
release-on-commit approach.

Lack of Physical Registers

Conventional renaming schemes stall when the list of free registers is empty. In our approach,
the renaming will be blocked only when there is no available physical register and there is no
possibility of reusing a register as described in Section 4.3.1. Our experimental results presented
in Section 5.4 show that our scheme is very effective avoiding stalls in the renaming stage due to
lack of registers.

4.3.2 Mispredictions, Interrupts and Exceptions

Modern out-of-order processors use dynamic speculation to issue an instruction before it is
known whether or not the instruction should be executed. In our renaming scheme, multiple
instructions may reuse the same physical register, and each instruction in a chain of reuses overwrites
the value produced by the previous instruction. Since values in a shared physical register are
speculatively overwritten, it is necessary to recover the previous value of a register in case of a
branch misprediction or an exception between two instructions in the chain of reuses.

In the example of Figure 4.5, assume that instruction I2 causes a TLB miss or raises a page
fault exception and, when the exception is triggered, instruction I/ has already written its result
in P1. In this case, the previous value of P1, i.e. the value produced by instruction /1, must be
recovered before invoking the exception handler to maintain precise exceptions.

In order to deal with branch mispredictions and support precise exceptions, the different ver-
sions of a shared register must be kept. However, this requires extra storage and increases the
pressure on the register file, which is exactly what our renaming technique is trying to avoid by
using physical register sharing. Shadow bit cells are a cost-effective solution to keep previous val-
ues of a register in a check-pointed register file [51]. Shadow copies of a register introduce a small
overhead since they are independent of the number of ports, i.e. they are not directly accessible.
Previous values of a shared register are only required in the infrequent case of a branch mispredic-
tion or exception, whereas only the last version is required for normal execution. Therefore, the
most recent version is stored in the normal bits, that are directly accessible, whereas older versions
of a shared register are stored in the shadow bits with a small area overhead, and recovered when
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necessary.

In event of an interrupt or an exception the entire pipeline is flushed. Before the interrupt or the
exception handler can be invoked, all logical registers must reflect their state before the interrupt
or the exception. To this end, the processor consults the rename and retirement map tables and
any entry that differs indicates a logical register whose correct state needs to be recovered from the
shadow cells. Although this recovery process may take a few cycles more than in the baseline, the
infrequent nature of interrupts and exceptions make this cost negligible.

4.3.3 The Register File

As described in the previous section, our renaming scheme employs a check-pointed register
file with shadow bit cells to store the different versions of a shared physical register. With a 2-bit
counter in the PRT, our scheme allows up to three reuses of the same physical register, which
means that up to three shadow copies must be kept in the register file. Hence, a straightforward
implementation would include three shadow cells for each physical register.

Although each shadow copy represents a minor overhead [51], including three shadow copies
for each physical register is not cost-effective, since all the copies are not required most of the time.
As shown in Figure 4.4, most of the registers require zero or just one shadow copy, whereas chains
of two or three reuses are much less common. Therefore, we propose to split the register file in four
banks, where each bank includes registers with zero, one, two or three shadow copies respectively.
By using this organization, our scheme is able to cover most of the cases while it avoids the extra
cost of including three shadow copies in all the registers. Next sections provide further details on
the implementation of the register file.

The Register File Design And Its Mechanism

To reduce the latency and increase the efficiency in area, register files are implemented in
multiple banks [26]. In this work, we propose to have a multi-bank register file in which some of
these banks have registers with one, two or three shadow cells embedded.

In such registers, each traditional register bit-cell is backed-up by pairs of cross-coupled inverters
which are connected to the main bit-cell using a pass transistor. Shadow cells are accessed only
through the main SRAM-cell of the register. Therefore, they do not require any additional read or
write ports. A single-bit cell with n embedded shadow cells can hold up to n+1 different contents.
The processor can simply manage these contents. At the write stage, the value of a register is
stored in a shadow cell and a recover command copies back the content of a particular shadow cell
to the main storage of the register. A physical register can be reused only if it has free shadow cells
to store the previous content of the register.

Figure 4.8 shows the structure of four different banks of a register file with j read ports and &
write ports. As it shows, the first bank in the left has single-bit-cell registers while the other banks
have register cells with one, two and three embedded shadow cells. The design of a register bit cell
with one shadow cell is shown in Figure 4.9. As this figure shows the shadow cell is only accessible
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o Main Bitcell PN
L
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Shadow Bitcell
l Checkpoint
14 Recover

Bitlines

Figure 4.9: The design of a register bit cell with one shadow cell [51].

through the main cell.

Since the shadow cells are accessed only through the main bit cell, the additional area required
by the shadow cells is independent of the number of register ports (see Figure 4.9). Therefore,
the area overhead of the shadow bits becomes relatively smaller as the number of ports increases.
Furthermore, we have observed that most of the registers do not need to have shadow cells. For this
reason, the majority of the registers do not have shadow cells which helps to reduce the overhead
significantly. We employ a set of banks with conventional single-bit-cell registers which includes
the majority of the registers and few banks with registers that have embedded shadow cells.

When a new physical register is allocated, the register type predictor (described in section
4.3.4) predicts the expected use of it (single-use/multiple use; number of reuses), and allocates it
in the corresponding bank according to this prediction. When a single-use register is written, the
previous content of the register is stored in the shadow cell according to the 2-bit counter of the
register ID. In event of branch mispredictions, exceptions or interrupts, a recover instruction is
issued for each register that needs its previous value to place them back to the main storage of the
registers. In order to recover the value from the registers with more than one shadow cells, the
added 2-bit to the register ID determines the correct shadow cell to recover the previous content of
the register. If the physical register does not have enough shadow cells to store the previous content
of the register, the register cannot be reused and a new register is allocated at the renaming stage.
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Register Predictor Table
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Figure 4.10: The design of the proposed register type predictor.

2" entry

Impact on the Performance

According to our analysis, there is a very small increase, less than 1%, in the access time of
the register file with the shadow cells due to longer word select and bit lines, as reported elsewhere
(for instance, see [32]). The reason for the slight delay is that in the design of the registers with
shadow cells, no gate capacitance is added.

Whenever a register is to be written in the write stage, according to its register ID the value of
the register is stored in parallel to the appropriate shadow cell, so no extra latency is added to the
write operation. In event of branch mispredictions, exceptions and interrupts there may be some
registers whose previous values need to be recovered from the shadow cells. Therefore, recovering
the state of the processor in such events may take few cycles more with respect to the baseline. In
our experiments, we have taken this into account.

4.3.4 Register Type Predictor

When an instruction is being renamed, if it needs a new physical register (i.e., the source
registers cannot be reused because they do not have shadow cells available or they are not the
first use), a hardware predictor determines the type of the register which should be assigned to
it. We design a simple 2-bit entry predictor which predicts the type of the register that should be
allocated. Using the PC of the instruction, a simple hashing function determines an entry in the
register predictor table, as Figure 4.10 shows. Then, according to the value of the entry, if there is
a free register of that type, a new physical register is allocated. In the register predictor table, 00
indicates a normal register (i.e., it implicitly predicts that the register is not single-use) whereas
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01, 10 and 11 indicate registers with 1, 2 and 3 shadow cells respectively (that is the register is
predicted to be reused).

If there are no free registers of the predicted type, a register with the closest number of shadow
cells will be allocated. In case there is no free register of any type, renaming will stall as in the
conventional scheme.

Renaming Registers Using the Predictor. Whenever a source register is renamed, if the
read bit is clear (which shows the register does not have previous consumers) and the register has
free shadow cells, the physical register allocated to the source operand will be reused as a new
physical register for the destination. Physical register ID can indicate the bank and accordingly
type of the register. Thus, by knowing type of the register and the 2-bit Counter we can determine
whether or not the register has free shadow cell. Note that a register with shadow cells implicitly
indicates that the register has been predicted to be single-use. Accordingly, the register map table
and the PRT will be updated and the 2-bit Counter will be incremented.

Releasing a Register Using the Predictor. Whenever a physical register is released, the
entry in the register predictor table that has been used to allocate this register is updated to reflect
the actual number of reuses. If not all the allocated shadow copies have been used, the value of
the corresponding entry in the register predictor table is decremented. A register may be released
in the commit stage or during instruction squashes. Whenever we allocated a physical register, we
keep the entry of the register predictor table in the PRT so that when the register is being released,
we know which entry of the predictor table should be updated.

On the other hand, if a register that is predicted to be single-use (i.e. has been allocated in a
bank with 1,2 or 3 shadow copies) is detected to be used more than once, the corresponding entry
in the predictor is reset to zero.

Finally, if a register predicted to be single-use is tried to be reused (i.e. it is the source operand
of an instruction and it is the first use) but there are no shadow cells available, the register is not
reused and the corresponding entry in the predictor is increased, so that next time it allocates a
register with a greater number of shadow copies.

Handling Single-Use Mispredictions

A register predicted to be single-use may be reused and later encounter that the single-use
prediction was wrong because there is an additional use. This is illustrated in Figure 4.11. Register
7y is predicted to be a single-use register. Therefore, its physical register (P;) is assigned to register
rz. Later, while renaming instruction 3, it is discovered that r; is mispredicted to be a single-use
register. Now, since the physical register P; has been assigned to another register, the register r;
in instruction & cannot be renamed to P; as it holds the value of 7. Since register r, is renamed
to P; and there might be instructions before instruction & that uses r;, it is more cost effective to
rename further consumers of r; to a new physical register. Therefore, the value of the 7, which was
in physical register P; needs to be moved to this new physical register.

For this purpose, we propose to use two different micro-operations, depending on whether
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Figure 4.11: Timing for the proposed micro-operations to move the value of the check-pointed
register.

instruction 1 has been executed when instruction & is being renamed or not, which move the value
of r; to a new physical register (instructions 2(a) and 2(b) in Figure 4.11). If instruction 1 has been
executed before the instruction 8 is being renamed, the value of r; is check-pointed in a shadow
cell of P; (Py..,). Hence, as instruction 2(a) in Figure 4.11 shows, first, the current value of Pj is
stored in an auxiliary register. Then, the check-pointed value in P; (P;..p) is being recovered and
moved to another auxiliary register. Finally, last step is to move back the correct value of P; and
move the recovered value of r; to the new physical location. If instruction I has not been executed
before the instruction & is being renamed, the value of r; is not check-pointed and it only needs to
be moved to the new physical register (see the timing for instructions 2(b) in Figure 4.11).
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] I Configuration ‘

Core Fully Out-of-Order

ISA | ARMvS8
Core Frequency | 2.0 GHz

ROB size | 128-entry
Issue Queue | 40-entry Fully Out-of-Order
Width | 3-Width Decoder, 3-Width Instruction Dispatch

TLB | 48 KB, 3-Way TLB
48-Enrty Fully-Associative L1 TLB
Caches L1 Data | 32 KB, 2-Way, 1 Cycle
L1 Instruction | 48 KB, 3-Way, 1 Cycle

L2 | 1 MB, 16-Way, 12 Cycles
64 Bytes Cache Line Size
Prefetcher Type | Stride Prefetcher (Degree 1)
Branch Target Buffer (BTB) | 2K

Fetch Queue | 32-Instructions
Misprediction Penalty | 15 Cycles

DRAM Frequency | DDR3 1600 MHz
Number of Ranks | 2 Ranks/Channel
Number of Banks | 8 Banks/Rank, 8 KB Row Size.
Other parameters | tcas = trep = trp = CL = 13.75 ns
trErr = 7.8 s

Table 4.1: System Configuration.

4.4 Methodology

4.4.1 Simulation Environment

In this work, we model an out-of-order ARM processor using the GEM5 [17] cycle-accurate
simulator with the parameters presented in Table 4.1. This processor uses a merged register file
and releases a physical register when the redefining instruction commits. The simulator models
in detail both the baseline and our proposed technique. We use CACTI 6.5 [70] to estimate area
of the register files, PRT, issue queue and the predictor. CACTI 6.5 supports different models
for SRAMs, DRAMs and register files. We specify different parameters including the number of
read/write ports, number of banks, technology, bus width etc. to estimate the area, power and
latency of different configurations.

4.4.2 Benchmarks

We use SPECfp and SPECint from SPEC CPU2006 [41] benchmarks for our experiments. We
run the benchmarks using the ref inputs provided in the SPEC software package. All the SPEC
benchmarks have been compiled using GCC 4.8.4 with -08 -mtune=armv8 optimization flags. For
each benchmark 5 billions committed instructions has been simulated. In addition to SPEC2006
CPU benchmarks, we use Mediabench [56] benchmark suite.
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] Units | Configuration | Area (mm?) |

Integer Register File (64-bit registers) 128 Registers 0.2834
Floating-point Register File (128-bit registers) 128 Registers 0.4988
PRT Overhead 5.08 E-04
Issue Queue Overhead 1.48 E-03
Register Predictor Overhead 3.1 E-03
Total Overheads 5.085 E-03

Table 4.2: Area for the register file, register map table, issue queue and the register predictor.

In addition to the SPEC benchmarks which are widely used, we use our optimized GMM
application, described in the previous chapter, and a Deep Neural Network (DNN) application
which are among the main kernels commonly used in many of machine learning applications. We
add these two benchmarks in addition to the SPEC2006 and Mediabench.

4.5 Experimental Results

In this section, we evaluate the proposed register renaming technique explained in Section 4.3.
In our experiments, we consider the overheads of the proposed renaming technique in order to
make a fair comparison with respect to the baseline system, including the area of the PRT, register
files, issue queue and the predictor. First, we evaluated the area for these units in the baseline
and later we reevaluated the area considering the applied changes in these units. We want to make
comparison with the same area. To this end, considering the area of overheads, we adjust the
number of registers in the register file for our renaming scheme in such a way that the total area
becomes the same as the baseline register file.

The additional area required by the shadow cells is independent of the number of register file
ports and it becomes relatively smaller as the number of register file ports increases. Besides, since
we use registers with shadow cells only for a small percentage of the registers, their area overhead
becomes very small (normally in the order of a few physical registers). Unless stated otherwise,
comparisons between our technique and the baseline are performed assuming the same total area
for both, including the overheads.

4.5.1 Size of Different Banks in the Register File
Overheads of the proposed scheme

In the first place, we calculate the overheads that our scheme adds to the baseline system.
Regarding the issue queue and PRT table, we consider the changes in the sizes of these units with
respect to the baseline. Furthermore, the register type predictor has a table with the size of 1K
bits. Table 4.2 shows the summary of area overheads in different modified units for our scheme.
As it is shown, the overheads are small in comparison with the size of the register file.
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Figure 4.12: Number of physical registers with 1, 2 and 3 shadow cells needed to cover different
percentages of the SPECfp execution time.

Register file configuration | Register file configuration
for the baseline for our scheme

0-sh, 1-sh, 2-sh, 3-sh, Total
48 28 4 4 4 64
56 28 6 6 6 82
64 36 6 6 6 90
72 36 8 8 8 108
80 42 8 8 8 114
96 58 8 8 8 130
112 75 8 8 8 147

Table 4.3: Register File Configuration.

Adjusting the sizes of each bank in the register file

Considering the aforementioned overheads, we performed a sensitivity analysis to identify the
most convenient size of the different banks in the register file. For this study, we assumed an
unbounded number of registers with up to three shadow cells. Figure 4.12 shows different number
of physical registers with different number of shadow cells to cover different percentages of the
SPEC{p execution time. Hence, based on this study we tune the number of the registers of each
bank in the floating-point register file. Similarly, we tune the number of registers in each bank for
the integer register file. Table 4.3 shows the equivalent sizes of the register file that we consider.
For each particular size of the register file in the baseline system, a hybrid register file configuration
of the same area has been considered to evaluate the proposed scheme.
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Figure 4.13: Speedups achieved for each benchmark with respect to the baseline system for different

sizes of the register file.

The proposed system has a multi-bank register file with 4 banks: a

conventional one and banks with 1, 2 and 3 shadow cells. A register can be reused up to 3 times.
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4.5.2 Performance Improvement

We present the performance results for the proposed register renaming technique in comparison
with the baseline system. We assume a register file with four types of banks as shown in Figure 4.8.
Figure 4.13 presents the performance improvements with respect to the baseline for different sizes
of the register file. Note that the integer and floating-point register files are decoupled. Hence, for
integer benchmarks we consider different sizes of the integer register file whereas for floating-point
benchmarks we measure performance for different sizes of the floating-point register file.

As Figure 4.13(a) shows, for SPECfp benchmarks, the proposed technique provides 12.2%,
7.5%, 3.75%, 1.83% and 0.82% performance improvements on average using a register file of equiv-
alent size for our proposed technique. Similarly, for SPECint benchmarks, the proposed technique
provides 47%, 6.76%, 2.29%, 0.67% and 0.41% performance improvements on average with respect
to the baseline for different number of physical registers in the register file (see Figure 4.13(b)). As
the results show, for small register files, the benefits are high. As the register file size increases,
the benefits decrease since the register file becomes less critical and a more effective use of it has
smaller benefits.

For Mediabench and cognitive computing benchmarks, the proposed scheme provides significant
performance improvements, as Figure 4.13(c) shows.

Figure 4.14 shows the average committed instructions per cycle (IPC) for the baseline and
the proposed scheme. We plot the average IPC for the SPECfp and SPECint benchmarks shown
in Figure 4.13(a) and Figure 4.13(b) respectively. The X axis represents the number of physical
registers in the baseline. For the proposed technique, we assume a register file of equivalent area,
taking into account its overheads. As it can be seen, our scheme can achieve the same performance
as the baseline with a significantly lower number of registers. For instance, our technique with a
floating-point register file equivalent to 56 registers achieves the same IPC as the baseline with 64,
which represents a saving of 13% in area.

4.5.3 Analysis on Register Type Predictor

As described in section 4.3, the proposed technique uses a simple predictor with 512 entries
that predicts the most likely reuse for each register and it is the configuration assumed in the
experiments of this work. In case the prediction corresponds with the actual number of reuses, we
count it as a hit; otherwise it is counted as a miss.

As we showed in Figure 4.3, more than 85% of the instructions, in average, require a destination
register for which in our scheme we use the register predictor. Therefore, a register may be predicted
to be reused correctly or incorrectly. On the other hand, the predictor may predict not to reuse a
register which again can be a correct or an incorrect prediction. Figure 4.15 shows a breakdown
for all the instructions of SPECint and SPECfp benchmarks. As this figure shows, despite the
instructions that do not have a destination register, the rest will fall into one of these four categories.

Using the predictor two different kind of misprediction may occur. First, there may be a
possibility to reuse a single-use register, however, due to an incorrect prediction, the register is not
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Figure 4.14: TPC of the proposed scheme and the baseline for different sizes of register files in the
baseline and in the proposed technique.

reused. In this case, an opportunity of reusing a register is lost but no further actions are required.
On the other hand, a register may have more than a consumer and it is predicted as a single-use
register. In this case, as the register is reused incorrectly, the previous value of the register needs
to be recovered as discussed in section 4.3.4.

4.5.4 Complexity of the Proposed Register Renaming Scheme

Our register renaming technique introduces a small overhead. The new hardware structures
included are fairly small: the PRT requires 384-bits and the register predictor table contains 1
Kilobits. Regarding the register file, shadow copies are much cheaper than regular registers as
they are not connected to read/write ports. Furthermore, only a small number of registers include
shadow copies as shown in Table 4.3. Finally, the issue queue requires 4 additional bits per entry,
which is small compared to the information already stored in modern out-of-order processors.
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Figure 4.15: Accuracy of the register type predictor.

Regarding the renaming logic, our scheme adds an indirection from Register Map Table to the
PRT and it requires an access to the predictor table. Handling dependencies among instructions
renamed in the same cycle is not a problem, since out-of-order processors already handle this case
and include additional checks and bypasses. Our scheme only requires extra checks to the Read-bit
and 2-bit counter. Although this extra complexity in the renaming might impact the total delay
of the rename stage, we assume our technique has no impact on cycle time for two reasons. First,
some of the latencies can be overlapped, for example Register Map Table and predictor table can be
accessed in parallel. Second, renaming is not typically in the critical path of modern out-of-order
processors. In the worst case, we can further pipeline the renaming, since adding one stage to the
front-end results in negligible impact on the overall IPC as reported elsewhere (see for instance [93]).

Finally, all comparisons in the work are done for configurations with the same area, in order
to show that our renaming scheme is better than simply adding more registers.

4.6 Related Work

Using physical registers in a more efficient way has been the goal of many researches in the
past. The most similar works to the technique presented in this thesis are those that try to delay
the allocation of registers or anticipate its release.
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Monreal et al. [65] proposed a register renaming technique based on virtual-physical regis-
ters [36]. By employing virtual-physical registers, their approach postpones the physical register
allocation until the corresponding instruction finishes its execution. Their approach has a signif-
icant cost due mainly to the requirement of two separate register map tables, and two mapping
operation per each destination register (from logical to virtual-physical, and from virtual-physical
to physical).

Several works have been proposed to early release a register. Moudgill et al. [68] suggested
to release physical registers as soon as the last instruction that redefines a register commits. The
last-use tracking is based on counters which record the number of pending reads for every physical
register. This initial proposal did not support precise exceptions since the counters were not
correctly recovered when instructions were squashed. Later, Akkary et al. [9] proposed to improve
the Moudgill scheme by adding an unmapped flag for each physical register, which is set when a
subsequent instruction redefines that logical register. Then, a physical register can be released once
its usage counter is zero and its unmapped flag is set. Moreover, for proper exception recovery of
the reference counters, when a check-point is created, the counters of all physical registers belonging
to the check-point are incremented. Similarly, when a check-point is released, the counters of all
physical registers belonging to the check-point are decremented. In addition to the overheads that
these techniques impose, they release a register far later than its actual lifetime.

Monreal et al. [66] proposed two different schemes to release a register. The first scheme waits
for a redefining instruction to become non-speculative before releasing the previous version of its
logical register. The second adds a new queue with multiple levels corresponding to the uncon-
firmed branches in the reorder buffer (ROB). Registers are released when the redefining instruction
becomes non-speculative and the last instruction using the physical register has committed. On a
branch misprediction, the relevant levels in the release queue are squashed. The downside of these
techniques is that no recovery mechanism is in place to retain values released early. In the event of
an exception or interrupt it would be impossible to reconstruct the precise processor state. They
also need to add many large structures to the processor so that the status of redefining and last-use
instructions can be maintained, increasing the complexity of the pipeline.

Ergin et al. [32] introduced a check-pointed register file to implement early register release.
In their approach, a register is being deallocated immediately after the instruction producing the
register’s value commits itself and all potential consumers of this value have started execution before
the redefining instruction is known to be non- speculative. To support branch misprediction, precise
exceptions and interrupts, their proposal save the register value into the shadow bit-cells of the
register where it can be accessed easily in such events.

Jones et al. [51] proposed a compiler-based technique for early register release. The compiler
defines the points where registers will no longer be used and can be safely released. To guarantee
that the state of the processor can be safely recovered after an interrupt or an exception, they
used a check-pointed register file similar to the register file proposed in [32]. This scheme requires
compiler support and changes in the ISA in addition to the overheads of the shadow cells in the
entire register file.

Quinones et al. [80] proposed two techniques to release registers in out-of-order processors
with register windows. The proposed techniques are based on the observation that when none of

98



4.7. CONCLUSIONS

the instructions of a procedure are currently inflight, all mappings of the procedure context are
not needed. Therefore, these mappings and their associated physical registers can be released.
Although their approach is beneficial, it is specific for processors with register windows, which are
not common nowadays.

Note that previous work on early register release like [68] and [66] do not support precise excep-
tions. Precise exceptions is a must for modern out-of-order processors and, hence, these previous
techniques cannot be implemented on modern CPUs. Work in [80] is specific to processors with
register windows which are very uncommon nowadays. Finally, work in [51] requires compiler sup-
port and changes to the ISA. ISA extensions become legacy and make the technique less attractive.
In comparison, our scheme supports precise exceptions and does not require any ISA extension. In
short, previous techniques are not suitable for modern processors and, to the best of our knowledge,
our technique is the only one that can reuse a physical register as early as the last use of this register
is renamed, as opposed to other techniques that need to wait at least until the last use instruction
commits.

4.7 Conclusions

In this chapter, we show that running the optimized GMM application puts a significant pres-
sure on the register file and causes stalls in the renaming stage, limiting the performance of the
processor. We observe that in GMM code the value generated by more than 57% of the floating-
point instructions has only a single consumer. In addition, we show that for our benchmark suites,
in average, the value generated by more than 50% of the floating-point instructions in SPECfp and
more than 30% of the integer instructions in SPECint and mediabench are consumed only by one
instruction.

To exploit this property, we propose a register renaming technique for out-of-order processors
that allows to reuse single-use registers for the destination operand, instead of allocating a new
physical register. We employ a multi-bank register file in which some banks have registers with
integrated shadow cells, to recover the state of the processor in the event of branch mispredictions,
exceptions and interrupts. We present the design of a simple register predictor which is used to
allocate the most appropriate type of physical register for each destination register. We show
that the proposed technique provides up to 38% speedup for the GMM application. Similarly, we
achieve 6% speedup, in average, for the SPEC2006 benchmarks, considering same area in hardware.
Alternatively, using the proposed register renaming technique, the same performance as the baseline
can be achieved while reducing the area of the register file by 10.5%.
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Hardware Accelerator Design

Previous chapters have explored ASR improvements by optimizing the software and modifying
the microarchitecture of general purpose processors. To dramatically improve ASR energy efficiency,
in this chapter, we present the design of our proposed hardware accelerator for GMM evaluation
which is a more efficient but less flexible approach.

We propose a baseline hardware accelerator for GMM evaluation, which is the main bottleneck
of ASR systems. The accelerator implements in hardware a lazy computation scheme that evaluates
Gaussian distributions on demand, reducing the amount of computation by more than 50%. We
show how lazy evaluation combined with batch processing of multiple frames by predicting active
Gaussians, as presented in chapter 3, can be implemented in hardware. Fetching GMM parameters
from the main memory is the main performance bottleneck and consumes significant amount of
energy. We introduce a novel clustering scheme to reduce the size of GMM parameters. A thorough
analysis of the impact of clustering in accuracy, power and performance is presented, in order to
select the most efficient configuration. Later, we show that the use of clustering increases the degree
of redundancy, and a novel memoization scheme is proposed to remove the redundant floating-point
operations.

In this chapter, section 5.1 presents the basic accelerator design and the lazy evaluation scheme.
Section 5.2 introduces our clustering techniques and the memoization scheme. Section 5.3 describes
the evaluation methodology and the experimental results are provided in Section 5.4. Finally,
Section 5.5 sums up our conclusions.

101



CHAPTER 5. HARDWARE ACCELERATOR DESIGN

5.1 Hardware Accelerated Acoustic Scoring

In this section, we present a high-performance and low-power accelerator for GMM evaluation,
with the aim of improving the energy-efficiency of acoustic scoring in mobile ASR systems. The
accelerator focuses on the GMM evaluation since it is the main performance and energy bottleneck
as reported in chapter 3.

We first introduce a base design of the accelerator, that consists on a straightforward hard-
ware implementation of the GMM evaluation method described in Chapter 2. Next, we present a
lazy Gaussian evaluation scheme implemented on top of the base design, in order to avoid GMM
computation for inactive senones.

5.1.1 GMM Accelerator

We first review the data and the computations required for GMM evaluation before presenting
the architecture of the accelerator. GMM evaluation consists of computing Equation 5.1 for each
multidimensional Gaussian distribution in the acoustic model. Regarding the data, each Gaussian
requires multiple memory accesses to fetch the determinant (D, ), the input features (x.), the
means (fm,g,) and the variances (o7, ,.). To speed-up GMM computation the value 1/207, .
is precomputed offline, as it does not depend on the input x., and fetched from memory instead
of the variance. Therefore, processing one component of a Gaussian distribution requires one
subtraction, two multiplications to compute the square and multiply the result by 1/ 20%1,9,0 and
one subtraction to perform the accumulation. Once all the components have been computed, the

result of the Gaussian distribution has to be written in memory.

= (e~ pimge)®
N(xvl‘m,gvgm,g) = Dy g — Z % (5.1)
c=0 m,g,c

As discussed in previous chapters, we use the latest acoustic model for generic English language
in Pocketsphinx which consists of 5000 mixtures of Gaussians or senones, where each mixture has
32 Gaussians and each Gaussian includes 36 components. Therefore, the memory footprint is 44.55
MB: 21.9 MB for means, 21.9 MB for the precomputed 1/20727%970 and 0.61 MB for the determinants,
since parameters are stored as 32-bit floating-point numbers.

ASR systems typically compute GMM for batches of multiple frames in order to save memory
bandwidth. Performing GMM evaluation for multiple frames in parallel improves temporal locality,
as the means and variances can be fetched once from the off-chip system memory and reused for
multiple frames, instead of fetching GMM parameters on a frame basis. Note that most of the
memory bandwidth is employed for fetching Gaussians. To calculate the acoustic scores for one
second of audio (100 frames), even by using lazy evaluation scheme, more than two gigabytes needs
to be fetched from the main memory.

Figure 5.1 shows the initial architecture of the GMM accelerator. Its pipeline works as follows.
First, the Frame Fetcher unit is triggered to read the input features for all the frames in the batch

102



5.1. HARDWARE ACCELERATED ACOUSTIC SCORING

Control Unit
h 4 # 1

iy GMM GMM _
Fetcher Parameters -
Frames 1 » Processing lane 1 —  Accumulator 1
M
c [ Frames 2 —» Processing lane 2 —  Accumulator 2
Frame
L
Fetcher
Frames N > Processing lane N — Accumulator N
[y Score | — —
Writer |

Figure 5.1: Architecture of the baseline GMM accelerator.

from main memory. The features are stored in an internal SRAM memory with multiple banks
named Frames 1, ..., Frames N in Figure 5.1. Typical ASR systems employ between 30 and 40
features per frame. We design our accelerator to support up to 64 features. Therefore, the size of
each bank depends on the number of frames and the numbers of banks:

F frames x 256 bytes/ frame

Bank Size = B banks

(5.2)

For example, for a batch size of 128 frames and 8 banks, the size of each bank is 4 KB.
Once all the features have been fetched from main memory and stored in the on-chip SRAM, the
GMM Fetcher unit is triggered to read the parameters for the first Gaussian. These parameters,
i. e. means and variances, are stored in the GMM parameters SRAM memory. The accelerator
is designed to support Gaussian distributions with up to 64 dimensions and, hence, one Gaussian
requires up to 512 bytes of storage. The GMM parameters SRAM memory includes two banks of
512 bytes to store the current and the next Gaussian distribution. By using the two banks the
accelerator can overlap the latency for fetching the next Gaussian with the computations for the
current Gaussian.

Once the means and variances are available in the on-chip SRAM, the Gaussian is evaluated for
all the frames in the batch by using the Processing lanes and the Accumulators. Figure 5.2 shows
the pipeline for performing GMM computations. Each Processing lane includes SIMD FPUs to
process four components of a Gaussian in parallel for one particular frame. The computation of the
Gaussian works as follows. First, 4 means and 4 variances are fetched from the GMM Parameters,
by performing one access of 256 bits, and broadcast them to the different Processing lanes. In
parallel, a 128-bit fetch is performed in each of the Frames 1 ... Frames N SRAM memories to
read 4 features for each frame. The Processing lane receives its 4 corresponding features and the
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Figure 5.2: Pipeline of the Processing lane and Accumulator in the GMM accelerator.

4 means and performs the first subtraction, z. — fip 4. Next, a SIMD FP multiplier is used to
compute (T — fimgc)?. In the next stage, another SIMD FP multiplier is used to multiply the
previous result by the variance.

The Accumulator employs a reduction tree to compute the summation of the 4 components,
as shown in Figure 5.2. Furthermore, it performs the final subtraction to update the score of the
Gaussian. This process is repeated until the current Gaussian is evaluated for all the frames in the
batch. Finally, the Score Writer unit stores the scores for the different frames in main memory.

The accelerator is able to overlap memory accesses with computations to a large extent. To
this end, the processing of a Gaussian is split in three stages: fetching means and variances from
memory, evaluating the Gaussian for all the frames in the batch and writing the scores in main
memory. The three stages are pipelined, so the accelerator fetches the next Gaussian from memory
while it evaluates the current Gaussian and writes the scores for the previous Gaussian.

The capacity of the accelerator to hide memory latency depends on the batch size as illustrated
in Figure 5.3. This graph shows the time required for memory transfers and computations for 128
frames of speech in a version of the accelerator with 8 processing lanes, using the acoustic model of
Pocketsphinx that contains 160k 36-dimensional Gaussians. As it can be seen, the memory transfer
time is significantly reduced when increasing batch size, as the Gaussians are fetched once from
main memory and reused for multiple frames. For a batch size bigger than 16 frames the memory
transfers can be completely hidden with useful computations. Bigger batch sizes improve temporal
locality and increase the FP to MEM ratio, improving the capacity of the accelerator to tolerate
memory latency. However, it also increases the latency of the ASR system, as more frames of
audio have to be buffered before the recognition process starts. For example, a batch size of 128
frames introduces a delay of 1.28 seconds (10 ms per frame). Therefore, the batch size cannot be
arbitrarily increased for online speech recognition systems.
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Figure 5.3: Execution time for memory transfers and computations for 128 frames of speech, using
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Figure 5.4: Number of active senones vs frames of speech. Red dotted line shows average number
of active senones per frame.

5.1.2 Lazy GMM Evaluation

The result generated by the GMM accelerator is consumed by the Search Engine, the next stage
in the pipeline of an ASR system. The Search Engine employs the acoustic scores to perform a
search on a graph-based recognition network, in order to find the sequence of words with maximum
likelihood. As discussed in Chapter 2, for large vocabulary ASR it is unfeasible to explore the
entire search space due to its huge size. ASR systems prune away paths that are very unlikely to
match the input stream. Due to the pruning, the scores of some mixtures or senones are not used
by the Search Engine and, hence, GMM computation for these inactive senones can be skipped.
Figure 5.4 shows the number of active senones in several frames of speech.

Many ASR systems, such as Pocketsphinx, generate a list of active senones, i. e. senones whose
acoustic scores are required to perform the search, for every frame of speech. We extend our GMM
accelerator to access this list of active senones in order to reduce the amount of computation and
the memory bandwidth usage. Instead of blindly computing all the senones, the GMM accelerator
computes Gaussians on demand as required by the Search Engine. This version of the accelerator
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includes a SRAM memory to store the list of active senones. Assuming a batch size of F' frames,
this memory stores F' bits for every senone. This bitmask indicates whether the senone is active
on each one of the frames in the batch.

A senone can only be completely skipped if the bitmask indicates that it is inactive in all the
frames of a batch. In that case, means and variances for its N Gaussian distributions (e.g. 32 in
Pocketsphinx) are not fetched from main memory. Moreover, all the associated GMM computations
are avoided. However, if the senone is active in at least one frame then the GMM parameters have
to be fetched from main memory. In that case, the accelerator can still avoid some computations
by disabling the Processing lanes for frames where the senone is not active.

Figure 5.5 shows the percentage of active senones in Pocketsphinx when processing the test set
of LibriSpeech corpus [75] (5.4 hours of speech). The bigger the batch size, the higher the likelihood
that a senone is active in at least one frame. For a batch size of 128 frames more than 90% of the
Gaussians have to be processed, but for modest batch sizes of 4-8 frames there is a large percentage
of senones that are inactive in all the frames of the batch. Note that online ASR systems prefer
small batch sizes to reduce the response time.

The memory bandwidth required for fetching the list of active senones is significantly smaller
than the bandwidth used for fetching Gaussians. For example, for Pocketsphinx acoustic model
(5000 senones) and a batch size of 8 the list of active senones contains 40k bits (4.8 KB). By
fetching this information the accelerator is able to completely skip more than 40% of the senones
(see Figure 5.5), so the lazy GMM evaluation scheme avoids fetching 17 MB from main memory
per batch. Moreover, the amount of floating point computations is reduced by 57%.

Note that the list of active senones produced by the Search Engine is only available for the
current frame and, hence, it is not clear how to apply lazy evaluation when processing frames
in batches. For this reason, software solutions that implement lazy evaluation, such as Pocket-
sphinx, process frames sequentially, whereas systems that exploit batching have to compute all the
Gaussians for every frame. In this thesis, we propose a novel approach to combine the benefits of
both lazy evaluation and batching (see section 1.2.1). The speech signal is quasi-stationary when
considering a short interval of time. We exploit this behavior to implement a simple prediction
scheme in hardware: the accelerator predicts that the active senones in the next N - 1 frames will
be the same as in the current frame, being N the batch size. This simple scheme achieves 94%
and 83% of accuracy for batch sizes of 3 and 8 frames respectively. We check the prediction with
the list of active senones when it is available for each frame, and we only compute sequentially
the senones that are mispredicted. For example, for a batch size of 8 only 17% of the senones are
computed sequentially, whereas 83% employ batching. Therefore, our scheme avoids computing
all the senones by using lazy evaluation, but it is still able to apply batching to a large extent,
achieving substantial improvements in performance and energy consumption.

5.2 Clustering and Memoization

Online ASR systems require small batch sizes of just a few frames of speech in order to achieve
high responsiveness. Moreover, our lazy GMM evaluation scheme presented in Section 5.1.2 also
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Figure 5.5: Percentage of active senones for different batch sizes. A senone is considered active if
it is active in at least one of the frames of a batch.

requires small batches to skip a substantial percentage of the Gaussian distributions. The main
disadvantage of small batch sizes is that the memory transfer time cannot be completely hidden by
computations, as shown in Figure 5.3.

Most of the memory bandwidth in GMM evaluation is employed for fetching means and vari-
ances. For example, for Pocketsphinx acoustic model and a batch size of 8 frames, 21.9 MB of
means and 21.9 MB of variances have to be fetched from memory for every batch. In comparison,
only 0.61 MB, 1.12 KB and 4.8 KB have to be fetched for determinants, input features and list of
active senones respectively. Therefore, 98.61% of the memory bandwidth is used for reading means
and variances.

In this section, we first explore different alternatives for clustering the GMM parameters, with
the aim of reducing the memory bandwidth usage for GMM evaluation. We show that the best
clustering scheme provides 8x bandwidth reduction, with a negligible loss in accuracy. We next
extend our GMM accelerator introduced in Section 5.1 to support clustered GMMs, to reduce its
memory requirements and increase the overlap of memory accesses and computations. Finally, we
show that the clustering scheme increases the amount of redundant computations to a large extent,
and propose a memoization technique that avoids 74.88% of the floating point operations, which
translates into important savings in energy consumption.

5.2.1 Clustering GMM Parameters

Reducing the size of the datasets for ASR is key for both performance and energy consumption.
For small batch sizes used in online ASR systems, the performance of acoustic scoring is mainly
constrained by memory transfers as illustrated in Figure 5.3 and Figure 5.6. Furthermore, off-chip
memory accesses are known to be one of the main sources of energy consumption in mobile devices
and, hence, memory bandwidth reductions translate into important energy savings.

Compressing the GMM parameters can potentially alleviate the pressure on the memory sub-
system. Since accuracy is also an important requirement for end-user applications based on speech
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Figure 5.6: Time needed to transfer the data from main memory to the chip for various batch sizes
for baseline (considering all senones as active), lazy evaluation and clustered data.

recognition, we first evaluated lossless compression methods. Unfortunately, lossless compression
algorithms provide very modest compression ratios, even when using sophisticated software-based
techniques that are not amenable for real-time systems. We obtained the best results with 7zip
algorithm, that provides 1.08x reduction in the size of Pocketsphinx acoustic model, whereas we
achieved smaller compression ratios with bzip2, rar and zip. The main reason for such low com-
pression ratios is that the data is stored in floating point format. Lossless algorithms specifically
tailored for IEEE floating point format can be employed, but the state-of-the-art techniques [12]
provide only around 2x compression.

Both means and variances are represented as 32-bit single-precision floating point data type.
Figure 5.7 shows the compression ratio achieved using different software compression algorithms to
compress the means and variances. According to our analysis, variances are integer values and can
be represented using only few bits of mantissa and exponent in the floating point data type. This
is the main reason that such algorithms can compress variances very well. However, this is not the
case for means and as the figure clearly shows, none of the software algorithms can compress the
means properly. It should be mentioned that most of the software approaches are compressing the
whole data and obviously decompressing part of the data may not be feasible. In other words, these
algorithms are not amenable for online decompression in real-time. With all these, significantly
higher compression ratios of 4-8x are required to solve the problems with memory bandwidth usage
in our GMM accelerator.

We have exploited the GMM parameters data. We applied various sophisticated software
techniques to compress the data using lossless compression algorithm. However, in the best case
using 7zip compression algorithm we only get 1.08x reduction for the means. The main reason for
such a low compression ratio is that the data types are floating point and no special locality or a
pattern could be found easily . It should be mentioned that achieving an acceptable compression
ratio with these type of algorithms results in a complex and time-consuming data decompression

! We obtained similar compression ratio using bz2, rar, zip and several well-known compression algorithms.
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Figure 5.7: Compression ratio using different software compression algorithms to compress means
and variances.

which causes a huge overhead.

As we show later in figure 5.13, even applying lazy evaluation, still main memory consumes
considerable amount of energy. On the other hand, fetching huge amount of data limits the per-
formance of the system due to bandwidth constraints. Several works have been done to alleviate
this problem. Some works reduced the number of mixtures of Gaussians to reduce the computa-
tion complexity and memory requirement. However, these works reduced the accuracy of the ASR
system to a large extent.

Lossy compression algorithms can be used to achieve larger compression ratios, as long as
they do not cause a significant decrease in accuracy. One of the most successful techniques for
lossy GMM compression is clustering [84, 28, 18], K-means being the most popular algorithm.
Clustering schemes are among the techniques to reduce the data size. Most successful methods
apply nonlinear quantization schemes, e.g. K-means, and reduce the data size up to 4x without
significant loss of the accuracy. In these techniques, indexes will be stored instead of means and
variances and these indexes will be used to access a table of centroids to estimate the means and
variances. With clustering, the floating point values are replaced by significantly smaller integer
indices into a codebook of centroids. For example, when using K-means with 256 clusters each
32-bit FP value is replaced by an 8-bit index, providing close to 4x compression ratio (1 KB is
required for the codebook of 256 FP values).

On the other hand, instead of clustering individual scalar values, vector clustering for GMM
can be used as described in [84] to further increase compression ratio. With vector clustering
multiple FP values are represented with just one index. Pocketsphinx acoustic model consists of
160k 36-dimensional Gaussians. Clustering entire Gaussians only requires one index for every 36
FP values. However, the bigger the length of the vector the higher the accuracy loss and, hence,
larger codebooks are required to achieve accuracy levels close to the uncompressed dataset. Note
that the codebook of centroids is also part of the compressed dataset and it must be considered for
computing compression ratio. In order to achieve a better trade-off between compression ratio and
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Figure 5.8: Compression ratio vs increase in Word Error Rate (WER) for different clustering
algorithms.

accuracy, vector clustering can be implemented at the sub-Gaussian level, where each Gaussian is
split in two 18-dimensional vectors, or three 12-dimensional vectors, etc.

We have implemented both vector and scalar clustering for GMM parameters and we have
analyzed their impact on compression ratio and accuracy. The results are shown in Figure 5.8.
Regarding vector clustering, we consider vector sizes of 4, 6, 9, 12 and 18. In addition, we change
the number of clusters, i. e. the codebook size, between 1K and 12K. As it can be seen, for the
same number of clusters the bigger the vector size the bigger the compression ratio, but the bigger
the accuracy loss. Vector clustering achieves compression ratios close to 16x, but at the cost of a
significant decrease in accuracy (more than 5% in absolute WER).

On the other hand, scalar clustering achieves better accuracy than vector quantization methods.
Figure 5.8 depicts configurations using scalar clustering with K-means algorithm, for three different
codebook sizes: 16 (“K-means_16”), 32 (“K-means_32") and 256 centroids (“K-means_256”). The
bigger the codebook size the smaller the accuracy loss, but the smaller the compression ratio as
indices require more bits. The configuration with 256 clusters provides a reduction of the dataset
close to 4x with a negligible impact on accuracy, 0.02% increase in WER. For a codebook of 16
centroids each index only requires 4 bits and, hence, compression ratio is close to 8x. However,
WER is increased by more than 1.3%.
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We have done a comprehensive analysis of different clustering schemes including vector and
scalar quantization for several state-of-the-art acoustic models using hours of large vocabulary
corpuses. Our analysis shows that both scalar quantization and the vector quantization techniques
can achieve up to 4x reduction in GMM parameter’s size without significant loss in accuracy of the
ASR system (see Figure 5.8).

We have done various analysis in order to achieve further data size reduction meanwhile main-
taining the accuracy. Using the existing methods, we achieved up to 8x reduction in the size of
the GMM parameters. Our results show that using K-means algorithm with 8 clusters for means
and 32 clusters for variances (which together could be packed in an 8-bit index) the absolute WER
increases by 1.3% while it achieves 8x reduction in the parameter’s size. Using 32 clusters for the
means and 64 clusters for the variances provides 5.8x reduction in the size of the GMM parameters.
Note that as the means are usually in a much narrower range in comparison with the variances, they
can be represented in less number of clusters than the variances. On the other hand, unexpectedly,
vector quantization techniques reach this accuracy with less compression ratio and thousands of
clusters 2.

For further analysis, we used data visualization to explore data patterns. We observed that the
same component of different Gaussian distributions tend to exhibit similar values, in both means
and variances (see Figure 5.9). In other words, the distribution of the values of one component in
various Gaussians has much smaller standard deviation. Using this property in GMM parameters,
which is observed in many acoustic models, we introduce a new clustering algorithm that it exploits
this similarity. We call this technique per-component clustering. Based on the aforementioned
observation, in this technique, first, we separate the GMM parameters of each component into
different groups. Next, we apply K-means algorithm for each of the separated groups. By doing
this we have indexes and centroids per each group of data. The benefit of this technique is that we
have different clusters for each group.

Increasing the number of clusters results in better accuracy, as the distances from the original
values to the centroids of the clusters tend to be smaller. However, it also results in smaller
compression ratio, since more bits are required to represent the indices. In this thesis, we propose a
novel strategy to increase the number of clusters without increasing the size of the indices. For an
acoustic model with N Gaussians and C' components per Gaussian, the dataset consists of an N x C
matrix. In our scheme we apply clustering for each Gaussian component separately generating C
different codebooks, one for each column. By doing this, the number of centroids is increased
by a factor of () but the index size remains the same as the size of each individual codebook is
not increased. For example, assuming an acoustic model with 36-dimensional Gaussians and 16
clusters, we apply scalar K-means for each column of the matrix and generate 36 codebooks with
16 centroids, which means a total of 576 centroids for the entire dataset. Nevertheless, the index
size is still 4 bits since each dimension of the Gaussian is restricted to its corresponding codebook.
Note that the target codebook can be obtained from the column of the matrix, so indices in column

2Qur results show that using vector-quantization in order to maintain the accuracy of the baseline we
need 12k clusters and 18 partitions which costs a big complexity in both software and hardware (in software
it causes a significant slowdown due to large cache miss ratio and in hardware it requires large caches to
store the centroids). These techniques perform better in small-vocabulary ASRs [84]. The compression ratio
achieved by this technique in order to maintain the accuracy of the ASR system is 4.32x.
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Figure 5.9: Grayscale visualized display of components of various Gaussian distributions which
clearly shows the similarity of components.

¢ use codebook ¢ and, hence, no additional information has to be stored to locate the codebook.

Figure 5.8 shows the results for our per-component clustering scheme, using 16 centroids per
codebook (“Per-component_16”) and 32 centroids (“Per-component_32”). Our scheme provides a
better trade-off between compression ratio and accuracy than the schemes that apply K-means
for the entire dataset with just one codebook. Compared to “K-means_256”, “Per-component_16”
doubles compression ratio, from 4x to 8x, despite increasing the number of clusters from 256 to 576,
since each component is clustered separately and only 4 bits are required per index. Compared to
“K-means_16”, which also uses 4-bit indices, “Per-component_16” improves the increase in WER
from 1.3% to 0.4% as it employs 576 centroids instead of 16 for the entire dataset. Therefore,
per-component clustering achieves the same compression ratio as the schemes with a small number
of clusters, while providing a level of accuracy close to the schemes with large codebooks.

Our experiments show that our per-component clustering scheme using 256 clusters for means
and variances (8 bits instead of 64 bits), achieves close to 8x reduction in data size while increasing
the absolute WER to 0.4% (see Figure 5.8). The error produced by our technique is 3.25x smaller
than the alternative scalar clustering technique achieving the same compression ratio.

The per-component clustering generates highly tuned codebooks for each dimension. Fig-
ure 5.10 shows the Mean Squared Error (MSE) for each of the 36 dimensions in the acoustic model
of Pocketsphinx, including our per-component clustering and the regular K-means with 16 clus-
ters for the entire dataset. Per-component clustering introduces smaller errors for most of the
dimensions, achieving higher accuracy with the same compression ratio.
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Figure 5.10: Mean Squared Error introduced by the clustering techniques for each component, or
dimension, of the Gaussian distributions in Pocketsphinx English language acoustic model. Our
per-component clustering provides smaller errors for most of the dimensions.

We have implemented in our GMM accelerator the per-component clustering with codebooks
of 16 centroids. This configuration provides close to 8x compression ratio: 32-bit FP values are
replaced by 4-bit indices, whereas up to 4 KB are used for codebooks (up to 64 dimensions multiplied
by 16 centroids). For LibriSpeech test set (5.4 hours of audio) this configuration introduces a
negligible error with respect to the uncompressed dataset, increasing WER by only 0.4%.

Our extensive experimental results show that our per-component clustering scheme delivers
better accuracy in comparison with the proposed scalar and vector quantization techniques. We
almost maintain the accuracy while reducing the GMM parameters up to 8x which achieves a
huge reduction in main memory accesses and energy. We modify our baseline accelerator design
to support lazy evaluation combined with clustering as illusterated in Figure 5.11. It should be
mentioned that our accelerator supports both clustered and unclustered GMM parameters which
can be easily configured by the user.

We extended our GMM accelerator to support clustering as illustrated in Figure 5.11. This
version includes an on-chip SRAM memory, named Centroids, to store the codebooks. The accel-
erator supports Gaussians with up to 64 dimensions and codebooks with up to 16 centroids. The
total size of the Centroids SRAM memory is 4 KB: 64 codebooks x 16 centroids/codebook x 4
bytes/centroid. The Processing lanes of the GMM accelerator require 4 means and 4 variances per
cycle to achieve peak throughput. The Centroids memory is split in 4 banks of 1 KB with 2 read
ports per bank, in order to fetch 4 centroids for means and 4 centroids for variances in one cycle.
To avoid bank conflicts, codebooks for different components are interleaved with a factor of 4, as 4
consecutive components are processed per cycle.

When using clustering, the GMM Fetcher reads indices from main memory and stores them in
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Figure 5.11: Architecture of the GMM accelerator including support for clustering and lazy evalu-
ation.

the GMM Parameters SRAM memory. The pipeline of the accelerator includes an additional stage
to fetch the centroids. In this new stage, the indices for means and variances read from the GMM
Parameters memory are used to obtain the corresponding values from the Centroids memory. These
centroids are then dispatched to the Processing lanes, the rest of the pipeline remains unmodified
and works as described in Section 5.1.

The use of clustering provides a large reduction in memory bandwidth usage. For Pocketsphinx
acoustic model, 43.8 MB are fetched from memory every batch to read means and variances when
using the uncompressed dataset. Our clustering scheme reduces the size of the dataset to 5.5 MB,
achieving a reduction in memory bandwidth close to 8x.

5.2.2 Memoizing GMM Computations

GMM evaluation for one frame of speech requires computing the expression (x. — um7g,c)2 X
(1/ 20,%17976) for every component of every Gaussian (see Equation 2.5 in Chapter 2). The number
of times the aforementioned expression is computed depends on the number of Gaussians in the
acoustic model and the dimensionality of the Gaussians. For Pocketsphinx acoustic model, which
contains 160K 36-dimensional Gaussians, this expression is evaluated 5.76 million times per frame
of speech. However, when using our clustering scheme described in Section 5.2.1, each one of the
36 input features (z.) can only be combined with 16 different means and 16 variances. The total
number of unique evaluations is 36 x 16 x 16 = 9216. Therefore, 99.84% of the evaluations of this
expression are redundant, i. e. they use the same value of x¢, fiy 4. and 0%17 as a previously

computed component.

g7c

In this thesis, we propose the use of memoization to avoid all these redundant computations.
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Memoization is an optimization technique that avoids repeating the execution of redundant com-
putations by reusing the results of previous executions with the same input values. The first time
a computation is executed, its result is dynamically cached in a Look Up Table (LUT). Subsequent
executions of the same computation will obtain the result from the LUT rather than recalculating
it.

We extend our GMM accelerator to memoize the result of the expression (z, — um7g7c)2 X
(1/ 20,2,17976), which corresponds to the first subtraction and the two multiplications performed in
the Processing lanes as illustrated in Figure 5.2. In this version of the accelerator, we decouple the
Processing lanes from the Accumulators. The Processing lanes are first triggered to precompute all
the unique combinations of the aforementioned expression. The output results of the Processing
lanes are stored in a new on-chip SRAM memories, named Memoization Buffers, as illustrated
in Figure 5.12. This SRAM memory stores the unique results in a 4D matrix with dimensions:
Num_frames_in_batch x Num_features_per_frame x Num_means X Num_variances. Our ac-
celerator supports up to 8 frames per batch, 64 features per frame and 16 centroids for means and

variances, so the total size for the Memoization Buffers is 512 KB.

Once all the unique computations are executed, the scores of the different Gaussians are com-
puted for the given batch of frames. Evaluating a Gaussian consists on performing a summation of
the corresponding results stored in the Memoization Buffers, using the Accumulators. The indices
for mean and variance, together with the frame index and feature index are used to access the 4D
matrix of precomputed results. Two new pipeline stages are included to perform this access as
illustrated in Figure 5.12. In the first stage, the address of the precomputed result is obtained from
the different indices. In the next stage, this address is employed for accessing the Memoization
Buffers in order to get the precomputed result for the expression (zc — fim,g.c)? x (1/ 2072,17976). The
values obtained from the Memoization Buffers are forwarded to the Accumulators, where they are
employed to update the score of the Gaussian.

In summary, GMM evaluation requires four FP operations for each component of every Gaus-
sian. The first three FP operations exhibit a high degree of redundancy, since only 0.16% of the
computations are unique whereas 99.84% are redundant. We extend our accelerator to precompute
these 0.16% unique FP values and store them in a relatively small table, so they can be later used
for computing Gaussians.

In the base design of the accelerator, evaluating Pocketsphinx acoustic model for a batch size of
8 frames requires about 184 million FP operations: 8 framesx 160K Gaussians x 36 components X
4 FP ops. When using memoization, we first precompute the unique values, this requires about
221K FP operations: 8 frames x 36 components x 16 means x 16 variances x 3 FP ops. In
addition, to get the scores we have to perform the summation of 36 of these precomputed values,
which requires 46.08M FP ops: 8 frames x 160K Gaussians x 36 components x 1 F'P op. The total
number of operations with the memoization scheme is 46.30M, i.e. 74.88% of the FP operations
are avoided.

Computation reuse is lucrative only when the cost of accessing the structures used for mem-
oization is smaller than the benefit of skipping the actual computation. According to our results
obtained with CACTI and Synopsys Design Compiler at 28 nm, the energy for accessing one bank
of the Memoization Buffers is much smaller than the cost of performing one FP subtraction and
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Figure 5.12: Architecture of the GMM accelerator including support for lazy evaluation, clustering
and memoization.

two FP multiplications. Therefore, the cost of accessing the Memoization Buffers is substantially
smaller than the cost of the avoided computations and, hence, the use of memoization improves
the energy-efficiency of the accelerator as reported in Section 5.4.

In short, we show that our proposed clustering scheme performs very well while reducing the
GMM parameters up to 8x. Using clustering scheme, the total possible values in a frame will be:

Total Possible Values = Components x Clusters_Means x Clusters_Variances (5.3)

Therefore, all the operations will be among these few number of combinations. In other words,
99.84% of the computations are redundant. We explored this huge amount of redundancy and
proposed a memoization technique to eliminate them.

5.3 Evaluation Methodology

We have developed a simulator that models the GMM accelerator described in secion 5.1.
Furthermore, the simulator implements the lazy evaluation scheme presented in Section 5.1.2, our
clustering technique (see Section 5.2.1) and the memoization scheme (see Section 5.2.2). The
simulator works based on real trace inputs from the ASR system. We use this simulator for design
space exploration and also for implementing the proposed schemes. We also implemented the fetch
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Technology | 28 nm
Frequency | 1200 MHz

Number of lanes | 8
Lane width | 4

Parameter buffer | 3 buffers, 1 KB each

Frame buffer | 1 KB per each lane
Active senone | 6 KB

Centroids buffer | 1 KB

Write score | 1 KB
Memoization buffers | 512 KB
Functional units per lane | 8 fp multipliers, 4 fp adders

Table 5.1: Hardware parameters for the proposed accelerator.

CPU | 4x ARM Cortex A57 at 1.9 GHz
L1, L2 | 32KB L1, 2MB L2
Technology | 20 nm

Table 5.2: Mobile CPU Parameters.

GPU | Tegra X1 Maxwell (GM204)
Streaming multiprocessors 256-core
Technology 20 nm
Frequency 1000 MHz
L1, L2 caches 24KB [61], 256KB

Table 5.3: Mobile GPU Parameters.

modules and the functional units pipelined and in different parallel lanes to increase the throughput.
Table 5.1 shows the hardware parameters of the designed accelerator.

We use CACTI 6.5 [71] to estimate area and energy consumption of the different SRAM mem-
ories included in the accelerator. In addition, we have implemented in Verilog the rest of the
components in the pipeline of the accelerator and we synthesized them using the Synopsys Design
Compiler with a 28nm commercial library. The simulator provides the activity factors that are
employed to estimate dynamic energy for the different components. We use the delay estimated by
CACTT and the delay of the critical path reported by Design Compiler to set the target frequency
so that the various hardware structures can operate in one cycle.

Regarding our datasets, we use the testset of audio files included in LibriSpeech [75] corpus,
that consists of 5.4 hours of speech. On the other hand, we use the latest acoustic model for English
language provided in Pocketsphinx. We also train several acoustic models using LibriSpeech train
set to verify our proposed clustering scheme in addition to other acoustic models.

We compare our GMM accelerator with the performance of a software implementation running
on a mobile CPU and a mobile GPU. We use NVIDIA Tegra X1 [7] as our baseline mobile platform.
Tegra X1 includes an ARM CPU with parameters shown in Table 5.2 and a state-of-the-art mobile
GPU with parameters provided in Table 5.3.
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Regarding the software implementation, we use the method for acoustic likelihood computation
based on matrix-matrix multiplication described in [29]. In this method, the Gaussians and the
input frames are represented as 2D matrices and the acoustic scores are obtained by using the
matrix multiply (SGEMM) operation of BLAS specification. For the CPU version, we use SGEMM
implementation available in the OpenBLAS library [1]. For the GPU version, we employ the high-
performance implementation of SGEMM provided in cuBLAS [3]. To measure energy consumption,
we read the registers of the TI INA3221 power monitor included in the NVIDIA Jetson TX1
platform, in order to obtain power dissipation by monitoring CPU and GPU power rails as described
in [62].

5.4 Experimental Results

In this section, we evaluate the performance and energy consumption of our GMM accelerator
presented in Section 5.1. In first place, we analyze the impact of the batch size on the energy
consumption of the accelerator. In second place, we compare our GMM accelerator with software
solutions running on a mobile CPU and a mobile GPU. In our experiments we compare our designs
with the software implementations running on a mobile CPU and a mobile GPU, these results are
discussed in Section 5.3.

Figure 5.13 shows the energy consumption of the FP units and the overall accelerator versus
batch size. The figure shows the total energy for processing 128 frames of speech. For the base
design of the accelerator that computes all the Gaussians every frame, labeled as all senones,
the energy for the FP units is constant as the amount of computation does not depend on batch
size. However, overall energy is significantly reduced when increasing batch size due to the energy
required for memory transfers. The bigger the batch size the smaller the memory bandwidth usage,
as Gaussians are fetched once and reused for a bigger number of frames, improving temporal locality.
Energy consumption of base design (all senones) exhibits similar behavior using both the original
dataset and the clustered dataset, but the absolute energy consumption is smaller for the clustered
dataset (Figure 5.13(b)) due to the memory bandwidth reduction achieved with clustering.

Regarding our lazy evaluation scheme, the energy required for FP computations increases with
the batch size. As described in Section 5.1.2, the bigger the batch size the bigger the likelihood
that a senone is active in at least one of the frames and, hence, the smaller the effectiveness in
removing computations and memory accesses. For the original dataset (Figure 5.13(a)), overall
energy is dominated by memory transfers and, hence, configurations with large batch sizes exhibit
smaller energy consumption. However, for the clustered dataset (Figure 5.13(b)) the overall energy
with the lazy scheme achieves the best results for a batch size of 8 frames. In this configuration,
the memory bandwidth usage is reduced to a large extent due to the clustering, that reduces the
size of the dataset by 8x, and the lazy scheme that avoids fetching GMM parameters for inactive
senones.

On the other hand, Figure 5.13 also shows that both the lazy evaluation scheme and the
clustering technique provide significant energy savings with respect to the base design for any batch
size. Online ASR systems require small batch sizes of 4-16 frames to achieve high responsiveness,
as buffering a large number of frames would introduce delays that are unacceptable for real-time
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Figure 5.13: Energy consumption for floating point units (FP units) and entire GMM accelerator
(Total), for the base design that evaluates all the Gaussians (all senones) and the accelerator using
our lazy evaluation scheme (Lazy). (a) shows energy using the original uncompressed acoustic
model, whereas (b) shows the results using our clustering scheme to reduce the size of the acoustic

model.

systems. For small batch sizes, the configuration using lazy evaluation and clustering provides the
lowest energy consumption.

Reducing the response time of the ASR systems is a key factor for end-users, specially for
online speech recognition. We discussed the impact of large batch sizes on the latency of the ASR
systems and also the overheads of extra computations. Figure 5.13(a) shows that reducing the
amount of computations by applying lazy evaluation results in less total energy consumption. The
benefit directly depends on the batch size. Large batch sizes increase the computation energy and
latency while reducing the memory accesses. Figure 5.13(b) shows the total energy consumption
considering computation and memory energy for clustered GMM parameters. As it shows, the
energy consumption reduced manifold due to less memory accesses and lazy evaluation until batch
size of 8. However, further reduction in the batch size results in extra memory fetches and more
energy. We choose the batch size of 8 and the remaining results are provided by this batch size.

Figure 5.14 shows the speedup and the energy reduction achieved by the GPU and the different
versions of our GMM accelerator with respect to a modern mobile CPU. The configuration named
GPU corresponds to the mobile GPU with parameters shown in Table 5.3. ASIC corresponds
to the base design of the GMM accelerator as described in Section 5.1.1. ASIC+L is the base
design including the lazy Gaussian evaluation scheme presented in Section 5.1.2. ASIC+L+C'is the
GMM accelerator including lazy evaluation and the clustering technique introduced in Section 5.2.1.
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Finally, ASIC+L+C+M configuration includes lazy evaluation, clustering and the memoization
scheme described in Section 5.2.2.

The mobile GPU included in NVIDIA Tegra X1 provides 27.9x speedup and 14.6x energy
savings with respect to the mobile CPU. The matrix multiply operation, that is used to implement
the acoustic model in the software-based solutions, exhibits a high degree of data parallelism and,
hence, it benefits from the large number of functional units provided by the GPU. In addition to
the performance improvement, the GPU achieves high energy-efficiency for this data parallel code,
reducing the overheads of instruction fetching and decoding by exploiting SIMD execution model.

On the other hand, the base design of the accelerator, named ASIC in Figure 5.14, provides
70.7x speedup and 691.5x energy reduction over the mobile CPU. The ASIC includes hardware
specifically designed to accelerate GMM evaluation, avoiding the overheads of software implemen-
tations and delivering high-performance and energy-efficiency for acoustic scoring.

The lazy Gaussian evaluation scheme improves performance and energy-efficiency of the base
design, achieving 80.3x speedup and 784x energy reduction over the mobile CPU. For a batch size
of 8 frames, the lazy evaluation scheme avoids the computations and memory accesses for more
than 40% of the Gaussians on average, as reported in Figure 5.5.

As Figure 5.14(a) and Figure 5.14(b) show, the ASIC+L+C+M design achieves 2.32x speedup
over the baseline design while reducing the energy consumption by 5.1x. The main reason to achieve
this reduction in energy is the memoization technique. On the other hand, applying clustering and
lazy evaluation, which significantly reduce memory bandwidth usage, provide a significant speedup.

The lazy evaluation, ASIC+L, increase the performance by 13% in comparison with the baseline
design. The main constraint which limits the performance is the memory bandwidth. Applying
clustering eliminates the memory bandwidth bound and increases the performance by 2.04x in
comparison with ASIC+L. In terms of energy, ASIC+L+C consumes 2.29x less energy since we
mainly remove the extra computations by more than 50% using lazy evaluation and reducing the
memory accesses and bandwidth by applying clustering. Note that using our prediction scheme
presented in section 5.1.2 only computes sequentially the senones that are mispredicted. In our
experiments for measuring the performance and energy consumption of the accelerator we take this
into account.

Our clustering technique provides large improvements in performance and energy consumption.
The ASIC+L+C configuration achieves 164.4x speedup and 1584.9x energy reduction over the mo-
bile CPU. We use our per-component clustering with 16 centroids for means and 16 for variances as
described is Section 5.2.1. The per-component clustering provides 8x reduction in memory band-
width usage, which results in speedups, since memory transfer time is one of the main bottlenecks
for small batch sizes as reported in Figure 5.3, and energy savings as off-chip memory accesses are
one of the most expensive operations in terms of energy for mobile SoCs.

Figure 5.14 shows that the memoization scheme does not provide any performance benefit,
as this technique targets energy savings. Memoization does not increase the throughput of the
accelerator, we still have 8 Accumulators. In the base design, the input of the Accumulators comes
from the Processing lanes, whereas with the memoization scheme the input comes from the Memo-
ization Buffers as illustrated in Figure 5.12. Hence, we replace the three FP operations performed
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Figure 5.14: Speedup, energy consumption and area of the mobile GPU and the different versions
of the accelerator in comparison with the baseline, a modern ARM A57 mobile CPU. In the
performance and energy comparison results we just compare the GMM evaluation stage of the
ASR pipeline.
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Platform | 4x ARM A57 Tegra X1 B+L+C+M
Year 2015 2015 2017
Platform Type | Mobile CPU | Mobile GPU ASIC
Technology 20nm 20nm 28nm
Frequency (GHz) 1.90 1 1.20
Power (Watts) 2.45 9.22 0.11
GFLOPS/W 0.91 6.90 1465.36
Frames/s 95 2688 15802
Frames/J 37.9 558.5 134736.8

Table 5.4: Performance and power of different processors.

in the Processing lanes by one access to the Memoization Buffers, that requires substantially less
energy as described in Section 5.2.2. Overall, 74.88% of the FP operations are replaced by mem-
ory accesses to the memoization table, improving the energy reduction over the mobile CPU from
1584.9x in the ASIC+L+C to 3532.5x in the ASIC+L+C+M. Note that the memoization scheme
requires a first stage for creating the memoization table. However, this precomputation only takes
a negligible 0.15% of total execution time, as the number of entries in the memoization table, i. e.
the number of possible combinations of means, variances and input features, is fairly small when
using the clustered acoustic model.

The ASIC+L+C+M design has a very similar performance to the ASIC+L+C. The through-
put of the both designs is the same. In ASIC+L+C+M, first we precompute the non-redundant
combinations (Equation 5.3) and store them in the lookup tables and after we start evaluating the
scores. Once pre-computing the values is done, we power-gate the processing lanes, Frame buffers
and Fetch Frames unit, which are shown in Figure 5.12. The time for precomputing the scores
and storing them in the lookup tables is only 0.15% of the total execution time. On the other
hand we remove the time needed to fill the pipeline stages. Regarding the energy consumption,
the ASIC+L+C+M design consumes 2.23x less energy in comparison with the ASIC+L+C' design.
The main reason to reduce the energy is that we remove 99.84% of the redundant computations.

Regarding the area, Figure 5.14(c) clearly shows that the area required for the proposed accel-
erator is orders of magnitude smaller than a mobile CPU or a mobile GPU. The increase in the area
required by the ASIC+L+C+M design in comparison with other designs is due to the memoization
buffers. As Table 5.1 shows, the ASIC+L+C+M design has 512 KB memoization buffers to cache
the result of unique computations for every batch of frames.

Table 5.4 shows power and performance of the different processors for GMM. Since each frame
corresponds to 10 ms of speech, a real-time ASR system must be able to process at least 100
frames per second. The mobile CPU processes 95 frames/s while dissipating 2.45 W. The mobile
GPU processes 2688 frames/s but at the cost of increasing power dissipation to 9.22 W. Our
GMM accelerator achieves higher performance than the mobile GPU, processing 15802 frames/s
while dissipating as low as 110 mW. Therefore, the accelerator provides a large improvement in
performance per watt with respect to the mobile CPU and GPU.

To sum up the energy-performance analysis, Figure 5.15 plots energy reduction vs speedup
for the GMM evaluation. The accelerator provides significantly higher energy-efficiency than the
mobile processors. ASIC+L+C+M configuration achieves the best results, providing 5.89x speedup
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Figure 5.15: Speedup and energy reduction for different versions of the accelerator versus GMM
evaluation in the mobile CPU and GPU.

over the mobile GPU, while reducing energy consumption by 241x and requires an area of 0.94 mm?.

The overall system achieves 4.66x speedup and 4.54x energy reduction for the entire ASR pipeline.
We overlap memory transfers with computations to a large extent so they do not degrade the
performance of the system.

Using accelerated acoustic scoring, Viterbi search becomes the most time and energy consuming
stage of the ASR pipeline. Although Viterbi search can be implemented in software for CPUs or
GPUs, it also can be implemented in hardware to improve performance and energy efficiency [105,
104].

5.4.1 Discussion

Off-chip memory accesses are clearly the main bottleneck for performance and also represent
the main source of energy drain. Due to the large size of the acoustic model parameters, they can
not stored on-chip. Using our clustering scheme we show that the ASR system achieves almost the
same accuracy while reducing the acoustic model parameters manifold. We could further reduce
memory energy by adding an eDRAM at the cost of larger area in the accelerator in order to store
the GMM parameters on-chip. Note that in mobile and wearable devices main memory is limited
and ASR systems are not the only consumers of the memory.

It should be mentioned that in the design of the accelerator, we implement each techniques
on top of the previous. In other words, our latest version of accelerator, ASIC+L+C+M, supports
clustering per se without memoization, and also unclustered GMM parameters. Our designs support
all types of acoustic models which they differ only in the number of mixtures of Gaussians, Gaussian
distributions per mixture and the Gaussian dimension.
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Our accelerator supports any acoustic model based on Gaussian Mixture Models, so it works for
speech in any language. Although Deep Neural Networks are a promising alternative for acoustic
scoring, the vast majority of ASR software is still based on GMM. In this thesis, we use Pocketsphinx
as our baseline ASR system since we target mobile platforms, but our accelerator also supports the
acoustic models available in Sphinx 4, Kaldi, Julius or HTK. Moreover, we design our accelerator
with enough throughput and storage to support in real-time larger and more accurate acoustic
models that are likely to appear in the next years. We believe speech recognition will be a feature
supported by the majority of computing devices in the near future, and acoustic models will evolve
towards more complex ones for the sake of better accuracy.

GMM is a popular machine learning algorithm also used in different areas. The proposed GMM
accelerator can be used for other applications that are relevant for mobile devices, especially in the
area of computer vision. GMMs are employed for image segmentation [34, 38], image retrieval [86],
tracking people in images or detecting and tracking moving objects in video sequences [24].

5.5 Conclusions

In this chapter, we present a custom hardware accelerator for large-vocabulary, speaker-ind-
ependent, continuous speech recognition, motivated by the increasingly important role of automatic
speech recognition systems in mobile and wearable devices with limited resources. Our proposed
accelerator design includes innovative techniques to improve performance and energy efficiency of
Gaussian evaluation. First, we implement in hardware a lazy evaluation scheme and a prediction
technique to compute Gaussian distributions on demand, eliminating more than 50% of the com-
putations for inactive senones. Second, we propose and employ a novel clustering scheme to reduce
memory footprint and memory bandwidth usage by 8x with a negligible impact on the accuracy
of the ASR system. Third, the accelerator implements a memoization scheme to remove all the
redundant computations, avoiding 74.9% of the total floating point operations. The final design
using the proposed clustering scheme and memoization achieves 5.89x speedup over an optimized
and state-of-the-art software implementation running on a high-end mobile GPU, while reducing
energy consumption by 241x.
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In this chapter the main conclusions and contributions of this thesis are presented, as well as
some open-research areas for future work.

6.1 Conclusions

The purpose of this thesis is to characterize the limiting factors of state-of-the-art CPU architec-
tures for ASR systems, providing efficient techniques to improve performance and energy-efficiency
of ASR systems.

In this thesis, we present an energy/performance analysis of Automatic Speech Recognition
(ASR) system when running on general purpose CPUs. We show that the Gaussian evaluation of
the acoustic model is the most computationally expensive component, as it represents more than
80% of total execution time. Most of the CPU stalls are due to mispredicted branches and accesses
to system memory. Regarding energy consumption, DRAM is clearly the main source of energy
drain.

We propose several software optimizations to alleviate the bottlenecks identified in the analysis.
First, we remove conditional branches from the innermost loop of the Gaussian evaluation code,
achieving 12% speedup and 11% energy savings. Second, we propose a multi-frame Gaussian
evaluation scheme with prediction of active senones which results in a reduction of off-chip memory
accesses by 57.1%. In the next step, we exploit the Vector Processing Unit (VPU) via SIMD
instructions and a new memory layout to boost Gaussian evaluation and improve energy efficiency.
Using SIMD instructions in the implementation and our multi-frame Gaussian evaluation scheme
provide 2.68x speedup and 61% energy savings on a modern Intel Skylake CPU. Similarly, on
modern Atom and ARM mobile CPUs, it obtains 1.88x and 1.85x speedup and reduces energy
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consumption by 55% and 59% respectively. Note that all the performance improvements and
energy savings are achieved without any loss in the accuracy of the ASR system.

After optimizing and vectorizing the ASR application at software level, we observe that the
register file faces more pressure as we remove other sources of stalls like main memory and branches.
Based on an extensive analysis on various set of benchmarks, we show that not only for GMM
application, but also in other benchmarks, in average, the value generated by more than 50% of
the floating-point instructions and more than 30% of the integer instructions are consumed only
by one instruction.

We highlighted the shortcomings and complexities of previous work and based on the afore-
mentioned observation, we propose a novel register renaming technique for modern out-of-order
processors that allows to reuse this single-use registers for the destination operand, instead of allo-
cating a new register. To recover the state of the processor in the event of branch mispredictions,
exceptions and interrupts, we employ a multi-bank register file in which some banks have registers
with integrated shadow cells. A simple register predictor is proposed to allocate the most beneficial
type of the register for each instruction. Considering similar costs in hardware, we show that the
proposed technique provides up to 38% speedup for the GMM application. Moreover, it provides
6% speedup on average for the SPEC2006 benchmarks. Alternatively, the same performance as the
baseline can be achieved while reducing the area of the register file by 10.5%.

Finally, we design and propose a custom hardware accelerator for large-vocabulary, speaker-
independent, continuous speech recognition. Our accelerator focuses on the evaluation of the Gaus-
sian Mixture Model (GMM) for acoustic scoring, as this stage is the main bottleneck in speech
recognition systems. Our design includes innovative techniques to improve the energy efficiency of
the proposed accelerator. It implements in hardware a lazy evaluation scheme and a prediction
technique to compute Gaussian distributions on demand, avoiding more than 50% of the huge
floating-point computations. Moreover, it employs a novel clustering technique to reduce memory
bandwidth usage by 8x with a negligible impact on accuracy. For further reducing the energy
consumption, the accelerator implements a memoization scheme to remove redundant computa-
tions, avoiding 74.9% of the floating point operations. The final design achieves 5.9x speedup
over a state-of-the-art software implementation running on a high-end mobile GPU, while reducing
energy consumption by 241x.

6.2 Contributions

In this thesis different schemes, from software level to microarchitecture level and ASIC design
have been proposed to improve the performance and energy efficiency of ASR systems. The main
contributions obtained through this dissertation are summarized as follows.

In first place, we have done a thorough analysis to identify the performance bottlenecks and
the sources of energy drain when running ASR application on mobile and desktop CPUs. This
thesis introduces several techniques at software level to improve the efficiency of ASR systems
running on modern processors. We eliminate the stalls which branch mispredictions caused them
by refactoring the code. By proposing a new memory layout to store the GMM parameters in the
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main memory and changing the ways to process them, we efficiently exploit vectorization with no
need to do horizontal reduction. Furthermore, we propose a simple and very efficient scheme to
predict the active senones in small batches of frames. All these optimizations are implemented
together and result in significant performance improvement and energy reduction on variety of
mobile and desktop CPUs, as presented in Chapter 3. This work has been published in the IEEE
Transactions on Multi-Scale Computing Systems (TMSCS) Journal:

e Hamid Tabani, Jose-Maria Arnau, Jordi Tubella, Antonio Gonzélez, ” Performance Anal-
ysis and Optimization of Automatic Speech Recognition,” Multi-Scale Computing Systems
(TMSCS), IEEE Transactions on, 2017, DOI: 10.1109/TMSCS.2017.2739158.

In second place, we propose a novel register renaming technique for Out-of-Order processors,
which is able to reuse single-use registers to reduce the pressure on the register file. Unlike previous
works, our scheme is able to precisely recover the state of the processor after event of branch
mispredictions, interrupts and exceptions. The proposed scheme is implemented by applying some
changes to the renaming table, issue queue and register files while it does not need any changes
in the compiler nor the ISA. We show that for cognitive benchmarks, mediabench and SPEC2006
benchmarks it provides considerable performance improvements, as reported in Chapter 4. This
work has been published in the 24th International Conference on High Performance Computer
Architecture (HPCA):

e Hamid Tabani, Jose-Maria Arnau, Jordi Tubella, Antonio Gonzalez, ” A Novel Register Re-
naming Technique for Out-of-Order Processors, ” High Performance Computer Architecture
(HPCA), 24th International Conference on, Feb. 2018, Vienna, Austria.

In third place, we design and propose a hardware accelerator for GMM evaluation. Our ac-
celerator consumes less energy and outperforms CPUs and GPUs by orders of magnitude. Our
accelerator implements in hardware our scheme to predict the active senones in a batch of frames.
We provide a comprehensive study of different lossy and lossless compression schemes and an anal-
ysis of GMM parameters. We propose a novel clustering scheme which provides significantly higher
Compression/W ER ratio in comparison with traditional schemes. Clustering GMM parameters
results in a huge amount of redundant computations. We use this property to propose and im-
plement a memoization scheme in our accelerator to further reduce the energy consumption by
eliminating the redundant floating-point computations which is explained in Chapter 5. This work
has been published in the 26th International Conference on Parallel Architectures and Compilation
Techniques (PACT):

e Hamid Tabani, Jose-Maria Arnau, Jordi Tubella, Antonio Gonzéalez, ” An Ultra Low-power
Hardware Accelerator for Acoustic Scoring in Speech Recognition,” Parallel Architecture and
Compilation Techniques (PACT), 26th International Conference on, Sep. 2017, Portland,
USA.
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6.3 Open-Research Areas

One extension of the work proposed in this thesis would be to propose more sophisticated
prediction schemes to predict the active senones in larger batch sizes. We show that the accuracy
of our scheme dramatically reduces when we consider batch sizes of 32, 64, etc. Therefore, according
to our results, it is only beneficial to do lazy GMM evaluation for small batch sizes. Although our
scheme avoids fetching and evaluating inactive GMMs, however, a prediction scheme with higher
accuracy for larger batch sizes can result in more performance and energy improvements.

GMM is a machine learning algorithm widely used in other areas. It is worth exploiting our
prediction scheme in these other areas as lazy evaluation is a general technique and can avoid
evaluating inactive GMMs. However, depending on different areas that GMMSs are used, predicting
the inactive Gaussians may not be the same. On the other hand, for speech, our prediction scheme
can be used to avoid computing acoustic score for inactive senones/tokens in hybrid ASR systems
based on DNNs or RNNs. Although the DNNs or RNNs are structurally different from GMMs,
computing inactive senones in those systems can be eliminated.

Our methodology and the experiments to evaluate our register renaming scheme presented
in Chapter 4 are only for single-threaded workloads. As usually more registers are needed for
running multi-threaded workloads, we expect to see an increasing pressure on the register file while
running these workloads. Therefore, our scheme can become more beneficial for these workloads.
For instance, we expect the need of a restructured register type predictor in order to distinguish
between the registers of different threads.

Another interesting extension to our proposed register renaming scheme would be to use the
history of branch predictor to more accurately predict the type of the registers and improve the
accuracy of the register predictor. Nowadays, processors employ sophisticated branch predictors
which are quite accurate. Therefore, accurately predicting the correct program flow can improve
the register allocation accuracy.

As discussed in section 1.3.5, several researches proposed that GMMs can be used in combina-
tion with DNNs to improve accuracy of the ASR system. There are various hardware accelerators
proposed for neural networks. A future work to the proposed accelerator of this thesis could be a
GMM+DNN accelerator in a single chip to perform both GMM and DNN evaluation. This design
not only covers more variety of applications, but also it can be used to jointly calculate the acoustic
scores using both GMM and DNN scores.
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