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in Chapter 4 and uses the techniques and results from 3 to solve it. Chapter 8 contains the
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Abstract

Nanoparticles have a wide variety of applications in fields such as biology, medicine, optics,

or energy production. Many properties, and the function they carry out, depend on size

and/or matter distribution within the particle. In this thesis we study diffusion processes

during nanoparticle evolution and develop appropriate models with the aim of being able to

optimise their functions according to the needs of industry. Two distinct diffusion processes

are studied in detail throughout this thesis: phase change and atomic interdiffusion. To

do this we employ various mathematical techniques. The list includes asymptotic analysis,

the Heat Balance Integral Method (HBIM), the opTimal HBIM (TIM), similarity variables,

separation of variables and numerical methods.

In Chapters 3, 4 and 5 we focus on the phase change problem, also termed the Stefan

problem. In Chapter 3 we explore the application of the Heat Balance Integral Method

to Stefan problems in spherical and cylindrical coordinates. Working with a reduced one-

phase model, we use the standard version of this method and one designed to minimise the

error. Furthermore, we define coordinate transformations with the aim of improving their

accuracy. We compare the results obtained against numerical and perturbation solutions.

It is shown that, whilst the results for the cylindrical problem are not excellent, for the

spherical case it is possible to obtain highly accurate approximate solutions. In Chapter 4

we present a model for the melting of a spherical nanoparticle that differs from previous

ones. This model includes the size dependence of the latent heat and a cooling condition at

the boundary (as opposed to the fixed temperature condition used in previous studies). The

latent heat variation is modelled by a new relation, which matches experimental data better

than previous models. A novel form of Stefan condition is used to determine the position

of the melt front. This condition takes into account the latent heat variation, the energy
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required to create new surface and the kinetic energy of the displaced fluid layer. Other

features that the model includes are melting point depression and density change in the

different phases. A semi-implicit numerical scheme is developed to solve the problem. For

large Stefan numbers it is compared against the perturbation solution. Agreement between

the approximate and numerical solutions is excellent. Results show faster melting times

than previous theoretical models, primarily due to latent heat variation. It is also shown

that the previously used fixed temperature boundary condition led to faster melting rates at

early times, however it also magnified the effect of kinetic energy, which subsequently slowed

down the process. Chapter 5 links the previous two chapters; we use the optimal exponents

found in Chapter 3 in the approximate solution for a simplified one-phase reduction of

the model presented in Chapter 4. We study different outer boundary conditions, and

then compare the solution given by the TIM with numerical and perturbation solutions

for the same problem. Results indicate that the TIM is more accurate than the first order

perturbation for all cases studied.

In Chapters 6 and 7 we shift our focus to binary diffusion in solids. In Chapter 6 we

detail the mechanisms that drive substitutional binary diffusion via vacancy exchange, and

derive appropriate governing equations. Our focus is on the one-dimensional case with

insulated boundary conditions. We are able to make analytical progress by reducing the

expressions for the concentration-dependent diffusion coefficients for different limiting cases

related to the ratio of diffusion rates between species. After carrying out an asymptotic

analysis of the problem, and obtaining analytical solutions, we compare them against a

numerical solution. We find that these reductions are in excellent agreement in the limiting

cases. Moreover, they are valid, within 10%, to the general solution. In Chapter 7 we

develop a cellular automata (CA) model to study the problem presented in the previous

chapter. Using a very simple state of change rule we are able to define an asynchronous

CA model that shows excellent agreement when compared to the solution of the continuum

model derived in Chapter 6. This is proven further by taking the continuum limit of the

CA model presented and showing that the governing equations are the same as the ones

rigorously derived before, for one of the limiting cases. This provides us with a new, simple

method to study and model binary diffusion in solids. Further, since the computational

expense of the CA model increases with the number of cells, this approach is best suited to
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small materials samples such as nanoparticles.

The main body of the thesis, Chapters 3, 4, 6 and 7, correspond to papers submitted to

research journals in 2017. Chapter 4 has already been published.
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Resum

Les nanopartícules tenen un gran ventall d’aplicacions en diversos camps com la biologia, la

medicina, l’òptica o la producció d’energia. Moltes propietats, així com la seva funcionalitat,

depenen de la grandària i/o la distribució de matèria dins la partícula. En aquesta tesi

estudiem processos de difusió relacionats amb l’evolució de nanopartícules i desenvolupem

models amb l’objectiu d’optimitzar les seves funcions d’acord amb les necessitats de la

indústria. Estudiarem en detall dos models ben distingits al llarg d’aquesta tesi: el canvi

de fase i la interdifusió atòmica. Per fer-ho, utilitzarem diverses tècniques matemàtiques,

tals com anàlisi asimptòtica, el Heat Balance Integral Method (HBIM), el opTimal HBIM

(TIM), variables de similitud, separació de variables i mètodes numèrics.

En els Capítols 3, 4 i 5 ens centrem en el problema de canvi de fase, també anomenat

el problema de Stefan. En el Capítol 3 explorem l’aplicació del Heat Balance Integral

Method als problemes de Stefen en coordenades esfèriques i cilíndriques. Treballant amb

un model reduït d’una fase, utilitzem la versió estàndard d’aquest mètode i una versió

dissenyada per minimitzar l’error. A més a més, definim transformacions de coordenades

amb l’objectiu de millorar la precisió. Comparem els resultats obtinguts amb solucions

numèriques i de pertorbació. Mostrem que, mentre que els resultats pel problema cilíndric

no són excel·lents, pel cas esfèric és possible obtenir solucions aproximades altament precises.

En el Capítol 4 presentem un model diferent als anteriors per descriure la fusió d’una

nanopartícula esfèrica. Aquest model inclou una definició de calor latent que depèn de la

mida de la nanopartícula i una condició de refredament de Newton a la frontera (al contrari

de la condició de temperatura fixa d’estudis anteriors). Modelem la variació de la calor

latent amb una nova relació que coincideix amb dades experimentals millor que models

anteriors. Utilitzem una nova condició de Stefan per determinar la posició de la interfície.
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Aquesta condició té en compte la variació de la calor latent, l’energia necessària per a crear

nova superfície i l’energia cinètica de la capa de líquid desplaçada. Altres característiques

que inclou el model són la depressió del punt de fusió i canvi de la densitat en les diferents

fases. Desenvolupem també un mètode numèric semi-implícit per solucionar el problema.

Per nombres de Stefan grans, el comparem amb la solució de pertorbació. La concordància

entre les solucions numèriques i aproximades és excel·lent. Els resultats mostren temps

de fusió més ràpids que en models teòrics previs, principalment a causa de la variació de

calor latent. També mostrem que la condició de temperatura fixa a la frontera resultava

en temps de fusió més ràpids per temps inicials; tot i així magnificava l’efecte de l’energia

cinètica que, conseqüentment, feia que el procés fos més lent. En el Capítol 5 enllacem els

dos capítols anteriors; utilitzem els exponents òptims que hem trobat en el Capítol 3 per la

solució aproximada al model reduït i d’una fase del Capítol 4. Estudiem dues condicions de

frontera i comparem la solució del mètode TIM amb la solució numèrica i de pertorbació

del mateix problema. Els resultats indiquen que el TIM és més precís que la pertorbació de

primer order per tots els casos estudiats.

En els Capítols 6 i 7 canviem el focus del nostre estudi a la difusió binària en sòlids. En

el Capítol 6 detallem els mecanismes que controlen la difusió binària mitjançant intercanvi

de vacants, i posteriorment derivem les equacions que governen el model. El nostre focus

és el cas unidimensional amb condicions de frontera d’aïllament. Hem sigut capaços de

progressar analíticament reduïnt les expressions dels coeficients de difusió (que depenen de

la concentració) per casos límits relacionats amb la ràtio dels índexs de difusió entre les

dues espècies. Després d’obtenir solucions analítiques mitjançant una anàlisi asimptòtica

del problema les comparem amb la solució numèrica. Les reduccions que hem fet al problema

concorden de manera excel·lent en els casos límit. A més a més, són vàlides amb un marge

d’error del 10% a la solució general del problema. En el Capítol 7 desenvolupem un model

autòmat cel·lular (CA, en anglès) per estudiar el problema presentat en el capítol anterior.

Utilitzant una norma de canvi d’estat molt simple som capaços de definir un model CA

asíncron que mostra un acord excel·lent quan el comparem amb la solució del model continu

derivat en el Capítol 6. Demostrem endemés aquest fet prenent el límit continu del model

CA i observant que les equacions governants que resulten són les matexies que les que

hem derivat prèviament de manera rigorosa per un dels casos límit. Amb això tenim un
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mètode nou i simple per a estudiar difusió binària en sòlids. A més a més, com que el cost

computacional del model CA incrementa amb el nombre de cel·les, aquest enfocament va

millor per estudiar mostres de material petites, com poden ser les nanopartícules.

El cos principal de la tesi, Capítols 3, 4, 6 i 7, corresponen a articles enviats a revistes

d’investigació durant el 2017. El Capítol 4 ja ha estat publicat.
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1 | Introduction

The phase change problem is found in many natural and industrial processes, from lava

solidification, sublimation of spacecraft heat shields, formation of dew, boiling water in a

kettle, to ice-cream manufacture. The mathematical formulation to describe this type of

phenomena is termed the Stefan problem, after the Austrian physicist Josef Stefan. Stefan

developed the formulation with the aim of describing the solid-liquid phase change during

ice formation in the Arctic seas [100].

A Stefan problem is a boundary value problem for a partial differential equation (PDE)

in which the boundary position is dependent on time and must therefore be determined

as part of the solution. For the specific case of a solid liquid change the mathematical

formulation involves heat equations to describe the temperature in the solid and liquid

phases and a condition at the solid-liquid interface that describes the position of the moving

boundary, termed the Stefan condition. The first part of this thesis is devoted to the Stefan

problem, with the primary aim of describing the melting process of spherical nanoparticles.

A range of solution methods have been used to solve the Stefan problem. Similarity

transformations, where independent variables are grouped in such a way as to reduce the

number of independent variables in a PDE system, lead to a variety of exact solutions of

Stefan problems subject to various boundary conditions. However, only a very small number

of these are of any practical use. Perhaps the most common approximate solution technique

for solving Stefan problems is the perturbation method. This gives accurate solutions for

large Stefan number β (the ratio of the latent heat to the specific heat times the change in

temperature) and converges to the exact solution as β →∞. However, large β is not always

physically realistic. In [3, Chap 2.1] a number of realistic examples of the phase change of

water, copper, paraffin wax and silicon dioxide are provided which shows β ∈ [2×10−3, 8.3].

1
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They also state that for some families of non-metallic solids such as waxes β may be large

but for metals typical values of β are of the order 0.1−1. For silicates β may be very small.

So clearly the limit of large β is not always of practical interest. Small β perturbation

solutions exist but are significantly more complex to evaluate beyond the leading order.

This motivates the use of the Heat Balance Integral Method (HBIM), [38]. This is an

approximate solution method primarily applied to thermal and phase change problems. It

has become popular largely due to its simplicity. For example, when solving a single heat

equation the method permits the governing partial differential equation to be transformed

to a first order ordinary differential equation, which may often be solved analytically.

The HBIM has been criticised for a lack of accuracy and also the ad hoc choice of an

approximating function. This motivated the development of the opTimal Integral Method,

or TIM. The TIM minimises the least-squares error between the approximation and the

exact solution, so removing the arbitrary choice of approximating function and significantly

reducing errors. In [64] it is shown that this form of improved HBIM is more accurate than

the second order perturbation for practically useful values of β.

Numerical solutions are necessary in parameter regimes where the approximate solutions

are invalid. They also provide an important check on the approximate solutions. In Chapter

2 we give more details on all of the above solution methods.

The prime motivation for this thesis is the study of diffusion and phase change at the

nanoscale. An important part of this field involves spherical nanoparticles and nanowires.

For this reason in Chapter 3 we extend the HBIM and the TIM to spherical and cylindrical

geometries.

One of the main reasons why nanoparticles have been studied so widely is that they

behave differently to their bulk counterparts, due to the large ratio of surface to volume

atoms. Examples include enhanced mechanical strength, enhanced solar radiation absorp-

tion and superparamagnetism. In the context of melting it is well-known that the melt

temperature and the latent heat decrease with decreasing particle size [13, 50]. Only one

mathematical paper has addressed this issue [8]. Another issue that is typically neglected

is the density jump between phases. This has been addressed in [31]. In these studies, and

the vast majority of other mathematical papers, a fixed temperature boundary condition is

imposed. In reality this is almost impossible to achieve. In the corresponding mathematical
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model it leads to an initial infinite melt rate and when density difference is included, initial

infinite kinetic energy, both of which are obviously unrealistic and lead to significant errors

in the melt times. A more sensible condition is Newton cooling, in which the gradient of

the temperature at the boundary is proportional to the difference between the temperature

of the particle and that of the environment. In Chapter 4 we focus on solving the spherical

Stefan problem for the melting of nanoparticles, and include all the features mentioned here,

thus presenting a very realistic, novel model for melting at the nanoscale. In Chapter 5, we

apply the TIM method developed in Chapter 3 to a simplified one-phase reduction of the

model presented in Chapter 4.

For many applications involving nanoparticles the distribution of matter in the particle

is key to their functionality. An important example are hollow nanoparticles [37]. The large

fraction of void space in them allows drugs, cosmetics and DNA to be encapsulated and

then released in a controlled manner. Other uses of the hollow space in particles has been

to modulate the refractive index, lower the density, increase the active area for catalysis,

and to expand the array of imaging markers suitable for early detection of cancer [55]. The

synthesis of hollow nanoparticles is based on different physical phenomena such as galvanic

replacement, Ostwald ripening, layer-by-layer assembly and the Kirkendall effect. The latter

is the focus of the second part of this thesis.

The Kirkendall effect is the observed motion of the boundary layer between two metals

due to the difference between the diffusion rates of the metal atoms. Its name comes

from the American chemist and metallurgist Ernest Kirkendall. He and his student, Alice

Smigelskas, designed an experiment to try to explain behaviour observed by Pfeil [82], who

noted that small particles of foreign matter that fell on the surface of oxidising steel were

buried until they disappeared. This seemed to indicate that the diffusion rate of iron and

oxygen were different, which was against the common belief at the time. Kirkendall and

Smigelskas’ experiment was published in a paper in 1947 [99] and not only did it prove that

different atomic species have different diffusion rates, but also that diffusion occurred via

vacancy exchange (Figure 1.1(c)) instead of via substitutional or ring mechanisms (Figure

1.1(a), (b)).

In principle, crystalline solids should have a perfect crystal structure. However, the ar-

rangement of atoms in these materials is not perfect, so the regular patterns are interrupted
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by crystallographic defects; a particular type are point defects, which means that they only

occur at a single lattice point. Vacancy defects are one case of point defects. They are

lattice sites that should be occupied in a perfect crystal but for some reason are not. Kirk-

endall’s experiment proved that these empty spaces are necessary to allow diffusion within

the crystal lattice. An atom neighbouring a vacancy site can exchange its position with the

vacancy, thus making the empty lattice space move as well.

(a) (b) (c)

Figure 1.1: Different diffusion mechanisms. (a) Direct exchange mechanism; (b) Ring mechanism;

(c) Vacancy mechanism.

Kirkendall’s experiment [99] had the following set up. A bar of brass (30% copper and

70% zinc) was covered with molybdenum (Mo) wires on its top and bottom surface and

later electroplated with pure copper. Then, enough heat to permit atomic diffusion was

applied to the block at different times. They studied the position of the Mo wires, and

were able to observe that they had moved towards the center of the block. See Figure

1.2. If the diffusion rate of both copper and zinc were the same, the amount of copper

transferred from the copper part towards the brass part and the amount of zinc transferred

from the brass part to the copper one should be the same, so the Mo wires should not

move from their original position. Since the wires moved towards the brass they concluded

that zinc has a faster diffusion rate than copper. To compensate this difference in diffusion

rates, the interface of brass/copper shifts, which results in a net vacancy flow and can lead

to an accumulation of vacancy sites, creating voids during solid binary diffusion. This is

important because in metals, it can result in deterioration of their mechanical, thermal and

electrical properties.

The first example of using the Kirkendall effect to create hollow structures was by

Aldinger [2]. Starting with spherical beryllium particles of average radius 33.5 µm he was
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brass

Cu

Figure 1.2: Sketch of the original experiment by Kirkendall and Smigelskas.

able to produce hollow beryllium-nickel and beryllium-cobalt particles which would increase

their volume from 8% to 262% times their original one. Hollow nanocrystals were first cre-

ated by Yin et al. [115]. They started with cobalt nanocrystals, which upon reaction in

solution with oxygen and either sulfur or selenium led to the formation of hollow nanocrys-

tals that had a central void of 40-70% the size of the initial particle. Their process was based

on the dominant outer diffusion of Co, which generated a single void in each nanoparticle.

Gao et al. [33] were able to create hollow nanowires with a unique morphology (intercon-

nected hollow nanocrystals) via what they call a magnetic guiding strategy. Gonzalez et

al. [37] were able to synthesise different shapes of nanostructures such as spheres, cubes

and tubes at room temperature. Their process started with galvanic replacement, which

created a structure with an Ag layer sandwiched between two Au layers. After this they

used the Kirkendall effect to create cavities that coalesced into the one created by galvanic

replacement.

In Chapter 6 we rigorously derive a mathematical model for binary interdiffusion. We

use the model in a test-case, a one-dimensional insulated bar, in order to understand the

physical parameters that affect the Kirkendall effect and the movement of vacancy sites.

Some particular cases are studied in order to provide analytical progress to the field. In

Chapter 7 we develop a cellular automaton model to describe the phenomenon. We present

a particular set of rules that lead to a continuum model that agrees with the mathematical

formulation presented in the previous chapter.

All equations presented in this thesis are based on the validity of the continuum assump-

tion. This has been discussed in detail in [30, 71]. For phase change the limit of validity

appears to be around 2-5 nm, depending on the material.

Chapters 3, 4, 6 and 7 of this thesis have already been submitted as journal papers;
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Chapter 4 was published in 2016. These papers all include a detailed introduction and

bibliography. For this reason a comprehensive review has not been provided in this chapter,

instead we move straight on to a description of the Stefan problem and standard solution

techniques.



Part I

The Stefan Problem
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2 | Formulation and techniques for

the Stefan problem

To illustrate the Stefan problem we now consider the classic example of the melting of a

one-dimensional bar. Consider a semi-finite solid occupying x ≥ 0. The phase change is

driven by a fixed temperature heat source at the boundary x = 0. At the moving boundary,

that is, the melt front, the temperature is set to be that of melting, denoted by T ∗m. See

Figure 2.1 for a sketch of the situation. The governing equations are

clρl
∂T

∂t
= kl

∂2T

∂x2
, 0 <x < s(t), (2.1)

csρs
∂θ

∂t
= ks

∂2θ

∂x2
, s(t) <x <∞, (2.2)

where T and θ denote the temperatures of the liquid and solid, respectively, s(t) is the

position of the moving boundary, and ρi, ci and ki are the densities, specific heats and

conductivities, respectively. The index notation i = s, l refers to the solid or liquid phases,

respectively. The energy balance (Stefan condition) at the boundary is given by

ρlL
∗
m

ds

dt
=
∂θ

∂x

∣∣∣∣
x=s(t)

− ∂T

∂x

∣∣∣∣
x=s(t)

, (2.3)

where L∗m denotes the latent heat. Finally, the boundary conditions may be written as

T (s(t), t) = θ(s(t), t) = T ∗m, (2.4)

T (0, t) = TH , (2.5)

θ
∣∣
x→∞ = TH , (2.6)

where TH > T ∗m is the temperature at the boundary that drives the melting process. At

the initial time t = 0 the liquid phase does not exist and so s(0) = 0. Despite criticising

9
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the boundary condition (2.5) in the introduction we apply it here since it permits an exact

solution against which we can verify the approximate and numerical solutions. Also because

it is the standard entry point into the study of Stefan problems.

TH liquid solid

s(t) x

Figure 2.1: Sketch of the one-dimensional Stefan problem.

A standard simplification of the problem defined by (2.1)-(2.5) consists in assuming that

one of the phases is at the melt temperature T ∗m, thus reducing the problem to a single heat

equation. Since we omit one of the phases, this simplification is known as the one-phase

Stefan problem. It may be written as

clρl
∂T

∂t
= kl

∂2T

∂x2
, 0 <x < s(t), (2.7)

ρlLm
ds

dt
= −kl

∂T

∂x

∣∣∣∣
x=s(t)

, (2.8)

T (s(t), t) = T ∗m, T (0, t) = TH , s(0) = 0. (2.9)

This problem may also be solved exactly.

Many analytical and numerical approximate methods have been used to solve the Stefan

problem when no exact analytical solution can be found [40]. In the following sections we

will describe some of these methods and compare with the exact solutions when possible.

The methods will then be extended to the different problems presented throughout the

thesis.

We now define appropriate nondimensional variables in order to simplify and generalise

the problem. This will also help identify large or small parameters that might be useful for

the solution techniques. The standard scaling is

T̂ =
T − T ∗m

∆T
, t̂ =

kl
clρlL2

t, x̂ =
x

L
, ŝ =

s

L
, (2.10)

where ∆T = TH − T ∗m and L is unknown. The one-dimensional, one-phase Stefan problem

becomes (dropping the hat notation)

∂T

∂t
=
∂2T

∂x2
, 0 <x < s(t), (2.11)



2.1. Solution techniques 11

β
ds

dt
= −∂T

∂x

∣∣∣∣
x=s(t)

, (2.12)

T (s(t), t) = 0, T (0, t) = 1, (2.13)

where β = L∗m/(cl∆T ) is the Stefan number. Note, the Stefan number is often also written

as cl∆T/L∗m. Here we follow the definition of [32] where β = L∗m/(cl∆T ) is the coefficient

of the melting rate since this seems a more physically intuitive definition.

2.1 Solution techniques

In this section we will describe some of the most common solution techniques used to solve

the classical Stefan problem. When possible, they will be used in later sections to solve

different versions of the phase change problem.

2.1.1 Similarity variables

Similarity transformations are a powerful technique to solve partial differential equations.

The key step is to introduce what is referred to as a similarity variable, which, if chosen

appropriately, reduces the order of the PDE. For our problem (2.11)-(2.13) we define the

standard diffusion similarity variable ξ = x/
√
t, and consider F (ξ) = T (x, t). We have

∂T

∂t
=
∂ξ

∂t

dF

dξ
= −1

2

x

t3/2
F ′,

∂2T

∂x2
=

(
∂ξ

∂x

)2 d2F

dξ2
=

1

t
F ′′, (2.14)

which upon substituting into (2.11), gives

d2F

dξ2
= −ξ

2

dF

dξ
. (2.15)

This has solution

F (ξ) = C1 + C2erf
(
ξ

2

)
. (2.16)

Applying boundary conditions (2.13) leads to

C1 = 1, C2 = − 1

erf
(
s(t)

2
√
t

) . (2.17)

For C2 to be constant requires

s(t) = 2λ
√
t, (2.18)
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for some constant λ.

The Stefan condition is

β
ds

dt
= −∂T

∂x

∣∣∣∣
x=s

= − 1√
t

dF

dξ

∣∣∣∣
ξ=s/(2

√
t)

. (2.19)

Substituting for s = 2λ
√
t leads to a transcendental equation to determine λ

β
√
πλeλ

2
erf(λ) = 1. (2.20)

Thus, we have fully defined the solution to the problem,

T (x, t) = 1−
erf
(
ξ
2

)
erf
(
s(t)

2
√
t

) , s = 2λ
√
t, (2.21)

where λ satisfies (2.20). This is termed the Neumann solution

2.1.2 Perturbation solution

Perturbation theory is used in problems that involve a small parameter ε � 1 to find

approximate analytical solutions. A perturbation solution consists of a power series in ε.

In the problem defined by equations (2.11)-(2.13), when β � 1, we can define a parameter

ε = 1/β � 1. The large β limit corresponds to slow melting (when compared to heat

transfer) and so, to observe the evolution of the melting front it is standard to rescale time

such that τ = t/β = εt. The governing equation then becomes

ε
∂T

∂τ
=
∂2T

∂x2
, 0 <x < s(τ). (2.22)

The Stefan condition is
ds

dτ
= −∂T

∂x

∣∣∣∣
x=s(τ)

. (2.23)

We now look for a solution for the liquid temperature T = T0 + εT1 + ε2T2 + · · · . Upon

substituting into equation (2.22) we get

ε
∂T0

∂τ
+ ε2

∂T1

∂τ
+ · · · = ∂2T0

∂x2
+ ε

∂2T1

∂x2
· · · , (2.24)

with boundary conditions

T0(0, τ) + εT1(0, τ) + · · · = 1, T0(s, τ) + εT1(s, τ) + · · · = 0. (2.25)
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To first order in ε Stefan condition is

ds

dτ
= −∂T0

∂x

∣∣∣∣
x=s(τ)

− ε∂T1

∂x

∣∣∣∣
x=s(τ)

. (2.26)

Note, we could also expand s in terms of ε. However this involves extra calculations without

any increase in accuracy.

Equation (2.24) yields the following system at different orders of ε

O(ε0) : 0 =
∂2T0

∂x2
, (2.27)

O(ε1) :
∂T0

∂τ
=
∂2T1

∂x2
, (2.28)

O(ε2) :
∂T1

∂τ
=
∂2T2

∂x2
, (2.29)

...

The boundary conditions (2.25) give

T0(0, τ) = 1, T0(s, τ) = 0, (2.30)

Tn(0, τ) = 0, Tn(s, τ) = 0, for all n ≥ 1. (2.31)

Applying the boundary conditions above leads to

T0 = 1− x

s
, T1 =

1

6

(
x3

s2
− x
)

ds

dτ
, . . . (2.32)

Substituting the approximate solution T to first order into the Stefan condition (2.26), we

find that
ds

dτ
= −

(
−1

s
+ ε

1

3

ds

dτ

)
, (2.33)

which leads to

s(τ) =

√
6τ

3 + ε
=
√

2τ
(

1− ε

6
+ · · ·

)
. (2.34)

To continue the series is not straightforward since the second order version of (2.33) involves

sττ and so a further initial condition is needed. This may be avoided using a boundary fixing

transformation at the start of the analysis [18, 62].

2.1.3 Heat Balance Integral Method (HBIM)

The Heat Balance Integral Method (HBIM) is an approximation technique for solving ther-

mal problems [38]. There are three key steps in using this method:
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1. definition of the heat penetration depth δ(t), such that when x > δ(t) the temperature

rise above the initial value is negligible;

2. specify an approximating function for the temperature, most commonly a quadratic,

and apply boundary conditions to determine all unknown coefficients in terms of the

unknown penetration depth;

3. integration of the governing equation over the corresponding domain to obtain the

heat balance integral, which usually yields an ordinary differential equation for δ.

Consider the problem defined by equations (2.11)-(2.13). We extend the method de-

scribed above to deal with the one-phase Stefan problem. The temperature in the domain

x ∈ [0, s(t)] is assumed to take on a quadratic form

T (x, t) = a0 + a1

(
1− x

s

)
+ a2

(
1− x

s

)2
. (2.35)

Applying both boundary conditions leads to a0 = 0 and a2 = 1− a1 and so

T (x, t) = a1

(
1− x

s

)
+ (1− a1)

(
1− x

s

)2
. (2.36)

The Stefan condition (2.12) gives

β
ds

dt
= −∂T

∂x

∣∣∣∣
x=s

=
a1

s
, (2.37)

hence we may define a1 = βsst. We now integrate the heat equation (2.11) over x ∈ [0, s(t)],∫ s(t)

0

∂T

∂t
dx =

d

dt

∫ s(t)

0
T (x, t) dx =

∫ s(t)

0

∂2T

∂x2
dx =

∂T

∂x

∣∣∣∣
x=s

− ∂T

∂x

∣∣∣∣
x=0

, (2.38)

where the first equality comes from applying Leibniz theorem and T (s, t) = 0. Now,∫ s(t)

0
T (x, t) dx =

[
a1

(
x− x2

2s

)
− s

3
(1− a1)

(
1− x

s

)3
]x=s

x=0

=

(
a1

2
+

1− a1

3

)
s. (2.39)

Assuming a1 is constant (we will verify this later) and taking the derivative with respect to

time, we obtain
d

dt

∫ s(t)

0
T (x, t) dx =

(
a1

2
+

1− a1

3

)
ds

dt
. (2.40)

On the other hand, we see trivially via (2.35) that

∂T

∂x

∣∣∣∣
x=s

− ∂T

∂x

∣∣∣∣
x=0

=
2(1− a1)

s
. (2.41)
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Equating equations (2.40) and (2.41) yields

2 + a1

6

ds

dt
=

2(1− a1)

s
. (2.42)

Upon substituting in the equation above a1 = βsst we obtain

s
ds

dt
=

1

β

(
−(1 + 6β)±

√
1 + 24β + 36β

)
. (2.43)

Since s(t) > 0 we require the positive solution. Using the initial condition s(0) = 0, we find

that

s(t) =

√√√√(−2(1 + 6β) +
√

24β + 1 + 36β2
)
t

β
, (2.44)

Note, since s ∝
√
t, as stated earlier a1 = βsst is constant. The solution is now complete,

the temperature is specified by equation (2.36) and s(t) by (2.44).

The accuracy of the standard HBIM method as presented has been questioned [73]. The

greatest drawback with the method is the choice of the approximating function, and the

key question is what is the best choice for n? where n is the order of the approximating

polynomial. In many published works either an exact or a numerical solution is known,

and n is chosen to match those solutions, which leads to the question as to why look for an

approximate solution when you already have an exact one. The opTimal Integral Method

(TIM) was developed to address these issues. This method provides a measure of the error

without knowledge of an exact solution, and it significantly improves accuracy, for certain

boundary conditions by orders of magnitude [69, 73].

2.1.4 The opTimal Integral Method (TIM)

The TIM introduces an unknown constant exponent into the polynomial approximation

(2.35) and so the temperature is now taken as

T (x, t) = b0 + b1

(
1− x

s

)
+ b2

(
1− x

s

)n
. (2.45)

The boundary conditions lead to b0 = 0 and b2 = 1− b1 as before. The key of this method

is that n is chosen to minimise a least squares error defined as [69]

En(n, t) =

∫ s(t)

0

(
∂T

∂t
− ∂2T

∂x2

)2

dx. (2.46)
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If T is an exact solution, En = 0, otherwise we expect En > 0. This method allows us to

quantify the accuracy without knowledge of the exact solution.

Similar to the standard HBIM the Stefan condition (2.13) yields b1 = βsst, and so

provided that b1 is constant,

s(t) =

√
2b1t

β
. (2.47)

Since t ≥ 0 and β > 0, we require that b1 > 0 to ensure s ≥ 0. Via the heat balance integral

(2.38), we obtain
b1(2 + (n− 1)b1)

2(n+ 1)β
= n(1− b1), (2.48)

which gives a quadratic equation to determine b1 as a function of n and β. Substituting the

temperature profile (2.45) into the error function (2.46) we obtain

En(n, t) =
b21s

2
t

3s
+
n(1− b1)2s2

t

(4n2 − 1)s
+

4b1(1− b1)st
(n+ 1)(n+ 2)s

+
n2(n− 1)2(1− b1)2

(2n− 3)s3

− n2(1− b1)2st
(2n− 1)s2

− 2b1(1− b1)st
s2

.

(2.49)

The denominators in the above expression indicate infinite error for n = 1/2, 1, 3/2, so we

will neglect these values. Substituting for s ∝
√
t and st ∝ 1/

√
t it becomes clear that

En = ent
−3/2, and the minimum value of en depends only on n and β. This dependence

of En indicates that the error decreases as time increases, so the method is expected to be

more accurate in later times. In Figure 2.2 we show the curve for en for different β. From

the graph (Figure 2.2) we see that the optimal n, i.e., the one that minimises en, varies

slowly with β. For large β the value of n tends to a constant. Here the graph indicates

n ' 1.77 for β = 5, 10. For smaller n it is slightly higher. For practical purposes we could

simply set n = 1.78 for all β. This value is obviously close to n = 2. This may partially

explain the success of the HBIM. The most common problem takes an n value close to the

optimal, so yielding accurate results. However this is not the case when different boundary

conditions are applied and then n is significantly different to 2, see [73].

2.1.5 Numerical methods

Moving boundary problems can be difficult to deal with numerically, so it is usually useful

to immobilise the boundary. In the problem defined by (2.11)-(2.13) the transformation
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Figure 2.2: en for β = 1, 5, 10 (yellow, green and orange, respectively).

η = x/s(t) fixes the boundary while the governing equations become

s2∂T

∂t
= ηs

ds

dt

∂T

∂η
+
∂2T

∂η2
, 0 <x < 1, (2.50)

β
ds

dt
= −1

s

∂T

∂η

∣∣∣∣
η=1

, (2.51)

T (1, t) = 0, T (0, t) = 1. (2.52)

To obtain a numerical solution there are still a few more steps to be carried out. First

of all, we discretise the domain into I equally spaced points of length ∆η, and time into N

equally spaced points of length ∆t. In Figure 2.3 we choose ∆η = 0.01 and ∆t = 0.0005.

Now we discretise the derivatives in equation (2.51) such as

∂T

∂t
=
Tn+1
i − Tni

∆t
,

∂T

∂η
=
Tn+1
i+1 − T

n+1
i−1

2∆η
,

∂2T

∂η2
=
Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

∆η2
, (2.53)

where the i subscript denotes the i-th space-point, and the n superscript denotes the n-th

time-point. Substituting these discretisations into equation (2.51) we obtain

−(sn)2Tni = νηi(st)
n
(
Tn+1
i+1 − T

n+1
i−1

)
+ δ

(
Tn+1
i+1 − 2Tn+1

i + Tn+1
i−1

)
− (sn)2Tn+1

i , (2.54)

where ν = ∆t/(2∆η) and δ = ∆t/(∆η2). We can rewrite the equation above as

ani T
n+1
i−1 + bnTn+1

i + cni T
n+1
i+1 = dnTni , (2.55)
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where

ani = −νηi(st)n + δ, bn = −2δ − (sn)2, (2.56)

cni = νηi(st)
n + δ, dni = −(sn)2Tni . (2.57)

Boundary conditions (2.52) lead to TnI = 0 and Tn1 = 1, respectively, for n = 1, . . . , N .

This allows us to write the following system,

1 0 0 0 · · · 0 0 0 0

an2 bn cn2 0 · · · 0 0 0 0

0 an3 bn cn3 · · · 0 0 0 0
...

...
...

... · · ·
...

...
...

...

0 0 0 0 · · · anI−2 bn cnI−2 0

0 0 0 0 · · · 0 anI−1 bn cnI−1

0 0 0 0 · · · 0 0 0 1





Tn+1
1

Tn+1
2

Tn+1
3

...

Tn+1
I−2

Tn+1
I−1

Tn+1
I


=



1

dn2

dn3
...

dnI−2

dnI−1

0


.

This system is solved at every time step n = 1, . . . , N −1. The Stefan condition (2.51) may

be discretised as follows

β
sn+1 − sn

∆t
= − 1

sn
3Tn+1

I − 4Tn+1
I−1 + Tn+1

I−2

2∆η
. (2.58)

Trivially,

sn+1 = − ν

βsn
(
3Tn+1

I − 4Tn+1
I−1 + Tn+1

I−2

)
+ sn, (2.59)

which allows us to find the position of the melt front at every time step n = 1, . . . , N − 1.

We still need an initial condition for T 1
i , which is often an issue in numerical solutions

because the liquid phase does not exist at t = 0. We know from the exact solution (2.18)

that s = 2λt1/2. Upon substituting this expression into (2.50)

t
∂T

∂t
= 2ηλ2∂T

∂η
+
∂2T

∂η2
. (2.60)

This indicates that in the limit t→ 0 the governing equation tends to

2ηλ2∂T

∂η
+
∂2T

∂η2
= 0. (2.61)

Applying boundary conditions (2.52) yields T (η, t) = 1 − erf(λη)
erf(λ) , for t � 1 and λ given by

equation (2.20). Hence as an initial condition we may take T 1
i = 1− erf(ληi)

erf(λ) . We now have

the numerical solution fully defined.
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In Figure 2.3 we show the results for the one-phase, one-dimensional problem given by

equations (2.11)-(2.13) using all the solution techniques presented throughout this section.

Figure 2.3(a) shows the results for the case β = 1. In general all solutions show excellent

agreement although differences become more obvious as t increases. The numerical solution

is indistinguishable from the exact solution at this scale. At t = 10, the perturbation

solution has an error of 0.0124%; the HBIM, 0.0265%; the TIM (n = 1.79), 0.0148%; the

numerical solution, 5.01× 10−5%. Figure 2.3(b) shows the results for the case β = 5. Now

the agreement is better in all cases. At t = 10, the perturbation solution has an error of

7.76 × 10−4%; the HBIM, 0.0075%; the TIM (n = 1.77), 0.0044%; the numerical solution,

4.83× 10−5%.
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(a) β = 1.
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Figure 2.3: Different solutions for the one-phase, one-dimensional Stefan problem. Exact solu-

tion (black, solid), perturbation to first order (yellow, dashed), HBIM (orange, dash-dotted), TIM

(maroon, dotted), numerical (black, dashed) which is indistinguishable from the exact solution.

2.2 Spherical melting

The Stefan problem at the nanoscale has been studied extensively, its importance relying

on the fact that nanoparticles are used in a wide variety of applications involving high

temperatures, such as in medicine, in drug and gene delivery [36, 85] or targeting [35]; in

optics [1]; in biology, in fluorescent biological labels [12], in the separation and purification of

biological molecules and cells [65]; in energy production and storage [17]; in the creation of
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materials with modified properties [23, 39]. Understanding this process can help us explain

how they behave in their associated applications. In the subsequent chapters we consider

spherical melting and so now discuss the appropriate problem formulation.

Standard assumptions when working with the Stefan problem include constant melt

temperature, constant latent heat, constant solid-liquid surface tension, and constant and

equal densities in both liquid and solid phases, see [3, 21, 40]. The standard formulation is

ρlcl
∂T

∂t
= kl

1

r2

∂

∂r

(
r2∂T

∂r

)
, R(t) < r < R0, (2.62)

ρscs
∂θ

∂t
= ks

1

r2

∂

∂r

(
r2∂θ

∂r

)
, 0 < r < R(t), (2.63)

where T is the temperature of the liquid, θ is the temeprature of the solid, ρi, ki, ci denote

the density, the thermal conductivity and the heat capacity, respectively. Subscript i = s, l

indicate solid or liquid, respectively. Finally, R0 denotes the initial particle radius and R(t)

is the interface between solid and liquid. Standard boundary conditions are

T (R0, t) = TH , T (R, t) = θ(R, t) = T ∗m, θr(0, t) = 0. (2.64)

The Stefan condition balances energy conducted through the phases with that released by

the phase change

ρsL
∗
m

dR

dt
= ks

∂θ

∂r

∣∣∣∣
r=R

− kl
∂T

∂r

∣∣∣∣
r=R

, (2.65)

where L∗m is the bulk latent heat.

This formulation has proved effective at studying macroscale Stefan problems, however,

at the nanoscale various assumptions involved in its derivation become invalid. In the

following section we will discuss a number of necessary modifications.

2.2.1 Extensions to this formulation

We will now provide general expressions that lead to the equations for the standard problem

(2.62)-(2.65), but that will be a helpful tool to extend the formulation into more appropriate

models. To simplify the analysis, a number of assumptions will be made: gravity and viscous

effects are negligible; spherical symmetry is imposed; each phase is incompressible. Bird,

Stewart and Lightfoot [10] write down a simplified energy balance,

∂

∂t

[
ρ

(
I +

v2

2

)]
= −∇ ·

[
ρv

(
I +

v2

2

)
+ q + Pv

]
, (2.66)



2.2. Spherical melting 21

where ρ is the density, I the internal energy per unit mass, v the velocity, v = |v|, the

conductive heat flux q = −k∇T , and P is the pressure. This states that the gain of energy

per unit volume depends on energy flow by convection and conduction, and the rate of work

done by pressure. Under the same assumptions, conservation of mechanical energy is given

by
∂

∂t

(
ρv2

2

)
+∇ ·

(
ρv2v

2
+ Pv

)
− P∇ · v = 0. (2.67)

When the density is constant in each phase, the heat capacity at constant volume cV

and the heat capacity at constant pressure cP can be assumed to be the same since we may

neglect thermal expansion, so from now on we do not distinguish between the two and write

the heat capacity as c. Now, under the same assumption, we find an expression that relates

the time derivative of the internal energy to that of the temperature [10],

dI

dt
= c

dT

dt
. (2.68)

Subtracting (2.67) from (2.66), and using the relation in (2.68), we may write

ρc

(
∂T

∂t
+ v · ∇T

)
= ∇ · (k∇T ). (2.69)

All versions of the heat equation analysed in the thesis stem from the above equation.

To obtain the Stefan condition, the energy conservation across the solid-liquid interface

s(t) needs to be studied. The Rankine-Hugoniot condition states that

∂f

∂t
+∇ · g = 0 ⇒ [f ]+−st = [g · n]+−, (2.70)

where n is the unit normal and f , g are functions evaluated at either side of s(t). Let

f = ρ

(
I +

v2

2

)
, g · n = ρv

(
I +

v2

2

)
+ q. (2.71)

The specific enthalpy h may defined as

h = cl(T − T ∗m) + Lm in the liquid,

= cs(θ − T ∗m) in the solid.

Note, the internal energy is just I = h − P/ρ. Then we can apply the Rankine-Hugoniot

condition to equation (2.66) to obtain{
ρl

[(
cl (T (s, t)− T ∗m) + Lm −

Pl
ρl

+
v2

2

)]
− ρscs (θ(s, t)− T ∗m)

}
st =

ρlv

[
cl (T (s, t)− T ∗m) + Lm −

Pl
ρl

+
v2

2

]
− kl∇T

∣∣
x=s

+ Plv + ks∇θ
∣∣
x=s

.

(2.72)
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All versions of the Stefan condition analysed in the thesis result from the equation above.

To retrieve the original Stefan problem given by equations (2.1)-(2.2), we take∇ = ∂/∂x,

neglect pressure effects and assume that the phases are stationary. Then if we impose

T (s, t) = θ(s, t) = T ∗m equation (2.72) reduces to (2.3).

A more realistic model in spherical coordinates is presented in [31]. In it, melting point

depression is taken into account. Experimental results of Buffat and Borel [13] report a

decrease in the melt temperature of approximately 500 K below the bulk melt temperature

for gold nanoparticles with radii of the order of 1 nm. David et al. [20] show decreases of 70

K and 200 K in tin and lead nanoparticles, respectively. Liu et al. [54] show a decrease of a

10% in melt temperatures of antianginal drugs. Shim et al. [97] report molecular dynamics

(MD) simulations that show a decrease of 800 K (∼60%) of gold nanoparticles of radius 0.8

nm. This results in taking the melting point temperature Tm as a function of the melt front

R(t). The theoretical studies of McCue et al. [60], Wu et al. [111, 110], Font and Myers

[30], Back et al. [7, 6] include melting point depression. In [31] they also consider change in

densities between phases. Thus, the liquid velocity v is no longer taken to be zero and in

the spherically symmetric system has the form

v =
r2

R2

(
1− ρs

ρl

)
Rt. (2.73)

These assumptions, and neglecting pressure effects again, transform (2.69) (for both liquid

and solid phases) into

ρlcl

(
∂T

∂t
+
r2

R2

(
1− ρs

ρl

)
dR

dt

∂T

∂r

)
= kl

1

r2

∂

∂r

(
r2∂T

∂r

)
, R(t) < r < Rb, (2.74)

ρscs
∂θ

∂t
= ks

1

r2

∂

∂r

(
r2∂θ

∂r

)
, 0 < r < R(t), (2.75)

whilst the Stefan condition (2.72) is now

ρs

[
(cl − cs) (Tm(t)− T ∗m) + Lm +

v2

2

]
Rt = ks∇

∣∣
r=R
− kl∇T

∣∣
r=R

. (2.76)

The boundary conditions are T (s, t) = θ(s, t) = Tm(t) and T (Rb, t) = TH . Note that now

there is an additional moving boundary Rb due to the fact that because both phases have a

different density a volume expansion occurs. This form of the Stefan problem is examined

in [30, 31].
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Size-dependent latent heat

An effect of the high ratio of surface to volume atoms in nanoparticles is the size-dependent

latent heat. Molecular dynamics (MD) simulations and experiments have demonstrated

a decrease in latent heat with a decrease in radius. Lai et al. [50] presented the first

calorimetry measurements of the melting process of nanometer-sized tin particles, ranging

from 5 − 50 nm in diameter. They found a reduction of up to 70% from the bulk latent

heat for the smaller sized particles. Jiang et al. [46] improved the measurement technique

to find even greater reductions. Using a thin-film scanning calorimetry technique similar

behaviour was observed by Zhang et al. [117] in a study of the melting behaviour of 0.1−10

nm-thick discontinuous indium films made from ensembles of nanostructures. In the MD

studies of Bachels et al. [5] the melt temperature of 1.4 nm radius tin particles is 25% lower

than the bulk value while the latent heat is 45% lower. Ercolessi et al. [25], Lim et al. [53]

and Delogu [22] have carried out MD studies on gold, lead and copper clusters, all showing

the same qualitative behaviour. For this reason, in Chapter 4 a variable latent heat will be

included in the model.

The thesis of Back [8, §7.1-7.4] includes size-dependent latent heat, using the formula

provided by Lai et al. [50] in the standard energy balance. However, Lai’s formula [50]

underestimates the value of latent heat near bulk values. Other formulations [98, 112] do

not match experimental data. In Chapter 4 we propose an exponential fit to the data for tin

nanoparticles which tends to the correct bulk value and agrees very well with experimental

data down to around R = 8 nm. Another problem with the study in Back [8, §7.1-7.4] is in

the energy balance at the interface between the two phases, which we discuss below.

New Stefan condition

The error in Back [8, §7.1-7.4] is that the Stefan condition is based on an implicit assumption

that the latent heat is released at the bulk melt temperature, which is incorrect. Recently,

Myers [70] proposed a new formulation for the Stefan condition. This new derivation stems

from the definition of latent heat, which is the jump in specific enthalpy at the phase change

temperature, that is, Lm(t) = (hl − hs)
∣∣
θ=T=Tm(t)

. This effectively means that in equation

(2.76) T ∗m should be replaced by Tm(t). Further, pressure variation at the nanoscale can be
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significant. This leads to the final form of the Stefan condition

ρs

[
Lm(t) +

2σsl
ρsR

+
v2

2

]
Rt = ks∇θ

∣∣
r=R
− kl∇T

∣∣
r=R

. (2.77)

Newton cooling boundary condition

The fixed temperature boundary condition T (Rb, t) = TH is equivalent to specifying per-

fectly efficient heat transfer from the surrounding material, that is the heat transfer coeffi-

cient is infinite. Consider a particle initially at some temperature below the melt temper-

ature. At t = 0 the infinite heat transfer instantaneously raises the boundary temperature

to TH , which results in an infinite temperature gradient and so, according to the Stefan

condition, an infinite boundary velocity. Clearly this is unrealistic, so in this thesis we will

generally employ a Newton cooling condition at the outer boundary which states that the

energy transferred to the particle is proportional to the temperature difference between the

particle surface and the surrounding material,

−kl
∂T

∂r

∣∣∣∣
r=Rb

= h(T (Rb, t)− TH), (2.78)

where h is the heat transfer coefficient. The fixed temperature boundary condition of

previous studies is the limit of equation (2.78) as h→∞. Of course this cannot be achieved

physically and there exists a limit to the heat transfer beyond which the material would be

vaporised. The highest possible value for h which still permits thermodynamic stability is

hmax =
qmax

∆T
, qmax = ρsuvs, (2.79)

where u is the internal energy and vs is the speed of second sound in the material, see

[28, 47].
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Abstract

The Heat Balance Integral Method (HBIM) is generally applied to one-dimensional Carte-

sian heat flow and Stefan problems. The main reason for this being that solutions in

spherical and cylindrical coordinates are less accurate than in Cartesian. Consequently, in

this paper we examine the application of the HBIM to Stefan problems in spherical and

cylindrical coordinates, with the aim of improving accuracy. The standard version as well

as one designed to minimise errors will be applied on the original and transformed system.

Results are compared against numerical and perturbation solutions. It is shown that for

the spherical case it is possible to obtain highly accurate approximate solutions (more ac-

curate than the first order perturbation for realistic values of the Stefan number). For the

cylindrical problem the results are significantly less accurate.
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3.1 Introduction

The Heat Balance Integral Method (HBIM) is an approximate solution method primarily

applied to thermal and phase change problems. It has become popular largely due to

its simplicity. For example, when solving a single heat equation the method permits the

governing partial differential equation to be transformed to a first order ordinary differential

equation, which may often be solved analytically. It is particularly useful in solving Stefan

problems, where there exist very few practically useful solutions and generally numerics are

required.

The HBIM was developed by Goodman [38] and is most commonly applied to prob-

lems in a Cartesian geometry. However, there exist many situations where an approximate

solution method in cylindrical or spherical coordinates is required. Spherical Stefan prob-

lems are described in the context of the Earth cooling in [90], they are also important

in industrial applications such as paint pigments, polishing materials and laser cladding

[41, 49]. Recently there has been great interest in the melting process at the nanoscale.

Studies on spherical nanoparticle melting are often motivated by the development of new

materials, although there are many important applications in medicine and drug delivery,

see [84, 94, 30]. Phase change in cylindrical geometries is of interest in everyday appli-

cations such as icicle growth and melting, and certain thermal storage systems [96]. At

the microscale solidification in a cylindrical geometry has been studied in the context of

phase change microvalves and cryopreservation [76, 77]. At the nanoscale there exists great

interest in the formation or melting of nanowires, see [84, 113, 28]. Consequently, there

is a clear need to develop solution techniques to complement this interest in thermal and

melting problems in spherical and cylindrical geometries.

The Cartesian version of the HBIM is described in detail in a number of texts [86,

92, 108, 56], while there are less published works dealing with the spherical or cylindrical

versions [105, 16, 14]. Hill [40] summarizes techniques for analytical and series solutions for

one-dimensional Stefan problems, including that of the HBIM in cylindrical and spherical

coordinates. Ren [86] studies Cartesian and spherical geometries subject to a specified

solidification front velocity and compares results for both one and two phase problems

against numerics. In [78] a modified form of HBIM is applied to a spherically symmetric
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domain to determine the thermal conductivity of a nanofluid.

Various authors use the HBIM as the basis for a numerical scheme. In a series of papers

Bell looked into subdividing the spatial and dependent variables in planar and cylindrical

geometries, see [9, 61]. This is analogous to a numerical marching scheme on the heat balance

equations whose accuracy increases with increased number of subdivisions. Caldwell and

Chiu [15] extended this method, working with cylindrical and spherical geometries. Their

solution shows some inaccuracies for small Stefan numbers and has non-physical oscillations

for coarse grids. In a separate paper they detail the necessary starting solution for their

scheme. In [68, 109] linear profiles are employed in the subdivision. This requires an

increase in the number of subregions to improve accuracy. Mitchell [61] uses a boundary

immobilisation technique together with a standard HBIM profile. This leads to highly

accurate solutions with a very small number of subregions. The method does not require

a separate small time solution and can be applied to realistic boundary conditions, rather

than the fixed temperature condition used in most studies.

Various modifications of the HBIM have appeared in the literature, with the aim of

improving the approximation. Sadoun [91] introduced the Refined Integral Method (RIM)

which involves integrating the heat equation twice and simplifying the resultant integral

via the standard HBIM integral. An alternative approach to the RIM, termed the ARIM,

is mentioned in [63] where they point out that the resultant integral form may be simpler

to deal with, especially when combined with a zero flux boundary condition. Mitchell

and Myers [64, 79] proposed the Combined Integral Method (CIM) which combines both

HBIM and RIM. However (for standard boundary conditions) the most accurate formulation

comes through the opTimal Integral Method (henceforth termed the TIM), which involves

minimising the least squares error when the approximating function is substituted into the

heat equation [73, 74].

In the following section we will specify the basic one-dimensional, one-phase Stefan prob-

lem, to be used in the remainder of the paper. Studying the one-phase problem reduces the

length of the expressions and so simplifies the analysis, making the exposition of the method

clearer. We note that the one-phase formulation is known to lose energy when the phase

change temperature is variable (such as with melting at the nanoscale or with supercooled

fluids [72, 29]). In the following we will avoid this issue by only dealing with fixed phase
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change temperature but the method could easily be extended to a variable temperature. In

§3.3 we analyse phase change due to a fixed temperature boundary condition since this is

the basic condition studied in the majority of papers. However, in reality the fixed temper-

ature boundary condition is physically unrealistic so, in Section 3.4, we study the case of a

Newton cooling condition.

3.2 Mathematical modelling

Consider a solid sphere or cylinder of initial radius R = R0 which is at the melt temperature,

Tm. At t = 0 the outer boundary temperature is increased such that melting begins and

progresses inwards until the whole particle has turned to liquid. The liquid occupies the

region R(t) < r < R, where R(t) denotes the position of the melting front, and has initial

condition R(0) = R0. The problem is described by the standard one-phase formulation

ρc
∂T

∂t
=

k

rp
∂

∂r

(
rp
∂T

∂r

)
, R(t) < r < R0, (3.1)

where ρ, c and k denote the density, specific heat and conductivity, respectively. We assume

ρ is constant and equal in the solid and liquid phases throughout the melt process (this is

not necessary for the analysis, but again we choose this to make the mathematics clearer).

The choice p = 2 describes the heat equation in spherical coordinates. We may also examine

Cartesian and cylindrical geometries by setting p = 0, 1, respectively. The position of the

interface is determined by the Stefan condition

ρLm
dR

dt
= −k∂T

∂r

∣∣∣∣
r=R

, (3.2)

where Lm denotes the latent heat. These equations are subject to the following boundary

and initial conditions

T (R, t) = Tm, T (r, 0) = Tm, R(0) = R0,

(a) T (R0, t) = TH , or (b) − k∂T
∂r

∣∣∣∣
r=R0

= h(T (1, t)− TH),
(3.3)

where at the outer boundary we will impose either a fixed temperature or Newton cooling

condition.

Introducing the nondimensional variables

t̂ =
k

ρcR2
0

t, T̂ =
T − Tm

∆T
, r̂ =

r

R0
, R̂ =

R

R0
, (3.4)
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where ∆T = TH − Tm, the problem (3.1)-(3.3) may be written (dropping the hat notation)

as

∂T

∂t
=

1

rp
∂

∂r

(
rp
∂T

∂r

)
, R(t) < r < 1, (3.5)

subject to

T (R, t) = 0, T (r, 0) = 0, R(0) = 1,

(a) T (1, t) = 1, or (b)
∂T

∂r

∣∣∣∣
r=1

= Nu(1− T (1, t)),
(3.6)

where Nu = (R0h)/k is the Nusselt number. The Stefan condition becomes

β
dR

dt
= −∂T

∂r

∣∣∣∣
r=R

, R(0) = 1 , (3.7)

where β = Lm/(c∆T ) is the Stefan number.

3.3 Fixed temperature boundary condition

The most commonly used boundary condition in the mathematical study of Stefan problems

is that of a fixed temperature, T (R0, t) = TH > Tm. Hence in this section we will always

apply equation (3.6a) at the boundary. Physically it is unrealistic since it requires an

infinite flux at the beginning of the melting process, however the mathematics involved is

relatively simple so we begin our analysis with this case and subsequently move on to the

more realistic case of a cooling condition.

3.3.1 Spherical Stefan problem

We begin our analysis with a study of the spherical problem in the original coordinate

system, defined by equations (3.5)-(3.7) with p = 2, and subsequently a transformed system.

Results are then compared with a numerical solution.

HBIM formulation

All heat balance methods involve choosing a simple function (usually a polynomial) to

approximate the temperature over a finite region [63]. We choose a standard form

T (r, t) = a(t)

(
r −R
1−R

)
+ b(t)

(
r −R
1−R

)n
+ c(t). (3.8)
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To follow the original HBIM we now assume n = 2. The boundary conditions indicate c = 0

and b = 1−a. In the Cartesian case a is a constant, in spherical co-ordinates it turns out to

be a function of time. Hence the expression for T involves two unknown functions, a(t) and

R(t). The first of the two equations to determine these unknowns is found by substitution

of T into the Stefan condition (3.7). This leads to an ordinary differential equation

β
dR

dt
= − a

1−R
. (3.9)

A second equation, termed the Heat Balance Integral (HBI), comes from integrating the

heat equation (3.5) over the region r ∈ [R, 1],∫ 1

R
r2∂T

∂t
dr =

∫ 1

R

∂

∂r

(
r2∂T

∂r

)
dr ⇒ d

dt

∫ 1

R
r2T (r, t) dr =

∂T

∂r

∣∣∣∣
r=1

−R2∂T

∂r

∣∣∣∣
r=R

.

(3.10)

Upon substituting the approximating function (3.8) into this expression we obtain

d

dt

[
(1−R)

((
24 +

(
n3 + 6n2 + 11n− 18

)
a
)
R2 + 2 (1 + n)

(
12 +

(
n2 + 5n− 6

)
a
)
R
)

(2 + n) (3 + n) (1 + n)

(1−R) (3 (4 + (n− 1) a) (1 + n) (2 + n))

(2 + n) (3 + n) (1 + n)

]
= − aR4

(1−R)
.

(3.11)

Since n = 2 is constant we may write (3.11) as

d

dt

[
1

20
(1−R)

((
2

3
+ a

)
R2 +

(
4a

3
+ 2

)
R+ 4 + a

)]
= − aR4

(1−R)
. (3.12)

The initial condition for the melt front R(0) = 1 is known, but the condition for a is not. The

classical Neumann solution for Cartesian phase change driven by a constant temperature

boundary condition shows R ∼
√
t. The current problem, which describes spherical melting,

(3.5)-(3.7), reduces to the Neumann problem provided the melt region is small compared to

the radius. Hence, for small times, we may approximate the moving boundary position as

R ≈ 1− 2λt1/2, (3.13)

where λ is an unknown constant. For the spherical problem this form has been used in [31].

Substituting this, and the derivative of T into the Stefan condition (3.9) determines

a ≈ βλ2

2
(1− 2λt1/2), (3.14)
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hence,

a(0) =
βλ2

2
. (3.15)

To find the value for λ we substitute the small time solutions (3.13), (3.15) into the heat

balance (3.11), which in the limit t→ 0 gives a quadratic for λ2

2β(n− 1)λ4 + (2βn+ 2 + 2βn2)λ2 − n2 − n = 0 . (3.16)

The standard HBIM solution to the Stefan problem is now described by equations (3.9),

(3.11) with n = 2. The numerical solution of (3.27), (3.11), subject to R(0) = 1, a(0) =

βλ2/2 is trivial.

TIM formulation

The standard HBIM of Goodman [38] simply imposed n = 2, as in the previous section,

although there are many other possibilities, often chosen through knowledge of an exact

solution, see [64]. The opTimal Integral Method (TIM) was developed so that n is chosen

to improve the accuracy of the standard method without the need for an exact or numerical

solution [73, 74]. This involves minimising a least-squares error. Thus a third equation is

introduced

En(r, t) =

∫ 1

R

(
∂T

∂t
− 2

r

∂T

∂r
− ∂2T

∂r2

)2

dr. (3.17)

This approach has a number of advantages, the most obvious is that it significantly improves

accuracy, for certain boundary conditions by orders of magnitude [73, 74]. It also provides

a measure of the error without knowledge of an exact solution. The algebra involved in

the integral may be complex, which has been quoted as a drawback [41]. However, it is

unnecessary to carry out the algebra every time the method is used. For standard Cartesian

thermal problems in a fixed domain: for a constant temperature boundary condition the

appropriate value is n = 2.235, while for constant flux and Newton cooling boundary

conditions n = 3.584, see [74]. The Stefan problem with a fixed temperature boundary

condition gives n = 1.79; with constant flux or a Newton cooling condition, n = 3.48.

The TIM formulation is fully specified by equations (3.9), (3.11), (3.17) for the 3 un-

knowns a, n, R, subject to the temperature profile (3.8).

As in the standard HBIM we solve (3.9) and (3.11) numerically, but now for a range of n.

The error En is then calculated to determine the minimum value and corresponding value
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of n. It turns out that the optimal n varies with β. For β ∈ [1, 10] we find n ∈ [1.73, 1.77].

As we will see later, the average value is accurate over a wide range of β, so effectively with

a fixed temperature condition the TIM requires solving the two ODEs (3.9), (3.11) with

n = 1.75.

Perturbation solution

Perhaps the most popular method for finding approximate solutions to Stefan problems is

via the large Stefan number perturbation. This involves assuming that β � 1, although

this limit is not always of practical interest: in [3, Chap 2.1] typical parameter values for

the phase change of water, copper, paraffin wax and silicon dioxide are provided, these show

β ∈ [2× 10−3, 8.3] (note their Stefan number St = 1/β).

The β � 1 limit corresponds to slow melting and requires time to be rescaled such as

τ = εt, where ε = 1/β. Now the problem statement becomes

ε
∂T

∂τ
=

1

r2

∂

∂r

(
r
∂2T

∂r2

)
, R(τ) < r < 1, (3.18)

T (R, τ) = 0, T (0, τ) = 1, (3.19)

dR

dτ
= −∂T

∂r

∣∣∣∣
r=R

. (3.20)

We then approximate the solution for T by a power series in the small parameter ε, T (r, τ) =

T0 + εT1 +O
(
ε2
)
. Applying this expansion to the governing equation (3.18) and grouping

terms with the same power of ε we find the leading and first order temperatures to be

T0 =
r −R
r(1−R)

, (3.21)

T1 = −(r − 1)(R− 2 + r)(R− r)
6r(1−R)2

dR

dτ
. (3.22)

Substituting the first order approximation of T into the Stefan condition (3.20) gives

dR

dτ
= − 3

(1−R)(3R+ ε)
. (3.23)

Equation (3.23) can easily be solved via MATLAB’s ode45, with initial condition R(0) = 1.

We may also easily integrate this expression to find an implicit solution for R (a cubic

equation in R), but when solving the cubic numerically there is a jump in roots so we prefer

to use the ODE solver.
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Approximate solutions in the transformed system

The equations for the transformed system come from making the change u = Tr. The

problem then becomes

∂u

∂t
=
∂2u

∂r2
, R < r < 1, (3.24)

u(R, t) = 0 = u(r, 0), u(1, t) = 1 , R(0) = 1 (3.25)

βR
dR

dt
= −∂u

∂r

∣∣∣∣
r=R

. (3.26)

To approximate the temperature over a finite region we choose the standard form of

equation (3.8), and replace T by u. The boundary conditions again determine c = 0 and

b = 1−a. As before we use the Stefan condition and the HBI to define equations for R and

a. The Stefan condition gives

βR
dR

dt
= − a

1−R
. (3.27)

The heat balance integral is∫ 1

R

∂u

∂t
dr =

∫ 1

R

∂2u

∂r2
dr ⇒ d

dt

∫ 1

R
u(r, t) dr =

∂u

∂r

∣∣∣∣
r=1

− ∂u

∂r

∣∣∣∣
r=R

. (3.28)

Upon substituting the approximating function u into this expression and assuming constant

n, we obtain

(n− 1)(1−R)2 da

dt
− (1−R)[(n− 1)a+ 2]

dR

dt
= 2n(n+ 1)(1− a). (3.29)

To find λ we again let t → 0 and substitute into the HBIM (3.28). The solution to the

Stefan problem is now described by equations (3.27), (3.29) subject to initial conditions

R(0) = 1, a(0) = 2βλ2.

In the transformed system the TIM solution requires finding the value for n that min-

imises the error

En(n, t) =

∫ 1

R

(
∂u

∂t
− ∂2u

∂r2

)2

dr. (3.30)

As before we simply solve the ODEs (3.26), (3.29) numerically for a range of n and then

determine the value that minimises (3.30). We find that for β ∈ [1, 10], n ∈ [1.55, 1.65], so

in general we choose n = 1.6.

The leading and first order perturbation solutions are

u0 = rT0, u1 = rT1 (3.31)
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where T0, T1 are given by (3.21), (3.22), and the melt front is described by (3.23). That

is, the perturbation solution in the transformed system is identical to that of the original

system.

Numerical solution

To ascertain the accuracy of the various solutions we will now formulate a numerical solution.

To do this, we employ a finite difference scheme, following the work of Font et al. [31].

There are two key steps: the first one consists of changing the temperature variable to

u = rT ; the second involves introducing a new coordinate to immobilise the boundary,

η = (r −R)/(1−R). This transforms the problem to

(1−R)2∂u

∂t
= (1−R)(1− η)

∂u

∂η
Rt +

∂2u

∂η2
, 0 < r < 1, (3.32)

u(0, t) = 0, u(1, t) = 1, (3.33)

βR
dR

dt
= − 1

1−R
∂u

∂η

∣∣∣∣
η=0

. (3.34)

We use standard finite differences to approximate the temperature derivatives,

∂u

∂t
=
un+1
i − uni

∆t
,

∂u

∂η
=
un+1
i+1 − u

n+1
i−1

2∆η
,

∂2u

∂η2
=
un+1
i+1 − 2un+1

i + un+1
i−1

∆η2
,

(3.35)

where i = 1, . . . , J and n = 1, . . . , N . Hence we may write

un+1
i = 0, i = 1, (3.36)

ani u
n+1
i−1 + bni u

n+1
i + cni u

n+1
i+1 = dnuni , i = 2, . . . , J − 1, (3.37)

un+1
i = 1, i = J, (3.38)

which allows us to write down a matrix system that we solve at every time step n. We

determine the position of the melt front via the Stefan condition (3.34) using a three-point

backward difference for the partial derivative, and taking the time derivative to be

dR

dt
=
Rn+1 −Rn

∆t
. (3.39)

Small time analysis

A common difficulty when solving Stefan problems numerically is that the liquid phase does

not exist at t = 0, however a numerical solution demands initial values. To overcome this
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difficulty we look for a small time solution to provide an initial guess within the numerical

scheme. As stated earlier, at small times R = 1 − 2λt1/2, substituting this into equation

(3.32) and letting t→ 0 gives

∂2u

∂η2
≈ 0. (3.40)

Applying the boundary condition (3.33) yields u(η, t) = η. Substituting this expression into

the Stefan condition (3.34) allows us to find λ =
√

1/(2β). So we start our scheme at some

time t = t0 � 1, with u(η, t0) = η and R(t0) = 1−
√

(2t0)/β.

Comparison of results

The most important variable in the Stefan problem is the position of the melt front R(t):

the main reason for solving the heat equation is to find the temperature gradient which

then drives the phase change. Consequently, in Figure 3.1 we show a comparison of the

melt front predictions of the numerical solution (solid line) and the approximate solutions

in the original domain for β = 1, 10. The TIM, the HBIM with n = 2 and perturbation

solutions are shown as dashed, dash-dotted and dotted lines, respectively. For β = 1

all solutions are inaccurate. When β = 10 the perturbation solution is very close to the

numerical solution while the other solutions are again inaccurate. In Figure 3.2 we show the

equivalent results, but now calculated in the transformed system. For β = 1 the TIM shows

reasonable agreement, with a final melt time some 7% larger than the numerical prediction.

The HBIM and perturbation solutions are highly inaccurate. For β = 10 we expect the

large β perturbation to be accurate, and indeed it is much closer to the numerical solution

now. However, as is clear from the inset, the TIM is significantly more accurate. This is in

keeping with the results of [79] where it is shown that for β ∈ [0.1, 10] their heat balance

method is more accurate than the second order small and large β perturbation solutions.

For β > 10 both their heat balance solution and the perturbation are highly accurate, with

errors below 0.01%. From these two figures we can conclude that in spherical co-ordinates

the most accurate solution is generally obtained via the TIM, that is with n = 1.6, in the

transformed system.
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Figure 3.1: Melting front evolution of a spherical particle in the original system for HBIM (dash-

dotted), TIM (dashed), perturbation (dotted) and numerical (solid) solutions for β = 1, 10.
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Figure 3.2: Melting front evolution of a spherical particle in the transformed system for HBIM

(dash-dotted), TIM (dashed), perturbation (dotted) and numerical (solid) solutions for various β.

3.3.2 Cylindrical Stefan problem

In this section we focus on the cylindrical Stefan problem. We will follow the methods

outlined in the previous section and so will omit much of the detail. Again we first solve

the problem in the original system, equations (3.5)-(3.7) taking p = 1, and later on provide

approximate solutions for a transformed system.
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Approximate solutions in the original cylindrical coordinates

We assume a temperature profile of the form (3.8) where c = 0 and b = 1 − a. The heat

balance integral may now be expressed as

d

dt

∫ 1

R
rT dr =

∂T

∂r

∣∣∣∣
r=1

−R∂T
∂r

∣∣∣∣
r=R

. (3.41)

Substituting for T leads to a rather long expression for the ODE, similar to (3.11), so we

omit it in this section.

We close the system by inserting the assumed temperature profile (3.8) into the Stefan

condition (3.7), to reproduce (3.9). For small times, for a sufficiently thin melt region

the governing equations are equivalent to the Cartesian system so again we may write

R ≈ 1− 2λt1/2, a ≈ βλ2/2. In the limit t→ 0 the HBI provides an equation for λ,

n

2
− 1

2
λβn =

λ

8(n+ 1)(4 + βλ2(n− 1))
. (3.42)

For the standard HBIM we substitute n = 2 to determine λ(β). For the TIM, n is

chosen to minimise the error function (calculated using MATLAB)

E(n, t) =

∫ 1

R

(
∂T

∂t
− 1

r

∂T

∂r
− ∂2T

∂r2

)2

dr. (3.43)

Numerical integration of the above gives n ∈ [1.404, 1.6869] as the optimal choice for

β ∈ [1, 10].

For the perturbation solution we rescale time and expand the temperature in powers of

ε to find the leading and first order solutions

T0(r, t) = 1− ln(r)

ln(R)
, (3.44)

T1(r, t) =
((R2 − r2) ln(r) + r2 − 1) ln(R) + (1−R2) ln(r)

4R ln(R)3

dR

dt
. (3.45)

Upon substitution into the Stefan condition, the melt front satisfies

dR

dt
= − 4βR ln(R)2

4βR2 ln(R)3 + 2R2 ln(R)2 − 2R2 ln(R) + (R2 − 1)
, (3.46)

with R(0) = 1.
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Approximate solutions in a transformed system

The transformation u = rT does not help in this case. Instead we follow [40, 42] and use

the following boundary fixing transformation,

ρ =
ln(r)

ln(R)
, τ = ln(R), T (r, t) = u(ρ, τ). (3.47)

The cylindrical problem becomes

e−2τρ∂
2u

∂ρ2
= τ

dτ

dt

(
τ
∂u

∂τ
− ρ∂u

∂ρ

)
, ρ ∈ [0, 1], τ < 0 (3.48)

u(1, τ) = 1, (a) u(0, τ) = 1 τ(0) = 0, (3.49)

∂u

∂ρ

∣∣∣∣
ρ=1

= −βe2ττ
dτ

dt
. (3.50)

To remove the t dependence in equation (3.48) we may substitute for τt from the Stefan

condition.

This transformation complicates the heat equation, with the result that if we leave n

unknown the HBI cannot be integrated analytically, hence we cannot specify one of the

ODEs for the TIM solution. However, we may still make progress for the particular case

n = 2.

The quadratic polynomial satisfying boundary conditions (3.49) is

u(ρ, τ) = 1− (1 + a)ρ+ aρ2. (3.51)

where a = a(τ). The HBI is obtained by integrating the heat equation (3.48) over the

domain ρ ∈ [0, 1], after removing the t dependence via the Stefan condition. This leads to∫ 1

0
β
∂2u

∂ρ2
dρ =

∫ 1

0
e2τ(ρ−1)(a− 1)

[
ρ
∂u

∂ρ
− τ ∂u

∂τ

]
dρ. (3.52)

Applying u from (3.51) leads to the ODE for a(τ),

da

dτ
=
e−2τ

(
a2(τ + 2)− 2a− τ

)
+ 8βaτ3 − 2τ2(a− 1)2 + (1 + 3a2 − 4a)τ + 2a(1− a)

τ(a− 1)((τ + 1)e−2τ + τ − 1)
.

(3.53)

Note, unlike in previous examples we now only have a single equation to solve for a(τ),

although again we do not know the initial condition. To find the value of a(0) we apply the

small time solution τ = ln(R) = ln
(
1− 2λt1/2

)
to the Stefan condition (3.50). Taking the

limit t→ 0 gives

a(0) = 1− 2λ2β. (3.54)
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Substituting for a, τ into (3.53) leads to a quadratic for λ,

1

3
λ4β2 +

(
β

3
+ 2β2

)
λ2 − β = 0. (3.55)

Now we simply have to solve (3.53) numerically over the range τ ∈ [0,−∞] subject to

(3.54). With this transformation the melt front is at R = eτ . Once a is known we can

convert from τ to t by solving the Stefan condition (3.50)

dτ

dt
= −a− 1

β
e2τ , (3.56)

In practice we calculate t via the discretisation

ti = ti−1 −
βτi−1e

2τi−1

ai−1 − 1
(τi − τi−1) (3.57)

where t0 = 0.

With a large Stefan number we rescale time scale to obtain

ετ
dτ

dt

(
τ
∂u

∂τ
− ρ∂u

∂ρ

)
= e−2τρ∂

2u

∂ρ2
, 0 < ρ < 1, (3.58)

∂u

∂ρ

∣∣∣∣
ρ=1

= −e2ττ
dτ

dt
. (3.59)

subject to (3.49). This leads to

u0 = 1− ρ, (3.60)

u1 = −(1− ρτ)e2ρτ + ρe2τ (τ − 1)− 1 + ρ

4τ2

dτ

dt
. (3.61)

Finally, we find that the melt front is given by the same expression as in (3.46).

Numerical solution

To solve the cylindrical problem numerically we immobilise the boundary as in the spherical

case via the coordinate η = (r−R)/(1−R). The governing equations (3.5)-(3.7) transform

to

(1−R)2∂T

∂t
=

(
(1− η)(1−R)

dR

dt
+

1−R
η(1−R) +R

)
∂T

∂η
+
∂2T

∂η2
, (3.62)

T (0, t) = 0, T (1, t) = 1, (3.63)

β(1−R)
dR

dt
= −∂T

∂η

∣∣∣∣
η=0

. (3.64)
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We use standard finite differences to approximate the temperature derivatives as in (3.35).

As in the spherical case, we can now write

Tn+1
i = 0, i = 1, (3.65)

âni T
n+1
i−1 + b̂ni T

n+1
i + ĉni T

n+1
i+1 = d̂nTni , i = 2, . . . , J − 1, (3.66)

Tn+1
i = 1, i = J, (3.67)

which allows us to write down a matrix system that we solve at every time step n. We

are able to determine the position of the melt front via the Stefan condition (3.64) using a

three-point backward difference for the partial derivative, and taking the time derivative to

be (3.39). The small time analysis leads to R ≈ 1− 2λt1/2, with λ =
√

1/(2β).

Comparison of results

In Figure 3.3 we present the numerical and approximate solutions in the original domain

for β = 1, 10. In this case all the heat balance methods are inaccurate for approximately

R < 0.3. As expected the perturbation solution is poor for β = 1 and much more accurate

when β = 10. In both cases the TIM is more accurate than the standard HBIM but neither

is sufficiently accurate to justify their use.

In Figure 3.4 we show a comparison of the melt front predictions of the numerical

solution (solid line) and the approximate solutions in the transformed domain for various

β. The HBIM with n = 2 and perturbation solutions are shown as dash-dotted and dotted

lines, respectively. At small times all solutions agree well, however as R decreases they

begin to diverge. For the case where β = 1, shown in Figure 3.4a), we see that the HBIM

and perturbation both present errors of about 10%. In Figure 3.4b) we present results for

β = 10. Now the solutions are more accurate, with the same error of about 3.5%.

3.4 Newton cooling boundary condition

In practice a fixed temperature boundary condition is difficult to maintain; a fixed flux or

Newton cooling condition is more physically realistic [87]. We now focus on the Newton

cooling condition, which means using boundary condition (3.3b). Again, since we follow

the methods of the previous section we omit most details.
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Figure 3.3: Melting front evolution of a cylindrical particle in the original system for HBIM

(dash-dotted), TIM (dashed), perturbation (dotted) and numerical (solid) solutions for various β.
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Figure 3.4: Melting front evolution of a cylindrical particle in the transformed system for HBIM

(dash-dotted), perturbation (dotted) and numerical (solid) solutions for various β.

3.4.1 Spherical problem

The problem is specified by (3.5)-(3.6), with p = 2, and the Newton cooling boundary

condition (b). The polynomial to approximate the temperature T is given by (3.8), but

now c = 0 and b = Nu(1−R)(a−1)+aR
(1−Nu)(1−R)−n . The heat balance integral is given by (3.11), which
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upon substituting for T from (3.8), with the corresponding c and b yields

d

dt

[
a

1−R

(
1

2
−R

)
+

1−R
n+ 1

(
[−Nu− a(1−Nu)](1−R) + a

(1−Nu)(1−R)− n

)
+

aR2

2(1−R)

]
=

n

1−R

(
[−Nu− a(1−Nu)](1−R) + a

(1−Nu)(1−R)− n

)
.

(3.68)

The second ODE is simply the Stefan condition (3.9).

Small time analysis

At small times R takes the form R ≈ 1 − λt, see [87]. Substituting this into the Stefan

condition determines the initial condition for a ≈ βλ2t. To determine the initial conditions

for the numerical solution we substitute both these small time solutions into equation (3.32),

and upon letting t → 0, we may write uηη ≈ 0. Applying the appropriate boundary

conditions yields the small time form for u,

u(η, t) = − 1−R
(1−R)(1−Nu)− 1

η. (3.69)

Substituting the above expression for u(η, t) into the Stefan condition (3.34) determines

λ = Nu/β.

In contrast to the previous solutions, since Nu = R0h/k there is a dependence on the

initial size. The solution by the TIM shows that for Nu = 15 and β ∈ [1, 10], the optimal

n ∈ [2.7, 3.55]. For Nu = 1 there is a similarly large variation in n.

The leading and first order solutions for the perturbation are

T0 =
F1

r
+ F2, (3.70)

T1 =
r2

6

dF1

dt
+
r

2

dF2

dt
+ F3 +

F4

r
, (3.71)

where

F1 =
Nu

R(1−Nu) + Nu
, (3.72)

F2 = − NuR
R(1−Nu) + Nu

, (3.73)

F3 =
1−Nu
Nu

[
1

6

dF1

dt
+

1

2

dF2

dt
+ F4

]
− 1

2Nu
dF1

dt
− 1

Nu
dF2

dt
, (3.74)

F4 = − R

6R(1−Nu) + 6Nu

[
(NuR2 − 2−Nu)

dF1

dt
+ 3(RNu− 1−Nu)

dF2

dt

]
. (3.75)



3.4. Newton cooling boundary condition 43

Substituting the first order approximation for T into the Stefan condition leads to

dR

dt
= −

3Nu [(Nu− 1)R−Nu]2[
3Nu [(Nu− 1)R−Nu]3 − εNu(1−R)

(
1 + Nu + Nu2 + (1 + Nu− 2Nu2)R+ (Nu− 1)2R2

)] . (3.76)

Equation (3.76) can be solved via MATLAB’s ode45.

For the transformed system, with u = Tr, the polynomial approximation is given by

(3.8), with c = 0 and b = Nu(1−R)(a−1)+aR
(1−Nu)(1−R)−n and the heat balance integral is given by equation

(3.28). The HBIM solution to the Stefan problem is now described by equation (3.27)for

R, and substituting u into (3.28) we obtain an ODE for a. These two equations are subject

to the initial conditions stated in the small time analysis. The TIM yields values for n that

vary with β and Nu, n ∈ [1.63, 1.95] (see Table 3.1).

The perturbation solution is the same in the transformed system as in the original. For

the numerical solution we employ the same scheme defined in §3.3.1, the only difference is

due to the boundary condition, so that for i = J , (1− (1−Nu)(1−Rn)∆η)un+1
i −un+1

i−1 =

Nu(1−Rn)∆η.

In Figure 3.5 we show two results for R(t) in the original system. As in the previous

case we observe that for small β no approximation method is suitable. For β = 10 the

perturbation solution provides reasonable accuracy, which obviously will improve as β in-

creases. In Figure 3.6 we show results in the transformed system. Now the integral methods

are clearly superior, providing good agreement in all examples. Interestingly, for the case

β = 1, Nu = 1.5 we can see from the inset that the standard HBIM with n = 2 is more

accurate than the TIM, with n = 1.95, although both are obviously good approximations.

The reason behind this is that the TIM is based on a global minimisation of the error in the

temperature. This does not guarantee the most accurate temperature gradient at r = R. It

seems that in this case the standard HBIM better approximates the gradient, Tr(R, t), (at

least as R→ 0) better than the TIM. However, as may be seen from the other three figures,

in general the TIM is most accurate. Approximate values for n are provided in Table 3.1.

Note, as Nu → ∞ the Newton cooling condition tends to the fixed boundary temperature

boundary condition and so n ≈ 1.6 (as predicted previously). For small Nu, n ≈ 1.92. For

simplicity we could take n = 1.76 for any Nu, β and find a good approximation. For better

accuracy we could derive a function which moves smoothly between the limits (1.6, 1.95)

as Nu moves between 0 and ∞.
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TIM exponent

Nu = 1.5
β = 1 1.95

β = 10 1.89

Nu = 15
β = 1 1.68

β = 10 1.63

Table 3.1: TIM exponent for different β and Nu in the transformed system.
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Figure 3.5: Melting front evolution of a spherical particle in the original system for HBIM (dash-

dotted), TIM (dashed), perturbation (dotted) and numerical (solid) solutions for various β and

Nu.

3.4.2 Cylindrical problem

Here we follow the method of §3.3.2. In the original coordinate system we assume that

the temperature profile has the form (3.8), with c = 0 and b = (1+Nu−NuR)a−Nu(1−R)
NuR−Nu−n . The

heat balance integral may be expressed as (3.41). We close the system by applying (3.8) to

the Stefan condition. Assuming R ≈ 1 − λt at small times, the Stefan condition leads to

a(0) ≈ βλ2t, and taking the limit t→ 0 in the HBI yields λ = Nu/β. Finally, the best n is

chosen to minimise the error function (3.43) at the final times. This gives n ∈ [2.19, 2.62]

as the optimal choice for β = 1, 10, Nu = 15.
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Figure 3.6: Melting front evolution of a spherical particle in the transformed system for HBIM

(dash-dotted), TIM (dashed), perturbation (dotted) and numerical (solid) solutions for various β

and Nu.

The leading and first order perturbation solutions are

T0(r, t) = F1(t) + F2(t) ln(r), (3.77)

T1(r, t) = F3(t) ln(r) +
r2

4

dF1

dt
+
r2

4

dF2

dt
ln(r)− r2

4

dF2

dt
+ F4, (3.78)

where

F1(t) =
Nu ln(R)

Nu ln(R)− 1
, (3.79)

F2(t) =
Nu

1−Nu ln(R)
, (3.80)



46 Chapter 3. Optimising the heat balance integral method in Stefan problems

F3(t) = −1

4

(
R2 ln (R)Nu2 +

(
−Nu−Nu2

)
R2 + 2Nu + Nu2 + 2

)
Nu

R (−1 + Nu ln (R))3

dR

dt
, (3.81)

F4(t) =
1

4

Nu
((

2 + 2Nu + NuR2 + Nu2
)

ln (R)−R2 (1 + Nu)
)

R (−1 + Nu ln (R))3

dR

dt
. (3.82)

The melting front is given by

dR

dt
=

4Nu (ln (R)Nu− 1)2(
4Nu3 ln (R)3 − 12Nu2 ln (R)2 + (+12Nu) ln (R)− 4

)
R
. (3.83)

For the transformed system, given by the change of coordinates (3.47), the outer bound-

ary condition is ∂u
∂ρ

∣∣∣∣
ρ=0

= τλ(1− u(0, τ)). The polynomial approximation is given by

u(ρ, τ) = c+ τNu(1− c)ρ− (c+ τNu(1− c)) ρ2. (3.84)

Then the heat balance integral yields

dc

dτ
=
−2 (τNu(c− 1)− 2c)2 e−2τ

(
1/2 + τ2 − τ

)
e2τ + ((τNu− 2) c− τ Nu)2 e−2 τ + 8βτ3 (τNu(c− 1)− c)

(−τNu + τNuc− 2c) ((1 + τ2Nu + (−2−Nu) τ) e2τ − 1 + (2 + Nu) τ2 + τNu) e−2τ τ
.

(3.85)

The small time solution is c(0) = 1−2βλ2. Now (3.85) is solved numerically using an ODE

solver in MATLAB over the range [0, −∞]. The corresponding melt front is simply R = eτ .

We use (3.57) to convert the interval from τ back to t. For the perturbation solution, we

find that the melt front is given by (3.83).

The numerical scheme is the one described in §3.3.2 but equation (3.67) becomes

Tn+1
J = (Nu(1−Rn)∆η + 1)Tn+1

i − Tn+1
i−1 = Nu(1−Rn)∆η. (3.86)

3.5 Conclusion

The goal of this paper was to improve the accuracy of the HBIM applied to Stefan problems

in spherical and cylindrical geometries. To do this we analysed the standard form and the

optimised form (TIM), in the original and a transformed co-ordinate system, subject to

fixed temperature and Newton cooling boundary conditions. The large Stefan number

perturbation solution was also calculated to first order since this is the most common way

to approximate solutions to Stefan problems. The accuracy was determined by comparison

of the predicted melt front position with a numerical solution for two values of the Stefan
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Figure 3.7: Melting front evolution of a cylindrical particle for HBIM in the transformed system

(dash-dotted), TIM in the original system (dashed), perturbation (dotted) and numerical (solid)

solutions for various β and Nu = 15.

number β = 1, 10. The upper limit for β was chosen since it is a typical maximum value

for practical melting problems [3].

First we considered melting due to a fixed temperature boundary condition. For the

spherical problem all solutions in the original domain were inaccurate for small β. For large

β only the perturbation solution was accurate. However, when the temperature variable

was changed to u = rT the solutions improved in accuracy. In particular the TIM gave the

most accurate solutions for the β values tested. Even when β = 10, when we expect the

perturbation solution to have an accuracy of O(10−2)% the TIM was significantly more ac-

curate. The expression for the temperature with the fixed temperature boundary condition

takes the form

u = a

(
r −R
1−R

)
+ b

(
r −R
1−R

)n
, (3.87)

where b = 1 − a. For the standard HBIM n = 2. For the TIM n ∈ [1.55, 1.65] varies

slightly with β. However, choosing the average value n = 1.6 provides more accurate

solutions than the other methods. Consequently when studying spherical Stefan problems,

with a fixed temperature boundary condition we recommend transforming the temperature

variable T = u/r where u is given by (3.87) and n = 1.6.

With a Newton cooling condition the conclusions are similar. Firstly, the temperature
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must be transformed to u = rT . The relation between a and b is more complex and with

the TIM the exponent varies with both β and Nu = hR0/k. For small Nu we found good

accuracy with the average n = 1.92. For larger Nu (here we tested Nu= 15) we found a

smaller value n = 1.65, which is obviously tending to the fixed temperature limit n = 1.6

(corresponding to Nu →∞).

In the case of cylindrical symmetry the results were not so satisfactory. Firstly, the tem-

perature transformation was of no use, instead we used a boundary fixing transformation,

which complicated the governing heat equation. Secondly, the TIM proved too complex

to be of practical use or appeal. Thirdly, in general accuracy was poor for both boundary

conditions. From this part of the study it is difficult to make a conclusive statement. When

β = 1, for a fixed temperature boundary condition the TIM works best in the original

system, for the cooling condition it is more accurate than the HBIM and perturbation cal-

culated in the transformed system. For large β it is the worst, while the perturbation is

reasonably accurate for the values of Nu examined.

In conclusion then, it appears that the TIM can be used with great accuracy in spher-

ically symmetric melting problems, provided the temperature transformation u = rT is

employed. In the cylindrical problem the results are less conclusive and different methods

work better for different parameter values. In this case it is hard to make a single recom-

mendation. However, it is possible that a different transformation, either of the temperature

or co-ordinates, could change this conclusion.
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Abstract

In this paper we study the melting of a spherical nanoparticle. The model differs from

previous ones in that a number of features have been incorporated to match experimental

observations. These include the size dependence of the latent heat and a cooling condition

at the boundary (as opposed to the fixed temperature condition used in previous studies).

Melt temperature variation and density change are also included. The density variation

drives the flow of the outer fluid layer. The latent heat variation is modelled by a new

relation, which matches experimental data better than previous models. A novel form

of Stefan condition is used to determine the position of the melt front. This condition

takes into account the latent heat variation, the energy required to create new surface and

the kinetic energy of the displaced fluid layer. Results show that melting times can be

49
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significantly faster than predicted by previous theoretical models, for smaller particles this

can be around a factor 3. This is primarily due to the latent heat variation. The previously

used fixed temperature boundary condition had two opposing effects on melt times: the

implied infinite heat transfer led to faster melting but also artificially magnified the effect

of kinetic energy, which slowed down the process. We conclude that any future models of

nanoparticle melting must be based on the new Stefan condition and account for latent heat

variation.

4.1 Introduction

Nanoparticles are currently the focus of extensive research due to their unique properties

and their applications in many fields. They are used in medicine, for both diagnosis and

drug delivery [67, 114], in biology [93] and in optics [1]. They are also used to increase

efficiency in energy production, in the creation of new optoelectronic devices [102] and in

materials with modified properties [23, 39]. In many of these applications high temperatures

are involved, so it is important to understand how nanoparticles respond to heat and how

they behave if a phase change occurs.

Nanoparticles have a high ratio of surface to volume atoms, which makes them behave

differently to their bulk counterparts: examples include enhanced mechanical strength;

enhanced solar radiation absorption and superparamagnetism. A well-known nanoscale

property is the decrease in the phase change temperature with particle size. Buffat and

Borel [13] reported a decrease of approximately 500 K below the bulk melt temperature

(approximately 60%) for gold nanoparticles with radii a little above 1 nm. Decreases of 70

K and 200 K have been reported for tin and lead nanoparticles [20]. The variation in surface

tension with radius has been approximated by the relation σsl = σ∗sl(1− 2δ/R) [104], where

σsl is the surface tension, the star denotes the bulk value, δ is termed the Tolman length

and R is the particle radius. The Tolman length is typically very small: in this paper we

will use data for tin with δ = 0.373 nm. This value leads to a decrease in surface tension of

approximately 15% from the bulk value for a particle of radius 5 nm and 1% for a particle

of radius 100 nm.

Molecular dynamics (MD) simulations and experiments have also demonstrated a de-
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crease in latent heat with a decrease in radius. Lai et al. [50] presented the first calorimetry

measurements of the melting process of nanometer-sized tin particles, ranging from 5− 50

nm in diameter. They found a reduction of up to 70% from the bulk latent heat for the

smaller sized particles. Jiang et al. [46] improved the measurement technique to find even

greater reductions. Using a thin-film scanning calorimetry technique similar behaviour was

observed by Zhang et al. [117] in a study of the melting behaviour of 0.1 − 10 nm-thick

discontinuous indium films made from ensembles of nanostructures. In the MD studies of

Bachels et al. [5] the melt temperature of 1.4 nm radius tin particles is 25% lower than

the bulk value while the latent heat is 45% lower. Ercolessi et al. [25], Lim et al. [53] and

Delogu [22] have carried out MD studies on gold, lead and copper clusters, all showing the

same qualitative behaviour.

The mathematical modelling of phase change is termed the Stefan problem. Theoretical

studies of Stefan problems involve a number of restrictive assumptions, made primarily for

mathematical convenience, and so they really only apply to idealised situations. Standard

assumptions include constant thermophysical properties in each phase and the same density

in both phases, constant phase change temperature, latent heat and surface tension and also

a fixed temperature boundary condition. A number of these assumptions are discussed in [3,

Table 1.1]. Melting point depression (where the melt temperature decreases with particle

size) was considered in the mathematical studies of [6, 7, 30, 31, 60, 111, 110]. McCue

et al. [60] propose this as the primary reason for the experimentally observed sudden

disappearance of nanoparticles. In all of these studies the outer boundary temperature was

taken to be a constant (greater than the melt temperature). Font and Myers [31] included

density variation and melting point depression in their model. They demonstrated that

melt times increased with density variation and explained this through the energy required

to move the liquid. They also demonstrated that a large contribution to this extra energy

term came at the beginning of the process, as a result of the unrealistic fixed temperature

boundary condition. The effect was most noticeable for small particles, but even as the

size was allowed to tend to infinity there was still a 15% discrepancy (for gold at least)

from the constant density model results. The thesis of Back [8, §7.1-7.4] confirms this large

discrepancy. It also includes a section where the latent heat employed in the standard energy

balance is replaced by a size dependent function, using a formula taken from [50]. This leads
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to a decrease in melt times. A converse problem, growth of nanoparticles is considered in

[24]. They investigate an ice-water system and use the standard Gibbs-Thomson relation,

a single value for density, a fixed temperature boundary condition and a Stefan condition

taken from models of macroscale melting. Growth and melting of nanowires is considered

in [28]. They also employ the standard Gibbs-Thomson relation and a constant density, at

the boundary they consider both fixed temperature and cooling conditions. Their Stefan

condition accounts for the energy required to make new surface. A significant feature of this

work is that it demonstrates that solidification from the outer boundary is a faster process

than melting

Experiments and MD simulations have made it clear that both melt temperature and

latent heat vary significantly during melting, with latent heat often showing the greatest

variation. The surface tension variation is less noticeable. In practice the boundary tem-

perature cannot be instantaneously raised to some constant value. Consequently in this

paper we will attempt to extend the previous works to produce a more realistic melting

model. Specifically, we will incorporate the variation of latent heat, melt temperature and

density and impose a physically realistic boundary condition. One final novelty in this work

concerns the form of Stefan condition. Previous studies on nanoparticle melting and the

solidification of supercooled melts [72] use an energy balance (the Stefan condition) at the

interface between the two phases which is based on an implicit assumption that the latent

heat is released at the bulk melt temperature. Obviously this is not correct. In [70] a new

form of Stefan condition is derived which involves an “effective latent heat”, which is the

sum of the size dependent latent heat (released at the appropriate melt temperature), the

kinetic energy and the energy required to make new surface.

In the following section we will discuss the latent heat and propose a model to describe

the variation with particle size. This will then be used in the development of the mathemat-

ical model, in Section 4.3. In Section 4.4 we apply an approximate solution method, and

verify the accuracy by comparison with the full numerical solution. In the results section

we demonstrate the effect of the various new components of the model which, for small

particles, can lead to a factor three change in the predicted melt times. All equations are

based on the validity of the continuum assumption. This has been discussed in detail in

[30, 71]. For phase change the limit of validity appears to be around 2-5 nm, depending on
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the material.

4.2 Latent heat variation

The size-dependence of a number of physical properties has often been modelled by functions

involving 1/R. These include the surface tension, the Gibbs-Thomson relation for the melt

temperature and the Ostwald-Freundlich equation for a particle’s solubility (it is also quoted

for surface tension). Consequently, when investigating size-dependent properties at the

nanoscale it is standard to start with functions involving 1/R. Recent investigations into

the latent heat variation have led to the following relations.

Lai et al. [50] suggest

Lm = L∗m

(
1− δt

R

)3

, (4.1)

where L∗m is the bulk latent heat. The constant δt was chosen to provide the best fit to

their experimental data for melt temperature, for tin they found δt = 16 Å. Xiong et al.

[112] propose

Lm = L∗m

[
1 +

(
1 +

3RGT
∗
m

2L∗m

)(
πNAd

4T ∗mb

L∗m

)
1

2R

]
, (4.2)

where T ∗m is the bulk melt temperature, RG is the gas constant, NA Avogadro’s number, d

the atom diameter and b a negative constant that acts as a fitting parameter. Shin et al.

[98] model the latent heat by

Lm = L∗m −∆hs +
2σsl
ρsR

− 2σlv(ρs − ρl)
ρlρs(R+ δt)

, (4.3)

where ∆hs is the change in specific enthalpy, ρs, ρl are the density of the solid and liquid,

σlv is the liquid-vapour surface tension. The change of the specific enthalpy of the solid is

∆hs =
1

ρs

(
2σsl
R

+
2σlv
R+ δt

)
+

3σ∗sl
ρsR

−
12σ∗slδ

ρsR2

− T
((

2σsl
R

+
2σlv
R+ δt

)
d(1/ρs)

dT
+

3

ρsR

dσ∗sl
dT
− 12δ

ρsR2

dσ∗sl
dT

)
.

(4.4)

For tin nanoparticles they define σsl = 0.11σlv where σsl is defined by the Tolman relation

with δ = 3.73× 10−10m and they take δt from [50].

In Figure 4.1 we compare the predictions of these relations with experimental data for the

latent heat of tin, taken from Lai et al. [50]. The necessary parameter values are provided
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in Table 4.1. In Xiong et al. [112] the fitting parameter b is calculated to provide a best

fit with melt temperature data for different metals. They do not give a value for tin, so we

performed a least-squares fit to the latent heat data, hence our curve for latent heat variation

using their formula is closer to the experimental data than theirs. We determined a value

b = −6.65× 1030(m K s2)−1, this is of the order of their quoted values for five other metals.

The circles in the figure represent the experimental data, the dashed line that of eq. (4.1),

the dotted line that of eq. (4.2) and the dash-dot line that of eq. (4.3). The comparisons for

melt temperature variation shown in the graphs of [50, 112] demonstrate excellent agreement

with the data, while the latent heat representation is poor, only matching the data points

for the three smallest particles. In Figure 4.1 this poor agreement may also be seen. In

[98] the results presented for latent heat show good agreement with data, unfortunately we

have been unable to reproduce this agreement.

Material
T ∗
m L∗

m cs/cl ks/kl ρs/ρl σ∗
sl

(K) (J/kg) (J/kg·K) (W/m·K) (kg/m3) (N/m)

Tin 505 58500 230/268 67/30 7180/6980 0.064

Table 4.1: Thermodynamical parameter values for tin, data taken from [5, 34, 51, 103, 50, 95, 98].

The three previous theoretical models involve a single fitting parameter and so should

exhibit some agreement with the data. However, a single fitting parameter restricts the

ability of the model to accurately approximate data over a large range. The form of the

models also ensures Lm → L∗m as R →∞. A problem common to them all is the speed of

decay to the bulk value. For sufficiently large R they may all be expressed in the form

Lm(R) = L∗m

(
1− A1

R
+
A2

R2
+ · · ·

)
(4.5)

for various values of Ai. It would appear that this form of polynomial in 1/R does not

exhibit the correct limiting behaviour. A particularly worrying feature of this observation

is that the bulk value is the most reliable one, and the models clearly do not approach the

only truly reliable data point correctly. Motivated by the inaccuracy of these models we

propose a form that permits more rapid decay for large R,

Lm = L∗m

(
1− e−C

R
Rc

)
, (4.6)
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Figure 4.1: Latent heat for a tin nanoparticle as a function of the radius. Lai et al. model

(equation (4.1)), dashed line. Model proposed by Xiong et al. [112] (equation (4.2)), dotted line.

Shin et al. [98] (equation (4.3)), dash-dotted line. Exponential fit proposed in this paper (equation

(4.6)), solid line. Dots are experimental data of Lai et al. [50]. Grey horizontal line indicates bulk

value.

where the constant C is our fitting parameter. To ensure C takes reasonable values we

also introduce the capillary length Rc = σ∗sl/(ρsL
∗
m). The solid curve shown on Figure 4.1

represents our exponential relation, where the value C = 0.0133 has been used. This was

obtained via a least-squares fit to the data. It is quite clear that the exponential relation

is a significant improvement on the other models. For large radii it is the only result that

comes close to the experimental data. Below 15 nm three models, the current exponential,

Lai’s and Xiong’s all provide a reasonable fit. Only below around 8 nm does our model show

a noticeable deviation from the data. In the following sections we will model nanoparticle

melting with sizes varying between 2-100 nm. Consequently we will employ our exponential

relation to describe latent heat variation, since this appears to be the only accurate relation

for this range of particle radii.
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4.3 Mathematical model

TH > T ∗m

R(t)

Rb(t)

R0

Tm

T

θ

solid

liquid

Figure 4.2: Sketch of the problem.

The physical situation considered in this section follows the standard form described in

previous papers [30, 31, 60, 111, 110]. A nanoparticle with initial radius R0 is subjected to

an external heat source which results in melting. The melting begins at the outer boundary

and progresses inwards until the whole particle has melted. The solid-liquid interface is

denoted R(t). Since the liquid and solid densities are different the outer boundary moves,

this is denoted Rb(t), where Rb(0) = R0. A sketch of this situation is presented in Figure

4.2. The temperature in each phase is described by the standard heat equations

ρlcl

(
∂T

∂t
+ v

∂T

∂r

)
= kl

1

r2

∂

∂r

(
r2∂T

∂r

)
, R(t) < r < Rb(t), (4.7)

ρscs
∂θ

∂t
= ks

1

r2

∂

∂r

(
r2∂θ

∂r

)
, 0 < r < R(t), (4.8)

where T and θ denote the temperature in the liquid and solid respectively, ρi, ci and ki

are the densities, the specific heats and the conductivities respectively. The index notation

i = s, l refers to the solid or liquid phases. The velocity v at which heat is advected in

equation (4.7) is given by [31]

v = −R
2

r2
(ρ− 1)

dR

dt
, (4.9)

where ρ = ρs/ρl.
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The heat equation in the solid must be solved over the region 0 ≤ r ≤ R(t). The position

of the melt front, R(t), is determined by the energy balance(
ρs

[
Lm +

v(R, t)2

2

]
+

2σ∗sl
R

)
dR

dt
= ks

∂θ

∂r

∣∣∣∣
r=R

− kl
∂T

∂r

∣∣∣∣
r=R

. (4.10)

This is the Stefan condition derived in [70]. The terms in the brackets on the left hand

side represent the (time dependent) latent heat, the kinetic energy and the energy required

to create new surface. The rate at which this energy is released, dR/dt, is balanced by

the energy conducted through the solid and liquid. Note, the factor in brackets on the left

hand side differs significantly to the one used in previous studies on nanoparticle melting,

ρs
(
L∗m + (cl − cs)(Tm − T ∗m) + v2/2

)
. This latter version of the effective latent heat has

been taken as standard when modelling nanoparticle melting and the solidification of su-

percooled materials (with the exception of [24] who use ρsL∗m). It is derived in [27], where

they specify latent heat release at the bulk melt temperature T ∗m. Obviously latent heat is

released at the appropriate size-dependent melt temperature. In [70] it is shown that the

previous form of effective latent heat leads to errors (when compared to experimental data)

up to a factor three for particles of the order 5 nm. Hence in the following analysis we

employ the relation (4.10).

The governing equations are subject to the boundary conditions

−kl
∂T

∂r

∣∣∣∣
r=Rb

= h(T (Rb, t)− TH), T (R, t) = θ(R, t) = Tm(t), θr(0, t) = 0 . (4.11)

Note, at the outer boundary we specify a Newton cooling condition which states that the

energy transferred to the particle is proportional to the temperature difference between the

particle surface and the surrounding material. This is more physically realistic than the fixed

temperature boundary condition, T (Rb, t) = TH , which leads to an initial infinite boundary

velocity. Following [31] we set the initial solid temperature to the melt temperature θ(r, 0) =

Tm(0). This means that we avoid the issue of any initial heating up period, however, as

we will see when the problem is non-dimensionalised heat flow is fast in comparison to the

melting time-scale so the imposition of any other temperature (below the melt temperature)

would have little effect on the results.

The position of the outer boundary may be determined via the velocity relation. Setting

v(Rb) = dRb/dt in equation (4.9) and integrating gives

Rb =
(
R3

0ρ−R3(ρ− 1)
)1/3

, (4.12)
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where R(0) = Rb(0) = R0.

The fixed temperature boundary condition of previous studies is the limit of equation

(4.11a) as the heat transfer coefficient h→∞. Of course this cannot be achieved physically

and there exists a limit to the heat transfer beyond which the material would be vaporised.

To permit comparison with previous models we therefore choose the highest possible value

for h which still permits thermodynamic stability. To do this we set

hmax =
qmax

∆T
, qmax = ρsuvs, (4.13)

where u is the internal energy and vs is the speed of second sound in the material, see

[28, 47], ∆T is the temperature scale, here we set ∆T = TH − T ∗m. A typical order of

magnitude for hmax is found by first noting that the speed of second sound may be related

to the phonon velocity vs = vp/
√

3. We follow [118] and take vp =
√
B/ρs ≈ 2842m/s (B

is the bulk modulus). The internal energy is given approximately by the enthalpy (this is

valid under constant pressure, constant density and zero velocity), u = cs∆T , consequently

hmax = ρscsvs ≈ 4.7 × 109 W/m2 K. We will use this value in the following calculations

since it will give the closest, physically achievable, comparison to previous fixed temperature

results.

The melt temperature Tm(t) may be approximated by the Gibbs-Thomson equation

[101],

Tm(t) = T ∗m

(
1−

2σ∗sl
ρsL∗mR

)
. (4.14)

Note, we use the bulk value σ∗sl since the variation of surface tension is small (in comparison

to the latent heat and melt temperature). This could be an obvious extension in subsequent

work. Substituting the parameters from Table 4.1 into (4.14) we observe that Tm(t) becomes

negative for R < 0.31 nm. Taking into account that our model is valid for R where

continuum theory holds, that is, R > 2−5 nm, the use of this version of the Gibbs-Thomson

equation does not represent a problem.

We now scale the model using the dimensionless variables

T̂ =
T − T ∗m

∆T
, θ̂ =

θ − T ∗m
∆T

, T̂m =
Tm − T ∗m

∆T
, L̂m =

Lm
L∗m

,

r̂ =
r

R0
, R̂ =

R

R0
, R̂b =

Rb
R0
, t̂ =

kl
ρlclR

2
0

t.

(4.15)
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This results in the following system (where we have immediately dropped the hat notation)

∂T

∂t
− (ρ− 1)

R2

r2

dR

dt

∂T

∂r
=

1

r2

∂

∂r

(
r2∂T

∂r

)
, R(t) < r < Rb(t), (4.16)

∂θ

∂t
=

k

ρc

1

r2

∂

∂r

(
r2∂θ

∂r

)
, 0 < r < R(t), (4.17)

where Rb =
(
ρ−R3(ρ− 1)

)1/3 and Rb(0) = R(0) = 1. The boundary conditions are

∂T

∂r

∣∣∣∣
r=Rb

= Λ(1− T (Rb, t)) , T (R, t) = θ(R, t) = Tm(t) = −Γ

R
, θr(0, t) = 0,

(4.18)

where Λ = qmaxR0/(∆Tkl), Γ = αT ∗m/∆T and α = 2σ∗sl/(ρsL
∗
mR0). The initial tempera-

ture becomes θ(r, 0) = −Γ. The Stefan condition is

ρβ
[
Lm(t) +

α

R

] dR
dt

+ γ

(
dR

dt

)3

= k
∂θ

∂r

∣∣∣∣
r=R

− ∂T

∂r

∣∣∣∣
r=R

, (4.19)

where the Stefan number β = L∗m/(cl∆T ) and γ = (1 − ρ)2ρsκ
3
l /(2∆TklR

2
0), where κl =

kl/(ρlcl) is the thermal diffusivity.

The Stefan number, β, depends on the temperature scale of the process: it is large

for a small temperature variation, and small for a large temperature variation. As we are

working at the nanoscale, the Stefan number is typically large since, due to melting point

depression, only a very small increase above the melt temperature is sufficient to induce

complete particle melting.

4.4 Perturbation solution

The beauty of an analytical or approximate analytical solution is that it makes clear the

factors driving a physical process in a manner that cannot be achieved by a numerical

solution. Consequently we now follow previous researchers in using a perturbation method

based on the large Stefan number.

If we consider equation (4.19) and divide through by β then we find dR/dt ≈ 0 (for

sufficiently large β). Physically this tells us that the large Stefan number solution corre-

sponds to slow melting (slow compared to the heat transfer in the material). Since we wish

to focus on the melting we therefore rescale time via τ = εt where ε = 1/β � 1. The Stefan

condition may now be written

ρ
[
Lm(t) +

α

R

] dR
dτ

+ γε3
(
dR

dτ

)3

= k
∂θ

∂r

∣∣∣∣
r=R

− ∂T

∂r

∣∣∣∣
r=R

. (4.20)
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With the new time-scale the time derivatives in the two heat equations, equations (4.16,

4.17), are now multiplied by ε. So now, on the time-scale of melting, the heat equations are

close to a pseudo-steady state. It is not a true steady-state since the boundary conditions

still depend on time. Physically this means that as the melting proceeds, the temperature

adjusts so rapidly that it appears to take the appropriate steady-state form. This is the

justification for our earlier statement that the initial solid temperature does not have a

significant effect on the final results.

To solve the system we can look for an expansion for the temperatures of the form

T = T0 + εT1 +O(ε2). At order ε0 we find the temperature in the liquid is described by

0 =
1

r2

∂

∂r

(
r2∂T0

∂r

)
,

∂T0

∂r

∣∣∣∣
r=Rb

= Λ(1− T0(Rb, τ)) , T0(R, τ) = −Γ

R
, (4.21)

At order ε1 the temperature is described by

∂T0

∂τ
− (ρ− 1)

R2

r2

dR

dτ

dT0

dr
=

1

r2

∂

∂r

(
r2∂T1

∂r

)
,

∂T1

∂r

∣∣∣∣
r=Rb

= −ΛT1(Rb, τ) ,

T1(R, τ) = 0 .

(4.22)

The appropriate solution is

T0(r, τ) = F1(τ) +
F2(τ)

r
, (4.23)

T1(r, τ) =
r2

6

dF1

dτ
+
r

2

dF2

dτ
− F3(τ)

r
+
R2RτF2(τ)(ρ− 1)

2r2
+ F4(τ), (4.24)

where

F1(τ) =
Γ(ΛRb − 1) + ΛR2

b

−R(ΛRb − 1) + ΛR2
b

, (4.25)

F2(τ) = −Γ− F1(τ)R, (4.26)

F3(τ) =
R2
bR

R− ΛRbR+ ΛR2
b

[
1

6

dF1

dτ
(ΛR2 − ΛR2

b − 2Rb)+ (4.27)

+
1

2

dF2

dτ
(ΛR− ΛRb − 1) +

RτF2(τ)(ρ− 1)

2

(
1− ΛR2

R2
b

+
2R2

R3
b

)]
, (4.28)

F4(τ) = −R
2

6

dF1

dτ
− R

2

dF2

dτ
+
F3(τ)

R
− RτF2(τ)(ρ− 1)

2
. (4.29)

Note, T1, F3, F4 involve time derivatives of F1, F2. Both derivatives may be written in a

form RτF i for appropriate functions F i and consequently the same is true for F3, F4.
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Similarily for the solid temperature we obtain

0 =
k

c

1

r2

∂

∂r

(
r2∂θ0

∂r

)
,

∂θ0

∂r

∣∣∣∣
r=0

= 0 , θ0(R, τ) = −Γ

R
, (4.30)

∂θ0

∂τ
=

k

ρc

1

r2

∂

∂r

(
r2∂θ1

∂r

)
,

∂θ1

∂r

∣∣∣∣
r=0

= 0 , θ1(R, τ) = 0 . (4.31)

This has solution

θ0(r, τ) = −Γ

R
, θ1(r, τ) =

Γ

6

ρc

k

(
r2 −R2

R2

)
Rτ . (4.32)

These expressions may be substituted into the Stefan condition (4.20). Using the rela-

tions Fiτ = RτF i, and rearranging, we obtain a cubic equation for speed of the melt front,

Rτ ,

ε3γ

(
dR

dτ

)3

+

(
ρ
[
Lm(t) +

α

R

]
+ ε

[
RF 1

3
+
F 2

2
+
F 3

R2
− F2(ρ− 1)

R
− Γρc

3R

])
dR

dτ
− F2

R2
= 0.

(4.33)

Whilst seemingly complex this formulation should be compared to the original problem,

consisting of two partial differential equations for the temperature, coupled to varying melt

temperature and latent heat equations all to be solved over two a priori unknown time

dependent domains.

Since ε� 1 we can infer a lot about the melting behaviour from the dominant terms,

dR

dτ
=

F2

ρR2

[
Lm(t) +

α

R

]−1
≈ F2

ρLmR2
. (4.34)

For most materials the term in square brackets is dominated by Lm(t) (at least for R larger

than order 1 nm), hence we have neglected the surface tension term in the approximation.

In dimensional form this leads to the initial melt rate

dR

dt
≈ − qm

ρsLmR2
0

. (4.35)

This equation is obtained by substituting for F2, setting R = Rb = 1 and neglecting surface

tension. It states that the initial melt rate is proportional to the heat flux and inversely

proportional to the value of latent heat and square of the radius: smaller particles melt at

a much faster rate than larger ones. If we had employed the fixed temperature boundary

condition there would be a factor 1/(R0 −R) on the right hand side. Since R(0) = R0 this

results in an infinite initial melt rate. This term is not present in equation (4.35) showing

that the initial melt rate is in fact finite (as should be expected).
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However, if we wish to follow the whole evolution process then we must solve the cubic

equation (particularly since we expect dR/dτ to become large near the end of the melting

process). This is a simple matter, we used MATLAB routines to solve the cubic and

then integrate the resultant first order differential equation for R(τ), subject to the initial

condition R(0) = 1. In the following section we will describe the numerical solution method

employed for the full problem and then compare with our results for solving the above cubic

equation, leading to the conclusion that the cubic equation is sufficiently accurate.

4.5 Numerical solution

To verify the accuracy of the perturbation solution we now describe a numerical scheme to

solve the full problem with all terms retained. To do so, we follow the work in Font and

Myers [31], so we define u = rT and v = rθ and immobilise the boundaries on r ∈ (R,Rb)

via η = (r − R)/(1 − R) and on r ∈ (0, R) via ζ = r/R. The problem (4.16)-(4.19) may

now be written

∂u

∂t
= −ηt

∂u

∂η
+

1

(Rb −R)2

∂2u

∂η2
(4.36)

− (1− ρ)
R2

(η(Rb −R) +R)2

(
1

Rb −R
∂u

∂η
− u

η(Rb −R) +R

)
dR

dt
, 0 < η < 1,

∂v

∂t
= −ζt

∂v

∂ζ
+

1

R2

k

ρc

∂2v

∂ζ2
, 0 < ζ < 1. (4.37)

The boundary conditions are

u(0, t) = −Γ,
∂u

∂η

∣∣∣∣
η=1

= u(1, t)
(1− ΛRb)(Rb −R)

Rb
+ ΛRb(Rb −R),

v(0, t) = 0, v(1, t) = −Γ .

(4.38)

The Stefan condition becomes

ρβR [RLm(t) + α]
dR

dt
+ γR2

(
dR

dt

)3

= k
∂v

∂ζ

∣∣∣∣
ζ=1

− R

Rb −R
∂u

∂η

∣∣∣∣
η=0

+ Γ(k − 1). (4.39)

A semi-implicit finite difference method is used, whereby we solve implicitly for u and

v and explicitly for R. The derivatives in (4.36)-(4.39) are approximated by

∂u

∂t
=
un+1
i − uni

∆t
,

∂u

∂η
=
un+1
i+1 − u

n+1
i−1

2∆η
,

∂2u

∂η2
=
un+1
i+1 − 2un+1

i + un+1
i−1

∆η2
,

(4.40)
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where i = 1, . . . , J and n = 1, . . . , N and the derivatives for v are defined in the same

manner. The position of the melting front is obtained via the Stefan condition (4.39) using

a three-point backward difference for the partial derivatives, and taking the time derivative

to be
dR

dt
=
Rn+1 −Rn

∆t
. (4.41)

Finally, we obtain

ani u
n+1
i−1 + bni u

n+1
i + cni u

n+1
i+1 = dnuni , (4.42)

eni v
n+1
i−1 + fnvn+1

i + gni v
n+1
i+1 = hnvni , (4.43)

for i = 1, . . . , J − 1. For i = J ,(
1−

(1− ΛRnb )(Rnb −Rn)∆x

Rb

)
un+1
i − un+1

i−1 = ΛRnb (Rnb −Rn)∆x and vi = 1. (4.44)

Equations (4.42) and (4.43) allow us to write down a matrix system which we solve at each

time step n. For a more detailed description of the scheme see [31].

4.5.1 Small time solution

A well-known difficulty encountered when solving Stefan problems numerically is that the

liquid phase does not exist at t = 0 yet a numerical solution requires initial values. To

overcome this in [31] a small time analysis is performed, which shows that as t → 0 the

radius takes the form R ≈ 1− λtp where p = 3/4. This leads to an initial infinite velocity,

Rt ∼ −t−1/4, which is a consequence of specifying a fixed temperature boundary condition.

For the present problem we use the same form, but leave p unknown. However, since we use

a physically realistic boundary condition we do not expect an infinite velocity, which then

indicates p ≥ 1. The imposed form for R leads to Rb = 1+(ρ−1)λtp, and so Rb−R = λρtp.

Substituting these into equation (4.36) we obtain

(λρtp)2∂u

∂t
= −(λρtp)2ηt

∂u

∂η
+
∂2u

∂η2
(4.45)

− (1− ρ)
(λρtp)(1− λtp)2

(λρtp(η − 1) + 1)2

(
∂u

∂η
− (λρtp)u

λρtp(η − 1) + 1

)
dR

dt
, 0 < η < 1.

Provided p ≥ 0 all terms in the above expression tend to 0 as t → 0 except for the second

one on the right hand side of the equation. This results in

∂2u

∂η2
≈ 0 . (4.46)
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Together with the boundary conditions for u given in (4.38) this leads to

u(η, t) ≈ −Γ +
(Rb −R)(ΛR2

b + ΛΓRb − Γ)

ΛR2
b +R− ΛRbR

η, (4.47)

which is the temperature in the liquid at small times.

The melting is driven by the heat flowing through the liquid, consequently we may

balance the left hand side of the Stefan condition (4.39) with the temperature gradient in

the liquid (which may be calculated using (4.47)). Substituting for R,Rb and taking the

Taylor series for Lm(t) = Lm(0) + tL′m(0) + · · · and neglecting the terms involving t (since

they tend to zero) we obtain

−ρβ [Lm(0) + α]λptp−1 − γλ3p3t3p−3 = −(Λ + ΛΓ− Γ) . (4.48)

To balance with the right hand side, which is independent of t, requires p = 1. This confirms

that the initial velocity Rt ≈ −λ is finite. We have already shown that the kinetic energy

term is small, it was retained in [31] because of the initial infinite velocity, in our finite

velocity case we may neglect kinetic energy and so determine

λ =
(Λ + ΛΓ− Γ)

ρβ [Lm(0) + α]
. (4.49)

Of course we could retain kinetic energy and then solve a cubic for λ, but this makes very

little difference to the results.

4.6 Results

In this section we present the results of the model. In all cases we use data for tin, provided

in Table 4.1, since we have already calculated an approximate exponential form for the

latent heat variation in section §4.2. Thermophysical data for gold nanoparticles may be

found in the papers [30, 31] (but without details of the latent heat variation). To permit

comparison with a fixed boundary temperature model we also impose the maximum heat

flux discussed earlier.

To verify the analytical solution we first compare it with predictions of the melt front

position calculated using the numerical model. In Figure 4.3 we plot the variation of the

radius R(t) for Stefan numbers β = 10, 100 (corresponding to ∆T = 22K, 2.2K), initial
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(a) β = 10, R0 = 10 nm.
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(b) β = 10, R0 = 100 nm.
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(c) β = 100, R0 = 10 nm.
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(d) β = 100, R0 = 100 nm.

Figure 4.3: Melting front evolution of a tin nanoparticle for perturbation (solid line) and numerical

(dashed line) solutions for various β and R0. The time-scale is kl/(ρlclR2
0, so when R0 = 10nm

the dimensional time is obtained by dividing the non-dimensional value by 1.604 ×1011s and when

R0 = 100nm by 1.604 ×109s.

radius R0 = 10, 100 nm and a cooling condition with h = hmax = 4.7× 109W/(m2K). The

dashed lines represent the numerical solution described in Section 4.5. The solid lines come

from the perturbation solution; calculated by solving the cubic equation (4.33) for Rτ and

then integrating.

Note, we have plotted R down to the non-dimensional equivalent of 2 nm (i.e. when

R0 = 10 nm the final value R = 0.2, for R0 = 100 nm the final value is R = 0.02). The

perturbation solution is based on an expansion in terms of ε = 1/β, and terms of order ε2
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have been neglected. We therefore expect the greatest accuracy for the large β solutions.

This is clearly the case: the two curves with β = 10 are clearly less accurate than those with

β = 100. However all sets of curves show good agreement, the worst being that of Figure

4.3 a) where at the final time calculated there is a difference of 3% between the numerical

and analytical results. For the best case, with β = 100, R0 = 100 nm the final difference is

around 0.1%. The four graphs demonstrate that for a range of R0 and β the evolution of the

radius R(t) is accurately predicted by the perturbation solution. The radius is calculated

by integrating the Stefan condition, which shows Rt ∝ −Tr(R, t), so we can conclude that

the perturbation solution for Tr(R, t) is also accurate (and in fact our numerical results

demonstrate that T (r, t) is also well-approximated).
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Figure 4.4: Temperature profile of a tin nanoparticle. The solid and dashed lines represent the

temperatures in the liquid and solid, respectively. The dotted line is the melting temperature given

by the generalised Gibbs-Thomson equation (4.14). Black horizontal line denotes TH = 507.6 K,

β = 100.

In Figure 4.4 we show temperature profiles for different times as a function of r for

β = 100 and R0 = 10, 100 nm. Solid lines represent the temperature in the liquid, dashed

lines that in the solid and the dotted line is the melt temperature variation. The solid-liquid

interface follows the dotted line. For the 10 nm particle, shown in Figure 4.4 a), the initial

melt temperature is close to 490 K. The boundary of the liquid layer does not exceed this

temperature by a great amount, rising to a maximum of approximately 496 K. However, by
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the time the boundary has reached 496K the melt temperature has decreased to less than

430 K. This verifies our previous statement that only a slight temperature rise above the

melt temperature is required for complete melting. The curves for t = 9.08 ps represent the

temperature profile when we expect the continuum model to break down. Here it is clear

that both the solid and liquid regions are above the melt temperature. In a bulk Stefan

problem we would expect the solid to be below the melt temperature, thus while the liquid

temperature drives the melting the solid acts to slow it down. In the present situation, due

to the melting point depression, the solid temperature exceeds the melt temperature and so

both the solid and the liquid drive the melting. This feature has been observed in previous

studies of nanoparticle melting [30, 60]. The second figure shows temperature profiles for a

particle with R0 = 100 nm. Now the process takes much longer and the temperature rise

at the boundary is greater.
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Figure 4.5: Melt front position for the new (solid line) and old (dashed line) Stefan conditions,

R0 = 10 nm, β = 100. Dimensional times are obtained by dividing the non-dimensional value by

1.604 ×1011s.

In Figure 4.5 we compare the evolution of the radius using the Stefan condition (4.19)
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(in dimensional form equation (4.10)) (solid line) with that of the standard Stefan condition

from the literature, as described in §4.3, (dashed line). For an initial particle size R0 = 10

nm the current model predicts melting at almost twice the rate of the previous model.

Looking at the effective latent heat definitions from the two models shows that they both

have the same kinetic energy terms, so the difference must lie in the (dimensional) terms

Lm(t) + 2σ∗sl/(ρsR) and L∗m + (cl − cs)(Tm − T ∗m). From Table 4.1 we obtain 2σ∗sl/(ρsR) ≈

1.8 × 10−5/R. This is equal to the bulk latent heat only when R ≈ 0.3 nm, so for most

of the melt process we can assume the current model predicts a melt rate of the order

Rt ∝ 1/Lm(t). The previous model has (cl−cs)(Tm−T ∗m) ≈ 2000 (if we assume a maximum

temperature change of order 50K, as shown in Figure 4.4 a). This is always significantly

smaller than L∗m and so the previous model predicts (approximately) Rt ∝ 1/L∗m. Given

that the value of latent heat decreases by a large amount during melting, so making it easier

for molecules to leave the surface, it is clear that the true melting rate must be much faster

than predicted by any previous model where Rt ∝ 1/L∗m. Note, since Lm(t) → L∗m as the

radius increases the difference in results will decrease with an increase in initial particle

size. For example, if we carry out the same calculation as shown in Figure 4.5 but set

R0 = 100 nm then the difference in final melt times reduces to around 2%. So perhaps the

key point to take from this figure is that for small nanoparticles (below the size where the

actual latent heat differs significantly from the bulk value) latent heat variation must be

accounted for in theoretical modelling of nanoparticle melting.

In previous mathematical models the boundary condition imposed was T (Rb, t) = TH

instead of the Newton cooling condition employed in this paper. In Figure 4.6 we show the

difference in melting for the perturbation solution subject to the Newton cooling condition

(4.11) (solid line) and a fixed temperature boundary condition (dashed line), both with

TH = 507.6K. For the 10 nm particle the change in boundary condition results in melting

almost three times slower than with a fixed temperature. When R0 = 100 nm the melting

time increases by only 13.5%. The discrepancies may be attributed to the energy transfer to

the particle. The fixed temperature boundary condition is equivalent to specifying perfectly

efficient heat transfer from the surrounding material, that is the heat transfer coefficient

is infinite. Initially the particle is at some temperature below the melt temperature. At

t = 0 the infinite heat transfer instantaneously raises the boundary temperature to TH ,
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(a) R0 = 10 nm.

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

R

(b) R0 = 100 nm.

Figure 4.6: Melt front position with a Newton cooling boundary condition (solid line) and fixed

temperature boundary condition (dashed line), β = 100. Dimensional times are obtained by dividing

the non-dimensional value by 1.604 ×1011s when R0 = 10nm and by 1.604 ×109s when R0 = 100nm.

this results in an infinite temperature gradient and so, according to the Stefan condition,

an infinite boundary velocity. In the figure we see that the curve at t = 0 is vertical.

Consequently the fixed boundary temperature model must predict faster melting than in

reality. The cooling condition, even with the maximum allowable heat flux, exhibits a finite

melt rate and overall slower melting.

There are further consequences of the previously employed infinite heat transfer. The

liquid velocity v(R, t) = (1−ρ)Rt, if Rt(0) is infinite then so is v(R, 0) and hence the initial

kinetic energy. Let us consider the effect of the kinetic energy term on the Stefan condition

(4.20). It is represented by γε3R3
τ , where γ ∝ (1− ρs/ρl) (time has been rescaled with the

Stefan number). In a standard perturbation we would neglect this term due to the small

factor ε3. It was retained in the current model since at least for part of the process we

anticipated large Rτ . In places where the velocity is small its contribution will be negligible

and so its retention does not affect the results. If the velocity is large then the kinetic

energy term represents a considerable energy sink, resulting in slower melting. This was

observed in the solutions presented in [31] with a fixed temperature boundary condition

and gold nanoparticles. In the present study we have shown that the initial infinite velocity

does not occur and so the initial kinetic energy is negligible. The question is then, does the
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Figure 4.7: Comparison of R(t) for R0 = 10 nm, β = 100, with and without the kinetic energy

terms in the Stefan condition. Dimensional times are obtained by dividing the non-dimensional

value by 1.604 ×1011s.

high melting rate in the final stages lead to a non-negligible kinetic energy contribution? In

Figure 4.7 we compare results with and without the kinetic energy term for a 10 nm particle

and β = 100. Clearly the difference is very small, resulting in only a 2% change in the final

melting time. We do not show the corresponding result for R0 = 100 nm since the two

curves are indistinguishable. This seems to indicate that the contribution of kinetic energy

to the Stefan condition is negligible, which would then result in a simpler mathematical

model, given that the cubic term in Rt could be removed. However, we note that for tin

ρ = ρs/ρl = 1.028 whereas for gold ρ = 1.116. In Font and Myers [31] it was stated that

the inclusion of kinetic energy and density change had a significant impact on the melting

process and this was so strong that it carried through to macroscale melting. From the

present study it seems their conclusion should be toned down since

1. the effect of kinetic energy is magnified by the use of a fixed temperature boundary

condition;

2. the effect also depends on the solid to liquid density ratio, the higher the ratio the

greater the effect.
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4.7 Conclusions

The work in this paper describes a model for the melting of a spherically symmetric nanopar-

ticle. It has various novel features which appear to have important consequences for mod-

elling at the nanoscale. Specifically it is the first mathematical model of nanoparticle

melting

1. to include latent heat depression;

2. to employ the new Stefan condition developed in [70];

3. to use a Newton cooling condition.

Experimental observation and MD simulations on nanoparticle melting have made it

clear that latent heat depression is significant, even more so than the well-documented

melting point depression. To date mathematical models of nanoparticle melting have ac-

counted for the latter effect, but not the latent heat variation. In §4.2 we proposed an

exponential model to describe published data on the latent heat variation of tin. This con-

tained a single fitting parameter, and provided much better agreement with the data than

previous models in the literature, particularly when the nanoparticle size was greater than

20 nm.

Previous mathematical analyses of nanoparticle melting have imposed a fixed boundary

temperature. This condition is equivalent to specifying an infinite heat transfer coefficient,

which then leads to melt rates greater than occurs in practice. The present study uses a

cooling condition at the boundary, this is more physically realistic and leads to slower, finite

melt rates. The decreased melt rates impact on the kinetic energy contribution. The only

previous mathematical analyses of nanoparticle melting with density change employed the

fixed temperature condition and concluded that the density change was very important,

since the resultant kinetic energy provides an energy sink which then reduces the energy

available to drive the phase change. This effect was so strong that it carried through even to

the macroscale. Their study used data for gold, which has a large difference between liquid

and solid density. Our work, which uses data for tin (with a density ratio close to unity)

and a heat flux of the order of the maximum possible value for thermodynamic stability
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indicated a much smaller influence of kinetic energy. This is attributed primarily to the new

boundary condition, which removes the initial infinite melt rate (and corresponding infinite

kinetic energy). The choice of maximum possible heat flux was to permit comparison with

results from the literature, in practice one would use a smaller value and so, in general,

kinetic energy would be even lower than in our calculations. Consequently, our results

indicate that provided the density difference is not large and the boundary condition is

physically realistic then the contribution of kinetic energy to the Stefan condition may be

neglected. This will then considerably simplify the formulation, allowing the removal of the

cubic velocity term.

The mathematical model contained two other novel features, namely the latent heat

variation and the new Stefan condition. Both of these play a role in the melting behaviour,

although since latent heat is the dominant term for most of the process it is the latent heat

variation that appears to be the most important.

One final point to note is that in previous studies of nanoparticle melting, the speed

of melting of small particles was close to the relaxation time for the material. When we

include latent heat variation this melting time decreases even further (the cooling condition

has some effect in slowing down melting, but is not as strong as the latent heat effect).

This indicates that in future models it would be sensible to investigate non-classical heat

equations which hold over very short time-scales.
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to one-phase nanoparticle

melting

In this chapter we briefly show how the techniques developed in Chapter 3 may be used

on phase change problems such as the one described in the previous chapter. The purpose

being to highlight the simplicity of the technique using a model for which numerical and

perturbation solutions already exist. To make the mathematical exposition clear we work

with a reduced form of the model of Chapter 4, where the density remains the same in

either phase, hence the outer boundary is fixed. Further, we consider the one-phase case,

that is, where one of the phases is neglected, in this case by setting the solid temperature

to the phase change temperature.

5.1 One-phase reduction

To obtain the one-phase reduction of (4.16)-(4.19) we set the solid temperature to Tm(t)

throughout the whole process [75] and take ρ = 1. This transforms the problem to

∂T

∂t
=

1

r2

∂

∂r

(
r2∂T

∂r

)
, R(t) < r < 1, (5.1)

with R(0) = 1. Boundary conditions are

(a) T (1, t) = 1 or (b)
∂T

∂r

∣∣∣∣
r=1

= Nu(1− T (1, t)), (c) T (R, t) = Tm(t) = −Γ

R
, (5.2)

where Nu = (R0h)/k. Note that in the equation above we use the Nusselt number Nu but

in equation (4.18) we use Λ. They are equivalent but Λ specifically denotes the Nusselt

73
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number with the maximum heat transfer coefficient that the system allows before directly

vapourising the nanoparticle. The one-phase Stefan condition is

β
[
Lm(t) +

α

R

] dR

dt
= −∂T

∂r

∣∣∣∣
r=R

. (5.3)

5.2 OpTimal Integral Method (TIM)

In this section we will solve the one-phase problem (5.1)-(5.3) using the opTimal Integral

Method (TIM). The exponents for the polynomial approximate solution were presented in

Chapter 3. For the fixed temperature boundary condition (5.2a), we will use n = 1.6 for all

cases. For the Newton cooling boundary condition (5.2b), n ∈ [1.63, 1.95], see Table 3.1.

In Chapter 3 we showed that the transformation u = rT led to more accurate results

for the melting of spherical particles, than those obtained in the original geometry. Conse-

quently, we now adopt this transformation. The governing equation (5.1) becomes

∂u

∂t
=
∂2u

∂r2
, R(t) < r < 1. (5.4)

The boundary conditions are

(a) u(1, t) = 1 or (b)
∂u

∂r

∣∣∣∣
r=1

= u(1, t)(1−Nu) + Nu, (c) u(R, t) = −Γ, (5.5)

and the Stefan condition is

Rρβ [RLm(t) + α]
dR

dt
= −R∂u

∂r

∣∣∣∣
r=R

− Γ. (5.6)

To be able to employ the TIM, we need to choose an approximating function over a

finite region for the temperature [63]. We choose the standard form of equation (3.8),

u(r, t) = a

(
r −R
1−R

)
+ b

(
r −R
1−R

)n
+ c. (5.7)

5.2.1 Fixed temperature

Upon substituting (5.7) into the boundary conditions (5.5a) and (5.5c) we obtain

a = 1 + Γ− b, c = −Γ. (5.8)

As demonstrated in Chapter 3 the appropriate value of n in equation (5.7) is n = 1.6. This

leaves us with the two unknowns b(t) and R(t). The first of the two equations to determine
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the unknowns is found by substitution of u into the Stefan condition (5.6). This leads to

an ordinary differential equation

Rβ[RLm + α]
dR

dt
= − aR

1−R
− Γ, (5.9)

where a is given in terms of b by (5.8).

The second equation comes from integrating the heat equation (5.4), yielding the Heat

Balance Integral,∫ 1

R

∂u

∂t
dr =

∫ 1

R
ur dr ⇒ d

dt

∫ 1

R
u(r, t) dr − Γ

dR

dt
=
∂u

∂r

∣∣∣∣
r=1

− ∂u

∂r

∣∣∣∣
r=R

. (5.10)

Upon substituting the approximating function (5.7) into (5.10) we obtain an ODE for b(t),

db

dt
=

(1−R)[(n+ 1)a+ 2b]Rt + 2bn(n+ 1)

(1−R)2[1− n]
. (5.11)

The initial condition for the position of the melt front is R(0) = 1. The initial condition

for b is not yet known. To determine this we note that at small times R = 1 − 2λt1/2, see

§3.3.1 in Chapter 3, where λ is an unknown constant. The value for λ is only needed for

the numerical solution. For more details on the numerical scheme, see Chapter 3, §3.3.1

Numerical solution. Substituting this small time expression for R into (5.9) gives

b(t) = −2[(1− 2λt1/2)β[(1− 2λt1/2)Lm + α]λ− Γt1/2]λ

1− 2λt1/2
+ Γ + 1, (5.12)

which leads to b(0) = −2β(Lm(0) + α)λ2 + 1 + Γ in the limit t→ 0.

Hence the fixed temperature one-phase Stefan problem has reduced to solving two first

order ODEs (5.9), (5.11) subject to the initial conditions R(0) = 1, b(0) = −2β(Lm(0) +

α)λ2 + 1 + Γ.

5.2.2 Newton cooling

Now we consider condition (5.5b) at the outer boundary. This indicates

a =
(1−R)[Nu + (1−Nu)(b− Γ)]− nb

Nu +R(1−Nu)
, c = −Γ. (5.13)

The exponent n required in equations (5.7), (5.13) will be taken from Table 3.1, depending

on the parameters β and Nu chosen.
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The first equation to determine the unknowns R(t) and b(t) is given by (5.9), but now

a is given by (5.13). The second equation needed to close the system is given by the Heat

Balance Integral (5.10), which in this case leads to

db

dt
=

(1−R)[(n+ 1)a+ 2b]Rt + (n+ 1)[2bn− (1−R)2F1(t)]

(1−R)2[2 + (n+ 1)F2(t)]
, (5.14)

where

F1(t) =

[
−Nu + (1−Nu)(b− Γ)

1− (1−R)(1−Nu)
− [(1−R)(Nu + (1−Nu)(b− Γ))− bn](1−Nu)

[1− (1−R)(1−Nu)]2

]
dR

dt
,

F2(t) =
(1−R)(1−Nu)− n
1− (1−R)(1−Nu)

.

(5.15)

In the limit Nu→∞, F1 → 0, F2 → −1, and equation (5.11) is retrieved.

To find the initial condition for b we approximate R = 1− λt for small times (see §4.5.1

in Chapter 4), where λ is an unknown constant. Substituting this expression R for small

times into (5.9) gives

b(t) =
[(1− λt)ρβ((1− λt)Lm(t) + α)λ− Γ](1− λt(1− Γ))λt+ λt(1− λt)(Γ− Λ− ΓΛ)

n(1− λt)(λtλt− 1)
,

(5.16)

which leads to b(0) = 0 in the limit t→ 0.

So for the Newton cooling condition the one-phase Stefan problem reduces to the solution

of (5.9), (5.14) subject to R(0) = 1, b(0) = 0.

5.2.3 Perturbation solution

In this section we present the perturbation solution for the one-phase Stefan problem of

equations (5.1)-(5.3). The perturbation solution will be based on a large Stefan number

β � 1. We approximate the temperature T ≈ T0 + εT1, where ε = 1/β and rescale time

such that τ = εt. Equation (5.1) leads to

0 =
1

r2

∂

∂r

(
r2∂

2T0

∂r2

)
, (5.17)

∂T0

∂τ
=

1

r2

∂

∂r

(
r2∂

2T1

∂r2

)
. (5.18)

Boundary conditions (5.2a) and (5.2b) result in

T0(1, τ) = 1, T1(1, τ) = 0, (5.19)
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∂T0

∂r

∣∣∣∣
r=R

= Nu(1− T0(1, τ)),
∂T1

∂r

∣∣∣∣
r=R

= −NuT1(1, τ), (5.20)

respectively. Boundary condition (5.2c) leads to

T0(R, τ) = −Γ

R
, T1(R, τ) = 0. (5.21)

Finally, the Stefan condition (5.3) is[
Lm(t) +

α

R

] dR

dτ
= −∂T0

∂r

∣∣∣∣
r=R

− ε∂T1

∂r

∣∣∣∣
r=R

. (5.22)

The general solution of (5.17)-(5.18) is

T0(r, τ) = G1(τ) +
G2(τ)

r
, (5.23)

T1(r, τ) =
r2

6

dG1

dτ
+
r

2

dG1

dτ
− G3(τ)

r
+G4(τ). (5.24)

Applying boundary conditions (5.19) and (5.21) we obtain

G1(τ) =
1 + Γ

1−R(t)
, (5.25)

G2(τ) = −
(

Γ

R
+G1

)
R, (5.26)

G3(τ) =
R

6

(1 + Γ)(2−R)

(1−R)2

dR

dτ
, (5.27)

G4(τ) = −R
2

6

1 + Γ

(1−R)2

dR

dτ
− R2

2

(
Γ

R2
− 1 + Γ

(1−R)2

)
dR

dτ
− R

2

(
Γ

R
− 1 + Γ

1−R

)
dR

dτ
+
G3

R
.

(5.28)

Substituting the solution given by (5.23) and (5.24), using the coefficients Gi given

by (5.25)-(5.28), into the Stefan condition (5.22) we obtain an ODE for dR/dτ . This is

easily solved via MATLAB’s routine ode45 with initial condition R(0) = 1, thus obtaining

the perturbation solution for the melt front for the case of a fixed temperature boundary

condition.

Alternatively, if we apply the Newton cooling boundary conditions (5.20) and (5.21) we

find

G1(τ) = − Γ− Λ(1 + Γ)

R+ Λ(1−R)
, (5.29)

G2(τ) = −
(

Γ

R
+G1

)
R, (5.30)
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G3(τ) =
R

6

(Λ2(R2 − 3R+ 2) + Λ(2−R2) + 2)[(Γ + 1)Λ− Γ]

[(Λ− 1)R− Λ]3
dR

dτ
, (5.31)

G4(τ) = −R
2

6

(Λ(1 + Γ)− Γ)(Λ− 1)

(R+ Λ(1−R))2

dR

dτ
− R2

2

(
Γ

R2
− Λ(1 + Γ)− Γ)(Λ− 1)

(R+ Λ(1−R))2

)
dR

dτ

− R

2

(
Γ

R
− Λ(1 + Γ)− Γ)(Λ− 1)

(R+ Λ(1−R))2

)
dR

dτ
+
G3

R
.

(5.32)

Upon substitution of (5.29)-(5.32) into (5.23) and (5.24) we obtain the perturbation solution

for the liquid temperature in the case of a Newton cooling boundary condition. Now,

substituting this solution into the Stefan condition (5.22) gives an ODE for dR/dτ . Again,

we solve it via MATLAB’s routine ode45 with initial condition R(0) = 1.

5.3 Results

In Figure 5.1 we show the evolution of the melt front with a fixed boundary temperature.

Four cases are shown, corresponding to β = 1, 10 and R0 = 10, 100 nm. Each graph

contains three curves: the solid line is the TIM solution, the dashed line is the numerical

solution and the dash-dot line the perturbation solution. The results in Figures 5.1(b), 5.1(c)

and 5.1(d) show excellent agreement between the TIM and numerical solutions. In the final

figure the curves are virtually indistinguishable, except for in the very final stages of melting.

Figure 5.1(a) shows the greatest discrepancy, resulting in a difference of approximately 11%

between the final melt time predicted by the numerical and TIM solutions. This may be

attributed to the use of an average exponent from Chapter 3, where in general R0 � 10 nm.

Taking a higher value of n reduces the error; for example with n = 1.8 the final difference is

approximately 2%. In the first three figures, Figure 5.1(a)-(c), the perturbation solution is

by far the worst approximation. This should be expected when β = 1 however it is clearly

worse in Figure 5.1(b) where β = 10. Only in Figure 5.1(d) the perturbation solution and

the TIM become nearly undistinguishable. Both approximate solutions are highly accurate

so the choice is rather irrelevant.

In Figure 5.2 we show the evolution of the melt front for the one-phase Stefan problem,

employing the Newton cooling boundary condition. We show the results for different pa-

rameter sets: β = 1, 10 and Nu = 1.5, 15 (corresponding to R0 = 10, 100 nm, respectively).

In solid lines we show the solution given by the TIM. The optimal exponents in this case

depend on the parameter values picked and are taken from Table 3.1. In dashed lines we
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(a) β = 1, R0 = 10 nm.
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(b) β = 10, R0 = 10 nm.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

(c) β = 1, R0 = 100 nm.
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(d) β = 10, R0 = 100 nm.

Figure 5.1: Melting front evolution of a spherical particle given by the TIM solution of the

one-phase problem using the optimal exponents n = 1.6 (solid), by the numerical solution of the

one-phase problem (dashed) and by the perturbation solution (dash-dotted) for various β and R0.

show the numerical solution. In dash-dot lines, we show the perturbation solution. All

results in Figure 5.2 show excellent agreement between the TIM and numerical solutions.

In Figure 5.2(b) and 5.2(d) the curves are virtually indistinguishable, except for in the

very final stages of melting. Figure 5.2(c) shows the greatest discrepancy, resulting in a

difference of less than 3% between the final melt time predicted by the numerical and TIM

solutions. In all cases the TIM is more accurate than the perturbation solution. This is

not surprising when β = 1, but it is interesting to see that the perturbation solution is less

accurate even when β = 10, although in the case shown in Figure 5.2(d) both solutions are
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highly accurate.
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(a) β = 1, Nu = 1.5, n = 1.95.
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(b) β = 10, Nu = 1.5, n = 1.89.
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(c) β = 1, Nu = 15, n = 1.68.
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(d) β = 10, Nu = 15, n = 1.63.

Figure 5.2: Melting front evolution of a spherical particle given by the TIM solution of the one-

phase problem using the optimal exponents found in Table 3.1 (solid), by the numerical solution of

the one-phase problem (dashed) and by the perturbation solution (dash-dotted) for various β and

Nu.

The main reason behind the HBIM’s popularity is the ease of use. For the current

problem when applying a Newton cooling condition we have only studied the two Nu values

where the optimal n is provided in Table 3.1. For different Nu we would have to determine

the n to minimise the error as specified in Chapter 3 so adding to the complexity of this

method. For this reason, in Figure 5.3 we show the evolution of the melt front for the one-

phase Stefan problem with a Newton cooling boundary condition using the TIM solution
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but now keeping n fixed at the average value of Table 3.1, that is n = 1.79 (solid lines).

Numerical and perturbation solution are shown in dashed and dash-dot lines, respectively.

We find that the agreement between the TIM and numerical solutions is excellent in all four

cases. In Figure 5.3(b)-(d) the TIM and numerical solutions are virtually indistinguishable.

Again, in all cases the TIM is the most accurate. From this we may conclude that the TIM

with n = 1.79 is an accurate approximation solution method for spherical melting subject

to Newton cooling.
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(a) β = 1, Nu = 1.5.
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(b) β = 10, Nu = 1.5.
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(c) β = 1, Nu = 15.

0 0.5 1 1.5 2

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

(d) β = 10, Nu = 15.

Figure 5.3: Melting front evolution of a spherical particle given by the TIM solution of the one-

phase problem using the optimal average exponent n = 1.79 (solid), by the numerical solution of the

one-phase problem (dashed) for various β and Nu, and by the perturbation solution (dash-dotted).
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5.4 Conclusions

In this chapter we analysed a reduced form of the model of Chapter 4 in which the density

in the two phases is the same. By setting the solid temperature to the phase change one,

we obtained a one-phase reduction of the Stefan problem for spherical melting. Our goal

was to determine whether the techniques developed in Chapter 3 could help in the study of

spherical melting under realistic conditions. The results were compared against a numerical

solution as well as a perturbation solution, which is the standard choice of approximate

solution method.

First we studied the case for the fixed temperature boundary condition. Chapter 3

suggests the use of the average optimal exponent n = 1.6 in the TIM approximation. This

choice showed excellent results, except for the case when β = 1 and R0 = 10 nm, for which

the error was 11%. We attributed this discrepancy to the choice of an average optimal

exponent. Picking a slightly higher value of n reduced the error to 2%. In all cases, even

when the error was 11% the perturbation solution was less accurate than the TIM.

We then studied the case of Newton cooling at the outer boundary. In Chapter 3 we

dealt with two values of the Nusselt number and determined the optimal exponent n for

both values. Solutions with these two Nusselt numbers were obtained. As with the fixed

temperature case the TIM was the most accurate in all cases, even when the Stefan number

was large.

A problem with the results of Chapter 3 is that the exponent was only provided for two

Nusselt numbers, for other values nmust be recalculated which complicates the calculations.

For this reason we presented results using an average n, rather than the specific value for a

given Nu. This still produced highly accurate results and again these were more accurate

than the corresponding perturbation solutions.

In summary then the work of this chapter makes clear that the TIM can provide highly

accurate solutions for nanoparticle melting by setting n = 1.6 for the fixed boundary tem-

perature problem and n = 1.79 with Newton cooling. The work involved in calculating

the TIM solution is similar to that of the perturbation method, which was less accurate

for all cases examined. Consequently the TIM should be preferred over the more popular

perturbation method.
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Abstract

In this paper we detail the mechanisms that drive substitutional binary diffusion and derive

appropriate governing equations. We focus on the one-dimensional case with insulated

boundary conditions. Asymptotic expansions are used in order to simplify the problem. We

are able to obtain approximate analytical solutions in two distinct cases: the two species

diffuse at similar rates, and the two species have largely different diffusion rates. A numerical

solution for the full problem is also described.

6.1 Introduction

The first systematic study on solid state diffusion was carried out by Roberts [89, Part II]

in 1896, in which he studied diffusion of gold into solid lead at different temperatures, and
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that of gold into solid silver. At the time it was believed that in binary diffusion both

species had the same diffusion rate. Pfeil [82] noticed some strange behaviour in iron/steel

oxidation in which muffle pieces would fall into the surface of the oxidising iron and were

slowly buried until they disappeared beneath the surface. By breaking up the oxidised

layer these muffle pieces could be recovered. This seemed to indicate that the diffusion

rate of iron and oxygen were not the same. Motivated by this observation Smigelskas and

Kirkendall [99] designed an experiment in which a rectangular block of brass (Cu-Zn alloy)

was wound with molybdenum (Mo) wires, since Mo is inert to the system and moves only

depending on the transferred material volume. This block was then electroplated with pure

Cu, and afterwards the resulting block was annealed at 1058 K. They found that the Mo

wires had moved from their original position, which could only mean that Cu and Zn had

different diffusion rates. Moreover, this changed the way solid diffusion was understood,

since, the now called Kirkendall effect showed evidence of a vacancy diffusion mechanism

instead of substitutional or ring mechanism, which were the ones believed to be driving

binary diffusion in alloys at the time.

Vacancy sites are defects in the lattice, and are basically lattice sites which should be

occupied by an atom if the crystal structure was perfect. Atoms use these empty lattice

spaces to diffuse. A consequence of the Kirkendall effect is the fact that voids may form and

in metals this implies deterioration in their mechanical, thermal and electrical properties. It

should be noted that Huntington and Seitz [43], five years before Kirkendall’s contribution,

argued that indeed, it is the vacancy mechanism that drives diffusion, but because of WWII

their work was overlooked.

In recent years the Kirkendall effect has been used to create hollow nanostructures,

although the first example of using the Kirkendall effect to create hollow structures was

by Aldinger [2]. Hollow nanocrystals were first produced by Yin et al. [115]. Gonzalez et

al. [37] were able to synthesise different shapes of nanostructures such as spheres, cubes

and tubes at room temperature. This type of structure has many possible applications.

In biomedicine, they can be used for simultaneous diagnosis and therapy, and the hollow

inside can be used to transport drugs and biomolecules and then release them in a controlled

manner [4]. Piao et al. [83] used hollow nanocapsules of magnetite that not only were used

as a drug delivery vehicle but as a T2 magnetic resonance imaging contrast (MRI) agent.
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A full review on the nanostructures and MRI can be found in [80]. In the lithium-ion

batteries context they have been proposed to be included in the electrodes to enhance rate

capability and cycling stability [106]. Hollow nanoparticles have also been reported to be

good catalysts [48, 52]. A review on synthesis and applications of hollow nanostructures

can be found in [55].

Mathematical models have been proposed to explain the Kirkendall effect. Fan et al. [26]

describe a theory of the physics behind the Kirkendall effect, consisting of two stages: the

first one involves the creation of small voids in the compound interface via bulk diffusion,

and the second one which strongly relies on surface diffusion of the core material. They

say that this model works for both nanospheres and nanotubes. Yu et al. [116] present

a model with vacancy sources and sinks and solve it numerically. Jana et al. [44] create

hollow nanoparticles and present a mathematical model that aims to capture the observed

phenomena. The results of the model match the experimental data, but in it there is a free

parameter chosen for that purpose. Furthermore, the boundary conditions do not seem to

match the physical description of the problem.

In this paper we rigorously derive the governing equations for a substitutional binary

diffusion problem and make sensible assumptions to reduce them in order to have an ana-

lytically tractable problem. We will pose a 1D problem, the simplest scenario possible in

order to gain insight into the physics behind the Kirkendall effect, with the future goal in

mind of being able to model the creation of hollow nanostructures.

In the following section we will derive expressions for the fluxes of the two species

in a binary diffusion problem. In doing so, we obtain expressions for the concentration

dependent diffusion coefficients. We will then derive the fluxes in terms of the fast diffuser

and vacancies, since keeping track of the latter is crucial for our goal. After obtaining

the governing equations for the problem we will use them in the development of a one

dimensional test case in Section 6.3. In two limiting cases we can use asymptotic expansions

to simplify the problem and give analytical solutions. These cases correspond to assuming

that one species is much faster than the other or that they both diffuse at almost the same

rate. We also provide a numerical solution to the full problem. In the results section we

demonstrate that the analytical reduction of the diffusion coefficients is valid and thus the

reduced governing equations can be used to treat this problem.
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6.2 Substitutional diffusion

Consider a binary crystalline solid composed of three species: atomic species A, atomic

species B, and vacancies V. We label the fast diffuser as species A, and the slow one B. The

driving forces for the diffusion of species are the gradients of the chemical potentials µi, so

the concentration fluxes of the components of the system are [57]

JA = −LAA∇µA − LAB∇µB − LAV∇µV , (6.1)

JB = −LBA∇µA − LBB∇µB − LBV∇µV , (6.2)

JV = −LV A∇µA − LV B∇µB − LV V∇µV , (6.3)

where Lij are the kinetic transport coefficients. It holds that LAB = LBA, LAV = LV A,

and LBV = LV B [81]. In a perfect lattice region (free of dislocations, grain boundaries and

surfaces) lattice sites are conserved, so

JA + JB + JV = 0. (6.4)

Substituting for the fluxes from (6.1)-(6.3) and equating the coefficients of the different

chemical potentials leads to relations LV A = −(LAA + LAB), LV B = −(LAB + LBB) and

LV V = −(LAV + LBV ). It also means that we only need two of the fluxes to fully define

the system,

JA = −LAA∇(µA − µV )− LAB∇(µB − µV ), (6.5)

JB = −LAB∇(µA − µV )− LBB∇(µB − µV ). (6.6)

We write in terms of the fluxes of A and B to illustrate the fact that substitutional diffusion

of an atom in a perfect lattice structure occurs via positional exchange with a neighbouring

site.

The kinetic transport coefficients Lij are defined as [58, 66]

LAA = XVXAΓA
ρλa2

kBT

(
1− 2XBΓA

Λ

)
, (6.7)

LAB = LBA = ΓAΓBXAXBXV
2ρλa2

kBTΛ
, (6.8)

LBB = XVXBΓB
ρλa2

kBT

(
1− 2XAΓB

Λ

)
, (6.9)
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where Xi are the mole fractions corresponding to the i-th species (and, by the definition of

mole fraction, XA +XB +XV = 1), ρ is the lattice site density, λ is a geometric factor that

depends on crystal structure, a is the atomic hop distance, kB is the Boltzmann constant,

T is the temperature of the system, and ΓA and ΓB are the jump frequencies of species A

and B, respectively. The jump frequency is the rate at which atoms jump to an adjacent

available site. We denote Γ = ΓA/ΓB > 1, since A is the fast diffuser. A list of typical

values of these parameters is given in Table 6.1. If species i is absent then the coefficients

Lij are such that Ji = 0. The parameter Λ is defined as [66]

Λ =
1

2
(F0 + 2)(XAΓA +XBΓB)− ΓA − ΓB + 2(XAΓB +XBΓA)+√(

1

2
(F0 + 2)(XAΓA +XBΓB)− ΓA − ΓB

)2

+ 2F0ΓAΓB,

(6.10)

where F0 = 2f0
1−f0 , and f0 is the correlation factor for a single component solid with the

crystal structure of the A-B alloy. The fluxes are now well defined.

In order to derive explicit expressions for the fluxes involving the mole fractions of the

atomic species, we define the new chemical potentials µ̃A = µA − µV and µ̃B = µB − µV

which may be written as [116]

µ̃i =
∂G(XA, XB)

∂Xi
, (6.11)

where G is the Gibbs free energy. According to the ideal mixing condition, the free Gibbs

energy per lattice site in the A-B alloy with vacancies is

G(XA, XB) = kBT [XA ln(XA) +XB ln(XB) +XV ln(XV )] . (6.12)

We can rewrite equations (6.5) and (6.6) as

JA = −ρ
(
LAA

1

ρ

∂µ̃A
∂XA

+ LAB
1

ρ

∂µ̃B
∂XA

)
∇XA − ρ

(
LAA

1

ρ

∂µ̃A
∂XB

+ LAB
1

ρ

∂µ̃B
∂XB

)
∇XB,

(6.13)

JB = −ρ
(
LBA

1

ρ

∂µ̃A
∂XA

+ LBB
1

ρ

∂µ̃B
∂XA

)
∇XA − ρ

(
LBA

1

ρ

∂µ̃A
∂XB

+ LBB
1

ρ

∂µ̃B
∂XB

)
∇XB.

(6.14)

The reason for keeping the ρ factor in this form will become apparent later.
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If we define the diffusion coefficients asDAA DAB

DBA DBB

 =

LAA LAB

LBA LBB

1
ρ
∂µ̃A
∂XA

1
ρ
∂µ̃A
∂XB

1
ρ
∂µ̃B
∂XA

1
ρ
∂µ̃B
∂XB

 , (6.15)

then the fluxes (6.13), (6.14) may be written in terms of the mole fractions

JA = −ρDAA∇XA − ρDAB∇XB, (6.16)

JB = −ρDBA∇XA − ρDBB∇XB. (6.17)

6.2.1 Fluxes in terms of the fast diffuser and vacancies

In binary diffusion it is the concentration of A and B that are of practical interest. However,

the process is only possible due to the presence of vacancies. The vacancy concentration is

typically 6 orders of magnitude smaller than XA or XB, so the details of the evolution of

XV are easily lost in a numerical solution. For this reason, from now on we will work with

the fast diffuser A and the vacancies. This means working with the two fluxes JA and JV .

Since lattice sites are conserved,
∑

iXi = 1, we may write

∇XA +∇XB +∇XV = 0. (6.18)

Using equations (6.4), (6.16), (6.17) and (6.18), we then obtain

JA = −ρDV
AA∇XA + ρDAV∇XV , (6.19)

JV = ρDV A∇XA − ρDV V∇XV , (6.20)

where the modified diffusion coefficients are

DV
AA = DAA −DAB, DAV = DAB,

DV A = DBA +DAA −DBB −DAB, DV V = DBB +DAB.
(6.21)

Fick’s second law states that the rate of change of concentration in time is equal to the

divergence of the flux. Noting that the concentration may be written in terms of the mole

fraction, Ci = ρXi, we find diffusion equations for XA and XV ,

∂XA

∂t
= −1

ρ
∇ · JA = ∇ ·

(
DV
AA∇XA

)
−∇ · (DAV∇XV ) , (6.22)

∂XV

∂t
= −1

ρ
∇ · JV = −∇ · (DV A∇XA) +∇ · (DV V∇XV ) . (6.23)

Note that the ρ term has now disappeared in the governing equations.
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6.2.2 Diffusion coefficients

The diffusion coefficients defined by equations (6.15), (6.21) are very complex, making

it difficult to identify the dominant mechanisms. Consequently we will now analyse the

expressions for DAA, DAB, DBA and DBB. Starting with DAA we note that it consists of

two terms,

LAA
1

ρ

∂µ̃A
∂XA

= XVXAΓA
ρλa2

kBT

(
1− 2XBΓA

Λ

)
1

ρ
kBT

(
1

XA
+

1

XV

)
= ΓAλa

2

(
1− 2XBΓA

Λ

)
(XV +XA) ,

(6.24)

LAB
∂µ̃B
∂XA

= XVXAXBΓAΓB
2ρλa2

kBTΛ

1

ρ

kBT

XV
= XAXBΓAΓB

2λa2

Λ
, (6.25)

which leads to

DAA = λa2ΓA

[(
1− 2XBΓA

Λ

)
(XV +XA) +

2XAXBΓB
Λ

]
. (6.26)

By a similar process we obtain

DAB = λa2ΓA

[
XA

(
1− 2XBΓA

Λ

)
+

2XAΓB
Λ

(XV +XB)

]
, (6.27)

DBA = λa2ΓB

[
2XBΓA

Λ
(XV +XA) +XB

(
1− 2XAΓB

Λ

)]
, (6.28)

DBB = λa2ΓB

[
2XAXBΓA

Λ
+

(
1− 2XAΓB

Λ

)
(XV +XB)

]
. (6.29)

Substituting (6.26)-(6.29) into (6.21) gives

DV
AA = λa2ΓAXV

[
1− 2

Λ
(ΓA(1−XV )−XA(ΓA − ΓB))

]
, (6.30)

DAV = λa2ΓAXA

[
1− 2

Λ
((1−XA)(ΓA − ΓB)− ΓAXV )

]
, (6.31)

DV A = λa2XV

[
(ΓA − ΓB)

(
1− 2

Λ
((1−XA −XV )ΓA + ΓBXA)

)]
, (6.32)

DV V = λa2

[
XA(ΓA − ΓB)

(
1− 2

Λ
((1−XA)(ΓA − ΓB)−XV ΓA)

)
+ ΓB

]
. (6.33)

The governing equations (6.22)-(6.23) for the diffusion of species A and the vacancies

are now well defined.
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parameter name value units

ρ lattice site density 6.021× 1028 atoms/m3

λ geometric factor 1/6 -

f0 geometric correlation factor 0.7815 -

F 2f0/(1− f0) 7.1533 -

a lattice constant 4.05× 10−10 m

ΓB hopping frequency of slow diffuser 107 Hz

Γ ratio of hop frequencies of slow and fast diffuser - -

ΓA hopping frequency of fast diffuser ΓΓB Hz

XV,0 initial vacancy mole fraction 10−6 -

Table 6.1: Typical parameter values. They are quite similar as the ones corresponding to alu-

minium being the slow diffuser. Data taken from [59, 116].

6.3 One dimensional case

Consider an insulated one-dimensional bar of length 2l. At t = 0 the side x ∈ [−l, 0] is made

of material A (and a proportion of vacancies), and the side x ∈ [0, l] is made of material B

(and a proportion of vacancies). A sketch of the situation is shown in Figure 6.1.

A B

x

l−l

Figure 6.1: Sketch of the one dimensional bar case.

For t > 0 the diffusion of species is defined by the 1D forms of (6.22)-(6.23)

∂XA

∂t
=

∂

∂x

(
DV
AA

∂XA

∂x

)
− ∂

∂x

(
DAV

∂XV

∂x

)
, (6.34)

∂XV

∂t
= − ∂

∂x

(
DV A

∂XA

∂x

)
+

∂

∂x

(
DV V

∂XV

∂x

)
, (6.35)



6.3. One dimensional case 93

with the diffusion coefficients given in (6.30)-(6.33), subject to boundary conditions

∂XA

∂x

∣∣∣∣
x=±l

=
∂XV

∂x

∣∣∣∣
x=±l

= 0. (6.36)

The boundary conditions confine the material to x ∈ [−l, l]. In practice the Kirkendall

effect can cause the boundaries to move. We will not study this situation here. The initial

conditions are

XA(x, 0) =

 XA,ini if −l < x < 0,

0 if 0 < x < l,
XB(x, 0) =

 0 if −l < x < 0,

XB,ini if 0 < x < l,

XV (x, 0) = XV,ini,

(6.37)

where XA,ini, XB,ini, and XV,ini denote the constant initial mole fractions of material A, B,

and vacancies, respectively, and Xi,ini = 1−XV,ini, i = A, B.

We now non-dimensionalise the variables

x̂ =
x

l
, t̂ =

D̄BB

l2
t, (6.38)

where D̄BB = λa2ΓB. We also rescale Γ̂i = Γi/ΓB. Immediately dropping the hats the

governing equations become

∂XA

∂t
=

∂

∂x

(
DV
AA

∂XA

∂x

)
− ∂

∂x

(
DAV

∂XV

∂x

)
, (6.39)

∂XV

∂t
= − ∂

∂x

(
DV A

∂XA

∂x

)
+

∂

∂x

(
DV V

∂XV

∂x

)
, (6.40)

where

DV
AA = ΓXV

[
1− 2

Λ
(Γ(1−XV )−XA(Γ− 1))

]
, (6.41)

DAV = ΓXA

[
1− 2

Λ
((1−XA)(Γ− 1)− ΓXV )

]
, (6.42)

DV A = XV

[
(Γ− 1)

(
1− 2

Λ
(Γ(1−XV )−XA(Γ− 1))

)]
, (6.43)

DV V = XA(Γ− 1)

[
1− 2

Λ
((1−XA)(Γ− 1)−XV Γ)

]
+ 1. (6.44)

The boundary conditions are unchanged (although now applied at x = ±1).
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6.3.1 Approximate solutions

We wish to solve the problem defined by (6.39)-(6.40) and appropriate boundary conditions.

In order to do so we try to simplify the problem. A sensible assumption to make is that

XV = O(ε), where ε � 1 is taken to be the initial vacancy mole fraction. We write

XA = XA,0 + εXA,1 and XV = εXV,1. The governing equations (6.39)-(6.40) to first order

in ε in a regular asymptotic expansion are

∂XA,0

∂t
+ ε

∂XA,1

∂t
= ε

∂

∂x

(
DV
AA,1

∂XA,0

∂x

)
− ε ∂

∂x

(
DAV,0

∂XV,1

∂x

)
, (6.45)

ε
∂XV,1

∂t
= −ε ∂

∂x

(
DV A,1

∂XA,0

∂x

)
+ ε

∂

∂x

(
DV V,0

∂XV,1

∂x

)
. (6.46)

The four diffusion coefficients come from the expansions

DV
AA = εDV

AA,1 +O(ε2), DAV = DAV,0 + εDAV,1 +O(ε2),

DV A = εDV A,1 +O(ε2), DV V = DV V,0 + εDV V,1 +O(ε2),
(6.47)

where

DV
AA,1 = ΓXV,1

[
1− 2

Λ
(Γ(1−XA,0) +XA,0)

]
, (6.48)

DAV,0 = ΓXA,0

[
1− 2

Λ
(1−XA,0)(Γ− 1)

]
, (6.49)

DV A,1 = XV,1(Γ− 1)

[
1− 2

Λ
(Γ(1−XA,0) +XA,0)

]
, (6.50)

DV V,0 = XA,0(Γ− 1)

[
1− 2

Λ
(1−XA,0)(Γ− 1)

]
+ 1. (6.51)

The expression used for Λ in the equations above (6.48)-(6.51), to leading order, is

Λ =
1

2
(F0 + 2)(XA,0Γ + 1−XA,0)− Γ− 1 + 2 (XA,0 + Γ(1−XA,0)) +√(

1

2
(F0 + 2)(XA,0Γ + 1−XA,0)− Γ− 1

)2

+ 2F0Γ

(6.52)

To first order in ε the problem to solve is now

∂XA,0

∂t
= 0, (6.53)

∂XA,1

∂t
=

∂

∂x

(
DV
AA,1

∂XA,0

∂x

)
− ∂

∂x

(
DAV,0

∂XV,1

∂x

)
, (6.54)

∂XV,1

∂t
= − ∂

∂x

(
DV A,1

∂XA,0

∂x

)
+

∂

∂x

(
DV V,0

∂XV,1

∂x

)
, (6.55)
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with boundary conditions

∂XA,0

∂x

∣∣∣∣
x=±1

=
∂XA,1

∂x

∣∣∣∣
x=±1

=
∂XV,1

∂x

∣∣∣∣
x=±1

= 0. (6.56)

Equation (6.53) tells us that in this time scale, XA,0 is in steady state and so is defined by

the initial condition, XA,0 = f(x) = XA(x, 0). This indicates the need to study the slow

time dynamics; since on the normal time scale we find that XA,0 is constant in time we will

not see any behaviour of interest. For this reason, we rescale time as τ = εt. The problem

then becomes, to first order in ε,

∂XA,0

∂τ
=

∂

∂x

(
DV
AA,1

∂XA,0

∂x

)
− ∂

∂x

(
DAV,0

∂XV,1

∂x

)
, (6.57)

0 = − ∂

∂x

(
DV A,1

∂XA,0

∂x

)
+

∂

∂x

(
DV V,0

∂XV,1

∂x

)
, (6.58)

subject to boundary conditions (6.56).

Special cases

In the previous section although we could simplify the governing equations we were not able

to provide any analytical solutions and thus not much insight into what drives this process.

In the following we study two particular cases of the problem in which we are able to find

analytical solutions.

Case Γ� 1

Assuming A diffuses much faster than B, that is, Γ� 1, (6.48)-(6.51) reduce to

DV
AA ∼ ΓXV , DAV ∼ ΓXA,

DV A ∼ (Γ− 1)XV , DV V ∼ (Γ− 1)XA + 1.
(6.59)

These reductions hold provided XA,0 is not close to zero. The problem becomes

∂XA,0

∂t
= 0, (6.60)

∂XA,1

∂t
= ΓXV,1

∂2XA,0

∂x2
− ΓXA,0

∂2XV,1

∂x2
, (6.61)

∂XV,1

∂t
= −(Γ− 1)XV,1

∂2XA,0

∂x2
+ [1 + (Γ− 1)XA,0]

∂2XV,1

∂x2
, (6.62)

with boundary conditions (6.56). The system above leads again to XA,0 = XA(x, 0), which

is the Heaviside function of −x. Although equation (6.58) can be integrated it does not give
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a simple relation between XA,0 and XV,1 due to the nonlinear diffusion coefficients. Again

analytical progress is difficult so we now focus on the slow time dynamics.

Slow time dynamics

Consider the system defined in (6.60)-(6.62) and rescale time so that τ = εt. This leads to

∂XA,0

∂τ
=

∂

∂x

(
ΓXV,1

∂XA,0

∂x

)
− ∂

∂x

(
ΓXA,0

∂XV,1

∂x

)
, (6.63)

0 = − ∂

∂x

(
(Γ− 1)XV,1

∂XA,0

∂x

)
+

∂

∂x

(
[1 + (Γ− 1)XA,0]

∂XV,1

∂x

)
. (6.64)

Integrating (6.64) yields

− (Γ− 1)XV,1
∂XA,0

∂x
+ [1 + (Γ− 1)XA,0]

∂XV,1

∂x
= 0, (6.65)

where the constant of integration is zero because of the boundary conditions (6.56). Rear-

ranging and integrating by substitution yields

XV,1(x) = XV,1(−1)

(
1 + (Γ− 1)XA,0(x)

1 + (Γ− 1)XA,0(−1)

)
, (6.66)

where XV,1(−1) is picked such that
∫ 1
−1XV,1(x) dx = 1. Let M0 =

∫ 1
−1XA,0(x) dx. Then

equation (6.65) can be written as

XV,1(x) =
1 + (Γ− 1)XA,0(x)

2 + (Γ− 1)M0
. (6.67)

Substituting (6.67) into equation (6.63) gives

∂XA,0

∂τ
=

Γ

2 + (Γ− 1)M0

∂2XA,0

∂x2
. (6.68)

This indicates that on a slow time scale the vacancies will adapt to A as described in

equation (6.67) and A will follow a simple diffusion process described by (6.68).

Let us define α = Γ/(2 + (Γ − 1)M0). Solving equation (6.68) subject to (6.56) is a

simple case of separation of variables,

XA,0(x, τ) =
M0

2
+

∞∑
k=1

Ck cos

(
kπ

2
(x+ 1)

)
e−( kπ2 )

2
ατ , (6.69)

where

Ck =

∫ 1

−1
XA,0(x, 0) cos

(
kπ

2
(x+ 1)

)
dx. (6.70)
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The Ck values can be computed analytically for given initial data such as (6.37). In this

case Ck are only nonzero when k is odd,

Ck = (−1)k+1 2XA,ini

(2k − 1)π
. (6.71)

Consequently, via equation (6.67), we obtain

XV,1(x, τ) =
α

Γ

(
1 + (Γ− 1)

[
M0

2
+

∞∑
k=1

Ck cos

(
(2k − 1)π

2
(x+ 1)

)
e
−
(

(2k−1)π
2

)2
ατ

])
.

(6.72)

Case Γ ∼ 1

Another limit where progress can be made is Γ ∼ 1. This means that both species diffuse at

similar rates (although A is still faster). This reduces the diffusion coefficients (6.48)-(6.51)

to

DV
AA ∼ ΓDCXV , DAV ∼ ΓXA,

DV A ∼ (Γ− 1)DCXV , DV V ∼ (Γ− 1)XA + 1,
(6.73)

where DC = 1− 2/(F0 + 2) is constant. These reductions are valid for all XA. We can no

longer solve the problem analytically, but these expressions for the diffusion coefficients are

much simpler than the original ones, and using them can further simplify the study of the

Kirkendall effect.

However, it is possible to make analytical progress if we introduce a small error into the

diffusion coefficients DAV and DV V so that

DAV ∼ ΓDCXA, DV V ∼ (Γ− 1)DCXA + 1, (6.74)

where using the parameter values of Table 6.1, DC = 0.7815. As we will see later the

errors resulting from this approximation are small. The concentration XA,0 is now the

same solution as in equation (6.69) but with α = DCΓ/(2 + (Γ− 1)DCM0),

XA,0(x, τ) =
M0

2
+
∞∑
k=1

Ck cos

(
(2k − 1)π

2
(x+ 1)

)
e
−
(

(2k−1)π
2

)2
ατ
. (6.75)

For the concentration of vacancies XV,1 we find

XV,1(x, τ) =
α

ΓDC

(
1 + (Γ− 1)DC

[
M0

2
+

∞∑
k=1

Ck cos

(
kπ

2
(x+ 1)

)
e−( kπ2 )

2
ατ

])
. (6.76)



98 Chapter 6. Mathematical model for substitutional binary diffusion in solids

6.3.2 Numerical solution of the slow time dynamics

Let ui and vi be the average values of mole fractions XA,0 and XV,1, respectively, over the

interval (xi−1/2, xi+1/2) of length h, centered at xi. We introduce the vectors Y and Z

which represent the interpolated values of u and v falling on the subinterval end points. We

have that

Yi = ui+1/2 =
ui + ui+1

2
, i = 1, . . . , I + 1, (6.77)

Zi = vi+1/2 =
vi + vi+1

2
, i = 1, . . . , I + 1. (6.78)

The right-hand side of equation (6.57) can be discretised as

fi =
1

h
[(Qi − qi)− (Qi−1 − qi−1)] , (6.79)

where

Qi = ΓZi

[
1− 2

Λ(Yi)
(Γ(1− Yi) + Yi)

]
ui+1 − ui

h
, i = 1, . . . , I + 1, (6.80)

qi = ΓYi

[
1− 2

Λ(Yi)
(1− Yi)(Γ− 1)

]
vi+1 − vi

h
, i = 1, . . . , I + 1. (6.81)

The function Λ(Yi) is approximated analytically from (6.10) as

Λ(Yi) =
1

2
(F0 + 2)(YiΓ + (1− Yi))− ΓA − 1 + 2(Yi + (1− Yi)Γ)

+

√(
1

2
(F0 + 2)(YiΓ + (1− Yi))− Γ− 1

)2

+ 2F0Γ + O(ε).

(6.82)

The discretisation of the right-hand side of equation (6.58) is approximated similarly as

gi =
1

h
[(−Pi + pi)− (−Pi−1 + pi−1)] , (6.83)

where

Pi = Zi(Γ− 1)

[
1− 2

Λ(Yi)
(ΓA(1− Yi) + ΓBYi)

]
ui+1 − ui

h
, i = 1, . . . , I + 1, (6.84)

pi =

(
Yi(Γ− 1)

[
1− 2

Λ(Yi)
(1− Yi)(ΓA − ΓB)

]
+ 1

)
vi+1 − vi

h
, i = 1, . . . , I + 1. (6.85)

The boundary conditions (6.56) transform into

f1 =
u2 − u1

h
= 0, (6.86)
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fI+2 =
uI+2 − uI+1

h
= 0, (6.87)

g1 =
v2 − v1

h
= 0, (6.88)

gI+2 =
vI+2 − vI+1

h
= 0, (6.89)

where ghost cells 1 and I + 2 are introduced outside the domain.

We define the mass matrix M as

M =



1 1 0 · · · 0 0 . . . 0

2 0 1 · · · 0 0 . . . 0
...

...
. . .

...
...

. . .
...

I 0 0 · · · 1 0 · · · 0

I+1 0 0 · · · 0 0 . . . 0

I+2 0 0 · · · 0 0 . . . 0
...

...
. . .

...
...

. . .
...

2(I+2) 0 0 · · · 0 0 · · · 0



,

F = (f2, . . . , fI+1, f1, fI+2, g1, . . . , gI+2), and U = (u,v). Then we can write the problem

as

M
∂U

∂t
= F(U). (6.90)

The unknowns are ui, vi, for i = 1, . . . , I + 2. Equation (6.90) can be solved easily via the

ODE routines in MATLAB. We use the ode15s routine.

6.4 Results

In this section we present the results of the one-dimensional case. The parameter values

used can be found in Table 6.1.

The fast time system is defined by equations (6.53)-(6.55). The initial conditions are

XA(x, 0) = H(−x) and XV (x, 0) = 0.5. The second time regime corresponds to t � 1,

τ = εt, and is described by equations (6.57)-(6.58). Figure 6.2 displays the steady-state

(large time) solutions for (6.53)-(6.55), the two curves represent XA,0 (solid) and XV,1

(dashed). These provide the initial conditions, τ = 0, for (6.57)-(6.58). Both solutions show
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that distributions reflect the Heaviside initial condition for XA. On this time-scale there

is no noticeable movement of XA, but there has been a significant shift in the vacancies

(which indicates that there has been movement of XA, XB but, since they have a much

larger volume fraction it cannot be observed in the figure). The amount of vacancies that

move depends strongly on Γ. When Γ = 1.5, that is A diffuses only slightly faster than B

the redistribution of vacancies is relatively small, from the initial value of 0.5 to 0.6 on the

left hand side which is balanced by 0.4 on the right hand side. When A diffuses much faster

than B, in this example Γ = 100, nearly all vacancies move to the left hand side. This is

easily explained: A and B having a similar jump frequency means that more or less the

number of exchanges between A and a vacancy, and B and a vacancy is the same, thus the

increase of V on the left hand side of the bar is small. On the other hand, Γ � 1 means

that a large number of A atoms are going to exchange position with vacancies for every B

atom that is able to do this type of exchange. The only way to compensate this difference

is via vacancy lattice spaces, that end up where A was at the beginning of the process.
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(a) Γ = 1.5.
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(b) Γ = 100.

Figure 6.2: Solution of equations (6.57)-(6.58). XA,0 (solid) and XV,1 (dashed) when τ → 0 for

different Γ values.

In Figure 6.3 we compare the numerical solution (solid) of XA,0 (left) and XV,1 (right)

as described in Section 6.3.2 to the large Γ approximate analytic solution (dashed) given

by equations (6.69) and (6.72), respectively. We take 10 terms in the series to plot the

solutions. We choose Γ = 100 (Figure 6.3(a), 6.3(b)), Γ = 10 (Figure 6.3(c), 6.3(d)), and
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Γ = 1.5 (Figure 6.3(e), 6.3(f)). As expected, for Γ = 100, there is excellent agreement

between the numerical and analytical solutions. The agreement deteriorates as Γ decreases,

however, even when Γ = 1.5 the difference in XA on the interval x ∈ [−1, 0] is only around

7%. On the interval [0, 1] the difference is larger, this is a result of the simplification of

the diffusion coefficients under large Γ (equation (6.59)) which is valid provided XA,0 is not

close to zero. The error is most noticeable for small times and large Γ near x = 1. However,

as time increases and so does XA the error also decreases. So, despite the fact that the

simplification requires the assumptions that Γ� 1 and XA,0 is not close to zero, the errors

for Γ = 1.5, 10 are reasonable (Figure 6.3(a), 6.3(b); 6.3(c), 6.3(d), respectively). In all cases

for sufficiently large times the solutions tend to equilibrium, that is, XA,0 = XV,1 = 0.5. To

give an idea of the process time-scale we note that when l = 10 nm in the figures t4 = 366

s, when 10 µm, t4 = 3.66× 108 s.

In Figure 6.4 we show a comparison of the full numerical solution (dashed), a numerical

solution for the reduction where Γ ∼ 1 (equation (6.73)) (dashed) and the analytical solution

obtained using the approximation to DAV and DV V of equation (6.74) (dash-dotted) and

taking 10 terms in the series. For the case where Γ = 1.5, Figure 6.4(a) and 6.4(b), the

agreement between all three solutions is excellent although the analytical solution shows a

slight error in the vacancy curves. It is interesting that the solution with an approximate

diffusion coefficients is so accurate, since the error in DAV , DV V may be around 20%, so we

must assume that these coefficients do not have a large effect on the solution. For larger

Γ = 10 (Figure 6.4(c) and 6.4(d)), as expected, the discrepancy increases.

6.5 Conclusions

One of the main aims of this paper was to derive governing equations for substitutional

binary diffusion, which may then be used in different geometries. Once derived we then

reduced the equations to simulate substitutional diffusion in a one-dimensional bar. Our

results indicated two distinct time-scales for the process: an initial fast time-scale where

vacancies rapidly redistribute, followed by a slow redistribution to the constant steady-state.

The derived diffusion coefficients turned out to be quite complex, making the governing

equations highly nonlinear. Useful reductions were only possible in a limited number of
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cases. For Γ � 1, that is, one species diffuses much faster than the other we were able to

obtain an analytical solution, via separation of variables. The reduction was based on the

volume fraction of fast diffuser not being close to zero. In general results were excellent,

except for at small times, near x = 1 where initially the volume fraction is zero. However,

these errors decreased with time. For Γ ∼ 1 analytical progress was made by slightly

modifying two of the diffusion coefficients to give a system that could again be solved using

separation of variables. Despite the fact that the error in diffusion coefficients could be close

to 20% the errors arising from this modification were small.

Finally, we have developed a model which can be used readily to implement in other

geometries or with different boundary conditions, opening the doors to model the creation

of hollow nanostructures.
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(e) XA,0 for Γ = 1.5.
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Figure 6.3: XA,0 and XV,1 as given by the numerical solution to the full problem (solid) and by

the analytical solution to the reduced problem Γ � 1, equations (6.69) and (6.72) (dashed), for

different Γ values. Different colours indicate different times: t1 (black) < t2 (gray) < t3 (orange) <

t4 (dark red).
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(d) XV,1 for Γ = 10.

Figure 6.4: Numerical solution of XA,0 and XV,1 to the full problem (solid), numerical solution

to the reduced problem Γ ∼ 1 (dashed), and analytical solution to the reduced problem Γ ∼ 1

using DAV and DV V in equations (6.75) and (6.76) (dash-dotted). Plots for different Γ values are

presented. Different colours indicate different times: t1 (black) < t2 (gray) < t3 (orange) < t4 (dark

red).
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Abstract

In this paper we use the cellular automaton (CA) approach to model one-dimensional binary

diffusion in solids. Employing a very simple state change rule we define an asynchronous CA

model and take its continuum limit to obtain the governing equations of the problem. We

show that in the limit where the number of cells tends to infinity the CA model approaches

a continuous model derived in previous work [88]. Thus, showing that the CA approach

provides a new, simple method to study and model binary diffusion.

7.1 Introduction

A cellular automaton (CA) model consists of an n-th dimensional space partitioned into a

discrete subset of n-dimensional volumes, which are called cells and are defined in a discrete

105
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time. A finite list of possible states is defined for each cell, and each cell has one state.

A local neighbourhood is defined for each cell at every time step. The state of a cell can

be changed by a state change rule, which is a rule that allows the computation of the new

state for the cell, and is dependent on other cells in the local neighbourhood [45]. Typically,

this rule is fixed, that is, it is the same rule for all cells. It does not change over time

and it is applied to all cells simultaneously. However, this rule can be stochastic, which

means that the new states are chosen according to some probability distribution. This rule

can also be applied to each individual cell independently and so the new state of a cell

affects the calculation of states in neighbouring cells. Chopard et al. [19] presented the

first application of cellular automaton to model diffusion on lattices. Subsequently many

other CA approaches were applied to reaction-diffusion problems, see Boon et al. [11] and

Weimar [107]. Then, it seems, there is a pause in the literature on using cellular automata

approaches to work with the diffusion equation. Moreover, this type of modelling does not

seem to have been applied to work with coupled, nonlinear diffusion problems, which are

the focus of this paper.

The Kirkendall effect is the name given to the physical phenomenon whereby atomic

diffusion occurs via a vacancy exchange mechanism instead of a substitutional or ring mech-

anism. Recently the Kirkendall effect has been used to create hollow nanostructures, which

can be used in a variety of applications. In Aldinger [2] they present the first use of the

Kirkendall effect to create hollow structures. The hollow permits their use in transporting

drugs and biomolecules and then releasing them in a controlled manner [4]. Na et al. [80]

present a review on nanostructrues and magnetic resonance imaging (MRI). These structures

have also been proposed to enhance the rate capability and cycling stability in lithium-ion

batteries [106]. Hollow nanoparticles have also been reported to be good catalysts [48, 52].

In an attempt to understand, and so better control the growth of hollow nanoparticles

Ribera et al. [88] rigorously derived governing equations for the substitutional binary diffu-

sion problem. Moreover, under sensible assumptions they reduce these governing equations

in order to provide an analytically tractable problem. As a starting point they examine the

one-dimensional problem of an insulated bar. In this paper we investigate the same problem

but from the cellular automaton standpoint. This will help understand further the physical

mechanisms behind the Kirkendall effect.
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In the following section we present the model of Ribera et al. [88], which will be the

starting point of the cellular automaton model, presented in Section 7.3. In the limit where

the number of cells is large we prove that the CA model reduces to a special case of binary

diffusion, where one species diffuses much faster than the other. In the Results section we

verify this by showing that at large time and with a fast diffuser the CA model coincides

with the continuum model. Further, since the computer speed reduces with N it is clear

that the CA model is particularly useful at small scales, such as with nanostructures.

7.2 Continuum model for substitutional binary diffusion

Let us consider a binary crystalline solid composed of three species: atomic species A,

atomic species B, and vacancies V. We label the fast diffuser as species A, and the slow one

B. Since we are considering a perfect lattice, that means that the sum of all the fluxes is

zero and then it is only necessary to work with the evolution of two species to fully define

the problem.

Now consider an insulated one-dimensional bar of length 2l. At t = 0 the side x ∈ [−l, 0]

is made of material A (and a proportion of vacancies), and the side x ∈ [0, l] is made of

material B (and a proportion of vacancies).

For t > 0 the diffusion of species is defined by

∂XA

∂t
=

∂

∂x

(
DV
AA

∂XA

∂x

)
− ∂

∂x

(
DAV

∂XV

∂x

)
, (7.1)

∂XV

∂t
= − ∂

∂x

(
DV A

∂XA

∂x

)
+

∂

∂x

(
DV V

∂XV

∂x

)
, (7.2)

where Xi are the mole fractions corresponding to the i-th species and the diffusion coef-

ficients DV
AA, DAV , DV A and DV V vary nonlinearly with Xi [88]. In the limit where A

diffuses much faster than B,

D̂V
AA ∼ ΓXV , D̂AV ∼ ΓXA,

D̂V A ∼ (Γ− 1)XV , D̂V V ∼ [(Γ− 1)XA + 1] .
(7.3)

The boundary conditions are

∂XA

∂x

∣∣∣∣
x=±l

=
∂XV

∂x

∣∣∣∣
x=±l

= 0, (7.4)
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and the initial conditions are

XA(x, 0) =

 XA,ini if −1 < x < 0,

0 if 0 < x < 1,
XB(x, 0) =

 0 if −1 < x < 0,

XB,ini if 0 < x < 1,

XV (x, 0) = XV,ini,

(7.5)

where XA,ini, XB,ini, and XV,ini denote the constant initial mole fractions of material A, B,

and vacancies, respectively, and Xi,ini = 1−XV,ini, for i = A, B.

In the following section we will show that the CA model reduces to (7.1), (7.2) in the

appropriate limit.

7.3 Cellular automaton model

In order to define the cellular automaton model for the one-dimensional problem discussed

in §7.2 we are going to define a two-dimensional space of size N ×N that is partitioned into

two-dimensional 1× 1 cells. This would correspond to a two dimensional lattice of N ×N

atoms, in which each cell corresponds to one atomic site. Thus, the list of states for each

cell in the CA model are “A atom”, “B atom”, and “vacancy V”. The grid is considered to be

periodic on the top/bottom edges. The model presented here will be asynchronous, that is,

at each time step only one cell will be picked to apply the state change rule. Since physically

atomic diffusion happens via vacancy exchange, it makes sense that the only cells in our

CA grid that change state are those situated next to a vacancy cell and the vacancy cells

themselves. For this reason, at each time step we only pick cells that represent vacancies to

apply the change of state rule. Moreover, the choice of which vacancy cell is picked is done

at random. We define the local neighbourhood of a cell as all the cells that surround it.

Thus, each cell has eight neighbours, except the ones on the left and right columns on the

grid, which can have five or three (corners) neighbours. We pick one of these neighbours at

random and then apply the state change rule, which is defined as follows. If the neighbour

cell picked is an A cell, we will proceed to exchange the states of the vacancy and A cell,

and so A has moved. If the neighbour cell picked is a B cell, the probability of exchanging

states with the vacancy cell is defined to be 1/Γ. This will capture the physical feature



7.3. Cellular automaton model 109

in the model of B being Γ times slower than A. Finally, if the neighbour cell picked is a

vacancy, no change of states is applied.

Our interest now is to find the continuum limit of the asynchronous cellular automaton

model we have described. Let us define the fraction of V cells, A cells, and B cells in the

whole grid as

V̄ =
NV

N2
, Ā =

NA

N2
, B̄ =

NB

N2
, (7.6)

where Ni is the number of cells of state i. Let us pick a square subgrid of size
√
N ×

√
N ,

and name it the (i, j) subgrid (see Figure 7.1). Inside it, we define the following three

functions,

• V̄i, j , the fraction of V cells in the (i, j) subgrid;

• Āi, j , the fraction of A cells in the (i, j) subgrid;

• B̄i, j , the fraction of B cells in the (i, j) subgrid.

All three functions above are dependent on space and time. Note that the choice ofM =
√
N

of the subgrid is arbitrary. We only need limN→∞M/N = 0 in a suitable manner.

We wish to study the evolution in one time step of the fraction number of V cells, A

cells and B cells inside the (i, j) subgrid. Let Āni, j , V̄
n
i, j , B̄

n
i, j be the fraction number of A

cells, vacancies and B cells, respectively, in the (i, j) subgrid at time step n. The aim is to

compute Ān+1
i, j , V̄ n+1

i, j and B̄n+1
i, j . In the next two sections we will discuss the change of A

cells and V cells in one time step inside the (i, j) subgrid, respectively. We will omit the

case of B cells since by conservation it can be found from A and V.

7.3.1 A cells

There are two factors that can affect the amount of A cells in the (i, j) subgrid in one

time step: either a vacancy of the subgrid is able to exchange places with an A cell of a

neighbouring subgrid (that adds an A cell), or a vacancy from a neighbouring subgrid is

able to exchange places with an A cell in the (i, j) subgrid (that removes an A cell). Thus,

to add one A cell it is necessary that at the n-th time step

{1.1} a vacancy V inside the (i, j) subgrid is picked;

{1.2} said V is on one of the edges of the (i, j) subgrid;
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V

(i, j) subgrid

(i, j + 1) subgrid

(i, j − 1) subgrid

(i− 1, j) subgrid (i+ 1, j) subgrid

←
√
N →

↑√
N
↓

Figure 7.1: Sketch of the subgrid set-up. In red the local neighbourhood of a V cell is shown.

{1.3} the cell picked to do the exchange is an A cell and is in one of the neighbouring

(i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1) subgrids.

Similarly, to remove one A cell, it is necessary that at the n-th time step

{2.1} a vacancy V in one of the neighbouring (i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)

subgrids is picked;

{2.2} said V is on one of the edges of the subgrid it is on (the one neighbouring the (i, j)

subgrid);

{2.3} the cell picked to do the exchange is an A cell and is in the (i, j) subgrid.

The probabilites of the events mentioned above are obtained via standard probability

theory under the assumption that A and V are uniformly distributed in the subdomain,

P ({1.1}) =
NV̄i, j
N2V̄

, P ({1.2}) = 4

√
N

N
, (7.7)

P ({1.3}) =
1

4

(
Āi+1, j + Āi−1, j + Āi, j+1 + Āi, j−1

)
, (7.8)

and

P ({2.1}) =
N

N2V̄

(
V̄i−1, j + V̄i+1, j + V̄i, j−1 + V̄i, j+1

)
, (7.9)
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P ({2.2}) =

√
N

N
, P ({2.3}) = Āi, j . (7.10)

Now, the fraction of A cells at the next time step Ān+1
i, j is just the fraction of A cells at the

current time step Āni, j plus the probability of adding an A cell into the subgrid, P({1.1}) ×

P({1.2}) × P({1.3}), minus the probability of removing an A cell into the subgrid, P({2.1})

× P({2.2}) × P({2.3}),

Ān+1
i, j =Āni, j +

1

N

(
NV̄ n

i, j

N2V̄

)(
4

√
N

N

)
1

4

(
Āni+1, j + Āni−1, j + Āni, j+1 + Āni, j−1

)
− 1

N

(
N

N2V̄

(
V̄ n
i−1, j + V̄ n

i+1, j + V̄ n
i, j−1 + V̄ n

i, j+1

))(√N
N

)
Āni, j .

(7.11)

7.3.2 V cells

As in the previous case, there are two things can affect the amount of V cells in the (i, j)

subgrid: either an A or B cell in the (i, j) subgrid is able to exchange places with a V cell in

one of the neighbouring subgrids (that adds a V cell), or a vacancy from the (i, j) subgrid

is able to exchange places with an A or B cell in one of the neighbouring subgrids (that

removes a V cell). To add one vacancy, it is necessary that at the n-th time step

{3.1} a vacancy V in one of the neighbouring (i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)

subgrids is picked;

{3.2} said V is on one of the edges of the subgrid it is on (the one neighbouring the (i, j)

subgrid);

{3.3} the cell picked to do the exchange is on the (i, j) subgrid and an exchange actually

occurs. Recall that if the exchange is with an A cell the probability of movement

is 1 whereas if the exchange is with a B cell said probability is 1/Γ.

Similarly, to remove a vacancy, it is necessary that at the n-th time step

{4.1} a vacancy V inside the (i, j) subgrid is picked;

{4.2} said V is on one of the edges of the (i, j) subgrid;

{4.3} the cell picked to do the exchange is on one of the neighbouring (i+1, j), (i−1, j),

(i, j + 1), (i, j − 1) subgrids and an exchange actually occurs.
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It is assumed that the vacancy concentration is low enough so that the probability of picking

a vacancy to do the exchange is negligible. Consequently we only define the probabilities

P ({3.3}) = 1− B̄i,j
Γ− 1

Γ
, (7.12)

P ({4.3}) = 1− 1

4
(B̄i+1, j + B̄i−1, j + B̄i, j+1 + B̄i, j+1)

Γ− 1

Γ
. (7.13)

This allows us to write

V̄ n+1
i, j =V̄i, j +

1

N

(
N

N2V̄

(
V̄ n
i−1, j + V̄ n

i+1, j + V̄ n
i, j−1 + V̄ n

i, j+1

))(√N
N

)(
1− B̄n

i,j

Γ− 1

Γ

)

− 1

N

(
NV n

i, j

N2V̄

)(
4

√
N

N

)(
1− 1

4
(B̄n

i+1, j + B̄n
i−1, j + B̄n

i, j+1 + B̄n
i, j+1)

Γ− 1

Γ

)
.

(7.14)

7.3.3 Limit N →∞

The objective of the present section is to determine whether in the limit N → ∞ the

CA model of the previous section reduces to the diffusion model in equations (7.1)-(7.2).

Rearranging equation (7.11) leads to

Ān+1
i, j =Āni, j +

√
N

N2V̄

 V̄ n
i, j

(
Āni−1, j + Āni+1, j + Āni, j−1 + Āni, j+1

)
N

−

(
V̄ n
i−1, j + V̄ n

i+1, j + V̄ n
i, j−1 + V̄ n

i, j+1

)
Āni, j

N

 .

(7.15)

We may equate this to a standard finite difference form by choosing
√
N = ∆x and ∆t̂ =

1
N3/2V̄

,

Ān+1
i, j − Āni, j

∆t̂
=

 V̄ n
i, j

(
Āni−1, j + Āni+1, j + Āni, j−1 + Āni, j+1

)
∆x2

−

(
V̄ n
i−1, j + V̄ n

i+1, j + V̄ n
i, j−1 + V̄ n

i, j+1

)
Āni, j

∆x2

 .

(7.16)

Note that ∆t̂ is not a time, rather we are just conforming to finite difference notation.
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Similarly, equation (7.14) may be expressed as

V̄ n+1
i, j − V̄ n

i, j

∆t̂
=

(
V̄ n
i−1, j + V̄ n

i+1, j + V̄ n
i, j−1 + V̄ n

i, j+1

)(
1− B̄n

i,j
Γ−1

Γ

)
∆x2

−
V̄ n
i, j

(
4− (B̄n

i+1, j + B̄n
i−1, j + B̄n

i, j+1 + B̄n
i, j+1)Γ−1

Γ

)
∆x2

.

(7.17)

Taking the limit N → ∞ in equations (7.16) and (7.17), changing the notation to

Ai, j ≡ XA, Bi, j ≡ XB, Vi, j ≡ XV , and substituting XB = 1−XA −XV gives

∂XA

∂t̂
= XV∇2XA −XA∇2XV , (7.18)

Γ
∂XV

∂t̂
= −(Γ− 1)XV∇2XA + (1 + (Γ− 1)XA)∇2XV . (7.19)

Finally, setting t = t̂/Γ, we recover equations (7.1)-(7.2) and the CA model does indeed

reduce to the continuous diffusion model.

7.4 Results

In this section we present the results of the CA model. For the simulations we pick a square

grid N×N , where N = 200. At the first time step, the first 100 columns are A cells, and the

remaining 100 columns are B cells. Then we randomly distribute 2000 vacancies (equivalent

to 5% of the total number of cells) throughout the whole grid. A simulation is then run for

1.85×109 steps which is sufficient to allow for significant change in the distribution of cells.

Figures 7.2(a), 7.2(c), 7.2(e) show the distribution of material and vacancies when Γ =

1.5, that is, the diffusion rates between A and B are similar. Throughout the process

vacancies are well distributed in the domain and, by the time t = t3, the system appears

close to equilibrium. Figures 7.2(b), 7.2(d), 7.2(f) show the corresponding evolution when

A diffuses much faster than B. In Figure 7.2(b) we see a greater motion of A to the right

than the one observed in Figure 7.2(a). However this also means that vacancies accumulate

on the left. In Figure 7.2(d) it is clear that the vacancy concentration on the right is low,

which acts to slow down the diffusion. This is clear from the final figure, Figure 7.2(f),

which is far from equilibrium. This may seem counter-intuitive; A diffuses much faster here

than in Figure 7.2(e) but it clearly ends up moving slower. This is a result of the initial

rapid movement of A, bringing a high proportion of vacancies to the left and so hindering
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further movement. A similar result was noticed in the continuum model of [88], where a

very fast diffuser ends up redistributing more slowly.

In Figure 7.4 we compare the concentration of vacancies given by the CA model and

that given by the continuum model in equations (7.1)-(7.2) at different times for two values

of ratio between the diffusion rates; Γ = 1.5 (Figure 7.4(a) and 7.4(b)) and Γ = 10 (Figure

7.4(c) and 7.4(d)). The numerical solution of (7.1)-(7.2) is standard and defined in [88].

The CA results come from an average of simulations. To achieve this we define

V n
j =

V̄

I

I∑
i=1

{
N i
V

}n
j

(7.20)

where
{
N i
V

}n
j
is the number of vacancies at the j-th column on the n-th time step, the

superscript i is used to distinguish different simulations, and I is the total number of CA

simulations. The variable V n
j denotes the average concentration of vacancies at the j-th

column on the n-th time step. The results shown in Figure 7.4 correspond to I = 10.

To be able to compare the variable V n
j and the numerical solution XV of (7.1)-(7.2)

we need to find a correspondence between the discrete time in the CA simulation and the

continuous time in the PDE system. Let n be the time step that needs to be transformed

to a continuum time tn. Then

tn = n
∆t̂

Γ
t−1
s , (7.21)

where ts is the time scale defined in [88]. It is defined as ts = λa2ΓB/(εl
2), where ε = 2XV,ini,

λ is a geometric factor, a is the lattice constant and ΓB is the hop frequency of species B.

Finally, l is the length of the one-dimensional bar and it is found via the lattice site density

ρ and the number of cells in our CA grid,

l =

(
N3

ρ

)1/3

, (7.22)

which gives l = 51 nm for the case presented in Figure 7.4. Using the parameters values

shown in [88, Table 1], we find that ts ≈ 1.05 × 108. There is only one issue remaining to

be treated before being able to compare the two solutions. When solving the continuum

model, the initial condition for vacancies is given by [88]

XV,1(x, 0) =
1 + (Γ− 1)XA(x, 0)

2 + (Γ− 1)XA,ini
, (7.23)
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where XV,1 = XV /ε. We do this rescaling to be able to keep track of the evolution of

vacancies since this number is usually very small compared to the concentration of species

A and B; numerically, this may cause problems. The initial condition for the CA model

corresponds to XV,1(x, 0) ≈ 0.5. This merely means that if n0 is the initial time step in the

CA model, the actual nt0 that corresponds to the initial time t0 is nt0 = rn0, where r > 1

(see Figure 7.3). To find this rescaling factor r we minimise the least-squares error between

the continuum model and the discrete set of data V nf
j at nf = 1.85× 109. For Γ = 10, we

find that r = 26.171; for Γ = 1.5, r = 21.528. The comparison of V n
j , for j = 1, . . . , N and

XV,1(t, x), with x ∈ [−1, 1], is now well defined.

CA discrete time Continuous time
n0 @

nt0 t0

rn0 = nt0

Figure 7.3: Time conversion sketch.

In Figure 7.4 we compare results for the

vacancy concentration from the continuum

model of equations (7.1)-(7.2) and the av-

erage result of 10 simulations via equation

(7.20). First, we note what was observed

in the previous figures, when Γ = 1.5 the

vacancy concentration is relatively constant.

When Γ = 10 vacancies concentrate on the

left, thus slowing the movement of the fast diffuser. All figures show good agreement, even

when Γ = 1.5. The most noticeable discrepancies occur at small times, near the ends

x = ±1, where the continuum model indicates greater movement from the initial condition

(XV = 0.5). This is not surprising, continuum diffusion models typically allow for motion

throughout the domain even though in reality extreme points may not be feeling any effect.

Hence we expect that for small times the CA model is more realistic, and the agreement

improves with time.

7.5 Conclusions

The goal of this paper was to develop a cellular automaton model to describe binary diffusion

in solids. To do this we chose to employ an asynchronous model and used basic rule

definitions to update the cell states, based on the physics that drive the process.

In the limit of large number of cells we showed that this CA model reduces to a particular
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form of the continuum model developed in [88]. This was verified in the Results section by

comparing the CA and the continuum model. This opens the possibility of designing various

scenarios in a very simple fashion and then just take the limit to obtain the continuum model

to do a more accurate analysis.

An interesting result to come out of this work is that when the system has a very

fast diffuser it can lead, overall, to a slower diffusion process. This occurs because the

initial fast diffusion acts to move nearly all vacancies to one side, so restricting further

vacancy exchange and so movement. Also, at small times the nature of the continuum

model permitted movement throughout the domain when in practice this may not occur.

The CA model showed less movement near the extreme points at small times. This seems

more physically realistic, hence in this case the CA model may be preferable.

Obviously the CA model becomes increasingly cumbersome as the number of cells in-

creases. For sufficiently large numbers a continuum model is clearly preferable. However,

when the number of cells is small, for example when modelling nanoscale diffusion, CA

models provide a powerful tool which may be more accurate than the continuum models.
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Figure 7.2: Resulting grid 200 × 200 for different times obtained with the simulation of the CA

model. Red denotes A atom cells. Blue denotes B atom cells. Yellow denotes vacancy cells.

t1 < t2 < t3.
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(b) Γ = 1.5, t = 0.2519.
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(c) Γ = 10, t = 0.0574.
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(d) Γ = 10, t = 0.3263.

Figure 7.4: Dotted line is obtained by joining the discrete normalised vacancy average concentra-

tion V n
j obtained via the CA model (equation (7.20)). Solid line represents the numerical solution

of the continuum model described by equations (7.1)-(7.2).
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The goal of this thesis was to study and understand two diffusion processes at the nanoscale.

In the first half, we focussed on the phase-change problem; in the second, we studied binary

diffusion in solids, and in particular, the Kirkendall effect. The motivation for understanding

these processes was to gain insight into the physical phenomena and thus be able to optimise

the function of nanoparticles for particular industrial processes, in which the size and/or

matter distribution of the particles affects their function.

In Chapter 3 we focussed on improving the accuracy of the HBIM applied to Stefan

problems in both spherical and cylindrical geometries. This was done by analysing the

standard form and the optimised form (TIM) in the original and transformed coordinate

system, and we studied a fixed temperature and a Newton cooling boundary condition. The

approximate solution via the perturbation method was also obtained, assuming a large Ste-

fan number. The accuracy of the TIM and perturbation solution was judged by comparison

of the predicted melt front position calculated by a numerical solution. We found that in

spherical coordinates, if the melting is driven by a fixed boundary condition, the TIM yields

accurate results if one first transforms the coordinate system. Consequently, when studying

the spherical Stefan problem we recommend first transforming the temperature T = u/r,

then with a fixed boundary boundary condition setting n = 1.6, and with a Newton cooling

condition, n = 1.79. Note, in fact for Newton cooling the optimal exponent depends on

Nu. However in Chapter 5 it was shown that this average value provides accurate results.

For the cylindrical system we cannot make a conclusive statement. Due to having to use

a boundary fixing transformation instead of a temperature transformation, the governing

equations became complicated thus making the TIM too complex to be of practical use or

appeal. When the Stefan number β = 1, we found that for the fixed temperature boundary

119
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condition the TIM gives the best result in the original system. For the Newton cooling

condition, the TIM gives the best result in the transformed system. For larger β, we should

use a perturbation method. It is possible that a different transformation, on either the

temperature or coordinates, could change this conclusion. However, it does not seem like a

trivial task to solve immediately.

In Chapter 4 we described the first model for the melting of a spherically symmetric

nanoparticle to include latent heat depression, to employ the new Stefan condition developed

in [70], and to use a Newton cooling condition. All these novel features proved to have

important consequences. With the aim of capturing latent heat depression, in §4.2 we

proposed an exponential model to describe published data on the latent heat variation of

tin. This contained a single fitting parameter, and provided much better agreement with the

data than previous models in the literature. We also used a new Stefan condition. However,

since latent heat is the dominant term for most of the process it is the latent heat variation

that appears to be the most important between these two novel features. Using a fixed

boundary condition is equivalent to imposing an infinite heat transfer coefficient, which

will lead to faster melting rates than in reality. We proposed a Newton cooling condition

instead, which leads to slower melt rates, which then has an impact on the kinetic energy

contribution. Previous work in which a fixed temperature boundary condition was used

concluded that the density change between phases was very important precisely because

of the large resulting kinetic energy. The effect was so strong that it carried through even

to the macroscale. Our work indicated a much smaller influence of the kinetic energy. To

permit comparison with fixed temperature results from the literature for our study we used

the maximum heat flux that the system allowed without vaporising the particle. In practice

one would use a much smaller value and so, in general, kinetic energy would be even less

important than in our calculations. Consequently, our study indicated that, provided the

density difference is not large, and the boundary condition is physically realistic then the

contribution of kinetic energy to the Stefan condition may be neglected. This will then

considerably simplify the formulation, allowing the removal of the cubic velocity term.

The idea in Chapter 5 was to link the work of the previous two chapters. To do so, we

presented a reduced form of the model of Chapter 4 in which the density in the different

phases is the same and in which we neglected the solid phase by setting it to the phase change
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temperature. We studied the problem for two boundary conditions: the more popular fixed

temperature condition, and the more realistic Newton cooling condition. Our goal was to

use the TIM method developed in Chapter 3 to solve the problem. In order to obtain

the best approximating solution, we transformed the temperature via u = rT , since we

showed in Chapter 3 that this led to more accurate results. To measure the performance

of the method we compared the melt front position with a numerical solution. Further, we

presented a perturbation solution in order to highlight the accuracy of the method when

compared to the standard choice of approximate solution. Chapter 3 involved a standard

Stefan problem in a spherical geometry. In Chapter 4 the case of a melting nanosphere was

examined. This altered the previous formulation to include size-dependent paramters. Even

so the conclusions of Chapter 3 still held: the TIM was always more accurate than the first

order perturbation when setting n = 1.6 for the fixed temperature boundary condition and

n = 1.79 for Newton cooling. Given that the effort in applying the TIM is comparable to

that of the perturbation method it seems clear that the form of TIM developed in Chapter

3 should be preferred over the perturbation method.

The second part of the thesis was focussed on binary diffusion in solids. In Chapter 6

we derived governing equations for substitutional binary diffusion. To gain better insight

into the physics behind the Kirkendall effect we focussed on a one-dimensional insulated

bar. One of the more relevant results was finding two time-scales for the process: an initial

fast time-scale where vacancies rapidly redistribute, followed by a slow redistribution to

the constant steady-state. The expressions for the diffusion coefficients were cumbersome,

making the governing equations highly nonlinear. Some limiting cases for the ratio between

the diffusion rates Γ led to a simplification of the governing equations. For the limiting case

Γ� 1 we were able to obtain analytical solutions to the problem via separation of variables.

The simplification was also based on the volume fraction of fast diffuser not being close to

zero. In general results were excellent, except for at small times, near the boundary where

initially the volume fraction is zero. However, these errors decreased with time. For Γ ∼ 1

analytical progress was made by slightly modifying two of the diffusion coefficients to give

a system that could again be solved using separation of variables. Despite the fact that the

error in diffusion coefficients could be close to 20% the errors arising from this modification

were small. In summary, in this chapter we developed a novel model for substitutional
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binary diffusion which may be readily applied to other geometries or with different boundary

conditions, opening the doors to model the creation of hollow nanostructures.

In Chapter 7 we approached the same problem as in the previous chapter but from the

cellular automata standpoint. We defined an asynchronous model with a simple state change

rule to update the state of cells. This state change rule is defined based on the physics that

drive the process. Since the fast diffuser is more likely to move, we assign a much higher

probability to change state to those cells than those of the slow diffuser. Furthermore, we

showed that the continuum limit of the cellular automata model we constructed leads to the

same governing equations as in some particular cases presented in the previous chapter. We

compared the results of our CA model to the numerical solution of the continuum equations,

obtaining excellent agreement between both solutions. With this, we showed the possibility

of describing various scenarios in binary diffusion in solids in a very simple fashion. Since

the computational effort increases greatly with the number of cells this approach is ideal

for small scale structures, such as nanoparticles. It could then provide an excellent novel

approach to describe nanoscale diffusion and so help in the design of hollow structures at

the nanoscale.
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