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Abstract

This thesis studies different designs of optical parametric oscillators as

sources of atom-resonant quantum light at the rubidium D1 line. We

analyze the mode structure and present a technique for degenerate mode

filtering in a conventional OPO based on a crystal inside a ring cavity.

Nexy, we study in detail a first fully-tunable design of a monolithic

doubly-resonant OPO.

The first part of this thesis presents the study of a multimode optical

parametric oscillator from the theoretical point of view, calculating a

multimode Bogoliubov transformation and a time-domain intensity cor-

relation function of the output light. Next, we experimentally observe

signatures of multi- and singlemode OPO output in pairwise time-of-

arrival correlations of the generated photons, achieved thanks to Faraday

anomalous dispersion filtering technique based on optical properties of

atomic vapor in magnetic field.

The second, more extensive part of the thesis features a study of a new

design of the OPO, a monolithic cavity (crystal polished and coated

so that it forms a cavity) that allows full tunability even in a multiply-

resonant configuration. The architecture we propose combines the ad-

vantages of a conventional ring cavity based OPO, with robustness, low-

maintenance, compactness and stability characteristic of monolithic sys-

tems.

The tunability of the doubly-resonant monolithic OPO is realized by

maintaining different sections of the crystal at different temperatures

and pressing it with a piezoelectric actuator. The tuning method is tested

when the system is employed as a second harmonic generator.
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ABSTRACT v

In addition, we describe a new nonlinear effect that comes into play when

the monolithic cavity is pumped with 795 nm light. The phenomenon,

that we call a photo-Kerr effect causes the cavity behavior resembling

optical bistability due to Kerr nonlinearity, but with the magnitude (Kerr

coefficient) dependent on the long-time average of intra-cavity power.

The model we propose agrees well with the experimental results. The

observed effect simplifies greatly the resonator stabilization, causing the

cavity to maintain itself close to resonance even as the laser wavelength

is changed by more than a free spectral range.

The thesis concludes with a study of suitability of the monolithic cavity

affected by the photo-Kerr effect for squeezed light generation. We test

the monolithic cavity as an OPO and demonstrate 1.6 dB of quadrature

squeezing via homodyne detection.



Resumen

Esta tesis estudia diferentes diseños de osciladores paramétricos (OPO,

por sus signas en inglés) como fuentes de luz cuántica resonante con

la línea D1 de átomos de rubidio. Analizamos la estructura de modos y

las técnicas de filtrado en un oscilador paramétrico convencional basado

en un cristal no lineal dentro de una cavidad. También presentamos el

primer diseño de un OPO monolítico con dos resonancias con frecuen-

cias ajustables.

La primera parte de la tesis presenta el estudio de un oscilador paramétrico

multimodo desde el punto de vista teórico, calculando una transforma-

ción de Bogoliubov multimodo y una función de correlación temporal de

intensidad. A continuación, se observan experimentalmente las señales

de la emisión de OPO multimodo o de un solo modo en correlaciones de

tiempo de llegada de pares de los fotones generados, obtenidos gracias a

la técnica de filtración de dispersión anómala de Faraday basada en las

propiedades ópticas del vapor atómico en campo magnético.

La segunda y más extensa parte de la tesis presenta el estudio de un

nuevo diseño del OPO: una cavidad monolítica (cristal pulido y recu-

bierto de tal manera que forma una cavidad) que permite ajustar las

frecuencias de resonancia, incluso en una configuración multi-resonante.

La arquitectura que proponemos combina las ventajas de una OPO con-

vencional basada en una cavidad afuera de cristal, con robustez, bajo

mantenimiento, compacidad y estabilidad característica de los sistemas

monolíticos.

La ajustibilidad del OPO monolítico con doble resonancia se realiza

manteniendo diferentes secciones del cristal a diferentes temperaturas
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RESUMEN vii

y presionándolo con un elemento piezoeléctrico. El método de afinación

es sometido a prueba cuando el sistema se emplea como generador de

segundo armónico.

Además, describimos un nuevo efecto no lineal que entra en juego cuando

la cavidad monolítica se bombea con luz 795 nm. El fenómeno que de-

nominamos efecto photo-Kerr provoca que el comportamiento de la cavi-

dad se asemeje a la biestabilidad óptica debido a la no linealidad de Kerr,

pero con la magnitud (coeficiente de Kerr) dependiente del promedio de

tiempo largo de la potencia de la luz dentro de la cavidad. El modelo

numérico que proponemos coincide con los resultados experimentales.

El efecto simplifica en gran medida la estabilización de la cavidad, ha-

ciendo que ésta se mantenga cerca de la resonancia incluso cuando la

longitud de onda del láser cambia en más de la distancia entre dos reso-

nancias consecutivas.

La tesis concluye estudiando la idoneidad de la cavidad monolítica con

el efecto photo-Kerr para la generación de luz comprimida. Se emplea

la cavidad monolítica como oscilador paramétrico, obteniando luz com-

primida y se demuestra 1.6 dB de squeezing mediante detección homod-

ina.
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7. J. A. Zielińska, A. Zukauskas, C. Canalias, M. A. Noyan, and M.

W. Mitchell, Fully-resonant, tunable, monolithic frequency con-

version as a coherent UVA source, Optics Express 25, 1142-1150

(2017).
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Chapter 1

Introduction

The first optical parametric oscillator, in which an optical down-conversion

process was resonantly enhanced by placing a χ(2) medium inside an

optical cavity was demonstrated at Bell Labs [1] in 1965, shortly after the

invention of the laser. Optical parametric oscillators are used as coherent

light sources for various purposes, as well as to generate non-classical

light for quantum optics research.

The microscopic nature of the downconversion process, in which one

pump photon produces two photons in signal and idler intracavity modes,

underlies the quantum properties of the light generated by an OPO. The

quantum correlations between the intensities of signal and idler fields,

are manifest as a collective property of the emitted photons ("continuous-

variable" regime) in the form of squeezing that can be exploited to re-

duce noise in metrology experiments. These quantum correlations also

become evident as quantum entanglement of photon pairs extracted from

the OPO output (in "discrete-variable" regime), which is a basic resource

for quantum communication and quantum information science.

1
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OPOs in quantum optics

The first experiment involving squeezed light generated by spontaneous

parametric down-conversion process in an OPO was demonstrated in

1986 [2], achieving almost 3 dB of noise reduction. However, since then

the technique has come a long way, taking advantage of new nonlinear

materials, better periodic poling techniques, low-loss coatings, and high

quantum efficiency detectors. Squeezing is useful for sensing of delicate

systems, because it offers an increase of the signal-to-noise ratio without

increasing probe power, in order to, for example, reduce perturbation

of quantum state of the probed system in atomic quantum metrology

[3, 4, 5].

To date, the record 15 dB of squeezing (corresponding to factor of 32

in noise reduction) was reported in 2016 by Vahlbruch et. al. [6] at

1064 nm, with a view to feeding it to the interferometers of current grav-

itational wave observatories, which in the next upgrade are expected

to have sensitivity enhanced by the application of the squeezing. An

SPDC source that generated record squeezing before that, with 12.7 dB

of noise reduction [7], was built as astep towards improving the future

gravitational waves detectors as well.

Squeezed light from an OPO can, in principle, have noise reduced to

arbitrarily low levels, but in practical scenarios, measurement scheme

losses and readout noise are the limiting factors in the maximum achiev-

able squeezing. Nevertheless, loss-tolerant quantum metrology schemes

are also being developed, basing on correlated photon-number states

generated by an SPDC source subject to photon-counting measurements

[8].

Quantum entanglement of the photons in signal and idler modes was

theoretically predicted in 1988 [9], only to be experimentally measured

in a sub-threshold OPO four years later [10]. Since then, cavity-enhanced
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spontaneous parametric down-conversion has been employed to make

highly efficient photon pair sources [11] of interest for quantum network-

ing with atomic quantum memories [12, 13].

Apart from that, SPDC sources in combination with coherent states have

been proposed as extremely bright photon pair sources [14], as well as

for generation of entangled multi-photon states [15, 16].

The applications of OPOs range from simple frequency converters to

quantum simulators for Ising model [17], and each application requires

an especially crafted system. However, in this thesis we mainly focus on

selected aspects of OPOs optimized for interaction with atoms, which

require high spectral brightness, precisely controlled wavelength, and

narrow linewidths.

Continuous/discrete variable regimes

Experimental and theoretical methods for studying quantum fields have

traditionally been divided between the “continous-variable” and “discrete-

variable” camps, each with distinct language and experimental techniques

[18]. Recently this artificial division has begun to dissolve, and experi-

ments combining continuous-variable and discrete-variable elements [19,

20, 21, 22] have proliferated. These hybrid methods create new possibil-

ities, including optical entanglement between particle-like and wave-like

states [22, 23], a form of micro-macro entanglement [24, 21] that puts to

test conventional notions of the quantum/classical boundary.

Interfacing hybrid states to single atoms or atomic ensembles would

further expand their power, offering synchronization in communications

and computing protocols [25], quantum-enhanced probing of atomic sen-

sors [3, 4], and tests of quantum non-locality with massive particles [26].

If optical hybrid states can be transferred to an atomic system, they can
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be detected by quantum non-demolition measurement [27, 28, 29, 30,

31], allowing non-destructive characterization and repeated use. A major

challenge for the interaction of non-classical states with atomic systems

has been generating quantum light at the wavelengths and bandwidths of

atomic transitions [32, 33, 34, 35]. The hybrid continuous-discrete vari-

able approach offers still more challenges: the heralding process must

be highly selective to avoid false heralding events, while the continuous-

variable states must be protected against both dephasing and loss.

High-gain CESPDC

In contemporary applications, there is a trend toward lower-finesse cavi-

ties in CESPDC [36]. The available single-pass gain has increased, due to

periodically poled nonlinear materials and more powerful pump lasers,

and lowering the finesse allows higher escape efficiencies at the same

system gain level. At these lower finesses, the “tails” of the modes begin

to overlap, and mode shapes deviate from the simple Lorentzian. At

the same time, higher-gain applications, for example in generation of

“Schrödinger kitten” [37] states and other highly non-classical time-

domain states [23, 38, 39] by photon subtraction, are also becoming

important. These higher-gain processes necessarily involve stimulated

SPDC [40], in which a photon or a pair of photons induces the pro-

duction of more pairs. These developments motivate the new calculation

of CESPDC fields presented in chapter 3, beyond the low gain, single-

longitudinal-mode, and high-finesse approximations.
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Monolithic cavities

A common approach to frequency conversion and squeezed light gener-

ation places a χ(2) nonlinear medium, often a periodically poled crystal,

within an external ring cavity that resonates the fundamental (pump)

beam. The approach we start from in chapter 6, following [41] and [42],

uses nonlinear crystals polished and coated to form a linear cavity, offer-

ing the advantages of stability, compactness and zero interface loss. The

price for these advantages is the loss of tuning degrees of freedom avail-

able when using independent optical elements to define the cavity. To

date, no demonstrated monolithic cavity has shown independent control

of phase matching and double cavity resonance. In the case of [42], tun-

ing the cavity compromising on the phase matching. Similarly, tunable

double resonance (of the fundamental and second harmonic) has been

demonstrated with external cavities but not yet with monolithic cavities.

Both of these factors reduce the achievable conversion efficiency and

motivate new approaches for tuning monolithic cavities. We present the

design of a tunable doubly resonant monolithic device in Section 5.5,

and subsequently experimentally show the concept works both when the

device is employed as a frequency converter and as an squeezed light

source.

Thesis structure

This thesis is divided into two parts. First part is focused on theoreti-

cal analysis of the quantum properties of multimode light from cavity-

enhanced spontaneous parametric down-conversion sources and an ex-

perimental method of filtering out only the degenerate mode using an

atomic-vapour based filter. In the second part, we describe the monolithic

tunable frequency converter, starting from the design, and followed by its
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performance as a second harmonic generation device and as a squeezer

(subthreshold OPO).

Part one "Multimode optical parametric oscillator" consists of three chap-

ters. Chapter one contains general facts about second order nonlinear ma-

terials and an introductory description of spontaneous parametric down-

conversion in a singlemode OPO, which later serves as a base to com-

pare against the multimode case. Chapter two presents the properties

of the quantum state calculated from first principles for a multimode

OPO (published in [43]). In chapter three we describe an experiment

in which such a multimode light emitted by the OPO is filtered with the

use of a Faraday anomalous dispersion optical filter and the efficiency of

the filtering procedure in selecting only the degenerate mode out of the

multimode light is proven by the photon time-correlation measurements

on the filtered and unfiltered OPO output (published in [44]).

Part two "Tunable monolithic frequency converter" consists of five chap-

ters. Chapter four explains the concept of squeezed light and its utility

for probing delicate systems, illustrating it on the example of the Faraday

probing of the Bose Einstein condensate. Chapter five presents the design

of the monolithic squeezed light source optimized for atomic physics

applications. Chapter six describes experimental results on the tuning

methods of the doubly resonant cavity as well as the second harmonic

generation. Chapter seven describes a new nonlinear effect we observe

in the monolithic RKTP crystal based cavities (the photo-Kerr effect). In

chapter eight we experimentally test the monolithic device as an OPO

and prove that it is useful for squeezed light generation.



Chapter 2

Optical Parametric Oscillator
(OPO)

This chapter introduces basic concepts about optical parametric oscilla-

tors. We concentrate on the properties of nonlinear materials commonly

used in the OPOs and explain the concept of quasi phase matching. Next,

we outline how squeezing is generated in the χ(2) material and how to

calculate the output quantum state of light emitted by a single-mode OPO

cavity.

The optical parametric oscillator is an optical resonator containing a χ(2)

nonlinear crystal. The resonator enhances a three-wave mixing process

occurring in the crystal, which allows the conversion of input pump beam

into "signal" and "idler" output beams. Although OPOs are a workhorse

technique for frequency conversion that is useful for generating coherent

light at wavelengths that are difficult to access via standard laser tech-

nologies, they are also remarkably effective as entangled or squeezed

light sources in many quantum optics laboratories.

Cavity-enhanced conversion of pump into signal and idler occurring in

the OPO is often referred to as "parametric downconversion". We talk

about "degenerate" parametric downconversion when signal and idler

are the same polarization and frequency (half of the frequency of the

pump). Although degenerate OPO and a second harmonic generator can

7
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be the same device (only with input and output reversed), there is a

very important difference between these two processes, which has to

do with the quantum state of the output. When pumped by a coherent

beam, second harmonic generator will always give a coherent output

state, whereas an OPO will give a squeezed output.

In this thesis we only consider OPOs pumped far below threshold. A

threshold of an OPO is the pump power at which the system undergoes

a critical point phase-transition [45], although it can yield non-classical

light both below and above threshold [46]. This power limit is the mini-

mum pump power for which signal (or idler) experiences more gain due

to the downconversion than loss during the cavity roundtrip.

A subthreshold OPO is a very important tool in both discrete-variable

and continuous-variable quantum optical experiments. It can generate

correlated photon pairs consisting of one signal and one idler photon,

that can be entangled in wavelength and/or polarization. Apart from that,

OPOs are frequently used as sources of squeezed light, which take ad-

vantage of the fact that OPO can reduce the noise in one quadrature of the

input field (at the cost of increasing it in the other), whether it is vacuum

or a coherent state. In the case of coherent input in the signal/idler mode

(a "seeded" OPO), the OPO acts like a phase sensitive amplifier, ampli-

fying or deamplifying the seed power depending on the phase between

seed and pump, which also determines for which quadrature the noise is

amplified and for which it is deamplified. The output state of a seeded

OPO is called a bright squeezed state. When the input is a vacuum state

the OPO modifies its noise properties (according to the pump phase) to

generate a "squeezed vacuum", an extremely important tool in quantum

metrology. Throughout this thesis we sometimes refer to this case (an

unseeded subthreshold OPO) as cavity-enhanced spontaneous paramet-

ric down-conversion (CESPDC) source.
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2.1 Nonlinear medium
The second order nonlinear medium is the key element of an OPO. Sec-

ond order nonlinearity (or χ(2) nonlinearity) means that polarization of

the material ~P induced by the electric field ~E is not proportional to the

field, but also has a second order term

~P = χ
(1)~E +χ

(2)~E~E ≡ χ
(1)~E +~PNL (2.1)

where χ(1) linear susceptibility is responsible for refractive index of the

material n = (1+ χ(1))1/2. Second order nonlinearity can occur only in

materials that do not show inversion symmetry i.e. noncentrosymmet-

ric crystals, and vanishes identically is centrosymmetric crystals, amor-

phous solids, gases and liquids (although they display a χ(3) nonlinear-

ity) [47].

In general, taking into account a vector nature of the fields, second order

susceptibility χ(2) is a third rank tensor. Throughout this thesis we con-

sider only the case when all beams, meaning pump, signal and idler, are

of the same polarization (type-0 downconversion), so we treat χ(2) as a

scalar for simplicity.

We know from Maxwell equations that E and P evolve according to the

following wave equation in the material [47](
−∇

2 +
n2

c2 ∂
2
t

)
~E =−4π

c2 ∂
2
t
~PNL (2.2)

in which nonlinear response PNL acts like driving term, causing the elec-

tric field at frequencies different from the input frequencies to appear.

In the case of three wave mixing, P gives source terms always when

ωp = ωs +ωi, where ωp, ωs and ωi are respective pump, signal and idler

frequencies. For example, if we apply an input electric field with nonzero

components at two frequencies, second harmonic, sum and difference
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frequencies generation is possible. However, there is one more condition

that determines which frequencies, or whether any frequencies, can be

produced.

When solving the equation (2.2) in simple case of sum frequency (SF)

generation, where E has frequency components at ωs and ωi and we

generate ωp = ωs +ωi, we find that the SF is generated most efficiently

when

~kp = ~ks +~ki (2.3)

where ki =
ωi
c ni and ni are the respective refractive indices. The relation

(2.3), which is a manifestation of conservation of momentum is known

as the perfect phase matching condition. It means that generated wave is

in phase with the nonlinear polarization and it can extract energy most

efficiently from the incident light. Macroscopically, it means that fields

emitted by dipoles constituting the material add coherently in forward di-

rection. In practice, in presence of wavevector mismatch ∆k = ks+ki−kp

the generated field amplitude oscillates, building up for the propagation

length LC = π/∆k before it starts to decrease again [47].

There are several methods that allow us to ensure the condition (2.3) is

fulfilled, for example taking advantage of the birefringence of the crystal.

However, they require the fields involved in the three-wave mixing pro-

cess to be non-collinear and/or polarized along different axes. In the case

of the a colinear type-0 downconversion systems, which are the subject

of this thesis, the appropriate method of avoiding momentum mismatch

is the quasi phase-matching. This technique depends on periodic-poling

of the material, that is inverting the orientation of one of the crystal axes

periodically along the optical axis of the crystal with a period Λ = 2LC

(or its odd multiple).

In the case of periodically poled material the phase matching condition
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(2.3) is replaced by the quasi phase-matching condition

kp = ks + ki−m
2π

Λ
(2.4)

where all wave-vectors are colinear, and m is an odd integer. When the

condition (2.4) is satisfied, the field grows monotonically with the length

of interaction, although less rapidly than in case of perfect phase match-

ing. The main drawback of the quasi phase matching is the technical

difficulty in fabricating high-quality periodically poled crystals, in par-

ticular for wavelengths requiring short (few microns) poling periods. We

return to this problem in chapter 6.

2.2 Squeezing in OPO cavity

As derived in many nonlinear optics textbooks, propagation of degener-

ate signal/idler field through a pumped, phase-matched χ(2) medium is

described by a linear transformation

E (z) = E (0)coshr+E ∗(0)sinhr (2.5)

where r is the nonlinear coupling parameter proportional to the effective

nonlinearity, pump power and length of the nonlinear medium.

In light of the unitary nature of parametric interactions, it is natural to

assume the field operators similarly obey the Bogoliubov relation

aout = ain coshr+a†
in sinhr (2.6)

which equivalently can be written as

aout = Ŝ†ainŜ (2.7)
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where Ŝ = e
1
2 (r(a

†)2+r∗a2) is the squeeze operator and r is squeezing am-

plitude.

For example, as a result of a spontaneous process (vacuum input) we

obtain from a pumped nonlinear medium a quadrature-squeezed state:

ρr = Ŝ(r)|vac〉〈vac|Ŝ(r)† (2.8)

Quadrature-squeezed means that for a certain quadrature operator:

qθ =
1√
2
(ae−iθ +a†eiθ ) (2.9)

the variance var(qθ ) < 1/2. Note that the Heisenberg uncertainty rela-

tion:

var(qθ )var(qθ+π/2)> 1/4 (2.10)

requires that the variance of the orthogonal quadrature qθ+π/2 becomes

anti-squeezed. For a coherent state (including the vacuum state) vari-

ances of both quadratures are independent of the phase and equal 1/2.

Describing the squeezing transformation of the field occurring due to a

χ(2) medium inside of a cavity is a far more complex task. The quantum

optical approach used in this thesis is based on so-called input-output re-

lations, introduced by Collett and Gardiner in [48] to describe squeezing

effects in OPOs. A basic challenge for the theoretical description of such

systems is the interface between the cavity mode a0 with its discrete fre-

quency ω and the broadband field outside the cavity, which are connected

by a partially-transparent mirror. Collett and Gardiner showed that, after

making a Markoff approximation for the external fields, the dynamics of

the cavity mode can be described as

d
dt

a0 =−iωa0 + ra†
0e−iωpt − Γ

2
a0 +
√

Γain (2.11)
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where r is nonlinear coupling coefficient ωp is pump frequency and

Γ = T δω , with T the being mirror transmission and δω the cavity free

spectral range (FSR). The output field aout is related to the input ain and

cavity fields by

a0 = (ain +aout)/
√

Γ (2.12)

Equations similar to Eq. (2.11) are of great utility in computing the

properties of the quantum fields. Because they are linear, they can be

solved algebraically in the Fourier domain.

Solving the Eq. (2.11) we arrive to Bogoliubov transformation in the

form of Eq. (2.13), which allows us to calculate output field at a sideband

frequency Ω (detuning from the degenerate mode) as a function of the

input fields.

aout(ω +Ω) = A(Ω)ain(ω +Ω)+B(Ω)a†
in(ω−Ω)

+C(Ω)bin(ω +Ω)+D(Ω)b†
in(ω−Ω) (2.13)

where ain represents external field entering the cavity through the output

coupler, and bin describes the reservoir field that is coupled to the cavity

through the combined losses, including output coupler and other losses,

and A(Ω), B(Ω), C(Ω) and D(Ω) are functions of detuning, gain, cavity

loss and coupling parameters explicitly given as Eqs. (3.27) to (3.30) in

chapter 3.

Note that output anihilation operator from the Bogoliubov transforma-

tion in Eq.(2.13) gives us complete information about the output quan-

tum state, allowing us to calculate both noise properties (like squeezing)

and correlation functions. For example, the noise power spectral density

(which divided by standard quantum limit indicates squeezing) at a side-
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band frequency of ω can be computed as

S(Ω) = 〈[aout(Ω)+a†
out(−Ω)]2〉, (2.14)

where the expectation 〈 · 〉 in the case of an unseeded OPO is taken

with respect to vacuum in both the a and b modes. Moreover, intensity

correlation function G(2)(T ), which can be a signature of non-classicality

of a quantum state [19], is computed as a normally-ordered expectation

value of creation/anihilation operators with respect to the vacuum state

in both input modes:

G(2)(T ) ≡ 〈a†
out(t)a

†
out(t +T )aout(t +T )aout(t)〉. (2.15)

Cavity mode FWHM (full-width half-maximum) determines the squeez-

ing spectrum, as well as the width in time of the intensity correlation

function. One inconvenience of the Collett and Gardiner method is that

it focuses on a single mode of the cavity, and it is not a priori clear how

to incorporate multiple modes. While in the case of squeezing measure-

ment often it makes little difference since standard homodyne detection

scheme acts as a frequency filter, the G(2)(T ) correlation function shows

interference effects from multiple cavity modes when they are present.

Experimental measurements of the multimode and singlemode (only de-

generate mode filtered out of the multimode output) intensity correlation

functions are presented in chapter 4.

Another possible limitation is that this method treats as simultaneous the

nonlinear effect due to the crystal and the cavity in- and out-coupling ef-

fects, when in fact they are sequential. For these reasons, we find it more

convenient to take a slightly different starting point for our calculations

in chapter 3.



Chapter 3

Theory of multimode OPO

In this chapter we compute the output of a multimode OPO for sub-

threshold, but otherwise arbitrary, gain. We find analytic Bogoliubov

transformations in the form of Eq. (2.13) that allow us to calculate ar-

bitrary field correlation functions, including the second-order intensity

correlation function G(2)(T ). The results show evidence of increased

coherence due to stimulated spontaneous parametric down-conversion.

We extend an earlier model developed by Lu and Ou [49] to arbitrary

gain and finesse, and show the extension gives accurate results in most

scenarios. The results presented in this chapter are adapted from [43].

Many calculations of the fields emitted by OPOs are based on techniques

developed to calculate squeezing in parametric amplifiers [49, 50]. The

cavity is described in a modal expansion and quantum reservoir the-

ory [51] is used to derive dynamical relationships between cavity, in-

put, and output fields. When these are solved, the resulting Bogoliubov

transformation expresses the output fields as squeezed versions of the

input fields [48, 52]. Using this approach, Lu and Ou [49] computed

G(2)(T ), the second-order intensity correlation function for type-0 mul-

timode OPO. Reflecting experimental conditions of the time, that calcu-

lation remained in the low-gain limit and approximated the cavity line-

shapes as Lorentzian, as appropriate to high finesse cavities.

Our method is similar to the classic works of Collett and Gardiner [48]

15
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and Gardiner and Savage [52], in that we use input-output relations for

squeezing and cavity in/out-coupling to obtain equations relating input,

output, and intra-cavity fields. In contrast to those works, we avoid quan-

tum reservoir theory by posing the problem directly in the time domain.

As we describe below, narrow-band cavity-enhanced spontaneous para-

metric down-conversion (CESPDC) is more naturally and transparently

described in this way.

We find difference equations describing the input, output, and cavity

fields at consecutive round-trip times. Eliminating the cavity field from

these equations, we find the Bogoliubov transformation expressing the

output fields in terms of the input fields. To study the time-domain struc-

ture, we calculate the second-order intensity correlation function G(2)(T )

for a type-0 multimode OPO, including arbitrary finesse and gain. We

find an envelope well approximated by a double exponential with a gain-

dependent decay constant, multiplied by a comb structure with a period

equal to the cavity round trip time. At low gain and high finesse this

agrees with the calculation of [49]. At higher gains we find coherence

beyond the cavity ring-down time due to stimulated SPDC.

3.1 Bogoliubov transformations

Let us consider a two-sided ring cavity as in Fig. 3.1 with roundtrip

time denoted as τ . We characterize the cavity amplitude transmission

and reflection coefficients with real numbers ti and ri, where a subscript

i = 1,2 indicates the output coupler and another mirror representing the

collective cavity losses, respectively. For each of the beamsplitters, there

are four numbers describing the input-ouput relation, the transmission

from inside the cavity (‘c’) to the exterior (‘e’) ti,ce, the transmission

from the exterior to the interior of the cavity ti,ec, the reflection from

inside the cavity ri,cc and the reflection from the outside the cavity ri,ee.
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These coefficients are related by energy conservation: |ti,ce|2 + |ri,ee|2 =
|ti,ec|2 + |ri,cc|2 = 1 and ti,cer∗i,ec + ti,ecr∗i,cc = 0. We assume that all t and

r coefficients are real, and ti,ec = ti,ce ≡ ti, and ri,cc = −ri,ee ≡ ri. The

intracavity field annihilation operator just before reaching the output

coupler is denoted as a, while the input fields just before reaching the

cavity are ain and bin. We denote the output field just after exiting the

cavity as aout.

ssq 

squeezing with  
amplitude r 

𝑟1, 𝑡1 𝑟2, 𝑡2 

𝑎𝑖𝑛 

𝑎𝑜𝑢𝑡  𝑏𝑖𝑛 

𝑏𝑜𝑢𝑡 
𝑎 

Figure 3.1: An OPO scheme with input, output and intracavity field
operators for double-sided cavity with a nonlinear crystal inside.

The field experiences three relevant transformations during a round-trip

of the cavity. Interaction with the output coupler produces

a OC→ r1a+ t1ain, (3.1)

where ain is the input field. Other losses (here lumped together in a single

interaction) produce

a loss→ r2a+ t2bin, (3.2)

where bin is a bath mode assumed to be in vacuum. Finally there is the

Bogoliubov transformation due to squeezing on a single pass through the
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crystal

a
sq→ acosh(r)+a† sinh(r), (3.3)

where r is the squeezing amplitude.

Applying these three transformations in sequence to a(t−τ) (understood

to be the intra-cavity field at a location immediately before the output

coupler), we have

a → r1a+ t1ain (3.4)

→ r2(r1a+ t1ain)+ t2bin (3.5)

→ cosh(r)[r2(r1a+ t1ain)+ t2bin]

+sinh(r)[r2(r1a† + t1a†
in)+ t2b†

in]. (3.6)

Considering that a round-trip takes time τ and the field a(t) depends

only on a(t − τ), which is true if we neglect the dispersion and finite

bandwidth of the phase-matching (see below), we have

a(t) = r1r2 cosh(r)a(t− τ)+ r1r2 sinh(r)a†(t− τ)

+t1r2 cosh(r)ain(t− τ)+ t1r2 sinh(r)a†
in(t− τ)

+t2 cosh(r)bin(t− τ)+ t2 sinh(r)b†
in(t− τ) (3.7)

with the hermitian conjugate:

a†(t) = r1r2 cosh(r)a†(t− τ)+ r1r2 sinh(r)a(t− τ)

+t1r2 cosh(r)a†
in(t− τ)+ t1r2 sinh(r)ain(t− τ)

+t2 cosh(r)b†
in(t− τ)+ t2 sinh(r)bin(t− τ). (3.8)

The output field is given by

aout(t) =−r1ain(t)+ t1a(t). (3.9)
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Writing

a(t) =
1√
2π

∫
∞

−∞

a(ω)e−iωtdω

a†(t) =
1√
2π

∫
∞

−∞

a†(ω)eiωtdω

and solving Eqs. (3.7),(3.8), (3.9) for aout, we find the Bogoliubov trans-

formation

aout(ω) = A(ω)ain(ω)+B(ω)a†
in(−ω)

+C(ω)bin(ω)+D(ω)b†
in(−ω) (3.10)

where

A(ω) ≡ d(ω)t2
1 r2[e−iωτ cosh(r)− r1r2]− r1 (3.11)

B(ω) ≡ d(ω)sinh(r)t2
1 r2e−iωτ (3.12)

C(ω) ≡ d(ω)t2t1[e−iωτ cosh(r)− r1r2] (3.13)

D(ω) ≡ d(ω)sinh(r)t2t1e−iωτ (3.14)

and

d(ω) ≡ 1
[e−iωτ − r1r2 cosh(r)]2− [r1r2 sinh(r)]2

. (3.15)

Eqs. (3.10) to (3.15) constitute a full description of the output of the

OPO, in the sense that any correlation function of interest can be cal-

culated by taking expectation values of products of aout and a†
out. For

example, the degree of quadrature squeezing at a side-band frequency of

Ω can be computed according to Eq. (9.5). S(Ω) is simply a polynomial

in A(Ω) to D(−Ω), so analytical results are available for any gain level.

We have neglected dispersion in the cavity and the finite phase-matching
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bandwidth of the crystal. These approximations are justified in typi-

cal narrow-band CESPDC scenarios [53], in which the phase matching

bandwidth is several orders of magnitude larger than the free spectral

range (FSR) of the cavity. Introducing a finite phase matching bandwidth

would modify the shape of the peaks composing the multimode G(2)(T ),

but at a time-scale beyond the resolution of current electronics. As de-

scribed in [53] the KTP nonlinear crystal introduces a dispersion of

dn/dλ =−0.06 µm−1, which over a phase-matching bandwidth of 100

GHz (≈ 0.2 nm) changes the refractive index by 10−5, not shifting any

of the resonances by more than 10−3 FSR. In contrast, broad-band CE-

SPDC experiments are typically sensitive to the full output bandwidth of

the OPO [54], and these approximations would not be justified.

3.2 Multimode G(2)(T )

Time-domain correlation measurements on OPOs are an important diag-

nostic of the spectral content of the output [12, 13], and are often used

to demonstrate the quantum nature of the generated fields [19, 11]. In

this section we compute the intensity correlation function G(2)(T ). As

with the degree of squeezing, this can be computed analytically for any

sub-threshold gain level and including all modes.

As described above, this correlation function is computed as a normally-

ordered expectation value with respect to the vacuum state in both input

modes:

G(2)(T ) ≡ 〈a†
out(t)a

†
out(t +T )aout(t +T )aout(t)〉 (3.16)

=
∫

d4
ω e−i(ω2+ω3)(t+T )e−i(ω1+ω4)tG(2)(~ω) (3.17)

where d4ω ≡ dω1 dω2 dω3 dω4 and

G(2)(~ω) ≡ 〈a†
out(−ω1)a

†
out(−ω2)aout(ω3)aout(ω4)〉.
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After the reduction of the operators using the commutation relation

[a(ω),a†(ω ′)]= δ (ω−ω ′) and knowing that the coefficients A(ω), B(ω),

C(ω) and D(ω) are hermitian functions, e.g. A(−ω) = A∗(ω), we find

the expression under the Fourier transform

G(2)(~ω) = δ (ω1 +ω2)δ (ω3 +ω4)Γ(ω2,−ω1)Γ(ω3,−ω4)

+δ (ω2 +ω3)δ (ω1 +ω4)ϒ(ω1,−ω4)ϒ(ω2,−ω3)

+δ (ω1 +ω3)δ (ω2 +ω4)ϒ(ω1,−ω3)ϒ(ω2,−ω4) (3.18)

where

Γ(ω,ω ′) ≡ A(ω)B(−ω
′)+C(ω)D(−ω

′) (3.19)

ϒ(ω,ω ′) ≡ B(ω)B(−ω
′)+D(ω)D(−ω

′). (3.20)

Performing one integral for each delta function, we arrive to an expres-

sion that is t-independent

G(2)(T ) = {F [Γ](T )}2 +{F [ϒ](T )}2 +{F [ϒ](0)}2 (3.21)

where Γ(ω) ≡ Γ(ω,ω) and ϒ(ω) ≡ ϒ(ω,ω). Knowing that r2
1 + t2

1 = 1

and r2
2 + t2

2 = 1, from Eqs. (3.11)–(3.14) we find

Γ(ω) = d(ω)d(−ω)t2
1 sinh(r)

[
(1+ r2

1r2
2)cosh(r)

−r1r2eiωτ − r1r2e−iωτ
]
, (3.22)

ϒ(ω) = d(ω)d(−ω)t2
1 sinh(r)2(1− r2

1r2
2). (3.23)

The necessary Fourier transforms are computed in the Appendix A, see

Eqs. (A.19) and (A.17), in terms of a function F(k), defined in Eq. (A.5).
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We find

{F [Γ](T )}2 = t4
1 sinh(r)2

∞

∑
k=−∞

δ (T − kτ) (3.24)

×
[
(1+ r2

1r2
2)cosh(r)F(|k|)

−r1r2F(|k|+1)−r1r2F(|k|−1)]2

{F [ϒ](T )}2 = t4
1 sinh(r)4(1− r2

1r2
2)

2 (3.25)

×
∞

∑
k=−∞

δ (T − kτ)F(|k|)2

{F [ϒ](0)}2 = t4
1 sinh(r)4(1− r2

1r2
2)

2F(0)2, (3.26)

the three terms necessary to calculate G(2)(T ). As shown in Fig. 3.2,

G(2)(T ) of the multimode cavity output has an envelope similar to the

shape of double falling exponential and peaks every cavity roundtrip

time, resulting from the interference between the modes. In contrast, the

single mode G(2)(T ) would also have a double exponential decay, but

without the comb structure [49].

3.3 Comparison with earlier work

The G(2)(T ) calculation of Lu and Ou [49] found the multimode G(2)(T )

to be a comb of (approximate) Dirac delta functions spaced by the cavity

round-trip time, multiplied by an envelope given by the single-mode

G(2)(T ). This result has an appealing simplicity, and is intuitive in the

time-domain picture in which photon pairs are produced simultaneously

but may spend a different number of round trips in the cavity before

escaping. It is interesting to ask whether the same behaviour persists also

at higher gains, i.e. in the presence of stimulated SPDC.

We compare our G(2)(T ), Eq. (3.21), against the natural extension of

the Lu and Ou model for arbitrary gain, but still within the high-finesse
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Figure 3.2: A graph showing the theoretical G(2)(T ) calculated for
cavity parameters as for the source presented in [53] with gain equal
to 1% of the OPO threshold. The envelope of the G(2)(T ) is calculated
from Eqs. (3.21), (3.24) and (3.25), and normalized to unity at T = 0.
For the purpose of plotting, the peaks, which in the model are Dirac
delta functions, have been replaced with finite-width Lorentzians.

approximation. In this section we follow the notation of Refs. [49] and

[48], and write exp[−γiτ] = ri to describe losses and 2ε = r to describe

gain. The single mode Bogoliubov transformations from [48], without

the low-gain approximation, are

Asingle(ω) ≡ (γ1/2)2− (γ2/2− iω)2 + |ε|2

(γ1/2+ γ2/2− iω)2−|ε|2
(3.27)

Bsingle(ω) ≡ γ1ε

(γ1/2+ γ2/2− iω)2−|ε|2
(3.28)

Csingle(ω) ≡
√

γ1γ2(γ1/2+ γ2/2− iω)

(γ1/2+ γ2/2− iω)2−|ε|2
(3.29)

Dsingle(ω) ≡
√

γ1γ2ε

(γ1/2+ γ2/2− iω)2−|ε|2
. (3.30)
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Figure 3.3: Three envelopes of multimode G(2)(T ), computed from Eqs.
(3.21), (3.24) and (3.25) and normalized to unity at T = 0. Curves show
G(2)(T ) for the gain r equal to 1% (blue), 50% (green, dashed), 90%
(red, dotted) of the threshold gain rth. Cavity parameters are as for the
source presented in [53].

We follow the same steps as from Eq. (3.16) to Eq. (3.21), to find

G(2)
single(T ) = {Fsingle[Γ](T )}2 +{Fsingle[ϒ](T )}2

+{Fsingle[ϒ](0)}2 (3.31)

where

{Fsingle[Γ](T )}2 =
π

2
γ

2
1 ε

2 ( f−+ f+)
2 (3.32)

{Fsingle[ϒ](T )}2 =
π

2
γ

2
1 ε

2 ( f−− f+)
2 (3.33)

f± ≡ e−
1
2 |T |(γ1+γ2±2ε)

γ1 + γ2±2ε
(3.34)

Finally, we multiply by a comb of (approximate) delta functions. Again

following [49], for a multimode cavity with 2N +1 modes we have:
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G(2)
multi(T ) ∝ G(2)

single(T )
sin2[(2N +1)πT/τ]

sin2[πT/τ]
(3.35)

lim
N→∞

G(2)
multi(T ) ∝ G(2)

single(T )
∞

∑
n=−∞

δ (T −nτ). (3.36)

Eq. (3.31), computed by extension of [49], agrees very closely with our

multimode result Eq. (3.21), shown in Fig. 3.3. The only situation for

which the two approaches give significantly different results is when the

output coupler has high transmission t1. Even so, the difference between

the two calculations does not exceed 7.5% of the value of G(2)(T ), for

r1,r2 > 0.5 and for any sub-threshold gain. We conclude that for many

purposes the very simple results of Eq. (3.31) can be used, backed by the

more accurate calculation given in Section 3.2.

Fig. 3.3 shows the computed shape of the G(2)(T ) envelope as a function

of gain parameter r. This clearly shows a broadening of the correlations,

along with a raising of the background level, which persists to arbitrarily

large |T |. The background can be understood as a result of “accidental”

coincidences, i.e. correlations among photons that were not produced in

the same SPDC event. The broadening is the time-domain manifestation

of the narrowing of the resonances with increasing r, visible e.g. in

d(ω). Physically, it can be understood as the coherent amplification of

SPDC photons already inside the cavity, i.e., stimulated SPDC. This

change in photon temporal distributions is of potential interest in wave-

function matching for non-classical interference [55], matching to quan-

tum memories [56], and detection of “Schrödinger kittens" and other

time-localized non-classical fields [57].
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3.4 Summary

We have computed the output of a multimode cavity-enhanced spon-

taneous parametric down-conversion source, including realistic mode

structure and sub-threshold but otherwise arbitrary gain. Using time-

domain difference equations describing field operators at consecutive

roundtrips, we find multimode Bogoliubov transformations that describe

the output field. This analytic solution provides a basis for calculations of

any correlation function describing the multimode output. We compute

the two-time intensity correlation function G(2)(T ), and find increased

temporal coherence due to stimulated SPDC in both single and multi-

mode cases. We extend a calculation by Lu and Ou [49] to arbitrary

gain, and find that it agrees well with our more exact calculation. The

results will be useful in describing high-gain spontaneous parametric

down-conversion.



Chapter 4

Singlemode and multimode
OPO: Experiment

In this chapter we demonstrate atomic filtering of frequency-degenerate

photon pairs from a sub-threshold OPO. The filter, a modified Fara-

day anomalous dispersion optical filter (FADOF), achieves 70% peak

transmission simultaneous with 57 dB out-of-band rejection and a 445

MHz transmission bandwidth. When applied to the OPO output, only

the degenerate mode, containing one-mode squeezed vacuum, falls in

the filter pass-band; all other modes are strongly suppressed. The high

transmission preserves non-classical continuous-variable features, e.g.

squeezing or non-gaussianity, while the high spectral purity allows re-

liable discrete-variable detection and heralding. Correlation and atomic

absorption measurements indicate a spectral purity of 96% for the indi-

vidual photons, and 98% for the photon pairs. The results presented in

this chapter are adapted from [44].

The concept of the experiment presented in this chapter is shown in Fig.

4.1. The squeezed vacuum at the D1 line of atomic rubidium is generated

by a sub-threshold OPO consisting of an optical resonator with a blue-

light-pumped χ(2) nonlinear medium inside. The OPO generates nar-

rowband near atom-resonant squeezed vacuum in the degenerate cavity

mode, i.e., the longitudinal mode with half the pump frequency, but also a

27
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far larger number of two-mode squeezed states in other modes. We use a

modified Faraday rotation anomalous-dispersion optical filter (FADOF)

[58] to separate the single-mode squeezed vacuum from these other, co-

propagating, modes. Previously, atomic filters have been used to filter

single photons [59] and polarization-distinguishable photon pairs [4],

but with lower efficiencies (up to 14%), incompatible with non-classical

continuous-variable states.

Figure 4.1: The concept of the OPO filtering experiment, showing the
effect of selecting only a degenerate mode in spectral domain and in time
domain. The unfiltered intensity correlation function displays a comb
structure (as calculated in the previous chapter), as opposed to the single-
mode case.

With this new FADOF we observe 70% transmission of the degenerate

mode through the filter, compatible with 5 dB of squeezing, simultane-

ous with out-of-band rejection by 57 dB, sufficient to reduce the com-

bined non-degenerate emission to a small fraction of the desired, de-

generate mode emission. In comparison, a recently-described monolithic

filter cavity achieved 60% transmission and 45 dB out-of-band rejection

[60]. We test the filter by coincidence detection of photon pairs from

the squeezed vacuum, which provides a stringent test of the suitability

for use at the single-photon level. We observe for the first time fully-

degenerate, near atom-resonant photon pairs, as evidenced by correlation
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functions and atomic absorption measurements. The 96% spectral purity

we observe is the highest yet reported for photon pairs, surpassing the

previous record of 94% [59], and in agreement with theoretical predic-

tions.

4.1 Experimental setup

4.1.1 Source of photon pairs

In our experiment, a doubly-resonant degenerate OPO [53] featuring a

type-0 PPKTP crystal produces single-mode squeezed vacuum at 794.7

nm. A continuous wave external cavity diode laser is stabilised at the

frequency ω0 of maximum transmission of the FADOF (2.7 GHz to the

red of the Rb D1 line centre, as in [58]): an electro-optic modulator

(EOM) adds sidebands to the saturated spectroscopy absorption signal

in order to get an error signal at the right frequency. In order to generate

pairs at ω0, we double the laser frequency, via cavity-enhanced second

harmonic generation in a LBO crystal, generating the 397.4 nm pump

beam for the OPO.

With this configuration, photon pairs are generated at the resonance fre-

quencies of the OPO cavity that fall inside the 150 GHz-wide phase

matching envelope of the PPKTP crystal. Hence, the OPO output is

composed by hundreds of frequency modes, each of 8.4 MHz band-

width, separated by the 501 MHz free spectral range. This means that

the FADOF - with its 445 MHz bandwidth - can successfully filter all the

nondegenerate modes, leaving only the photons in the degenerate mode,

which are then fully indistinguishable, as they share the same spatial

mode, frequency and polarization.

The light generated by the OPO is then sent through a polarization-

maintaining fiber to the filter setup, filtered by the FADOF described
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in the next subsection, and coupled to a fiber beamsplitter. The detection

scheme is described in the subsection 4.1.3.
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Figure 4.2: Experimental setup of the OPO, the FADOF filter and de-
tection system. Symbols: PBS: polarizing beam splitter, AOM: acousto-
optic modulator, EOM: electro-optic modulator, APD: avalanche photo-
diode, BD: calcite beam displacer, WP: Wollaston prism, TOF: time-of-
flight analyzer, SAS: saturated absorption spectroscopy, VCO: voltage
controlled oscillator, PM: polarization maintaining fiber, HWP: half-
wave plate, QWP: quarter-wave plate, PD: photodiode

4.1.2 Faraday Anomalous Dispersion Optical Filter

The FADOF consists of a hot atomic vapor cell between two crossed

polarizers (see Fig.4.3) that block transmission away from the absorption

line, while the absorption itself blocks resonant light. A homogeneous

magnetic field along the propagation direction induces circular birefrin-

gence in the vapor, so that the Faraday rotation just outside the Doppler

profiles of the absorption lines can give high transmission for a narrow

range of frequencies.
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Figure 4.3: The elements of the FADOF filter. The light that has
the polarization rotated by the Rb vapour and passes through the filter
belongs to the region close to the atomic resonance.

In my previous (pre-PhD) work the FADOF filter on the D1 line in

Rb was studied in detail [58]. The filter used in this experiment is the

same as in the cited paper, except it has been modified to work for

two orthogonal polarizations: instead of the crossed polarizers, we use

a beam displacer before the cell, so that the two orthogonal polarizations

travel along independent parallel paths in the cell. After the cell we

use a Wollaston prism to separate the near-resonant filtered light from

the unrotated one. The optical axes of the two polarizing elements are

oriented with precision mounts, and an extinction ratio of 1.8× 10−6 is

reached. This strategy exploits the imaging capability of the filter.
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Figure 4.4: A scheme illustrating filtering of the photon pairs. Up-
per plot: reference transmission spectrum of room temperature natural
abundance Rb (blue), filter spectrum (black) and a mirror filter spectrum
with respect to the degenerate cavity mode (black dashed). Red shaded
regions indicate transmission of correlated photon pairs. Lower plot:
cavity output spectrum (blue) and FADOF-filtered cavity spectrum (red).
The degenerate cavity mode coincides with the FADOF peak. Both
figures have the same frequency scale.

Additionally, the setup has been supplemented with a half-waveplate

placed before the Wollaston prism (HWP 2 in Fig. 5.4), which enables

us to, in effect, turn on and off the filter. In the “FADOF on” condition,
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the waveplate axis is set parallel to the Wollaston axis (and thus the

waveplate has no effect on the filter behaviour), the magnetic field is

4.5 mT and the temperature is 365 K. In the “FADOF off” condition, no

magnetic field is applied, the temperature of the cell is also 365 K and

HWP 2 is set to rotate the polarization by 90 degrees, in effect swapping

the outputs, so that almost all the light is transmitted through the setup

without being filtered.

The FADOF filters reported in literature are normally optimized for peak

transmission and low total transmitted background [61]. However, here

we are using a common criterion for experiments with photon pairs:

we maximize the ratio of coincidences due to photon pairs belonging

to the degenerate mode to coincidences due to other photon pairs. Be-

cause of energy conservation, the two photons in any SPDC pair will

have frequencies symmetrically placed with respect to the degenerate

mode; to prevent the pair from reaching the detectors, it suffices to block

at least one of the photons. In terms of filter performance, this means

that it is possible to have near-perfect filtering even with transmission

in some spectral windows away from the degenerate mode, provided

the transmission is asymmetrical (Fig. 4.4). Using this criterion we find

the optimal conditions for the filter performance in our experiment to

be 4.5 mT of magnetic field and the cell temperature of 365 K. The

optimum filter performance requires the degenerate mode that should

be filtered to coincide with the FADOF transmission peak at a fixed

frequency (2.7 GHz to the red from the center of the Rb D1 line).
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4.1.3 Detection

The distribution of arrival times of photons in a Hanbury-Brown-Twiss

configuration is useful to check that the filter effectively suppresses the

non-degenerate modes of the type-0 OPO described in the previous sec-

tion. We collect the OPO output in a polarization maintaining fiber and

send it through the filter setup. The filtered light is then coupled into

balanced fiber beam splitters that send the photons to avalanche photo-

detectors (APDs), connected to a time-of-flight analyzer (TOF) that al-

lows us to measure the second order correlation function G(2)(T ) (see

Fig. 5.4).

Since we are using single photon detectors, we need to reduce as much

as possible the background due to stray light sources in the setup. The

main source of background light is the counter-propagating beam that we

inject in the OPO in order to lock the cavity length to be resonating at ω0.

We tackle this problem using a chopped lock: the experiment switches at

85 Hz between periods of data acquisition and periods of stabilization.

During periods of data acquisition, the AOM is off, and thus no locking

beam is present. During periods of stabilization, the AOM is on, and an

electronic gate circuit is used to block electronic signals from the APDs,

preventing recording of detections due to the locking beam photons. In

addition, the polarization of the locking beam is orthogonal to that of the

OPO output.

4.1.4 Filter non-degenerate modes

In this section we consider the second order correlation function of the

field operators aout in a form:

G(2)(T ) ∝ 〈a†
out(t)a

†
out(t +T )aout(t +T )aout(t)〉 (4.1)

for multimode (unfiltered) and single-mode (filtered) output of the OPO.
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As shown in Lu et al. [49], G(2)(T ) describing the output of a single-

mode, far-below-threshold OPO has the form of double exponential de-

cay

G(2)
single(T ) ∝ e−|T |(γ1+γ2), (4.2)

where the reflectivity of the output coupler is r1 = exp[−γ1τ], the effec-

tive reflectivity resulting from intracavity losses is r2 = exp[−γ2τ] and τ

is the cavity round-trip time. An ideal narrowband filter would remove all

the nondegenerate cavity-enhanced spontaneous down-conversion modes,

reducing the G(2)(T ) to G(2)
single(T ). This filtering effect was demonstrated

in [59] for a type-II OPO and an induced dichroism atomic filter.

In the previous chapter we explain that when the filter is off, so that the

output consists of N cavity modes, G(2)(T ) takes the form

G(2)
multi(T ) ∝ G(2)

single(T )
sin2[(2N +1)πT/τ]

(2N +1)sin2[πT/τ]
(4.3)

≈ G(2)
single(T )

∞

∑
n=−∞

δ (T −nτ), (4.4)

i.e., with the same double exponential decay but modulated by a comb

with a period equal to the cavity round-trip time τ . In our case the band-

width of the output contains more than 200 cavity modes, and the fraction

in Eq. (4.3) is well approximated by a comb of Dirac delta functions.

The comb period of τ = 1.99 ns is comparable to the tbin = 1 ns resolution

of our counting electronics, a digital time-of-flight counter (Fast ComTec

P7888). This counter assigns arrival times to the signal and idler arrivals

relative to an internal clock. We take the “window function” for the ith

bin, i.e., the probability of an arrival at time T being assigned to that bin,

to be

f (i)(T ) =

1, if T ∈ [itbin,(i+1)tbin] ,

0, otherwise .
(4.5)
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Without loss of generality we assign the signal photon’s bin as i = 0, and

we include an unknown relative delay T0 between signal and idler due to

path length, electronics, cabling, and so forth. For a given signal arrival

time ts, the rate of idler arrivals in the ith bin is
∫

dti f (i)(ti)G
(2)
multi(ti−

ts− T0) (ti is the idler arrival time). This expression must be averaged

over the possible ts within bin i = 0. We also include the “accidental”

coincidence rate G(2)
acc = tbinR1R2, where R1,R2 are the singles detection

rates at detectors 1,2, respectively. The rate at which coincidence events

are registered with i bins of separation is then

G(2)
multi,det(i) =

1
tbin

∫
dts f (0)(ts)

∫
dti f (i)(ti)G

(2)
multi(ti− ts−T0)

+G(2)
acc (4.6)

=
∞

∑
n=−∞

G(2)
single(nτ)

1
tbin

∫ tbin

0
dts f (i)(ts +T0 +nτ)

+G(2)
acc. (4.7)

We take T0 is a free parameter in fitting to the data. Note that if we

write T0 = ktbin + δ then the simultaneous events fall into kth bin and

δ ∈ [−tbin/2, tbin/2] determines where the histogram has the maximum

visibility due to the beating between the 1 ns sampling frequency of the

detection system and the 1.99 ns comb period. APD time resolution

is estimated to be 350 ps FWHM (manufacturer’s specification), i.e.

significantly less than the TOF uncertainty, and is not included here.

Histograms of photon arrival time differences for the “FADOF off” and

“FADOF on” configurations are shown in Figs. 4.5 and 4.6, respectively.

We observe that the double exponential full-width at half-maximum cor-

responds to the predicted one of 26 ns. Moreover, we notice how the

comb structure is not present in the “filter on” data, as expected if the

filter blocks all pairs not in the degenerate mode.
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Figure 4.5: Histograms of arrival time differences for FADOF off
compared to theoretical model (both include the background due to
accidental coincidences and the artefacts resulting from 1 ns resolution
of the counting electronics).

Figure 4.6: Histograms of the differences of arrival times of the photon
pairs for FADOF on (green) and FADOF on with hot cell on the path
(black). No background has been subtracted.
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4.1.5 Spectral purity

According to the theoretical filter spectrum from [58], we estimate that

98% of the atom-resonant photon pairs come from degenerate mode (see

Fig. 4.4). In order to test how much light outside the Rubidium D1 line

can pass through our FADOF, we split the light equally between the

two different polarization paths of the filter setup by means of a half-

wave plate put before the beam displacer (HWP 1 in Fig.5.4). A natural-

abundance Rb vapor cell, with 10 Torr of N2 buffer gas and heated until

it is opaque for resonant light, is inserted in one of the paths after the

filter. The collisionally-broadened absorption from this cell blocks the

entire FADOF transmission window, allowing us to compare the arrival

time histograms with and without the resonant component.

The number of photons detected after passing through the hot Rb cell is

comparable to dark counts, meaning that most of the filtered light is at

the chosen frequency ω0. We define the spectral purity PS of the FADOF

as PS ≡ 1−cHC/cF , where cHC (cF ) is the number of photon pairs which

were recorded within a coincidence windows of 50 ns in the path with

(without) the hot cell. Considering raw coincidences (no background

subtraction), we obtain PS = 0.98, meaning that the filtered signal is

remarkably pure, as only the 2% of the recorded pairs are out of the

filter spectrum. This 2% agrees with measurements of the polarization

extinction ratio with the FADOF off, i.e., it is due to technical limitations

of the polarization optics and could in principle be improved. Knowing

that 98% of the photon pairs transmitted through the filter within the

Rb resonance come from the degenerate cavity mode (due to filter spec-

trum), we conclude that 96% of the pairs exiting the filter come from the

degenerate mode.
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4.2 Continuous-variable measurement

In this section we describe a noise contribution that in principle the

FADOF filter might add to the filtered beam. Since the filter is a passive,

linear device, the transformation that the anihilation operator undergoes

when passing the filter is unitary:

aout→ ta+ rb (4.8)

where r∗t + rt∗ = 0, |r|2 + |t|2 = 1, operator a represents the probe field

and operator b the vacuum field. Let us assume that filter transmission

t = t̄ + δ t randomly fluctuates around mean value t̄ with an amplitude

δ t.

In order to estimate the effect such a device would have on the probe

beam, we calculate the variance of the detected quadrature operator X̂θ =

aexp[iθ ]+a† exp[−iθ ] averaged over the angle θ on the input state being

a mixture of coherent states ρ =
∫

d2αP(α)|α〉〈α| with a mean value ᾱ

fluctuating with an amplitude δα . We find the quadrature noise has a

form

〈var(X̂θ )〉θ = 1+2Re(t̄ᾱ)Re(ᾱδ t + t̄δα)

+2Im(t̄ᾱ)Im(ᾱδ t + t̄δα)+O(δαδ t) (4.9)

Attenuation of the input probe intensity by a factor of TND with a neutral-

density filter effects the changes t→ t, α → tNDα , δα → tNDδα , where

tND ≡
√

TND is the amplitude transmission. Scaling with tND allows us

to separate the different contributions: The first term is the SQL, and

scales as t0
ND. The second term is noise introduced by the filter, and

scales as t2
ND. The last term vanishes if δα and δ t are uncorrelated,

and even without this assumption can be assumed much smaller than
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piezo turning points 

Figure 4.7: Experimental setup and traces from the oscilloscope and
the spectrum analyzer. HWP- half-wave plate, PBS- polarization beam-
splitter, WP - Wollaston prism, FBS- 50/50 fiber beam-splitter, BD -
balanced detector, PZT - piezoelectric actuator, SA - spectrum analyzer.

the other terms. The average signal 〈X̂out〉 scales as tND, providing a

convenient measure of the input power. We perform an experiment in

order to estimate the filter technical noise at the probe power similar to

the intensity of non-classical light from our source.

The experimental setup is shown in Fig. 4.7. A continuous wave laser,

stabilized at the FADOF peak frequency (as described in the section 4.1)

is split into a strong (1 mW) local oscillator beam (LO) and a weak

(1 µW) probe beam passing through the FADOF. The relative phase

θ of the two beams is controlled by a mirror mounted on the piezo-

electric actuator driven with a triangle wave at approximately 70 Hz.

The two beams are coupled into single-mode fibers and combined on a
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fiber beamsplitter, the outputs of which are fed to the balanced detector

(Thorlabs PDB450A) with a gain of 105 over a bandwidth of 4.5 MHz.

The difference output of the balanced detector is recorded by a spectrum

analyzer in a zero-span mode with center frequency of 2 MHz, resolution

bandwidth of 300 kHz and video bandwidth of 100 Hz. The monitor

output of one of the two photodiodes comprising the balanced detector

is simultaneously recorded on an AC-coupled oscilloscope (SC).

As shown in Fig. 4.7, we observe oscillations in both the SA and SC

signals versus θ . The SC signal indicates the mean detected quadrature.

We keep the peak-to-peak variation as a convenient measure of the field

strength. The SA signal indicates the noise of the detected quadrature.

This oscillates with θ , presumably because of excess laser phase noise

leading to extra variance in the phase quadrature. As seen in the figure, it

oscillates at twice the rate of the SC oscillations, as expected for a noise

measurement.

In Fig. 4.8 we plot the mean, and the maximum and minimum, averaged

over a few cycles, of the noise oscillations on the SA as a function of

the probe power (proportional to the variance of the oscilloscope signal).

The measurement runs from zero probe power to 1 µW. The power at 1

µW is measured with a power meter, which provides a calibration for the

SC measurements. As seen in the figure, below about 10 nW of probe

the mean noise level drops to the shot noise level and the oscillations

disappear. 10 nW corresponds to a photon flux of 4× 1010 photons per

second, much larger than typical photon fluxes for our OPO with 8 MHz

bandwidth, e.g. ≈ 107 photons/s at 3 dB of squeezing. A dependence

of mean noise power on the probe power (constant and linear term) is

fitted according to the model of Eq. (4.9) and represented in the Fig.

4.8. Extrapolating the contribution of noise from the filter (linear term)

we estimate that at the power level of 107 photons/s, the filter would

introduce approximately −150 dBm of electronic noise, corresponding
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Figure 4.8: Average maxima and minima (dashed lines) and mean value
(blue circles) of the noise oscillations detected on the SA due to the
laser phase noise, as a function of the variance of the oscilloscope signal
proportional to the probe power. The solid lines represent the fitted noise
model (brown), a sum of a term linear with power (blue) and shot noise
(red).

to −88 dB of noise with respect to the shot noise level.

The measurement we performed shows that the FADOF does not add

significant amount of noise to the coherent probe, which in turn indicates

that it is possible to send through a squeezed state without destroying it.

For example, input squeezing of 6 dB, after passing through the filter

would be reduced to 3.2 dB due to the filter’s 70% transmission.

4.3 Summary

We have demonstrated the use of a high-performance atomic filter to

separate fully degenerate photon pairs from the broadband emission of a

sub-threshold OPO, or equivalently a CESPDC source. The filter, based

on the FADOF principle, achieves simultaneously sufficient out-of-band
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rejection to allow accurate photon-counting detection and sufficient trans-

mission to preserve continuous-variable characteristics such as squeez-

ing. Combining these properties in the narrow-band regime is critical

to generation of hybrid continuous-variable/discrete-variable states com-

patible with atomic systems, e.g. quantum memories.



Chapter 5

Squeezed light source for
interaction with atoms

This chapter explains the motivation behind developing the monolithic

optical parametric oscillator, described in the remainder of this thesis.

The source is optimized for interaction of the atom-resonant squeezed

light it emits with the cold atomic ensemble, in particular a spinor Bose-

Einstein condensate of 87Rb atoms. First we describe the benefits of

Faraday probing the atoms with the polarization squeezed light, then

compare different OPO architectures with this particular application in

mind.

The concept of squeezed light and the advantage it offers in interferomet-

ric measurements that use only one quadrature for detection dates back

to Carl Caves’ work in the 1980s [62], which points out that squeezed

light fed into a Mach-Zender interferometer can improve its sensitivity

to below the standard quantum limit. This strategy is analogous to send-

ing polarization-squeezed probe light through an atomic ensemble and

detecting Faraday rotation it acquires because of the interaction with the

atoms.

We describe polarization squeezed light in terms of Stokes operators Ŝi

that couple to the operators Ĵi describing collective spin of the atoms.

Performing a measurement of squeezed Stokes variable will allow us

44
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to observe polarization rotation because of interaction with atoms with

sensitivity below shot-noise limit.

If we denote a light-atoms interaction hamiltonian as Ĥint, the evolution

of a Stokes operator Ŝi in the first order yields:

Ŝ(out)
i = Ŝ(in)i +

τ

ih̄
[Ŝ(in)i , Ĥint] (5.1)

where τ is the interaction time. This relation allows us to identify the

sources of the unwanted noise in the measurement, knowing that the

second term is the signal. Using a classical probe light the measurement

is limited by probe shot noise introduced by Ŝin
i . In case this is the main

source of measurement noise, employing a squeezed probe can offer sig-

nificant improvement in sensitivity without increasing the probe power

(which is proportional to back-action of the light on the atoms that we

want to avoid). The aim is to use polarization squeezed probe to decrease

this noise below the standard quantum limit and use this technique for

Faraday-rotation imaging of the spinor Bose-Einstein condensate of 87Rb

atoms. The spinor condensate is an ensamble of f = 1 spin atoms, which

means it has three mF = 0,±1 magnetic sublevels. The population of

this levels determines the overall magnetization of the ensemble, that is

mapped into the polarization of the Faraday probe.

The possibilities that open in Faraday probing of the BEC are the mo-

tivation for developing a squeezed light source consisting of a mono-

lithic optical parametric oscillator with characteristics optimized for the

experiment and a compact, stable and robust design that will facilitate

incorporating it into already complex atom-trapping experiment.
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5.1 Faraday probing of the BEC

Faraday rotation based techniques have been used to measure magneti-

zation (population of spin states) of a spinor Bose-Einstein condensate

[63, 64]. The advantage of this approach is that by measuring Fara-

day rotation of the probe beam (proportional to ~F component along the

beam) one can retrieve the information about both phase and population

of the mF sublevels, as opposed to direct population measurement by

Stern-Gerlach separation followed by absorption imaging. Additionally,

Faraday rotation measurement does not destroy he magnetization or the

ensemble [65].

To date, experiments aimed at investigating BEC physics with Fara-

day rotation include the experiment in Jacob Sherson’s group that uses

dark field imaging of spatially resolved Faraday rotation on electron-

multiplying CCD (EMCCD) to invesigate dynamic behavior of their sys-

tem [63]. They report that the sensitivity they can achieve is limited

by the shot noise of the probe beam, additionally amplified by the EM

gain. Kaminski et. al. [66] demonstrate also a spatially-resolved Faraday

rotation as a method of imaging the end plane of the ensemble on a CCD.

Faraday probing can potentially be useful in investigating certain aspects

of spinor dynamics in BEC, like spin mixing described in [67] and [68].

These processes are an analogue of four wave mixing in optics - a pop-

ulations of m =±1 are transferred into m = 0 states and oscillations be-

tween these populations can be observed. The system shows interesting

non-classical properties like quantum noise reduction below the standard

quantum limit for the corresponding coherent spin states [68] that imply

underlying phenomena of spin squeezing and entanglement [67]. Apply-

ing sub shot-noise Faraday rotation spectroscopy could increase signal

to noise ratio of the observed spin fluctuations opening new possibilities

in the area.
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Moreover, interesting spin-related phenomena arise in BEC phase tran-

sitions. Kawaguchi et. al. [69] reports that spin coherences between ther-

mal atoms in different magnetic sublevels develops via coherent col-

lisions with the condensed atoms and determines the phase diagram.

Another technique that benefits from applying squeezed light is Faraday

rotation spectroscopy, which can be applied for cold-atoms magnetome-

try [70].

5.2 Sub-shot noise magnetization measurement
The objective is to measure the magnetization of the BEC, which we

define as the projection of the total angular momentum operator F̂ of the

atomic ensemble (sum of contributions from all the atoms Σ∞
i=1 fi) on the

quantization axis z. Let’s introduce the set of pseudo-spin operators that

describe the |mF〉= |±1〉 states:

Ĵx =
1
2

Σ
∞
i=1[|−1〉〈1|+ |1〉〈−1|]i (5.2)

Ĵy =
1
2

Σ
∞
i=1[|−1〉〈1|− |1〉〈−1|]i (5.3)

Ĵz =
1
2

Σ
∞
i=1[|1〉〈1|− |−1〉〈−1‖]i (5.4)

We do not include in this description the states with |mF〉 = |0〉, since

they do not contribute any magnetization along z axis 〈F̂z〉. Note that

F̂z = 2Ĵz. This description is analogous to Stokes operators Ŝ that we use

to describe polarization of light, and will later facilitate pointing out the

symmetry of the light-atoms interaction.

The Stokes operators are defined in terms of creation/anihilation opera-

tors in vertically and horizontally polarized mode aV and aH :

Ŝ0 = (a†
HaH +a†

V aV )/2 (5.5)
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Ŝx = (a†
HaH −a†

V aV )/2 (5.6)

Ŝy = (a†
HaV +a†

V aH)/2 (5.7)

Ŝz =−i[Ŝx, Ŝy] (5.8)

The hamiltonian of the off-resonant interaction of light with the atomic

ensemble can be described by the following expression derived in [71]:

Ĥint = aĴzŜz +b(ĴxŜx + ĴyŜy) (5.9)

where a and b are constants. The evolution of any operator concerning

light or atoms because of Ĥint (to first order in evolution time τ) in the

interaction picture has the form:

Ô(out) = Ô(in)+
τ

ih̄
[Ô(out), Ĥint] (5.10)

Note this implies the equation (5.1). We obtain input-output relation for

the relevant operators:
Ŝx

(out)

Ŝy
(out)

Ŝz
(out)

=


1 −aĴz

(in) bĴy
(in)

aĴz
(in) 1 −bĴx

(in)

−bĴy
(in) bĴx

(in) 1




Ŝx
(in)

Ŝy
(in)

Ŝz
(in)

 (5.11)


Ĵx

(out)

Ĵy
(out)

Ĵz
(out)

=


1 −aŜz

(in)
bŜy

(in)

aŜz
(in)

1 −bŜx
(in)

−bŜy
(in)

bŜx
(in)

1




Ĵx
(in)

Ĵy
(in)

Ĵz
(in)

 (5.12)

We propose to send through the atomic cloud NL photons of horizontally

polarized light (see Fig. 5.1):

〈[Ŝx
(in)

, Ŝy
(in)

, Ŝz
(in)

]〉= [NL/2,0,0] (5.13)

squeezed in Ŝy so that var
(
Ŝy

(in))
< 1

2〈Ŝx
(in)〉 [72]. The interaction with
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F=1 BEC 

Figure 5.1: A portable squeezed light source applied to Faraday probing
of a BEC. PBS - polarization beam splitter, BSO - beam shaping optics,
BD - balanced detector, HWP (QWP)- half (quarter) waveplate, PZT -
piezoelectrical element, PD - photodetector. The squeezed light source is
a monolithic OPO as described in 5.5. In addition, the same device with
input and output reversed is used as an upconverter to generate pump
beam for the OPO.

atoms rotates the polarization about the z axis (first term of the hamil-

tonian in eq. (5.9), so that it acquires a small nonzero Ŝy component. In

order to determine the magnetization, a measurement of Stokes parame-

ter Ŝy
(out)

is performed.

〈Ŝy
(out)〉= aNL

2
〈Ĵz

(in)〉 (5.14)

Noise of the measured variable:

var
(
Ŝy

(out))
= var

(
Ŝy

(in))
+a2var

(
Ĵz

(in)Ŝx
(in))

+b2〈Ĵx
(in)〉2var

(
Ŝz

(in))
(5.15)

It is evident that application of squeezed light improves signal to noise

ratio, reducing the noise component var
(
Ŝy

(in))
, which is the largest noise
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contribution in Eq. (9.4) if small spin rotations are considered.

Because of the symmetry of the hamiltonian, the interaction with light

also modifies the state of the atoms, causing the rotation of the spins

about the x axis.

〈Ĵz
(out)〉= bNL

2
〈Ĵy

(in)〉 (5.16)

With the application of squeezed light this effect is reduced as well, since

we can use fewer photons NL than we would need to use with a coherent

probe in order to achieve the same signal to noise ratio.

The scheme described above can be applied to measure an external mag-

netic field Bx perpendicular to the probe beam that causes the spins

prepared initially to point along x axis to precess and acquire small com-

ponent along z (magnetization). This value can be measured with high

sensitivity with the strategy described above and used to retrieve the

amplitude of the magnetic field.

5.3 Polarization squeezing
An essential part of the proposed experiment is a robust, stable, high-

purity, and strongly-squeezed in polarization quantum light source. One

can achieve this combining a quadrature-squeezed vertically-polarized

light (output of type-0 OPO) with a horizontally-polarized coherent state

to achieve a state squeezed in one of the Stokes parameters.

An OPO pumped below threshold with a coherent beam generates a

vertically-polarized state ρr quadrature-squeezed with amplitude r in the

form of Eq. (2.8) described in section 9.5. It can be converted into a

polarization-squeezed state ρPS by combining it with a horizontally po-

larized coherent state ρα on a polarization beam splitter [73] (Figure

5.2):

ρPS = ρα ⊗ρr (5.17)
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Figure 5.2: Generating polarization-squeezed light with the use of a
polarizing beam splitter.

where the first subspace describes horizontal polarization and the second

vertical.

ρα = |α〉〈α| (5.18)

The Stokes parameter definitions in Eqs. (5.6) to (5.8) imply uncertainty

relations for the Stokes operators

var(Ŝ2
i )var(Ŝ2

j)≥
1
4
〈Ŝ2

k〉 (5.19)

where i, j,k are permutations of x,y,z. Expectation values and variances

of Stokes parameters for the state ρPS are found in [74]. The variance of

the lower-noise variable (Ŝy in our case) yields var(Ŝy) <
1
2〈Ŝx〉, so by

Wineland criterion [75] the state is squeezed for r > 0.

5.4 Comparison of different squeezer designs

The OPO cavity parameters are a crucial when designing a squeezer, as

they determine mode structure of the output, as well as bandwidth and

magnitude of squeezing. One important consideration is which beams

are resonated. For degenerate OPOs as we discuss here, it is possible to

resonate one or both of the pump and the degenerate signal/idler beams.

Additionally, different designs determine tunability of the wavelength of
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A B

C D

Figure 5.3: Different OPO architectures: A - external cavity OPO, B-
whispering gallery resonator based OPO (picture adapted from [76]), C-
semi-monolithic OPO (picture adapted from [77]) and D - monolithic
OPO (picture from [78])

the OPO output (very important for atomic experiments), as well as differ

in size, robustness and amount of maintenance they require.

One common design uses an OPO based on external ring cavity around

a nonlinear crystal (as in [53]) is shown in Fig. 5.3A. The main disad-

vantage of this design is high intracavity loss, caused by the interfaces

(crystal and mirrors) inside the cavity that always have imperfect coat-

ings. Moreover, it is more sensitive to vibration and unstable compared to

monolithic designs. Ring cavity design implies that the downconversion

occurs only once per roundtrip, not twice like in Fabry-Perot cavities,

which is both disadvantage (lower gain per roundtrip) and advantage (no

need of controlling phase between light downconverted on two consec-

utive passes through the nonlinear medium, see section 7.1). What is

more, ring cavity allows us to have an auxiliary locking beam conter-

propagating with respect to downconverted light, convenient for cavity

stabilization. Another advantage of external ring cavity is tunability to

atomic resonance, which requires only mounting one of the mirrors on
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the piezoelectric actuator in order to be able to adjust cavity length.

Whispering gallery resonators (Fig. 5.3 B) offer very low intracavity loss

due to lack of interfaces [79], but they tend to be high-maintenance due

to in and out coupling mechanism requiring precision of positioning the

prism relative to the cavity. What is more, they are very sensitive to dirt,

which causes light to leak out of the cavity.

Monolithic cavities (Fig. 5.3 D) are nonlinear crystals polished and coated

so that it form a linear cavity. This design has the advantage of being

stable, robust, compact and insensitive to vibration. Since coatings on

the crystal are not exposed to focused high power pump light inside of

the cavity, they do not deteriorate due to dirt as in the external cavi-

ties case. However, it is impossible to choose the optimum spot on the

crystal where the downconversion occurs which might play a role for

some wavelengths for which fabricating high-quality poling difficult.

Monolithic designs are also more challenging to tune, because the cavity-

length cannot simply be controlled with a piezo-element. Temperature

tuning can play this role, but may simultaneously affect phase matching,

which also depends on the crystal temperature.

Semi-monolithic designs (Fig. 5.3 C) are a trade-off between external

cavity and monolithic designs, in which a Fabry-Perot cavity is formed

between a spherical mirror and plano-convex polished nonlinear ma-

terial. Sensitivity to vibration and intracavity loss are increased in ex-

change for possibility of tuning the cavity via the external mirror. This is

the design that produces the most squeezing (it is to be incorporated in

the GEO600 gravitational wave detector [80]).

The OPO design we propose is a monolithic design with three separately-

controlled temperature sections, allowing independent control of phase

matching as well as double resonance.
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5.5 A tunable doubly-resonant monolithic squeezer
Employing squeezed light in metrology enables us to perform sub shot-

noise measurements using the variable with reduced (squeezed) noise.

However, conventional squeezed light sources are complex, unstable and

hard to use, as opposed to monolithic squeezers, which are more robust,

compact and easy to incorporate into more sophisticated experiments.

A monolithic OPO was first demonstrated in Roman Schnabel’s group

in 2007, with a purpose to suppress the shot noise for an interferomet-

ric gravitational wave detector GEO600. They developed a monolithic

source without wavelength tunability producing 10 dB-squeezed vac-

uum at 1550 nm [81, 78]. Another realisation of the idea was imple-

mented by the group of Akira Furusawa [42], with a view to use it in

continuous-variable quantum information experiments that require si-

multaneously a large number of highly squeezed beams. Their design

was a resonator tunable at the cost of compromising the phase matching

and they achieved 8 dB of squeezing at 860 nm.

However, neither of these sources has been designed with a purpose of

applying it for probing atomic ensembles, since the emitted squeezed

light was not resonant with any transitions of alkali atoms, as opposed to

the design we propose. What is more, our source will be also enhanced

by double resonance and offer wavelength tunability within the Rb D1

resonance.

The OPO design we propose consists of a crystal of Rb-doped potassium

titanyl phosphate (RKTP), spherically polished and coated at the ends,

so that it forms a Fabry-Perot cavity as shown in figure 5.4. The crystal is

divided into three sections (see Fig. 5.4): two non-poled (linear) sections

and the periodically-poled central part. The pump is focused in central

section (maintained in the phase-matching temperature) where the para-

metric interaction occurs, whereas the linear sections of the crystal are

used for tuning the cavity.
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Figure 5.4: A doubly resonant monolithic squeezer, tunable using three
temperatures and one strain degrees of freedom.

The objective is to have the cavity resonant not only for the squeezed

vacuum beam (at half of the pump frequency), but also for the pump

beam. We also need to be able to tune the squeezed beam frequency.

Therefore, since we need to have the cavity resonant for two different ar-

bitrary wavelengths, we need to use two independent degrees of freedom.

In addition to that, the phase between forward and backward interact-

ing light needs to be controlled to ensure constructive interference, and

quasi phase matching condition needs to be fulfilled. All of the above

mentioned amount to four conditions, and we are able to control them

independently using three temperature and one pressure controls.

Although monolithic sources have already been reported [81, 42], the

design we propose is the first one with pump resonance and that will

offer wavalength tunablility.



Chapter 6

Monolithic cavity design

This chapter describes the material and geometry of the monolithic cav-

ity, designed to enhance conversion between rubidium D1 resonant light

at 795 nm and near UV-wavelength of 397 nm with high efficiency and

fine-tuning capabilities. For simplicity, we refer to 795 nm and 397 nm

light as red and blue respectively. The geometric design is a trade-off be-

tween mode shape that is optimal for the downconversion efficiency and

technical limitations in polishing the cavity. We also present the detailed

design of the cavity holder that enables us to independently stabilize the

temperatures of the three sections of the crystal while pressing it with the

piezoelectric actuator for the purpose of cavity tuning.

Here we take advantage of the quasi-phase matching (QPM) technique,

which allows us to exploit the highest nonlinearity available in the ma-

terial in a non-critical phase-matching scheme, achieving higher conver-

sion efficiencies, compared to birefringent phase matching setups. The

crystal is fabricated out of a material best-suited for short-period periodic

poling, Rb-doped potassium titanyl phosphate (RKTP), engineered by

our collaborators at KTH Royal Institute of Technology in Stockholm.

After fabrication and periodic poling, the crystal was spherically pol-

ished and coated by Photon Laseroptik GmBH. The geometrical dimen-

sions (cavity length 16 mm, active section length 7 mm and curvature

radii of 10.7 mm) were designed as a trade-off between optimal nonlin-

56
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ear interaction [82] and technical ease of spherical polishing of the facets

of the crystal, the main practical limitation being avoiding the possibility

of misaligned cavity due to the error in the position of the centers of the

spherical surfaces which form the mirrors of the sides of the crystal.

The oven that holds the crystal, described in Section 6.4 requires an appa-

ratus that allows applying large pressure to the crystal without damaging

it, simultaneously with precise heating of its sections. Since using the

dimension perpendicular to the force applied to the crystal by the piezo

actuator proved impossible (due to large thermal gradients inside the

crystal), the heating devices we use need to be very flat, in order not

to cause the crystal pressed against it to break.

6.1 Material

Frequency conversion between near-IR and near-UV spectral ranges re-

quires QPM structures with periodicities of the order of few microme-

ters, which still remains challenging. Although periodically-poled KTP

displays one of the highest nonlinear coefficients via noncritical quasi

phase-matching, and has been successfully employed to build highly

efficient SPDC pair sources at 810 nm [83], the periodic poling qual-

ity necessary to generate photons at 795 nm is often not satisfactory.

Bulk Rb-doped KTP is an ideal candidate for production of such fine-

pitch QPM structures. A low Rb+ dopant concentration (typically below

1%) essentially guarantees same RKTP optical properties as those of

regular flux-grown KTP, however, two orders of magnitude lower ionic

conductivity mitigates the domain broadening problem and allows us

to achieve periodic poling of high-quality ferroelectric domain struc-

tures [84]. In addition, this material exhibits lower susceptibility to gray-

tracking benefiting the applications in near-UV spectral region. For our

experiment we have used periodically poled RKTP (PPRKTP) crystals
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with the QPM period of Λ = 3.16 µm, fabricated by our collaborators

Carlota Canalias and Andrius Zukauskas at KTH Stockholm.

High-quality periodic poling of the active section located in the central

part of the crystals (approx. poling volume: 7 mm× 3.5 mm× 1 mm

along the a, b, and c axes, respectively) was achieved using the short-

pulse electric field poling technique [85].

Figure 6.1: A photo (by K.Kutluer) of the crystal used in the experiment
with the periodically-poled section visible.

6.2 Cavity design

6.2.1 Dimensions

The maximum crystal thickness (d = 1 mm) is limited by the periodic

poling, which was not technically possible for thicker crystals. The other
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dimensions, being the length L = 16 mm and the width (6mm) of the

crystal were chosen for convenient fabrication and handling.

The lengths of non-poled sections are important, as they determine the

cavity tuning capabilities. Since we maintain these sections at a tem-

perature different from the poled section (which is always at the phase

matching temperature), the objective is to have the side sections long

enough, so that we can tune the cavity by at least one FSR without

causing significant temperature gradient in the crystal, which could com-

promise the frequency conversion efficiency. We estimated that for the

side section of the length 3.5 mm the necessary temperature tuning range

would require less than 1K difference between central and side sections

of the crystal, which is not expected to cause thermal gradient problems.

The crucial part of the cavity design was selecting the radii of curvature

of the sides of the crystal, which determine the beam waist inside of the

crystal. We decided to use a symmetrical cavity design, as we need two

equal length non-poled sections on the sides of the central active section.

For the gaussian beam, the waist of the mode supported by the cavity can

be calculated from the curvature of the mirrors, as this curvature is equal

to the curvature of the waveform of the gaussian mode supported by the

cavity.

6.2.2 Formulas describing a gaussian beam

In this subsection we enumerate the basic formulas necessary the design,

that describe a Gaussian beam in a dielectric medium with refractive

index n = 1.85 and vacuum wavelength λ = 795 nm.

The radius of curvature of the gaussian beam characterized by a Rayleigh

range zR as a function of distance z from waist has the following form:
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R(z) = z
(

1+
(

zR

z

)2)
. (6.1)

The Rayleigh range in turn is related to the beam waist w0 as follows:

zR =
w2

0πn
λ

. (6.2)

The beam width w(z) changes with distance according to

w(z) = w0

√
1+
(

z
zR

)2

. (6.3)

We can calculate the beam size on the side of the crystal from the above

formula taking z = L/2.

6.2.3 Optimum focusing

Boyd and Kleinmann [82] calculate the efficiency of the frequency con-

version for a gaussian beam in the χ(2) medium to be proportional to the

function

h(ξ ,σ) =
1

2
√

πξ

∫
∞

−∞

e4s2
∣∣∣∫ ξ

−ξ

eiστ

1+ iτ
dτ

∣∣∣2ds (6.4)

where σ is proportional to phase mismatch ∆k, and

ξ =
La

b
(6.5)

where b = 2zR is the confocal parameter of the gaussian beam. The func-

tion h(ξ ,σ) reflects the trade-off between the two factors that become

more prominent with tighter focusing, namely high intensity in the focus

beneficial for the nonlinear process, and large divergence which causes



6.2. Cavity design 61

A

B

C

Figure 6.2: Plot of function h(ξ ,σ) maximized over phase mismatch σ .
Point A corresponds to external-cavity OPO described in [53], point B
with ξ = 0.752 represents our design of a monolithic cavity, and point C
the scenario described in the section 6.2.4.

the inefficient use of the crystal. They find an optimum ratio between a

confocal parameter b of the beam and the length of the active section of

the crystal La to be ξ = 2.84 (see Fig. 6.2), which corresponds to the

waist in the crystal equal to:

wopt =

√
Laλ

(2.84)2πn
. (6.6)

For our monolithic cavity characterized by the poled section length La =

7 mm the optimum waist equals to 13 µm. However, the maximum of

h(ξ ,σ) is rather broad and in consequence, other factors come into play

when determining the appropriate focusing, such as thermal lensing and

damage that might be caused to the crystal exposed to high intensity,

like gray-tracking or BLIIRA (blue light induced infrared absorption)

[86]. Apart from that, in case of a monolithic cavity there is a technical
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limitation that impedes strong focusing, which is described in the next

subsection.

6.2.4 Polishing limitations

An external-cavity based OPO offers the possibility of adjusting the tilt

and the position of the mirrors in order to ensure the cavity is well-

aligned. However, when monolithic cavities are considered the task of

cavity alignment falls entirely into the hands of the polisher.

The most important issue in our case was an error in the position of the

centers of spherical surfaces that constitute the mirrors at the sides of the

crystal, which was guaranteed to be below 0.1 mm. From simple geo-

metric considerations we know that propagation direction of the gaussian

mode supported by the cavity coincides with the line connecting the two

centres of the spheres (green and blue point in Fig. 6.3). If these centres

are off the axis of the crystal, it is possible that part of the beam does not

hit the facet of the crystal (that is 1 mm×6 mm).

L = 16mm d = 1mm

RR

Figure 6.3: Scheme of the geometry of the cavity in the worst case
scenario when the centres of the spherical surfaces of radius R are
displaced in opposite directions.

Let us consider the worst scenario when two centres of mirror curvatures
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are off by 0.1 mm in opposite directions, shown in Fig. 6.3. The propaga-

tion direction of the gaussian mode supported by the cavity is set by these

two curvature centre points (red dashed line). The displacement (with

respect to the centre of the facet of the crystal) of the beam centre on the

mirror for crystal length L= 16 mm and radius of curvature R= 10.7 mm

yields 0.3 mm.

Beam waist at z = 8 mm (at the mirror) is equal to 50 µm, so even in the

worst case the beam is still not touching the edge of the crystal (being

closer than 0.5 mm from the centre of the facet).

If we decrease the radius of curvature to 10 mm the displacement of

the beam centre and beam waist are 0.4 mm and 52 µm respectively.

This scenario is more risky, especially if we consider that the edges of

the crystals after polishing tend to have small chips. This radius change

would give us tighter focusing (ξ would be equal to 0.875 instead of

0.752, see point C in Fig. 6.2), which means that we would get a small

advantage (11% more) in the nonlinear efficiency due to being closer to

the optimal focusing, but at the cost of risking that the cavity is mis-

aligned.

To summarize, we choose to polish the mirrors with the radius of 10.7 mm

in order to be as close as possible to optimum focusing without compro-

mising the cavity alignment due to geometric errors in polishing.

6.2.5 Coatings

The coating of the input of the monolithic OPO (or output of the SHG

device) is almost totally reflective (R > 99.99%) for the fundamental

wavelength of 795 nm, and partially reflective for the 397 nm pump. As

we estimate the pump roundtrip loss to be 31%, the pump reflectivity is

equal to 69% to achieve critical coupling, which corresponds to maxi-

mum power build-up in the cavity.
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The OPO output (SHG input), in turn, is almost completely reflective for

the pump, and has a reflectivity of 84% for 795 nm. The red reflectivity is

selected so that to ensure a high cavity escape efficiency (close to 95%),

which increases the amount of squeezing achievable with the system.

The roundtrip loss for the red is estimated to be less than 1%.

The cavity finesse yields 20.5 for the red and 8.4 for the blue.

6.3 Degenerate cavities
In this section we describe an interesting property of our monolithic

cavity, which is a consequence the fact that the ratio between the radius

of the mirrors and cavity length is almost exactly 2
3 .

Ray transfer matrix analysis (ABCD matrices) is a ray tracing technique

used to design optical systems to which paraxial approximation can be

applied (all rays are at a small angle and small distance relative to the

optical axis of the system). In addition, the same formalism can also be

used to calculate the propagation of gaussian beams through a similar

system. Propagation of the beam through a two-mirror cavity roundtrip

in terms of ABCD matrices yields:

MABCD(L,R) =

(
1 L

0 1

)(
1 0

−2R−1 1

)(
1 L

0 1

)(
1 0

−2R−1 1

)
(6.7)

Where L is the cavity length and R is the radius of both mirrors.

Calculating the roundtrip matrix MABCD for a confocal cavity (when L =

R) we arrive to

MABCD(L,L) =

(
−1 0

0 −1

)
. (6.8)

Note that the square of MABCD(L,L) is an identity matrix. The conse-

quence of this fact is that any beam (also not mode-matched to cavity)
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after two roundtrips has the same angle and position relative to cavity

optical axis as when entering the cavity, and therefore it interferes with

itself.

Accidentally, in our cavity we have R = 2
3 L, and for these values

[
MABCD

(
L,

2
3

L
)]3

=

(
1 0

0 1

)
(6.9)

It means that the a ray injected into a cavity no matter at what angle

and position reproduces itself after three cavity roundtrips, provided that

the angle is not too big (so that the beam reaches the output facet of

the crystal). After initial confusion, this property turned out to be useful

in cavity alignment with the help of a CCD camera imaging the cavity

output plane. The image for misaligned cavity consists of three spots, and

the right alignment of angle and position of the input beam is obtained

when the three spots join into one, whereas the beam size and focusing

is matched the the cavity mode when the three spots are the same size.

6.4 Oven design

In this section we describe the design of the crystal holder (oven), re-

sponsible for applying the pressure to the crystal as well as maintaining

its three sections in their respective temperatures.

The schematic drawing of the oven is shown in Fig. 6.4. The inner oven

consists of two polished glass plates (marked as elements 4 and 5 in Fig.

6.4A) pressed together by a piezoelectric actuator; the crystal is placed in

between them. The lower plate rests on an aluminum support (element 2)

which is rigidly connected to also aluminum upper support (element 1)

that allows the piezoelectric actuator to apply pressure to the crystal and

upper and lower plates. The lower plate (see Fig. 6.5 A and B and 6.6)
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A

B C

Figure 6.4: An illustration of the oven design. A: Oven with marked
elements described in the figure. B: A photo of the assembled oven. C:
A photo of the piezoelectric actuator (Noliac NA2023) with half-sphere
end piece.



6.4. Oven design 67

A B

C

D

Figure 6.5: An analysis of the thermal gradients inside the crystal. A:
The lower plate with crystal (green) resting on top of it. I1, I2 and
Ia denominate currents flowing through the corresponding ITO heaters
(red) and nickel electrodes (black) B: Side view of the lower plate,
showing temperature sensors C: Typical temperature distributions an the
crystal axis calculated from FEM model for sensor temperatures T1 =
38C and T2 = 37.5C (green), T1 = T2 = 40C (orange), T1 = T2 = 39C
(blue). For all three Ta = 39C. D: Example temperature distribution on
the plane containing the crystal optical axis (dashed line) from FEM.

is responsible for maintaining each of the three sections of the crystal in

its respective temperatures, whereas the upper plate is used for evenly

distributing the stress from the piezoelectric actuator that presses the

crystal from above.

The lower plate is a 25.4 mm diameter and 6 mm thick mirror blank,

with three 100 nm thick ITO (indium tin oxide) stripes deposited using

sputtering (AJA International ATC Orion 8 HV). Substrate-target dis-

tance was set to 30 cm, Ar (20 sccm) and O2 (1 sccm) were used for

sputtering with a pressure of 2 mTorr. The crystal, resting on polished

glass with thin film ITO stripes, is heated when current is applied to the

stripes through nickel electrical contacts deposited on each stripe.
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Figure 6.6: A photo of the oven. The crystals (not present in the photo)
rests on top of the glass plate, and the three semi-transparent stripes are
responsible for heating its three sections.

Measurement of the temperature is performed using thermistor sensors,

placed inside the lower plate 1mm from the surface with ITO heaters in

small holes drilled in the lower plate from the side opposite the crystal.

The temperature of each section of the crystal is PID stabilized by feed-

ing back from the sensor to the heater current. To understand the ther-

mal conditions, a finite element method (FEM) model was developed in

Mathematica, solving the 3D heat diffusion equation. The temperatures

of the ITO stripes (Dirichlet condition) are varied and for each case the

relation between temperatures of the sensors inside the lower plate and

temperature of the optical axis of the crystal T(z) is found (see Figs.

6.5C and 6.5D). The theory results compared against the experiment in

the next chapter use the temperature distribution from this model and the

measured temperatures T1 and T2 are treated as sensor temperatures.

The upper plate is a 19 mm diameter and 6 mm thick mirror blank, pressed

by a piezeoelectric actuator terminated in a steel half-sphere (see Fig.

6.4C), to simplify alignment and prevent strain concentration due to

tilt of the actuator relative to the crystal. Using thin heaters (100 nm,

comparable to the ∼ λ/10 surface flatness of the mirror substrates upon

which they are deposited) is necessary to minimize shear stresses on the
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crystal under compression, which otherwise can break.



Chapter 7

Second harmonic generation
with the monolith

In this chapter we demonstrate tunability features of our monolithic de-

vice, which include up to four tuning degrees of freedom, three temper-

ature and one strain, allowing resonance of pump and generated wave-

lengths simultaneous with optimal phase-matching. We test the perfor-

mance of the monolithic device as an upconverter, demonstrating ef-

ficient continuous-wave second harmonic generation from 795 nm to

397 nm, with low-power efficiency of 72 %/W and high-power slope

efficiency of 4.5 %. We observe optical bistability effects, and show how

they can be used to improve the stability of the output against pump

frequency and amplitude variations.

We dedicate this entire chapter to second harmonic generation, because

apart from being for a useful step for learning how to drive the mono-

lithic device, it is also important as technological advance. The near-

UV or UVA wavelengths 315 nm to 400 nm have numerous applica-

tions, for example in biology, where fluorescent bio-markers are excited

at short wavelengths, often below the range of diode lasers. Although

gas lasers can directly generate UVA at selected wavelengths, compact

and efficient sources require frequency up-conversion, for example by

intra-cavity doubling in diode-pumped solid-state (DPSS) lasers. Due

70



7.1. SHG efficiency in the cavity 71

to the high intra-cavity intensities and sensitivity of laser resonators to

intra-cavity losses, such systems are sensitive to degradation of bulk

crystal properties and surface properties under intense UV illumination.

Here we explore an alternative route to compact, stable UVA generation,

using diode-pumped monolithic frequency converters. This approach is

attractive for a number of reasons, not least the absence of intra-cavity

interfaces and the stability against environmental perturbations including

vibration, pressure and temperature fluctuations, and chemical or physi-

cal contamination.

We present a monolithic frequency converter with temperature control

of the periodically-poled central region of the crystal, and additionally

independent temperature control of two end sections, as well as strain

tuning by compressing the cavity/crystal with a piezo-electric element.

We observe that thermo-optical tuning can cover multiple cavity free

spectral ranges (FSR) without compromising the phase matching due to

thermal gradients in the poled section, and moreover the ratios between

elastooptical and thermooptical coefficients for 795 nm and 397 nm dif-

fer enough that we can independently control the fundamental and SHG

resonances. Together, these provide four independent controls, allow-

ing us to optimize the pump resonance, phase matching, second har-

monic resonance, and phase relation between forward- and backward-

propagating SHG, without using the pump wavelength as a degree of

freedom.

7.1 SHG efficiency in the cavity

In this section we describe second harmonic generated in a doubly-resonant,

lossy, linear cavity, and identify the cavity tuning controls and degrees of

freedom that need to be controlled so as to double resonance is main-

tained.
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B

Figure 7.1: A crystal with active section with length La periodically
poled and maintained in phase-matching temperature Ta, while sides 1
and 2 with lengths L1 and L2 are in temperatures T1 and T2 respectively.
Side 1 has reflection and transmission amplitude coefficients r1 and t1
and side 2 r2 and t2 for the red pump light. Side 1 is assumed to be
completely reflective for the blue second harmonic, and r and t stand for
the second harmonic reflection and transmission coefficients for side 2.

Following a simple steady-state calculation found in [87] adapted to a

cavity design with one active and two side sections as in Fig. 7.1 we

obtain the expression for the output SH field E
(2ω)

out as a function of

temperatures T1,Ta,T2, voltage V and pump amplitude E
(ω)

in .

E
(2ω)

out = χ
(2)
eff JblueJpmJphaseJ2

red(E
(ω)

in )2 (7.1)

where
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t1

1− r1r2e2i(φ (ω)
1 +φ

(ω)
a +φ

(ω)
2 )

, (7.2)
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t

1− re−2αLe2i(φ (2ω)
1 +φ

(2ω)
a +φ

(2ω)
2 )

, (7.3)
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Jpm = ei(φ (ω)
a − 1
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a − q

2 )sinc
(

φ
(ω)
a − 1

2
φ
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a − 1

2
q
)
, (7.4)

χ
(2)
eff = χ

(2)e−α(La+L2), (7.5)

Jphase = 1+ r2
2re−αLei(2φ

(2ω)
1 +φ

(2ω)
a )e2i(φ (ω)

a +2φ
(ω)
2 ), (7.6)

and Jred, Jblue are resonance terms with blue absorption coefficient α ,

total cavity length L and φ
(ω)
i = ω

c

∫
Li

n(ω,Ti,V )dl are the phases accu-

mulated by the field of frequency ω after passing through each section of

the crystal uniformly pressed by applying voltage V to the piezo element,

with i = a corresponding to the active, i.e. poled, section and i = 1,2 to

the side sections 1 and 2. The factor Jpm is a phase matching profile

with poling period Λ, q ≡ 2π

Λ
, and χ(2) is the single-pass efficiency.

Finally, the factor Jphase describes the effect of interference between the

blue field created in backward and forward passes of the pump beam

through the active section. Fig. 7.2 shows how the factors behave when

the temperature of the entire crystal (all the sections together) is changed.

The phase matching is affected only by the temperature of the active

section Ta and voltage V , whereas side temperatures T1 = TS + TD and

T2 = TS− TD affect both resonances and the interference phase factor.

However, the phase degree of freedom can be separated, since changing

TD does not affect to first order the blue and red resonance.

To summarize, in order to maximize the emission from the cavity, in

addition to maintaining the active section at the phase matching temper-

ature, we need to have three degrees of freedom to control red and blue

resonance and relative phase. We use TD to control the relative phase, and

TS and the elastooptic effect to control red and blue resonance, taking

advantage of the fact that both thermooptic and elastooptic coefficients

are different for red and blue.



7.2. Experimental characterization 74

A B

C D

Figure 7.2: Factors determining efficiency of SHG, plotted as a functions
of the entire crystal temperature (all three sections at the same temper-
ature). A: Red resonance factor Jred, B: Blue resonance factor Jblue, C:
Phase matching factor Jpm, D: Backward/forward phase factor Jphase.

7.2 Experimental characterization

The experimental results presented in this section are obtained for a

cavity as in as in Fig. 7.1, pumped by a DBR laser at 795 nm, amplified

by a tapered amplifier (see Appendix C for details), spatially filtered by

a single-mode fiber, and mode matched to the cavity with a set of lenses

and mirrors. The signal from the cavity output is split by a dichroic mir-

ror and sent to two detectors recording the power of the red transmitted

though the cavity and blue power exiting the cavity (as in Fig. 8.1).
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7.2.1 Red resonance control via temperature and pressure

In the method we propose, we keep the temperature gradients as small

as possible, since they can cause the efficiency to drop because the en-

tire active section is not maintained in the phase matching temperature.

Therefore, we start with the entire crystal set to phase matching tempera-

ture, and then slightly vary the side temperatures to satisfy the remaining

resonance conditions. Red resonance can be controlled using the temper-

ature of the sides of the crystal TS (it is not sensitive to TD) and pressure.

A simple test of tuning red resonance by changing the temperature of

one of the sides while the rest of the crystal is maintained at the phase

matching temperature showed that the cavity resonance shift is a linear

function of the side temperature over a range of a few FSR (more than

necessary for the purpose of tuning the cavity), which indicates that

the regime where temperature gradients become a limiting factor is not

reached. Linear fits with respect to sensor temperature and crystal tem-

perature (from FEM model) give 0.603±0.002 FSR/K and 0.442±0.001

FSR/K, respectively, where FSR is a cavity free spectral range (5.2 GHz).

Straightforward calculation from the Sellmeier equation given in [88]

and assuming no thermal gradients predicts 0.416 FSR/K. The possible

causes of the small discrepancy are the fact that neither the length of the

section nor the sensor location is precisely known, and the FEM model

does not include the thermal contact between the crystal and the heaters

and the temperature sensor and lower glass plate.

A similar measurement has been performed varying the voltage applied

to the piezo actuator (pressing the crystal) while scanning the laser through

the cavity spectrum and observing the shift of the cavity resonance fre-

quency. The results are presented in the Fig. 7.3A. This tuning method

shows a small hysteresis. The piezo actuator used in the experiment

allows us to tune the cavity by an FSR, with the rate of 0.0049±0.0001

FSR/V (linear fit), although the precise rate changes each time the piezo
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is mounted. We observed that refractive index change due to elastooptical

effect can be described as ne(ω,V ) = βV for the fundamental field and

ne(ω,V ) = (1.75± 0.05)βV for the second harmonic, where the com-

mon factor β depends on how the piezo actuator is held and changes

from mounting to mounting.

The temperature TD does not affect the blue and red resonance condi-

tions, therefore we use the TS and pressure to control them and then

adjust the relative phase factor Jphase by TD. Since the red resonance

is the most sensitive (narrowband) condition in the experiment, and the

elastooptical tuning is the fastest degree of freedom, our strategy is first

to lock the red resonance using a feedback from the red transmission

signal and then to adjust TS and TD until blue resonance is achieved and

Jphase optimized while the piezo actuator follows the red resonance.

A B

Figure 7.3: A: Elastooptic effect based tuning, each data point is the
cavity resonance shift recorded from the cavity scan for a given piezo
voltage. B: Phase matching curve, experimental data and fitted dpm(T ),
with the center temperature as a free parameter.
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7.2.2 Phase matching temperature measurement

The phase matching temperature of the crystal has been experimentally

measured by varying temperature of the active section of the crystal and

recording the maximum blue power exiting the cavity (separated from

the red cavity transmission signal by the dichroic mirror). At each active

section temperature corresponding to one data point at Fig.7.3B, the blue

power was optimized by two side temperatures adjusted within ±1.5K

in 10 steps from the center temperature and a laser scanned over 1.5 FSR

of the red resonance (replacing elastooptic effect as a control to tune the

cavity). Temperatures in this experiment are calculated by FEM model

from the sensor temperatures.

7.2.3 Controlling blue via temperature

The monolithic frequency converter can be doubly resonant without com-

promising phase-matching, only by changing independently the tem-

peratures of the sides of the crystal. The figure 7.4 shows SHG power

obtained from the cavity as a function of two temperatures of the sides

of the crystal T1 and T2 while the central active section is maintained

in phase matching temperature of 39◦C. It is evident that several max-

ima are present, so the tuning range offered by our temperature tuning

method is more than sufficient to achieve double resonance.
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Figure 7.4: Blue power for different settings of the side temperatures.
Experiment (left) is compared to theory (right) from the first section.
Temperature in both plots is sensor temperature (in case of theory
calculated from FEM model). Reason for discrepancies is principally
that lengths of the side sections are not controlled, and not known
precisely.

7.2.4 Kerr effect, bistability, and red stabilization

We observe a Kerr effect for the red light, which manifests as a char-

acteristic optical bistability or asymmetric, hysteretic cavity resonance

shape. Red resonance shapes as scanned by the piezoelement are shown

in the figure 7.5A. The magnitude of the asymmetry increases with the

fundamental beam power and the scanning speed, indicating a slow Kerr

nonlinearity that will be analyzed in detail in the next chapter. For pump

powers of 50mW and higher the observed resonance shapes are indepen-

dent of the blue resonance condition, suggesting that blue light absorp-

tion does not play a significant role in the effect.
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7mW input

22mW input

58mW input

A B

C

Figure 7.5: A bistable resonator behaviour. A: Scans by the piezo (15s
long) through red resonance for different input power levels. Each plot
shows scan decreasing and increasing pressure, according to the arrows.
B: Measurement of SH power when slowly sweeping TD and keeping the
piezo-based lock running, along with a sinusoidal fit. C: Measurement
of SH power when slowly sweeping TS and keeping the piezo-based lock
running.

Optical bistability makes it impossible to stabilize the red resonance pre-

cisely at the maximum, which occurs adjacent to the transition to the low

cavity power condition. On the other hand, by broadening the resonance,

the Kerr effect facilitates stabilization near the maximum, and in practice

we can easily stabilize the cavity length for the red at least 97% of

the maximum power of the transmission with output power fluctuations

of less than 1% and stability of several hours using a simple side-of-

fringe stabilization of the piezo voltage, provided the temperatures of

the three sections of the crystal are stabilized with mK precision by the

PID controllers

The stability of red resonance when operating above 50mW of power

is good enough so that the side temperatures can be slowly changed
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with the Kerr-based piezo-controlled lock following the red resonance.

The measurements shown in Fig. 7.5B and 7.5C were performed in the

regime in which the slow change of the sides temperatures inside the

cavity does not cause disturbance big enough to lose the lock. The scan

of TD presented in the picture 7.5B is done with only minimal adjustment

of the piezo because TD does not significantly affect the resonances Jred

and Jblue, therefore the curve we obtain should correspond to Jphase. The-

oretical relative phase visibility VIS = 2r2
2re−αL

1+(r22re−αL)2 yields 94%, which is

with very good agreement with experimental result that gives 96% from

the sinusoidal fit presented on Fig. 7.5B as a solid line.

Similarly, Fig. 7.5C, which shows a slow sweep of TS while red reso-

nance is maintained by feedback to the piezo element, shows that there

is sufficient pressure and TS temperature range that it is always possible

to tune the cavity into blue resonance while maintaining red resonance.

Equivalently, that the blue resonance factor Jblue and the red resonance

factor Jred can be simultaneously maximized.

7.2.5 Power measurement

The dependence of the power of the second harmonic with respect to

the pump power is presented in the Fig. 7.6, along with a quadratic fit

to the data points below 50 mW of pump power, since in this regime

the pump depletion effect is not yet significant. For each data point the

piezo and the side temperatures were optimized to achieve maximum

second harmonic power. The resulting low-power efficiency is 0.72/W ,

while in the high-power regime when pump depletion comes into play

the conversion efficiency yields 4.5%.

The black curve on the inset of Fig.7.6, represents the dependence of

the generated SH power on the fundamental power with all three de-

grees of freedom and phase matching optimized, while the red curve

shows the same relationship of SH power to input fundamental power,
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Figure 7.6: Blue points represent SH power measured as function of
a pump power and green curve represents a cuadratic fit to the mea-
surements below 50mW of pump power. The inset shows comparison
between two cavity and phase matching optimization methods, the full
independent optimization we propose (black curve), and optimization of
4 degrees of freedom with just crystal temperature (red curve).

with optimization of only the piezo voltage and the temperature of the

entire crystal, thereby trying to achieve resonances at the cost of phase

matching (a strategy similar to that employed by Yonezawa et. al [42]).

This comparison shows that using full-crystal temperature as a degree of

freedom to achieve cavity resonance(s) yields less conversion efficiency

than does employing multiple independent temperature controls of the

phase matching temperature. The exact advantage of full optimization

depends on the crystal and vary according to the overlap of the phase

matching curve with the cavity resonance(s) dependence on the crystal

temperature [42].
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7.3 Summary

We experimentally showed that the concept of a tunable second harmonic

generation monolithic device described in Section 5.5 works in prac-

tice. Double resonance-enhanced SHG can be achieved for an arbitrary

wavelength within the range allowed by the properties of the material

via independent control of the temperature in three different sections of

the crystal, as well as a pressure applied to the crystal using a piezo-

electric actuator. We tested the performance of the monolith as a second

harmonic generation device.



Chapter 8

The Photo-Kerr effect

In this chapter we describe a previously unreported optical nonlinearity

and demonstrate its application in self-stabilization of the monolithic

frequency converter. The new effect appears as an optical Kerr non-

linearity whose strength reflects the intra-cavity pump power over long

time-scales, even though the Kerr effect it produces is fast. We find good

agreement between a simple model of the new nonlinearity and observed

nonlinear behavior. We show that this effect induces self-stabilization

of the frequency converter, which remains in resonance despite pump

frequency changes of multiple free spectral ranges.

Dispersive optical nonlinearities underlie a great variety of nonlinear

phenomena and optical technologies, including optical memories [89,

90], optical solitons [91], squeezing of light [92], and entangled photon

generation [93]. Two broad classes of refractive optical nonlinearities can

be identified, fast nonlinearities in which the refractive index depends on

the instantaneous intensity, and slow nonlinearities such as the photo-

refractive effect [94] in which the index depends on the history of inten-

sity over a longer time. Here we observe a new kind of refractive non-

linearity in which the refractive index is linear in the instantaneous field,

with a slope that reflects the intensity history of the material. We call this

the photo-Kerr effect as it shares some characteristics of photorefractive

effects. The effect combines both the strength of slow nonlinearities and

speed of fast ones.

83
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8.1 Experimental evidence

The experimental setup is shown in Fig. 8.1. The monolithic upconverter

is pumped with up to 250 mW red light. The wavelength of the pump

light is scanned through several cavity free spectral ranges while both

pump and its second harmonic are separately collected at the output. As

shown in Fig. 8.2, optical bistability is clearly seen when scanning the

pump wavelength, evidenced by asymmetrical deformation of the cavity

resonance, hysteresis, and abrupt transitions from high- to low-power

stable points, with all these effects growing with pump power. Kerr bista-

bility is well known to produce such effects, but what we observe here

cannot be explained with a simple Kerr nonlinearity.

Figure 8.1: Experimental setup. The abbreviation DC means dichroic
mirror, and detectors DR and DB collect 795 nm (red) and 397 nm (blue)
light.

As shown in Fig. 8.3, the observed effects depend strongly on the speed

of the scan, continuing to increase in prominence on long time-scales:

We can deduce from Fig. 8.3 that the timescale of the resonance-dragging

effect is ∼ 10 s, much longer than any optical time-scale in the system.

At the same time, the jumps from one stable point to another, visible

in Fig. 8.3, appear to be very fast, suggesting the deformation of cavity

spectrum depends on the instantaneous power in the cavity as well as its

long-time average, indicating a refractive index depending in (at least)

second order on the intensity.
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31 mW 58 mW

92 mW 128 mW

175 mW 215 mW

Figure 8.2: Red and blue curves show fundamental and second harmonic
intracavity power vs pump laser frequency which is scanned over 2.5
cavity FSR for 795 nm . The scan speed is 10s per FSR, and each graph
corresponds to a different pump power as indicated. Both red and blue
intracavity powers are estimated from the respective output power and
output coupler transmission values. The red output coupler is calibrated
by measuring output at resonance for known input power and finesse.
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15 s 22.5 s

30 s 45 s

60 s 75 s  

Figure 8.3: Red and blue curves show fundamental and second harmonic
intracavity power vs pump laser frequency which is scanned over 3
cavity FSR for 795 nm . The pump power is set to 250mW, the graphs
correpond to different scan speeds (a total duration of the 3 FSR scan
is indicated on each graph). Both red and blue intracavity powers
are estimated from the respective output power and output coupler
transmission values.
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8.1.1 Remarks on possible explanation

The effect does not appear to depend on the presence of the SH - the

bistability occurs also when the SH is not generated, either because it

is not resonant, the fundamental pump polarization is rotated, or because

the poled section is far from the phase-matching temperature (we observe

similar behaviour is the same for temperatures ranging from room to

55◦C). The variations of the power of the SH light when pump wave-

length is scanned depicted in Figs. 8.2 and 8.3 are determined by combi-

nation of pump power in the cavity, SH cavity resonance and interference

between light generated forward and backward directions in the cavity,

and appear not to be affected by the new nonlinear effect we observe in

fundamental light.

While a thermal effect involving the temperature of the whole device

could in principle operate on the ∼ 10 s timescale, this explanation ap-

pears implausible: because RKTP is highly transparent at 795 nm , opti-

cal heating of the crystal is mostly due to absorption of the SH light, since

the roundtrip loss is estimated to be 30%. Thermal changes in the cavity

due to presence of fundamental light are hardly noticeable on the crystal

temperature sensors, which is not the case with SH light. Moreover, ther-

mooptical effect would affect SH light stronger than fundamental [95],

and the photo-Kerr does not seem to deform the shape of SH resonances

at all.

Although we rule out the blue-light-induced infra-red absorption (BLI-

IRA) as an explanation despite its long timescale [86] as the absorption

alone cannot cause the cavity peak deformation we detect, it is possible

that color-centers that underlie the BLIIRA are somehow related to the

phenomenon.

The effect most closely resembles photorefractive effects, in which opti-

cally excited carriers become trapped for long times in impurity levels

[96] and thereby contribute to the linear refractive index in function
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of the intensity history of the material. Here, in contrast, what appears

to depend on the intensity history is the nonlinear refractive index, or

optical Kerr coefficient for the 795 nm wavelength.

The effect is present in all three RKTP monolithic cavities we tested

(although in one of them it is ∼ 15% weaker than in the other two), but

we do not know whether this effect is characteristic for this particular

material, or it is caused by some alteration of the fabrication or handling

process of this particular batch of crystals.

8.1.2 Advantage for cavity stabilization

The observed nonlinearity has an evident benefit in maintaining reso-

nance in the system: due to the strong nonlinearity, at higher powers the

cavity line is pulled by more than a FSR. As a result, when the system

jumps from a resonant stable point, it drops to another stable point that is

also nearly resonant. As seen in Fig. 8.3, at the highest power and slow-

est scan, the system maintains > 50% of the intra-cavity pump power

after such a jump and then rises toward full power. Resonant behavior

can thus be maintained even without frequency stabilization. By setting

the frequency to achieve a desired power (up to 95% of the maximum

transmission), we have observed that the intra-cavity power is stable over

hours, without any active frequency control. This moreover permits slow

adjustment of the temperatures of the various crystal sections to achieve

blue resonance.

8.2 Model

The bistability effects described above clearly show two time-scales,

notable in the fast change from one stable state to another, and in the

∼ 10 s accumulation time. We find the behaviour can be reproduced by a
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model in which a fast Kerr nonlinearity is present, with a Kerr coefficient

that grows at a rate proportional to the intra-cavity red power, and decays

on a ∼ 10 s time-scale.

8.2.1 Cavity roundtrip operator

IN OUTR1 R2
P2P1 N

Ain
N0,x Nx,x

LAL1 L2

Figure 8.4: The lengths of the three sections of the crystal are denoted
as L1, L2 and LA. The propagation of the pump light with amplitude Ain
is described in terms of operators displayed in the figure.

To describe a frequency converter with refractive optical bistability, we

must assume include second- and third-order nonlinear susceptibility, for

the SHG and Kerr effects, respectively. In the resonator under consider-

ation, only the middle section, where the fundamental and SH beams are

focused, is periodically poled, and since the intensity is also highest in

this region, we treat only the nonlinear effects for this part of the crystal.

The material polarization is

P = χ
(1)E +χ

(2)E2 +χ
(3)E3 ≡ χ

(1)E +PNL (8.1)

We know from Maxwell equations that E and P evolve according to the

wave equation [47] in the form of Eq. (2.2). For X ∈ {E,P,PNL}, we can

decompose it into a series X(~r, t) = ∑m Xm(~r)eiωmt + c.c., and Eq. 2.2 is

then satisfied in particular for each frequency component

(∇2 +
n(ωm)

2

c2 ω
2
m)Em(~r) =−

4π

c2 ω
2
mPNL,m(~r) (8.2)
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where the refractive index n(ωm)=
√

1+4πχ(1)(ωm)≈ 1+2πχ(1)(ωm).

In what follows we suppress the frequency dependence of χ(i) and as-

sume that χ(3)(ω2) is negligible. Let us consider the field in the following

form

E(~r) = E1(~r)eiω1t +E2(~r)eiω2t + c.c. (8.3)

where ω2 = 2ω1. From the experimental observations we expect that the

following nonlinear polarization components are of greatest importance

PNL,1 = 2χ
(2)∗E2E∗1 +

3
4

χ
(3)E1E∗1 E1 (8.4)

PNL,2 = χ
(2)E2

1 (8.5)

We make the plane-wave approximation, and thus put ∇→ ∂z in Eq. 8.2,

and combining with Eqs. 8.4 and 8.5 we find the coupled wave equations

(∂ 2
z +

(n(ω1)+κ|E1|2)2

c2 ω
2
1 )E1 = −8π

c2 ω
2
1 χ

(2)∗E2E∗1 (8.6)

(∂ 2
z +

n(ω2)
2

c2 ω
2
2 )E2 = −4π

c2 ω
2
2 χ

(2)E2
1 (8.7)

where the Kerr coefficient is κ = 3π

2 χ(3) and for clarity we have sup-

pressed the z-dependence of E1,2(z). Now let us assume that PNL is small,

so the solution is a plane wave in the form Em(z) = Am(z)eikmz where

km = n(ωm)ωm/c. We also assume the envelope Am is slowly varying,

i.e. ∂ 2
z Am << km∂zAm and simplify ∂ 2

z Em as

∂
2
z Em→ [2ikm∂zAm(z)− k2

i Am(z)]eikmz (8.8)

In particular we have k1(z) = (n(ω1)+κ|A1(z)|2)ω1/c and we similarly
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take ∂zeik1(z)z→ ik1(z)eik1(z)z to obtain

∂zA1(z) = i
4πχ(2)∗ω2

1
k1(z)c

A2(z)A1(z)∗eik2z−2ik1(z)z (8.9)

∂zA2(z) = i
2πχ(2)ω2

2
k2c

A1(z)2e−ik2z+2ik1(z)z (8.10)

Now let’s consider a slice of active section with small length x (small

enough to assume k1(z) constant), located at a distance l from the begin-

ning. The envelopes change as follows

A1(l + x) = A1(l)+ i
4πχ(2)∗ω2

1
k1(l)c

A2(l)A1(l)∗Jpm(l,x)∗ (8.11)

A2(l + x) = A2(l)e−αx + i
2πχ(2)ω2

2
k2c

A1(l)2Jpm(l,x) (8.12)

where

Jpm(l,x)≡
∫ l+x

l
e−ik2z+2ik1(l)zdz. (8.13)

The fields E1 and E2 while passing through the slice acquire propagation

phases of φ
(ω)
x =(n(ω1,TA)+κ|A1(l)|2)ω1x/c and φ

(ω2)
x = n(ω2,TA)ω2x/c,

respectively. Refractive index n(ω,T ) in addition to wavelength, de-

pends also on the temperature of the active section of the crystal TA (the

Sellmeier equation can be found in [95]). Additionally, SH light under-

goes losses by a factor of e−αx where α is the absorption coefficient. The

operator that propagates the fields through the slice Nx,l thus has the form(
E1

E2

)
Nx,l−−→

(
(E1 + iχ(2)

eff E∗1 E2Jpm(l,x)∗)eiφ (ω)
x

(E2 + iχ(2)
eff E2

1 Jpm(l,x))e−αxeiφ (ω2)
x

)
(8.14)

For notational simplicity we define combining operators S1(S2(A,B)) =

S1 ◦ S2(A,B). Then N = Nx,LA−x ◦ · · · ◦Nx,x ◦Nx,0 is the operator that de-
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scribes to fields passing through the whole active section of the length

LA.

The propagation through non-poled sections of the crystal of lengths L1

and L2 can be expressed as(
E1

E2

)
Pj−→

 E1eiφ (ω)
j

E2e−αL j eiφ (ω2)
j

 , (8.15)

where φ
(ν)
j ≡ n(ν ,Tj)νL j/c ν ∈{ω1,ω2},for j∈{1,2} and Pi for i= 1,2

correspond to propagation through the cavity non-poled side sections 1

and 2 (see Fig. 5.1) maintained in their respective temperatures T1 and

T2.

The reflection from the cavity sides is described using the operators(
E1

E2

)
R1−→

(
r1E1 + t1Ain

E2

)
(8.16)

and (
E1

E2

)
R2−→

(
r2E1

rE2

)
(8.17)

where r1 and t1 are reflection and transmission coefficients for the fun-

damental light at side 1, and r2 is the reflection at side 2. r and t describe

reflection and transmission for the second harmonic at side 2 (side 1 is

assumed completely reflective). The input fundamental pump amplitude

is denoted as Ain.

The operator propagating the fields through the complete cavity roundtrip

with Kerr coefficient κ can be expressed as:

Cκ = P1 ◦Nκ ◦P2 ◦R2 ◦P2 ◦Nκ ◦P1 ◦R1 (8.18)
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8.2.2 Wavelength scan

We can find steady state fields (E(s)
1 ,E(s)

2 ) for the Kerr coefficient κ after

switching on the pump by propagating initial fields through m roundtrips,

where m is chosen to be significantly larger than the cavity finesse, i.e.,(
E(s)

1

E(s)
2

)
=C◦mκ

(
E(ini)

1

E(ini)
2

)
(8.19)

where C◦mκ indicates m-fold composition of the operator Cκ . We note that

this calculation method allows for hysteresis and multi-stability, because

different initial conditions can lead to different steady-state conditions.

The slow accumulation and decay of the Kerr coefficient κ(t) is modeled

by the

∂tκ =−Γκ + f |E1|2 (8.20)

where Γ is the decay rate and f is a coupling constant. Since the intra-

cavity power is the variable accessible in the experiment, let us substitute

P1 = β |E1|2 where β is a mode-shape dependent constant with the units

of Wm2/V2. To simulate a scan, as in Figs. 8.2 and 8.3, we define a

small time step τ and update κ j ≡ κ( jτ) as

κ j+1 = Mκ j +FP( j)
1 (8.21)

where M = exp[−τΓ], F = τ f β
−1 and update the fields as(

E( j+1)
1

E( j+1)
2

)
=C◦mκ j

(
E( j)

1

E( j)
2

)
, (8.22)

while the frequency of the input field changes with each step in time

according to different scan speeds.
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Figure 8.5: Model results illustrating cavity behaviour due to photo-
Kerr effect. Upper part: Intracavity power of fundamental (red) and SH
(blue) wavelengths as the fundamental pump wavelength is scanned.
Conditions: scan rate 10 s per FSR, 250 mW input power, active section
at the phase matching temperature. Middle part: Kerr coefficient κ

(green dashed curve) and refractive index change δn = κ|A1|2 (black
curve). The cavity spectrum shift is proportional to δn. Lower part:
cavity transmission for the fundamental at five representative points of
the scan (marked in upper part): at point 1, the red field encounters
a resonance. At point 2, the side-of-resonance condition is maintained
by the combined effects of resonance and nonlinear refractive index.
κ accumulates, allowing the resonance to shift by more than one FSR.
When the top of the resonance peak is reached (point 3), the resonance
cannot shift anymore and the system becomes unstable. The power starts
to drop and cavity resonance quickly retreats (point 4). Because the peak
was shifted by more than one FSR, the system encounters another stable
side-of-resonance condition (orange in the figure) as the nonlinear shift
reduces (point five). As the scan proceeds the resonances once again shift
and the process repeats.
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8.2.3 Results

Model parameters that give reasonable agreement with observation are

decay time Γ−1 = 15.13 s (corresponding to M = 0.9967), β−1F = 1.53×
10−8 W−2, the initial Kerr coefficient multiplied by the inverse of geom-

etry constant β−1κ0 = 4×10−6 W−1, and time step τ = 50 ms. The same

M, F , κ0 and τ parameters are used for results in Figures 8.5, 8.6 and 8.7.

Results from the model are shown in Figs. 8.5, 8.6 and 8.7. Fig. 8.5

illustrates the bistability mechanism and shows how the photo-Kerr ef-

fect produces self-stabilization near a cavity resonance, presenting re-

sults calculated at the phase-matching temperature. The dependence of

cavity peak deformation on the power calculated from the theoretical

model is presented in Fig. 8.6. For simplicity, the calculation is per-

formed out of phase matching temperature and only the fundamental

light power is shown in Figs. 8.6 and 8.7. Similar dependence on the scan

speed can be found in the Fig. 8.7. The model reproduces qualitatively

the behaviour of the cavity.
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31 mW 58 mW

92 mW 128 mW

175 mW 215 mW

Figure 8.6: Blue curves represent cavity scans calculated from the model
for powers 31 mW, 58 mW, 92 mW, 128 mW, 175 mW, 215 mW and
250 mW and scan speeds of 10 s per FSR, compared to corresponding
experimental data (green).
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5 s

15 s

25 s

20 s

10 s

Figure 8.7: Blue curves represent cavity scans calculated from the model
for scan speeds 5s, 10s, 15s, 20s and 25s per FSR for pump input power
of 250mW, compared to corresponding experimental data (green).

8.3 Summary

We report on the observation of a previously unreported optical nonlin-

earity, in which the optical Kerr coefficient of a material strongly depends

on the long-time average of the intensity in the material. The effect

is clearly observed in our RKTP monolithic optical resonator, through

dispersive optical bistability features that depend on long-time average

of intra-cavity power. Modeling with nonlinear optical propagation equa-
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tions well reproduces the observed behavior, and indicates that the new

effect is far stronger than the ordinary Kerr effect in this scenario. At

moderate input powers, the effect is sufficiently strong as to produce

cavity mode-pulling that maintains the cavity near peak resonance even

as the laser frequency changes by more than a FSR, greatly simplifying

the stabilization of the cavity used as a frequency converter.



Chapter 9

Squeezing generation with
the monolith

Optical parametric oscillators (OPOs) consisting of a second-order op-

tical nonlinearity in a resonator, pumped below threshold by the sec-

ond harmonic of the optical frequency to be squeezed, are a versatile

source of squeezed light. Monolithic OPOs [42, 41], in which a single

crystal acts as both nonlinear material and optical resonator, offer im-

portant advantages in stability, size, and efficiency. More fundamentally,

the absence of air-crystal interfaces in these devices reduces losses and

the potential for damage by strong pump intensities, key factors in the

achievable squeezing. Indeed, monolithic devices hold records for opti-

cal squeezing up to 15 dB at wavelengths beyond 1 µm [36, 41, 6].

Realizing high squeezing levels at atomic wavelengths remains an open

challenge. The relatively short wavelengths affect the technologies used

for pumping and coating, the nonlinear material itself, and phase-matching.

A promising new material is periodically-poled Rb-doped potassium ti-

tanyl phosphate (ppRKTP) which is only weakly absorptive at the second

harmonic of the Rb D1 and D2 lines, and has poling advantages relative

to undoped KTP [97]. Incorporation of this material in a monolithic OPO

is promising for atomic quantum optics.

Prior work with monolithic KTP devices [42] demonstrated some of

99
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these advantages but was not fully tunable. We have built and tested a

doubly-resonant monolithic frequency converter in ppRKTP, with three

thermal degrees of freedom enabling full tunability (see chapter 7). In

this chapter we study the suitability of such devices for quantum optical

applications. When used as a frequency doubler, the ppRKTP device

showed an as-yet-unexplained optical nonlinearity producing strong op-

tical bistability features described in chapter 8 . While advantageous for

the tuning of the frequency doubler, the effect of this nonlinearity on

quantum noise properties is unknown. Here we demonstrate quadrature

squeezing from this device, confirming its suitability for quantum optical

experiments.

9.1 Experimental setup

The experimental setup is shown schematically in Fig. 9.1. An external-

cavity diode laser (ECDL) and tapered amplifier (TA) produce the fun-

damental light at 795nm. Most of the TA power is frequency doubled to

397 nm in order to generate a pump beam for the OPO, while a fraction

is reserved for the local oscillator (LO) in homodyne detection and a

seed beam to study the classical amplification properties of the device. A

spectrum analyzer (SA) analyzes the homodyne detection output.
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Figure 9.1: Experimental setup: DL - diode laser, TA - tapered amplifier,
PZT - piezoelectric actuator, MEMS - micro-electromechanical system
(switching input beam between two outputs), DC - dichroic mirror, PBS -
polarizing beam splitter, HWP - half wave plate, WP - Wollaston Prism,
DR and DL - balanced detector inputs, SA - spectrum analyzer, LO -
local oscillator, SV - squeezed vacuum, T1 and T2 - temperatures of the
non-poled sides of the crystal, TA - temperature of the active section of
the crystal. Blue and red arrows represent 397 nm and 795 nm light
respectively. Elements marked by an asterisk (*) are connected to a
FPGA-based real-time control system.

Details of the doubly-resonant monolithic frequency converter and its

tuning mechanisms are presented in chapter 7. Four degrees of free-

dom: the temperatures of three sections of the crystal and the pump

laser frequency, are used to produce: phase matching, the fundamental

and second-harmonic cavity resonance, and constructive interference be-

tween forward- and backward-emitted down-conversion light.

A microelectromechanical (MEMS) device switches fundamental power

between the seed and LO beams, with only one powered at any given

time. When the seed is on, the photocurrent of detector DR indicates the

795 nm transmission of the cavity, of interest for cavity stabilization and

classical gain measurements. When the LO is on, the differential signal

DR-DL indicates one quadrature of the 795 nm field emitted by the cavity,
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of interest for the squeezing measurements.

An FPGA-based controller sets the laser current, three thermal degrees

of freedom of the monolithic cavity, pump beam phase (controlled by

a piezo-electric actuator and with phase swept by ∼ 10π during each

switching cycle) and the MEMS switch. The switching occurs at 10 Hz,

with a duty cycle of 50%, and synchronized with the trigger of the sweep

of the pump phase, which otherwise would inject noise through the gain’s

phase dependence. Due to the large resonance bandwidth of 250 MHz

and high stability of the thermally-controlled cavity, a very simple feed-

back strategy suffices to maintain resonance. The FPGA notes the max-

imum and minimum transmission of the cavity during the pump phase

sweep when the seed beam is on, and “walks” the ECDL frequency in

steps of 2 MHz every 0.1 s, reversing direction of the steps whenever the

detected maximum seed power drops by more than 0.5 % relative to the

last step. While only the maximum is used for ensuring the fundamental

beam resonance, both maximum and minimum are necessary to calculate

the gain, which is controlled using thermal degrees of freedom of the

cavity, without losing the lock, in order to optimize cavity parameters

for maximum the gain at a given pump power.

Finally, the homodyne detection scheme is employed using local oscil-

lator mode-matched to the seed beam exiting the cavity with at least

98% visibility of the interference obtained on one side of the balanced

detector by scanning the local oscillator phase. The balanced detector

itself is set to a gain of 104 and bandwidth of 45 MHz (bandwidth refers

to the differential output).
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9.2 Gain

The first step in the OPO characterization was measuring the parametric

gain, a phase sensitive amplification of the seed light, as a function of

pump power. During this measurement the lock was continuous (seed

always on), since there was no need for the local oscillator. The gain is

obtained by measuring minimum power Pmin (seed deamplified by pump)

and maximum power Pmax (seed amplified) of the seed exiting the locked

cavity on the detector DR over one period of pump phase modulation

(consisting of a few minima and maxima) using the following formula

[98].

G =
1
4

(√Pmax

Pmin
+1
)2

(9.1)

In order to measure maximum gain for a given pump power the central

section of the crystal needs to be kept in phase matching temperature,

whereas side sections T1 and T2 need to be adjusted in order to maxi-

mize first the blue resonance by TS = 0.5(T1 +T2) and then interference

between forward and backward generated light by TD = T1 − T2. The

procedure is identical to that described in detail in chapter 7.

The measurements of the optimized gain for different powers are pre-

sented in the Figure 9.2. The expected relation depends on the OPO

threshold pump power Pth as follows

G(P) = (1−µ)−2 (9.2)

where µ =
√

P/Pth and P is pump power.

The data fit the gain vs power dependence for threshold power of 870mW

(Fig. 9.2). The threshold is related to the single-pass conversion effi-

ciency d by the following formula (adapted from [98])
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Figure 9.2: Points show measured gain as a function of pump power,
optimized with crystal side temperatures T1 and T2. The green dashed line
correponds to the fitted curve according to Eq. 9.2 with fitting parameter
Pth = 870 mW.

Pth =
TP

1−TP
× T 2

4bd
(9.3)

where T = 0.14 is red output coupler transmission, TP = 0.31 is pump in-

put coupler transmission and double-pass enhancement factor is defined

as b = (2− TP
2 )

2. The equation (9.3) assumes critical coupling of the blue

cavity, which means that the roundtrip loss is equal to the input coupler

transmission TP, and negligible red intracavity losses. We find that single-

pass efficiency d yields 0.106% W−1cm−1. Originally, we expected the

single-pass efficiency of 1% W−1cm−1, which would correspond to the

OPO threshold of 90 mW.
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9.3 Noise measurements

As shown in Fig 9.3, due to the shape of the detector noise spectrum the

best central frequency for squeezing measurement was around 10 MHz.
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Figure 9.3: Noise power spectrum of the detection system. Orange curve
shows measurement with the LO off, whereas blue curve represents noise
spectrum with the LO on (peak at 20 MHz is due to LO modulation).

A pump-off noise measurement (meaning the difference current between

DR and DL) at the squeezing measurement conditions as a function of the

local oscillator power allows us to determine the regime in which the de-

tection system is shot noise limited, and find the electronic (independent

of LO power) noise component, that will later be subtracted from the

total noise in order to determine squeezing.

The result of this measurement is presented in the figure 9.4. The spec-

trum analyzer was set to zero span mode with center frequency of 10MHz,

video bandwidth (VBW) of 100Hz and resolution bandwidth (RBW) of

3MHz. The data are fitted with a linear function with an offset that can be

interpreted as electronic noise, found to be -70.75 dBm/3MHz. From the

good agreement of the linear fit with the data we deduce that our system
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Figure 9.4: Points represent noise power as a function of a LO power
at center frequency of 10MHz and RBW 3MHz. Solid line represents a
fitted linear dependence with offset being equal to electronic noise of the
system.

is shot noise limited above 2 mW of the LO power.

9.4 Squeezing measurements

Expected squeezing spectrum measured by the spectrum analyzer for

µ << 1 can be calculated as [98]

S−(Ω) = 1− 4ηµ

(1+µ)2 +( ω

∆ω
)2 (9.4)

where ω is the detection frequency, ∆ω denotes the cavity bandwidth and

η = ηdetη
2
homηlossηcav describes the combined effect of all the losses, in-

cluding cavity escape efficiency ηcav, homodyne visibility ηhom, detector

efficiency ηdet, and other propagation losses in the squeezed beam ηloss.

We realistically assume η = 0.75 due to 98% of homodyne visibility,

95% of propagation loss, the cavity escape efficiency of 95% and the
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Figure 9.5: Green curve represents noise measured by the SA throughout
the pump phase sweep with LO power of 2.5 mW and orange curve is
the shot noise level (noise with pump switched off) without the absorber.
Blue curve is the noise measurement during pump phase sweep with a
50% absorber inserted into the SV beam.

quantum efficiency of the detector (Thorlabs PDB450A with windows

removed) given by the manufacturer which yields approximately 90%.

At Ω� 1, we expect close to 2dB squeezing and antisqueezing for pump

power corresponding to the gain value of 1.4. For originally expected

threshold of 90 mW we would expect 5.6 dB of squeezing.

We measure the squeezing and antisqueezing by modulating the phase

between LO and pump beams, using the PZT (see Fig. 9.1) and recording

on the spectrum analyzer how the noise varies with time. In order to

directly measure the proportionality factor between the measurement

with the spectrum analyzer and the squeezing spectrum as defined above

we block the squeezed vacuum beam and record the squeezing spectrum

for the vacuum state, which is equal to one (see orange curve in Fig. 9.5).

The data obtained yield around 1 dB of squeezing and 1.2 dB of an-

tisqueezing at a frequencies small compared to the cavity bandwidth
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(green curve in Fig. 9.5). Subtracting the electronic noise, this result

corresponds to 1.6 dB of squeezing and 1.7 dB of antisqueezing.

Finally, an effect of inserting a 50% neutral density filter into the sup-

posed squeezed vacuum light was recorded (see blue curve in Fig. 9.5),

in order to make sure that generated state is a squeezed vacuum state, and

not amplified and deamplified light leaking through the MEMS switch

into the cavity. The insertion of the filter into the SV beam is expected to

reduce the squeezing (and antisqueezing) level from 1 dB to 0.5 dB and

without adding any offset in the noise vs time dependence. No signifi-

cant offset noise level change is observed, and the drop in squeezing is

slightly bigger than anticipated, possibly due to filter introducing small

misalignment of mode-matched squeezed vacuum and LO beams.

9.5 Summary

We demonstrated 1.6 dB of squeezing from a doubly resonant mono-

lithic cavity, which is an key step in developing an efficient, compact,

portable and vibration-insensitive source of atom resonant squeezed light

for various quantum optics experiments, with the use of two crystals

(see Fig. 5.1), one for second harmonic generation, and the second one,

a squeezer, pumped by the first one (so that only one fiber input for

795 nm pump light is necessary). We show that the third order photo-

Kerr effect we observe in the ppRKTP does not cause significant increase

in quantum noise, and therefore the material is suitable for generating

squeezed light via spontaneous parametric downconversion.
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Conclusions and outlook

This thesis has described various results related to OPOs optimized for

interaction with atoms. To begin with, we found the output of a multi-

mode OPO for arbitrary subthreshold gain in the form of analytic Bo-

goliubov transformations. In contrast to previous works [48, 52], we

avoided the quantum reservoir theory by posing the problem directly in

the time domain. To study the time-domain structure, we calculated the

second-order intensity correlation function. At higher gains the results

show evidence of coherence increased beyond the cavity ring-down time

due to stimulated spontaneous parametric down-conversion.

At low gain and high finesse we found that our model is well approxi-

mated by the calculation of [49], which yields a G(2)(T ) with an envelope

of a double exponential multiplied by a comb structure with a period

equal to the cavity round trip time.

As we have shown experimentally in chapter 4, the comb structure in the

G(2)(T ) is absent if only a single mode of the OPO output is present,

which can be achieved thanks to the atomic filter that transmits only

the cavity mode containing frequency-degenerate photon pairs from a

broadband sub-threshold OPO output. We demonstrated that the Faraday

anomalous dispersion optical filter we employed preserves non-classical

continuous-variable features, e.g. squeezing or non-gaussianity thanks to

its high 70% peak transmission. The filter strongly suppresses all other

109
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non-degenerate cavity modes, ensuring high spectral purity of 98% of

the transmitted photon pairs which is an important feature for reliable

discrete-variable detection and heralding applications.

The OPO filtering scheme described here served as one of the elements

of the experiments performed by Federica Beduini. She demonstrated a

new technique for the reconstruction of a temporal two-photon wave-

function of a squeezed vacuum state (degenerate mode of the OPO out-

put), using the interference of the measured two-photon state with a

coherent ancillary [99]. In contrast to common tomographic procedures

[100], this method required only three measurement settings to obtain

both the real and imaginary parts of the wave function. Another experi-

ment performed with the help of the FADOF filtering technique demon-

strated experimentally that photon pairs extracted at random from a po-

larization -squeezed beam are entangled if they arrive within the squeez-

ing coherence time [19]. However, entanglement monogamy dilutes en-

tanglement with increasing photon density which is reflected in the fact

that, counterintuitively, increased squeezing corresponds to reduced bi-

partite entanglement.

The core of my work during the PhD studies was developing the mono-

lithic doubly resonant OPO (or frequency converter). The proposed de-

sign has all the advantages of monolithic source (robustness, stability,

low intracavity loss) and simultaneously allows to control multiple res-

onances for any emission wavelength within the range limited by the

nonlinear material properties, increasing the efficiency of the frequency

conversion (or lowering the threshold of the optical parametric oscilla-

tor).

The invention, although originally developed for quantum optical ex-

periments involving interaction of squeezed light with a BEC, is in the

process of being patented, as it has a potential to be commercially useful.

For example, a monolithic second harmonic generator made of Stochio-
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metric Lithium Tantalate and pumped by a semiconductor red diode laser

could serve as cheap and easy to integrate source of coherent near UV

light, which is difficult to access with standard laser technologies.

Industrial applications of such a UV source include flow cytometers,

a technique used in hospitals and research centers for cell counting,

drug detection and illness diagnosis. A number of useful and not re-

placeable probes have excitation peaks at wavelenghts below 350 nm

and currently available laser sources at that wavelengths are either large

and expensive (frequency tripled NdYAG or He-Cd laser) or do not pro-

vide enough power (LEDs). A multiply resonant monolithic frequency

converter would be much cheaper, more compact alternative providing

enough power for cuvette-based flow cytometry.

We have tested the monolithic cavity according to our design both as a

frequency converter for second harmonic generation and as an OPO. Al-

though in the present form the source does not generate enough squeez-

ing to be applied to Faraday probing of the BEC, we have learned impor-

tant facts that will serve as a base when developing the next generation

of the monolith.

The geometric design will probably be kept unchanged since it is a trade-

off between limitations in polishing and optimal focusing conditions.

However, in the next generation crystals the periodically poled section

could be lengthened to 10 mm in order to increase the efficiency of

the nonlinear interaction while still maintaining range of temperature

tuning with side sections necessary to always achieve red resonance and

constructive forward/backward interference condition. Pump resonance

could either be dropped (only keeping the double pass configuration)

or realized by adding an external mirror. The cost of having additional

loss due to intracavity interface for the blue is negligible compared to

crystal absorption, while the benefit of not using piezoelectric actuator

as a fourth degree of freedom is crystal safety, as it sometimes causes the
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crystals to break due to fatigue.

Finally, we reported what we believe to be a new nonlinear optical effect,

observed in the recently-available material Rubidium-doped potassium

titanyl phosphate (RKTP). The optical bistability effects in a monolithic

cavity RKTP frequency converter show behavior combining the speed of

electronic Kerr nonlinearities with the strength of photorefractive effects.

At moderate input powers, the effect is sufficiently strong to produce

cavity self-locking, i.e., it causes cavity mode-pulling that maintains the

cavity peak near resonance even as the laser frequency changes by more

than a free spectral range, greatly simplifying the stabilization of the

monolithic cavity.

This “photo-Kerr effect” is interesting from the material science point of

view, our observations are an invitation for further research as we do not

know what causes it microscopically. It represents a fundamentally new

entry in the toolkit of nonlinear optics, a fast, strong, optically-adjustable

dispersive nonlinearity, which is of basic interest for optical physics, and

has the potential to open new possibilities for optical technologies.



Appendix A

Fourier transforms for Γ and
ϒ

We first compute F [d(ω)d(−ω)](T ), the Fourier transform of d(ω)d(−ω),

where d is given in Eq. (3.15). We denote x ≡ (1+ r2
1r2

2e2r)/(2r1r2er)

and y≡ (1+ r2
1r2

2e−2r)/(2r1r2e−r). In the below-threshold regime we are

considering, r < rth =− log(r1r2) so that d(ω) is always finite. We find

d(ω)d(−ω) =
1

4r2
1r2

2

1
x− cos(ωτ)

1
y− cos(ωτ)

(A.1)

Since d(ω)d(−ω) is an even periodic function with a period of 2π/τ we

can write

d(ω)d(−ω) =
∞

∑
k=0

F(k)cos(kωτ) (A.2)

Where

F(k) =
2
π

∫
π

0
d(ω)d(−ω)cos(kωτ)dω (A.3)

The Fourier transform is then the sum of Dirac delta functions:

F [d(ω)d(−ω)](T ) =
∞

∑
k=−∞

F(|k|)δ (T − kτ) (A.4)
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The F(k) can be expressed in terms of hypergeometric functions

F(k) =
2

4r2
1r2

2

1
(x− y)(1+ x)(1+ y)

(A.5)

×

(1+ x)
3F2

(
{1

2 ,1,1},{1− k,1+ k}; 2
1+y

)
Γ(1− k)Γ(1+ k)

−(1+ y)
3F2
(
{1

2 ,1,1},{1− k,1+ k}; 2
1+x

)
Γ(1− k)Γ(1+ k)

]
.

It follows immediately that the Fourier transform of d(ω)d(−ω)einωτ is

F [d(ω)d(−ω)einωτ ](T ) =
∞

∑
k=−∞

F(|k|+n)δ (T − kτ).

(A.6)

Now in order to compute {F [Γ](T )}2 and {F [ϒ](T )}2, let us use the

following trick. For a moment, let’s assume that the bandwidth of the

downconversion is finite, i.e. replace squeezing amplitude r by a function

rrect(ω/ωbw) where

rect(x) =

1, if |x|< 1/2

0, otherwise
(A.7)

later we will apply to the final expressions the limit ωbw→ ∞ returning

to the situation with the infinite bandwidth. In that case the functions

Γbw(ω) and ϒbw(ω) yield

Γbw(ω) = rect(ω/ωbw)Γ(ω) (A.8)

ϒbw(ω) = rect(ω/ωbw)ϒ(ω) (A.9)
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Therefore, if we write ∗ for convolution we find

{F [ϒbw](T )}=
ω2

bw√
2π
{F [ϒ](T )}∗ sinc

(
Tωbw

2π

)
(A.10)

Knowing that

{F [ϒ](T )}= t2
1 sinh(r)2(1− r2

1r2
2)

∞

∑
k=−∞

δ (T − kτ)F(|k|)

(A.11)

we arrive to

{F [ϒbw](T )}2 = t4
1 sinh(r)4(1− r2

1r2
2)

2 (A.12)

×

[
∞

∑
k=−∞

sinc
(
(T−kτ)ωbw

2π

)
F(|k|)

]2

.

(A.13)

Now let’s notice that for k 6= l

lim
ωbw→∞

sinc
(
(T−kτ)ωbw

2π

)
sinc

(
(T− lτ)ωbw

2π

)
= 0 (A.14)

and

lim
ωbw→∞

[
sinc

(
Tωbw

2π

)]2

= δ (T ) (A.15)

in the sense of a weak limit, i.e.

lim
ωbw→∞

∫
∞

∞

dT f (T )
[

sinc
(

Tωbw

2π

)]2

= f (0) (A.16)

for any continuous function f with a compact support. It follows that:

{F [ϒ](T )}2 = t4
1 sinh(r)4(1− r2

1r2
2)

2 (A.17)

×
∞

∑
k=−∞

δ (T − kτ)F(|k|)2 (A.18)
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An analogous argument leads to

{F [Γ](T )}2 = t4
1 sinh(r)2

∞

∑
k=−∞

δ (T − kτ) (A.19)

×
[
(1+ r2

1r2
2)cosh(r)F(|k|)

−r1r2F(|k|+1)−r1r2F(|k|−1)]2 .



Appendix B

Monolith temperature/piezo
control

The key element of the system for controlling the monolith four degrees

of freedom in both second harmonic generation and squeezing experi-

ments was a reconfigurable NI PCI-7833R FPGA (Field Programmable

Gate Array) board, drawn schematically in Fig. B.1. The dark blue part is

used for controlling and optimizing degrees of freedom of a single cavity

(it can be duplicated if a setup consists of two crystals), whereas the light

blue part is used for driving the squeezing measurement experiment.

The temperature measurement of the three sections of the crystal was

performed using a 8-channel data acquisition device (Measurement and

Computing USB-TEMP), capable of measuring the resistance of 100 kΩ

thermistors embedded in glass lower plate supporting the crystal (see

Fig. 6.5 A and B) with 0.1 Ω precision.

The heating was implemented using digital outputs of the FPGA which

generated a 100 Hz TTL signals with variable duty-cycles, converted to

DC with the help of heating circuits (HC) in Fig. B.2, and passed through

the thin ITO heating resistors (visible in Figures 6.6 and 6.5 A and B).

The heating circuits, as shown in Fig.B.2, consist of an operational am-

plifier, with a feed forward containing a low-pass filter with a time-

constant of τ = 10 ms. The relation between input and output voltage
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Thermistor 1

Thermistor 2

Thermistor 3

Red

Blue

TTL 1

TTL 2

TTL 3

I1

I2

I3

HC

Piezo/Laser

MEMS

Blue phase

Synchronization

HC

HC

AI 

AI 

DO 

DO 

DO 

AO 

AO 

DO 

DO 

FPGA board

USB-
TEMP

T1

T2

T3

Figure B.1: The control system of the monolith. DO- digital output, AI
- analog input, AO - analog output, HC - heating circuit, USB-TEMP -
multichannel resistance measuring device.

of the HC at a frequency ω yields

VOUT =
R2

R1

1
1+ iωR2C

VIN (B.1)

where the symbols of the elements are indicated in Fig. B.2. The purpose

of the heating circuits was to provide strong constant heating current

proportional to duty cycle of the TTL generated by the FPGA, thus

avoiding generation of an RF signal. The duty-cycle was adjusted by

the FPGA basing on the thermistor reading (with the use of a PID loop).

The fourth condition necessary to control the monolith was fulfilled ei-

ther by adjusting the voltage fed to the piezoelectric actuator pressing

the crystal or laser current determining its wavelength. In the SHG ex-

periment, due to strong optical bistability, a simple PI loop maintained

red cavity close to resonance (97% of power), using the red transmis-

sion signal ("Red" input in Fig. B.1). The generated blue power ("Blue"

input) was used for finding the optimum temperature setpoints of side



B. Monolith temperature/piezo control 119

VIN

VOUT

Vε

R1

R2

C

+

̶

Figure B.2: Heating circuit made of resistors R1 = 1 kΩ and R2 = 10 kΩ

and capacitor C = 1 µF.

temperatures T1 and T2 in order to maximize the blue resonance and

interference condition. The program was capable of moving slowly the

setpoints without losing the lock until the maximum blue emission was

achieved.

During the squeezing experiment, when the monolith served as an OPO,

the output "Piezo/Laser" controlled the laser current. The red resonance

maintaining method using the cavity transmission amplified/deamplified

by interaction with pump, is explained in chapter 9. In this experiment,

the gain, calculated from the fluctuations of the "Red" signal, was used

instead of "Blue" signal to determine the side temperatures’ setpoints

(controlling blue resonance and forward/backward interference). Addi-

tional outputs were employed for experiment synchronization, triggering

the spectrum analyzer, applying phase ramp to the blue and controlling

the MEMS that was switching the experiment between gain measure-

ment and squeezing measurement periods.



Appendix C

Tapered Amplifier

In order to generate a high optical power at 795 nm, we implemented a

tapered amplifier system based on the TA chip from Eagleyard Photon-

ics, able to generate up to 2 W of power.

The system, shown in Fig. C.1 was modeled on a similar setup described

in [101]. The seed light was continuous-wave 795nm distributed Bragg

reflector (DBR) laser diode.

A key element of the system was a protective box containing the TA chip,

two movable aspheric lenses, a temperature sensor and a Peltier element

for cooling the chip. The box protected the chip from dust that could

easily damage it and facilitated high current (up to 4 A) connection. The

design was adapted from a design made by Cesar Cabrera.

seed output

CLAPAL

HWP

TA

AL

FI

Figure C.1: Tapered amplifier setup. HWP- half-wave plate, AL -
aspheric lens, AP - anamorphic prisms, FI - Faraday isolator

120



C. Tapered Amplifier 121

The output beam shaping was realized with a cylindrical lens astigma-

tism correction, and a anamorphic prism pair transform the beam from

elliptic into circular in order to mode-match into the fiber. None of the el-

ements are placed perpendicular to the beam before the Faraday isolator,

as it the TA chip is very sensitive to backreflection. The overall useful

power was 30%, due efficiency of the beam shaping elements, Faraday

isolator and fiber coupling.

Figure C.2: Dependence of power generated by the TA on seed power
for 1.5 A of the TA current.

Figure C.2 presents dependence of the generated TA power on the power

of the seed for 1.5 A of TA current. A reasonable working point was

found to be 10 mW of seed power, as for higher power the TA output

saturates. Figure C.3 displays dependence of the generated power on the

TA current for seed power of 10 mW.
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Figure C.3: Dependence of power generated by the TA on the current
for 10 mW of seed power.
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and M. W. Mitchell, “Bright filter-free source of indistinguishable

photon pairs,” Opt. Express 16, 18145–18151 (2008).
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