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The important thing is not to stop questioning. Curiosity has its own

reason for existing. One cannot help but be in awe when he contemplates

the mysteries of eternity, of life, of the marvelous structure of reality. It is

enough if one tries merely to comprehend a little of this mystery every

day. Never lose a holy curiosity.

Albert Einstein

Als meus pares
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Abstract

Living beings strive to survive and reproduce. To do so they need to monitor and adapt
to a dynamic environment, taking advantage of the opportunities and dodging the threats
that they may encounter. This thesis is devoted to analyse, using a mathematical and
computational approach, a variety of mechanisms of anticipation, adaptation, and resis-
tance to changes in the external conditions. To do so, we have studied regulatory systems
across different scales. First, we analysed the genetic circuit that controls the galactose
utilization by Saccharomyces cerevisiae, which is composed by a small set of genes, with
the goal of establishing the tools to explore the epistatic interactions of mutations within
this system. Second, we propose a framework to understand how cellular regulatory
networks, composed by hundreds or thousands of elements, can process time-dependent
information in a state-dependent manner. Finally, we discovered and characterised the
mechanism of growth oscillations in biofilms of Bacillus subtilis cells. We found that
these oscillations are caused by the metabolic co-dependence between distant groups of
cells, and are crucial to ensure the resistance of the colony to external aggressions.

Resum

Els éssers vius malden per sobreviure i reproduir-se. Per aconseguir-ho necessiten mo-
nitoritzar i adaptar-se a un ambient dinàmic, aprofitant les oportunitats i esquivant les
amenaces que els sobrevenen. L’objectiu d’aquesta tesis ha estat analitzar, mitjançant
eines matemàtiques i computacionals, alguns dels mecanismes cel·lulars d’anticipació,
adaptació i resistència a canvis en el medi. Per fer-ho hem estudiat sistemes de regulació
en diferents escales. En primer lloc, hem analitzat el circuit genètic, format per uns pocs
gens, que controla el consum de galactosa per part de Saccharomyces cerevisiae, i hem
desenvolupat les eines necessàries per explorar les interaccions epistàtiques entre mu-
tacions dins aquest sistema. En segon lloc, proposem un marc teòric per explicar com
les xarxes de regulació cel·lular, que consten de centenars o milers d’elements, poden
processar informació temporal codificant-la en la seva pròpia dinàmica. Finalment, hem
descobert i caracteritzat el mecanisme d’oscil·lacions en el creixement de biofilms de
Bacillus subtilis. Aquestes oscil·lacions són conseqüència de l’acoblament metabòlic
entre regions distants del biofilm, i juguen un paper crucial per assegurar la resistència
de la colònia a agressions externes.
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Preface

Life is a dynamic process that takes place within a dynamic environment.
Living beings strive to survive and reproduce in an habitat with scarce
resources and fierce competition. In this context, there is an arms race to
develop mechanisms to adapt to the ever fluctuating external conditions.
We devote this thesis to the study of some of such mechanisms, their
dynamical properties and their computational capabilities.

This thesis begins with an introduction to the systems studied and their
dynamical properties. First, we discuss the different scales at which bio-
logical systems are regulated: small gene circuits, large-scale regulatory
networks, and cellular populations. Second, we deal with the dynamic
regimes exhibited by the systems studied in the thesis, namely bistable
and oscillatory behaviours, and the complex dynamics observed in net-
works. Finally, we discuss the relevance of information-processing pro-
cesses in biological systems, paying special attention to the use of tem-
porally structured information to anticipate fluctuations in external condi-
tions.

We next discuss our study of the gene regulatory circuit that controls
the galactose utilisation by Saccharomyces cerevisiae. Under certain con-
ditions this circuit displays memory, which can be lost due to stochas-
tic transitions in a manner that depends on galactose concentration. Us-
ing experimental data obtained by our collaborators Aaron New and Ben
Lehner at the Centre for Genomic Regulation, we characterise the sys-
tem’s response to external cues, and develop two models to explore how
this response is affected by mutations.

Next we propose the use of a functional network framework known
as reservoir computing to understand how cellular regulatory networks



x

could process temporal information. This framework has been developed
in the fields of computational neuroscience and machine learning. With
a purely theoretical work, but using the real regulatory networks of five
distant organisms, we discuss the possibility that biological systems func-
tion as reservoir-computing instances, encoding the recent history in their
dynamics.

Finally, in close collaboration with experimentalists in the group led
by Gürol Süel at University of California San Diego, we study how
colonies of millions of cells coordinate and balance conflicting interests
of growth and protection. Specifically, we identify and characterise
growth oscillations in Bacillus subtilis biofilms, and determine that they
are caused by collective metabolic regulation. The study of these
collective dynamics allows us to understand one of the mechanisms of
biofilm resilience to external attacks, and suggests new strategies to
control this bacterial resistance phase.
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1 Introduction

1.1 Biology at multiple scales

Biological research has been dominated by a reductionist approach that
has produced a great amount of knowledge about individual cellular com-
ponents and their functions. Yet, there is growing evidence that individ-
ual molecules can only rarely account for discrete biological functions.
Instead, it is the interactions among the myriad of cellular constituents —
e.g. proteins, DNA, RNA, and small molecules— and even among popu-
lations of cells that give rise to most characteristics of living systems.

1.1.1 Regulatory circuits

Proteins are the main effectors of cellular processes, from metabolism or
synthesis to structural elements that shape the cell. However, many of
them do not perform an actual enzymatic or structural role, but rather
regulate the action of other proteins. Others are, at the same time, ef-
fectors and regulators. All these regulators implement non-trivial logical
operations in the cellular response to stimulus to adapt to a changing en-
vironment. The combination of such regulators increases even further the
complexity of the repertoire of responses that the cell can orchestrate.

1



2 Introduction

Cellular functions, including the regulatory ones, are often performed
by highly modular circuits (Hartwell et al., 1999). In general, modularity
refers to a group of physically or functionally linked molecules that work
together to perform a relatively distinct function (Hartwell et al., 1999;
Wall et al., 2004; Alon, 2003). Some of the many examples of modu-
larity found in biology are the invariant protein-protein and protein-RNA
complexes that are at the core of numerous basic biological functions —
from nucleic-acid synthesis to protein degradation (Alberts, 1998)—, or
the temporally co-regulated groups of molecules that control the differ-
ent stages of the cell cycle (Simon et al., 2001; McAdams and Shapiro,
2003), or that convey signals in bacterial chemotaxis or yeast pheromone
response. These modules, or circuits, are the main specialised regulatory
units that give rise to specific cellular functions (Alon, 2007b).

Notoriously, even relatively small circuits can give rise to a
surprisingly wide variety of dynamical behaviours. For instance, a
bacterial module of two proteins that regulate each other activity can
display monostable, bistable, excitable or oscillatory dynamics
depending on the inputs it receives (Espinar et al., 2013).

1.1.2 Regulatory networks

The analysis of small regulatory circuits and modules discussed above is
motivated by the growing evidence that most cellular processes are regu-
lated by groups of molecules within functional modules (Hartwell et al.,
1999). However, thanks to the development of high-throughput data-
collection techniques it is becoming increasingly clear that these modules
are not isolated from each other. Instead, these circuits exhibit a high de-
gree of connectivity among them, interact and frequently overlap (Danial
et al., 2003), giving rise to various types of interaction webs, or networks.
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These can include protein–protein interaction, metabolic, signalling and
transcriptional networks. As an example, in the Escherichia coli tran-
scriptional regulatory network most motifs overlap, generating distinct
homologous clusters, in which the specific motifs are no longer clearly
separable (Dobrin et al., 2004). Besides, these networks often have an
inherent scale-free hierarchy, in which the achievable dynamical range
is constrained by the underlying topology (Ravasz et al., 2002; Almaas
et al., 2004). All in all, these circuits are not isolated from each other,
and their study needs to be addressed not only with a reductionist, motif-
based approach, but also from a global perspective (Bardwell et al., 2007;
Al-Shyoukh et al., 2011).

1.1.3 Cellular populations

In addition, cells rarely live in isolation, but rather inside cellular com-
munities. Within these cellular communities a network of interactions
among the individual cells arises. In many situations, cells just compete
for the resources available (Hibbing et al., 2010; Oliveira et al., 2014),
but in many other cases cellular populations exhibit a remarkable degree
of cooperative behaviour. This is evident in the case of multicellular or-
ganisms, from nematodes to humans, but it also appears to apply widely
among single-celled organisms such as bacteria, fungi, and amoeba. In
many cases, the label ’single-celled’ applies to only part of the life cy-
cle of these organisms. This is the case of unicellular organisms such as
the soil bacterium Bacillus subtilis, which can assemble into multicellu-
lar structures even starting from a single cell (Branda et al., 2001; Webb
et al., 2003).

When initially deposited on a surface, either organic or not, B. sub-

tilis cells adhere to it and start growing and dividing to form a colony.
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They subsequently secrete a scaffolding matrix, mainly composed of pro-
teins and polysaccharides, known as extracellular polymeric substance or
EPS. The EPS embeds the cells, providing a substrate for their growth
and maintaining them together in a macroscopic aggregate (Webb et al.,
2003) visible to the naked eye (Figure 1.1). This structure is a biofilm.

Figure 1.1: Undomesticated Bacillus subtilis biofilm growing in a Petri dish.
Image courtesy of Munehiro Asally.

Biofilms are sessile resistance phases of bacteria that are found in sur-
faces from the ocean floor to human teeth, and are present almost ubiqui-
tously across the prokaryotic phylogenetic tree, dating at least 3.2 billions
of years (Rasmussen, 2000; Westall et al., 2001). The biofilm structure
not only serves as mechanical support for cell growth, but protects the
colony against a wide range of environmental challenges, such as UV ex-
posure (Espeland and Wetzel, 2001), metal toxicity (Teitzel and Parsek,
2003), acid exposure (McNeill and Hamilton, 2003), dehydration and
salinity (Le Magrex-Debar et al., 2000), phagocytosis (Leid et al., 2002)
and several antibiotics and antimicrobial agents (Stewart and Costerton,
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2001; Gilbert et al., 2002; Mah and O’Toole, 2001). As an example, Pseu-

domonas aeruginosa cells growing inside a biofilm are resistant to antibi-
otic concentrations 100-1000 times larger than planktonic cells (Stewart,
2002; Høiby et al., 2010). This resilience makes them hard to eradicate,
causing problems ranging from persistent infections in wounds and med-
ical implants (Lynch and Robertson, 2008) to high maintenance costs in
industrial installations or increased fuel consumption in ships (Mattila-
Sandholm and Wirtanen, 1992; Flemming, 2002; Chambers et al., 2006).
An educational explanation of the biofilm formation process and the im-
pact of this bacterial growth form can be found in Figure 1.2.

Figure 1.2: Cooperative bacteria: educational
video project about biofilms (Video). This video
was a project for the Visual Science course, which
addresses the use of images and video in science
communication. The course was offered as part
of the PRBB Intervals programme of interdisci-
plinary education.
https://vimeo.com/96884263

In any case, the biofilm organisation poses a conflict between the
needs of individual and the colony fitness. This conflict is specially rel-
evant since, unlike in a multicellular organism, cells within the biofilm
have full replicative potential, and in the wild biofilms are often multi-
species consortia (Watnick and Kolter, 2000). As a matter of fact, al-
though biofilms increase the fitness of most of their inhabitants, this may
come at a price of a loss of fitness by part of the colony.

A paradigmatic example of loss of fitness that produces a common
good is given by the formation process of the intricately wrinkled struc-
tures that the external scaffold adopts (Figure 1.1). These structures are
thought to improve the transport of soluble nutrients and waste (Wilking

https://vimeo.com/96884263
https://vimeo.com/96884263
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Figure 1.3: Localised cell death facilitates wrinkle formation in B. subtilis
biofilms. a, Cross-sectional images and schematic of the wrinkle formation pro-
cess. Cell death is marked in green. b, Artificial smiley face in cell death pattern
(top) produced by locally increasing the cell density, and the wrinkle pattern
generated (bottom). From Asally et al. (2012).

et al., 2013), and prevent the community from permeation by fluids (Ep-
stein et al., 2011). However, as Asally et al. (2012) show, these wrinkles
are generated as a consequence of localised cell death patterns. These
regions where cell death occurs detach from the surface, facilitating the
folding of the biofilm scaffold (Figure 1.3).

We devoted Chapter 4 to study the mechanisms that allow biofilms
formed by millions of cells to balance the fitness of individual cells with
colony resilience. Specifically, we characterised the metabolic
co-dependence that occurs between the sheltered interior cells and the
fast-growing peripheral cells. We discovered that this co-dependence
gives rise to metabolic oscillations and causes periodic halting of the
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biofilm growth, preventing starvation of the interior cells and protecting
the colony from external aggressions.

1.2 Dynamics

Dynamical behaviour is ubiquitous in gene regulatory processes, and is
governed by the architecture of the underlying genetic networks.
Feedback-loop structures, for instance, can strongly influence the
dynamics of a regulatory circuit, expanding the set of possible biological
properties, including robustness to uncertainty (Astrom and Murray,
2012), and can produce single-cell phenotypic heterogeneity in a
uniform environment (Mitrophanov and Groisman, 2008). The dynamic
consequences of each type of feedback loop, namely activatory (positive)
and inhibitory (negative), have been described, and include signal
amplification and bistability for positive-feedback loops (Isaacs et al.,
2003; Brandman and Meyer, 2008; Novák and Tyson, 2008), and
noise control, improvement of response time, and oscillations for
negative-feedback loops (Rosenfeld et al., 2002; Becskei and Serrano,
2000; Novák and Tyson, 2008).

On the other hand, in large-scale regulatory networks the number of
interlocked feedbacks and recurrences might be so large that it becomes
difficult, if not impossible, to distinguish the individual contributions of
each one of them to the global dynamics. Indeed, in large and intercon-
nected networks new dynamical properties emerge (Bhalla and Iyengar,
1999).

In the following sections we will describe two of the most salient dy-
namics that can arise from positive and negative-feedback loops. Then,
we will review some examples of complex dynamics observed in bio-
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logical networks and the potential of networks as information-processing
systems.

1.2.1 Bistability

While most of the biochemical reactions involved in cell signalling and
regulation are reversible (conformational changes, phosphorylation, or
even synthesis and degradation), many biological transitions are essen-
tially irreversible. For example, under most circumstances cells remain
differentiated even after the stimulus that triggered their differentiation
ceases (Ferrell and Machleder, 1998; Xiong and Ferrell, 2003). The self-
sustained nature of the changes induced by the reversible activation of
signalling pathways is a consequence of the bistable dynamics of the un-
derlying regulatory system.

A bistable dynamical system is characterised by having two coex-
isting stable steady states. In other words, the system will be in either
one of two discrete states, and intermediate states are possible only tran-
siently. In that case, which stable state the system adopts will depend
on the initial concentrations of the reacting species. Consequently, if the
state of the system is affected by an external signal in a way that it un-
dergoes bifurcations entering and exiting the bistable regime depending
on the strenght of the signal, different profiles of activity —i.e. stim-
ulus/response curves— will be obtained when the stimulus is increased
and decreased (Figure 1.4a). The limit point of signal strength at which
the system will transition from one stable branch to the other will differ
from the signal strength at which the system will return to the original
branch. For intermediate intensities of the signal the state of the system
will depend on its history, as it will just remain in the branch it has been
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Figure 1.4: Hysteresis and irreversibility in bistable signalling circuits. Bi-
furcation diagram of two arbitrary bistable systems, showing the value of sys-
tem variable at the steady state (response) as a function of the value of an input
(stimulus). Solid (dashed) black lines are stable (unstable) branches, and orange
(blue) lines are the stimulus/response curves obtained when increasing (decreas-
ing) the stimulus strength. a, Hysteresis. The limit point where the system jumps
from the lower to the upper branch for increasing signal strengths is different
than where it jumps from the upper to the lower branch for decreasing signals.
Between the two limit points the system will be either on the upper or the lower
branch depending on its history. b, Irreversibility. For certain parameter values,
and in particular if the feedback in a bistable circuit is strong enough, the sys-
tem may become irreversible. In this case, the saddle-node bifurcation where
the system would reach the left limit point and jump from the upper to the lower
branch lays on the negative domain of signal strength and, thus, it is not accessi-
ble. Once the system has jumped to the upper stable branch it will remain there
even if the stimulus is removed completely.

since the last transition. This time-based dependence on present and past
inputs is called hysteresis, which is a form of cellular memory.

On the other hand, under some conditions the transition from one of
the stable branch to the other might not be physically possible. In such
cases, the system can transition from one branch of steady states to the
other but cannot undergo the reverse transition when the signal strength
varies back and forth across its domain. Then, the transition is said to be
irreversible (Ferrell and Machleder, 1998). One of the transitions can be-
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come inaccessible in many ways (Guidi and Goldbeter, 1997), for exam-
ple one of the two limit points can move towards an inaccessible domain
(e.g. negative values) of signal strength (Figure 1.4b).

Such irreversible switches presumably play major roles in
developmental processes characterised by a point-of-no-return. The
maturation process of frog oocytes of the genus Xenopus is a well-known
example (Ferrell and Machleder, 1998; Xiong and Ferrell, 2003). When
these oocytes are exposed to progesterone, the intracellular activity of
the mitogen-activated protein kinase (MAPK) shoots up, and does not
cease even after the progesterone signal is gone, triggering the
maturation of the cell. Similarly, irreversible bistable dynamics have
been proposed to describe the regulation of apoptosis (Chang et al.,
2002; Legewie et al., 2006), and for the activation of the lytic cycle of
the λ phage of Escherichia coli (Tian and Burrage, 2004; Oppenheim
et al., 2005). On the other hand, nice examples of two-way switches
displaying hysteresis include the regulation of the lac operon in E. coli

(Laurent and Kellershohn, 1999; Santillán et al., 2007), the activation of
M-phase-promoting factor (MPF) in frog egg extracts (Novák and Tyson,
1993), the conversion of normal prion protein to its pathogenic form
(Kellershohn and Laurent, 2001), and the signalling pathway mediated
by Cdc42 that controls polarization of budding yeast (Brandman et al.,
2005). Furthermore, artificial genetic networks with bistable dynamics
have been designed and built both in prokaryotic (Collins et al., 2000)
and eukaryotic (Becskei et al., 2001) cells.

The key feature of a system required for bistability is some sort of
feedback loop with a net positive effect. Essentially, this can be a positive
feedback loop (figure 1.5a) where a regulator directly or indirectly pro-
motes its own activity, or a double negative feedback loop (figure 1.5b)
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where the regulator inhibits one of its inhibitors (Ferrell, 2002). These
feedback interactions can involve any kind of regulation such as synthe-
sis, degradation, translocation, or any post-transcriptional modification.
Besides the regulatory feedback, at least one of the regulatory interac-
tions is required to be highly non-linear so that it displays ultrasensitivity
(Ferrell and Xiong, 2001). Finally, the strength of the different regula-
tory steps that form the feedback loop must be properly balanced for the
system to be bistable (Ferrell, 2002).
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Figure 1.5: Topology and dynamics of positive and double negative feedback
circuits. Interaction diagrams of simple instances of bistable circuits, and their
respective synthesis or activation (green) and degradation or inhibition (red) rates
of the element A as a function of its concentration. In the rate plots, full (empty)
dots indicate stable (unstable) steady states, and the arrows on the horizontal axis
indicate the direction of change of protein concentration. a, Positive feedback
loop: A activates B and B activate A. As a result there could be a stable steady
state with both variables lowt and another with both variables high. b, Double-
negative feedback loop: A inhibits or represses B and B inhibits or represses
A. As a results there could be a stable steady state with A high and B lowt
and another with A lowt and B high. Both circuits could exhibit hysteresis or
irreversible dynamics. Circuit cartoons adapted from Ferrell (2002).
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On top of that, biochemical processes such as bursting activity of the
transcriptional machinery, or uneven partitioning of the pool of molecules
during cellular division, introduce stochasticity in the dynamics of regu-
latory systems. In bistable systems, one consequence of this stochasticity
is that noise is expected to occasionally induce transitions between the
two stable states, effectively corrupting the memory encoded in the state
of the system. For sufficiently weak noise, the frequency of such stochas-
tic transitions depends exponentially on the stability of the fixed point the
system is in, measured as the potential energy barrier between the stable
steady state and the unstable steady state (Hänggi et al., 1990). This po-
tential energy barrier, in turn, is determined of the biochemical properties
of the system. In a population of cells with such bistable circuits, these
stochastic transitions will originate a bimodal distribution of activity of
the bistable system: a fraction of cells will be in one metastable state and
the rest in the other one. This is the case of the GAL regulatory network
of Saccharomyces cerevisiae, a well-characterised regulatory circuit with
bistable dynamics. We now review in detail the structure of this regula-
tory network. Furthermore, in Chapter 2 we characterise the dependence
of the rate of stochastic transitions on the galactose concentration, to de-
velop the necessary tools to investigate how the interaction of genetic
variants affect a dynamic phenotype.

GAL regulatory network

The GAL system of Saccharomyces cerevisiae consists of a set genes
(GAL1, GAL2, GAL7 and GAL10) that encode the enzymes required to
import and metabolise galactose into a metabolically useful form,
glucose-6-phosphate, and the regulatory proteins (GAL1, GAL3, GAL4

and GAL80) that control their expression (Figure 1.6). When yeast cells
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grow in absence of galactose most of these genes are transcriptionally
inert. In such conditions, Gal4p is constitutively synthesised, dimerises,
and cooperatively binds to various Upstream Activating Sequences
(UAS) of the rest of genes of the GAL system (Giniger et al., 1985).
However, its role as transcription activator is repressed by Gal80p, which
can translocate to the nucleus and block the activation domain of Gal4p
(Platt and Reece, 1998). If galactose becomes available Gal3p binds to it
(acting as a ligand sensor), increasing its affinity for Gal80p and
blocking the activity of the latter in a galactose- and ATP-dependent
manner (Bhat and Hopper, 1992; Zenke et al., 1996; Platt and Reece,
1998; Egriboz et al., 2011). As a consequence Gal4p is released and can
recruit the RNA polymerase, increasing up to 1000-fold the transcription
rate of the rest of the GAL genes (Lohr et al., 1995).

One of the enzymes of the GAL network upregulated by Gal4p is
Gal1p, a paralog of Gal3p that has a dual role: on the one hand it is the first
enzyme of the metabolic pathway that transforms galactose to glucose-
6-phosphate, and on the other it plays a regulatory role similar to Gal3p.
Gal3p binds to Gal80p with higher affinity, which is crucial during the ini-
tial stages of the activation of the GAL network. But Gal1p is much more
abundant, which becomes relevant once the GAL network is fully active
(Zacharioudakis et al., 2007; Abramczyk et al., 2012). Besides, another
upregulated GAL gene is GAL2, which encodes for a membrane-bound
permease transporter with specificity for galactose that significantly in-
creases the rate of galactose uptake from the extracellular environment
(Bhat and Hopper, 1992).

Gal1p, Gal2p, Gal3p, and Gal80p directly or indirectly modulate the
activity of Gal4p, which in turn transcriptionally regulates them. This de-
fines a series of feedback loops. Specifically, Gal2p and Gal3p participate
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Figure 1.6: GAL regulatory network of Saccharomyces cerevisiae. The GAL
network is controlled by interlocking positive (+) and negative (-) feedback
loops. Red arrows indicate interactions that decrease the level of expression
of the GAL network. The regulatory interactions of the network are discussed in
detail in the text. From Stockwell et al. (2015)

in two positive feedback loops, as their upregulation leads to an increase
of their own expression, and Gal80p creates a negative feedback loop, as
its activity represses its own expression. Finally, Gal1p defines both a
positive feedback loop with its regulatory role, by blocking Gal80p and
increasing transcription, and a negative-feedback loop with its enzyme
role, by removing galactose from the system.

The S. cerevisiae GAL network is also affected by the glucose con-
centration in the medium. The energy return of metabolising glucose is
higher than of galactose, and thus, cells prioritise its use. When glucose is
present, Mig1 transcriptionally represses GAL1, GAL3 and GAL4 (Bryant
et al., 2008), triggers the degradation of Gal2p (Horak and Wolf, 1997),
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and accelerates the decay of GAL1 and GAL3 transcripts (Bennett et al.,
2008). Additionally, when the GAL network is repressed and Gal2p is not
present, galactose and glucose bind competitively to hexose transporters,
blocking the transport of galactose (and the activation of the GAL net-
work) depending on its ratio with respect to glucose (Escalante-chong
et al., 2014).

Among all the regulatory loops, the positive ones dominate the sys-
tem, producing bistable dynamics in the regulation of the GAL network
(Venturelli et al., 2012). Consequently, the network exhibits an all-or-
none response, where depending on the current and previous concentra-
tions of galactose and glucose available the system can be either fully
repressed (OFF) or completely activated (ON). Under certain conditions,
this bistable dynamics, together with the stochastic transitions, generates
a bimodal distribution of levels of GAL1 expression in the population.
Specifically, for intermediate galactose concentrations a bimodal distri-
bution of GAL1 expression is obtained from cells that were initially OFF
(Figure 1.7, blue). On the other hand, when the initial population is com-
posed of ON cells, no bimodal distribution is produced: either the galac-
tose concentration is low enough to trigger the repression of the GAL net-
works or all cells remain active (Figure 1.7, red). This is a consequence
of the fact that the rate of stochastic transitions from the ON to the OFF
state is rather insignificant in comparison to the rate of OFF to ON tran-
sitions (Venturelli et al., 2015). It has been suggested that the amount of
Gal80p present also determines the stability of both metastable states, so
that when Gal80p is more abundant stochastic transitions are less frequent
(Acar et al., 2005), which increases the memory of the system.

Not surprisingly, the behaviour of the GAL network differs from strain
to strain. Peng et al. (2015) investigated the effect on the galactose-
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Figure 1.7: History-dependent activation of GAL network. The activity of
the GAL promoters is analysed monitoring, with flow cytometry, the expression
of a yellow fluorescent protein (YFP) driven by the GAL1 promoter. Expression
distributions are plotted as a function of log(YFP fluorescence). Blue and red
distributions denote cells that were initially grown for 12 h without galactose
(but with 2% raffinose) and with 2% galactose (and 2% raffinose), respectively.
Thus, these populations were initially repressing (blue) or expressing (red) the
GAL genes. After this initial incubation cells were grown for a further 27h in
various concentrations of galactose as specified in the numbers next to each plot.
Adapted from Acar et al. (2005)

dependent activation dynamics of combinations of variants of the pro-
moters of the network regulator genes. Specifically, they tested the effect
of each one of the promoters of GAL2, GAL3, GAL4 and GAL80 from
Saccharomyces paradoxus in a S. cerevisiae strain. However, they did not
focus on the bistable regime of the system, but on the general profile of
GAL network activation as a function of galactose available. In Chapter 2
we develop the tools needed to investigate how mutations affecting the
dynamics of the GAL regulatory network combine, what is the resulting
phenotype in terms of the robustness of the system in the bistable domain,



Dynamics 17

and how this phenotype affects the population dynamics that originate the
bimodality.

1.2.2 Oscillations

Oscillatory dynamics are found in many contexts in biological systems,
and play significant regulatory roles. Some of the best known examples
include the cyclin protein circuits that control the cell cycle (Richard,
2003; Chen et al., 2007), the circadian rhythms that adjust the physiologi-
cal state of cells and organisms to the day-night cycle (Golden et al., 1997;
Tyson et al., 1999), and the somitogenesis clock driving the development
of vertebrate embryos (Lewis, 2003; Monk, 2003).

Given the ubiquity of regulatory circuits with oscillatory dynamics,
it is not surprising that we ask ourselves what the necessary character-
istics of a system are for it to display an oscillatory behaviour. As it
turns out, there are four essential requirements of a biochemical oscilla-
tor: a negative feedback, significant nonlinearities, enough time delay and
a proper balancing of the time scales of the dynamics of the elements in-
volved (Novák and Tyson, 2008). First, the dynamics of the system must
be dominated by a negative feedback, so that the oscillator can revert its
state back to the oscillation ’starting point’. Then, it is necessary that non-
linearities in the kinetic rate laws of the reactions destabilise the system
dynamics, and that the effect of negative feedback suffers a delay, so that
the system cannot reach a steady state.

To illustrate the relevance of this time delay, let us consider a pro-
tein that represses its own expression and that is affected by enzymatic
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degradation. The dynamics of this system are described by

dY (t)
dt

= k1S
Kp
d

Kp
d + Y (t− τ) − k2ET

Y (t)
Km + Y (t) (1.1)

where its degradation (second term) is enzymatic and follows a Michaelis-
Menten dynamics, and its synthesis (first term) is proportionally increased
by an activator S and inhibited by itself in a cooperative manner. This in-
hibition is modelled using the Hill factor Kp

d/ (Kp
d + Y (t− τ)), where p

expresses the degree of cooperativity and Kd the dissociation constant of
Y to the upstream regulatory region of its own promoter. Importantly, τ
defines a delay in the self-repression of Y , so that when τ > 0 the rate
if protein expression depends on a past concentration of Y . As shown in
Figure 1.8, this simple system can reach a steady state or produce oscilla-
tions depending on the value of the delay τ .

This time delay can have multiple natures. For instance, delays may
be caused by physical constrains, such as the time required for transcrip-
tion and translation, or for translocation of species between cellular com-
partments. This is specially relevant in eukaryotic cells, where many mat-
uration and translocation steps might be involved from the moment a gene
of a transcription factor is transcribed until the actual protein exerts its
regulatory function. Similarly, there might be a long chain of intermedi-
ates participating in the loop, which would also introduce a delay in the
feedback loop (Figure 1.9a). These systems are referred to as delayed

negative-feedback loops. Delayed negative-feedback mechanisms have
been suggested to explain the oscillatory dynamics of the PER-TIM cir-
cadian clock of fruit flies (Tyson et al., 1999), the p53 response to ionizing
radiation (Lev Bar-Or et al., 2000; Ma et al., 2005; Monk, 2003), and the
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Figure 1.8: Effect of delay on a negative-feedback loop. a, Regulation scheme
of the protein dynamics described by Eq. (1.1). The protein inhibits its own syn-
thesis and it is degraded enzymatically. b, Protein synthesis (green) and degrada-
tion (red) rates as a function of its concentration. For τ = 0, the system always
tends towards the stable state Y0 (the arrows indicate the direction of change of
protein concentration). c, For τ = 10 min, the system is in an oscillatory regime.
The period TC of the oscillation is 27.2 min. d, The delayed rate of protein syn-
thesis as a function of current protein concentration is shown in grey. The blue
portion of the curve corresponds to the blue portion of the time trace in c, and has
corresponds to a duration of τ time units. The value of the rest of parameters is
given by p = 2, Km/Kd = 1, S/Kd = 1, k1 = k2ET /Kd = 1 min−1. Adapted
from Novák and Tyson (2008).

NF-κB response to tumour necrosis factor (Monk, 2003; Nelson et al.,
2004; Cheong et al., 2008), to name a few.

On the other hand, hysteresis (caused by a positive feedback in the re-
action mechanism, see Section 1.2.1) can also introduce the delay needed
for the system to oscillate. In this case, the positive-feedback loop forces
the system to overshoot and undershoot the steady state continuously
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(Figure 1.9b). This type of mechanism, known as amplified negative feed-

back, has been used to describe the oscillations controlling the timing of
cellular divisions in frog eggs (Pomerening et al., 2005). Furthermore, the
synthetic oscillator developed by Stricker et al. (2008) also falls into this
category.
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Figure 1.9: Types of biochemical oscillators according to the source of delay.
Interaction diagrams of instances of oscillators of different types, and state-space
representations of their dynamics. a, Two different projections (XY) and (XZ) of
a three-element delayed negative feedback loop. b, Two different flavours of am-
plified negative-feedback loops, where the activator (left) or the inhibitor (right)
is amplified, as it forms part of an additional positive-feedback loop. In the dia-
grams pointy arrowheads mean activation, flat arrowheads mean inhibition, and
circular arrowheads mean either activation or inhibition. In any case, multiple
circular arrowheads in the same diagram must be of the same type. The state-
space diagrams display the nullclines of X (green) and Y (red) and the projection
of the limit cycle onto the XY plane. Adapted from Novák and Tyson (2008).
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When multiple oscillators interact, they tend to adapt their periods in
a process known as entrainment (Roenneberg et al., 2005). The period
of entrained oscillators often match in a 1:1 ratio, which is the case we
will consider here, but different ratios are also possible (Grasman, 1984;
Jensen and Krishna, 2012). Entrainment and synchronisation of a popu-
lation of cellular oscillators produce emergent dynamics at the population
level. In other words, when most oscillators synchronise, the oscillations
become observable at the population scale (Winfree, 2002). Furthermore,
if the interaction between oscillators is mediated by diffusive molecules
through the extracellular medium, the cellular density will strongly in-
fluence the strength of the coupling. Together, this would generate os-
cillations at the population level that are dependent on cellular density
(Figure 1.10a).

Another possible cause for emergent population-level oscillations that
depend on cellular density is that intracellular dynamics depends itself
on population density, so that the oscillations are lost within each cell
if the population becomes too sparse (Figure 1.10a). An example of
such collective oscillatory mechanisms is the collective glycolytic oscil-
lations in yeast cells. These oscillations are found in the time dynamics
of NAD(P)H in starved, anaerobic yeast cell suspensions (Duysens and
Amesz, 1957; Betz and Chance, 1965; Richard, 1996). De Monte et al.
(2007) analysed the decay dynamics of the oscillation with respect to
cellular densities, determining that the combined release of the coupling
molecule (acetaldehyde) by a large enough number of cells was essential
not only for synchronization, but for the oscillations themselves. Indeed,
the coupling exerted on the oscillations is strong enough so that whenever
the oscillations are possible, they are synchronised. Interestingly, in this
case, the dynamical state of the cell reflects the population density.
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Figure 1.10: Two possible mechanisms of loss of collective oscillations at
low cell density. The grey lines show the dynamics of four arbitrary oscillators
within a population 25 times larger, and the black line represents the average
over the population, which is the macroscopic observable. a, Incoherence: cells
progressively loose their mutual entrainment due to phase drift, as a consequence
of noise or frequency differences, producing an algebraic (i.e. non-exponential)
decay of the oscillation amplitude. b, Dynamic quorum sensing: cells have a
coherent motion and stop oscillating in synchrony. In this case, the amplitude of
the oscillations decays exponentially. From De Monte et al. (2007).

In Chapter 4 we study global oscillations observed in the growth dy-
namics of Bacillus subtilis biofilms. In that case, the population level
oscillations are not caused by synchronization of individual oscillations:
the metabolic coupling between different regions of the biofilm introduces
the negative-feedback loop responsible for the oscillations, and the finite
diffusion of metabolites between those regions sets the time delay. Thus,
it is rather that the oscillatory dynamics itself emerges when the biofilm
becomes large enough.
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1.2.3 Network dynamics

In the previous sections we have seen how the interaction between small
groups of elements could give rise to dynamics richer than what those ele-
ments could offer by themselves. Indeed, we cannot stress enough the fact
that it is the interactions between the elements what causes oscillations,
bistability, as well as other dynamics, such as ultra-sensitivity and perfect
adaptation often found in biological systems. When considering these cir-
cuits in isolation, we are able to understand and pinpoint the mechanisms
that shape their dynamics. Yet, regulatory circuits are often highly inter-
connected within the cellular machinery, forming large networks (Bhalla
and Iyengar, 1999; Danial et al., 2003; Helikar et al., 2008). Although
our knowledge of the dynamic determinants of larger and more interact-
ing systems is not as complete, we expect this increase in the size and
connectivity to originate new and more complex dynamics. Similarly, it
is well known that large neuronal networks display emergent dynamical
properties that cannot appear in individual cells or small circuits (Chialvo,
2010).

An insightful example of specific dynamical properties of large bio-
logical networks is given by Rué et al. (2010). They analyse the dynamics
of the signal transduction network of human fibroblasts using a Boolean
model developed by Helikar et al. (2008). Boolean network models sim-
plify the dynamics of the elements of the network trying to isolate the
essential effect of the biochemical interactions of the system, and have
been successfully applied to describe gene regulatory networks (Men-
doza et al., 1998; Covert et al., 2004; Fauré et al., 2006; Davidich and
Bornholdt, 2008), cellular differentiation (Klemm and Bornholdt, 2005),
evolution (Bornholdt and Sneppen, 2000), and signal transduction in cells
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(Saez-Rodriguez et al., 2007; Helikar et al., 2008; Samaga et al., 2009;
Bauer et al., 2010).

Rué et al. (2010) show that the network displays an enormous rich-
ness of attractor states, both fixed and periodic, which can be related to
the capacity to store information in the network. Furthermore, the net-
work has a characteristic relaxation time scale, which is not altered by the
presence of noise in the input signals nor can be attributed to the typical
shortest path length. Interestingly, this property determines how the signal
transduction network responds to time varying input signals. Finally, they
show that the network displays a variety of nontrivial frequency responses
(high-pass, band-pass and low-pass) for time-varying input signals.

All in all, their results illustrate that the dynamical properties of net-
works of interacting elements is much more complex than what we can
expect from the small-circuit descriptions. Inspired by this possibility,
in Chapter 3 we propose that cellular regulatory networks can integrate
signals and encode memory in a decentralised manner, not relying on
specialised regulatory circuits but on the complexity of the dynamics of
the whole network.

1.3 Cellular information processing

All living beings, from the simplest unicellular organism to humans, sur-
vive by constantly processing the information that they survey from their
environment. The ability to sense the presence of sustenance, reproduc-
tive opportunities, and imminent danger is, as such, the primary physio-
logical requirement across all domains and stages of life. Consequently, a
requirement of life is the complex biological machinery that has evolved
to process such information, translating relevant signals from the environ-
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ment into appropriate responses and behaviours (Lenski and Travisano,
1994). Furthermore, while multicellular organisms can have cells spe-
cialised in sensory and information-processing functions, microbes need
to resort to their signal-transduction, regulatory and metabolic networks
in order to perceive and process their environment and articulate the cor-
responding action, with a classical example being a cell computing an
external ligand concentration by time-averaging (Berg and Purcell, 1977).

Until recently, homoeostasis has been the de facto framework for un-
derstanding cellular behaviour —although it was originally proposed in
the context of human physiological adaptation (Cannon, 1932). In its
most essential form, it implies that cells maintain their internal state in
some acceptable range by directly responding to perturbations resulting
from environmental fluctuations (e.g., expression of heat shock proteins
in response to high-temperature stress). This homoeostasis-based frame-
work has been extremely useful to understand a wide range of cellular
behaviour. Yet, over the past years novel findings have pointed towards
more complex cellular behaviours than those predicted by the reactive ho-
moeostatic framework. For instance, by focusing on the functional role of
noise in biological systems (Eldar and Elowitz, 2010; Raj and van Oude-
naarden, 2008; Swain et al., 2002), and switching the attention from pop-
ulation to single-cell dynamics (Kalisky and Quake, 2011; Lidstrom and
Konopka, 2010; Locke and Elowitz, 2009; Raser, 2005; Taniguchi et al.,
2010), it has been shown (Eldar and Elowitz, 2010) that microbes can
improve their resilience to environmental fluctuations by exploiting the
heterogeneity of the population (Figure 1.11).
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Figure 1.11: Comparison of regulatory approaches to respond to an envi-
ronmental perturbation. Qualitative scheme showing the most efficient regu-
latory approach as a function of the time needed to orchestrate the response and
of the predictability of the environment fluctuations. The possible regulatory ap-
proaches considered are reflexively responding to the environment perturbations
(reflexive), randomly activating the response mechanism to ensure that part of
the population is prepared for the perturbation when it arrives (random), and pre-
dicting the perturbation from additional cues in the environment (anticipatory).
From Freddolino and Tavazoie (2012).

1.3.1 Anticipating the environment

Cellular responses rely on biochemical processes that are not instanta-
neous, such as signal transduction, gene expression, transport, and pro-
tein degradation. Hence, cells need a certain amount of time to build a
response to a given external change (Alon, 2007a). Consequently, when
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such fluctuations are essentially random —and thus unpredictable—, it
may become difficult for the cell to activate the appropriate response pro-
gram. Nonetheless, the native habitats of cells are highly structured, so
that there are strong correlations in environmental perturbations that make
them a bit more predictable. As a consequence, there is a potential bene-
fit for cells in being capable to process certain temporal information and
inferring future external determinants (Figure 1.11). In other words, the
ability to efficiently anticipate changes in the environment represents a
significant improvement in the capacity of adaptation of the cell.

If the environment is perfectly predictable, such as day-night cycles,
cells can orchestrate a pre-emptive response. An example of such pre-
dictive behaviour is given by Tagkopoulos et al. (2008), who show that
undomesticated strains of E. coli sense the temperature rise as they are
ingested by a mammal, in order to anticipate the depletion of oxygen and
start adapting their metabolism to the upcoming anaerobic environment
that cells will find in the host gut. Similar cross-regulations of unrelated
stressors in yeast have been evolved in a laboratory setting, where the
presence of one of the stressors carries information about the likelihood
of the appearance of the other (Dhar et al., 2013). These associations be-
tween an stimulus and an apparently unrelated response are learnt at evo-
lutionary scales, and are hardcoded into the regulatory networks of cells.
On the other hand, Sorek et al. (2013) propose a regulatory circuit that
would be able to capture, store and use the association, or lack thereof,
between a biologically relevant signal and multiple additional stimuli. Al-
though the proposed associative learning circuit could infer associations
at a much faster time scale, it also requires a circuit specialised at storing
the presence or absence of correlation for each of the stimuli.
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Besides relying on complex temporal structures, anticipation requires
memory: it is necessary to store the relevant period of the cell history in
order to extract the necessary information from it. In that direction, Wolf
et al. (2008) showed that organisms as simple as soil bacteria possess
a short-term and a long-term memory that influence cellular decisions.
They documented how clonal cultures of Bacillus subtilis grown in dif-
ferent conditions, when subjected to a common stress, develop different
responses depending on the pre-stress conditions.

Even though some of the environment-anticipation mechanisms
mentioned above may involve only a handful of cellular elements, the
large complexity of interactions among diverse types of molecules such
as DNA, RNA, proteins and metabolites is what makes the cell able to
accurately adapt to the environment conditions (Mattick, 2001; Stelling
et al., 2002). Just as neuronal networks have enormous computational
capabilities in comparison with a single neuron (Chialvo, 2010), larger
regulatory networks have much larger information-processing potential
than isolated circuits of a few elements (Bhalla and Iyengar, 1999).

In that sense, in Chapter 3, we show that the network of interactions
that regulate the cell can encode not only the direct response mechanisms
of the cell, but also the whole paradigm that the cell uses to integrate and
process environmental signals (Barabási and Oltvai, 2004). Specifically,
we are interested in the capability of cellular regulatory networks to in-
tegrate complex inputs, and specially in their ability to process complex
temporal information. In that context, we propose that cellular regula-
tory networks —and gene regulatory networks in particular— can encode
temporal information in their transient dynamics, following the reservoir

computing paradigm.
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1.3.2 Reservoir computing

Reservoir computing is a framework for computation that was described
independently in the fields of neuroscience and machine learning under
the names of liquid state machine (Maass et al., 2002) and echo state

networks (Jaeger, 2001), respectively. This framework tries combine re-
current neural networks (RNN) and feed-forward networks (FFN) to reap
the information-processing benefits of RNN, while using feed-forward
networks to overcome their limitations.

a

b

c

Figure 1.12: Architectures of neural networks. a, Feed-forward network. b,
Recurrent neural network. c, Reservoir computing. The different types of nodes
are input nodes (blue) that are the entry point of the external signals into the net-
work, the hidden nodes (green) that are internal to the network, and the readout
nodes (red) that must give the appropriate response of the system.
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Feed-Forward neural networks (FFN), also known as multi-layer per-

ceptrons, were one of the first neural network architectures with machine
learning applications (Figure 1.12a). The processing elements, called
neurons, are organised in hierarchical layers, letting the information travel
unidirectionally from one layer to the next one. This structure is neatly
modular, allowing the use of different types of neurons and simplifying
the process of training the weights of the connections for a given task. On
the other hand, it is equivalent to a mathematical function and it cannot
represent temporal structures: the output of the system computed from a
given input does not depend on previous nor following inputs. In sum-
mary, these networks can be efficiently trained to process spatially com-
plex inputs but cannot process temporal information (Buonomano and
Maass, 2009; Lukoševičius and Jaeger, 2009).

Recurrent neural networks (RNN), in comparison with FFN, are
much more robust, can process temporal information, and are able to
model highly nonlinear systems (Verstraeten et al., 2007). In these
networks there are no hierarchies in the way neurons are organised, with
no topological distinction between input, output or intermediate nodes
(Figure 1.12b). As a consequence, there are recurrences in the
information flow inside the network and, thus, virtually any node can
affect any other. Indeed, these networks behave like a high-dimensional
dynamical system: an input signal will produce a complex dynamical
perturbation of the current state of the system that will only gradually
disappear, and the dynamics of the network will depend both on the
external inputs and the internal state of the network. Consequently, the
recent history of the networks is projected in the multidimensional space
of their dynamics. On the other hand, the main drawback of RNNs is
also a consequence of the recurrence of its connections: the potential
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influence of any connection on the global dynamics of the network
makes the training of the network a very inefficient process (Buonomano
and Maass, 2009).
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Figure 1.13: Recurrent neuronal networks project stimuli as a trajectory
into a multidimensional space. The two trajectories represent the time activity
of a population of neurons from the locust antennal lobe during presentations
of two odours (citral and geraniol). Each odour produces a different trajectory,
and thus different spatio-temporal patterns of activity. The numbers along the
trajectory indicate time (seconds) since the stimulus presentation, and the point
marked B indicates the resting state of the neuronal population. From Buono-
mano and Maass (2009), original results from Broome et al. (2006).

The reservoir computing framework uses a RNN as a reservoir that is
not trained, but is read out by a simple classification feed-forward layer
(Figure 1.12c). The only requirement for the reservoir is that the RNN has
to fulfil the so called fading memory or echo-state property, which implies
that the perturbations in the system eventually fade out (Verstraeten et al.,
2007). In other words, the current state of the system depends on inputs
from a finite time window in the past. Mathematically, this is ensured
if the spectral radius (the largest eigenvalue) of the adjacency matrix of
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the network is smaller than 1. As shown by Boedecker et al. (2012),
the memory of the system is maximised when the spectral radius is just
slightly smaller than one and the reservoir is close to criticality. Finally,
a purely feed-forward structure is found downstream of the RNN and is
trained to extract the relevant information from the transient multidimen-
sional dynamics of the reservoir. The advantage of the reservoir comput-
ing paradigm is that it describes the possibility of using a RNN without
the need of adapting the weights of the internal connections of the net-
work. Instead, only the links towards and between the output layers need
to be trained to learn a new task (Buonomano and Maass, 2009). Thus,
the approach based on reservoir computing simplifies notably the training
of the RNN and makes it more meaningful as a biological model.



2 Dissection of a stochastic mem-

ory circuit

Cells need to continuously monitor the environment for changes and co-
ordinate the appropriate responses when necessary. Nutrient availability
is a particularly relevant aspect of the environment that challenges the
decision-making mechanisms of cells. Indeed, the fitness of microbes
is largely determined by their ability to integrate information about the
availability of multiple nutrients and to articulate an adequate and coordi-
nated response (Cai and Tu, 2012; Broach, 2012; Chubukov et al., 2014).
A paramount example is the catabolite repression mechanisms that allow
cells to prioritize carbon sources depending on their energy content, the
metabolic cost of building the machinery required to process them and
their relative abundances (Chubukov et al., 2014).

A well-studied yet complex case of catabolism regulation is the GAL
network of Saccharomyces cerevisiae. This network consists of a small
set of proteins that import and metabolise galactose. Additionally, a sub-
set of the GAL network regulates very efficiently the expression of most
of its elements in response to galactose concentration in an all-or-none
manner, varying up to 1000-fold the expression level of some of its genes

33
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(Lohr et al., 1995). See page Figure 1.6 and 12 in Section 1.2.1 for a
detailed description of the GAL network.

The GAL regulatory network contains five interlocked regulatory
feedback loops, among which the GAL1 and GAL3 positive feedbacks
strongly influence its dynamics, leading to bistability (Venturelli et al.,
2012). As a consequence of bistability the system has hysteresis, which
is a form of memory: within the bistability region the state of the system
depends on its history (Stockwell et al., 2015). Indeed, for a range of
galactose concentrations where the system is bistable the level of
expression of the GAL genes does not depend only on the current inputs
but also on the initial conditions (Venturelli et al., 2012).

Within the bistable regime, although the cell is committed to one of
the two states (namely, high or low expression) depending on its history,
transitions can still occur, and their likelihood be modulated depending
on the external cues (Acar et al., 2005; Ramsey et al., 2006). Stochastic
fluctuations in the level of expression of the GAL genes can force the sys-
tem to transition from one metastable state to the other. The likelihood of
these memory-loss events depends on the metastable state the system is at
and its robustness to molecular noise, which in turn depends on the avail-
ability of galactose (Acar et al., 2005). Thus, even under hysteresis, the
cues from the environment and the interior of the cell can be used to adapt
the cellular state by modulating the frequency of stochastic transitions.

Here we aim to develop a method to characterize the noise-induced
decision-making process underlying galactose utilization, with the goal
of predicting the effect of genetic variability on this phenotype. We in-
tend to eventually study how genetic variants affect the mechanisms in-
volved, and predict the outcome of combinations of mutations. This chap-
ter details a first approach of a project aimed at understanding epistasis —
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i.e. non-linear interaction of combination of mutations in the phenotype
(Phillips, 2008)—, from a dynamical and mechanistic point of view. The
work presented in this chapter has been done in collaboration with Aaron
New and Ben Lehner, at the Centre for Genomic Regulation. Unless oth-
erwise specified, all unpublished experiments mentioned in this chapter
have been carried out by Aaron New.

2.1 Population dynamics

We used a modified YPS128 strain with a yellow fluorescent protein
(YFP) reporter under the control of the GAL1 promoter to monitor the
activation of the GAL network in individual cells. In all cases cultures
were maintained at low cellular density to ensure that the concentration
of available nutrients did not change significantly during the course of the
experiment. Flow cytometry experiments confirmed that for intermediate
concentrations of galactose and glucose the levels of expression of the
GAL1 promoter produced a bimodal distribution (Figure 2.1, green line).
This means that cells are either expressing the GAL1 gene at its maxi-
mum rate (ON) or repressing it (OFF), but that there is not a continuum
of expression levels.

Bimodality might be caused by bistable, excitable or even oscillatory
dynamics. Nevertheless, it is well known that the GAL network displays
a bistable behaviour (Acar et al., 2005). The difference is that in this
case the transitions between the two states observed in the population are
driven by noise. If bimodality were caused by excitable or oscillatory
dynamics, either one or the two transitions between states, respectively,
would be deterministic.
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Figure 2.1: The distribution of expression of Gal1p is bimodal and sensitive
to previous growth conditions. Densities of fluorescence intensity in cultures of
S. cerevisiae after growing for 24 hours in a mixture of 2.5% galactose and 0.5%
glucose are shown. The blue (green) line denotes a population that was precul-
tured in glucose (galactose) only. The GAL genes were activated (repressed)
at the beginning of the experiment, and produced an unimodal distribution of
fluorescence centred at low (high) values. Fluorescence is produced by a copy
of the yfp gene under the control of the GAL1 promoter, and measured by flow
cytometry. Different strains where tested, namely YPS128, Y12 and BC187.
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Interestingly, the distribution of cells that activate the GAL network
in the same intermediate medium varies among strains (Figure 2.1). The
reason is that the genetic differences between those strains affect how ro-
bust to noise the two stable states of the GAL network are, and how this
robustness changes depending on the galactose concentration. For exam-
ple, strain BC187 shows practically no transitions between states, as the
cells that start in the ON state remain there, and only a very small fraction
of the population that started in the OFF state activate the GAL genes.
On the other hand, in the case of Y12 transitions in both directions are
slightly more common. Finally, in the case of YPS128 transitions from
the OFF to the ON state seem to be much more common, as a population
starting from the OFF state mostly transitioned to the ON state, while no
net transitions to the OFF state was observed in the population starting
from the ON state.

The large number of interlocked regulatory interactions that form the
GAL regulatory network makes it difficult to deduce what are the mech-
anistic differences between each strain. Likewise, it is not trivial to antic-
ipate how changes in each one of the interlocked regulatory interactions
will affect the sensitivity to noise, let alone to predict how multiple muta-
tions or variants will combine.

To study how mutations affect the probability of noise-induced tran-
sitions, first we need to be able to measure the frequency of those tran-
sitions. Using flow cytometry we can monitor how the distribution of
GAL1 expression in a population of cells changes over time. The ad-
vantage of this population data is that it makes it easier to capture rare
events. On the other hand, however, it is not straightforward to measure
the frequency of activation or deactivation of the GAL network from these
observations. To tackle this limitation, we developed a simple model that
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accounts for the population dynamics. Then, we used experimental data
to fit the parameters of the model, and to obtain from there an estimation
of the frequency of the GAL-state switching events.

2.1.1 Population model

To characterize the dynamics of the two subpopulations we defined a min-
imal model where cells can divide, die or switch their state. Let us define
nT as the total number of cells and nH and nL as the number of cells with
high and low levels of Gal1p, respectively, so that nT = nH + nL. The
dynamics of nH and nL are governed by

dnH
dt

= µHnH + kL→HnL − kH→LnH − γHnH (2.1)

dnL
dt

= µLnL + kH→LnH − kL→HnL − γLnL (2.2)

where µH,L are the respective growth rates, γH,L are the respective death
rates, and kL→H and kH→L are switching rates from low to high levels
(activation) of expression of Gal1p and vice versa (deactivation), respec-
tively.

In our experiments the cell density is maintained at low levels via con-
secutive dilutions. This ensures that the availability of nutrients does not
change significantly during the course of the experiment, and that the cells
stay at exponential growth phase. The same conditions are considered in
the model, which implies that neither the growth rate nor the death rate
change over time. Since it is very hard to distinguish these two param-
eters using population data, we consider a net growth rate α defined as
αH,L = µH,L − γH,L.
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Although equations Eqs. (2.1) and (2.2) describe total number of cells,
we are interested in the relative size of both populations. This will allow
us to further simplify the system to work with a single equation. Let
us define the proportion that each subpopulation represents over the total
number of cells as fH = nH/nT and fL = nL/nT , so that fH + fL = 1.
We can then describe the variation of fH as

dfH
dt

= 1
nT

dnH
dt
− fH
nT

dnT
dt

= (αH − kH→L)fH + kL→HfL − αHf 2
H − αLfHfL

(2.3)

and similarly for fL. However, since fH + fL = 1 the two fractions are
redundant and the dynamics of the system can be described with respect
to only one of them:

dfH
dt

= kL→H + (αH − kH→L − kL→H − αL)fH + (αL − αH)f 2
H (2.4)

2.1.2 Fitting the model parameters with experimental data

To obtain an estimation of the switching rates, we fitted the parameters of
Eq. (2.4) to our experimental data. To do so, the fraction of cells with high
expression of GAL proteins was monitored at different time-points dur-
ing 32 hours in cultures growing in a range of galactose concentrations.
This dynamic data was used to fit the population model parameters using
a basin-hopping optimization algorithm (Wales and Doye, 1997; Rossi
and Ferrando, 2009; Wales, 2010; Olson et al., 2012; Rondina and Da
Silva, 2013). Basin-hopping is an optimization algorithm that combines
the Metropolis algorithm approach to global search with gradient-based
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local search, significantly improving its efficiency for continuous objec-
tive functions.

As Figure 2.1 shows, for strain YPS128, there is no net transition of
cells to the repressed (OFF) state from a population starting at the ac-
tive (ON) state. At the same time, most of the population starting at the
OFF state becomes active during the same period of time. This indicates
that, for this strain, transitions from the ON to OFF state are significantly
improbable in comparison with the opposite transitions. Thus, we will
assume that the transition rate from the ON to the OFF state kH→L is
negligible.

Besides, expressing the GAL proteins imposes a significant metabolic
burden that slows down the cellular growth. Indeed, when the system is
active, the GAL proteins account for up to 4% of the protein expression of
the cell (Lohr et al., 1995). Not surprisingly, we observed that the growth
rate of cells expressing the GAL proteins was on the order of 5% slower
than the one of cells repressing it. As the expression of GAL proteins
increases with the concentration of galactose in the medium, so does the
growth burden.

We used this knowledge to reduce the degrees of freedom when fitting
the model parameters with experimental data. By expecting a relationship
between the growth rates and the concentration of galactose, we can fit the
few parameters that define that relationship, instead of two distinct growth
rates for each galactose concentration. Specifically, we assume that the
growth rate αL of cells repressing the GAL proteins is not affected by
the galactose concentration. On the other hand, we consider that cells
expressing the GAL proteins have a metabolic burden ψH that reduces
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their growth rate αH with increasing galactose concentrations.

αL([gal]) = α∗ (2.5)

αH([gal]) = α∗(1− ψH([gal])) (2.6)

where α∗ is the growth rate when the GAL system is repressed and ψH is
the reduction of growth rate due to the metabolic cost of expressing the
GAL proteins. The dependence of ψH on the concentration of galactose
is considered to follow a Michaelis-Menten equation with a basal term:

ψH([gal]) = ψbasal + ψmax[gal]
Ksat + [gal] (2.7)

The values of ψbasal, ψmax and Ksat will be fitted with experimen-
tal data. Thus, the assumption made by using Eq. (2.7) does not impose
strong constraints, as it can take the form of a linear or saturating de-
pendence of ψH on galactose concentration, or even a constant value,
depending on the three free parameters.

Fitting results

To assess the precision of the parameter values obtained during the fitting
we analysed the best candidate solutions obtained by the basin-hopping
algorithm. Specifically, after 5000 iterations of the basin-hopping algo-
rithm, we selected all those parameter sets that adjusted the experimental
data with an error within 5% of the lowest error. As Figure 2.2 shows,
there is wide range of possible values for the growth parameters that can
fit the experimental data with a low error. Consequently, it is not possible
to obtain a good estimate of the real value of those parameters with high
certainty using the data available.
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Figure 2.2: Variability of the parameter values of the best candidate solu-
tions tried during the fitting process. The parameters that affect the growth rate
(left) are much less sensitive than the switching rates (right). The seven kL→H
parameters correspond to the activation rates under each galactose concentration
tested, namely 0%, 0.08%, 0.16%, 0.31%, 0.63%, 1.25% and 2.5%. The param-
eter values of the best candidate solutions tried by the basin-hopping algorithm
are summarised here. The best candidate solutions are defined as those that give
a fitting error within 5% of the best candidate solution. Three scaled vertical axis
are used to ensure that all distributions are visible.

In any case, we are interested specifically in the switching rates and,
conveniently, the fitting error is much more sensitive to the value of those
parameters (see right panel of Figure 2.2). This makes it possible to ob-
tain a better estimate of the real switching rates. Finally, to determine
the uncertainty of the fitted values introduced by biological and technical
errors, we repeated the fitting bootstrapping the experimental measures.
Figure 2.3 shows the standard deviation of the kL→H activation rates fitted
from 1000 resampled datasets.
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Figure 2.3: Bootstraping the original data and producing new fits suggests
low sample bias. The red line marks the activation rates kL→H of the best
parameter set found using the whole dataset. The blue line marks the median of
the activation rates found bootstrapping the original data; the two blue shadows
denote one and two standard deviations away from the median.

2.2 Simplified model of the GAL network

2.2.1 Model description

Our first tentative approach to describe the molecular interactions of the
GAL regulatory network was to use the mathematical model proposed
by Acar et al. (2005). The model assumes that Gal4p is saturating the
Upstream Activation Sequences (UAS) that control the expression of the
GAL genes (see the end of Section 1.2.1 and Figure 1.6). Furthermore, it
also assumes that Gal80p and Gal4p only bind when Gal4p is attached to
the UAS, but not when it is in its free form. Consequently, the dynamics
of Gal4p can be omitted, as the amount of Gal80p blocking the UAS is
what determines the expression of the GAL genes.
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Additionally, all those processes with a time-scale faster than tran-
scription are considered at quasi-equilibrium. That is, as their dynamics
are much faster than transcription, we assume that they only deviate from
equilibrium by an infinitesimal amount. Consequently, we can treat them
as if they were at equilibrium. Specifically, this simplification affects the
following reactions:

[gal][Gal3p] α
↼−−−−⇁ [gal ·Gal3p] (2.8)

[gal ·Gal3p][Gal80pC ] β
↼−−−−⇁ [gal ·Gal3p ·Gal80pC ] (2.9)

[Gal80pC ] γ
↼−−−−⇁ [Gal80pN ] (2.10)

[UASfree][Gal80pN ] δ
↼−−−−⇁ [UAS ·Gal80pN ] (2.11)

where [Gal80pC ] and [Gal80pN ] are the concentrations of Gal80p in the
cytosol and nucleus, respectively, [UASfree] is the concentration of Up-
stream Activation Sequences not blocked by Gal80p, and x1 · x2 refers to
a molecular complex formed by the reversible binding of x1 and x2.

The quasi-equilibrium assumption allows us to use the following equi-
librium constants

α = [gal][Gal3p]
[gal ·Gal3p] (2.12)

β = [gal ·Gal3p][Gal80pC ]
[gal ·Gal3p ·Gal80pC ] (2.13)

γ = [Gal80pC ]
[Gal80pN ] (2.14)

δ = [UASfree][Gal80pN ]
[UAS ·Gal80pN ] (2.15)
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and the following mass-balance equations

[Gal80p]Total =[Gal80pC ] + [Gal80pN ] + [UAS ·Gal80pN ]

+ [gal ·Gal3p ·Gal80pC ]
(2.16)

[Gal3p]Total =[Gal3p] + [gal ·Gal3p] + [gal ·Gal3p ·Gal80pC ]
(2.17)

[UAS]Total =[UASfree] + [UAS ·Gal80pN ] (2.18)

Using both the equilibrium constant and the mass-balance equations
above it is possible to calculate [UASfree] for a given total concentration
of Gal80p, Gal3p, galactose and UAS with the following equation:

[UASfree] = [UAS]Total
1 + x̃/δγ

(2.19)

where x̃ is the solution of the following equation

Ax+ Bx

C + x
+ Dx

E + x
− F = 0 (2.20)

where,

x ≡ [Gal80pC ] (2.21)

A ≡ γ + 1
γ

(2.22)

B ≡ [Gal3p]Total (2.23)

C ≡ β

(
1 + α

[gal]

)
(2.24)

D ≡ [UAS]Total (2.25)

E ≡ δγ (2.26)
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F ≡ [Gal80p]Total
F0

(2.27)

Acar et al. (2005) use the model above to describe the behaviour of
a genetically modified strain where GAL80 is expressed constitutively.
In other words, the synthesis of Gal80p is not regulated by Gal4p and
Gal80p itself. This modification effectively interrupts the regulatory neg-
ative feedback loop mediated by GAL80. This modified strain motivates
them to consider the total concentration of Gal80p ([Gal80p]Total) as con-
stant. This additional simplification makes it possible to describe the be-
haviour of the GAL network modelling solely the dynamics of Gal3p:

d[Gal3p]Total
dt

= k[UASfree]− Γ[Gal3p]Total (2.28)

The S. cerevisiae strain that we study, on the other hand, has the
GAL80 negative feedback loop intact. Nevertheless, in the current sec-
tion we will adopt this same simplification. We argue that the regulatory
positive feedback loops, and specially the one mediated by GAL3, are the
ones that define the bistable behaviour of the GAL system. Furthermore,
reducing the system to a single variable model greatly reduces the compu-
tational cost to calculate the switching rates. All in all, this mathematical
model reduces the complexity of the regulatory network significantly, at
risk of losing some relevant elements, but trying to capture the essential
ones to explain its bistable nature in a tractable manner (indeed, as any
mathematical or conceptual model ultimately tries to do).

2.2.2 Computing the switching rates

The activation and deactivation events of the GAL network are, in fact,
escape processes from metastable states. Thus, we can use reaction-rate
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theory to compute the respective rates. Specifically, as we are modelling
a single-dimensional metastable system, we can use Kramers theory to
compute the escape rate (Hänggi et al., 1990).

First of all, let x(t) ≡ [Gal3p]Total(t) be the reaction coordinate that
describes the dynamics of the escape process. From Eq. (2.28), we can
define the one-dimensional potential landscape as

U = −
∫ [Gal3p]Total

0
(k[UASfree]− Γ[Gal3p]Total) d[Gal3p]Total (2.29)

The two minima xL and xH of the potential U(x) correspond to the two
metastable states for low and high expression of the GAL genes, respec-
tively, and the local maximum Xb separating these states corresponds to
the boundary or transition state (Figure 2.4).

The basic escape model introduced by Kramers (1940) consists of a
classical particle of mass M moving in the one-dimensional double-well
potential U(x). According to the model, all the remaining degrees of
freedom of the real system not captured by x(t) constitute a heat bath
at temperature T . The effects of the heat bath on the reacting particle
are described by a fluctuating force ξ(t) and by a linear damping force
−Mγẋ, where γ is a constant damping rate. Considering these forces,
the motion of the particle is then described with the Langevin equation

Mẍ = −dU(x)
dx

− γMẋ+ ξ(t) (2.30)

where ẋ and ẍ are the first and second derivatives of xwith respect to time
t, and ξ(t) is a white Gaussian noise with zero mean and denotes a force
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Figure 2.4: Creation and destruction rates and energy potential of the GAL3
feedback loop. Top, creation (blue) and destruction (green) rates of Gal3p pro-
teins as a function of the concentration of Gal3p. Bottom, energy potential of
the GAL regulatory network as a function of the concentration of Gal3p. Local
minima (red triangles) correspond to the two metastable states of the system: low
and high expression of Gal1p. The local maximum (blue triangle) corresponds to
the transition state between the two metastable states, defining the energy barrier
that separates them.

that obeys the fluctuation-dissipation theorem (Kubo, 1966),

〈ξ(t)〉 = 0 (2.31)

〈ξ(t)ξ(s)〉 = 2MγkBδ(t− s) (2.32)
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where kB is the Boltzman constant. In other words, the escape process
is considered to be determined by Brownian motion dynamics driven by
thermal forces, which are connected with the friction coefficient γ.

We can then define the angular frequencies ωL, ωH for the two
metastable states and ωb for the unstable fixed point that separates them
as

ω2
L ≡M−1U ′′(XL) (2.33)

ω2
H ≡M−1U ′′(XH) (2.34)

ω2
b ≡M−1|U ′′(Xb)| (2.35)

Additionally, if we can consider that the Brownian particle is in a
regime with strong friction γ:

Mẍ = 0; ẋ = −U
′(x)
γM

+ ξ(t)
γM

(2.36)

whose deterministic part we can compare with Eq. (2.28), taking into
account Eq. (2.29). This analysis makes it possible to compute the rate
at which the system (in our case, the GAL regulatory network) crosses
the transition state xb from one basin of attraction towards the other. Or
equivalently, we can compute at what rate the GAL regulatory network
escapes from one metastable state towards the other. It can be calculated
using the following expressions:

kL→H = ωLωb
2π e−βELb (2.37)

kH→L = ωHωb
2π e−βEHb (2.38)
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where EY b = U(xb) − U(xY ) for Y ∈ {H,L}, β = (kBT )−1, kB is the
Boltzman constant and T is the temperature parameter, which effectively
determines the intensity of noise. A detailed discussion of how Eqs. (2.37)
and (2.38) are obtained can be found at Hänggi et al. (1990).

2.2.3 Interaction of genetic mutations

Since the experiments that motivated the parameter set used by Acar et al.
(2005) were done with a strain different to ours, it was expected that we
had to adjust some of the parameters to our case when using our ex-
perimental data. Additionally, the level of noise β of the Kramers rate
equation that we introduced also needed to be adjusted. For that pur-
pose we used a local minimisation gradient-descend algorithm. Trying
to introduce as few changes as possible, we fitted the noise level β to-
gether with the equilibrium constant α of the Gal3p and galactose binding
(Eq. (2.12)), as it was enough to provide a reasonable fitting of the exper-
imental activation rates. For the rest of parameters we used the values
provided by Acar et al. (2005). The fitted values of both parameters are
β = 1.42 · 10−6J−1 and α = 4.67 · 10−1%. Figure 2.5 shows the accurate
matching between experimental and simulated activation rates obtained.

With a model that quantitatively reproduces the dependence of mem-
ory stability as a response to external galactose concentrations, we are
able to explore how genetic alterations affect this response. Specifically,
it is straightforward to explore how the dependence of the activation rate
on the galactose concentration varies with some of the parameters (Fig-
ure 2.6a). Likewise it is possible to explore what is the effect of combi-
nations of changes in two parameters (Figure 2.6b). Since all parameters
have a physiological interpretation, a change in the value of any of them
can be related to some possible mutations with certain effects. For exam-
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Figure 2.5: Experimental and simulated activation rates with respect to
galactose concentration.

ple, the most likely justifications for change in k will be either variations
in the promoter or ribosome binding site sequences of the GAL3 gene, or a
change in the structure of Gal4p that affects its ability to initiate transcrip-
tion. In the same way, it might be possible to obtain information about
the mutations of a strain by exploring the parameter changes needed to
reproduce its behaviour.

In that sense, however, this specific model might not be able to differ-
entiate between distinct mutations with similar but not identical effects.
While the model greatly simplifies the GAL regulatory network, which
makes possible to compute the activation rate in a computationally very
efficient manner, this simplification may also compromise its ability to
capture the effect of specific genetic variants. The reduced set of phe-
nomenological parameters limits the precision of the model to distinguish
between mechanistic differences. Furthermore, although the GAL3 feed-
back loop is the main cause of the bistability (Acar et al., 2005), which
is the most salient property of the system, the model does not explic-
itly consider some modules of the regulatory network and the effect that
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a b

Figure 2.6: Systematic exploration of the activation rates with respect to
changes in galactose concentration and other physiological parameters. a,
Dependence of the activation rate on the combination of galactose concentration
and one of the parameters determined by the genetics of the strain, in this case the
equilibrium constant γ for Gal80p translocation to the nucleus (Eq. (2.14)). b,
Dependence of the activation rate on the combination of two model parameters
determined by the genetics of the strain, in this case the production rate k of
Gal3p (Eq. (2.28)) and the equilibrium constant δ for Gal80p binding to Gal4p
in the UAS (Eq. (2.15)). In this case the galactose concentration is set to [gal] =
1%.

their dynamics might have on the system behaviour (Johnston, 1987; Bhat
and Hopper, 1992; Ramsey et al., 2006; Hawkins and Smolke, 2006;
Venturelli et al., 2012). For example, GAL80 forms part of a negative
feedback loop that can reduce the noise of the system (Acar et al., 2005;
Dublanche et al., 2006). Also, Gal1p is known to play a regulatory role
similar to that of Gal3p (Zacharioudakis et al., 2007; Abramczyk et al.,
2012) and neither is considered in the model.

All in all, depending on the specific mutations that we intend to study
this model might constitute a very practical instrument to efficiently ex-
plore huge regions of the parameter space, or a blunt unprecise tool that
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cannot grasp the subtleties of the data. Still, its advantages clearly make
it worth considering it. We now consider a more detailed model.

2.3 Mechanistically detailed model of the GAL

network

To overcome the limitations of the previous mathematical model we im-
plemented a new approach to characterise, in a more mechanistically de-
tailed manner, how the concentration of galactose modulates the loss of
memory in the GAL network. To do so, we switch to a more compre-
hensive mathematical model introduced by Venturelli et al. (2012). This
model explicitly takes into account both the negative and positive feed-
backs mediated by GAL80 and GAL3, respectively, as well as the positive
feedback loop mediated by GAL1.

2.3.1 Deterministic model

The model from Venturelli et al. (2012) not only considers the dynam-
ics of Gal3p, but also explicitly includes those of Gal1p, Gal4p, Gal80p
and the complexes that Gal80p forms with each one of the other three
proteins. Furthermore, it also makes a different set of assumptions and
simplifications. Namely:

• Most noteworthy, based on previous studies (Zacharioudakis et al.,
2007; Abramczyk et al., 2012), Gal1p is considered to play an
equivalent role to Gal3p in sequestering Gal80p.
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• Nuclear and cytoplasmic partitioning of the GAL proteins was not
included (Wightman et al., 2008; Peng and Hopper, 2000; Egriboz
et al., 2011).

• No explicit distinction is made between the forms of Gal1p, and
Gal3p, that are bound and unbound to galactose, as both of them are
known to induce GAL gene expression (Bhat and Hopper, 1992).

On the other hand, a few additional simplifications are shared with
the model of Acar et al. (2005) discussed earlier in this chapter. First, the
intracellular concentration of galactose is considered to remain constant,
and the role of Gal2p is excluded from the model. And secondly, the
dimerisation of Gal4p and Gal80p are not taken into account.

The dynamics of the GAL regulatory network are described with the
following set of equations:

d[G1]
dt

= εαgal + αG1

(
[G4]n1

Kn1
G1 + [G4]n1

)
− kf81[G1][G80]

+ kr81[C81]− γG1[G1] (2.39)

d[G3]
dt

= αgal + αG3

(
[G4]n3

Kn3
G3 + [G4]n3

)
− kf83[G3][G80]

+ kr83[C83]− γG3[G3] (2.40)

d[G4]
dt

= αG4 − kf84[G4][G80] + kr84[C84]− γG4[G4] (2.41)

d[G8]
dt

= αoG80 + αG80

(
[G4]n80

Kn80
G80 + [G4]n80

)
− kf81[G1][G80]

+ kr81[C81]− kf83[G3][G80] + kr83[C83]

− kf84[G4][G80] + kr84[C84]− γG80[G80] (2.42)
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d[C81]
dt

= kf81[G1][G80]− kr81[C81]− γC81[C81] (2.43)

d[C83]
dt

= kf83[G3][G80]− kr83[C83]− γC83[C83] (2.44)

d[C84]
dt

= kf84[G4][G80]− kr84[C84]− γC84[C84] (2.45)

where [G1], [G3], [G4] and [G80] are the concentrations of Gal1p, Gal3p,
Gal4p and Gal80p proteins, and [C81], [C83] and [C84] are the concen-
trations of the complexes formed by Gal80p with either Gal1p, Gal3p or
Gal4p, respectively. The different terms account for the basal produc-
tion of Gal4p and Gal80p (αG4 and αoG80), Gal4p-activated production
of Gal1p, Gal3p and Gal80p (αGi

[G4]ni
K
ni
Gi+[G4]ni for i ∈ {1, 3, 80}), the com-

plexation of Gal80p with each of the other three proteins (kf8i[Gi][G80]
for i ∈ {1, 3, 4}) and the unbinding of these complexes (kr8i[C8i] for
i ∈ {1, 3, 4}). Furthermore, all proteins and complexes experience a lin-
ear decay (γx[x] for x ∈ {G1, G3, G4, G80, C81, C83, C84}), mainly
due to dilution as a consequence of cell growth. Finally, the model ap-
proximates the increased affinity of galactose-bound Gal1p and Gal3p for
Gal80p as an increase of the effective amount of Gal1p and Gal3p. This is
the interpretation of the terms εαgal and αgal. These are zeroth-order ap-
proximations to the first-order reactions of activation of Gal1p and Gal3p
in constant galactose concentration. αgal will be, then, a proxy parameter
to indirectly model the effects of different galactose concentrations in the
system.

As shown in Figure 2.7, this model exhibits bistability for a wide re-
gion of αgal, flanked by two saddle-node bifurcations. It is noteworthy
that in the bifurcation diagrams of most of the variables, the basin of at-
traction of the lower stable branch is smaller than the one of the upper
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Figure 2.7: Bifurcation diagram of the GAL regulatory network with re-
spect to αgal. The fixed points of each of the seven variables of the model are
plotted. These plots are projections of an eight-dimensional system (including
the free parameter αgal). Solid lines denote stable branches, while dashed lines
denote unstable ones. The system exhibits a bistability region flanked by two
saddle-node bifurcations at αgal = 1.25 · 10−1 and αgal = 7.43 · 10−1 at which
one of the two branches collapse with the unstable branch.
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one. The high dimensionality of the system, though, makes it very diffi-
cult to draw any conclusion from a collection of two-dimensional bifur-
cation diagrams. In any case, the apparently different size of the basins
of attractions of the two metastable states, together with the major impact
of noise in the protein copy number at low concentrations, is compati-
ble with a much higher frequency of transitions from the OFF to the ON
states than the other way around.

2.3.2 Computing the switching rate with stochastic simula-

tions

For this model we also need a way to accurately compute the rate of noise-
driven transitions from the low to the high-expression metastable states.
Since this is a multidimensional system, i.e. its state is defined by more
than one variable, the approach described in Section 2.2.2 to compute the
switching rate between the two metastable states is no longer valid.

Instead, we will simulate enough exact stochastic trajectories and
compute the switching rates from them. To do so, we will use the
Stochastic Simulation Algorithm (SSA) also known as Gillespie
algorithm (Gillespie, 2007). In the first place we need to reformulate the
model in terms of individual reactions. Then, we need to define the
probability that each one of the reaction occurs somewhere inside the
volume V in the next infinitesimal time interval. In other words, the
propensity of each individual reaction needs to be expressed using
extensive quantities: in terms of the total amount of reactants instead of
their concentration.

As an example, to describe the dynamics of Gal1p, instead of relaying
on its concentration [G1], we must do it in terms of the total number of
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molecules NG1 = [G1]V , where V is the constant total volume:

d[G1]
dt

= 1
V

dNG1

dt
dNG1

dt
= εαgalV + αG1V

(
Nn1
G4

(KG1V )n1 +Nn1
G4

)
− kf81

V
NG1NG80

+ kr81NC81 − γG1NG1 (2.46)

Then, we need to explicitly define each one of the individual reactions
and their propensities:

αgalεV ∅ −→ G1

αG1V
G4n1

(KG1V )n1 +G4n1
G4 −→ G1 +G4

kf81

V
G80G1 G80 +G1 −→ C81

kr81C81 C81 −→ G80 +G1

γG1G1 G1 −→ ∅

where, for the sake of simplicity, we express the number of molecules
as G1 ≡ NG1, and equivalently for the other species. While the SSA, in
principle, can only consider elementary reactions, we have included a Hill
equation in a propensity expression, summarizing a multi-step reaction. It
has already been shown that this is a valid approach for Michaelis-Menten
processes, and that similar derivations could be provided also for other
complex reaction mechanisms known from deterministic kinetics (Gend
et al., 2001; Rao and Arkin, 2003; Sanft et al., 2011), at least as long as it
is not an instance of self-regulatory dynamics (Bundschuh et al., 2003).
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The rest of the reactions and their propensities can be obtained in a
similar way:

αgalV ∅ −→ G3

αG4V ∅ −→ G4

αoG80V ∅ −→ G80

αG3V
G4n3

(KG3V )n3 +G4n3
G4 −→ G3 +G4

αG80V
G4n80

(KG80V )n80 +G4n80 G4 −→ G80 +G4

kf83

V
G80G3 G80 +G3 −→ C83

kf84

V
G80G4 G80 +G4 −→ C84

kr83C83 C83 −→ G80 +G3

kr84C84 C84 −→ G80 +G4

γG3G3 G3 −→ ∅

γG4G4 G4 −→ ∅

γG80G80 G80 −→ ∅

γC81C81 C81 −→ ∅

γC83C83 C83 −→ ∅

γC84C84 C84 −→ ∅

Once we know the propensity of each reaction we could define the
Chemical Master Equation of the system, which describes the probability
that each species has a specified number of molecules at a given time.
With seven species, though, this equation becomes intractable. Instead,
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it is also possible to describe the joint probability that, given the current
state of the system, the next reaction to occur will be of a certain type and
that will occur at a certain time. This is the approach the SSA exploits to
produce statistically correct trajectories of the system (Figure 2.8).

Finally, by sampling enough of these possible trajectories, the rate of
escape of the metastable states of the system could be estimated.

2.3.3 Missing information

The conversion of a deterministic model of the dynamics of concentra-
tions of GAL proteins to our stochastic model has a shortcoming: the
volume factor V is not defined. The real volume of S. cerevisiae cells
is 40-60 femtoliters (Bryan et al., 2010). On the other hand, the protein
concentrations predicted by the model from Venturelli et al. (2012), while
realistically plausible, are arbitrary and could be rescaled; only the ratio

Figure 2.8: Stochastic simulation of the time evolution of the protein copy
number of the GAL regulatory proteins. Only the populations of proteins in
their free form are shown: the amount of complexes formed either by Gal80p and
Gal1p, Gal80p and Gal3p or Gal80p and Gal4p are not included in the figure.
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between them is relevant. Thus, V must not be understood as the real

volume, but as the scaling factor that relates the protein concentrations
predicted by the deterministic model with the real protein copy number.

The value of V will have a crucial effect on the level of noise in the
dynamics of the system. Since here stochasticity is a consequence of the
finite character of the number of molecules in the system, the smaller V is,
the smaller the number of molecules and the higher the noise will be. It is
thus necessary to establish the value of V in order to compute the reaction
propensities. To do so, we need to estimate the relationship between the
copy number of GAL proteins in yeast cells and the prediction of the
deterministic model under comparable conditions.

Besides, a limitation of the model taken from Venturelli et al. (2012)
is that it does not explicitly incorporate the galactose concentration. In-
stead, they use the rate of activation of Gal1p and Gal3p (αgal) as a proxy
parameter to represent the effects of different concentrations of galactose.
They do not establish, however, what is the mapping between the values
of αgal and the actual galactose concentrations. Furthermore, the growth
medium used by Venturelli et al. (2012) contains raffinose as alternative
carbon source to galactose while ours has glucose, and glucose is known
to affect significantly the GAL regulatory network (Johnston et al., 1994).

Indeed, comparing the dependence of the activation rate on αgal for
an arbitray volume V with the experiments, it becomes evident that the
dependence of αgal on the concentration of galactose is not trivial. As an
example, Figure 2.9a shows the experimentally fitted rates together with
the rates measured in stochastic simulations, assuming an arbitrary linear
dependence of αgal on galactose, αgal([gal]) = 3[gal]. Even though in
both cases the rates monotonically increase with galactose, it is clear that
the activation rate of Gal1p and Gal3p, αgal, must be a nonlinear function
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of galactose concentration. It is thus necessary to define this mapping in
order to compare the simulation results with the experiments.

a b

Figure 2.9: Dependence of the activation rate on V and αgal with respect
to the experimental observations. a, Activation rate with respect to galactose
concentration as measured in the experiments (grey) and in the stochastic simu-
lations assuming αgal([gal]) = 3[gal] and V = 1 (red). b, Activation rate with
respect to αgal and volume V . To emphasise the comparison with the experimen-
tal rates the colormap saturates at a maximum activation rate kOFF→ON = 0.25,
the largest experimental rates measured, although the simulated values become
larger. In any case, for all the range of V explored the dependence of the rate
with respect to αgal in kOFF→ON ∈ [0, 0.25] is defined by a concave function
(as shown in a).

However, the effects of V and the [gal] to αgal mapping are highly
interrelated (Figure 2.9b) and it is not easy to find one while missing
the other. In the following sections we discuss how we approached the
situation. First, we present our methodology to estimate the number of
proteins in a yeast cell, which we need in order to find V . Then, we
describe how we fitted both V and the [gal] to αgal mapping iteratively,
using convergence as stopping criterion.
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Protein copy number estimation

To obtain an estimate of the number of proteins of the GAL regulatory
network we used RNA sequencing (RNA-seq) data obtained by our ex-
perimental collaborators. In short, an RNA-seq experiment consists in (i)
extracting the mRNA from a biological sample, (ii) breaking it into frag-
ments of a few hundred base pairs, and (iii) sequencing all or a subset of
those fragments randomly, so that the probability of obtaining a read of
a given sequence is proportional to its abundance (Wang et al., 2009). In
our case we used an Illumina HiSeq sequencer at a 100x coverage (Sims
et al., 2014). We employed random primers so that all transcripts are tar-
geted. The samples were lysates of yeast cultures, having two biological
replicates for four different growth conditions, namely:

• GLU: 14 hours in 0.5% glucose and 2.5% sorbitol

• GAL: 14 hours in 2.5% galactose and 0.5% sorbitol

• GLU+gal: 14 hours in 0.5% glucose and 2.5% sorbitol plus 14
hours in 0.5% glucose and 2.5% galactose

• GAL+glu: 14 hours in 2.5% galactose and 0.5% sorbitol plus 14
hours in 0.5% glucose and 2.5% galactose

RNA-seq data gives quantitative information about the relative abun-
dances of the mRNAs in the cell. The number of reads belonging to the
transcript of each known gene needs to be normalized by the length of
the transcript and the total number of reads, obtaining the fragments per

kilobase per million measure or FPKM (Mortazavi et al., 2008). Thus,
FPKM express the relative abundance of that specific transcript among
the total number of transcripts. The relevance of this measure is that the
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ratio between the FPKM of two genes in a RNA-seq experiment should
be proportional to the relative abundance of mRNA transcripts of these
two genes.

Consequently, with this data it is possible to infer the abundance of
GAL proteins if we know the copy number of some other reference pro-
teins. To do this we need to assume that the post-transcriptional regulation
of all those genes do not differ significantly. In other words, we need to as-
sume that the ratio between mRNA abundance and protein copy number
is approximately constant for the selected proteins. Then, we can esti-
mate the abundance of GAL proteins knowing the abundance of a protein
whose expression is not affected by glucose or galactose. The publicly
available database YeastGFP lists the copy number measured in S. cere-

visiae cells of more than 3800 proteins (Ghaemmaghami et al., 2003).
Yet, it is necessary to define what proteins are adequate to be used as
references.

Those genes that have a constant expression, and thus are good refer-
ences, will show proportional changes in FPMK across samples. FPKM
is a relative measure: a difference in FPKM of a given gene reflects that
the fraction of the total mRNA being transcripts of that gene has changed.
This can be caused by a change in the number of transcripts of that gene or
by a change in the total number of transcripts of all genes. And certainly,
GAL genes can significantly change the total number of transcripts: when
active they can increase its expression more than 1000-fold and a few of
them can produce up to 1% of the total mRNA of the cell (Lohr et al.,
1995).

We assumed, on the other hand, that for the vast majority of genes the
level of expression will not depend on galactose and glucose concentra-
tion. For these genes the differences in the total number of transcripts will
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be the sole cause of fluctuations in FPKM, and will affect all of them in a
similar manner. Thus, we expect to identify appropriate reference genes
by finding a large set of nodes with a high correlation in their changes of
expressions across samples.

Taking these considerations into account, we computed the Pearson
correlation of the FPKM of genes across samples. Figure 2.10a shows that
the distribution of correlation coefficients is enriched for positive values.
This indicates that either most of the genes change their expression levels
proportionally in response to galactose and glucose concentrations or that,
as we assumed, their expression levels remain constant in a proportional
manner (Figure 2.10b).

a b

Figure 2.10: Analysis of the Pearson correlation coefficients of the RNA-seq
gene expression data. a, Distribution of the Pearson correlation coefficients of
the FPKM measured for each gene across conditions. The population of corre-
lation coefficients is enriched for values larger than 0.5. b, Matrix of correlation
coefficients after a hierarchical clustering of the rows and columns. Each row
and column corresponds to a gene, and the order of genes in rows and columns
is the same. There is a large group of genes with a high degree of correlation
among them.
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Then, we considered a graph defined by the adjacency matrix A:

ai,j =

1 if corr(FPKMi, FPKMj) > 0.98

0 otherwise
(2.47)

where the 6364 nodes are genes and the edges indicate a high degree of
correlation. Then, we extracted the largest connected component of the
graph, composed by 2738 nodes (the second and third largest connected
components had 447 and 12 nodes, respectively). Out of those, for 1793
of them there is copy number information available in YeastGFP. These
1793 genes, showing a high degree of correlation among them and rep-
resenting above 40% of the network, were used as reference genes to
estimate the abundance of GAL genes.

Figure 2.11 shows the distribution of estimates obtained using each
one of the reference genes and each one of the biological replicates. We
used the median of each distribution as the copy number estimate of the
GAL proteins.

Iterative fitting by convergence criterion

To calculate the volume factor V we need to compare the actual protein
copy number with concentration predicted by the deterministic model un-
der equivalent conditions. We obtained protein copy number estimates for
some experimental galactose concentrations using RNA-seq data. On the
other hand, the concentrations predicted by the model for any αgal value
can be obtained by many numerical approaches: integration of the system
dynamics, continuation of steady states or even finding the solution of the
ODE system when all derivatives are equal to zero. Yet, to define what
are equivalent conditions between both results, the relationship between
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Figure 2.11: Distribution of predicted protein copy number for each GAL
protein using a population of reference proteins. For each condition and GAL
protein, the 1793 reference proteins are used to obtain as many estimates of
protein copy number. The different conditions correspond to the growth con-
ditions of the yeast culture used in the RNA-seq experiment. The tested growth
conditions are glucose only (GLU), a mixture of glucose and galactose after a
pregrowth in glucose (GLU+gal), a mixture of glucose and galactose after a pre-
growth in galactose (GAL+glu) and galactose only (GAL). The horizontal lines
inside each violin correspond to the first, second and third quartile.

the concentration of galactose and the value of αgal is still missing. More
precisely, it is necessary to define the αgal values that correspond to the
experimental conditions [gal] = 0 and [gal] = 2.5%

On the other hand, to define the equivalence between [gal] and αgal
values we used the stochastic model and the fitted experimental rates
from Section 2.1.2. Specifically, we computed the switching rate for 60
evenly spaced values of αgal in the range between αgal([gal] = 0) and
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αgal([gal] = 2.5) (Figure 2.12a). To do so we simulated the system in its
low-expression state for 6000 hours and measured the frequency of noise-
induced activation events. This data was used to define a new mapping
relating the experimental galactose concentrations to values of αgal that
would produce the same switching rate. Nevertheless, it is again neces-
sary to set a value for V in order to compute the in silico switching rates.

To overcome the interdependence of both fitting strategies, we used an
iterative approach and convergence as stopping criterion. First, an arbi-
trary mapping αgal = [gal] was used to approximate the value of V . Then,
this value of V was used to compute how the rate changes as a function
of αgal (Figure 2.12a), which served to define a new mapping from [gal]
to αgal (Figure 2.12b). Finally, this process was repeated iteratively until
convergence was reached.

2.3.4 Interaction of genetic mutations

With this model, once more, we are able to reproduce quantitatively how
the galactose concentration modulates the frequency of stochastic tran-
sitions of the regulatory circuit of the GAL system. Again, we are in
position to explore how specific mutations can affect the way the system
reacts to galactose. In this case, however, we can fully describe the mech-
anistic effect of mutations in the circuit regulation. Additionally, with this
new model it is possible to consider mutations that affect the dynamics of
all the core proteins of the GAL regulatory circuit, and not only Gal3p.
This can be crucial to explore the effects of the combination of mutations
whose effects would be summarized by the same phenomenological pa-
rameter. As an example, Figure 2.13 shows the systematic exploration of
changes in basal production rate of Gal80p α0G80 and the maximal upreg-
ulation of the production rate of Gal80p αG80.
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Figure 2.12: Results of the iterative fitting of volume and galactose to αgal
mapping. a, Activation rates measured in 60 simulations (grey) for a range of
αgal values with a given volume V and the interpolation with an spline (red). b,
Estimated shape of the αgal([gal]) function, obtained by interpolating the value
of αgal that would produce the activation rate that was observed in the experi-
ments under a given concentration of galactose [gal]. The grey dots correspond
to the actual values of [gal] for which there is experimental data available and
the red line is a piecewise linear interpolation. Both a and b are produced with
V = 7.31 fL, which corresponds to the final volume obtained after the iterative
fitting process.

2.4 Discussion

In this chapter we have quantified the stability of memory in the GAL
network. The GAL regulatory circuit regulates its activity in a switch-
like behaviour responding to the galactose concentrations in the medium.
For a range of galactose concentrations it displays hysteresis, so that the
state of the system depends on its history. In this context, stochastic tran-
sitions can force the loss of this memory. We characterized the relation-
ship between the external galactose concentration and the probability of
such stochastic transition in our experimental conditions for the YPS128
strain of Saccharomyces cerevisiae. The results suggest that even when
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Figure 2.13: Systematic exploration of two parameter changes in the
stochastic mathematical model. The combined effect of changes in two model
parameters are studied, in this case the basal production rate of Gal80p α0G80
and the maximal upregulation of the production rate of Gal80p αG80. The plots
show the αgal necessary to maintain the same activation rate of 0.015h−1 (left)
and the dependence of the activation rate for [gal] = 1% (right) on the value of
the two parameters analysed.

it is displaying hysteresis, the GAL regulatory circuit is incorporating in-
formation of the nutrients available to control the robustness to noise of
its current state.

Furthermore, we developed and adjusted two models with the final
goal of exploring how genetic variants affect the behaviour of this robust
memory circuit. Far from being redundant, the two models are comple-
mentary as they have different sets of advantages and limitations. The first
one, based on the work by Acar et al. (2005), is computationally cheap
and uses a reduced set of phenomenological parameters to describe the
memory circuit, which makes it an appropriate tool for coarse-grained
exploratory studies. The second one, on the other hand, despite being
computationally more expensive, captures more accurately the interac-
tions in the GAL circuit and makes it possible to distinguish between
related mechanistic traits.
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Peng et al. (2015) studied the combinatorial effects of genetic variants
in the activation of the GAL system. However, they focused their study
in the effects of variability exclusively in the promoter regions of GAL2,
GAL3, GAL4 and GAL80. Additionally, their phenotype of interest was
the general response curve of activation of the GAL network in response
to galactose concentration. Instead, we want to characterise specifically
the decision making process that takes place when the network is in its
bistable regime. Furthermore, our aim is to describe how mutations, in-
dividual and combined, modify the dynamical features of the system that
modulate its stability in response to external cues. The model dissection
presented in this Chapter should be understood as a first step in this direc-
tion.





3 State-dependent computation

in gene regulatory networks

The survival of any cell, either as an individual being or as part of a mul-
ticellular organism, depends on its capacity to respond to changes in the
environment. From stress response cellular programs to embryogenesis
driven by morphogens, and from the immune response to metabolism
adaptation to varying energy sources, cells need to sense multiple signals
in their surroundings, integrate them, and activate an adequate response.
Orchestrating the best possible response with the right intensity is crucial,
but so is doing it at the right moment and fast enough. The importance
of timing and speed implies that cells able to anticipate changes in the
environment have a critical advantage.

Although most changes in the environment are stochastic from the
point of view of a cell, many others are predictable. In many cases, the
likelihood of future events is encoded by the recent history of the envi-
ronment. In these cases, the ability to take the temporal information into
account gives a clear advantage. Periodic changes in the environment,
for example, can be anticipated through molecular oscillators or cellular
clocks, as seen in the way cyanobacteria anticipate daily light-dark cycles
(Golden et al., 1997; Mori and Johnson, 2001). Another example is given

73
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by groups of events that tend to occur together or in a specific order. This
kind of association, for instance, allows the bacteria Escherichia coli to
prepare for oxygen depletion when they sense an increase in temperature,
an indication that they have been ingested by a mammal (Tagkopoulos
et al., 2008). Similarly, enterobacteria anticipate sequential changes in
sugars as they pass through the intestinal tract, and yeast expects a spe-
cific sequence of stresses during alcoholic fermentation (Mitchell et al.,
2009). Another example is given by Candida albicans cells, a fungal
pathogen, that upregulate oxidative stress resistance genes when they de-
tect higher glucose levels, which indicate they have entered a host, pre-
emptively reacting to the immune system of the host (Schild et al., 2007).
Furthermore, experimental evolution studies have shown that predictive
environmental sensing can evolve in relatively short periods of time in a
laboratory setting (Dhar et al., 2013).

Beyond the ability to associate concurrent events, recent studies have
shown that microbes have both short-term and long-term memory mech-
anisms that influence cellular decisions. The stress response of Bacillus

subtilis, for example, depends not only on the condition in which it is
currently growing, but also on past growth conditions (Wolf et al., 2008).
However, the way this record of previous history –i.e. memory– is inte-
grated and stored in cells is not yet fully understood. Knowledge of the
conceptual limits of this cellular memory is also scarce. Consequently,
because memory is a key limitation to recognizing temporally varying
signals, the prediction capabilities of cells are still to be delimited.

While some of the simplest prediction mechanisms involve only a
handful of elements –e.g. molecular oscillators–, adaptability of cells
relies on a complex network of interactions between molecules (Mattick,
2001; Stelling et al., 2002). Here we hypothesize that the structure of
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this network establishes how memory is encoded. We aim to determine
how these cellular regulatory networks integrate complex inputs, and es-
pecially how they process complex temporal information. After analysing
various gene regulatory networks, we propose that they encode temporal
information in a state-dependent manner: the complex transient dynamics
of the system encodes the recent history. Specifically, we postulate that
the gene regulatory networks work as a reservoir computing system.

Reservoir computing is a functional neural-network organization that
can process temporal information while featuring a very efficient learn-
ing process. The key characteristic of reservoir computing —also known
as liquid state machines in neuroscience (Maass et al., 2002) and echo

state networks in machine learning (Jaeger, 2001)— is that it separates
memory encoding and prediction in different network substructures (Fig-
ure 3.1). First, a substructure with recurrent connections is needed to
encode history: the reservoir. It is well known that recurrences —i.e.
a cyclic paths— allow the network to retain information for a certain
time, giving memory to the system. Technically, the reservoir projects
the stimuli non-linearly into a high-dimensional space (Buonomano and
Maass, 2009; Maass et al., 2002; Jaeger, 2001). The second substruc-
ture, the readout, is a feed-forward architecture —i.e. directed acyclic
graph— placed downstream of the reservoir. The readout layer uses the
history record encoded in the state of the reservoir to make a prediction
or a classification. Again, technically it separates the trajectories in the
high-dimensional space. Feed-forward structures, lacking cyclic paths,
are much easier to train —i.e. to adapt the strength of the interactions be-
tween its elements so that they produce the expected dynamics. Thus, this
separation of roles allows to focus the training process solely on the read-
out, giving reservoir computing the computational power of a recurrent
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network and the ease of training of a feed-forward one (Buonomano and
Maass, 2009). Furthermore, by adding independent readouts the system
it can gain the ability to perform additional tasks without interfering with
the existing ones (Lukoševičius and Jaeger, 2009).

In this study we propose that gene regulatory networks can follow a
reservoir computing organization. To do so, we first analyse the topology
of the gene regulatory networks of five distant organisms to assess if they
are compatible with the reservoir computing paradigm. Furthermore, we
inquire how efficient these networks are at encoding recent history, and
whether this capability can be attributed to the reservoir-like structures
found. We then investigate if the information arriving through different
biological stress signalling pathways can be stored in the reservoirs. Fi-
nally, to answer whether the training of the readout could occur in a bio-
logical context we show that it can be done using evolutionary algorithms.

3.1 Reservoir computing structure in gene regu-

latory networks

We analysed the gene regulatory networks from five distant organisms as
representative cellular regulatory networks: Bacillus subtilis,
Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster

and Homo sapiens. The regulatory interaction data was extracted from
five different publicly available databases and publications. Data for B.

subtilis was obtained from DBTBS (Sierro et al., 2008). Data for E. coli

was extracted from EcoCyc (Keseler et al., 2011), including the sigma
factors as transcription factors. Data for S. cerevisiae was obtained from
YEASTRACT (Teixeira et al., 2014). The gene regulatory network for
D. melanogaster was obtained from the modENCODE initiative (Roy
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Figure 3.1: Structural and functional organization of reservoir computing.
The reservoir (green) is a subgraph with cyclic paths that allow it to maintain
a record of the recent history in its dynamics. The readout (red) is a directed
acyclic subgraph that reads the information encoded in the reservoir state to per-
form a given task. The network shown is the reservoir and readout from the Es-
cherichia coli network (see Section 3.1). The nodes in the readout are grouped
by the length of the longest path from the reservoir to them.
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et al., 2010). Finally, data for H. sapiens was extracted from the
ENCODE project (Gerstein et al., 2012).

We restricted ourselves to transcriptional networks because in other
types of regulatory networks —e.g. protein-protein interaction
networks— the directionality of the interactions, and thus of the flow of
information, is not so well documented. Table 3.1 shows some structural
descriptors of these gene regulatory networks. Additionally, the degree
distribution of all the networks shows that they have a non-trivial
structure, resembling in most of the cases a power-law distribution
(Figure 3.2). In the case of Saccharomyces cerevisiae, the bump
observed in the degree distribution plot (Figure 3.2c) is likely an artefact:
since most of the data in this database comes from compiling a large
number of low throughput studies, nodes with lower degree can be
expected to be under-represented, as studies tend to focus on genes
involved in more regulatory interactions.

Each network has a single main recurrent structure. Despite the com-
plexity and large size of the networks, the subgraphs containing recurrent
connections are the ones considered to be relevant for the computational
capabilities of a reservoir (Rodan and Tino, 2011). The networks were
simplified by removing all the strictly feed-forward nodes, obtaining a
minimal recursive subgraph, i.e. a subgraph containing only the nodes
and edges that form recursive structures and the nodes that interconnect
this structures. To do so we pruned the networks by iteratively removing
any node that had either in-degree or out-degree equal to zero, until no
more nodes could be removed. The resulting subgraph is what will be re-
ferred from now on as core or reservoir. As the reader may have noticed,
the recurrent structures obtained are not necessarily strongly connected
components. Rather, they comprise all the strongly connected compo-
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Nodes Edges Self loops Mean degree
Whole graph
B. subtilis 886 1358 49 3.06
E. coli 3236 8366 126 5.17
S. cerevisiae 6725 201972 197 60.06
D. melanogaster 9432 231174 0 49.01
H. sapiens 16354 163271 28 19.96

Recurrent core
B. subtilis 13 30 7 4.61
E. coli 70 317 55 9.05
S. cerevisiae 289 9046 195 62.60
D. melanogaster 486 23470 0 96.58
H. sapiens 207 1434 26 13.85

Table 3.1: General properties of the gene regulatory networks studied here
and their recurrent cores.

of CC
Number

1st CC
Size

2nd CC
Size

isolated nodes
Number of

B. subtilis 18 886 5 3
E. coli 1201 3236 6 1199
S. cerevisiae 1 6725 0 0
D. melanogaster 4 9432 4 0
H. sapiens 2 16354 2 0

Table 3.2: Connected components in the gene regulatory networks. Number
of connected components, size of the two largest connected components, and
number of connected components that consist in a single node. In all the gene
regulatory networks analysed there is one big connected component and the sec-
ond largest connected component, if present, has only a few nodes. Even though
the number of single unconnected genes in the E. coli network is large, it is still
smaller than the number of nodes in the largest connected component.

nents and any path between them. Table 3.1 shows some descriptors of
the recurrent cores.



80 State-dependent computation in gene regulatory networks

Figure 3.2: Degree distribution of the gene regulatory networks. Degree
distribution of the gene regulatory networks studied here, on a log-log scale: B.
subtilis (A), E. coli (B), S. cerevisiae (C), D. melanogaster (D) and H. sapiens
(E).

Despite the small size of the core subgraphs relative to the whole net-
work, their location is central. Table 3.3 groups the nodes in each network
depending on whether they are part of the reservoir or are placed down-
stream of it. Additionally, a distinction is made between the downstream
nodes that regulate other nodes and those that have out-degree equal to
zero, which are named terminal nodes. As can be observed, the vast ma-
jority of nodes are placed downstream of the recurrent core, forming what
we called the readout. This is further emphasised in Figure 3.3, where the
relative size of each group of nodes is compared.
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The obvious implication of the central location of the core is that the
dynamics of most of the network is affected by it. It is worth to note again
that by definition there are no recurrences outside the reservoir, and thus
all these readout nodes cannot affect back the reservoir. Furthermore,
Table 3.3 and Figure 3.3 also shows that a very large proportion of the
readout nodes are terminal —i.e. nodes with no output connections. That
limits the potential complexity that the readout topology can have, and
thus the ability to process information, giving an even more central role
to the recurrent core or reservoir. A more detailed characterization of the
nodes using the bow-tie (Broder et al., 2000) classification is discussed in
Appendix A.

Reservoir Readout Terminal Other
B. subtilis 13 537 500 336
E. coli 70 3133 3025 33
S. cerevisiae 289 6436 6419 0
D. melanogaster 486 8795 8721 151
H. sapiens 207 13497 13449 2650

Table 3.3: Number of nodes by category in the largest connected component
of each network. Reservoir nodes are those that form the recurrent core of
the network after pruning it; readout nodes are those that can be reached from
the reservoir following the directed edges; and Terminal are the nodes from the
readout that do not affect any other node.

3.2 Dynamical encoding of information in the bi-

ological reservoirs

Next, we inquired if the topologies of these recurrent cores are able to
encode temporal information in their dynamics. To do so we confronted
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Figure 3.3: Relative size of functional groups of a reservoir for each net-
work. The fraction of the total number of nodes that belong to the each of func-
tional groups of a reservoir are shown. Reservoir nodes are the ones left over
after the pruning of the network. The nodes placed downstream of the reservoir
are assigned to the readout structure, distinguishing between the terminal ones,
that have zero out-degree, and the rest. Finally, all nodes that do not fall in any
of the previous groups are counted as others.

them to the 10th order NARMA task, a memory demanding benchmark
commonly used in the context of neural networks. To test if the dynamics
of the network cores can represent the recent history, the network was
simulated with simplified dynamics and a time-varying random input was
applied to it. Then, an ad hoc readout node was trained to compute the
output of the 10th order NARMA system using uniquely the instantaneous
state of the network (Figure 3.4). The challenge is that the 10th order
NARMA system depends on the input and output values of the last 10
time steps. Thus, only if this information about the recent past is encoded
in the reservoir state will the readout node be able to accurately model the
NARMA system.
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3.2.1 Reservoir dynamics

The dynamics of the gene regulatory network cores were simulated using
a discrete time updating rule defined as

xi,t+1 = tanh(vizt +
n∑
j=1

wjixj,t) (3.1)

where zt is the time varying input signal that reaches the system; xi,t is
the state of the ith node of the reservoir at time t; n is the number of nodes
in the reservoir; W is the weighted adjacency matrix of the reservoir, so
that wji is the weight of the link from the jth to the ith node; and V is the
input weight vector so that vi is the weight of the link from the input to
the ith node (Figure 3.4). The values of the vector V are randomly chosen
to be either −0.05 or 0.05. At the same time, the values of the matrix W
are real random numbers drawn from a uniform distribution between -
1 and 1 if the link exists, and 0 otherwise. Additionally, the W matrix
was normalized to have a spectral radius of 0.9 to ensure the echo state
property, which means that the effect of initial conditions should vanish
as time passes (Jaeger, 2001; Lukoševičius and Jaeger, 2009).

The dynamics of the reservoir is then fed into an ad hoc readout node.
Except were otherwise stated we used as readouts ridge regression nodes.
A ridge regression readout computes a weighted sum of the state of the
nodes it receives information from (Figure 3.4):

Ỹ = W outX (3.2)

where X is a matrix of the xi,t states of the ith node at time t, W out is a
vector of the wouti weights given to the ith node by the readout, and Ỹ is
a vector with all predicted outputs over time.
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Input
signal (zt)

Input
weights (V)

Prediction (ỹt)

Readout
weights (Wout)

Reservoir state (X)
and internal weights (W)

Figure 3.4: Setup to test the memory of a network A reservoir is built with a
connectivity matrix W that defines the topology of a given network. A signal zt
arrives to the nodes of the reservoir with different strengths defined by the input
weight vector V . Then, one or more readout nodes compute a weighted sum of
the state of the reservoir X . The weight vector W out is tuned so that the output
yt of the readout approximates a target output signal.

Ridge regression is equivalent to a linear regression but instead of fit-
ting the regression coefficients with least squares it uses ridge regression

W out = YtargetX
T (XXT + γ2I)−1 (3.3)

where XT is the transpose of X , Y is a matrix with all expected outputs
over time, I is the identity matrix and γ is a regularization parameter.

Ridge regression is a variation of the least squares method that pe-
nalizes the size of the regression coefficients. In doing so it introduces a
certain bias, but on the other hand it also reduces the variance of the esti-
mate. This allows estimating the parameters of a linear regression when
the predictor variables are strongly correlated, making it a common read-
out choice in the context of reservoir computing (Wyffels et al., 2008).
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3.2.2 NARMA task

The NARMA task has been widely used as a memory test in the context
of neural networks since (Jaeger, 2002a). It consists in training a network
to model the output of the 10th order Nonlinear Auto-Regressive Moving
Average (NARMA) system, introduced by Atiya and Parlos (2000). This
is a discrete time system where the input values s(t) are drawn from the
uniform distribution U(0, 0.5) and the output y(t) is defined by

y(t+ 1) = 0.3y(t) + 0.05y(t)
9∑
i=0

y(t− i) + 1.5s(t− 9)s(t) + 0.1 (3.4)

Thus, output at time t depends on both input at time t and previous input
and output history.

In our case, we simulated a network with teach one of the five topolo-
gies described above and a single input node feeding the s(t) series in the
system. Then, a ridge regression readout node was trained to model the
dynamics of y(t). For each realization a NARMA series of 10000 steps
was generated, using 9000 of them for the training phase of the ridge
regression, and the remaining 1000 steps to test its performance.

Figure 3.5 shows a representative time trace of the NARMA input
signal, the system output, and a prediction obtained with each of the bi-
ological networks. It can be observed that the precision of the prediction
improves with larger cores (core sizes are shown in Table 3.3).

The performance of the reservoirs during the NARMA task was quan-
titatively evaluated using the normalized root mean squared error mea-
sure, defined as

NRMSE =

√√√√ 〈(ỹ(t)− y(t))2〉t
〈(y(t)− 〈y(t)〉t)2〉t

(3.5)
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Figure 3.5: Representative time series of the test phase of a 10th order
NARMA prediction task. For each biological network studied, the topology of
its core was used to build a reservoir, and a readout node was trained to predict
the output of the 10th order NARMA system using the state of this reservoir. The
different lines correspond to the random input of the system, the actual output
of the NARMA function and, for each case, the output predicted by the readout
node.
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where ỹ(t) is the output predicted by the readout, y(t) is the output of the
actual NARMA system and 〈·〉t indicates the mean over time. Finally, the
following topologies were used as controls:

• Echo State Network – fixed mean degree (kESN): Erdös-Rényi ran-
dom network with the same mean degree (2× nedges/nnodes) as the
original network topology.

• Echo State Network – fixed fraction of links (fESN): Erdös-Rényi
random network with the same density —i.e. fraction of existing
links over all possible ones— (nedges/n2

nodes) as the original net-
work topology.

• Simple Cycle Reservoir (SCR): a directed circular graph, being the
simplest topology to work as computational reservoir according to
Rodan and Tino (2011).

Note that for control networks with the same number of nodes as the
problem topology, kESN is equal to pESN. This is not the case, however,
when the number of nodes changes.

With these measures and controls, we observed that the biological
cores performed in the NARMA test as well as the de facto standard
topologies (random networks) in the reservoir computing literature. Fig-
ure 3.6 shows the median NRMSE achieved by reservoirs with the topol-
ogy of the biological cores and control topologies within a range of sizes.
As can be observed, the biological cores always performed as well as the
random fESN and kESN control networks of the same size. Results also
suggest that the different performance of each GRN is related to their
size. In this regard it is worth noting that despite the fact that the number
of edges in the control networks scales linearly with the size for kESN and
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quadratically for fESN, they show similar performance for all the range
of sizes. Thus, this discards any major effect of the number of edges in
the reservoir performance in these conditions, at least within those wide
ranges. Besides, while all biological and control networks with sizes un-
der 40 nodes performed similarly worse, for a larger number of nodes
the recurrent but structurally constrained SCR is outperformed by the less
structured fESN and kESN and by the biological cores. In fact, differ-
ences between SCR and the ESN variants increase with size within the
interval analysed.

Figure 3.6: Predicting performance of reservoirs with topologies from the
biological cores compared to control topologies. Reservoir performance is
evaluated with the normalized root mean squared error (NRSME) of their pre-
dictions, where lower NRMSE values are better. The value represented for each
biological network topology corresponds to the median NRMSE value for 10000
trials (with edge weights and data series randomization). The values plotted for
each control network (fESN, kESN and SCR) correspond to the median value of
100 trials for each network size from 10 to 500 nodes. In each case, fESN and
kESN are produced taking the fraction of links and the mean degree, respectively,
from the biological core they are compared to.
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These results quantify the performance of each network in a test that
requires a certain memory. And this is the reason why the performance
saturates for increasing reservoir sizes. They do not shed any light, how-
ever, on how much memory a network can encode in its dynamics as long
as it is enough to fulfil the task.

3.2.3 Critical memory capacity

Aiming to quantify the amount of temporal information that a system
can store, we computed the critical memory capacity of the networks.
We defined the critical memory capacity as a variation of the short-term
memory capacity (Jaeger, 2002b; Boedecker et al., 2012). We simulated
the problem network with a single input node feeding an signal u(t) drawn
from a random uniform distribution U(−1, 1). Then, a ridge regression
node was trained to obtain an output ỹ(t) that models a delayed version
of the input signal u(t− k).

From here, the k-delay memory capacity (MCk) is defined as

MCk = cov2(u(t− k), ỹ(t))
σ2(u(t− k)) · σ2(ỹ(t)) (3.6)

The short-term memory capacity is typically defined as
MC = ∑∞

k=1 MCk, where the infinite summation is approximated to a
long enough finite one (Jaeger, 2002b; Boedecker et al., 2012). The
limitation, though, is that the time series needs to be orders of magnitude
longer than the size of the network to ensure that MCk tends to 0 as k
increases. Otherwise, MCk will never reach 0 and MC will never
converge. Since we deal with fairly large networks, computing the
short-term memory capacity with a reasonable precision was not
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feasible. As an alternative measure we defined the critical memory
capacity k∗ as the maximum delay k that fulfils MCk > 0.5.

For each gene regulatory network, we applied this test to three sub-
networks: the main connected component, the reservoir or recurrent core,
and the readout —i.e. all the nodes that can be reached from the reservoir.
The results shown in Figure 3.7 confirm that the reservoirs are responsi-
ble for the ability of the gene regulatory networks to encode history. Ac-
cordingly, the critical memory capacity of the main connected component
closely matches that of the reservoir. Contrarily, the readouts have much
lower memory capacities that are mainly determined by length of the
longest path: the Bacillus subtilis readout has 4 steps, the Escherichia coli

has 5, the Saccharomyces cerevisiae has 2, the Drosophila melanogaster

has 3 and the Homo sapiens has 5 (Figure 3.8). These results confirm that
the recurrent cores are responsible for most of the capacity of the gene
regulatory networks to dynamically store temporal information.

3.3 Encoding biologically relevant inputs

Having seen that the networks studied can encode the recent history the
cell in their dynamics, we aimed to determine if these results would hold
for realistic biological inputs. To test this we worked specifically with the
E. coli regulatory network, in order to keep a balance between tractability
and computational capabilities of the network. We analysed which of the
70 genes present in the E. coli reservoir were known to be affected by sig-
nalling pathways that react to different types of stress. Biological stresses
of seven different classes were considered, namely: antibiotics, anaero-
biosis, osmotic stress, oxidative stress, starvation, changes in temperature
and changes in pH. Using the annotations of the Ecocyc database (Keseler
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Figure 3.7: Critical memory capacity of different structures of the GRN.
Critical memory capacity of the reservoir (green) and readout (red) structures
and of the largest connected component, which comprises the other two, (blue)
for each of the gene regulatory networks analysed. Median values are shown
(n=30). The error bars indicate the 98% CI computed by bootstrapping.

et al., 2011), we manually set a confidence score to each possible stress-
gene interaction. This score indicates the level of evidence supporting that
such node may receive a signal in the presence of that stress, or in other
words, that the product of a given gene is affected by a signalling pathway
in response to a given stress. Both transcriptional and post-transcriptional
regulations were considered to determine if a signalling pathway could
reach a given gene as long as these regulations were not already included
in the network core structure.

Using this information we subjected again the E. coli reservoir to a
variation of the NARMA test. This time the input signal arrived solely
to nodes targeted by signalling pathways that react to different stresses
that E. coli may encounter. An input weight vector V was constructed for
each stress class and confidence threshold. Given a confidence threshold,
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Figure 3.8: Topology and critical memory capacity of the readout structures
of the gene regulatory networks. Hierarchical representation of the readout
of the gene regulatory network of Bacillus subtilis (A), Escherichia coli (B),
Saccharomyces cerevisiae (C), Drosophila melanogaster (D) and Homo sapiens
(E). (F) shows the relation between the length of the longest path in each of
the readouts and their critical memory capacity k∗, which measures the number
of timesteps in the past that can be remembered with a certain precision in the
system dynamics.

all interactions with a lower score would be set to zero, while the the
remaining ones would be randomly set as before. Additionally, the sign
of each entry was set to be positive (negative) if the interaction was known
to produce an activation (repression) of the gene, and it was randomly set
otherwise.

We found that the information arriving to the network from the differ-
ent stress signalling pathways can be encoded efficiently in the reservoir
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Evidence threshold
Stress type 1 2 3 4 5
Antibiotics 16 10 6 3 1
Anaerobiosis 6 6 5 3 2
Osmotic stress 13 13 7 6 3
Oxidative stress 17 17 13 9 5
Starvation 30 29 25 18 10
Changes in temperature 8 8 7 6 5
Changes in pH 15 14 10 7 1
Any stress 58 57 52 43 29

Table 3.4: Number of nodes affected by stress type for each evidence thresh-
old.

dynamics. Table 3.4 lists the number of nodes that are considered to re-
ceive information from every stress with a confidence score equal or larger
than various thresholds. Figure 3.9 shows the NRMSE obtained applying
the input signal to those nodes affected by each stress type with each
confidence threshold. As a control, the figure also shows the NRSME
obtained applying the input signal to random sets of nodes. The most
obvious conclusion from these results is that the precision of the system
increases monotonically and saturates with respect to the number of nodes
that receive the input signal. Besides, it is noteworthy that although the
different stress signalling pathways affect different sets of nodes, their
ability to introduce information in the system is comparable. This high-
lights the fact that memory is encoded in the network in a delocalised
manner, without depending on specialized circuits or structures. This in-
dependence of the specific entry point of the information in the system
confers robustness to failure of some of the nodes. While some of the
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input streams may get compromised, it is unlikely that a large group of
them would fail simultaneously.

Figure 3.9: Efficiency of signalling pathways feeding an input signal to the
reservoir. Median NRMSE obtained in the NARMA test using as input nodes
those genes affected by signalling pathways that react to different stress types.
The grey line marks the NRMSE obtained when applying the input to a random
set of nodes of a given size. The median values are shown of 1000 replicates for
each random input size and 2000 for each biological input set. Error bars and
shaded area indicate the 98% CI computed by bootstrapping.

3.4 Evolvability of a functional readout

Finally, we tested whether biological processes can shape a readout struc-
ture that can use the temporal information encoded in the dynamics of a
reservoir. Specifically, we examined if the interaction weights towards the
readout can evolve under conditions where the information about recent
events gives a evolutionary advantage. For that purpose, we simulated
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an evolutionary process using an evolutionary algorithm. These are opti-
mization algorithms inspired by the biological evolution. They consist in,
starting from a first generation of random candidate solutions, iteratively
creating a new generation by duplicating and introducing variations to the
best performing solutions in the current generation.

Specifically, we used the the Covariance Matrix Adaptation Evolu-
tionary Strategy (CMA-ES) algorithm (Hansen and Ostermeier, 2001;
Gagn, 2012). The CMA-ES algorithm learns the covariance matrix of
mutations in successful individuals so that beneficial mutations are sam-
pled more often. This approach significantly reduces the computational
cost while preserving the biological relevance.

The rest of the test included a setup similar to the one used in the
NARMA task: a single input node feeding an s(t) signal drawn from a
random uniform distribution U(0, 0.5) into the E. coli reservoir. Besides,
the input vector V was defined so that the signal would only reach genes
known to be affected by at least one stress type with a confidence score
of 3 or more.

A population of readout nodes was initiated, represented by a col-
lection of weight vectors W out. These readouts were let to evolve and
compete among them so that the ones that modelled better a NARMA sys-
tem had higher fitness thereby passing to the next generation with higher
probability. This added a selective pressure for the individual readouts to
use the temporal information encoded in the reservoir dynamics towards
predicting the output of a 10th order NARMA system. Furthermore, for
each generation in the evolutionary process a new realization of the s(t)
input signal was generated, recomputing the reservoir dynamics and the
expected output. On the other hand, the internal weights of the reservoir
W and the input weights V were kept constant for the whole experiment.
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Figure 3.10 features a representative instance of such evolutionary
processes. It shows that evolution can, indeed, tune a readout structure
to read the temporal information stored in a reservoir. The performance
of the evolutionary readouts improve through generations, asymptotically
approaching the performance of the ridge regression node. In our simula-
tions the performance of both types of readouts were practically indistin-
guishable after 2000 generations.

Figure 3.10: Training a readout through an evolutionary process. NRMSE
during the evolutionary training process of a readout for the E. coli reservoir.
The weights of the reservoir node were trained using the CMA-ES (Hansen and
Ostermeier, 2001) algorithm to model the 10th order NARMA system. Concep-
tually, a population of 200 candidate solutions is let to evolve under selective
advantage for those with a lower NRMSE. The green line shows the NRMSE of
the centroid of the best solutions in each generation. The purple line shows the
NRMSE obtained in the same situation by a readout trained using ridge regres-
sion.
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3.5 Discussion

In the present chapter we propose a new paradigm to understand how
cellular regulatory networks can store and process temporal information.
Specifically, we suggest that these networks can function as reservoir
computing systems. A division of labour allows to separate the processes
of memory encoding and decision-making in two distinct structures of the
network. The first structure, the reservoir, has recurrences —i.e. cyclic
paths— that give it a fading memory property so that it can efficiently
encode recent history. The latter region, the readout, has a feed-forward
or acyclic structure and uses the information it gets from the reservoir to
make a classification or prediction. This separation of roles allows the
system to process temporal information while still being very efficient at
learning new tasks (Buonomano and Maass, 2009).

The results of analysing gene regulatory networks of five distant or-
ganisms show that this is well-grounded hypothesis. In the first place, the
topology of all networks matches the structural characteristics of a reser-
voir computing system. Furthermore, we prove that these loosely defined
reservoir structures are able to encode in their dynamics an amount of
temporal information that is non-trivial given their sizes. As a matter of
fact, for all networks the reservoir is from one to two orders of magni-
tude smaller than the readout, and yet its critical memory capacity is 2
to 29 times higher. Moreover, in the case of E. coli, biological signals
relevant for the cell such as physiological stresses arrive at the reservoir
at different locations with similar performance, pointing that the ability to
encode temporal information is distributed in the reservoir, which confers
robustness to failure of input streams to the reservoir. Finally, we prove
that evolution can produce readout structures able to decode the state of
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a reservoir, provided temporal information processing gives a selective
advantage.

Gene regulatory networks have been modelled as neural networks be-
fore (Alon, 2007a). However, the processing capabilities of those sys-
tems have been mostly studied with a reductionist approach, in terms of
network motifs (Shen-Orr et al., 2002) and specific dynamics of small
circuits (Cotterell and Sharpe, 2010). Similarly, the learning process of
the network has been addressed using models of associative learning,
where the direct association of two stimuli is learned (McGregor et al.,
2012; Sorek et al., 2013). Here we apply a non-conventional computation
framework to understand how cells react to their environment. This im-
plies, in the first place, that the integration of information is distributed
across the network in larger and more diffuse structures with well-defined
functional roles. And, in the second place, that more complex associa-
tions can be learned.

A similar connection between gene regulatory networks and reser-
voir computing systems was hinted by Jones et al. (2007). However, that
study does not provide any clear evidence to support it. Firstly, they use
as putative reservoir a gene regulatory network that does not include any
recurrences other than self-regulations of some nodes that are barely in-
terconnected. But most importantly, they test their system with a task that
does not require memory.

Even though it is clear that cells benefit from anticipating the envi-
ronment, we know of no example yet of a cellular system that processes
complex temporal information in nature. The most studied types of antic-
ipation, involving periodic (Golden et al., 1997; Mori and Johnson, 2001)
and sequential (Tagkopoulos et al., 2008; Mitchell et al., 2009) events are
mechanistically fairly simple. However, ad hoc experiments have shown
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that Physarum polycephalum, also known as slime mould, and Plasmod-

ium cudatum are able to learn very efficiently new temporal structures.
Slime mould, in particular, can anticipate a shock after experiencing a
single series of three ten-minute low-temperature shocks at one-hour in-
tervals. Moreover, if the organism experiences a new shock several hours
later, it pre-emptively reacts to the two missing following shocks (Saigusa
et al., 2008). Similarly, P. cudatum is able to learn that an electric shock
follows an innocuous vibratory or luminous stimulus (Hennessey et al.,
1979; Armus et al., 2006). All these results hint at capabilities to learn
temporal structures larger than what can be easily explained with current
models.

In our study, the dynamics of the networks have been largely sim-
plified with a formalism used for neural networks. The real dynamics,
with nonlinear interactions and different time scales for each gene, would
add more complexity to the network behaviour and increase the memory
of the system (Büsing et al., 2010; Dambre et al., 2012; Tanaka et al.,
2016). Furthermore, the interaction of layers of regulatory networks with
different time scales —e.g. transcriptional, protein protein interaction or
metabolic networks— also could increase the memory capacity of the
system (Dambre et al., 2012; Gallicchio and Micheli, 2016). Far from in-
validating our results, those simplifications made our tests more stringent.
Similarly, the NARMA task is known to be highly demanding for the sys-
tems tested, as it requires a significant level of precision in the results. It
is easy to consider that life does not need to be as precise.

We propose that cells can process temporal information and antici-
pate their environment by using their regulatory networks as computa-
tional reservoirs. To that end, here we explored the potential of transcrip-
tional networks to encode the recent history of cells, but other regulatory
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networks such as protein-protein interaction or metabolic networks may
play a similar role. The combination of the different timescales (minutes
or seconds) and learning mechanisms (evolution, chromatin regulation for
transcriptional reservoirs or expression regulation for post-transcriptional
reservoirs) could give rise to much richer behaviours.



4 Collective oscillations in cellu-

lar communities

4.1 Cooperation versus competition

Cooperation and competition are complex social interactions that can
have critical roles in biological communities. Cooperative behaviour of-
ten increases the overall fitness of the population through processes such
as division of labour and production of common goods (Branda et al.,
2001; Eldar, 2011; Gregor et al., 2010; Wingreen and Levin, 2006). At
the same time, individuals in a community compete with each other for
limited resources, such as nutrients (Hibbing et al., 2010; Oliveira et al.,
2014). But in any case, any collective behaviour vastly increases the com-
plexity of the interactions of individual organisms with their environment.

Here, in collaboration with the experimental group of Gürol Süel at
University of California San Diego, we investigated bacterial biofilms
(Davies, 2003; Donlan and Costerton, 2002; Vlamakis et al., 2008; Yildiz
and Visick, 2009) as model systems of self-organized cellular populations
prone to both cooperation and competition.

Biofilms typically form under environmental stress conditions, such
as nutrient limitation (Berk et al., 2012; Costerton et al., 1999; Hall-

101
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Stoodley et al., 2004). As these bacterial communities grow larger, the
supply of nutrients to interior cells becomes limited due to an increase in
nutrient consumption associated with the growth of cells in the biofilm
periphery. Severe nutrient limitation for interior cells is detrimental to the
colony, since the sheltered interior cells are critical to the survival of the
biofilm community in the event of an external challenge. This defines a
fundamental conflict between the opposing demands for biofilm growth
and viability of protected (interior) cells (Figure 4.1). The identification
of possible mechanisms that ensure the viability of the protected interior
cells is fundamental to understanding biofilm development (Asally et al.,
2012; Wilking et al., 2013).

Biofilm community

Protection

High

Low

Nutrient access

High

Low

Figure 4.1: Biofilms must balance nutrient access and protection. Biofilms
must reconcile opposing demands for protection from external challenges (gra-
dient indicated in purple) and access to nutrients (gradient indicated in grey).

4.1.1 Growth oscillations

To investigate directly how Bacillus subtilis biofilms continue expand-
ing while sustaining interior cells, we converted the potentially complex
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three-dimensional problem to a simpler two-dimensional scenario using
microfluidics. To that end, our experimental collaborators used growth
chambers that are unconventionally large in the lateral x-y dimensions
(3×3 mm), while confining biofilm thickness (z dimension) to only a few
micrometres (Figure 4.2a). Therefore, biofilm expansion in this device is
predominantly limited to two dimensions, creating a ‘pancake-like’ con-
figuration. In fact, biofilms often form in confined aqueous environments
and thus this microfluidic chamber may better mimic those growth condi-
tions (Berk et al., 2012; Costerton et al., 1999; Hall-Stoodley et al., 2004).
This experimental set-up is thus ideal to interrogate how biofilms can rec-
oncile the opposing benefits of growth and protection during biofilm de-
velopment.

Unexpectedly, we observed oscillations in biofilm expansion despite
constant media flow within the microfluidic device (Figure 4.2b, c, Fig-
ure 4.3). Specifically, biofilms exhibit periodic reduction in colony expan-
sion that is self-sustained and can last for more than a day (Figure 4.2d).
The period of oscillations had a mean of 2.5 ± 0.8 h (standard devia-
tion (s.d.), n = 63 colonies), which is less than the duration of the av-
erage cell replication time of 3.4 ± 0.2 h (s.d., n = 21 cell cycles) un-
der this growth condition (Figure 4.2e). Moreover, oscillations only arise
when the biofilm exceeds a certain colony size (Figure 4.4). In particular,
quantitative measurements obtained from 53 individual biofilms indicate
that oscillations emerge in colonies that exceed an average diameter of
580± 85 µm (s.d., n = 53 colonies), which corresponds to approximately
one million cells (Figure 4.2f). Together, these data show that oscillations
arise during biofilm formation and are self-sustained.
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Figure 4.2: Biofilms grown in microfluidic devices show oscillations in
colony expansion. a, Schematic of the microfluidic device used throughout this
study. Direction of media flow is indicated by the blue arrows. b, Phase contrast
image of a biofilm growing in the microfluidic device. The yellow arrow indi-
cates the region of interest in panel c. c, Film strip of a radius of the biofilm over
time shows a pause in colony expansion. This film strip represents one cycle
of biofilm oscillations, indicated by the shaded region in panel d. Scale bar, 5
mm. The arrowheads indicate direction of biofilm growth. d, Growth rate over
time shows persistent oscillations in colony expansion. e, Histogram of the av-
erage period of oscillations for each colony (n = 63 colonies, mean = 2.5h,
s.d. = 0.8h). The cell replication time is approximately 3.4h under these con-
ditions.f, Growth rate as a function of colony diameter (which increases in time)
shows that early colony growth does not exhibit oscillations. The orange line in-
dicates the diameter (~600 mm) at which this colony initiates oscillations. From
Liu et al. (2015).

4.1.2 Metabolic regulation of biofilm growth

Given that biofilms typically form under nutrient-limited conditions and
bacterial growth is generally controlled by metabolism, we hypothesized
that metabolic limitation has a key role in the observed periodic halting of
biofilm expansion. In particular, after determining that carbon source lim-
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Figure 4.3: Stable oscillations in biofilm growth
(Video). Oscillations in biofilm growth. To better
visualize the growth oscillation, the periphery re-
gion the biofilm is shown. Also shown is the quan-
tification of growth rate over time. Growth rate is
defined as the speed at which the biofilm edge ex-
pands along the radial direction.
https://youtu.be/zHIjJRLGfFE

Figure 4.4: Onset of oscillations in biofilm
growth (Video). Oscillations in biofilm growth.
The associated time trace shows the growth rate
as a function of colony diameter, where oscillatory
growth only emerges when the biofilm exceeds a
minimum size.
https://youtu.be/lA6zlskphmU

itation did not have an essential role in the oscillations by discarting any
effect of their availability on the oscillation growth, we focused on nitro-
gen limitation. The standard biofilm growth media (MSgg, minimal salts
glutamat glycerol) used to study B. subtilis biofilm development contains
glutamate as the only nitrogen source (Branda et al., 2001). In most or-
ganisms including B. subtilis, glutamate is combined with ammonium by
glutamine synthetase (GS) to produce glutamine, which is essential for
biomass production and growth (Figure 4.5a) (Gunka and Commichau,
2012). Cells can obtain the necessary ammonium from glutamate through
the enzymatic activity of glutamate dehydrogenase (GDH), expressed by
the rocG and gudB genes in the undomesticated B. subtilis used in this
study (Figure 4.5a) (Stannek et al., 2015; Belitsky and Sonenshein, 1998;
Zeigler et al., 2008). To determine whether biofilms experience glutamine
limitation, we measured expression of nasA, one of several genes acti-
vated in response to a lack of glutamine (Nakano et al., 1995). Results

https://youtu.be/zHIjJRLGfFE
https://youtu.be/zHIjJRLGfFE
https://youtu.be/lA6zlskphmU
https://youtu.be/lA6zlskphmU
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show that biofilms indeed experience glutamine limitation during growth.
Specifically, supplementation of growth media directly with glutamine re-
duced nasA promoter expression, but did not affect expression of a consti-
tutive promoter, confirming glutamine limitation within the biofilm (Fig-
ure 4.5b). More strikingly, addition of exogenous glutamine eliminated
periodic halting of biofilm growth (Figure 4.5c). These findings suggest
that glutamine limitation plays a critical part in the observed oscillations
during biofilm expansion.

The synthesis of glutamine requires both glutamate and ammonium;
therefore, we investigated which of these substrates could be responsible
for the observed glutamine limitation. Glutamate is provided in the me-
dia and is thus readily available to cells in the periphery of the biofilm.
However, consumption of glutamate by peripheral cells is likely to limit
its availability to cells in the biofilm interior (Figure 4.5d). One may
thus expect that oscillations in biofilm expansion could be due to peri-
odic pausing of cell growth in the biofilm interior. Accordingly, we set
out to establish whether interior or peripheral cells exhibited changes in
growth. By tracking physical movement within the biofilm, we uncovered
that only peripheral cells grow, and that oscillations in biofilm expansion
therefore arise exclusively from periodic halting of peripheral cell growth
(Figure 4.5e). This finding was further confirmed by single-cell reso-
lution analysis that directly showed periodic reduction in the growth of
peripheral cells. This surprising pausing of cell growth in the periphery,
despite unrestricted access to glutamate, suggests that glutamate cannot
be the limiting substrate for glutamine synthesis. Consistent with this ex-
pectation, biofilm oscillations were not quenched by supplementation of
the media with glutamate (Figure 4.5f). In contrast, ammonium addition
does suppress the oscillations (Figure 4.5g) Therefore, it is not glutamate
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Figure 4.5: Biofilm growth depends specifically on extracellular ammonium
availability. a, Colony growth in MSgg medium depends on the production of
glutamine from externally supplied glutamate and self-produced or scavenged
ammonium. Glutamine limitation was monitored using yellow fluorescent pro-
tein (YFP) expressed from the nasA promoter, which is activated upon glutamine
limitation (Nakano et al., 1995). b, Addition of 1 mM glutamine (blue shading)
represses expression from the PnasA-YFP reporter (black), but does not affect
expression from a constitutive reporter (Phyperspank-CFP + 1 mM IPTG, grey).
c, Growth area before and after addition of 1 mM glutamine to an oscillating
colony. d, Of the two nutrients required for glutamine production, externally sup-
plied glutamate (green) is most abundant in the biofilm periphery, while biofilm-
produced ammonium (red) is most abundant in the biofilm interior. e, Maximum
intensity projection over one period of a colony oscillation, made from a differ-
ence movie (Liu et al., 2015), which shows regions of growth (white) and no
growth (black). Scale bar, 100 µm. f, Growth area of an oscillating colony be-
fore and after addition of 30 mM glutamate (green shading). g, Growth area of an
oscillating colony before and after addition of 1 mM ammonium (red shading).
From Liu et al. (2015).



108 Collective oscillations in cellular communities

but ammonium that appears to be the limiting substrate for glutamine syn-
thesis in the biofilm periphery.

Because cells can self-produce ammonium from glutamate, we next
sought to determine how peripheral cells could experience periodic am-
monium limitation despite a constant supply of glutamate in the media.
It is well known that ammonium production is a highly regulated process
that is dependent on the metabolic state of the cell and the ambient level
of ammonium in the environment (Kleiner, 1985). In particular, since am-
monium is in equilibrium with ammonia vapour, which can freely cross
the cell membrane and be lost to the extracellular media (Castorph and
Kleiner, 1984), the production of ammonium is known as a ‘futile cycle’.
Cells therefore preferentially use extracellular (ambient) ammonium for
growth, rather than producing their own (Boogerd et al., 2011; Jayakumar
et al., 1986; Kim et al., 2012). Since peripheral cells are exposed to media
flow, they are particularly susceptible to this futile cycle of ammonia loss.
In this sense, as ammonium is not provided in the media, even if all cells
produce ammonium, the biofilm interior will be the major source for am-
bient ammonium (Figure 4.5d). Consequently, the simplifying hypothesis
is that growth of peripheral cells relies on ammonium produced within the
biofilm. To test this conjecture, we supplemented the media with 1 mM
ammonium, which eliminated the periodic halting in biofilm expansion
(Figure 4.5g). When additional ammonium was suddenly removed from
the media, growth in the biofilm periphery halted, as expected. These
findings indicate that peripheral cells preferentially rely on extracellular
ammonium produced within the biofilm for their growth.
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4.2 Mathematical model of metabolic codepen-

dence

The results described above evoke the possibility that ammonium limi-
tation for peripheral cells may arise due to glutamate limitation for inte-
rior cells. Specifically, persistent consumption of glutamate by periph-
eral cells can deprive the interior cells of the necessary glutamate for am-
monium production. To explore this nontrivial hypothesis, we turned to
mathematical modelling to develop a conceptual framework and generate
experimentally testable predictions.

Our model describes separately the metabolic dynamics of interior
and peripheral cells and the metabolite exchange between them, where
the distinction of the two subpopulations depends on nutrient availability.
The two populations are assumed to be located in a frame of reference that
moves as the biofilm grows, so that they are always placed at a constant
distance from the physical edge of the biofilm (Figure 4.6).

time

Peripheral cell population

Interior cell population

Biofilm

Constant distance

Figure 4.6: The model describes the dynamics of two cell populations in
a biofilm, interior and peripheral. As the biofilm grows, there is a constant
distance between the interior population and the biofilm edge.
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The model considers two main assumptions regarding the interplay
between the two regions (Figure 4.7):

1. Consumption of glutamate during growth of peripheral cells de-
prives interior cells of this nutrient and thus inhibits ammonium
production in the biofilm interior. Specifically, activation of GDH
is strongly reduced when the concentration of available glutamate
is below a given threshold. This can be due to explicit regulatory
interactions or simply as a consequence of the slowdown of cellular
processes in the absence of nutrients.

2. The growth of peripheral cells depends predominantly on ammo-
nium that is produced by metabolically stressed interior cells. As a
simplification, we assume only the interior cells have active GDH.

Two additional assumptions are made regarding the effect of starva-
tion in the cell activity:

3. Consumption of ammonium and glutamate depends on the
metabolic activity of the cell. The higher the concentration of
housekeeping proteins — a proxy for the metabolic state of the
cell — the faster the consumption of nutrients.

4. The production of housekeeping proteins — and thus the metabolic
activity of the cell — increases with the concentrations of available
glutamate and ammonium.

With these postulates, the metabolic state of the biofilm is described
by the following variables: 1) the concentrations of glutamate Gi in the
interior and Gp in the periphery of the biofilm; 2) the concentration A of
ammonium in the biofilm, which is assumed to be equal for the two popu-
lations due to its fast diffusion; 3) the concentrationHi of active glutamate
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a Feedback
overview

Biofilm

Glutamate
consumption

Ammonium
production

b Feedback
mechanism

Interior

Biomass

Glutamate

Ammonium

Biomass

Periphery

Glutamate

Figure 4.7: A metabolic negative feedback loop as the cause of the growth
oscillations. The production of ammonium in the interior is limited by and at
the same time triggers the consumption of glutamate in the periphery (green and
red arrows, respectively), producing a delayed negative feedback loop. b, The
excess glutamate not consumed by the biofilm periphery diffuses to the interior,
where it can be converted into ammonium (green arrows). The ammonium in
turn enhances growth in the periphery (red arrow) and consequently reduces the
supply of glutamate to the interior.

dehydrogenase (GDH) in the interior cells; and 4) the concentrations of
housekeeping proteins (such as ribosomal proteins) ri in the interior and
rp in the periphery, which is assumed to determine the rate of biomass
production in the areas of the biofilm.

The dynamics of these state variables are described by the following
set of ordinary differential equations:

dA

dt
= αGiHi − δAA(ri + rp) (4.1)

dGi

dt
= D(Gp −Gi)− αGiHi − δGGiri (4.2)

dGi

dt
= D(Gi −Gp) +DE(GE −Gp)− δGGprp (4.3)

dHi

dt
= βH

Gn
i

Kn
H +Gn

i

− γHHi (4.4)
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dri
dt

= βrAGi − γrri (4.5)

drp
dt

= βrAGp − γrrp (4.6)

Where the terms in the equations are interpreted as follows:

αGiHi : ammonium production from glutamate, catalysed by the en-
zyme GDH (Figure 4.5a)

δAA(ri + rp) : ammonium consumption by interior and peripheral cells

δGGiri and δGGprp : glutamate consumption by interior and peripheral
cells, respectively

D(Gp −Gi) : glutamate diffusion between peripheral and interior re-
gions

DE(GE −Gp) : glutamate diffusion between the environment and the
periphery of the biofilm

βH
Gni

Kn
H+Gni

: GDH activation in the interior cells

γHHi : GDH deactivation in the interior cells

βrAGi and βrAGp : production of housekeeping proteins in the interior
and peripheral cells, respectively

γrri and γrrp : degradation of housekeeping proteins in interior and pe-
ripheral cells, respectively

In order to extract from the model the population expansion, which
is the experimental observable, we consider that the dynamics of the cell
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density ρ of the two populations are given by:

dρ(i,p)

dt
= ηr(i,p)ρ(i,p)

(
1− ρ(i,p)

K(G(i,p)
)
)
− λ(i,p)ρ(i,p) (4.7)

The first term in the right-hand side is a logistic-growth term, where the
maximal growth rate is considered to be proportional to the concentrations
of housekeeping proteins ri and rp. Additionally, we consider that the
carrying capacity K depends on the concentration of glutamate:

K(G) = Gm/(Km
k +Gm) (4.8)

Thus K(G) varies between 0 and 1 depending on whether glutamate con-
centration is below or above a given threshold, denoted as Kk. Note that
the cell density ρ(i,p) defined here is relative to the carrying capacity, there-
fore, both K and ρ(i,p) are dimensionless.

The logistic-growth term in the density equation shown above de-
scribes the standard birth/death processes that occur in an unmoving bac-
terial population. In our system, however, the peripheral cells are always
expanding into the open area outside of the biofilm. Therefore, a decay
term has to be included to account for this fact, which is the motivation
behind the second term, −λ(i,p)ρ(i,p), on the right-hand side of the density
equation. Thus we assume the parameter λ(i,p) to be non-zero only for the
peripheral population. However, in Section 4.4.1 we use non-zero λi for
the interior population in the case of chemical attack, where the peripheral
population is eradicated and consequently the interior cells can expand.

Considering the above described dynamics for the cell densities, the
population expansion rate is given by the logistic growth term, since this
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is the only term related with actual growth of the population:

µ(i,p) = ηr(i,p)ρ(i,p)

(
1− ρ(i,p)

K(G(i,p))

)
(4.9)

The dynamics of this model reproduce the periodic halting of the
growth observed in the experiments, as shown in Figure 4.8. The value
of each parameter of the model is detailed in Table 4.1. Furthermore,
the parameter sensitivity analysis in Figure 4.9 shows that the period and
amplitude of the oscillations are reasonably robust to parameter changes.
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Figure 4.8: Metabolic oscillations produced by the matematical model. a,
Biofilm growth over time. b, Glutamate concentration over time. c, Ammonium
concentration over time.
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Table 4.1: Parameters of the mathematical model of the biofilm growth os-
cillations.

Description Value Units
α Glutamate dehydrogenation coeffi-

cient
50 µM−1h−1

δA Ammonium consumption coeffi-
cient

4 µM−1h−1

δG Glutamate consumption rate 4 µM−1h−1

D Glutamate diffusion constant within
the biofilm.

0.4 h−1

DE Glutamate diffusion constant be-
tween biofilm and exterior

0.6 h−1

GE Glutamate concentration in the ex-
ternal medium

30 mM

βH Maximal activation rate of GDH 50 µM−1h−1

γH Deactivation rate of GDH 7.5 h−1

KH GDH activation threshold 7.2 mM

n Hill coefficient for GDH activation 7
βr Expression coefficient of riboso-

mal/housekeeping proteins
0.14 mM−1h−1

γr Degradation rate of riboso-
mal/housekeeping proteins

2 h−1

η Population growth rate coefficient 100 mM−1

KK Glutamate threshold for carrying
capacity

0.85 mM

m Hill coefficient for carrying capac-
ity

12
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λi Expansion rate of interior cells 0 h−1

λp Expansion rate of peripheral cells 0.032 h−1

[Gln] Concentration of glutamine in the
medium

1 mM

Kα Glutamine inhibition threshold on
GDH activity

5 · 10−8 mM

Kδ Glutamine inhibition threshold on
GS activity

5 · 10−2 mM

α0 Rate of ammonium entering the
biofilm from the external medium

0.03 mMh−1

β0 Expression rate of GDH from the
additional copy of the gene

1.5 · 10−6 mMh−1

λH2O2 Death rate due to hydrogen perox-
ide

5 h−1

4.3 Model perturbations

4.3.1 Addition of glutamine

The first experimental perturbation used to validate the model is the addi-
tion of Glutamine in the medium of an oscillating biofilm (Figure 4.5c).
Glutamine is synthesized by glutamine synthetase (GS) in the cell, and it
also regulates the activity of GS through a negative feedback (Kim et al.,
2012). Therefore, external addition of glutamine reduces GS activity, and
consequently lowers its consumption of ammonium and glutamate (used
to synthesize glutamine). Additionally, we assumed that glutamine in-
hibits either directly or indirectly GDH activity, affecting the production
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Figure 4.9: Systematic sensitivity analysis of the parameters of the model.
Sensitivity analysis of oscillation period (a) and modulation depth (b) to changes
in model parameters. Modulation depth is defined as the amplitude of the oscil-
lations divided by the mean value. Grey colour denotes parameter regions where
the system does not oscillate. In all the cases shown in this figure the transition
towards non-oscillating states occurs trhough a supercritical Andronov-Hopf bi-
furcation.

of ammonium from glutamate. This is implemented in the model as non-
competitive inhibition on the parameters α and δ. Specifically, the effec-
tive ᾱ and δ̄ are given by:

ᾱ = α
[Gln]
Kα

+ 1
(4.10)

δ̄(A,G) = δ(A,G)
[Gln]
Kδ

+ 1
(4.11)
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Figure 4.10a shows the model prediction: in agreement with the
experimental observations, external addition of glutamine leads to the
quenching of oscillation. A systematic analysis of the effect of glutamine
addition to the dynamics of the system is shown in Figure 4.10b and c.
The bifurcation diagram shows that as the external glutamine
concentration increases the amplitude of the stable limit cycle shrinks
until it collapses into the unstable fixed point giving birth to a
stable branch. Specifically, the system undergoes a supercritical
Andronov-Hopf bifurcation at external glutamine concentration
[Gln] = 3.20 · 10−6 mM.

4.3.2 Addition of glutamate

Another experimental perturbation that the model needs to reproduce is
the two-fold increase of the concentration of glutamate in the medium
(Figure 4.5f). The concentration of glutamate in the external medium is
explicitly defined in the model by the parameter GE . Thus, supplementa-
tion of additional glutamate is straightforward in the model — it increases
the value ofGE . Figure 4.11a shows the model prediction: consistent with
the experimental observations, a moderate increase in external glutamate
does not eliminate the oscillations. A systematic study also shows that
further increasing glutamate can reduce the period of oscillation by more
than two-fold, and sufficiently high concentrations leads to quenching of
oscillations (Figure 4.11b and c). The bifurcation diagram shows that the
system undergoes two Andronov-Hopf bifurcations at external concen-
trations of glutamate GE = 1.92 · 101 mM and GE = 7.31 · 102 mM,
respectively.
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Figure 4.10: Modelling results for glutamine supplementation. a, Colony
growth before and after glutamine addition (indicated by blue shading). b, Bifur-
cation diagrams showing systematic analysis on the effects of external glutamine.
The solid black line denotes a stable fixed point. The dashed black line corre-
sponds to an unstable fixed point. The red lines correspond to the extrema of
oscillations in peripheral glutamate (stable limit cycle). The green dot marks the
point where the system undergoes a supercritical Andronov-Hopf bifurcation.
The vertical grey line highlights the state of the system in panel a. c, Effect of
external glutamine on the period of the oscillations.

4.3.3 Addition of ammonium

Finally, the model also had to reproduce the effect of adding ammonium
in the medium observed in the experiments (Figure 4.5g). The concentra-
tion of ammonium is explicitly represented in the model with the variable
A. Thus, an addition of ammonium to the media can be represented as an
additional creation term (α0) so that equation 4.1 becomes:

dA

dt
= αGiHi − δAA(ri + rp) +α0 (4.12)



120 Collective oscillations in cellular communities

External
glutamate (nM)

100 101 102 103 104
0

10

20

30

40

100 101 102 103 104

External
glutamate (nM)

+ Glutamate

P
e

ri
p

h
e

ra
l

g
lu

ta
m

a
te

 (
n

M
)

0 .0

0.5

1.0

1.5

2.0

2.5

P
e

ri
o

d
 (

h
)

G
ro

w
th

Time (h)
0 4 8 12

a

b c

Figure 4.11: Modelling results for glutamate supplementation. a, Colony
growth before and after glutamate addition (indicated by green shading). b, Bi-
furcation diagrams showing systematic analysis on the effects of external glu-
tamate. The solid black line denotes stable fixed point. The dashed black line
corresponds to an unstable fixed point. The red lines correspond to the extrema
of oscillations in peripheral glutamate (stable limit cycle). The green dots mark
the point where the system undergoes supercritical Andronov-Hopf bifurcations.
The vertical grey lines highlight the states of the system in panel a. c, Effect of
external glutamate on the period of the oscillations.

Figure 4.12a shows the model prediction: in agreement with the ex-
periments, externally adding ammonium quenches oscillation. We also
systematically explored the effect of different ammonium concentrations
through a bifurcation diagram of the system with respect to α0 (Fig-
ure 4.12b and c). As in the case of glutamine, the bifurcation diagram
shows that increasing ammonium concentrations in the medium shrink
the amplitude of the stable limit cycle until it collapses into the unsta-
ble fixed point, giving birth to a stable branch. Again, the system un-
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dergoes a supercritical Andronov-Hopf bifurcation, this time at α0 =
6.30 · 10−4 mM h−1.

In contrast to the effect of increasing glutamate, the model predicts
that the period of oscillations does not change substantially as ammonium
varies.
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Figure 4.12: Modelling results for ammonium supplementation. a, Colony
growth before and after ammonium addition (indicated by red shading). b, Bi-
furcation diagrams showing systematic analysis on the effects of external am-
monium. The solid black line denotes stable fixed point. The dashed black line
corresponds to an unstable fixed point. The red lines correspond to the extrema
of oscillations in peripheral glutamate (stable limit cycle). The green dot marks
the point where the system undergoes a supercritical Andronov-Hopf bifurcation.
The vertical grey line highlights the state of the system in panel a. c, systematic
analysis on the effects of external ammonium on the period of the oscillations.



122 Collective oscillations in cellular communities

4.4 Model predictions

A model based on the simplifying assumptions described at the beginning
of the previous section (Figure 4.7) generates oscillations consistent with
our experimental observations (Figure 4.8) and reproduces the effects of
supplementing the media with glutamine (Figure 4.10), glutamate (Fig-
ure 4.11) and ammonium (Figure 4.12). Therefore, this simple model
shows that periodic halting in biofilm growth can result from metabolic
co-dependence between cells in the biofilm periphery and interior that
is driven by glutamate consumption and ammonium production, respec-
tively. We now turn to specific predictions of the model that shed light on
the mechanism of the observed oscillations.

4.4.1 Growth in the interior after an external attack

Bacteria growing inside biofilms have an increased resistance to antimi-
crobial agents (Høiby et al., 2010). It has been shown that this can be
explained in part by a limited diffusion of these compounds within the
biofilm (Mah and O’Toole, 2001; Stewart, 2002). We resolved to test
if, considering such external attack, our model can produce any testable
prediction.

To do so, we use the model to explore the predicted outcome of adding
an antimicrobial agent such as hydrogen peroxide (H2O2) to the medium.
Hydrogen peroxide is a strong oxidizer that can kill the cells on the pe-
riphery of the biofilm. Dead cells in the biofilm will still affect glutamate
diffusion but will be metabolically inactive. Thus, the killing is imple-
mented in the model by removing the production term of housekeeping
proteins in the peripheral cell population. Additionally, a new negative
term in the cellular density equation is introduced to account for cell
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death. To that end, the differential equations for rp and ρp are modified as
shown below:

drp
dt

= −γrrp (4.13)

dρp
dt

= ηrpρp

(
1− ρp

K(Gp)

)
− λH2O2ρp − λpρp (4.14)

This new term is also added to the equation for the rate population expan-
sion:

µp = ηrpρp

(
1− ρp

K(Gp)

)
− λH2O2ρp (4.15)

The metabolic co-dependence between interior and peripheral cells
gives rise to the surprising prediction that external attack could promote
growth within the biofilm. Specifically, killing of peripheral cells will
eliminate their glutamate consumption, which will increase glutamate
availability in the biofilm and thereby promote growth of interior cells
(Figure 4.13a). To test this hypothesis, we measured cell death and growth
within oscillating biofilms (Figure 4.13c and d, top). When we exposed
the biofilm to media containing hydrogen peroxide (H2O2), we observed
increased cell death predominantly in the biofilm periphery (Figure 4.13c,
bottom). As predicted, death of peripheral cells led to growth of interior
cells (Figure 4.13d, bottom). Figure 4.13b shows the model prediction
and the experimental results on the average growth rate and death in in-
terior and peripheral populations after the addition of hydrogen perox-
ide, for both wild type and GDH overexpressing biofilms. To verify that
this response is not uniquely triggered by H2O2, we exposed biofilms
to the antibiotic chloramphenicol and again observed growth of interior
cells (Liu et al., 2015). These findings further support our hypothesis that
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glutamate consumption by peripheral cells limits its availability in the
biofilm.

4.4.2 GDH overexpression

Our model also assumes that glutamate starvation of the biofilm inte-
rior reduces the production of ammonium that can support peripheral cell
growth. This assumption provokes the question as to why peripheral cells
do not simply overcome their dependence on extracellular ammonium by
increasing intracellular production (Commichau et al., 2008; Detsch and
Stülke, 2003). To address this question, we considered an inducible copy
of the GDH gene rocG as a testable way to decouple the production of
ammonium from the state of the biofilm interior (Figure 4.14a).

In the model, the overexpression of GDH is implemented by an ad-
ditional creation term β0 in the equation governing its dynamics (Hi).
Furthermore, since the overexpression is applied throughout the entire
biofilm, we now also need to include active GDH in the peripheral cells
(Hp), and consequently the production of ammonium from those cells.
To that end, the differential equations for A, Gp and Hi are modified as
shown below, and an equation for GDH in the peripheral cell population
(Hp) is also added:

dA

dt
= αGiHi +αGpHp − δAA(ri + rp) (4.16)

dGp

dt
= D(Gi −Gp) +DE(GE −Gp) −αGpHp − δGGprp (4.17)

dHi

dt
= β0 + βH

Gn
i

Kn
H +Gn

i

− γHHi (4.18)

dHp

dt
= β0 − γHHp (4.19)
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Figure 4.13: External and internal attacks on biofilms. a, Visual representa-
tion of the predicted outcome of an external attack on biofilm growth. b, Model
prediction of total biofilm growth rate in wild-type strain upon challenge with
H2O2. Experimental verification is shown as an inset, where error bars repre-
sent standard deviations (n = 4 colonies). c, Phase contrast merged with cell
death marker (cyan, 1 µM Sytox green) images of a wild-type (WT) biofilm re-
gion show cell death with and without challenge by 2% (v/v) H2O2. Scale bar,
50 µm. d, In the same biofilm, difference images (white regions indicate cell
growth) show wild-type growth with and without challenge by H2O2. e, Model
prediction of total biofilm growth rate in GDH overexpression strain upon chal-
lenge with H2O2. Experimental verification is shown as an inset, where error
bars represent standard deviations (n = 3 colonies). f, Phase contrast merged
with cell death marker (cyan, 1 µM Sytox green) images of a colony overex-
pressing GDH with and without challenge by H2O2. g, In the same biofilm,
difference images show cell growth during GDH overexpression alone, and with
challenge by H2O2. Adapted from Liu et al. (2015).
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Figure 4.14b shows the model prediction: overexpressing GDH leads
to quenching of oscillation. A systematic analysis on different levels of
overexpression is shown in the bifurcation diagram in the Figure 4.14d
and e. Similarly than with the addition of external glutamine and am-
monium, the overexpression of GDH takes the system through a super-
critical Andronov-Hopf bifurcation. The stable limit cycle collapses with
the unstable fixed branch and generates a stable fixed branch at β0 =
1.55 · 10−8 mM h−1. Additionally, the modelling results predict that con-
tinuous growth of the cells in the periphery deprives the interior popu-
lation from nutrients, which causes and increased amount of cell death
(Figure 4.13e, inset).

To experimentally validate this hypothesis, we constructed a strain
that contains an inducible copy of the GDH gene rocG (Figure 4.14a).
We confirmed that GDH overexpression was not toxic to individual cells
and did not affect their growth rate (Liu et al., 2015). In contrast, the in-
duction of GDH expression in the biofilm quenched growth oscillations
(Figure 4.14b and c) and resulted in high levels of cell death in the colony
interior (Figure 4.13f, top). This result explains why peripheral cells do
not appear to utilize the simple strategy of overcoming their dependence
on extracellular ammonium: such a strategy would result in the continu-
ous growth of peripheral cells, starving and ultimately causing the death
of sheltered interior cells within the biofilm. Periodic halting of periph-
eral cell growth due to extracellular ammonium limitation thus promotes
the overall viability of the biofilm
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Figure 4.14: Glutamate dehydrogenase overexpression breaks the metabolic
coupling. a, Overexpression of glutamate dehydrogenase (GDH, pink) promotes
more production of ammonium from glutamate. b, modelling and c, experi-
mental results of GDH overexpression (induced with 1 mM IPTG, indicated by
pink shading). d, Bifurcation diagram showing systematic analysis on the effects
of induction of GDH overexpression. The solid black line denotes stable fixed
point. The dashed black line corresponds to an unstable fixed point. The red
lines correspond to the extrema of oscillations in peripheral glutamate (stable
limit cycle). The green dot marks the point where the system undergoes a super-
critical Andronov-Hopf bifurcation. The vertical grey line highlights the state
of the system in panel b. e, Effect of induction of GDH overexpression on the
period of the oscillations.

4.4.3 Biofilm elimination: divide et impera

The ability of the biofilm to regenerate itself in the event of an external
attack suggested that killing the biofilm interior first would be a more
effective strategy for biofilm elimination.
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From a mathematical point of view, this double perturbation was mod-
elled by combining the modifications of the equations enumerated in the
two previous sections. The only additional change is that when H2O2 is
applied to a biofilm, if present, the production term for GDH β0 in the
periphery population is removed so that equation for Hp becomes:

dHp

dt
= −γHHp (4.20)

Accordingly, we exposed the GDH overexpression strain to hydro-
gen peroxide and again measured growth and death. As described above,
GDH induction causes death of interior cells. Exposing the GDH over-
expression strain to hydrogen peroxide resulted in more effective global
killing throughout the biofilm (Figure 4.13f, g, bottom). While in the
wild-type biofilm, interior cells begin to grow in response to an exter-
nal attack, metabolic independence between interior and peripheral cells
in the GDH strain interferes with this defence mechanism (Figure 4.13e,
inset). This outcome is also consistent with modelling predictions (Fig-
ure 4.13e). Oscillations in biofilm growth that are driven by metabolic
co-dependence thus promote the resilience of the biofilm community by
sustaining the viability of the sheltered interior cells that are most likely
to survive in the event of an environmental stress.

4.5 Oscillation onset and system size

Our experimental observations reveal two non-trivial features. First, the
oscillations emerge at critical biofilm size (Figure 4.15a). Second, the
period of the oscillations increases with time (Figure 4.15b). We now ask
wheter these two features can be reproduced in our mathematical model.
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To do so, we now explore in our model the effect of size of the biofilm.
Specifically, we consider the effect of the change in relative sizes between
the two populations as the biofilm grows.
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Figure 4.15: Oscillations start when the biofilm is large enough and become
slower over time. a, Histogram of the diameter at which a colony begins to
oscillate (n = 53 colonies, mean = 576µm, s.d. = 85µm). b, Top: growth
rate of an oscillating colony. Bottom: period of each oscillation cycle, measured
peak to peak. The error bars (±20 min) are determined by the imaging frequency
(1 frame per 10 min). The period slightly increases over time. From Liu et al.
(2015).

4.5.1 Relative size of interior and periphery

When cells grow and divide, the biofilm expands. We consider, however,
that while this happens the cellular density remains approximately con-
stant at any fixed distance to the edge of the biofilm, as shown by experi-
mental data. Furthermore, we also consider that the cellular population is
saturated from a given distance of the biofilm edge and inwards.

Let us approximate this situation by defining two discrete subpopula-
tions occupying concentric areas in a circular biofilm, namely interior and
periphery. By definition, the number of cells in the whole biofilm (NT ) is
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a simple addition of the cells in interior (Ni) and periphery (Np):

NT = Ni +Np (4.21)

Specifically, let the interior section of the biofilm be a circle of radius
Ri and the periphery a ring around the latter of width Rp constant in time
(Figure 4.16a). In other words, the boundary between the two regions is
found at a constant distance Rp from the biofilm edge. Then, the areas ai
and ap occupied by each population can be easily calculated as

ai = πR2
i (4.22)

ap = π(Ri +Rp)2 − πR2
i (4.23)
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Figure 4.16: Modelling the biofilm as two concentric circular regions of con-
stant density. a, Two distinct areas of the biofilm are considered: a central circle
with radius Ri surrounded by a ring of width Rp. b, The cellular density pro-
file is approximated with a step function. The width of the periphery ring Rp
is such that the average density is close to saturation in the central circle and
approximately half way to saturation in the periphery ring.

Furthermore, we can simplify the gradient of cellular density, static
with respect of the distance to the biofilm edge, as a step function de-
fined by the average density of each subpopulation and the distance from
boundary between them to the biofilm edge Rp. The distance Rp is such
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that cellular density of the interior subpopulation (ρi) is close to saturation
while cellular density of the periphery subpopulation (ρp) is half-way to
saturation (Figure 4.16b).

The dynamics of each subpopulation would be governed by a logis-
tic growth if there were no transference of cells between them. This is
not the case, however. The growth of the cells in the periphery pushes
the biofilm edge forward, which, by definition moves the boundary be-
tween the two subpopulation and leaves behind some cells. These cells,
let too far inward, will become part of the interior subpopulation. In other
words, there is a net transference of cells from the periphery to the in-
terior. This transference of cells (φp→i) depends in a non-trivial manner
on the growth of both populations and on the radius of the interior circle
(Ri). Taking this transference of cells into account, the dynamics of both
subpopulations would be defined by:

dNi

dt
= riNi

(
1− Ni

aiK(Gi)

)
+ φp→i (4.24)

dNp

dt
= rpNp

(
1− Np

apK(Gp)

)
− φp→i (4.25)

whereK(G) is the carrying capacity (in concentration terms) and depends
on the glutamate concentration as

K(G) = Gm

Km
k +Gm

(4.26)

We can circumvent the calculation of φp→i by taking together
Eqs. (4.21), (4.24) and (4.25). In this way we can write the dynamics of
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total number of cells as

dNT

dt
= riNi

(
1− Ni

aiK(Gi)

)
+ rpNp

(
1− Np

apK(Gp)

)
(4.27)

where we now need to define Ni and Np as functions of NT :

Ni = ρiai = ρiπR
2
i (4.28)

Np = ρpap = ρp[π(Ri +Rp)2 − πR2
i ] = ρpπ[2RpRi +R2

p] (4.29)

To do so, we need to find how Ri depends on NT

NT = ρiai + ρpap = ρiπR
2
i + ρpπ[2RpRi +R2

p]

0 = ρiR
2
i + 2ρpRpRi + ρpR

2
p −

NT

π

which is a second order equation that can be easily solved

Ri =
−2ρpRp ±

√
4(ρpRp)2 − 4ρi

(
ρpR2

p − NT
π

)
2ρi

But as negative values of Ri are not physically reasonable, we are left
with the solution:

Ri(NT ) =
−2ρpRp +

√
4(ρpRp)2 − 4ρi

(
ρpR2

p − NT
π

)
2ρi

(4.30)
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which finally allows us to describe the growth of the system with

dNT

dt
= riNi(NT )

(
1− Ni(NT )

aiK(Gi)

)
+ rpNp(NT )

(
1− Np(NT )

apK(Gp)

)
(4.31)

Ni(NT ) = ρiπRi(NT )2 (4.32)

Np(NT ) = ρpπ[2RpRi(NT ) +R2
p] (4.33)

Ri(NT ) =
−2ρpRp +

√
4(ρpRp)2 − 4ρi

(
ρpR2

p − NT
π

)
2ρi

(4.34)

4.5.2 Death in the interior

In some experiments we expect to see cell death. In that case, as the
densities of both interior and periphery are constant, the model described
here would predict that the biofilm would shrink. To prevent this unreal-
istic result we need to explicitly consider the fact that dead cells do not
disappear, and that they may still occupy a physical space. Based on this,
we will assume that dead cells still count towards maintaining a constant
density.

Let us define Nd as the number of dead cells in the interior of the
biofilm, whose rate of change will be given by

dNd

dt
= Θ

(
riNi

(
1− Ni

aiK(Gi)

))
(4.35)

Θ(x) =

−x if x < 0

0 otherwise
(4.36)

so that any decrease in the number of cells in the interior is considered as
death. Considering that the constant cell density in the interior takes into
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account both cells that are death and alive, Eq. (4.28) would become

Ni +Nd = ρiai = ρiπR
2
i (4.37)

and Eq. (4.30) would become

Ri(NT ) =
−2ρpRp +

√
4(ρpRp)2 − 4ρi

(
ρpR2

p − NT+Nd
π

)
2ρi

(4.38)

so that, finally, the growth of the system would be described by

dNT

dt
= riNi(NT )

(
1− Ni(NT ) +Nd

aiK(Gi)

)
+ rpNp(NT )

(
1− Np(NT )

apK(Gp)

)

(4.39)

dNd

dt
= Θ

(
riNi

(
1− Ni

aiK(Gi)

))
(4.40)

Θ(x) =

−x ifx < 0

0 otherwise
(4.41)

Ni(NT ) = ρiπRi(NT )2 −Nd (4.42)

Np(NT ) = ρpπ[2RpRi(NT ) +R2
p] (4.43)

Ri(NT ) =
−2ρpRp +

√
4(ρpRp)2 − 4ρi

(
ρpR2

p − NT+Nd
π

)
2ρi

(4.44)

4.5.3 Effect of the subpopulation size on the oscillator

All variables in the metabolic oscillator represent intensive values (they
do not depend on the total volume or area). Additionally, all of them ex-
cept A represent concentrations within one of the two compartments of
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the biofilm (namely interior and periphery). Thus, none of them will be
affected by changes in the relative sizes of the two compartments. Inter-
estingly, the equation describing the evolution of A accounts for reactions
that occur in both compartments: production and consumption in the in-
terior and consumption in the periphery. The relative importance of these
reactions will be given by the relative size of the two subpopulations.

If we define fi as the fraction of cells found in the interior of the
biofilm, fi = Ni

NT
, Eq. (4.1) becomes

dA

dt
= αfiGiHi − δA(firi + (1− fi)rp) (4.45)

This model reproduces the size-dependent onset of the oscillations.
Specifically, oscillations start when the cells that are far enough from the
biofilm edge to be considered interior cells represent at least a given frac-
tion of the total (Figure 4.17a).

The model enters the oscillatory regime through a supercritical
Andronov-Hopf bifurcation, and thus it predicts that the stable limit
cycle appears with zero amplitude and grows in a continuous manner as
fi increases (Figure 4.17b). Apparently, this would contradict the
experimental results where the oscillations appear with a non-null
amplitude (Figure 4.2f). The bifurcation diagram, however, shows that
the amplitude of the limit cycle increases rapidly within a small range of
values of fi.

Furthermore, the temporal dynamics of the system reveal that in the
simulation the system exhibited detectable oscillations much after it had
crossed the Andronov-Hopf bifurcation. This implies that the time scale
of the transient to escape the unstable fixed point is slow with respect
to the dynamics of the fraction of interior cells fi (Figure 4.17a and b).
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a

b c

Figure 4.17: Effect of biofilm size on growth oscillations. a, Colony growth
in time as the biofilm becomes larger and the interior subpopulation grows with
respect to the periphery (top). Below, fraction of the total number of cells alive
found in the interior (grey) and in the periphery (black). b, Bifurcation diagrams
showing systematic analysis on the effects of the fraction of interior cells fi. The
solid black line denotes stable fixed point. The dashed black line corresponds to
an unstable fixed point. The red lines correspond to the extrema of oscillations
in peripheral glutamate (stable limit cycle). The green dot marks the point where
the system undergoes a supercritical Andronov-Hopf bifurcation. c, Effect of the
fraction of interior cells on the period of the oscillations.
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We argue that small perturbations present during the experiment, while
clearly insufficient to cause the oscillations, might have a role causing a
faster and more abrupt transition of the system towards the limit cycle
attractor once it has already crossed the Andronov-Hopf bifurcation. This
would also help to explain the sudden appearance of oscillations with a
non-null amplitude.

Finally, the model also accounts for the observed slight increase of
the oscillation period by considering an increase in the ratio of interior to
peripheral cells over time (Figures 4.15a and 4.17c).

4.6 Discussion

The data presented here reveal that intracellular metabolic activity within
biofilms is organized in space and time, giving rise to co-dependence be-
tween interior and peripheral cells. Even though bacteria are single-celled
organisms, the metabolic dynamics of individual cells can thus be regu-
lated in the context of the community. This metabolic co-dependence
can, in turn, give rise to collective oscillations that emerge during biofilm
formation and promote the resilience of biofilms against chemical attack
(Figure 4.18). The community-level oscillations also support the ability
of biofilms to reach large sizes, while retaining a viable population of inte-
rior cells. Specifically, periodic halting of peripheral cell growth prevents
complete starvation and death of the interior cells. This overcomes the
colony size limitation for a viable biofilm interior that would otherwise
be imposed by nutrient consumption in the biofilm periphery. Metabolic
co-dependence in biofilms therefore offers a powerful mechanism to coor-
dinate colonies of milions of organisms, an elegant solution that resolves
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the social conflict between cooperation (protection) and competition (star-
vation) through oscillations.

Nutrient
access

High Low

WT

GDH
Dead cells

Constant growth

Independence

Co-dependence

Periodic growth

Figure 4.18: Metabolic coupling ensures the viability of the whole colony.
Co-dependence between interior and peripheral cells exhibited in a wild-type
strain results in a growth strategy that sustains the viability of interior cells, while
independence enforced by a GDH overexpression strain results in starvation of
interior cells and reduced resilience to external attack. From Liu et al. (2015).

The discovery of biofilm oscillations presented here also raises new
questions. While cellular processes such as swarming or expression of
extracellular matrix components are not required for the observed biofilm
oscillations (Liu et al., 2015), it will be interesting to pursue whether
such cellular processes are influenced by oscillatory dynamics (Anyan
et al., 2014). Another question worth pursuing is whether metabolic co-
dependence can also arise in other biofilm-forming species. Perhaps other
metabolic branches where metabolites can be shared among cells could
also give rise to oscillations in biofilm growth. It will be interesting to
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pursue these questions in future studies to obtain a better understanding
of biofilm development.

Our observations also suggest future strategies to cope with the in-
triguing resilience of biofilms in the face of environmental stresses, such
as antibiotic exposure. In particular, our findings show that straight-
forward application of stress (such as H2O2 or chloramphenicol) to the
biofilm counter-intuitively promotes growth, effectively rejuvenating the
biofilm. Death of the colony periphery relieves the repression on the
growth of interior cells, allowing them to regenerate a new biofilm periph-
ery and interior. In contrast, manipulation of the metabolic co-dependence
may yield a more effective approach to control biofilm formation. Specif-
ically, promoting continuous growth of peripheral cells can starve the
biofilm interior, leaving behind the exposed peripheral cells that can more
easily be targeted by external killing factors. Therefore, the metaboli-
cally driven collective oscillations in biofilm expansion described here
not only reveal fundamental insights into the principles that govern for-
mation of multicellular communities, but also suggest new strategies for
manipulating the growth of biofilms.





5 Conclusions

In this thesis we have analysed the dynamical and computational
capabilities of a variety of regulatory mechanisms of cells and cellular
communities. To do so so we have explored a wide range of dynamical
behaviours and regulatory scales. Starting by studying the bistable
behaviour of a small, yet rich, genetic circuit formed by a small set of
genes, we have then described how gene regulatory networks of
thousands of genes can encode in a decentralised manner the recent
history of the cell in their transient dynamics. Finally we have
characterised the collective metabolic oscillations in communities of
millions of cells. All in all, this varied, albeit not exhaustive, repertoire is
a reflection of the wide diversity of dynamical properties and regulatory
scales that biological systems exhibit.

Specifically, in Chapter 2 we analysed the dynamic response of the
GAL regulatory circuit of S. cerevisiae. First, we characterised the
bistable dynamic response of this circuit to galactose. We quantified,
using population data, how the concentration of galactose affects the rate
of stochastic activation of the circuit, and thus the memory stability of
this bistable system. Furthermore, we developed and adjusted two
models of increasing complexity that allow the exploration of how
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genetic variants affect the behaviour of this robust memory circuit. In the
process, we inferred the abundance of the different components of the
GAL regulatory circuit, and the mapping between external galactose
level and the activation rate of Gal1p and Gal3p as transcription
activators. This work supposes a first step towards characterising the
epistatic interactions that affect the dynamics of a regulatory system.

In Chapter 3 we used the reservoir-computing paradigm to explore
the computational capabilities of the transcriptional regulatory networks
of five organisms. This paradigm, developed in the fields of machine
learning and computational neuroscience, defines a system composed by
a network of interacting elements that is able to process complex temporal
information, and at the same time can be trained very efficiently. Specif-
ically, such system is composed by the reservoir, which is a subnetwork
with recurrences —i.e. cyclic paths— that encodes temporal informa-
tion in its complex dynamics, and the readout, and a simple feed-forward
structure that can extract the relevant information from the transient mul-
tidimensional dynamics of the reservoir. We propose a mechanism by
which the integration of information in regulatory networks happens in
its dynamics at the scale of the whole system, not by specialised architec-
tures but in a decentralised manner.

We found that the gene regulatory networks of five distant organisms,
namely E. coli, B. subtilis, S. cerevisiae, D. melanogaster, and H. sapiens

share a similar organisation, where a group of genes with recurrent
regulatory interactions is upstream of and controls most of the network.
We also showed that this group of nodes with recurrent connections,
which we call core or reservoir, defines a network that can encode
temporal information through its dynamics in a state-dependent manner.
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Our study shows that these core networks are as efficient in encoding
temporal information as random networks, which are the de facto gold
standard in reservoir computing. Furthermore, in the case of E. coli, we
showed that input signals arriving at the reservoir through biologically
relevant stress pathways can be encoded efficiently in the reservoir
dynamics. We also show that this information can be used by readout
structures originated by an evolutionary process, in a novel extension of
the reservoir-computing paradigm that has been absent so far in its
application to computational neuroscience and machine learning, where
the evolutionary approach was not directly applicable or evident.

Finally, in Chapter 4 we characterised the mechanism underlying the
growth oscillations in biofilms of B. subtilis, which we discovered in
collaboration with the laboratory of Gürol Süel in the University of
California San Diego. Our study revealed that these oscillations arise
from a metabolic co-dependence between different subpopulations of the
biofilm, depending on their distance to the colony edge. Specifically,
cells in the interior of the biofilm depend on the glutamate that diffuses
inwards without being consumed by cells on the periphery, and cells on
the periphery depend on the ammonium that cells in the interior
synthesise from that glutamate. Thus, when interior cells starve, they
stop producing ammonium, which forces peripheral cells to stop growing
and lets glutamate to flow inwards. From a conceptual point of view, this
system is an instance of a spatially-extended negative-feedback loop, and
thereby originates collective metabolic oscillations.

Using a mathematical model we predicted that in the event of an ex-
ternal attack the cells sheltered in the interior of the colony are able to re-
generate it, but that if the co-dependence is interrupted the interior starves
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and the biofilm becomes vulnerable. Both predictions were experimen-
tally validated, which confirms that the oscillations maintain a dynamic
balance between the two conflicting interests of the biofilm: growth and
protection. Finally, we propose that the size-dependent onset of the os-
cillations and period variation is a consequence of the relative size of the
interior and peripheral populations, which changes as the biofilm grows.
Interestingly, all these results open the possibility to new strategies to cope
with the resistance of biofilms to external aggressions such as antibiotics
and antimicrobial agents.

Future outlook

As almost always happens, informative answers open perspectives that
point at new unknowns and provoke new questions. The same occurs
with the findings and conclusions from this thesis. After characterising
the dynamics of the GAL regulatory network, we are now in position
to explore how mutations in different parts of the system combine, and
whether they produce epistatic effects.

Similarly, once we have proved that gene regulatory networks could in
theory work as computational reservoirs, we would like to try to pursue an
experimental validation. A complementary approach would be to explore
if the rate of fixations of mutations is significantly different in the distinct
parts of the network. Specifically, we expect mutations in the genes of the
reservoir to be much rarer, as they would affect the dynamics of the whole
netowrk. On the other hand, mutations in the genes that form the readout
should have a much more local effect, and could be interpreted as part of
the training process. We are also interested in exploring computationally
the determinants that could allow the evolution of not only of the readout,
but of a reservoir itself.
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Finally, by simplifying the biofilm as two discrete subpopulations, we
discovered that the growth oscillations are caused by a spatially-extended
negative-feedback loop. Now, a spatially-continuous model of the biofilm
would allow the characterisation of this spatially-extended feedback loop.





A Bow-tie structure of biological

networks

In this appendix, the regulatory networks analysed in Chapter 3 are char-
acterized in terms of the bow-tie network structure. This classification
of the nodes of the network was initially proposed to describe the world
wide web (Broder et al., 2000). Whether the edges of the network refer to
hyperlinks connecting web pages or to regulatory interactions in a gene
network, the bow-tie classification helps to characterise the structure of
the information flow in the network.

Figure A.1 schematises the different groups of nodes defined by the
modified version of the bow-tie scheme used here. Instead of considering
a central strongly connected component, we defined our bow-tie groups
around the recurrent group of nodes found after pruning the network (Sec-
tion 3.1). Table A.1 shows the number of nodes counted in each of the
defined categories.
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Readout

Tubes
Disconnected
components

Out-tendrils

In-tendrils

Inputs Reservoir

Figure A.1: Scheme of the bow-tie structure classification of nodes. First the
recurrent core, or reservoir, of the network is found as described in Section 3.1.
Then, all those nodes that can be reached from at least one node in the reservoir
following the directed edges are considered part of the readout. All nodes that
can reach at least one node in the reservoir are counted as input nodes. Those
nodes that can be reached from the input group and can reach the readout group
are defined as tubes. All nodes that can either be reached from the input or reach
the readout but not both are considered in-tendrils and out-tendrils, respectively.
Finally, the rest of the nodes are grouped as others.



149

B. subtilis E. coli S. cerevisiae D. melanogaster H. sapiens
Total nodes 921 3243 6725 9440 16356
Input 6 2 0 0 400
Reservoir 13 70 289 486 207
Readout 1037 6158 12855 17516 26946
Tubes 1 1 0 0 1
in-Tendrils 161 3 0 0 2069
out-Tendrils 61 20 0 13 128
Other 107 7 0 138 52

Table A.1: Sizes of the different groups of nodes defined by bow-tie classifi-
cation.
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