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Abstract

Estimating and understanding motion from an image sequence is a central topic
in computer vision. The high interest in this topic is because we are living in
a world where many events that occur in the environment are dynamic. This
makes motion estimation and understanding a natural component and a key
factor in a widespread of applications including object recognition, 3D shape
reconstruction, autonomous navigation and medical diagnosis.

Particularly, we focus on the medical domain in which understanding the
human body for clinical purposes requires retrieving the organs’ complex motion
patterns, which is in general a hard problem when using only image data. In
this thesis, we cope with this problem by posing the question – How to achieve
a realistic motion estimation to offer a better clinical understanding? We focus
this thesis on answering this question by using a variational formulation as a
basis to understand one of the most complex motions in the human’s body, the
heart motion, through three different applications: (i) cardiac motion estimation
for diagnostic, (ii) force estimation and (iii) motion prediction, both for robotic
surgery.

Firstly, we focus on a central topic in cardiac imaging that is the estimation
of the cardiac motion. The main aim is to offer objective and understandable
measures to physicians for helping them in the diagnostic of cardiovascular
diseases. We employ ultrafast ultrasound data and tools for imaging motion
drawn from diverse areas such as low-rank analysis and variational deformation
to perform a realistic cardiac motion estimation. The significance is that by
taking low-rank data with carefully chosen penalization, synergies in this complex
variational problem can be created. We demonstrate how our proposed solution
deals with complex deformations through careful numerical experiments using
realistic and simulated data.

We then move from diagnostic to robotic surgeries where surgeons perform
delicate procedures remotely through robotic manipulators without directly
interacting with the patients. As a result, they lack force feedback, which is
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an important primary sense for increasing surgeon-patient transparency and
avoiding injuries and high mental workload. To solve this problem, we follow
the conservation principles of continuum mechanics in which it is clear that the
change in shape of an elastic object is directly proportional to the force applied.
Thus, we create a variational framework to acquire the deformation that the
tissues undergo due to an applied force. Then, this information is used in a
learning system to find the nonlinear relationship between the given data and
the applied force. We carried out experiments with in-vivo and ex-vivo data
and combined statistical, graphical and perceptual analyses to demonstrate the
strength of our solution.

Finally, we explore robotic cardiac surgery, which allows carrying out complex
procedures including Off-Pump Coronary Artery Bypass Grafting (OPCABG).
This procedure avoids the associated complications of using Cardiopulmonary
Bypass (CPB) since the heart is not arrested while performing the surgery
on a beating heart. Thus, surgeons have to deal with a dynamic target that
compromise their dexterity and the surgery’s precision. To compensate the heart
motion, we propose a solution composed of three elements: an energy function
to estimate the 3D heart motion, a specular highlight detection strategy and a
prediction approach for increasing the robustness of the solution. We conduct
evaluation of our solution using phantom and realistic datasets.

We conclude the thesis by reporting our findings on these three applications
and highlight the dependency between motion estimation and motion
understanding at any dynamic event, particularly in clinical scenarios.

Keywords: Motion Estimation, Motion Understanding, Cardiac Imaging,
Robotic-Assisted Surgery, Topology Preservation, Supervised Learning



Resum

L’estimació i comprensió del moviment dins d’una seqüència d’imatges és un 
tema central en la visió per ordinador, el que genera un gran interès 
perquè vivim en un entorn ple d’esdeveniments dinàmics. Per aquest motiu 
és considerat com un component natural i factor clau dins d’un ampli ventall 
d’aplicacions, el qual inclou el reconeixement d’objectes, la reconstrucció de 
formes tridimensionals, la navegació autònoma i el diagnòstic de malalties.

En particular, ens situem en l’àmbit mèdic en el qual la comprensió del cos 
humà, amb finalitats c líniques, r equereix l ’obtenció d e p atrons c omplexos de 
moviment dels òrgans. Aquesta és, en general, una tasca difícil quan s’utilitzen 
només dades de tipus visual. En aquesta tesi afrontem el problema plantejant-nos 
la pregunta - Com es pot aconseguir una estimació realista del moviment amb 
l’objectiu d’oferir una millor comprensió clínica? La tesi se centra en la resposta 
mitjançant l’ús d’una formulació variacional com a base per entendre un dels 
moviments més complexos del cos humà, el del cor, a través de tres aplicacions:
(i) estimació del moviment cardíac per al diagnòstic, (ii) estimació de forces i
(iii) predicció del moviment, orientant-se les dues últimes en cirurgia robòtica.

En primer lloc, ens centrem en un tema principal en la imatge cardíaca,
que és l’estimació del moviment cardíac. L’objectiu principal és oferir als
metges mesures objectives i comprensibles per ajudar-los en el diagnòstic de les
malalties cardiovasculars. Fem servir dades d’ultrasons ultraràpids i eines per
al moviment d’imatges procedents de diverses àrees, com ara l’anàlisi de baix
rang i la deformació variacional, per fer una estimació realista del moviment
cardíac. La importància rau en que, en prendre les dades de baix rang amb una
penalització acurada, es poden crear sinergies en aquest problema variacional
complex. Mitjançant acurats experiments numèrics, amb dades realístiques i
simulades, hem demostrat com les nostres propostes solucionen deformacions
complexes.

Després passem del diagnòstic a la cirurgia robòtica, on els cirurgians realitzen
procediments delicats remotament, a través de manipuladors robòtics, sense
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interactuar directament amb els pacients. Com a conseqüència, no tenen la
percepció de la força com a resposta, que és un sentit primari important per
augmentar la transparència entre el cirurgià i el pacient, per evitar lesions i per
reduir la càrrega de treball mental. Resolem aquest problema seguint els principis
de conservació de la mecànica del medi continu, en els quals està clar que el
canvi en la forma d’un objecte elàstic és directament proporcional a la força
aplicada. Per això hem creat un marc variacional que adquireix la deformació
que pateixen els teixits per l’aplicació d’una força. Aquesta informació s’utilitza
en un sistema d’aprenentatge, per trobar la relació no lineal entre les dades
donades i la força aplicada. Hem dut a terme experiments amb dades in-vivo i
ex-vivo i hem combinat l’anàlisi estadístic, gràfic i de percepció que demostren
la robustesa de la nostra solució.

Finalment, explorem la cirurgia cardíaca robòtica, la qual cosa permet
realitzar procediments complexos, incloent la cirurgia coronària sense bomba
(off-pump coronary artery bypass grafting o OPCAB). Aquest procediment evita
les complicacions associades a l’ús de circulació extracorpòria (Cardiopulmonary
Bypass o CPB), ja que el cor no s’atura mentre es realitza la cirurgia. Això
comporta que els cirurgians han de tractar amb un objectiu dinàmic que
compromet la seva destresa i la precisió de la cirurgia. Per compensar el moviment
del cor, proposem una solució composta de tres elements: un funcional d’energia
per estimar el moviment tridimensional del cor, una estratègia de detecció de les
reflexions especulars i una aproximació basada en mètodes de predicció, per tal
d’augmentar la robustesa de la solució. L’avaluació de la nostra solució s’ha dut
a terme mitjançant conjunts de dades sintètiques i realistes.

La tesi conclou informant dels nostres resultats en aquestes tres aplicacions i
posant de relleu la dependència entre l’estimació i la comprensió del moviment
en qualsevol esdeveniment dinàmic, especialment en escenaris clínics.

Paraules clau: Estimació del Moviment, Comprensió del Moviment,
Imatge Cardíaca, Cirurgia Robòtica, Preservació de la Topologia, Aprenentatge
Supervisat



Table of contents

List of figures xiii

List of tables xxi

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Robust Cardiac Motion Estimation using Ultrafast Ultrasound
Data: A Low-Rank-Topology-Preserving Approach 13
2.1 Ultrafast Ultrasound Imaging: Beyond the Human Eye . . . . . 16
2.2 Preserving Diffeomorphic Features . . . . . . . . . . . . . . . . . 18
2.3 A Low-Rank-Topology-Preserving Approach . . . . . . . . . . . 20
2.4 Deformation Recovery . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Topology Preservation . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Subjects and acquisition . . . . . . . . . . . . . . . . . . 29
2.6.2 Validation scheme . . . . . . . . . . . . . . . . . . . . . . 30
2.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 45

3 Towards Retrieving Force Feedback in Robotic-Assisted
Surgery: A Supervised Neuro-Recurrent-Vision Approach 47
3.1 Vision-based Force Estimation . . . . . . . . . . . . . . . . . . . . 51
3.2 3D Deformable Shape Recovery . . . . . . . . . . . . . . . . . . 52

3.2.1 Robust 3D Shape Recovery . . . . . . . . . . . . . . . . 55
3.3 Retrieving Force Feedback . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Force Estimation: Supervised Recurrent Learning . . . . 58



x Table of contents

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . 66
3.4.2 Tasks Description . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 Evaluation Scheme . . . . . . . . . . . . . . . . . . . . . 68
3.4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . 70

3.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 80

4 From Motion Estimation to Clinical Evaluation: A Perception
Experimental Study 83
4.1 Sensory Substitution in Teleoperation . . . . . . . . . . . . . . . 86
4.2 Aim of this Work . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3 Perceptual Study . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Subjects Description . . . . . . . . . . . . . . . . . . . . . 91
4.3.2 Visualizations Description . . . . . . . . . . . . . . . . . . 91
4.3.3 Experimental Procedure . . . . . . . . . . . . . . . . . . 95

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4.1 Evaluation Scheme . . . . . . . . . . . . . . . . . . . . . . 97
4.4.2 Analysis and Results . . . . . . . . . . . . . . . . . . . . 98

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Sliding to Predict: Improving Vision-Based Beating Heart
Motion Estimation by Modeling Temporal Interactions 107
5.1 Challenges in Vision-Based Beating Heart Motion Estimation . 110
5.2 Towards Cardiac Motion Estimation . . . . . . . . . . . . . . . 112

5.2.1 Specular Reflection Elimination . . . . . . . . . . . . . . 113
5.2.2 Cardiac Motion Estimation . . . . . . . . . . . . . . . . 114
5.2.3 Sliding to Predict: Improving Cardiac Motion Estimation . 117

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.1 Cardiac Data Description . . . . . . . . . . . . . . . . . . 121
5.3.2 Evaluation Scheme . . . . . . . . . . . . . . . . . . . . . . 121
5.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . 123

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Concluding Remarks 131
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Beyond Medical Applications . . . . . . . . . . . . . . . . . . . 134

References 137



Table of contents xi

Appendix A Mathematical Proofs 157

Appendix B Estimation Theory 159





List of figures

1.1 Estimating and understanding motion is necessary in different
applications. (a) Surface reconstruction is improved by taking
temporal features which includes specular highlights. (b) Object
recognition of dynamic objects is possible by knowing the object
changes over time. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Top row displays everyday deformable objects in which the
environment conditions are less restrictive in comparison with
those illustrated in the middle row that comes from a clinical
setup. Bottom row shows difficulties associated with clinical data. 3

2.1 Typical ultrasound acquisition setup: High-frequency waves allow
capturing the view of inner organs such as the heart. Cardiac
motion can be estimated by computing the spatial correspondence
between time frames. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Overview of our proposed approach. (From left to right) an
ultrafast ultrasound cardiac sequence is acquired, this data is then
represented in low-rank in order to speed up the solution and
reduce noise. Later on, cardiac motion is computed enforcing
topology preservation which allows keeping the anatomical
structure of the heart. Finally, an analysis of the results is offered. 15

2.3 Evolution of ultrasound imaging techniques over time, from
real-time up to ultrafast imaging. Figure reproduced from [33]. . . 17

2.4 Comparison between Conventional and Ultrafast Ultrasound
acquisition. Left-side shows conventional acquisition in which
a full image is generated for each transmitted pulse whereas the
right-side shows an image is generated in a single transmission by
computing multiple lines in parallel. . . . . . . . . . . . . . . . . 18



xiv List of figures

2.5 Left: Singular values σk+1 = ∥C − Ck∥2. Right: CPU time to
compute the rank-k approximation Ck. . . . . . . . . . . . . . . 22

2.6 Top row shows an original and denoised frame after applying
low-rank process along with the rejected space. Bottom row, A
and B, show zoom in views of the same frames in which we can
see that both noise and some artifacts were removed. . . . . . . 23

2.7 When topology-preserving is not enforced, unrealistic
transformations can appear in the result. A way to ensure
topology preservation is by checking the Jacobian determinant
|J |. When |J | is equal to 1 then the volume is preserved. Small
positive or large positive numbers of |J | result in contractions or
expansions. But having |J | ∈ (−∞, 0) can result in distortions,
overlapping, and creation of new structures. . . . . . . . . . . . . 27

2.8 Sample frames of the raw data extracted from the two datasets
used for evaluating our approach. . . . . . . . . . . . . . . . . . 29

2.9 The first row shows the convergence history of the complete
sequence (1000 frames) using three different pre-processing
techniques, while the second row shows the number of iterations
it took to find the minimum for few of those frames. Box-plot
at the right side shows the CPU time comparison of the different
techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.10 (A) Resulted transformations, during complex deformations,
without applying topology preservation. Highlighted areas denote
structure violations that are more clearly displayed in the zoom-in
views (A.1). The resulted Jacobian determinant are shown in (A.2).
Resulted transformations after applying topology preservation are
shown in (B) and can be compared with (A), in which (B.1) and
(B.2) show that they keep the mesh structures with most of the
Jacobian determinant staying at 1. . . . . . . . . . . . . . . . . 34

2.11 (From right to left) Accumulated displacement for the apical view
of the left ventricle. Few samples of the approximated axial and
lateral displacements (top and bottom) are compared against the
ground truth. Left side shows the Jacobian determinant of the
same sample frames which reflects preservation of the anatomy. . 37

2.12 Numerical comparison (in mm) between the real and estimated
displacement values using Root-Mean-Square Error (RMSE). . . 38



List of figures xv

2.13 Mean accumulated displacement of the seven segments of the left
ventricle. Blue circles make reference to the axial displacement
while red squares refer to the lateral displacement. . . . . . . . . 39

2.14 (Top) Radial and longitudinal strain profiles of the left ventricle.
These profiles are evaluated by their sign where negative values
reflect shortening and positive ones reflect stretching. (Bottom)
Few frames of the cardiac cycle showing the radial strain. . . . 40

2.15 Noise reduction achieved by low-rank representation. Part (I) at
first column shows two noisy input frames while the next three
columns show the denoised sequences, the removed noise, and the
space where the eliminated noise lies. Part (II) shows the error
and computational time of the rank-k approximation. . . . . . . . 41

2.16 Part A shows surface deformation without topology preservation
while the same deformation is shown in B after enforcing topology
preservation via our penalization term. Part C shows the estimated
displacements of different parts of the heart along with the strain
magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 (A) shows tool-tissue interaction during Robotic-Assisted Surgery
which lacks force feedback that informs the surgeon about the
amount of applied force. (B) shows the observable displacements
after applying a force, which we obtain using a sensorless approach
that relies, in part, on computing the 3D shape of the tissue over
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Flowchart of our approach for estimating applied forces in
robotic surgical systems. We first propose a visual approach to
compute the deformation structure over time. Then, the available
information is used as input to an artificial neural network which
accurately estimates the applied force. . . . . . . . . . . . . . . 50

3.3 (a) The 3-dimensional tissue surface is reconstructed from the
projections of homologue points on the left and right lattices. (b)
Illustration of how tissue deformation is directly proportional to
the applied force. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Specular highlights cause major tracking disturbance. We deal
with this issue using a real-time detection and inpainting approach
that accurately recovers a specular-free image. . . . . . . . . . . 55



xvi List of figures

3.5 Surgical tools can partially occlude the tracked region of interest
which affects the 3D shape recovery over time (Left side). Right
side shows a side view of occluded lattice regions from different
views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 3D deformation structure of the tissue, obtained by our vision
approach, plotted at different time instants. . . . . . . . . . . . . 57

3.7 Left-side shows the structure of a biological neuron of the human
brain while the right-side shows an artificial neuron that imitates
the functioning of the biological one. . . . . . . . . . . . . . . . 59

3.8 Left side a simple recurrent neural network while right side shows
its unfolded version through time. . . . . . . . . . . . . . . . . . 60

3.9 Estimation of the applied forces is achieved by means of a RNN
in which three types of output units can be identified (zoom in
the upper row). Those units with delayed feedback save past
information that helps to increase accuracy. Additionally, at the
right side a visualization of the network over time is displayed. . . 61

3.10 Three dimensional illustration of the activation functions used in
the architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.11 In order to estimate the applied force, we use an architecture based
on LSTM-RNN (part A) which combines basic units with cells.
Part B shows a single cell block in detail and shows that each of the
cells is composed of a set of units that enforce constant error flow
which helps stabilizing force estimation over time. Additionally,
part C shows an illustration of the hidden layer with 10 cells over
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.12 The realistic surgical setting, with typical RAMIS surgical setup,
used to obtain the two ex-vivo datasets. The force sensor is used
to obtain the ground truth to validate our estimation. . . . . . . 67

3.13 Raw data of the three different datasets used to evaluate our
proposal (one in-vivo and two ex-vivo). . . . . . . . . . . . . . 68

3.14 (a) Typical way to access the patient during a RAMIS. (b)
Illustration of the palpation and exploration surgical tasks used
to test the efficiency of our solution. . . . . . . . . . . . . . . . 69



List of figures xvii

3.15 Tissue deformation that result from applying a force at different
time instants is illustrated in parts (A) and (B) along with the
recovered 3D deformable structure using our proposed visual
approach. Finally, plots at part (C) show a comparison between
the computed displacement (at contact point) in X,Y,Z directions
against the reference measurements given by the geometry
of motion of the robot from dataset II. The zoom-in views
demonstrate the high estimation accuracy of our approach even
during complex deformation as it can capture small (I-II) and large
displacements (III). It also eliminates the noise in the geometry
of motion as shown in (IV). . . . . . . . . . . . . . . . . . . . . . 71

3.16 Illustration of tissue deformation that result from applying force
at different time instants along with the 3D deformable structure
recovered using our proposed visual approach. Our proposal was
tested under different variation of illumination, occlusions and
complex deformation. . . . . . . . . . . . . . . . . . . . . . . . . 72

3.17 Optimization plots resulted from our energy functional for different
cases in which retrieving the 3D shape is challenging including
complex deformations and change of illumination. . . . . . . . 72

3.18 These linear regression plots show the associated strength between
the real (target) and estimated force (output) measurements of
both training and test datasets. In both sets, the points fit a
line showing a tight relationship between the measurements and
demonstrating the accuracy of the force estimation. . . . . . . . 74

3.19 Plots in top part show the real force measures, in X,Y and Z
directions, and those estimated by our approach. Bottom plots
illustrate the RMSE results in all directions. . . . . . . . . . . . 75

3.20 Stability criteria is shown in these plots using the ex-vivo datasets
where the estimated and real force measures are plotted at different
time intervals of a longer period of time. . . . . . . . . . . . . . 76

3.21 Retrieved displacements of the four immediate neighboring points
are plotted first without voting process correction (top) then with
voting process (bottom). . . . . . . . . . . . . . . . . . . . . . 79

3.22 (From left to right) Comparison of displacements, at contact point,
between real-geometric measure and visual approach with and
without V-ANFIS. Zoom-In displacements are also shown in order
to observe the improvement when V-ANFIS is applied. . . . . . 80



xviii List of figures

4.1 A typical teleoperated robotic surgical system using a master-slave
configuration. At the master side, surgeon is provided with a 3D
patient view and is able to perform the procedure using finger
controls and foot pedals. All surgeon’s actions are reproduced by
the slave which holds the surgical instruments. . . . . . . . . . . 84

4.2 Examples of surgical tasks where knowing the applied force is
relevant and helps decreasing the procedure completion time and
avoiding injuries. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 (From left to right) The four visualizations used to carry out our
experiments at different time instants. The color-coding used to
indicate the level of risk according to the magnitude of the applied
force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Sample frames from four datasets with the force feedback visual
cue displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Expert and Novices preference level per human factor. Each plot
shows the percentage of acceptance of each system. . . . . . . . 99

4.6 Global view of the obtained results showing experts vs novices
responses of each systems. . . . . . . . . . . . . . . . . . . . . . 100

4.7 Plots show the percentage of positive responses that each system
received from the complete population per human factor. . . . . 100

4.8 (From left to right) Total responses evaluating each system received
from the whole population. Results obtained from a post-hoc test
for multiple comparison. . . . . . . . . . . . . . . . . . . . . . . . 101

4.9 (From left to right) Population in our experiments comes from
four specialities which we divided in two subgroups: experts and
novices. Distribution of the users preference in which 95% of the
novices and 100% of the experts preferred visual feedback over no
feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.10 The advantages and disadvantages of each visualization system as
reported by the users. . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Left side shows a mechanical stabilizer called OctopusT M Nuvo
(figure reproduced from [137]) for heart motion cancellation.
Compared with these type of devices, the right side illustrates
an alternative approach that tracks the area of interest using the
endoscopic camera. . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Top row displays samples of typical endoscopic images while middle
row highlight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



List of figures xix

5.3 Overview of our proposed approach composed of three main
parts. (From left to right) The image sequence acquired from
the endoscope at the slave side is passed to the first step which
eliminates the specular highlight artifact. The specular-free images
then go trough our cardiac motion estimation step which recovers
a 3D deformable surface of the region of interest. Finally, the last
step guarantees information at all time by predicting the motion
in cases where there is occlusion. . . . . . . . . . . . . . . . . . 112

5.4 Specular highlights detection and inpainting results of our
proposed algorithm on four different datasets. From left to right:
input image; detected specular regions and information retrieval
via Sobelev inpainting. . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 From left to right. Results obtained from our energy function with
different number of control points. CPU time reported during the
optimization process. . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 3D Diffeomorphic surface reconstruction from the projection of
the lattice points defined at each stereo-pair image. . . . . . . . 116

5.7 A toy example that illustrates how we restructure our sequential
data to be used with a standard supervised learning approach . 118

5.8 Top part illustrates the architectures of both RBM and CRBM.
The left-bottom part shows illustration of how we use the
reconstructed heart motion as an input for CRBM while the
right side shows the accumulated lattice points over time. . . . 119

5.9 Sample frames of the raw data from the two datasets used in our
experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.10 Top part shows results from our specularity elimination approach
on three different medical datasets while the bottom part shows
zoom-in views of the inpainting results along with signal-to-noise
ration SNR plots . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.11 For each dataset from top to bottom: example frames of the input
raw data, accumulated displacement of the reconstructed 3D heart
at different time instances, and visualization of the recovered
region of interest. . . . . . . . . . . . . . . . . . . . . . . . . . 123



xx List of figures

5.12 Left side shows the Jacobian Determinant results of our vision
based approach, with and without applying our topology
preservation term, in two different cases: the retrieval of complex
deformation and the under illumination variation. The right side
shows the convergence results of our optimization process on the
two datasets while using the topology preservation term . . . . . 124

5.13 The motion of a point of interest over time used in the prediction
stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.14 Estimated vs predicted motions in the three direction using NARX
predictor over 200 frames . . . . . . . . . . . . . . . . . . . . . . 126

5.15 Estimated vs predicted motions in the three direction using EKF
predictor over 200 frames . . . . . . . . . . . . . . . . . . . . . . . 127

5.16 Estimated vs predicted motions in the three direction using CRBM
predictor over 200 frames . . . . . . . . . . . . . . . . . . . . . . 128

5.17 Numerical comparison of the three prediction models in mm
between the target and predicted values using RMSE . . . . . . 129

6.1 (a) Our proposed approach for achieving a specular-free object
was evaluated with synthetic data. (B) It first creates a superpixel
representation of the image domain to reduce computational time.
(C) By restricting the searching to only key areas in the temporal
dimension, we can efficiently obtain a specular-free object. . . . 134



List of tables

2.1 Decomposition of the Casorati matrix C and the rank
100-approximation C100 . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Jacobian determinant conditions for topology preservation . . . 28
2.3 Performance comparison between our proposed approach and other

state of the art approaches . . . . . . . . . . . . . . . . . . . . . 32
2.4 Performance analysis: low-rank vs. full-rank data and their

reaction to different degrees of topology preservation (see text for
discussion). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Performance analysis of full vs low rank for different cases of our
variational framework . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1 Summary of Activation Functions used in this Chapter . . . . . 62
3.2 Residual Error evaluation of our deformation approach . . . . . 70
3.3 Statistical nonparamatric analysis of our proposal to estimate the

applied forces. It takes into consideration the ex-vivo datasets
and the real measure. . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 The description of the architecture used in our V-ANFIS approach 79
3.5 Performance analysis of existing and proposed approaches. . . . 80

4.1 Color-coding used at each visualization to indicate the level of risk
depending on the force applied . . . . . . . . . . . . . . . . . . . 95

4.2 Questionnaire used to evaluate each visualization option based on
five human factor criteria . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Statistical nonparametric analysis of the results obtained from
the experts and novices preferences. Left side shows the p-values
while right side shows the adjusted ones. . . . . . . . . . . . . . 99





“Above all, don’t fear difficult moments. The best
comes from them.”

Rita Levi-Montalcini

1
Introduction

Human’s biological vision system is adept at dealing with the complex and
dynamic changes produced in the world around us. For many years, scientists
have attempted to achieve similar performance with computer vision systems.
Many efforts have been put to enable computers to estimate and understand
objects’ motion to be aware of surrounding events. Motion estimation can
be defined as the process of determining the necessary transformations that
describe the deformation of the image domain as a result of changes produced in
adjacent frames of an image sequence. Once this process is carried out, a natural
question that arises is − What do those sets of transformations tell us about the
scene? The response to this question comes from motion understanding as it
gives an explicit representation of the estimated motion that allows creating an
interpretation of the dynamic scene to realize what is happening.

Estimating and understanding motion from an image sequence still remains
a challenging problem in computer vision and is an essential component in
widespread of applications, including object recognition (e.g. [141, 152]), surface
reconstruction (e.g. [78, 159]), autonomous exploration (e.g. [197, 175]), image
guided surgeries (e.g. [140, 100]), and diagnostic imaging (i.e. [127, 23]). An
illustration of two applications can be seen in Fig. 1.1. At the top part, surface
reconstruction of a dynamic synthetic torso is improved by taking into account
temporal features such as specular highlights. The bottom part illustrates an
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Fig. 1.1 Estimating and understanding motion is necessary in different
applications. (a) Surface reconstruction is improved by taking temporal features
which includes specular highlights. (b) Object recognition of dynamic objects is
possible by knowing the object changes over time.

object recognition task in which given a set of samples (a video sequence), the
object at hand can be recognized independently of the variance in rotation and
scaling. A common factor in these objects is that they can be described with
less restrictive assumptions due to their rigidity, which is not the case when one
has to deal with non-rigid (deformable) objects.

It is very common to find deformable objects in our surrounding environment
(examples can be seen at top part of Fig. 1.2). In order to retrieve the motion
of such non-rigid objects, complex transformations are needed to describe them.
This difficult task has been recognized in different works such as [220, 2, 94].
Particularly in medical scenarios, complex deformations are not the only difficulty
that computer vision systems have to face while trying to estimate the motion of
deformable objects. The middle row of Fig. 1.2 shows examples of deformable
objects typically seen in clinical setups while the bottom row highlights some
difficulties associated with medical data. Generally speaking, the performance of
any vision based solution is highly dependent on the available visual information.
Thus, it is very important to handle any source of error that might affect the
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Fig. 1.2 Top row displays everyday deformable objects in which the environment
conditions are less restrictive in comparison with those illustrated in the middle
row that comes from a clinical setup. Bottom row shows difficulties associated
with clinical data.

solution’s robustness and precision. In this thesis, we also recognize the problems
that exist in surgical settings and should be taken into account in order to get a
realistic solution:

Glossy Organs’ Surface The internal organs often have glossy surfaces with
strong reflectivity, which results on having specular highlights on the
targeted surface. Specular highlights are white bright spots that hinder the
performance of a vision-based solution as they partially occlude the targeted
surface, appear as additional features, generate discontinuities in the images,
or cause loss of texture or color information. This well-known issue has
been recognized as a challenging task in many works such as [9, 46, 5].

Occlusions In medical scenarios, dealing with cases in which two or more objects
that are spatially separated interfere with each other is a common fact.
These undesirable singularities compromise the motion estimation precision
since they eliminate partial information of the target. Just like specular
highlights, occlusions have been identified by the scientific community as
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a task that must be handled in vision-based solutions. Examples of such
works can be found in [111, 114, 123]

We focus this thesis on the medical domain in which understanding the
human’s body for clinical purposes requires retrieving the organs’ complex
motion patterns, which is in general a hard problem when using only image
data. We tackle this challenging task by posing the question − How to achieve a
realistic motion estimation to offer a better clinical understanding? We address
this thesis on responding to this question by using a variational formulation as
a basis to understand one of the most complex motions in the human’s body,
the heart’s motion, through three applications (i) cardiac motion estimation for
diagnostic, (ii) force estimation and (iii) motion estimation and prediction, both
for robotic surgery.

To extract the complex motion patters from the three aforementioned
applications, we utilize useful information coming from two main medical
modalities: ultrafast ultrasound (UUS) and endoscopic imaging. The particular
characteristics of each modality enforce the employment of different tools while
developing the solution. While UUS is able to extract the internal structure
of the heart with a good temporal resolution using non-invasive techniques
(sound waves), one should take into account the inherent artifacts such as the
granular texture (speckles) and the lack of well-defined borders. Endoscopic
image sequences on the other hand allow capturing external structure of the
heart’s surface but have the complication of dealing with the strong homogeneous
texture of the acquired images. Taking into account the nature and characteristics
of these modalities, we optimize our variational framework to meet with their
unique set of advantages and constraints to achieve our objective of having robust
and efficient motion estimation.

Although these three applications emerge from different clinical roots, they
do share two significant common denominators between them:

1. The need to construct models that are capable of capturing the complex
dynamics that tissues undergo either by their inherent motion (for example
the beating heart) or by external events (for example an applied force over
the tissue’s surface).

2. The need to generate an explicit interpretation and analysis of the visual
information from which one can gain more understanding about the
environment and subsequently make better decisions.
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With these two factors in mind, through this thesis we set the basis for
achieving realistic motion estimation with the main goal of offering better clinical
understanding.

1.1 Contributions

Through three applications, we set the basis for achieving a realistic motion
estimation with the aim of offering a better clinical understanding. We go beyond
existing solutions from the state of the art making the following key contributions:

(i) Cardiac Motion Estimation for Diagnostic

We focus on a central topic in cardiac imaging that is the estimation of the
cardiac motion. The main aim is to offer objective and understandable measures
to physicians for helping them in the diagnostic of cardiovascular diseases. We
employ ultrafast ultrasound data and tools for imaging motion drawn from
diverse areas such as low-rank analysis and variational deformation to perform a
realistic cardiac motion estimation. The significance is that by taking low-rank
data with carefully chosen penalization, synergies in this complex variational
problem can be created.

Contributions

• We promote low-rank data representation. As a stand-alone tool, this kind
of representation offers several advantages, such as speeding up the global
solution and decreasing the noise in the image sequence.

• Another key point is topology preservation. A penalization term for
the Jacobian determinant is used in order to guarantee a diffeomorphic
transformation. We use a regularizer to rule out distortions while at the
same time control the magnitude of expansion and compression.

• The combination of the two previous tools turns out to be synergistic and
powerful as it allows computing an accurate displacement field that is
mathematically well-motivated and computationally efficient.
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(ii) Vision-Based Force Estimation in Robotic-Assisted
Surgeries

In Robotic-Assisted Minimally Invasive Surgeries (RAMIS), surgeons perform
delicate procedures remotely through robotic manipulators without directly
interacting with the patients. As a result, they lack force feedback, which is
an important sense for increasing surgeon-patient transparency and avoiding
injuries and high mental workload. To cope with this problem, we describe a
novel approach to estimate the applied forces during Robotic-Assisted Surgery.
Since all RAMIS settings include a videoscopic view of the operation, we can
employ the available visual information of the tool-tissue interaction and relate
it directly to the applied force. From the conservation principles of continuum
mechanics it is clear that the change in shape of an elastic object is directly
proportional to the force applied. Following this principle, we propose a novel
approach that is based on a variational framework that allows computing the
observable deformation after a force is applied. Then, this information is used in
a learning system that finds the nonlinear relationship between the given data,
force and deformation, and use it to estimate the applied force. In particular,
our contributions to this field are:

Contributions

• A new energy functional to compute the 3D tissue deformation. We prove
through careful numerical results that it offers a better minima, with respect
to other methods, and a low computational cost.

• We propose the use of a powerful supervised learning system that allows
finding the optimal nonlinear relationship between the given data and the
applied force. We demonstrate the adaptability across subjects and the
stability of our solution during long periods of time based on in-vivo and
ex-vivo datasets.

• The topic of designing a proper visual display of force feedback has not been
sufficiently discussed yet. Through a perceptual study we demonstrate the
potential of using sensory substitution for transmitting the force information.
Based on a careful statistical, graphical, and perceptual analysis, we also
provide user-centered recommendations for the design of visual displays for
robotic surgical systems.
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(iii) Physiological Cardiac Motion Cancellation and
Prediction

In the last decades, robotic surgical systems have allowed performing complex
procedures including Off-Pump Coronary Artery Bypass Grafting (OPCABG).
This procedure avoids the associated complications of using Cardiopulmonary
Bypass (CPB) since the heart is not arrested while performing the surgery. Thus,
surgeons have to deal with a dynamic target, which compromises their dexterity
and precision. Towards cancelling the cardiac motion, we propose a solution
based on a variational framework formulated in both L1 and L2 and we then
increase robustness in term of delays and occlusions by adding a prediction stage.
While this is an important part of our solution the main contributions are:

Contributions

• We propose a diffeomorphic variational framework which is able to deal with
the inherent complex deformation of a beating heart. It also incorporates
a preprocessing stage for dealing with specular highlights.

• A key point is our prediction stage which is different from existing
approaches where well-known algorithms from estimation theory, such
as the Extended Kalman Filter, are used. We propose to restructure the
given sequential data to formulate a standard supervised learning problem.

1.2 Publications

The following is a list of the publications derived from this thesis:

Journal Publications
◃ A.I Aviles, S.M. Alsaleh, J. Hanh and A. Casals Sliding to Predict: Improving
Vision-Based Cardiac Motion Cancellation by Modeling Temporal Interactions,
Submitted to The International Journal for Computer Assisted Radiology and Surgery,
2017.
◃ A.I Aviles, S.M. Alsaleh, S.P. Raventos, N. Younes, J. Philbeck, J. Hanh and A.

Casals Sensory Substitution for Force Feedback Recovery: A Perception Experimental
Study, Submitted to ACM Transactions on Applied Perception, 2017.
◃ A.I Aviles, T. Widlak, A. Casals, M.M. Nillesen and H. Ammari Robust Cardiac
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Motion Estimation for Ultrafast Ultrasound Data: A Low-Rank-Topology-Preserving
Approach, Conditionally Accepted to Physics in Medicine and Biology, 2017.
◃ A.I Aviles, S.M. Alsaleh, J.K. Hahn and A. Casals, Towards Retrieving Force

Feedback in Robotic-Assisted Surgery: A Supervised Neuro-Recurrent-Vision Approach,
IEEE Transactions on Haptics, 2016.
◃ A.I Aviles, P. Sobrevilla and A. Casals, An approach for physiological motion

compensation in robotic-assisted cardiac surgery, Experimental & Clinical Cardiology,
2014.

Conference Publications
◃ A.I. Aviles, S.M. Alsaleh and A. Casals, 3D Diffeomorphic Deformation with Mixture
Components as Visual Stimuli for Perceiving Interaction Forces in Robotic-Assisted
Surgery, submitted to IEEE International Conference on Intelligent Robots and Systems
(IROS), 2017.
◃ S.M. Alsaleh, A.I. Aviles, A. Casals and J.K. Hahn, Let Specular Highlights

Perform!: Temporal Image Priors for Specular-Free Image Recovery, Submitted to
ACM SIGGRAPH, 2017.
◃ A.I. Aviles, S.M. Alsaleh, E. Montseny, P. Sobrevilla and A. Casals, A
Deep-Neuro-Fuzzy Approach for Estimating the Interaction Forces in Robotic Surgery,
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016.
◃ A.I. Aviles, T. Widlak, A. Casals and H. Ammari, Towards Estimating Cardiac

Motion Using Low-Rank Representation and Topology Preservation for Ultrafast
Ultrasound Data, International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 2016.
◃ S.M. Alsaleh, A.I. Aviles, P. Sobrevilla, A. Casals and J.K. Hahn, Adaptive

segmentation and mask-specific Sobolev inpainting of specular highlights for endoscopic
images, International Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), 2016.
◃ S.M. Alsaleh, A.I. Aviles, A. Casals and J.K. Hahn, Toward robust specularity

detection and inpainting in cardiac images, SPIE Medical Imaging, 2016.
◃ A.I. Aviles, S.M. Alsaleh, P. Sobrevilla and A. Casals, Sensorless Force Estimation

using a Neuro-Vision-Based Approach for Robotic-Assisted Surgery, IEEE EMBS Neural
Engineering Conference, 2015.
◃ A.I. Aviles, S.M. Alsaleh, P. Sobrevilla and A. Casals, Force-Feedback Sensory

Substitution using Supervised Recurrent Learning for Robotic-Assisted Surgery,
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2015.
◃ S.M. Alsaleh, A.I. Aviles, P. Sobrevilla, A. Casals and J.K. Hahn, Automatic and
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Robust Single-Camera Specular Highlight Removal in Cardiac Images, International
Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015.
◃ A.I. Aviles, S.M. Alsaleh, E. Montseny and A. Casals, V-ANFIS for Dealing

with Visual Uncertainty for Force Estimation in Robotic Surgery. Joint International
Fuzzy Systems Association World Congress and European Society of Fuzzy Logic and
Technology Conference (IFSA-EUSFLAT), 2015.
◃ A.I. Aviles, A. Marban, A. Sobrevilla, P. Fernandez, and A. Casals A Recurrent

Neural Network Approach for 3D Vision-Based Force Rstimation. International
Conference on Image Processing Theory, Tools and Applications (IPTA), 2014.
◃ A.I. Aviles, P. Sobrevilla and A. Casals. Unconstrained L1—regularized

minimization with interpolated transformations for heart motion compensation.
International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 2014.

1.3 Thesis Overview

Chapter 2: Robust Cardiac Motion Estimation using Ultrafast
Ultrasound Data: A Low-Rank-Topology-Preserving Approach.
This chapter is centered on improving diagnostic of cardiovascular diseases
by estimating the heart’s motion using a relatively new modality Ultrafast
Ultrasound (UUS) imaging. We first guide the attention to the advantages
that UUS imaging offers over conventional modalities, and then, we
move to describing the significance of preserving the anatomical structure
of the organs, followed by a well-detailed explanation about our novel
solution to improve clinical diagnostic. We then demonstrate how our
proposed variational solution deals with complex deformations through
careful numerical experiments. We conclude the chapter by highlighting
the synergy between low-rank and topology preservation and remarking
that our technique promises to be useful for analyzing organs experiencing
complex motion other than the heart, as for example the movement of
lungs in respiration.

Chapter 3: Towards Retrieving Force Feedback in Robotic-Assisted
Surgery: A Supervised Neuro-Recurrent-Vision Approach. We
focus this chapter on one of the major problems in medical robotics that
is the lack of force feedback, which restricts the surgeon’s sense of touch
and might reduce precision during a procedure. We open this chapter by
doing an exhaustive review of the state-of the art on the topic to find
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the major issues of existing solutions. We then present our approach that
combines visual and geometric information in a deep neural architecture
that estimates the applied force. Our approach is carefully evaluated on
phantom and realistic tissues in which we report an average root-mean
square error of 0.02 N. We conclude this chapter by remarking that our
solution avoids the drawbacks usually associated with force sensing devices,
such as biocompatibility and integration issues.

Chapter 4: From Motion Estimation to Clinical Evaluation: A
Perception Experimental Study. Once force information is obtained
a natural question is −how to provide this information to the surgeon?
This chapter extends the approach presented in Chapter 3 through an
experimental study with the aim of responding to this question. We begin
by explaining the existing options for transmitting the interaction forces
to the surgeon. With this in mind, we highlight an attractive alternative
called sensory substitution which allows transcoding information from
one sensory modality to another. Afterwards, we describe three relevant
aspects for the scope of our study: the subjects, the visualizations and the
experimental procedure. We conclude this chapter by proving the potential
of sensory substitution, particularly vision modality, in robotic surgical
systems. Based on a careful statistical, graphical, and perceptual analysis,
we provide user-centered recommendations for the design of visual displays
for robotic surgical systems

Chapter 5: Sliding to Predict: Improving Vision-Based Cardiac
Motion Cancellation by Modeling Temporal Interactions. We
start by offering an overview of the existing solutions related to cardiac
motion cancellation. We then set up the key factors to keep in mind for
achieving a realistic solution when one chooses a vision-based approach.
Then we follow with the description of our approach for canceling cardiac
motion. We point out the robustness of our solution by taking into
consideration undesirable perturbations such as visual occlusions and
specular highlights. We then move to an exhaustive evaluation using
phantom and in-vivo datasets. Finally, we close this chapter by presenting
the conclusion and future work.

Chapter 6: Conclusions and Future Work. The last chapter concludes
the thesis with a detailed discussion of our contributions in the clinical
field. We highlight the adaptability of our solutions in other areas such as
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computer graphics and present an example of our work in this area. We
close this thesis by posing a set of questions that allow sketching directions
for future work.





“If at first the idea is not absurd, then there will be
no hope for it”

A. Einstein

2
Robust Cardiac Motion Estimation
using Ultrafast Ultrasound Data: A

Low-Rank-Topology-Preserving
Approach

According to the World Health Organization (WHO), cardiovascular diseases are
the leading cause of death in the world. A key factor for early detection and
prevention of these diseases is to analyze the cardiac motion to diagnose, for
example, valve conditions or motion abnormality. The cardiac mechanics can be
studied and analyzed through the heart deformation [60]. In most of the medical
laboratories, diagnosis is based on the visual inspection of the heart’s motion
[91]. However, the results are conditioned to the experience of the expert, and
in consequence, they are highly variable and subjective. Thereby, the need of
having objective and understandable measures emerged, and up-to-date cardiac
motion estimation is a central topic in cardiac imaging [128].

The estimation of cardiac motion is a challenging problem to be tackled. In
search of achieving a good motion estimation, different authors have used various
biomedical imaging modalities including: magnetic resonance imaging (MRI),
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Fig. 2.1 Typical ultrasound acquisition setup: High-frequency waves allow
capturing the view of inner organs such as the heart. Cardiac motion can
be estimated by computing the spatial correspondence between time frames.

computed tomography (CT), single photon emission computed tomography
(SPECT), and positron emission tomography (PET) (e.g. [179, 151, 227, 188]).
However, the lack of resolution in modalities such as PET and SPECT (≈ 4−7 mm
[150]), together with the exposure to radiation with CT and PET/SPECT, and
the magnetic interference and cost of MRI make their use unsuitable in many
applications.

An alternative modality to estimate cardiac motion is ultrasound imaging
(US)(see Fig. 2.1). US is very popular due to its low cost, high accessibility,
real-time interaction, non-ionization, portability and rapid assessment [48, 207].
It has become routinely used in multiple clinical scenarios including diagnostic and
prevention of heart diseases. US allows capturing, for example, the heart’s size
and shape, strain rate, ventricular deformation, and abnormal motions. US has
shown its feasibility for tissue tracking and estimated motion analysis [51, 202].

Despite these benefits, ultrasound has disadvantages related to the presence of
noise and occasional artifacts and its limited acquisition speed. The poor temporal
resolution of conventional US hinders the retrieval of different mechanical events
of the heart [47], [214]. Nonetheless, recent advances in ultrafast ultrasound
(UUS) imaging have overcome some of these drawbacks, particularly temporal
resolution, thanks to their higher frame rate (greater than 1000fps) [213], which
is advantageous for cardiac motion estimation. An UUS system is capable of
computing many lines in parallel, generating in this way a full image from one
single transmitting event. Different applications of UUS emerge, such as tissue
and blood motion estimation, imaging of micro bubbles or neurovascular coupling.
Moreover, UUS facilitates advancements in disease prevention, diagnosis, and
therapeutic monitoring [214]. In this chapter, we study the application of using
UUS to estimate cardiac motion.
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Fig. 2.2 Overview of our proposed approach. (From left to right) an ultrafast
ultrasound cardiac sequence is acquired, this data is then represented in low-rank
in order to speed up the solution and reduce noise. Later on, cardiac motion is
computed enforcing topology preservation which allows keeping the anatomical
structure of the heart. Finally, an analysis of the results is offered.

Different works for US cardiac motion estimation have been reported in
the literature. Most of them use conventional ultrasound (e.g. [171, 118, 242,
86, 243]), while few works refer to the use of ultrafast ultrasound imaging (e.g.
[156, 193]). With the use of both, conventional or ultrafast ultrasound, the
approaches proposed to retrieve cardiac motion can be classified into those using
the characteristics of the radio frequency (RF) signal, and those using an image
sequence and applying computer vision techniques.

Motion estimation techniques in the first category use the natural acoustic
reflections of the radio frequency (RF) signal. In this case, cardiac motion
can be computed by either applying speckle tracking techniques, which use the
amplitude of the signal, or radio-frequency-based correlation techniques, which
use the phase information (e.g. [62, 127, 156, 193]). Another promising approach
to estimate the cardiac motion relies on capturing the RF ultrasonic signals and
then processing them to obtain some relevant information, such as the heart’s
characteristics.

In the second category of motion estimation techniques, we can find solutions
based on Optical Flow (OF), in which the relative motion of the heart is computed
from the velocities of patterns’ brightness (examples can be found in [59, 218,
224, 73]). Although different authors have proved the feasibility of OF for motion
estimation, its main drawback is that it only works for small and relatively
non-complex deformations. Another common solution, usually adapted for
more complex motions, is non-rigid registration, in which displacements of the
tissue can be tracked by computing the spatial correspondences between frames
[118, 138, 163, 142].

Another vision based technique for estimating the dynamics of the heart relies
on tracking the heart’s borders using deformable models (e.g. [3, 95, 194, 139]).
However, cardiac motion estimation can be inaccurate when the displacements
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are parallel to the edge or when a well-defined border is missing, which is a
common problem in US images [118].

In this chapter, we describe a new approach to estimate cardiac motion from
ultrafast ultrasound modality (see Fig. 2.2). Based on a variational formulation
for non-rigid registration in L2, we include a maximum likelihood type estimator
to increase the robustness of the solution in the sense of being able to deal with
outliers. While this is an important part of the solution, the main contribution is:
combining a low-rank data representation with a topology-preserving approach.
Particularly:

• We promote low-rank data representation. As a stand-alone tool, low-rank
data representation offers several advantages, such as speeding up the
global solution by reducing the computational time and decreasing the
noise in the image sequence.

• Another key point is topology preservation. A penalization term for
the Jacobian determinant is used in order to guarantee a diffeomorphic
transformation. We use a regularizer to rule out distortions while at the
same time control the magnitude of expansion and compression.

• The combination of the two previous tools turns out to be synergistic and
powerful as it allows computing an accurate displacement field that is
mathematically well-motivated and computationally efficient.

The remainder of this chapter is organized as follows. An introduction to
Ultrafast Ultrasound modality is described in Section 2.1. Section 2.2 presents
previous literature related to the topology preserving problem. In Section 2.3,
we present our low-rank data representation strategy, while in Subsection 2.4
we describe our variational framework to recover the deformation over time.
In Section 2.5, we describe the penalization term we used to achieve topology
preservation. In Section 2.6, we validate our proposal offering experiments on
simulated and real datasets. Finally, section 2.7 provides a final conclusion and
directions for future works.

2.1 Ultrafast Ultrasound Imaging: Beyond the
Human Eye

The basic principle of conventional ultrasound is based on the use of sound waves
with frequencies higher than 20 KHz. To generate a 2D image, pulses of sound
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Fig. 2.3 Evolution of ultrasound imaging techniques over time, from real-time up
to ultrafast imaging. Figure reproduced from [33].

are sequentially propagated from the transducer to the tissue and then returned
to the transducer as reflected echoes within a plane of 90°. A line image is
then generated for each transmitted pulse having as a result ∼ 28 frames per
second [47] (see left-side of Fig. 2.4 for illustration).

Despite the fact that ultrasound imaging is commonly used everyday in
hospitals, its main limitation appears as soon as high frame rate is required.
High temporal resolution is very important to asses diverse events of the human
body that cannot be seen at low frame rates, such as tissue motion or blood flow.
During more than 30 years, numerous researchers have attempted to overcome this
problem by developing what is called Ultrafast Ultrasound (UUS) (e.g. [52, 200,
155, 166]). From Fig. 2.3, we can see the evolution of the Ultrasound modality,
from the introduction of real-time imaging in the 70’s, passing by including
doppler measurements in the 80’s, and building a better image quality through
compound and harmonic imaging in the 90’s, or the challenging miniturization
design, until the recent innovations in ultrafast utrasound imaging.

Although the theoretical concept of Ultrafast was first introduced by Bruneel
et al. [40] in 1977, it was not until recently that thanks to the advent of GPUs
technology, the use of Ultrafast innovation became possible in clinical scenarios.
The main idea behind UUS is the parallel computation of multiple lines, which
results in entire images being transmitted per event and, in consequence, in a high
temporal resolution (see right-side of Fig. 2.4). This can be achieved by using
either of the following approaches: gating techniques or plane-/diverging-wave
imaging [47, 214].

When gating techniques are used, a large imaging part is first separated into
small subparts, then, each subpart is imaged at a high frequency. To obtain
the electrocardiogram (ECG) of the full image, gating is used to combine all
subparts. Despite the potentials of gating techniques (demonstrated in [177, 170]
for example), the main disadvantage appears when the ECGs are highly different
during the cardiac cycles. To tackle this problem, some authors proposed to use
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Fig. 2.4 Comparison between Conventional and Ultrafast Ultrasound acquisition.
Left-side shows conventional acquisition in which a full image is generated for
each transmitted pulse whereas the right-side shows an image is generated in a
single transmission by computing multiple lines in parallel.

plane-/diverging wave imaging (e.g. [214, 178]) in which unfocused beams are
used, that is, changing the aperture of the transducer. In this case, the main
drawback is given by the unfocused beam that degrades the spatial resolution.
However, this can be solved by using coherent plane-wave which allows generating
high-quality images.

UUS is a breakthrough in the clinical domain since it has opened a wide range
of clinical applications, since most of the physical events in the human body
occurs in milliseconds, such as functional imaging of the brain, characterization
of tumors, and blood flow (for example see [165, 215]). Particularly, in cardiac
imaging UUS has allowed improving the estimation of deformation and motion
as well as the analysis of strain and ventricular walls to name some applications.
Due to the aforementioned reasons, in this work we use the temporal resolution
advantages of the UUS to improve the estimation of the heart’s motion.

2.2 Preserving Diffeomorphic Features

During cardiac motion estimation, unpreserved topologies result in violations of
region convexity and are reflected in penetration of boundaries and overlapped
or distorted mesh elements. Thereby, topology preservation is important in order
to ensure connectivity between the structures, maintain the relations between
neighboring elements, and avoid distortion of existing structures. When the



2.2 Preserving Diffeomorphic Features 19

deformations are small, topology is preserved by the smoothness offered by the
regularization term, but this is not the case when large deformations appear, as
it happens when the complex dynamics of the heart is to be retrieved.

From the conservation principles of continuum mechanics, it is clear that the
elastic displacement field in cardiac motion can be modeled as an isomorphism
resp. diffeomorphism. Necessary and sufficient conditions to achieve this are
that its deformation gradient tensor exists and is nonsingular at every point in
the object [203]. In terms of the Jacobian J , this means that J exists and that
the det(|J |) ̸= 0 at every point in the body. For a positive volume, it is required
that |J | > 0 throughout the body [203, 3.2].

A well-known approach to achieve topology preservation is by controlling the
Jacobian determinant. Dacorongna in [50] presented a detailed discussion related
to the Jacobian determinant equation in which he demonstrated its ability to
achieve topology preservation. Jacobian determinant has been used in problems
involving deformable structures in order to achieve more realistic transformations
(e.g. [45, 11, 192]). However, in this section we cover only those works that
have relation with modeling deformable objects. In a multidimensional elastic
registration framework, authors in [115] explored a barrier function for penalizing
locally non-invertible functions.

The problem of achieving topology preservation has been reported in different
works addressing MRI and US data. The authors in [45] ensured topology
preservation by defining a threshold of 0.5 for the Jacobian determinant. Then,
for the resulting values lower than the threshold, they generated a new template,
equal to the previous deformed template, to continue with the registration process.
Similarly, Ashburner in [11] and [10] penalized singular values of the Jacobian
having lognormal distribution. To enforce the Jacobian positivity, Musse and
colleges [147] proposed a 2D parametric approach based on the constraint of the
continuous hierarchical modeling of the deformation field.

Later on, Noblet et al. [157] reported an extension of Musse’s work in the
three-dimensional space. They presented a hierarchical deformation field model
in which the Jacobian determinant was conditioned when it had negative values.
The main difference between the two works is the nontrivial optimization problem
obtained in the 3D space. Topology preservation was treated as a hard constraint
in [102], where they restricted the Jacobian determinant by a set of intervals
in a grid region. If those conditions were not met, then topology preservation
was enforced in terms of gradients. Explicit control of the deformation in terms
of the determinant of the Jacobian was reported in [79]. In comparison with
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similar works, here, authors proposed the use of point-wise inequality constraints
(i.e. they achieved topology preservation by controlling voxel by voxel instead of
using integral measures).

Another approach was presented in [237], in which topology was preserved
by quantifying the magnitude of deformations and examining the statistical
distributions of Jacobian maps in the logarithmic space. A two-step solution was
proposed in [117]. Authors first corrected the gradient vectors of the deformation
and then reconstructed the deformation based on a minimization problem on
a convex subset of the underlying Hilbert space. As a result, they achieved a
well-defined Jacobian on the image domain. An extension of that work was
presented in [192], in which authors proposed a solution based on independent
problems of small dimension that allow parallel computation.

Zhang et al. [242, 243] developed a temporally diffeomorphic motion
estimation approach for conventional cardiac ultrasound sequences. In that
work, the authors addressed the topology-preservation problem by using the
smooth velocity field with a differential operator in a Sobolev space. The resulting
transformation defines a group of diffeomorphisms. In [129], authors used the
Beltrami coefficient (BC) to represent an orientation-preserving diffeomorphism.
To deal with the computational cost of the BC method, they presented a splitting
algorithm, one part solves the BC whereas the other involves the quasi-conformal
map. However, the BC was reduced to constrain the Jacobian. And last but not
least, a biophysically constrained framework for large deformation diffeomorphic
image registration was proposed in [131]. They achieved topology preservation by
controlling the Jacobian determinant and the amount of shear in the deformation
map using a nonlinear Stroke regularization scheme.

2.3 A Low-Rank-Topology-Preserving
Approach

As a recent promising tool, low-rank data representation has been promoted
in a variety of areas, including computer vision, machine learning for fitting
problems, and computing the low-rank approximation of a matrix among others
[43, 44, 153]. A low-rank representation has been useful for processing big data
because in many datasets, the relevant information lies in a low-dimensional
space [81]. Moreover, it became more attractive since it has been proved that
when a matrix A has rank r, a small subset is enough to reconstruct it exactly
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[44]. In particular, low-rank representations have been used in motion recovery
in optical flow, e.g. in [74] to recover the motion in videos of facial movements.

Our motivation for using low-rank data is threefold: First, we aim to increase
the computational speed of the solution. Second, it is a way to denoise the
ultrasound data and avoid artifacts in the recovered deformation field. Third, we
aim to investigate the synergy of the low-rank representation with the preservation
of the topology.

For a precise description of our low-rank data representation, consider an
ultrafast ultrasound image sequence, F = {fs}S−1

s=0 , with S frames of size M ∗N .
Then, a new structure of the data is given in the form of a single matrix, called
Casorati matrix C, which columns are the S frames in a vectorized way:

C = C(F ) =


f0(1, 1) · · · fS−1(1, 1)

... ...
f0(M,N) · · · fS−1(M,N)

 (2.1)

where fs(m,n) is the scalar value of the sequence in frame s at a given pixel
location (m,n).

Let us now turn to the theoretical prerequisites to produce a low rank
representation of the Casorati representation C, exploiting the high correlation
in the columns of the matrix.

Theorem 1 (Singular Value Descomposition, SVD) For any real matrix A ∈
RM×N there exist orthogonal matrices U ∈ RM×M and V ∈ RN×N , and a
diagonal matrix S = (σ1, ..., σr, 0, ..., 0) with r 6 min(M,N) such that

A =
r∑

y=1
σyuyv

T
y = USVT (2.2)

where the positive numbers σ1 ≥ ... ≥ σr > 0 are unique and are called the singular
values of A. Then, the triplet USV is called singular value decomposition (SVD).
The value r 6 min(M,N) is equal to the rank of A. For proof, see Appendix A.

A major issue in medical applications is the large amount of data to be
processed, which is the case when the cardiac motion is estimated. Thus, instead
of computing the Singular Value Decomposition (SVD) of a large and dense
matrix, it is enough to compute the set of dominant singular values. This allows
keeping the most relevant information in a subspace which is smaller than the
original one. Thus, the problem of building a low-rank representation can be
given by finding the k−dominant singular values of A. Mathematically, finding
the rank-k approximation of matrix A can be described as:
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U S V
C 13824x13824 13824x1814 1814x1814
C100 13824x100 100x100 1814x100

Table 2.1 Decomposition of the Casorati matrix C and the rank
100-approximation C100

0 50 100
0

0.01

Matrix Size:  13824x1814

Ranks

E
rr

o
r

20 40 60 80 100
0

2

4

6

Ranks
S

ec
o

n
d

s

Fig. 2.5 Left: Singular values σk+1 = ∥C−Ck∥2. Right: CPU time to compute
the rank-k approximation Ck.

Ak :=
k∑

y=1
σyuyvT

y = arg min
rank(Â)≤k

∥A− Â∥2
F (2.3)

where ∥L∥2
F is the squared Frobenius norm of a matrix which is used in low-rank

based problems since it is invariant to rotations and to the rank. The importance
of the rank-k-approximation in (2.3) is given by the following theorem:

Theorem 2 (Eckart-Young) Take a matrix A with a SVD as in (2.2), and let
k < r := rank(A). Let Ak be the rank-k approximation in equation (2.3). Then

∥A−Ak∥2 = min
rank(B)=k

∥A−B∥2 = σk+1 (2.4)

For proof, see Appendix A.

For our ultrafast ultrasound data, we compute the Casorati matrix C(F )
and different rank-k-approximations Ck in equation (2.3). The resulting matrix
decomposition is displayed in Table 2.1, in which the original matrix (of size
13824x1814) was reduced to rank 100. Both the error (2.4) and the computational
time are plotted against the rank k in Figure 2.5. On the one hand, only an
average of 2.08984 seconds was needed to obtain Ck, and on the other hand, the
approximation error for C100 is 1.44e−5.

As we stated before, another main motivation to promote a low-rank
representation Ck instead of using the full Casorati matrix C is to reduce
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Fig. 2.6 Top row shows an original and denoised frame after applying low-rank
process along with the rejected space. Bottom row, A and B, show zoom in
views of the same frames in which we can see that both noise and some artifacts
were removed.

noise. This is accomplished by eliminating the subspace where the noise relies,
which results in retrieving a subspace with only relevant information. Noise,
which normally relies on another subspace due to its characteristics, is rejected
from the solution (see Figure 2.6). This eliminates artifacts in the subsequent
deformation computation.

In the last step, we use the invertibility in equation (2.1) to invert the low-rank
representation Ck(F ) back to the denoised video sequence Fk = ((fs)k)S−1

s=0 . We
will work with that sequence in the following section to extract the mechanical
deformation field of the heart.

2.4 Deformation Recovery

Let F = {fs}S−1
s=0 be the image sequence of S frames, where each image fs is a

function over the bounded domain Ω.
We will find a deformation vector field h defined in the domain Ω as a

minimizer of an energy functional:

E(h) =
S−2∑
s=0

Edsc(fs, fs+1; h) + Ereg(h) + Etp(h) (2.5)
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where the three terms used have the following purposes:

Edsc . . . discrepancy measure
Ereg . . . regularization term
Etp . . . topology preservation

We will now go through our variational framework and explain each of
the terms in the energy functional. We begin with the representation of the
deformation field h, then go on to the discrepancy term Edsc and the regularization
term Ereg. In Subsection 2.5, we describe the topology preservation term Etp

necessary to achieve realistic deformations.
How to represent the deformation field h? The deformation model is an

essential factor that defines how fast and accurate the approach is. In order to
find a compromise between computational cost and accuracy, we will handle the
changes over time using a lattice as in the following definition:

Definition 1 A m-dimensional lattice is the Z−linear span of a set of k linearly
independent vectors in Rm.

We will then use a lattice in which its points are characterized by the tensor
product of the b-splines [222]. These are widely used in medical applications.
The advantage of this lattice deformation model is that it demands low running
time, allows multiresolution, has optimal mathematical properties and keeps
affine invariance. Using b-splines has the additional advantage of being able to
handle complex deformations.

Consider a given position w = (w1, . . . , wd) in Rd. Let {ξi(·)} be a basis
of spline functions and let Pj1,...jd

be control points. Then, we express the
deformation vector h at point w through the model:

h(w) =
n∑

j1=0
...

n∑
jd=0

control points︷ ︸︸ ︷
Pj1,...,jd

d∏
k=1

ξjk
(wk)︸ ︷︷ ︸

tensor product

(2.6)

In this work, we use cubic basis splines:

ξ0(x) = (1− x)3/6
ξ1(x) = (4− 6x2 + 3x3)/6
ξ2(x) = (1 + 3x+ 3x2 − 3x3)/6
ξ3(x) = x3/6

(2.7)
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The deformation model for h in (2.6) is in Rd and it shows that within our
framework, we actually reconstruct the control points Pj1,...,jd

in order to get the
deformation h. – In our application, we will exploit this deformation model for
dimension d = 2.

We now turn to the discrepancy term Edsc. Since the images are acquired
by the same sensor, it is not expected that they have a big intensity variation
between them. Therefore, an iconic method is a perfect match for this application.
One possible option is to use the Sum of Squared Differences (SSD):∫

Ω
(f0(w + h(w)− f1)2dw (2.8)

SSD offers a low computational cost but it has the disadvantage of not dealing
well with outliers.

For the actual expression for Edsc in (2.5), we use:

Edsc(f0, f1; h) =
∫

Ω
ρ (f0(w + h(w))− f1) dw (2.9)

Here, the function ρ is a maximum likelihood type estimator motivated by robust
statistics:

Definition 2 An M-estimator is a symmetric and positive definite function ρ

with a unique minimum at zero.

The M-estimator substitutes the minimization of ∑i r2
i , where r is the residual

error, with ∑i ρ(ri), in order to deal with the effect of outliers. This increases
the robustness and accuracy of the result.

In this work, we use the Turkey estimator for ρ:

ρ(x) =


c2

6

[
1−

(
1− (x

c
)2
)3]

if |x| ≤ c

c2

6 if |x| > c
(2.10)

where c is a tunning parameter. The discrepancy term with the Turkey estimator
in (2.10) is known to offer a hard rejection of outliers [209].

For the regularization term Ereg, we use the Tikhonov method to impose
stability to the energy functional in the sense of Hadamard [80]. Let γ ∈ R+ be
the regularization parameter. Then we use for h = (h1, . . . , hd) the term:

Ereg(h) = γ
d∑

l=1

∫
Ω
∥∇hl(w)∥2dw (2.11)
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as the regularizer in our variational framework (2.5).

2.5 Topology Preservation

A common drawback of most of the solutions working with complex deformations
is that topology-preserving is not guaranteed, which leads to unrealistic
deformations becoming a source of error. An example of such deformations
is shown in Figure 2.7 in which topology is not preserved. Particularly, in
medical applications this issue is of huge importance in order to maintain the
anatomical structures. In order to preserve the topology, we will require that the
deformation is a diffeomorphism according to the following definitions:

Definition 3 A manifold G, according to Boothby [36], of dimension d is a
topological space with the following properties:

• G is Hausdorff

• G is locally Euclidean of dimension d, and

• G has a countable basis of open sets

Taking previous definition, now we can set the diffeomorphic definition.

Definition 4 Given the manifolds L and M , a map f : L −→ M is called
diffeomorphic if f is a bijection, f carries L homeomorphically into M , and f
and f−1 are differentiable.

Based on the previous definitions, we can set Dacorogna’s theorem which was
the first work to discuss the Jacobian determinant equation.

Theorem 3 (Dacorogna) Let k = 0 be an integer, 0 < α < 1, and Ω has a Ck+3,α

boundary ∂Ω(Ck,α denoting the usual Hölder spaces). Let f, g ∈ Ck,α(Ω) with
f, g > 0 in Ω. Then there exist a diffeomorphism ϕ with ϕ, ϕ−1 ∈ Ck+1,α(Ω,Rn)
and satisfying  g(ϕ(x))det∇ϕ(x) = λf(x), x ∈ Ω

ϕ(x) = x, x ∈ ∂Ω
(2.12)

where λ =
∫
g/
∫
f .
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(II)  Repercussion 
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(I) Complex deformation
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(0,-∞ ) > 1
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Fig. 2.7 When topology-preserving is not enforced, unrealistic transformations
can appear in the result. A way to ensure topology preservation is by checking the
Jacobian determinant |J |. When |J | is equal to 1 then the volume is preserved.
Small positive or large positive numbers of |J | result in contractions or expansions.
But having |J | ∈ (−∞, 0) can result in distortions, overlapping, and creation of
new structures.

As an application of Theorem 3, we can achieve topology-preserving
diffeomorphism. Assume that Ω is defined as in Theorem 3 and ψ0 ∈ Diffk+1,α,
then there exists ψ ∈ Diffk+1,α such that: det∇ψ ≡ 1 in Ω

ψ = ψ0 on ∂Ω
(2.13)

As stated in Theorem 3 and Eq. 2.13, to achieve a diffeomorphic deformation,
the Jacobian determinant can be used. This makes sense since it allows measuring
the changes in the area/volume produced by the deformation at each patch.

Let |Jh(w)| be the Jacobian determinant of the deformation h = (hx, hy) in
R2. The Jacobian determinant is described as:

|Jh(w)| = det
 ∂hx(w)

∂x
∂hx(w)

∂y
∂hy(w)

∂x
∂hy(w)

∂y

 . (2.14)

The characteristics of the deformation h encoded in the Jacobian are shown
in Table 2.2.

An illustration of these behaviors can be seen in Figure 2.7.
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Condition Local type of deformation
|Jh(w)| ≤ 0 topology is destroyed, overlapping, distortion and

penetration of boundaries may occur
|Jh(w)| > 0 diffeomorphism, topology preservation

0 < |Jh(w)| < 1 contraction
|Jh(w)| = 1 volume preservation
1 < |Jh(w)| expansion

Table 2.2 Jacobian determinant conditions for topology preservation

From our deformation model in (2.6), the partial derivatives of
∂hx(w)

∂x
, ..., ∂hy(w)

∂y
can be easily evaluated, as they come from the tensor product

of independent functions. Using Equation (2.7), we have for the derivatives of
the cubic basis splines:

ξ′
0(x) = (1− x)2/2
ξ′

1(x) = (3x2 − 4x)/2
ξ′

2(x) = (−3x2 + 2x+ 1)/2
ξ′

3(x) = x2/2

(2.15)

Then, the determinant in (2.14) can be straightforwardly evaluated as a function
of the lattice points Pj1,...,jd

characterizing the deformation h.

Now that we have stated how to compute the Jacobian determinant, we turn
to formulate our penalization term Etp for the energy functional (2.5). We use a
weak constraint, but do not penalize values lying near 1:

Etp(h) =
∫

Ω
δh(w)dw, with

δh(w) :=
 e−|Jh(w)| + ϕ

√
|Jh(w)|2 if | |Jh(w)| − 1 | ≥ τ

0 otherwise

(2.16)

Here, ϕ ∈ R+ offers a balance in our penalization, and τ ∈ R+ is the margin of
acceptance for values close to one.

The first term
e−|Jh(w)|

heavily penalizes negative values of the deformation and thus it prevents the
field h from having distortions or penetration of boundaries. The term

ϕ
√
|Jh(w)|2
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Fig. 2.8 Sample frames of the raw data extracted from the two datasets used for
evaluating our approach.

with the parameter ϕ controls the magnitude of the expansions and contractions.
Unlike most of the Jacobian determinant constrains, for example log(|J |)

(see [11]) and e(|J |) (as in [115]), we do not only guarantee the positivity of the
Jacobian determinant but also enforce its value to stay near one. Moreover, we
penalize big expansions in order to achieve more realistic deformations.

There are different options for solving the L2-regularized class. Traditional
methods include Gradient Descent, Newton’s method, Nonlinear Conjugate
Gradient, and Evolutionary Optimization Algorithms. However, they can get
stuck at local minima, might need an infinite number of iterations to converge
or have a slow rate of convergence. A better alternative is the well-known
Levenberg-Marquardt (LM) which offers better results with less computational
time. For these reasons, in this work we use LM method to minimize our energy
functional.

2.6 Experimental Results

This section describes in detail the experiments that we conducted to validate
our proposal.

2.6.1 Subjects and acquisition

We used two ultrafast ultrasound datasets (see Fig. 2.8) to evaluate our proposed
approach.
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The first is a realistic dataset from one patient. During the acquisition,
the patient was placed in the supine position or left lateral decubitus. Then,
the probe is placed on the left parasternal line at the fourth intercostal space
with the marker pointing toward the right shoulder of the patient. The images
were thus taken from the parasternal long axis view. This view is useful for
global assessment of the motion of the heart’s wall and the function of different
areas including the right and left ventricle, the mitral and aortic valves and the
interventricular septum. This dataset is composed of 1814 frames with size of
720x480 and a scaled version of size 144x96. This data was acquired with an
UUS device with a (fc) transducer with a bandwidth of 6MHz and 192 elements
using coherent compounding of plane waves. The output is a 2D plane wave
image sequence of the long axis view of a healthy heart.

The second dataset (see [156] for details) is a simulated ultrafast ultrasound
sequence that has a realistic cardiac deformation field and describes the mechanics
of a healthy left ventricle (see [37] for the description of the mechanics). This
data was generated using (fc) transducer with a frame rate of 5000 Hz (single
transmits) and effective frame rate of 500 Hz. The output of this simulated
data is a set of 2D apical imaging planes. This view is helpful to study the left
ventricle and the mitral inflow. The sequence is composed of 399 frames with
size of 2143x250. This simulated data is very helpful to assess the performance
of our approach since it includes a ground truth of the displacements which can
be compared against our estimation.

All the measurements and reconstructions in this section are taken from these
two ultrafast ultrasound cardiac sequences. All test and comparison were run
under the same condition on a CPU-based implementation. We used an Intel(R)
Core i7- 6700 CPU at 3.40GHz-32GB RAM, and a Nvidia GeForce GT 610.

2.6.2 Validation scheme

We divided our validation scheme into two parts. The first part makes use of
the realistic dataset and relies on the following measurements to evaluate the
performance of our topology-preserving technique:

• Comparison between our proposed topology regularizer and two from the
literature: Table 2.3;

• Assessment of using low-rank as a preprocessing step: Fig. 2.9;

• Inspection of the displacement field: Figure 2.10 (A)/(B);
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• Numerical results offered by the Jacobian determinant: Figure 2.10
(A.2)/(B.2); Table 2.4;

• Careful comparison of the residual error for both the low-rank tool and the
topology preservation tool and study of their synergy: Table 2.4;

In the second part, we use a simulated dataset with a provided ground truth
in which we perform the following evaluations:

• Numerical visualization and comparison of the displacement field:
Figures 2.10 and 2.12;

• Numerical visualization of mean accumulated displacement of the seven
segments of the left ventricle Figure 2.13;

• Nonparametric statistical analysis between the real and the estimated
displacements;

• Illustration of the computed strain as a reasonable clinical measure:
Figure 2.14.

2.6.3 Results

In order to prove the benefits of using low-rank (SVD) as a preprocessing step, we
compared it against two common preprocessing techniques: Gaussian smoothing
(kernel 5x5 and σ = 0.7) and Wavelets (Biorthogonal Spline Wavelet, 4 levels).
We carried out the comparison of the three preprocessing techniques using our
topology regularizer and two more from the state of the art [186, 86].

According to the results (Table 2.3 and Fig. 2.9), we found that low-rank
was able to find the best minima in our case study in a computationally efficient
manner. The results showed that Wavelet was able to find an acceptable minima
but, it needed an average of 30 iterations per frame to converge compared to the
16 needed by low-rank (see plots in Fig. 2.9). Gaussian smoothing on the other
hand performed the worst in terms of minima and average iterations per frame.

Overall, out of the three prepossessing techniques, low-rank offered a good
tradeoff between accuracy and computational time since it requires less iterations
per frame. This is further reflected in the overall CPU time as illustrated in the
box-plot at right side of Fig. 2.9 where low-rank only needed an average of 2.3217
seconds of computational time while Gaussian and Wavelet both required more
than 11 seconds in average. Moreover, it performed the best across the different
regularizer giving the best minima each time. In general, our topology regularizer
approach was the best compared to the regularizers offered by Rohlfing [186]
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and Heyde [86]. It has the advantage of enforcing the value to be close to one
and penalizing very strong expansions and contractions.

The performance of our proposed topology-preserving technique is illustrated
in Fig. 2.10 with and without topology preservation. First we show the
performance without topology preservation (Etp = 0 in the energy functional
(2.5)) where the resulting displacement fields are shown in (A) and the
corresponding Jacobian determinant are shown in (A.2). The example frames
in the columns show critical details of the respective displacements fields and
Jacobian. Row (A.1) shows zoom-in parts where different violations of the
topology occur in part (A), such as overlapping, boundaries penetration, and
mesh elements distortion.

The plots of the Jacobian clearly show huge variations in the value of
the determinant which results in an unstable representation of the anatomical
structure. Not only that, but in some parts, the Jacobian determinant presented
big values (greater than 3), which indicates that some transformations produced
very big expansions, while in others the Jacobian determinant gave negative
values, which indicates that new structures were formed. These violations
create new structures and result in an unrealistic representation of the complex
deformation of the heart’s motion. This is not acceptable particularly in medical
applications where preservation of the anatomical structure is remarkably needed.

We then ran the same tests after applying the proposed topology preserving
approach (Etp in (2.16) with ϕ = 5 ·10−3) and show the results in part B. Looking
at the zoom-in parts in B.1, and comparing it with part A.1, we can verify that
our approach allows controlling expansions and contractions, maintaining region
convexity, and avoiding foldings. The corresponding plots of the Jacobian
determinant are shown in part B.2. In comparison to the Jacobians without
topology preservation, we can see stabilities on the values as they do not suffer
large variations (mostly stay on 1) with guaranteed positivity. These are realistic
values, as over two pairs of time-frames, the volume should be approximately
preserved. From these illustrations, one can therefore conclude that the approach
was successful in avoiding topology violation even with complex deformations of
the cardiac motion.

For a more detailed quantitative analysis, we evaluated the global performance
of our approach by comparing its performance with low-rank and full-rank data
using 600 frames of the sequence (see Figure 2.8 dataset I). Unlike works where
speckles were useful as indicators for tracking the heart’s motion, in the framework
we proposed, results from Table 2.4 show that promoting low-rank offered a
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Fig. 2.10 (A) Resulted transformations, during complex deformations, without
applying topology preservation. Highlighted areas denote structure violations
that are more clearly displayed in the zoom-in views (A.1). The resulted Jacobian
determinant are shown in (A.2). Resulted transformations after applying topology
preservation are shown in (B) and can be compared with (A), in which (B.1)
and (B.2) show that they keep the mesh structures with most of the Jacobian
determinant staying at 1.

positive effect on the solution as it significantly reduced the computational time
and allowed faster convergence of the energy functional (less iterations per frame).

In Table 2.4, Exp. 1 and Exp. 5 show that without topology preservation in
the functional (2.5), the residuum was about 0.1 with and without the low-rank
constraint. After applying low-rank, the Jacobian determinant had higher values
but still suffered from heavy distortions. With topology preservation in Exps. 2-4,
and 6-8, reasonable values of the Jacobian determinant were obtained, avoiding
any penetration of boundaries. Thus, topology preservation is a necessary tool
to get realistic deformation results for cardiac motion estimation.
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The primary role of the low-rank representation seems to be the radical
decrease in computational time, as seen from a comparison of Exps. 1-4 and
Exps. 5-8, where the computational time was decreased by about 75 %.

The residual errors in Exps. 2-4 in the topology-preserved full-rank case
were in the order of magnitude 10−3 resp. 10−4. Contrary to that, topology
preservation in the low-rank case in Exps. 6-8 yielded minima in the order of
magnitude 10−9 to 10−12. Moreover, the discrepancy error showed that low-rank
achieved an order of magnitude 10−6 in comparison with 10−3 given by the
full-rank case. In practice, topology preservation and low-rank constraint act
synergistically together to get a more realistic deformation field in less time.

As a second part of our validation scheme and for an extended evaluation
of our proposal, we illustrate the axial and lateral accumulated displacement of
both the ground truth and our estimation of a single heart cycle (left side of Fig.
2.11). It is clear by visual inspection of the colored bar that our estimation is
very close to the ground truth. In order to support this statement, we computed
the Root-Mean Square error (RMSE) for the axial and lateral displacement and
plotted the results in Fig. 2.12 where we can see RMSE values less than 1mm
for the axial direction and less than 1.2mm for the lateral direction. The plots
also show a concentration of values much lower than 1mm in both displacement
directions.

To complement the analysis of the estimated displacement, in Fig. 2.13 we
offer an analysis of the seven segments of the left ventricle during one cycle of the
heart. Since the inferior and anterior parts are symmetric, we can evaluate their
behavior for the axial and lateral displacements. As expected, axial displacements
(blue circle) reported positive values acting in a similar way in both sides while
lateral displacements (red squared) showed similar behavior with contrary signs
since they go into opposite directions during heart motion.

We used the nonparametric Wilcoxon signed rank sum test to answer whether
there is a statistical significant difference between the real values (ground truth)
and the estimated values. We found that the null hyphotesis was not rejected
with p < 0.05 significance level. This lead us to conclude that we obtained a
good estimation of the displacement.

To further support the results obtained in Fig. 2.10 – (A.1 and A.2) and
Table 3, the right side of Fig. 2.11 shows the corresponding Jacobian determinant
of the illustrated frames where we can see that most of the values met the desired
criteria (stay at 1) for achieving topology preservation, which proofs the efficiency
of our proposed term.



2.6 Experimental Results 37

Ground Truth Our Approach Ground Truth Our Approach

Accumulated
Axial Displacement

Accumulated
Lateral Displacement

Ja
co

b
ia

n
D

e
te

rm
ia

n
t

Fr
a

m
e

1
Fr

a
m

e
50

Fr
a

m
e

65
Fr

a
m

e
12

5
Fr

a
m

e
25

0
Fr

a
m

e
35

0

Fr
a

m
e

65
Fr

a
m

e
12

5

Fr
a

m
e

25
0

Fr
a

m
e

35
0

Accumulated
Lateral Displacement

F
ra

m
e

 1
F

ra
m

e
 5

0
F

ra
m

e
 6

5
F

ra
m

e
 1

2
5

F
ra

m
e

 2
5

0
F

ra
m

e
 3

5
0

Ja
co

b
ia

n
 D

e
te

rm
in

a
n

t

F
ra

m
e

 1
F

ra
m

e
 5

0

F
ra

m
e

 6
5

F
ra

m
e

 1
2

5

F
ra

m
e

 2
5

0
F

ra
m

e
 3

5
0

Fi
g.

2.
11

(F
ro

m
rig

ht
to

lef
t)

Ac
cu

m
ul

at
ed

di
sp

la
ce

m
en

tf
or

th
e

ap
ica

lv
iew

of
th

e
lef

tv
en

tr
icl

e.
Fe

w
sa

m
pl

es
of

th
e

ap
pr

ox
im

at
ed

ax
ia

la
nd

la
te

ra
ld

isp
la

ce
m

en
ts

(t
op

an
d

bo
tt

om
)a

re
co

m
pa

re
d

ag
ai

ns
tt

he
gr

ou
nd

tr
ut

h.
Le

ft
sid

es
ho

ws
th

eJ
ac

ob
ia

n
de

te
rm

in
an

t
of

th
e

sa
m

e
sa

m
pl

e
fra

m
es

w
hi

ch
re

fle
ct

s
pr

es
er

va
tio

n
of

th
e

an
at

om
y.



38
Robust Cardiac Motion Estimation using Ultrafast Ultrasound Data: A

Low-Rank-Topology-Preserving Approach

  0.5 mm

  1 mm

  1.5 mm

 

 

Axial RMSE

  0.5 mm

  1 mm

  1.5 mm

 

 

Lateral RMSE

Fig. 2.12 Numerical comparison (in mm) between the real and estimated
displacement values using Root-Mean-Square Error (RMSE).

Finally, we provide strain images as these are often used clinically. It is
well-known that the strain can be calculated in terms of the components of the
displacement vector field h(w):

ε(w) =
εxx(w) εxy(w)
εyx(w) εyy(w)

 = 1
2(C − I) = 1

2
(
FT F− I)

)
,

where C is the Green deformation tensor, F = ∇h(w) is the displacement
gradient, and I is the identity.

Strain is useful to evaluate the heart muscle and to identify subtle changes in
heart’s function [1]. Moreover, it allows representing the percentage change in
dimension from a resting state to a stressed state (after applying a force). Fig.
2.14 shows the radial and longitudinal strains related to the left ventricle. The
resulted plots can be evaluated according to the sign of the strain in which negative
values indicate shortening and positive values denote stretching. According to the
results at the upper part of the figure, radial strain reported a stretching behavior
while longitudinal strain a shortening behavior. For illustration purposes, the
radial strain of few frames from the sequence are displayed at the lower part
of the same figure. The strain profiles and displacements of the left ventricle
exhibit distinct features and clinically meaningful motion patterns.
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Fig. 2.14 (Top) Radial and longitudinal strain profiles of the left ventricle. These
profiles are evaluated by their sign where negative values reflect shortening and
positive ones reflect stretching. (Bottom) Few frames of the cardiac cycle showing
the radial strain.

To further enhance our proposal, we optimized our variational framework [20]
(Eq. 2.5) as follows. We first changed the M-estimator, ρ, from Eq. 2.9 for the
Huber’s M-estimator in which c is a positive tuning constant given by:

ρhuber(x) =


1
2x

2 if |x| ≤ c

c|x| − 1
2c

2 otherwise
(2.17)

Moreover, as regularization term, Ereg, we used the curvature method. We
chose this regularizer since it penalizes oscillations and contains harmonic
functions (i.e. affine linear transformations). Let γ ∈ R+ be the regularization
parameter. Then we use for h = (h1, . . . , hd) the following term:

Ereg(h) = γ
d∑

l=1

∫
Ω
(△hl(w))2dw (2.18)

The last change is the topology preservation term, Etp. We propose a new
term to guarantee the preservation of the anatomical structure of the tissue. It
is defined as:
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Fig. 2.15 Noise reduction achieved by low-rank representation. Part (I) at first
column shows two noisy input frames while the next three columns show the
denoised sequences, the removed noise, and the space where the eliminated
noise lies. Part (II) shows the error and computational time of the rank-k
approximation.

Etp(h) =
∫

Ω
δh(w)dw, with

δh(w) :=



1
2π − arctan(|Jh(w)|)

π + ϕ
√
|Jh(w)|2 if (⋆)

0 otherwise
(⋆)| |Jh(w)| − 1 | ≥ τ

(2.19)

where ϕ ∈ R+ offers a balance in our penalization, and τ ∈ R+ is the margin of
acceptance for values close to one.

We ran our variational framework taking Eqs. 2.17-2.19 in Eq. 2.5 using the
Dataset I (as described in subsection 2.6.1). The results are explained next.

We first obtain the low-rank representation of the data. An important source
of disturbance is noise, which affects the performance of the motion estimation of
the heart. In part (I) of Fig. 2.15, we can see the result of doing noise reduction.
The first column shows a couple of frames of the original sequence while the
second one displays the frames after promoting low-rank representation. The
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third column illustrates the removed noise and its corresponding subspace. The
resulting matrix decomposition is displayed in Table 2.5 in which the original
matrix of 13824x1814 was reduced to rank 100. The error and the CPU time
against the rank can be seen in part (II) of Fig. 2.15. The error for C100 was
2.3243e−4 and the average time to obtain Ck was 2.3541 seconds. By promoting
low-rank, we keep the subspace where relevant information relies and thus,
artifacts can be eliminated.

It is well-known that evaluation of the deformation is complicated due to the
lack of ground truth. Thereby, we evaluate our solution based on the following:
1) numerical results of the Jacobian determinant (Table 2.5 and Fig. 2.16 -
(A) and (B)), 2) comparison of the residual error for low-rank and/or topology
preservation (Table I), and 3) computation of the strain as a clinical measure
(Fig. 2.16 - (C)).

Fig. 2.16 part (A) shows the deformation vector fields without topology
preservation Etp = 0. The color bars correspond to the values of the Jacobian
determinant and we can see that negative or big values results on mesh distortions.
It is also clear the fluctuation of the Jacobian determinant which result in
unrealistic representation of the anatomical structure. We ran the same test but
after including our topology preservation term. The results are illustrated in
part (B), in which the Jacobian determinant values reflect stability, close to 1,
with guaranteed positivity. Finally, part (C) shows both the displacement field
and the strain magnitude on three areas of the heart: left ventricle posterior
wall, right ventricle and left atrium. Strain helps to evaluate the heart muscle
and identify subtle changes in heart function.

Previous results are supported by a set of numerical experiments reported in
Table 2.5 where we explored different options for our variational framework. We
can see that including topology preservation yields a better minima in the order
of magnitude 10−3 to 10−15. Another thing to note from experiments 4-5 and
9-10 is that promoting low-rank decreases the CPU time dramatically (about 77%
in comparison with full-rank in experiments 1-3 and 6-8). Also, we compared the
performance of different M-estimators, specifically Turkey (from our previous
work [23]) against Huber estimator. Experiments 1-2 and 6-7 show that Huber
outperformed Turkey and was able to find better minima. Moreover, from the
results given by the experiments 9 and 10, we can conclude that synergy between
low-rank and topology preservation is promising as it reduces the computational
time and finds a better minima while ensuring a realistic representation of the
heart anatomy.
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2.7 Conclusions and Future Work

In this Chaper, we presented a new approach to estimate cardiac motion using
ultrafast ultrasound data. In a variational framework, we combined a penalizer
for topology preservation with a low-rank data representation. Together with
the better temporal resolution of ultrafast ultrasound, our proposed approach
overcame challenges of non-rigid registration, including noise and complex
heart motion and inaccurate results exhibiting distortions. While keeping
the computational time relatively low, a realistic and clinically meaningful
displacement field was produced, with the diffeomorphic features and preserved
structures.

In our variational framework, the displacement was represented by a lattice
with splines, and a maximum likelihood estimator was used in the discrepancy
term to provide robustness against outliers. The regularizer for the topology has
two features: eliminating radically negative values and carefully controlling the
volume expansion and compression. We validated the accuracy of our approach
and showed that it offers a RMSE less than 1 mm in comparison to the ground
truth.

While this variational framework already gives good results and is strong
individually, the CPU time and artifacts consumed in the ultrafast ultrasound
sequence motivated us to promote a low-rank data representation, as it has proved
to be useful in other areas of imaging and computer vision. We represented
the data in a single Casorati matrix and used the dominant singular values to
compute the deformation. Apart from removing the noise in the ultrasound data,
this technique greatly reduced the computational time and produced, together
with the topology penalization term, significantly less discrepancy in the results.

While we wanted to show the potentials of combining ultrafast ultrasound
with low-rank techniques and topology preservation, from a technical point of
view, the objective of this work is to have a first study as a proof of concept and
to open a new line of research for further clinical investigation. In this work,
we evaluated the technique using both simulated and realistic datasets. Future
work will include more extensive evaluation with more subjects to examine the
clinical potentials of the approach. Moreover, the technique promises to be useful
for analyzing organs experiencing complex motion other than the heart, as for
example the movement of lungs in respiration.





“All sorts of things can happen when you’re open to
new ideas and playing around with things”

Stephanie Kwolek

3
Towards Retrieving Force Feedback in

Robotic-Assisted Surgery: A Supervised
Neuro-Recurrent-Vision Approach

Robotic-Assisted Minimally Invasive Surgery (RAMIS) emerged from the need to
address some deficiencies associated with traditional Minimally Invasive Surgery
(MIS) and open procedures [233]. The revolutionary technologies utilized by
RAMIS systems provide motion scaling and tremor filtering which stabilize the
instruments and improve surgical precision [233, 198]. Furthermore, the added
degrees of freedom in the tool tip enhances surgeons’ dexterity and results in
better clinical outcomes [198]. The small incisions used in RAMIS allow reducing
the amount of blood loss during surgery, minimizing trauma, and improving
cosmetic results. Patients who undergo RAMIS experience less post-operative
pain, faster recovery, and lower mortality and morbidity events [113, 208].

Despite all the benefits offered by RAMIS, current commercially available
systems suffer from one major limitation which is the lack of force feedback [208,
54]. This feature is of huge importance since it increases surgeon-patient
transparency [169] and allows more natural interaction with delicate tissues,
as in the case of the heart (Fig. 3.1). Without force feedback information,
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Fig. 3.1 (A) shows tool-tissue interaction during Robotic-Assisted Surgery which
lacks force feedback that informs the surgeon about the amount of applied force.
(B) shows the observable displacements after applying a force, which we obtain
using a sensorless approach that relies, in part, on computing the 3D shape of
the tissue over time.

surgeons have no means of knowing how much force is applied to the tissue,
which could complicate the surgical task, increase its completion time and, what
is worst, result in irreversible injuries [223, 167]. Furthermore, dealing with
the absence of this primary sense of touch creates a high mental workload for
surgeons and might be a hazardous source of distraction [121]. For these reasons,
numerous researchers have dedicated significant efforts to address the problem of
force feedback. However, up to date it is still considered an open problem [29].

In the search for solutions for the lack of force feedback, some researchers
have focused their efforts toward developing force sensing devices (FSDs) [238,
221, 66]. These devices can be placed either inside or outside the patient’s body.
When placed outside, the devices are attached to the robot or its instruments
and offer indirect sensing. With this option, the devices measure not only
the instrument-tissue interaction forces but also irrelevant force data given
by the external/internal surgical environment. Removal of these undesirable
measurements is not possible due to hysteresis and because they greatly depend
on ambiguous starting conditions [162].

Alternatively, FSDs can offer direct sensing if they are placed close or on the
tip of the instrument inside the patient’s body. However, the internal location
of the sensor introduces numerous problems, including: biocompatibility and
sterilization constrains; long-term stability; adaption to surgical tool; size and
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high cost [83, 205]. All these limitations put severe restrictions to the adoption
of FSDs in real surgical environments. An alternative to the use of FSDs is to
compute the interaction forces by the observable deformation of the tissue in what
is called Vision-based force estimation (see Subsection 1.1 for details). Whether
it is FSD or VBFE, an important factor after having the force information is how
to transmit it to the surgeon. The direct way is to use haptic devices but they
suffer from several limitations including stability, number of degree of freedom,
cost and space, which make their use complicated. An alternative way is to
use Force Sensory Substitution (FSS). When FSS is used physical properties of
the environment are sensed using an alternate sensing modality. The potential
benefits of FSS for force feedback in teleoperation tasks were first explored by
Massimino and Sheridan [133].

When force sensory substitution is used, force feedback can be transmitted
to the surgeon through other sensory modalities such as vision, audio or
tactile. For further explanation about sensory substitution refer to Chapter
4. Particularly in this work, we use vision modality, which is considering a
promising sensory substitution suitable for clinical adoption [162]. With this
alternative, surgeons perceive force information via visual cues of tool-tissue
interaction. Various studies have investigated the feasibility of visual feedback
on conveying force information for surgeons while performing delicate tasks.
Investigation results show improved performance among novice surgeons and
decreased inconsistencies [? 162]. Out of the different FSS modalities, in this
work we chose visual feedback as it has proven to offer more advantages over
other alternatives (clinical evaluation is presented in Chapter 4). Moreover, the
use of visual information has been proven to be very reliable for force estimation
as all RAMIS settings include a videoscopic view of the operation. Thereby, in
order to avoid using force sensors, we can employ the available visual information
of the tool-tissue interaction and relate it to the applied force.

In this chapter, we describe a novel approach to estimate the applied forces
during RAMIS interventions that is illustrated in Fig. 3.2. Since all RAMIS
settings include a videoscopic view of the operation, we can employ the available
visual information of the tool-tissue interaction and relate it directly to the
applied force. From the conservation principles of continuum mechanics, it is
clear that the change in shape of an elastic object is directly proportional to the
force applied. Following this principle, we propose a novel approach that is based
on a variational framework that allows computing the observable deformation
after a force is applied. Then, this information is used in a learning system that
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Fig. 3.2 Flowchart of our approach for estimating applied forces in robotic surgical
systems. We first propose a visual approach to compute the deformation structure
over time. Then, the available information is used as input to an artificial neural
network which accurately estimates the applied force.

finds the nonlinear relationship between the given data and use it to estimate
the applied force. In particular, our contributions are:

• A new energy functional to compute the 3D tissue deformation. We prove
numerically that it offers a better minima with a low computational cost.

• We propose the use of a powerful supervised learning system that allows
finding the optimal nonlinear relationship between the given data and the
applied force. We demonstrate the adaptability across subjects and the
stability of our solution during long periods of time based on in-vivo and
ex-vivo datasets.

Our proposed force estimation solution avoids the drawbacks usually
associated with force sensing devices, such as biocompatibility and integration
issues. We evaluate our approach on phantom and realistic tissues in which we
report an average root-mean square error of 0.02 N.

The remainder of this chapter is organized as follows. A revision of the
literature related to vision-based force estimation is presented in Section 3.1. In
Section 3.2 we describe our energy functional to compute the 3D deformable
shape recovery, whereas in Section 3.3 we describe the deep architecture used to
learn the relationship between the extracted visual-geometric information and
the applied force, and to find accurate mapping between the two. In Section 3.4,
we numerically evaluate our approach on phantom and realistic tissues. Finally,
Section 3.5 gives a global conclusion and future works.
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3.1 Vision-based Force Estimation

Vision-based force estimation can incorporate explicit knowledge of the
mechanical properties of the tissues. However, this requires both complex
calculation and adaptation to each tissue. To avoid these drawbacks, knowledge
about the tissue properties can be learned implicitly from the data itself. This
makes the system more suitable for real-time solutions since the learning can be
optimized for faster computation.

The viability of using visual information to estimate the applied forces has
been demonstrated in different scenarios. In 2D, Greminger et al. in [76]
used Direchlet to Neumann map to estimate the force distribution applied to a
deformable object for microassembly and biomanipulation. Authors measured
the displacement field of the contour of the object and then used a template
matching based on linear elasticity equations. Similarly, authors in [105] modeled
the deformation by introducing contour information of the object, together with
its mechanical properties, into the boundary element method. Then, deformation
data was used to compute the applied forces by means of a capacitance matrix.
The disadvantage of this proposal is the need of a prior knowledge of the object’s
material properties.

The concept of virtual template for computing the deformation of the object,
using monocular images, was presented in [158]. In that work, authors assumed
that the surface of the object is a smooth function with local deformation. Then,
they used a strain-stress relation together with the penetration depth to estimate
the force. Authors in [106] applied a mesh-based model to characterize the
deformation based on stereo-endoscopic images. Afterwards, a spring-damper
system was used to compute interaction forces. Authors in [7] attempted to
improve the realism of visual and haptic feedback in a cell injection system
by using a 3D nonlinear mass-spring-damper model. The model parameters
were identified using offline Finite Element Method (FEM) simulations and
the biomembrane geometry deformation was reconstructed using snakes based
visual tracking. However, as shown in [104], the use of mass-spring models
offers limited accuracy, and the FEM-based parameters computation requires
additional modeling efforts.

More recently, some researchers have investigated the use of soft computing
to improve the accuracy of the force estimation. Authors in [75] computed
the applied force using a 2-layers feedforward network incorporated into a
deformable template matching algorithm. The deformable template was an
iterative computation of the object’s edge, using Canny’s method. Karimirad
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et al. in [103] used a feedforward Artificial Neural Network (ANN) to estimate
the force applied to cells during micromanipulation. The neural network was
trained on geometric features of the cells, including deformation, orientation, and
size. These features were extracted using various image processing techniques
under different known force conditions. Two different hybrid intelligent systems
were proposed in [145] to model the tool-tissue force in laparoscopic surgery:
an adaptive coevolutionary fuzzy inference system and an adaptive neuro-fuzzy
inference system. Both systems were trained on three different geometric features
extracted from a 2D simulated deformable model: angle and depth of maximum
deformation and width of displacement constraint. Nonetheless, experiments in
both works, [103] and [145], were only conducted in 2D.

We have also contributed in the interaction forces recovery. In our work
presented in [12], an energy minimization strategy was applied to compute a
deformation structure from the acquired stereo image sequences. The deformation
structure, along with geometric data from the robotic manipulator, was used as
an input to a Recurrent Neural Network (RNN) which was trained using the
adapted Levenberg-Marquardt method. A modification of the RNN architecture
was presented in [16], in which three types of feedback were defined: local, global
and no feedback. With the aim of increasing previous system accuracy, in a recent
work [17] we used a Long-Short Term Memory RNN (LSTM-RNN) architecture.
This LSTM-RNN allowed preserving information for a longer period of time,
which enforced constant error flow.

3.2 3D Deformable Shape Recovery

The first part of our solution for estimating the applied force is the computation of
the deformation structure as shown in Fig. 3.2. In this work, 3D shape recovery
is accomplished by minimizing an energy functional reformulated using the
l2-regularized optimization class. Moreover, in order to reduce the computational
time, we parametrize the changes produced on the tissue surface using a set
of linearly independent vectors. In the remainder of this section, we present a
formulation that allows recovering the deformation produced when a force is
applied on the tissue surface over time.

Let us assume that It
l : ΩIl

→ R2 and It
r : ΩIr → R2 are the left and right

image views from a stereo pair image acquired at each instant time t, where
ΩIl

and ΩIr are their corresponding domains. Since during a medical procedure
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Fig. 3.3 (a) The 3-dimensional tissue surface is reconstructed from the projections
of homologue points on the left and right lattices. (b) Illustration of how tissue
deformation is directly proportional to the applied force.

the surgeon is interested only in the region to be repaired, for example a vein,
computational cost can be reduced by defining a region of interest (ROI).

We handle the specified ROI using a 3D lattice. Let Ll : Ω′
Il
⊆ ΩIl

and
Lr : Ω′

Ir
⊆ ΩIr be 2D lattices defined at each image view respectively. Then, the

3D lattice is computed from the projections of the corresponding lattice points
on Îl ⊆ Il and Îr ⊆ Ir (see Fig. 3.3). Let P be the result of such correspondences
and v be the number of lattice points, Pv ∈ P where Pv = (y1, ..., ym) ∈ Rm.
Considering that initially lattice points are evenly spaced, then the changes
produced on the tissue surface, over time, are computed by minimizing the total
energy, Et, such that the optimal P can be found using the following equation:

Et(P) =EΦ(̂It
l(Γ(x; P) + x), Ît

r(x))+
γEΨ(Γ(x; P)) + EΛ(x; P)

(3.1)

where EΦ is the discrepancy measure term, EΨ denotes the penalization term
used to obtain a plausible transformation, γ ∈ R+ is the parameter that controls
the quality of the data fit, EΛ gives a constraint to preserve shape, x is a vector
containing the coordinates, and Γ is the deformation model.

The deformation model is an essential factor that determines how fast and
accurate the approach is. In order to find a compromise between computational
cost and accuracy, we characterize the lattice points using the tensor product of
b-splines as they demand low running time, allow multiresolution, have optimal
mathematical properties and keep affine invariance [222]. The mapping of the
changes over the reconstructed lattice Γ at position x is given as follows:

Definition 5 Let Plmn ∈ R3 denote the displacement of a control point with
z := y1y2y3 number of points. Then,
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Γ(x; P) =
y1∑

l=1

y2∑
m=1

y3∑
n=1

Plmn

K∏
k=1

ξk,c(xk) for k = 1, ..., 3 (3.2)

where ξ.,c are the cubic basis splines function expressed as:

ξk,0(x) = (1− x)3/6 ξk,1(x) = (4 + 3x3 − 6x2)/6
ξk,2(x) = (1− 3x3 − 3x2 + 3x)/6 ξk,3(x) = x3/6

(3.3)

We now turn to reformulate the energy functional defined in Eq. 3.2. The
discrepancy term, EΦ, is computed using the sum of squared differences method.
This was selected because it has a low computational cost and offers an optimal
result when images are acquired with the same sensor, as it is in our case.

Moreover, since the 3D deformation recovery is an ill-posed problem, as
defined in Definition 6, it is necessary to have a penalization term to restrict the
solution space and impose stability to the energy functional.

Definition 6 Consider the problem Bf = g where B ∈ L(J, V ) and J, V−
Hilbert Spaces. Then the problem is well-posed, in the sense of Hadamard [80],
if:

• g ∈ V has solution f∗ ∈ J i.e. g is in the range of B

• the solution of Bu = g is unique

• f∗ depends continuously on the data

Thus, to obtain a well-posed problem we rewrite the penalization term EΨ

using Tikhonov regularizer. The third term of the functional is given by a soft
constrain for volume-preserving mappings. Taking previous statements, Eq. 3.2
results in:

Êt(P) = ∥EΦ∥2
L2︸ ︷︷ ︸

discrepancy

+ γ∥EΨ∥2
L2︸ ︷︷ ︸

penalization

+ ∥EΛ∥2
L2︸ ︷︷ ︸

constraint

= 1
S

(∫
x∈Ω′
∥Ît

l(Γ(x; P) + x)− Ît
r(x)∥2dx

+γ
d∑

i=1

∫
x∈Ω′
∥∇Γi(x; P)∥2dx +

∫
x∈Ω′
∥EΛ(x; P)∥2dx

) (3.4)

where S is the number of overlapping pixels. In search of practicality and
efficiency, we use a discretize-then-optimize process. Strictly speaking, after
defining the continuous optimal energy functional, as defined in Eq. 3.4, we
transform it into a standard optimization problem by discretizing it resulting in:
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(a) Raw Data (b) Detection (c)Edge Projection      (d)Specular-free

Specular
highlights

Specular
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Fig. 3.4 Specular highlights cause major tracking disturbance. We deal with
this issue using a real-time detection and inpainting approach that accurately
recovers a specular-free image.

Êt(P) = 1
S

∑
x∈Ω′
∥Ît

l(Γ(x; P) + x)− Ît
r(x)∥2

+γ
d∑

i=1

∑
x∈Ω′
∥∇Γi(x; P)∥2 +

∑
x∈Ω′
∥EΛ(x; P)∥2

 (3.5)

where the soft constraint EΛ(x; P) = det(∇Γ(x; P)).

3.2.1 Robust 3D Shape Recovery

During the process of recovering the temporal 3D deformable structure, different
factors can affect the performance of the visual approach.

One source of error that might affect the reconstruction precision is the
specular highlight regions (see Fig. 3.4-(a)) that appear on the surface of the
heart. These bright spots appear on surfaces with high reflectivity and occlude
the underlying visual information causing uncertainty in the tracked Region of
Interest (ROI). To eliminate this artifact, we carried out two steps:

1. Detection of the specular highlights − using a hybrid detection technique
based on saturation and intensity color attributes since the local coincidence
of the intense brightness and unsaturated color characterize these kind of
artifacts (Fig. 3.4-(b)). Then, we applied a refinement of the detection
process based on the computation of the local singularities based on the
Wavelet Transform Modulus Maxima (WTMM) (Fig. 3.4-(c)).
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Fig. 3.5 Surgical tools can partially occlude the tracked region of interest which
affects the 3D shape recovery over time (Left side). Right side shows a side view
of occluded lattice regions from different views.

2. Inpainting − we reconstructed the damaged regions using a dynamic
search based approach to smoothly propagate pixel information from the
surrounding areas (Fig. 3.4-(d)). We also optimized the process to perform
in real time. Details of these two steps can be seen in our collaboration
work published in [4].

Another potential source of error when tracking the surface deformation is
the partial occlusion of the tracked region of interest (ROI). Occlusion makes the
tracking process more challenging and can cause tracking failure as the algorithm
will not have enough information about the occluded part of the surface. In
RAMIS settings, the tracked ROI may be partially occluded for a short period
of time, by a surgical tool or blood, which might hide useful information about
the surface and affect the tracking precision (see Fig. 3.5). This source of error
needs to be eliminated as precision is an essential factor in medical applications.

As it was shown by Turkey in 1920 [ref], the L2 norm is very sensitive to small
deviations leading to affect the residuals. To increase robustness and deal with
the aforementioned problem, we took Eq. 3.5 and included a maximum likelihood
estimator called Huber’s M-estimator as stated in the following definition:

Definition 7 Let r be the residuals and z the L2 estimator in the form:

n∑
i=1

ri(z)2 = min (3.6)

then the Huber’s maximum likelihood estimator ρ with a positive tuning constant
c is given by:

ρhuber(x) =


1
2x

2 if |x| ≤ c

c|x| − 1
2c

2 otherwise
(3.7)
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Fig. 3.6 3D deformation structure of the tissue, obtained by our vision approach,
plotted at different time instants.

and substitutes Eq. 3.6 in the form:

n∑
i=1

ρ(ri(z)) (3.8)

Rewriting Eq. 3.5 using Definition 7, the new total energy, Ět , is expressed as:

Ět(P) = 1
S

∑
x∈Ω′

ρ(̂It
l(Γ(x; P) + x)− Ît

r(x))

+γ
d∑

i=1

∑
x∈Ω′

(Γi(x; P))2 +
∑

x∈Ω′
(EΛ(x; P))2

 (3.9)

Once the total energy, Ět, is defined, we turn to finding the optimal value.
To do that, we use the Levenberg-Marquardt (LM) method [122, 132]. LM
combines the stability of the gradient descent and the fast convergence of the
Gauss-Newton. LM makes use of a damping parameter, δ, in order to switch
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between the gradient descent and the Gauss-Newton. When δ is small, it acts
as Gauss-Newton with the difference that it uses a trust-region with radius ∆h

instead of a line search. While when δ is large, it performs as gradient descent.
The search direction, dh, at iteration h is computed as follows:

(Jᵀ
hJh + δI)dh = −Jᵀrh δ > 0
dh(δ) = −(Jᵀ

hJh + δI)−1Jᵀ
hrh

(3.10)

where J is the Jacobian, r is the residual vector, and I is the identity matrix.
In order to illustrate the 3D defomation recovery mapping, in Fig. 3.6 we

show the deformation structure, bounded by our defined lattice, recovered using
our proposed visual approach from two in-vivo datasets. The tissues experience
deformation from applying force over time and darker shades represent intense
deformation at contact point. The plots clearly show pleasant visual results of
the deformation field even during changes of illumination or complex deformation.
Detailed numerical results can be found in Section 3.4.

3.3 Retrieving Force Feedback

The force estimation strategy proposed is part of the robotic surgical system
shown in Fig. 3.2. In a general RAMIS setting, a surgeon controls the robotic
manipulator through a teleoperation control unit that scales and transforms the
given commands into relative motion. A stereo pair camera is used to track this
motion and feed the image sequences to the vision-based module, which is the first
part of our estimation strategy. This module uses the acquired visual information
to retrieve the deformation observed on the tissue surface after applying a force.
The structure deformation information, along with the geometry of motion given
by the robotic manipulator, are given as input to the second module, which is
the neural approach. In this module, we use recurrent learning to analyze the
given information and map it into an accurate force estimation. As a final step,
the estimated force is validated against the real force measurement given by a
robotic sensor attached to the surgical tool for training and validation purposes.

3.3.1 Force Estimation: Supervised Recurrent Learning

In this subsection, we describe our strategy to estimate the applied forces. In
particular, we use Artificial Neural Networks to find the relationship between
the input data (visual and geometry information) and the applied force.
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Fig. 3.7 Left-side shows the structure of a biological neuron of the human brain
while the right-side shows an artificial neuron that imitates the functioning of
the biological one.

From the biological point of view and roughly speaking, a neural network
is a collection of neurons in which each neuron is composed of a cell body and
a set of dendrites that transmit information through the axon using electrical
and chemical signals (see Fig. 3.7 left side). While this definition is enough for
our purpose, details about the biological meaning can be found for example
in [8, 28]. ANNs were inspired by this biological view in order to capture the
human brain function. The first mathematical model was proposed in 1943 by
McCulloch and Pitts in [134] where they described the neural events by means
of propositional logic. Later on, these mathematical models were extended to
computational models (for instance see [93, 42, 191]) capable of solving large
number of problems.

An ANN is composed of interconnected neurons which activations describe a
well-defined path. The functioning of an ANN starts by having a set of inputs
which are multiplied by weights in order to obtain the connection strength
between them. These values go to a summation function and then the values
are modified based on an activation function. The activation goes through all
available neurons until reaching the output neuron (see Fig. 3.7 right side). A
formal definition of an artificial neuron is given next:

Definition 8 An artificial neuron is a function of two vector variables, the
weights (w) and the input set X ⊂ Rk expressed as Φ(w, x) = φ(⟨w, x⟩) ∈ R,
where ⟨·, ·⟩ is the dot product and φ is the activation function.

Based on Definition 8, we can now formally define an Artificial Neural Network
as:

Definition 9 An artificial Neural Network (ANN) is a triple (N, V, w) where N
is a set of neurons which connections between the i− th and j − th neurons are
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Fig. 3.8 Left side a simple recurrent neural network while right side shows its
unfolded version through time.

given by the set V = {(i, j)|i, j ∈ N}. The synaptic coupling between the i− th
and j − th neurons is given by wi,j.

When using common feedfoward neural networks, the inherent assumption is
that the inputs/outputs are independent between them. However, there are a lot
of applications in which it is convenient to make use of the temporal information
as in the case of speech and handwriting recognition, weather forecasting, music
synthesis, financial prediction and the estimation of the applied forces, to name
a few. In these cases, a more advantageous class of ANNs is Recurrent Neural
Networks (RNNs). A RNN allows introducing memory by having feedback
connections at their units, which enables dynamic temporal processing instead
of a hierarchical one (for illustration purposes and a better understanding refer
to Fig. 3.8). Moreover, RNNs can be seen as deep neural networks (DNN) when
folded out in time with indefinitely layers [85]. They have demonstrated to
exhibit different advantages including handling noise-contaminated data and
creating complex input-output relationships.

One of the most impressive characteristics of the human brain is its ability to
learn. Based on this, a natural question that arise is − how do ANNs learn? In
machine learning, three major learning paradigms for ANNs can be distinguished:

• Supervised Learning − learning algorithms within this category rely on
input-ouput pairs provided during the training process to produce an
inferred function. This function will serve to map new coming data (i.e.
unseen instances). Updating the network is based on an error function
between the target and actual output.

• Unsupervised Learning − unlike supervised learning, this kind of algorithms
receive a set of unlabeled inputs and have as an objective finding a function
such that hidden patterns can be found.
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Fig. 3.9 Estimation of the applied forces is achieved by means of a RNN in
which three types of output units can be identified (zoom in the upper row).
Those units with delayed feedback save past information that helps to increase
accuracy. Additionally, at the right side a visualization of the network over time
is displayed.

• Reinforcement Learning − it is close related to supervised learning, however,
it differs in the fact that instead of providing a target, it gives a reward based
on the system actions and how well it performs (i.e. online performance).

In this chapter, the supervised learning paradigm is used in the RNNs. The
formal definition is stated next.

Definition 10 Given a set of N training samples in the form of input-output
pairs {(x1, y1), ..., (xN, yN)}, where x is a feature vector and y is its corresponding
target value, supervised learning finds a function f : X→ Y that maps the input
space, X, to the output space, Y, and works well on unseen inputs x.

2-type feedback RNN: A first Approach

As a first solution, in [16] we propose the use of RNNs for estimating the
interaction forces. In this work, two main types of feedback are used. The former
is a local feedback that creates a loop to a unit itself whereas the later is a global
feedback that goes from the output to the input of the network. According to
these feedback, three types of outputs are defined: no feedback ON−D, local
feedback OLD and global feedback OGD. Our architecture can be seen in Fig. 3.9.
Let ξ and b be the input vector with I inputs and the bias respectively. Moreover,
consider J,K, L and H as the number of units at each layer and w the weights.
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Fig. 3.10 Three dimensional illustration of the activation functions used in the
architecture.

Activation
Function Equation Derivative Range Order of

Continuity
Identity φ(x) = x φ′(x) = 1 (−∞,∞)

C∞
Hyperbolic tangent
sigmoid

φ(x) = 1
1+e−2x − 1 φ′(x) = 1− f(x)2 (−1, 1)

Logistic φ(x) = 1
1+e−x φ′(x) = f(x)(1− f(x)2) (0, 1)

Table 3.1 Summary of Activation Functions used in this Chapter

Thus, following previous notation and from Fig. 3.9, the units outputs are given
by:

Oh1(t)
j = φ(

I∑
i=1

wijξ
(t)
i + bj) for j = 1, 2, ..., J

Oh2(t)
k = φ(

J∑
j=1

wjkOh1(t)
j + bk) for k = 1, 2, ..., K

Oh3(t)
l = φ(

K∑
k=1

wklOh2(t)
k + bl) for l = 1, 2, ..., L

ON-D(t)
h = φ(

L∑
l=1

wlhOh3(t)
l + wuhON−D(t−1)

l + bh) for h = 1, 2, ..., H

OGD(t)
h′ = φ(ON-D(t)

h + wvh′OGD(t−1)
h′ )

(3.11)

where φ represents the activation function. The selection of the activation
functions highly affects the performance of the RNNs. In Eqs. 3.11 two activation
functions were used: the identity function, used in the output layer, and the
hyperbolic tangent sigmoid, used in the remaining layers. This combination
allows taking advantage of the multilayer configuration helping to improve in
some way the performance of the architecture. Details and illustrations of these
functions can be seen in Table 3.1 and Fig. 3.10.
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Algorithm 1: BPTT Training Algorithm
Data: {(xi, yi), ..., (xN, yN)}

1 Initialize weights w;
2 Unfolding process for k instances;

// N is the length of the training sequence
3 for t from 0 to N− 1 do

// forward-propagate the inputs over the unfolded network
4 ŷ=forward_propagation(X);

// error= target-prediction
5 calculate the error using ε = (y[t+ k]− ŷ)2/(2) ;

// Back-propagate the error
6 backward_propagation(ε) ;
7 Update weights;
8 Average the weights at each instance k;

When a RNN based architecture is trained, it is not possible to use the
well-known backpropagation [230], which calculates the gradient of a loss function
with respect to the weights available in the network, ∆w = −η ∂ε

∂w
, since it

assumes that there are free loops in the network connections. Thus, there are
different options for training RNNs, one popular option relies on algorithms that
are based on the gradient. An example of such algorithms is the Real-Time
Recurrent Learning (RTRL) algorithm [232] which is computationally expensive.
Another well-known and commonly used algorithm is the called Backpropagation
Through Time (BPTT) [229]. BPTT is widely used for training RNNs since
it is computationally efficient [77]. For this reason, we used it for training our
architecture.

The main idea behind the BPTT is to unfold the network in order to capture
longer history information. This unfolding process for k instances, which can be
seen in Fig. 3.9, is achieved by duplicating the recurrent weights and redirecting
them at the network. This process can be seen in Algorithm 1 which is used for
training the architecture presented in Fig. 3.9 .

A Long-Short Term Memory Approach

In the previous subsection, we proved the feasibility of using RNNs to estimate
the interaction forces. Nevertheless, the vanishing gradients problem, where
error-signals exhibit exponential decay as they are back-propagated through time,
has a direct impact on the performance of RNNs [31]. In order to mitigate this
problem, in [18] we proposed the use of a Long-Short Term Memory (LSTM)
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based architecture to overcome this problem and improve the accuracy of force
estimation in RAMIS. Moreover, we proof the stability of our solution during
long periods and we offer a comparison against our previous proposal based on a
RNN [16].

The LSTM is a gradient-based method that was first introduced in 1997
by Hochreiter and Schmidhuber in [88]. LSTM is specially designed to store
and retrieve information over long periods of time and enforce constant error
flow by using specialized units, called cells. An LSTM layer has one or more
recurrently connected memory cells composed of a central unit and specialized
input, output and forget gates. The input and output gates are multiplicative
units that protect the memory content from perturbations. On the other hand,
the forget gates release irrelevant information by resetting the memory cell when
the information stored there is not useful anymore [88]. These three gates have
access to the central unit through peephole connections.

Our architecture, as illustrated in Fig. 3.11, is composed of two types of
hidden layers: with basic units (Layer 1) and memory cells (Layer 2). Following
the notation presented in Fig. 3.11-(A), let ξ be the input vector with I inputs,
L the number of units, and K the number of cells with C memory cells in each
block. Let w and b denote the weights and the bias respectively, and φ the
activation function, which in this case is the log-sigmoid function (a.k.a logistic
function). Then, the outputs, Ot

l , are computed as follows:

Ot
l = φ(

∑I
i=1wilξ

t
i + bl) for l = 1, ...,L (3.12)

Each output of Layer 2, Ot
k, is defined by the relation of a set of units, as

depicted in Fig. 3.11-(B). Consider ~, ℘ and ℑ as the input, output and forget
gates, their corresponding outputs are defined as:

Ot
~ = φ(

∑L
l=1wl~Ot

l +
∑K

k=1wk~Ot−1
k +

∑C

c=1wc~St−1
c )

Ot
℘ = φ(

∑L
l=1wl℘Ot

l +
∑K

k=1wk℘Ot−1
k +

∑C

c=1wc℘St
c)

Ot
ℑ = φ(

∑L
l=1wlℑOt

l +
∑K

k=1wkℑOt−1
k +

∑C

c=1wcℑSt−1
c )

(3.13)

Continuing with the notation presented in Fig. 3.11-(B), the output of the unit
Ot

u and the memory cell state St
c are obtained as follows:

Ot
u = φ(

∑L
l=1wl~Ot

l +
∑K

k=1wkuOt−1
k )

St
c = Ot

ℑSt−1
c + Ot

~Ot
u

(3.14)
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Fig. 3.11 In order to estimate the applied force, we use an architecture based
on LSTM-RNN (part A) which combines basic units with cells. Part B shows a
single cell block in detail and shows that each of the cells is composed of a set of
units that enforce constant error flow which helps stabilizing force estimation
over time. Additionally, part C shows an illustration of the hidden layer with 10
cells over time.

using Eqs. (3.13) and (3.14), we can describe the output of each cell as:

Ot
k = Ot

℘φ(St
c) for k = 1, ...,K (3.15)

Finally, the output of the network, Ot
y, is given by:

Ot
y = φ(

∑K
k=1wkyOt

k + by) for y = 1, 2, 3 (3.16)

where the output units are the force in X, Y and Z directions. Using this
LSTM-RNN based architecture, the vanishing gradient problem is solved. Thus,
a gradient-based algorithm can be used. In this work, we apply Backpropagation



66
Towards Retrieving Force Feedback in Robotic-Assisted Surgery: A Supervised

Neuro-Recurrent-Vision Approach

Through Time (BPTT), which unfolds the network over time by replicating the
network and sharing the weights.

Observation 1 Notice that the learning process is carried out offline since its
goal is to find the optimal parameters. Once the adjusting parameters (weights)
are found, they are used in our system in real-time.

Taking into account observation 1, the training process for the deep network
(Fig. 3.11-(C)) is performed once to learn the optimal parameters and the mapping
function from the input to the output space. Once the network is trained, it
can be used for estimating the applied forces in real time without the need of
carrying out the training process for each subject. This is based on the fact
that, according to [97, 71], generic material properties of the human heart tissue
can be modeled and, in consequence, these properties can be learned using the
LSTM-RNN architecture and then generalize the model across subjects. The
proposed approach can be generalized to handle other tissues, requiring only a
single training run in order to obtain the mapping function for the new tissue.
The user can then select the desired function during the real time procedure or
can even choose to train a function that can handle different tissue types.

3.4 Experimental Results

This section describes in detail the experimentations that we conducted to validate
the accuracy of the proposed solution. We start by describing the datasets and
explaining the tasks conditions used while acquiring them. Next part is devoted
to explaining the measurements and tools we used to evaluate our solution and
finally we present detailed results and discussions of the evaluation.

3.4.1 Data Description

To evaluate our proposal, we used both in-vivo and ex-vivo datasets (see Fig. 3.13).
The in-vivo dataset [143] is from a porcine and exhibits tissue deformation,

due to tool interaction, and was used to evaluate our deformation approach. This
sequence is composed of stereo-pair images of size 720x288 recorded during a
period of 450 sec. During the text, we refer to this in-vivo sequence as Dataset I
(see top part of Fig. 3.13).

We acquired the ex-vivo datasets using the experimental setup showed in
Fig. 3.12. It is composed of a stereo camera, a set of robot manipulators (Stäubli
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Experimental Setup

Fig. 3.12 The realistic surgical setting, with typical RAMIS surgical setup, used
to obtain the two ex-vivo datasets. The force sensor is used to obtain the ground
truth to validate our estimation.

RX60B), and an ATI Gamma SI-32-2 force sensor which we used to acquire a
ground truth for the applied force in order to compare it against our estimation.
We obtained two stereo-pair image sequences of size 640x480 recorded during
2100 sec. In the remainder of this section we refer to these sequence as Dataset
II and Dataset III (see bottom part of Fig. 3.13).

As for the ex-vivo datasets, we used two artificial hearts made of ECOFLEX
0030, which has mechanical properties similar to those of human tissues, to
imitate variations between two different subjects. From a technical point of
view ECOFLEX material allows comparing our approach with other research
since it is widely used and considered a standard material for experimentation in
clinical environments (e.g. [184, 135, 168]). Moreover, ECOFLEX facilitates the
continuous experimentations avoiding at the same time hygienic issues.

It is noteworthy that during the acquisition of our ex-vivo datasets we did not
take the dynamics of the heart into consideration. However, it will be included
in a future work.

3.4.2 Tasks Description

The datasets described in Subsection 3.1 were acquired by doing general inspection
through palpation over the tissue and region of interest while varying three main
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Dataset I (In vivo porcine)

Dataset II (fabric heart) Dataset III (fabric heart)

Fig. 3.13 Raw data of the three different datasets used to evaluate our proposal
(one in-vivo and two ex-vivo).

factors over time: position, orientation, and illumination. An illustration of
palpation actions can be seen in Fig. 3.14.

General palpation is necessary during different clinical activities such as
tumor detection, tissue cutting, and needle-based procedures; it is an actuation
very representative for this study. Palpation is relevant for RAMIS since during
procedures, surgeons perform different tasks part of which requires avoiding
penetration of the tissue and control the applied force.

3.4.3 Evaluation Scheme

Our evaluation scheme is divided into two parts. The first part uses an in-vivo
dataset to evaluate the following:

• Inspection of the displacement field: Fig. 3.15-(A);

• Careful comparison of the residual error of our deformation approach:
Table 3.2;

• Numerical analysis of our visual approach with different degrees of
penalization : Table 3.2;
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Fig. 3.14 (a) Typical way to access the patient during a RAMIS. (b) Illustration
of the palpation and exploration surgical tasks used to test the efficiency of our
solution.

• Visual inspection of the 3D shape recovery including change of illumination
and complex deformation cases using ex-vivo and in-vivo datasets: Fig. 3.16.

In the second part, we used our two ex-vivo datasets with a provided ground
truth and performed the following evaluations:

• Visual examination of the displacement field: Fig. 3.15-(B);

• Convergence of our energy functional (Eq. 3.4): Fig. 3.17;

• Comparison between the estimated and real displacement at contact point:
Fig. 3.15-(C);

• Associated strength between the real and estimated force: Fig. 3.18;

• Statistical analysis of adaptability of our force estimation strategy:
Table 3.3.

• Comparison between the real and estimated forces in the(X,Y,Z) directions:
Fig. 3.19;

• Stability over long periods of time of our proposal for estimating the
interaction forces: Fig. 3.20;

• Inference and analysis of the temporal visual uncertainty using Fuzzy
theory: Figs. 3.21 and 3.22 and Table 3.5.
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Table 3.2 Residual Error evaluation of our deformation approach

Exps. Energy Functional (Eq. 3.4) Minimum
1 EΦ without ρhuber, EΨ = 0, and EΛ = 0 0.2657
2 EΦ with ρhuber, EΨ = 0 and EΛ = 0 0.1348
3 EΦ with ρhuber, EΨ and EΛ = 0 1.7896e−03

4 EΦ with ρhuber, EΨ and EΛ 3.1584e−05

3.4.4 Results and Discussion

In order to prove the benefits of our proposal, in this subsection, we offer a
detailed evaluation of both our visual-based and force estimation approaches.

Visual-based Approach

We evaluated the performance of our visual-based approach using Datasets I
and II (see Fig. 3.13). First, Fig. 3.15-(A)/(B) show tissue deformation that
results from applying force and illustrates the recovered 3D deformation structure,
bounded by our defined grid, over some time instants where darker shades of
red represent more intense deformation at contact point. The plots clearly show
pleasant visual results of the deformation field with both in-vivo and ex-vivo
data.

We then took the results from the in-vivo data (Dataset I), Fig. 3.15-(A),
and offer a quantitative analysis of our energy functional (Eq. 3.4). The results
are reported in Table 3.2 in which experiments Exp. 1 and Exp. 2 show that
without penalization given by the M-estimator and the two regularizers (refer to
Eqs. 3.7 and 3.9), the residuum was about 0.1348 and 0.2657 respectively.

Comparing that to Exp. 3, we can see that including Tikhonov regularizer
resulted in a minima in the order of magnitude 10−3; while adding a volume
preserving term, as in Exp. 4, clearly offered the best minima in the order of
magnitude 10−5. With this, we conclude that the combination between the ρhuber

with the two regularizers offered a significant difference in order of magnitude.
Moreover, by acquiring the geometry of motion from the robotic manipulator,

we were able to have a ground truth reference at least for the contact point
between the tool and the tissue. So in order to evaluate the accuracy of our
computed deformation, we compared the displacement value at contact point in
X, Y, and Z directions against the reference measurements given by the geometry
of motion. The plot at Fig. 3.15-(C) shows that comparison and the zoom-in
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Fig. 3.15 Tissue deformation that result from applying a force at different time
instants is illustrated in parts (A) and (B) along with the recovered 3D deformable
structure using our proposed visual approach. Finally, plots at part (C) show
a comparison between the computed displacement (at contact point) in X,Y,Z
directions against the reference measurements given by the geometry of motion
of the robot from dataset II. The zoom-in views demonstrate the high estimation
accuracy of our approach even during complex deformation as it can capture
small (I-II) and large displacements (III). It also eliminates the noise in the
geometry of motion as shown in (IV).
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Fig. 3.16 Illustration of tissue deformation that result from applying force at
different time instants along with the 3D deformable structure recovered using
our proposed visual approach. Our proposal was tested under different variation
of illumination, occlusions and complex deformation.
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Fig. 3.17 Optimization plots resulted from our energy functional for different cases
in which retrieving the 3D shape is challenging including complex deformations
and change of illumination.

views, together with a root-mean-square error (RMSE) smaller than 1mm in
all directions, demonstrate the accuracy of our computed measurements even
during complex deformation. Furthermore, our visual approach was even able to
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deal with the mechanical issues that usually exist in the geometry of motion and
eliminated the noise as shown in view (IV).

For further support, in Fig. 3.16 we show cases where recovering the 3D
deformation is complicated including change of illumination, occlusions and
specular highlights. Apart from offering visual results, we also analyzed the
convergence of our energy functional. The plot at Fig. 3.17 shows that the
minimization of our functional, on different frames and for the different cases
shown in Fig. 3.16, needed less than 25 iterations to get the minima. For this
reason, we limited the number of iterations according to Observation 1.

This supports the good accuracy and fast convergence of our proposed
visual-based approach.

Force Estimation Approach

The ultimate goal of this work is to estimate the applied force in RAMIS scenarios
accurately over time. Therefore, we conducted large number of tests to validate
our complete neuro-recurrent-vision solutions presented in section 3.3.1 against
the ground truth of the force provided with the ex-vivo datasets.

To validate the accuracy of our solutions, we first tested the associated
strength between the estimated (using dataset II) and actual forces (ground
truth). The regression plots are shown in Fig. 3.18. Top part illustrates the
resulted regression of our model [16] presented in Eq. 3.11 while bottom part the
RNNLSTM model [17, 18] described in Eqs. 3.12- 3.16. The plots show a strong
correlation between the two measures. The red dashed lines in the plots show
the ideal solution while the straight black lines are the best linear regression
fit between the target and the output. The tight relationship is clear in both
training and test datasets as they reported R-values of 0.98 and 0.96 and, 0.99
and 0.98 respectively.

It is worth mentioning that our force estimation model was trained once using
dataset II, but then the optimal parameters were tested on the two artificial hearts
that have slightly different mechanical properties (Dataset II and Dataset III).
The results show that our model adapts well to the two datasets and prove that
it was able to handle small variations across subjects.

In order to support the previous statement, we ran a statistical analysis on
the force estimated on both datasets II and III and the corresponding ground
truth. More specifically, we used the nonparametric Wilcoxon rank sum test
to answer the question of whether there is a statistical significant difference
between the two estimated forces. The results at Table 3.3 show that the null



74
Towards Retrieving Force Feedback in Robotic-Assisted Surgery: A Supervised

Neuro-Recurrent-Vision Approach

-2.5 -2 -1.5 -1 -0.5
Target

-0.5

-1

-1.5

-2

-2.5

O
u

tp
u

t 

Training: R=0.98265

Data
Fit
Y = T

-2 -1.5 -1 -0.5 0 0.5
Target

0

0.5

O
u

tp
u

t

Test: R=0.96643

Data
Y = T
Fit

-0.5

-1

-1.5

-2.5

-2

Target
-8 -6 -4 -2 0

O
u

tp
u

t 

-8

-6

-4

-2

0

Training: R=0.99064

Data
Fit
Y = T

Target
-8 -6 -4 -2 0

O
u

tp
u

t

-8

-6

-4

-2

0

Test: R=0.98212

Data
Fit
Y = T

Fig. 3.18 These linear regression plots show the associated strength between the
real (target) and estimated force (output) measurements of both training and test
datasets. In both sets, the points fit a line showing a tight relationship between
the measurements and demonstrating the accuracy of the force estimation.

hypothesis was not rejected at p < 0.05 of significance level. This, together with
the big p-value for the three directions (X,Y,Z), led us to conclude that there is
no significant difference between the two groups which support our proposal in
the sense of adaptability to different subjects.

The accuracy of our solution is further validated by the top plots shown in
Fig. 3.19 in which we compared the estimated force (dataset II, test data) against
the real one in the (X,Y,Z) directions. The results show that the measurements
are very close to each other. We also show the RMSE results at the bottom plots
in which the error remained less than 0.03N with a concentration of values much
lower than 0.02 N in all directions.
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Fig. 3.19 Plots in top part show the real force measures, in X,Y and Z directions,
and those estimated by our approach. Bottom plots illustrate the RMSE results
in all directions.

Table 3.3 Statistical nonparamatric analysis of our proposal to estimate the
applied forces. It takes into consideration the ex-vivo datasets and the real
measure.

Input
Values Direction p-value Null

Hypothsesis

Real and Dataset II
(ex-vivo data)

x 0.8105
h=0y 0.8026

z 0.7598

Real and Dataset III
(ex-vivo data)

x 0.8654
h=0y 0.8287

z 0.8045

Furthermore, we demonstrate the stability of our solution over time by
inspecting the results of both datasets at different time intervals (see Fig. 3.20).
The zoom-in views show comparison of the force measures as given by the force
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Fig. 3.20 Stability criteria is shown in these plots using the ex-vivo datasets
where the estimated and real force measures are plotted at different time intervals
of a longer period of time.

sensor, our previous RNN solution [16], and our newly proposed LSTM-RNN
solution. As we can see, the added cells with the LSTM architecture improve
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the accuracy of the results and bring the force measure closer to the actual one.
Furthermore, the results we obtained from the LSTM-RNN tend to be more
stable and with no error decay, during long periods of time as clearly visible in
the last time interval. Based on the results obtained in our evaluation scheme,
we report an average RMSE of 0.02 N for all our experiments.

Deep-Neuro-Fuzzy Approach for Visual Uncertainty

Uncertainty is inherent to computer vision and it occurs at low and high levels.
For example, at low level during the acquisition due to the sensor, and at
high levels during processes such as tracking, segmentation etc. Therefore,
for a computer vision system to be robust, it has to have at its disposal the
machinery allowing vagueness representation [204]. With the problem at hand,
our starting hypothesis is that the force estimation can improve by dealing with
visual uncertainty during the 3D shape recovery process. Uncertainty is reflected
mainly in two stages:

1. During the acquisition process using the endoscopic camera

2. When part of the target is occluded by the surgical instrument, which
entails lack of knowledge about a portion of tissue

In order to deal with uncertainty during the estimation of the applied
forces, in [15, 19] we proposed a novel approach that we called Voting-Adaptive
Neuro-Fuzzy Inference System (V-ANFIS) which is divided into two main steps.
The former is a voting process that allows decreasing the neighboring points
error (of the lattice) using combinatorics and agreement processes. The latter is
a prediction step based on the ANFIS [99] properties, in which the main idea
is to estimate the lost information, when an occlusion occurs at contact point,
using patters of the available data. Also, to help to the maximum likelihood
estimator to increase robustness.

The voting process is explained in Algorithm 2 in which the following
definitions and conventions are given for clarification.

• Control Points (P): A set of points, that compose the lattice, uniformly
spaced.

• Neighboring Point (NPi): Point that has direct connection to the contact
point between the tissue surface and surgical tool.
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Algorithm 2: Voting process of our V-ANIFS approach
Data: Set of control points P

1 Initialization;
2 i← Number of neighboring points;
3 NPi ← Neighboring points;
4 iC2 ← Combinations matrix;
5 while stereo-pair image available do
6 NP ′ ← current Z-displacement value for all NPi;
7 if all values in NP’ are equal then
8 Preserve actual values;
9 else

10 forall pair-elements in C2 do
11 if ∃ one pair-agreement then
12 NP ′ ← agreement value;
13 else if ∃ > one pair-agreement or none then
14 NPmin ← min value in NP ′;
15 NPmax ← max value in NP ′;
16 Find minimum difference (NPmin, NPmax) in NP ′ ;
17 NP ′ ← value with minimum difference;

• Combination Matrix (C): Allows carrying out a pair-search, identifying
the points that need correction.

• Contact Point (CP): Point generated by the contact of the tissue surface
and the surgical tool.

Definition 11 Let i be a positive integer denoting the number of neighboring
points, Bc =

(
i
b

)
the binomial coefficient and C the combinations matrix, having

b columns and Bc rows. Then, a pair-element is a combination in C.

Definition 12 (Pair-agreement). Given a pair-element in C, we say that it
fulfills the pair-agreement condition if and only if at current time both points
have the same value.

Once the voting process is performed, we use the capability of ANFIS as universal
approximation (see proof in Appendix A ) in order to guarantee more reliable
information at each time instant. The ANFIS architecture used is described in
Table 3.4

We used Dataset II to test and validate the performance of our proposed
system combing Fuzzy Theory and a Deep Network (RNNLSTM). We started by
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Fig. 3.21 Retrieved displacements of the four immediate neighboring points are
plotted first without voting process correction (top) then with voting process
(bottom).

Table 3.4 The description of the architecture used in our V-ANFIS approach

Layer’s Output Description
yL1

ij = µSi
j(xi) Fuzzification layer

yL2
j = ∏N2

i=1 yL1
ij Belief strength of the rules

yL3
j = yL2

j∑N2
n2=1 yL2

n2
Normalization of the firing strengths

yL4
j = yL3

j fj(xi) Consequent parameters
yL5 = ∑N2

j=1 yL4
j Output

evaluating the proposed voting process. Fig. 3.21 shows the displacement values
at neighboring points with and without applying the voting process. Zoom-in
view shows the significant improvement after applying the voting step, which
brings the displacements of all neighboring points into a complete agreement.

Fig. 3.22, left side, shows a plot comparing the recorded displacement values
during complex recovery (i.e. occlusions). We can see that applying V-ANFIS
brings the estimated values closer to the real-geometric measure. This assertion
can be better appreciated in the four zoomed-in plots at right side of Fig. 3.22.
For further support, the RMSE between the real measure and the estimated one
was less than 1mm in average.

Besides improving the displacement estimation and having in mind that our
ultimate aim is to improve the estimated force and bring it closer to the target
values, we have checked the effect of our V-ANFIS in the applied force estimation
(RNNLSTM approach [17, 18]). We compared our approach against state of
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Fig. 3.22 (From left to right) Comparison of displacements, at contact point,
between real-geometric measure and visual approach with and without V-ANFIS.
Zoom-In displacements are also shown in order to observe the improvement when
V-ANFIS is applied.

Table 3.5 Performance analysis of existing and proposed approaches.

Method RMS Error(N) % Improvement
Yip et al. [238] 0.13 84.15
Aviles et al. [15] 0.315 34.60
Faragasso et al. [66] 0.1355 84.79
Noohi et al. [158] 0.07 70.54
Our Approach [19] 0.0206 −

the art studies on force estimation with similar settings. Table 3.5 shows the
RMSE of our approach and reported by the studies under comparison and our
solution outperforms them with the least RMSE of 0.0206. Moreover, it offers a
percentage of improvement over those studies that ranges from about 35% to
85%. These observations prove the feasibility of using DN together with Fuzzy
Theory to estimate applied forces in RAMIS settings.

3.5 Conclusions and Future Work

In RAMIS, surgeons perform delicate procedures remotely through robotic
manipulators without directly interacting with the patients. As a result, they
lack force feedback that informs them about how much force the surgical tool
is applying to the tissue. While force sensing devices are able to provide that
information, their size and cost, along with biocompatibility concerns, prevent
them from being fully integrated into the surgical environment. The approach
presented in this work offers a feasible alternative that overcomes on the one side,
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the limitations of integrating sensors on the surgical tools and on the other side,
provide an alternative way to transmit the estimated force to the surgeon. The
proposed approach combines a computationally efficient visual shape recovery
approach with an accurate recurrent learning based force estimation model.

By minimizing an optimized energy functional, we were able to recover
the 3D deformable structure of the region of interest over time. We ensured
the robustness of our shape recovery approach by handling sources of errors
and outliers that exist in real surgical environments such as occlusions and
uncertainties. Furthermore, we utilized the learning power of deep network
by using a RNNLSTM architecture to relate the extracted visual-geometric
information to an accurate force estimation. We obtained a trade-off between
computational time and accuracy of our deep network by reducing the complexity
of the input space and only considering features with high correlation to force.

The experimental results presented in Section 3.4 verified that vision-based
techniques combined with supervised learning provide a feasible and accurate
estimate of the applied forces without using force sensors. Experiments included
various datasets, in-vivo and ex-vivo, and the computed and estimated results
were validated against the ground truth obtained from the robotic manipulator
and the force sensor. The advantages of this approach include robustness,
accuracy, and stability over long periods of time. This methodology would allow
surgeons performing RAMIS to have force feedback and would increase the
transparency of interaction with the patient without using force sensors.

Moreover, our solution promises to be useful in robotic-assisted surgery as well
as in different situations in which knowing the applied force make a difference in
the results, including: detection and prevention of diseases or abnormal behavior
(e.g. [124]), needle-based procedures (e.g. [57]), microsurgery (e.g. [225]) and knot
tying (e.g. [108]). Thus, this approach can be extrapolated in the above-mentioned
situations avoiding in this way the space restrictions, biocompatibility issues and
cost of designing a new miniaturized force sensor.

As mentioned earlier, the goal of this chapter is to prove the feasibility
of combining visual information with deep network to estimate the applied
forces during robotic-assisted surgeries. However, when we talk about haptics
technology in RAMIS settings, we have to consider two questions. One is how
to acquire the significant information, and the other is how to transmit that
information to the surgeon. While the first question was tackled in this Chapter,
the second one is part of Chapter 4 in which we conducted an experimental study
to provide an efficient way to display the estimated force to the surgeon.





“The world is full of magic things, patiently waiting
for our senses to grow sharper.”

William B. Yeats

4
From Motion Estimation to Clinical

Evaluation: A Perception Experimental
Study

Technological advancements are revolutionizing the field of medicine by creating
and integrating robotic devices in multiple clinical scenarios such as diagnostic
and surgery. In particular, Robotic-Assisted Surgical Systems (RASS) have taken
the advantage of the recent technological developments allowing performing
Robotic-Assisted Minimally Invasive Surgeries (RAMIS). When using a RASS,
both patients and surgeons benefit as it offers better ergonomics for surgeons by
helping them regain dexterity and extending their surgical capabilities offering
optimal hand-eye alignment, motion scaling and tremor filtering [208, 113].
For patients, RASS offers all the inherent benefits of minimal intra-operative
invasiveness [233] (e.g. less trauma and recovery time).

A RASS attempts to reproduce the surgeon’s motion in a master/slave
teleoperated setting. Fig. 4.1 shows the architecture of one such system. At
the master side, the operating surgeon is immersed into a three dimensional
environment in which additional useful information can be added to improve
the transparency in the teleoperated system [169]. Nonetheless, the physical
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Fig. 4.1 A typical teleoperated robotic surgical system using a master-slave
configuration. At the master side, surgeon is provided with a 3D patient view
and is able to perform the procedure using finger controls and foot pedals. All
surgeon’s actions are reproduced by the slave which holds the surgical instruments.

separation between the operating surgeon and the instruments in the operating
field leads to a complete deprivation of force feedback during the surgery. This
means that the surgeon would have no information about the force applied
to the tissue which is considered of great importance for a better surgical
performance [136].

This loss of direct interaction has proven to be a major limitation in currently
available surgical systems since humans rely on haptics as a main sensory input
during object manipulation tasks [64]. Without force feedback, the operating
surgeon has to interpret the force load from indirect cues which produces a high
mental workload and complicates the task at hand. Any misinterpretation from
the surgeon side could lead to irreversible damage such as torn tissues or broken
sutures [223]. This limitation is reputed to be one of the causes that restricts
further spread of medical robotics [64].

Given that it is still an open problem in surgical robotics, different researchers
have attempted to acquire the force information using direct sensing devices.
However, the miniaturization constraints on the design of the device, together
with the list of medical regulations and restrictions including sterilization,
biocompatibility, stability, and robustness [83, 205], is why direct force sensing
devices have not yet been integrated into current robotic surgical systems.
An alternative group of force measuring solutions emerged to overcome these
limitations by estimating the interaction forces using visual information. The
idea behind what is called Vision-Based Force Estimation (VBFE) comes from
the conservation principles of continuum mechanics in which it is clear that
the change in shape of an elastic object is directly proportional to the force
applied. These kinds of solutions depend mainly on visual information, such as
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Fig. 4.2 Examples of surgical tasks where knowing the applied force is relevant
and helps decreasing the procedure completion time and avoiding injuries.

the deformation of tissue under load, to estimate the applied forces. Different
authors have proved the benefits of VBFE such as in [76, 103, 158, 17].

Whether direct or estimated forces are available, a natural question arises,
that is, how to provide this information to the surgeon? Studies show that force
feedback information enables surgeons to have a better control and precision
with tissue manipulation [68, 98]. Moreover, force feedback is specially relevant
in the performance of many surgical tasks. For example, in many situations,
surgeons perform exploration and palpation tasks in order to identify abnormal
or cancerous tissue regions. Force feedback is useful in these situations as it
enables surgeons to sense tissue mechanical properties and identify specific tissue
features that are hard to be identified visually. Other surgical tasks involve tissue
manipulation, such as dissection and suturing in which having force feedback
is important to prevent puncturing the tissue or breaking sutures due to the
application of large forces. Fig.4.2 shows an illustration of such common surgical
tasks.

A straightforward solution for having force feedback would be to transmit
the force information to the surgeon’s hands using a haptic master device.
Nonetheless, there are many concerns associated with this option including cost,
stability of the controller, degrees of freedom, and space limitations [92, 161, 64].
Moreover, when the gains size is too large, it can result in fatigue for the surgeon
and consequently, affects his/her performance [130].

An attractive alternative to direct force feedback to the surgeons hands is
what is called sensory substitution, which was first introduced by Bach-y-Rita
in [26], in which one sense, in this case touch, is replaced by another sensory
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modality, vision or auditory for example, to convey the lost information indirectly.
This option is inspired by theories of perception and mechanisms of brain
plasticity, in which different studies have demonstrated that the brain is a complex
machine that is able to restore functions using input from other stimuli or sensory
modalities [25, 148]. This was the start of different studies and developments in
terms of sensory substitution in teleoperation settings [24, 180, 182, 146].

4.1 Sensory Substitution in Teleoperation

The term sensory substitution refers to the ability of the central nervous system
to learn a new mode of perception and has been successfully used for many
years now to develop sensory aids for people with full or partial impairment
in one or more of their sensory systems [120]. In engineering, this term has
come to take on a much more general definition than was originally described
by Bach-y-Rita [24] and now means transcoding information from one sensory
modality to present it to a different sensory modality, and this is the way we will
use the term in this manuscript. Since direct force feedback has not yet been
integrated into current commercial surgical robotic systems, many research works
have investigated the substitution of the true sensing modality to convey to the
surgeon a representation of the forces applied by the robotic tele-manipulators.
This might offer a significantly more practical solution in RASS settings as it
can be easily integrated into existing consoles, is less expensive to implement,
and is more stable, manageable and controllable than direct force feedback [161].
Furthermore, sensory substitution can be very effective in training surgeons to
use RASS and can compensate for the lack of haptic feedback in the robotic
system.

Several studies have presented and evaluated different sensory substitution
options to transmit forces and tissue properties information. The most commonly
used sensory modalities for feedback in this context can be classified into
two groups: (i) monomodality including tactile, auditory or vision and (ii)
multimodality which refers to the combination of two or more sensory modalities.

Single Sensory Modality (Monomodality)

Starting with tactile feedback, early investigations noted that fingertips contain
sensitive sensory receptors that allocate large areas in the sensory cortex for
information processing, which makes vibrotactile modality a good option for
successfully presenting force feedback information [133]. The potential benefits
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of vibrotactile sensory substitution for force feedback were first explored in the
work of Massimino and Sheridan, in which they tested the use of tactile and
auditory senses to convey forces in teleoperation tasks. In that work, force was
scaled to a vibration stimulus presented to the index finger and thumb, and the
subjects were required to react as quickly as possible once they recognized the
presence of a contact force. According to the experimental results, the operators
performed better than when working with no force feedback.

Researchers in a different study designed a simulated tissue probing task to
measure the effect of vibrotactile feedback on surgeon’s performance. Particularly,
they measured its effect on three main aspects: control of force application,
tissue material differentiation and task completion time [196]. According to the
results, having vibrotactile feedback allowed subjects to perform better, reducing
the depth error and maximum force applied, and achieving more consistency
compared to when no vibrotactile feedback was available. Similar results were
reported in a more recent study in which authors tested the value of adding
vibration feedback to the surgical setup during robotic surgery. The study
illustrated that vibration feedback increases the level of awareness about tool
contacts and demonstrated the users’ strong preference for this technology [109].
Despite these capabilities, vibrotactile feedback is limited in the amount of
information it provides as it is difficult to convey both force direction and
magnitude at the same time with vibration. Other drawbacks of vibrotactile
feedback start to appear when it is used for long periods of time, as they become
uncomfortable for the surgeon and the skin starts to lose its sensitivity to the
vibration stimuli [32, 160, 109].

Another form of feedback is audio modality, which has been shown to improve
task performance in many teleoperation settings. Authors in [107] studied the
effect of sensory substitution on suture-manipulation forces and evaluated four
feedback scenarios. One of them was audio feedback, in which a single tone was
provided to the operating surgeon when the applied force reached a specified
ideal value. Even though the audio cues did not differentiate forces applied by
the left or right hand instrument, they still improved the consistency of the
robotically applied forces. However, surgeons who participated in that study
preferred having a continuous real-time feedback over a discrete single-event
information.

This modality was examined in a different study in which authors presented
force feedback as an auditory signal to both ears with the tone loudness being
proportional to the magnitude of the force [133]. The experimental results in
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that study revealed that the reaction speed for recognizing the presence of a
contact force was quickest with the auditory feedback compared to vibrotactile
and traditional force feedback. Even though some studies showed that continuous
frequency modulated audio feedback was easier to interpret by surgeons, there
were still concerns about such continual auditory signals being disruptive and
confusing in the operating room as it is already noisy with different sounds
coming from medical instruments and verbal communication [223]. Additionally,
continuous sounds during long procedures can be a source of discomfort and
annoyance to the surgeon and might distract communication between assistants
and the surgeon [176].

Early investigations showed the feasibility of vision modality, sight-to-touch,
for sensory substitution during delicate surgical tasks. In the work of Bethea
et al. [34], a subject study was presented in which participating surgeons were
instructed to perform a robot assisted knot tying task with and without the aid
of a color bar as sensory substitution. In that experiment, the visual color bar
scale was used to convey the mean tension applied to the suture and it progressed
as the tension increased. After statistically analyzing the results, the authors
found evidence that visual sensory substitution allowed surgeons to have more
consistent, precise, and greater control over the tension applied to the fine suture
material without breaking it.

Visual feedback was also compared against other sensory substitution
alternatives in [107] where authors presented a visual feedback in the form
of two bars, one for each hand, in the upper right corner of the display with the
height and color of the bars changing according to the measured force. Out of
the different sensory substitution options, visual feedback appeared to enhance
most the consistency of applied forces and was superior to the other alternatives.
A real-time visual force feedback graphic overlay was presented in [181] during
the performance of delicate repetitious robotic manipulation of fine sutures. The
graphic overlay in that experiment consisted of two semi-transparent circles
superimposed over the corresponding moving instrument tips, which changed
color in relation to the force magnitude. Subjects reported preference on the use
of visual feedback as it helped them avoid applying excessive forces and gave
them more control over the task.

Multiple Sensory Modality (Multimodality)

Apart from the use of single sensory modality, multimodal feedback has also been
reported in the literature. In [41], authors carried out a meta-analysis to compare
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the effects of visual-auditory and visual-tactile feedback against the use of visual
feedback alone. They reported that multimodal feedback helped them to improve
reaction time, but it was not effective in decreasing error rates. The influence
of multimodal feedback was also explored in [55] where authors suggested that
using a combination of modalities can improve realism between the user and
the environment leading to a better performance. In a more recent work [212],
authors performed a study of all possible combinations between visual, auditory
and tactile feedback. They stated that there is no statistical significant difference
between them. However, using visual modality along with another modality was
preferred by the users.

The improved performance of multimodal feedback was further supported
by the Wickens multiple resource model [231] that stated that human task
performance improves by increasing the number of sensory resources. However,
in those studies, authors did not take into account tasks that require long
periods of time, the constraints of real surgical tasks and the limitations of the
human cognitive system. The use of multimodal feedback can be affected in real
clinical environments. Firstly, it can be affected by the attentional capacity of
humans since we can keep only a limited amount of information reaching our
senses [185, 112]. Secondly, the selective attention can cause loss of information
which leads to more error during the procedure [58, 38].

4.2 Aim of this Work

In this work, out of all the aforementioned modalities, we use visual feedback
due to the following reasons:

• Surgeons who operate the robotic systems primarily rely on their visual
system to view and control the remote task via the console monitor. This
makes the use of vision modality one of the most promising sensory
substitution options for clinical adoption as it does not put any extra
burden on the operator [161].

• Humans are able to acquire more information through vision than through
all other senses combined [228]. The human visual system allows a
bandwidth of 106 (bit/s) while tactile (skin) 102 and auditory (human
ear) 104 [110].

• Vision modality allows continuously transmitting spatiotemporal
information of the environment, during long periods of time, without
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producing interference as it happens with auditory modality, or losing skin
sensitivity as when tactile modality is used [176, 32, 160, 109].

With visual feedback, visualizations representing the information should be
integrated in the three dimensional environment displayed to the surgeon. The
correct visualization of this information is essential to avoid workload on the
surgeon which could cause fatigue, tissue damage or increase the procedure time.
Although vision modality is a feasible and comprehensible option, there still
exists perceptual and cognitive burden of transcoding visual information into
the force domain. To deal with this burden and to get a good representation
of the information that can be quickly interpreted, one can come with natural
questions such as:

Do all users interpret the different visual representations in the same way?
How do users perceive these visualizations? Are they understood correctly?
Leading us to formulate a particular question: − How to display the interaction
forces in an efficient way that does not disturb the surgeon’s perception flow
during a surgery?

In this work and throughout a perceptual user study, we offer an extensive
discussion of the aforementioned questions with the aim to report our
findings and recommendations on the best options to display the
force information in an efficient way based on the surgeons’
preferences. We also prove the feasibility and potentials of using vision modality
in Surgical Systems. To our best knowledge, there are no works that address this
issue or analyze how to efficiently represent the information in RASS.

In the remainder of this paper, our perceptual experimental study is structured
as follows: Section 4.3 describes all relevant details about how our user study is
carried out. In Section 4.4 we report our findings using statistics and graphical
methods, and describe the results from a perceptual and cognitive point of view.
Finally, we present the conclusions of the work in Section 4.5.

4.3 Perceptual Study

This section describes in details aspects that are particularly relevant for the scope
of this study. Particularly, we describe three relevant aspects: the participants’
characteristics, the evaluated visualizations, and the experimental and evaluation
procedure.
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4.3.1 Subjects Description

Twenty eight surgeons, on a voluntary basis, participated in the study. The
participants came from four specialties: Obstetrics and gynecology (OB/GYN),
Neurosurgery (NS), Pediatric surgery (PDS) and Cardiovascular surgery (CS)
from the Josep Trueta University Hospital, the Vall d’Hebron University Hospital
and the Sant Joan de Deu Hospital in Spain. This population was divided into
two main groups: experts and novices.

What defines participants to be experts or novices? This question has been a
central point in psychology since we rely on experts to make decisions that affect
our environment almost everyday. Examples of works that address this question
can be seen in [199, 67, 49]. Distinguishing experts from novices depends heavily
on individual psychological differences and behavioral characteristics and varies
according to the area of study since expertise is domain-specific [199].

In the medical domain, this question is a thought-provoking topic and is
part of vast psychological research. Nonetheless, distinction between experts
and novices can be determined based on the number of practice hours in which
surgeons can improve skills such as reduction of task completion time, movement
accuracy, and identifying and solving errors [90, 101]. Based on this, we define
the two groups as:

• Experts: surgeons who perform more than 20 robotic-assisted surgeries,
minimally invasive procedures and non-invasive procedures, each, per
month.

• Novices: surgeons who perform more than 20 minimally invasive procedures
and non-invasive procedures, each, per month, but no robotic-assisted
surgeries.

Defining experts by the number of surgeries is not trivial and also depends
on the speciality. In this work, we selected our threshold of 20 surgeries based
on works such as [172, 206]. With this criteria, we worked with 19 novices and
9 experts. All the analyses of the remaining sections is taken from these two
subgroups.

4.3.2 Visualizations Description

Information is essential to understand our environment and its proper
visualization determines our level of interpretation. Particularly in
human-machine interaction, visual displays offer the highest bandwidth channel
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experiments at different time instants. The color-coding used to indicate the
level of risk according to the magnitude of the applied force.

since our visual system is capable of acquiring more information than all other
senses. Finding the most adequate representation of the information is crucial to
enable participants to quickly interpret what is happening in the environment
and to make proper decisions. Our take on visualization design along with tasks
and data descriptions are presented next.

Data and Tasks Description

We use an in-vivo porcine dataset from the Hamlyn Center Laparoscopic /
Endoscopic Video Library [143]. This video sequence is composed of stereo-pair
images of size 720x288 recorded during 450 sec showing the tissue deformation
produced by the tool-tissue interaction. The dataset was acquired while doing
palpation on the tissue and varying different factors such as illumination, position
and tool orientation. This task is clinically relevant since it is commonly used to
identify tumors, cut tissues and avoid tissue penetration.

As in any Robotic-assisted surgical system, which inherently lose all
patient-surgeon interaction forces, participating surgeons were provided with this
internal view of the surgical region of interest.
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Estimating the Interaction Forces

We computed the interaction forces using our approach presented in Chapter
3 (see also [17, 18]), in which we proposed an energy functional based on L2

in which the minimization of the residual error was changed by a maximum
likelihood type estimator. Once the deformation is computed, we use a learning
system to find the nonlinear relationship between deformation and force to assign
the value to a particular color label. With this option, a set of target values
are necessary during the training stage. However, there are some cases in which
having target values is complicated. To accommodate with this problem, in [21]
we proposed using a generative model in which the main idea is to model in a
parametric form of several mixture elements the computed tissue deformation,
resulting in an assignment of the deformation to a perceived force.

Assume having the deformation mapping as presented in Eq. 3.9 Chapter
3, R observations {x1, ..., xR} and K−groups, the process of identifying where
each observation belongs is given by modeling them in a parametric form of
several mixture components and then assigning them to each indicator based on
its posterior probability. To do this, and on the basis of a training set, consider
the set of points P at a given position w as x in a form L ×D, then, we can
model the k−component by maximizing the likelihood function given by:

ln p(x|θ) =
L∑

l=1
ln
{

K∑
k=1

πkg(xl|θk)
}

(4.1)

where θ = {π, µ,∑} such that µ and ∑ are the mean and the covariance matrices
respectively and π is the mixture coefficients satisfying ∑K

k=1 πk = 1. Moreover,
let g be a the D−dimensional multivariate gaussian density function expressed
as:

g(xl|θk) = 1
(2π)D/2|∑k |−

1
2
e

1
2 (x−µk)ᵀΣ−1

k
(x−µk) (4.2)

From Eqs. 4.1-4.2, the objective is to find the set of K parameters θ =
{π1, µ1,

∑
1, ..., πK , µK ,

∑
K} such that we can have an assignment of each

deformation mapping. To find Eq. 4.1, we use the Expectation-maximization
algorithm [53]. The advantages of using this generative model to assign a given
deformation to a perceived force include the computational tractability as well
as handling uncertainty. Moreover, since it is an unsupervised approach, having
pre-labelled data is not required.

Thus, estimation of the applied forces can be computed by either [18] or [21]
depending on the data at hand and the application. The top of Fig 4.4 shows
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Fig. 4.4 Sample frames from four datasets with the force feedback visual cue
displayed.

sample frames with force estimated using the approach described in [18] while
the bottom shows the results of the approach in [21]. This information is the
one displayed to the users.

Visualizations Design

For displaying the force information, we designed four different visualizations
labelled as: System A, System B, System C and System D. The visualizations
are shown in Fig. 4.3 and described in the following points:

• System A. This visualization provides force feedback information by the
means of a dynamic circle that tracks the tool tip. The circle alternates
between four different color indicators corresponding to the force magnitude.
When no force is applied, no circle is embedded in the environment.

• System B. The force is represented by a dynamic bar at the top-right
corner of the display. The bar alternates between five states representing the
intensity of the applied force. In contrast with System A, this visualization
presents stacked states, that is, past states remain displayed during the
current state.

• System C. A heat map is shown at the top-right corner of the view. In
this visualization, force is denoted by the level of deformation that the
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Table 4.1 Color-coding used at each visualization to indicate the level of risk
depending on the force applied

Indicator Coding-color Meaning

Circle (System A)
Bar (System B)

Traffic light (System D)

Green Risk-free − represents minimal interaction forces
Yellow Minimal Risk − symbolizes a safe amount of force
Orange Potential Risk − refers to a potential tissue damage

Red Risk − warning the physician of a tissue damage

Heat map
(System C)

Yellow No force − There are no interaction forces
Red Minimal Risk − represents a safe amount of force

Black Risk − denotes tissue damage

tissue undergoes. The level of risk is represented by the color intensity
where darker shades correspond to large forces (risk).

• System D. For this option, a traffic light type visualization is displayed
at the top-right corner of the environment. It alternates between four color
indicators illustrating the magnitude of the applied force. The traffic light
also shows a void state (colorless) which indicates no force.

The selection of appropriate colors is an important factor to transfer the
information adequately. We followed a color-coding based on the perceptual
phenomena related to colors. Based on the functional and sensory-social meaning
of colors [201, 96], we used red for example to convey warning messages and
green to indicate a small magnitude of force. Details of the color-coding we used
in relation to the amount of applied force can be seen in Table 4.1.

4.3.3 Experimental Procedure

After explaining the problem to the participating surgeons and giving the
required instructions, they were provided with the four visualizations each with
a corresponding computer-based questionnaire. The instructions given were as
follows: We will display four different visualizations embedded in the robotic
surgical system environment and labeled as System A, System B, System C
and System D. Please interact with each visualization mode and respond to the
corresponding questionnaire. At any time, you can return and interact again with
any system and change any response in the questionnaire. The interaction entailed
users watching the prerecorded video demonstrating tool-tissue interaction, with
one of the four visualization systems being overlaid on the video to convey
information about the force applied in the video.
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Table 4.2 Questionnaire used to evaluate each visualization option based on five
human factor criteria

# Statements

(i) Perceived Usefulness
1. Using the system during surgery would enable me to accomplish surgical tasks more quickly
2. Using the system would improve the surgery performance
3. Using the system would enhance my effectiveness during the surgery
4. Using the system would make it easier to carry out the surgery
5. It gives me more control over the surgical task.
6. I would like to use this system during my surgeries

(ii) Learnability
7. It is easy to understand the meaning of the visualization
8. It is easy to understand without instructions
9. It is easy to interpret the meaning of the color coding
10. I found it easy to adapt to the visualization
11. The system is designed for all levels of users
12. I quickly became skillful with the system

(iii) Perceptual Limitation
13. The visualization tool is distracting
14. The visualization tool is logical
15. The visualization tool has a useful location
16. The provided colors are easily distinguished
17. I found the system unnecessarily complex

(iv) Consistency
18. Is the assignment of color codes appropriate?
19. The display format is consistent
20. The display orientation is consistent
21. The data display is consistent with user conventions?

(v) Satisfaction
22. Overall, I am satisfied with this system
23. Overall, the system is pleasant to use
24. Overall, the system works the way I want it to work

All questions had a rating scale that goes from Strongly disagree to Strongly agree. Moreover, two
open-ended questions were asked: List the most negative aspect(s) and List the most positive aspect(s).

Visualizations Evaluation

It is well-known that questionnaires are a powerful tool to assess the usability and
reliability of human-machine interfaces [187, 173]. For our study, we designed
a questionnaire as a five-point Likert rating scale in which participants were
asked to indicate the level of agreement with the given statements, ranging
from Strongly disagree to Strongly agree. The questionnaire was composed of
twenty-four questions, shown in Table 4.2, that evaluates five human factors that
are relevant in the context of human-machine interfaces, which are:

1. Perceived Usefulness − Refers to the extent to which each participant
believes that using each one of these systems will improve his/her surgical
performance.
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2. Learnability− Denotes how easy it is to accomplish basic tasks and interpret
outputs of a system.

3. Perceptual Limitation − Indicates the degree to which participants respond
to changes in each one of these systems using their sensory system.

4. Consistency − The extent to which a participant agrees with the
stimulus-response compatibility. That is, the input-output of the system
exhibits logical accordance.

5. Satisfaction − Refers to the participants’ level of comfort and acceptability
of a given system.

It is also worth mentioning that our questionnaire contained two additional
sections. The first was shown at the beginning of the session and collected
information about the expertise of the surgeon. The second was presented at
the end of each questionnaire in the form of an open-ended question that asked
surgeons to list the most positive and negative aspects of each visualization.

4.4 Experimental Results

This section presents the analysis and results obtained from the data collected in
the study. We have divided our evaluation into two main parts. The first is based
on the use of statistical and graphical methods to extract participants preferences,
while the second analyzes the results from the perceptual and cognitive point of
view.

4.4.1 Evaluation Scheme

The aim of this study is to report findings and answer the questions presented in
subsection 4.1. To achieve this, we used the following evaluation scheme:

1. We divided the collected data into two subgroups, experts and novices, to
obtain the following:

• Analysis of the results based on the five different human factors:
Fig. 4.5

• Non-parametric analysis of each human factor: Table 4.3

• False Discovery Rate adjustment using the Benjamini-Yekutieli (BY)
procedure: Table 4.3
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• Overall analysis of data by subgroups (i.e. experts vs novices): Fig. 4.6

2. We used the entire population of experts and novices combined, on a basis
of a statistical justification, to obtain the following:

• Evaluation of the combined results based on the five human factors:
Fig. 4.7

• Overall analysis of the data system by system: left side Fig. 4.8

• Finding relationships in the population that were undiscovered
(Pairwise comparison): right side Fig. 4.8

3. Finally, we reported an analysis based on different perceptual and cognitive
principles.

• Evaluation of the principles based on attention, mental models,
perception, and memory: Fig. 4.10

4.4.2 Analysis and Results

Statistical and Graphical Analysis

We started our analysis by evaluating the preference degree over the four
visualizations per human factor of expets vs. novices. As Fig. 4.5-(a) evidences,
experts expressed the strongest preference for System A (70%) to improve their
performance during surgeries, while novices expressed preference for System D
(71%). Results also show a noticeable difference in opinion between experts and
novices (22%) for System B. Another clear finding was the rejection of System C
by both groups with an average of 37%.

The ease of completing tasks and interpreting outputs using each system
were assessed by the learnability factor which results are reported in Fig. 4.5-(b).
Although the plot shows a very slight difference, smaller than 10%, in opinion
between expert and novices for all visualizations, the results revealed an
inclination for system A by experts (76%) and System D by novices (83%).
Similar to the previous factor, both groups showed a clear dislike for System C
in terms of learnability.

The extent to which the users responded to the visual changes in a given
system using their sensory modalities is illustrated in Fig. 4.5-(c). The plot
shows a strong preference for System D by experts (72%) while novices preferred
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Fig. 4.5 Expert and Novices preference level per human factor. Each plot shows
the percentage of acceptance of each system.

Table 4.3 Statistical nonparametric analysis of the results obtained from the
experts and novices preferences. Left side shows the p-values while right side
shows the adjusted ones.

Experts vs Novices −(ρ-value / adjusted ρ-value)
Evaluated Factors System A System B System C System D

(a) Perceived Usefulness 0.5283 / 1.00 0.0279 / 0.7840 0.1291 / 1.00 0.8478 / 1.00
(b) Learnability 0.0326 / 0.7840 0.0965 / 1.00 0.6309/ 1.00 0.0950/ 1.00

(c) Perceptual Limitation 0.6294 / 1.00 0.3715 / 1.00 0.8220 / 1.00 0.3066 / 1.00
(d) Consistency 0.8894 / 1.00 0.1721 / 1.00 0.3553 / 1.00 0.0826 / 1.00
(e) Satisfaction 0.6998 / 1.00 0.0278 / 0.7840 0.9809 / 1.00 0.4965 / 1.00

System A (65%). A comparison between experts and novices in Systems A, B
and C results in no significant disagreement (smaller than 5% in difference).
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Fig. 4.6 Global view of the obtained results showing experts vs novices responses
of each systems.
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Fig. 4.7 Plots show the percentage of positive responses that each system received
from the complete population per human factor.

The logical consistency of each system is assessed in Fig. 4.5-(d). Both experts
and novices indicated a strong preference for System A with a percentage greater
than 75%. The plot also shows that experts reported System C as the one with
the lowest consistency (50%) while novices reported System D (54%) as the
one with lowest score. Finally, the level of comfort and acceptability for each
visualization can be seen in Fig. 4.5-(e). The plot shows a clear preference for
System A by novices (77%) and a noticeable disagreement (4%) between experts
and novices in regards to Systems A and B. Both subgroups reported much less
satisfaction for System C.

To further support the aforementioned analysis, we used the nonparametric
Wilcoxon test to check whether there is statistical significant difference in opinion
between experts and novices for each human factor. Table 4.3-(i) shows the
resulted p−values in which the null hypothesis was not rejected with p < 0.05
significance level for all systems except for the three reported in red. To eliminate
the chance factor from the obtained p−values, we adjusted the false discovery
rate using the Benjamini-Yekutieli (BY) method and the results are presented in
gray at Table 4.3. After BY test, we found that the three results in red turned
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Fig. 4.9 (From left to right) Population in our experiments comes from four
specialities which we divided in two subgroups: experts and novices. Distribution
of the users preference in which 95% of the novices and 100% of the experts
preferred visual feedback over no feedback.

to be not significant (adjusted values in blue color). This led us to conclude that
overall, there is no statistical significant difference between expert and novices.

For a better understanding and visualization of the results, we carried out an
aggregation process of the data, from the five-points Likert scale, in which we
took into account strongly agree and agree as positive while strongly disagree
and disagree as negative responses. Fig 4.6 evidences that experts and novices
not only expressed a strong preference for System A, but also less confusion (see
green bars). Moreover, looking at the blue bars, we found that both groups gave
the most negative rating to SystemC.

Based on the previous statistical justification, we combined both subgroups
and performed further analysis in the combined population. As Fig. 4.7
shows, System A was the best rated in 3 human factors: perceptual limitation,
consistency and satisfaction. Although System D was preferred in terms of
perceived usefulness and learnability, we found a slight difference in preference in
these two factors, of 2% and 5% compared with System A. In a global inspection,



102
From Motion Estimation to Clinical Evaluation: A Perception Experimental

Study

System C was the worst rated with an average percentage of all factors of ∼ 52%
while the most preferred were Systems A and D with averages of ∼ 71% and
∼ 66%.

Further analysis is shown at the left-side of Fig. 4.8 with an overview of
the surgeons’ preference after aggregating the data (in the same way explained
before). The red bars show that surgeons reflected a strong preference for System
A and a hard rejection of System C (blue bars). It is worth noticing that by
inspecting the green bars, surgeons expressed certain level of confusion for each
system. An interesting rating was given to System D where while it had good
positive rating, it also had a high level of neutral responses and the least negative
feedback.

To further investigate the results, we pose the question of whether there is a
statistical significant difference in preference between the four visualizations. To
answer this, we computed the nonparametric Friedman test to detect differences
across multiple tests and the results indicated statistically significant difference,
χ2(3) = 68.009, p−value = 1.139e−14. We then performed Nemenyi post-hoc
test for multiple samples comparison and according to the results shown at the
right-side of Fig. 4.8, we can see that system C highly differs from Systems A,
B and D with p−values of p < 0.05, 1.5e−8, 0.00083 and 1.3e−8 respectively.
Other comparisons are not significant (p > 0.05).

Apart from all the results reported so far, one of the most important findings
is related to the significance of having a visual force feedback compared to having
no feedback at all. The plots at the left side of Fig. 4.9 show a visual illustration
of the surgeon population used in this study classified based on their specialties
and then based on their level of expertise. Out of the entire population, only
5% of the novices reported that they prefer not having a visual feedback as
illustrated in the bar chart at the right side of Fig. 4.9. Nonetheless, the majority,
composed of 100% of the experts and 95% of the novices, actually preferred the
option of having a visual feedback of the force information. After interacting
with the different systems, they reported that the visual cues helped them to be
more aware of the interactions taking place in the remote location and increased
the level of transparency between them and the patient.

Perceptual and Cognitive Analysis

From a statistical point of view, it was clear that the overall population disliked
System C and preferred System A. There was an intermediate and statistically
indistinguishable level of acceptance for Systems B and D.
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Fig. 4.10 The advantages and disadvantages of each visualization system as
reported by the users.

While past work has dealt with the lack of force feedback for RASS, most
of these studies have not fully taken into account the end user. The challenge
of developing new visualization techniques while keeping in mind the end user
has been pointed out in different works such as [228, 39, 61]. In Fig. 4.10, we
summarize the advantages and disadvantages of each visualization based on the
surgeons’ feedback.

Fig. 4.10 shows that Systems B, C-(a) and D present the force-feedback
information at the top-right corner of the display. This placement requires users
to make frequent eye movements back and forth between the visualized tissue
and the feedback display. Consequently, this places additional demands on the
perceptual and cognitive resources that could impact both user performance and
user preference with frequent use. System A minimizes this factor by placing the
feedback display closer to the tissue of interest.
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Our participants’ responses suggested a linkage between display complexity
and learnability, such that the system rated most unnecessarily complex (System
C) was also rated lowest in learnability. By contrast, Systems A, B and D were
rated as less complex, and also were rated higher in acceptability.

Another advantage of Systems B and D is based on the perceptual principle
called redundancy gain which states that redundantly encoding the same
information in more than one way can be beneficial for performance by providing
multiple opportunities for the information to be detected and processed. In the
case of these two systems, information was not just coded by color but also by
position. Although color is a fundamental component for visualization, it is also
known that ∼ 10% of the world population have a color vision deficiency. In
these cases, having the information redundantly coded using a modality other
than color would be essential. Redundancy gain is thought to promote faster
learning and understanding of information.

Although surgeons agreed that all the visualizations displayed the information
according to what is happening in the surgical environment, they rated System
C relatively low in terms of consistency with user conventions and low in the
learnability factor. This suggests that the representation used in this system was
relatively unfamiliar for the surgeons. This was likely related to the increased
ratings of complexity and distraction for System C.

Working memory (or short-term memory) capacity is also important to
consider when displaying information. Working memory capacity is limited, such
that only a small number of events or items can be maintained in the working
memory at once. Surgeons have a variety of factors to monitor simultaneously
when they perform a robotic-assisted procedure like controlling the pedals and
fulcrum. Thus, it is important to reduce the working memory load wherever
possible. Importantly, users reported that Systems A, B, and D were less
demanding of memory and rated them relatively high in learnability.

Finally, in order to analyze deeper the rejection of System C, we offered an
alternative which is labeled as System C -(b) in Fig. 4.10. Although we improved
the color-coding and relocated the force-feedback display to be closer to the
tissue of interest, this system was still disliked by the surgeons. We believe that
the main reason for the rejection in this case was due to the partial occlusion of
the tissue by the semi-transparent force-feedback display.

Based on the previous findings, we can summarize our recommendations for
displaying information in robotic surgical systems as follows:
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• Avoid overlapping information over the region of interest (e.g. see Fig. 4.10
System C-(b)).

• Place the visual cue as close as possible to the surgical tool if it is of a
small size (e.g. see Fig. 4.10 System A).

• If the visual cue is big, such as the visualizations shown in Fig. 4.10 System
B and D, avoid placing it on the surgical tool. This is because it could
cause distraction and might not fit on the tool at all times when the tool
is partially visible (i.e. only part of the tool is in the current field of view).

• Use a color-coding that is compatible with the mental model of the surgeon.
A simple but good example is using green-yellow-red scheme.

• Use a simple but efficient geometric shapes (for example see Fig. 4.10
Systems A, B and C).

• Do not overburden the display. You can include text but only in cases
where it is needed, such as in a dangerous situation (e.g. see Fig. 4.10
Systems D).

• Offer visual cues that represent the information with more than one cue,
such as position and color (e.g. see Fig. 4.10 Systems B and D).

4.5 Conclusion

The absence of force feedback in robotic surgical systems continues to be one of
its major limitations and is one of the reasons why surgeons need to go through
an extensive training effort to accommodate the indirect interaction. Having
interaction forces information is of huge importance since it is directly related
to reducing the complexity of the surgical task’s execution. Force feedback
also increases transparency between the operating surgeon and the patient as it
gives the sensation of direct interaction. Although current literature in medical
robotics is vast, the topic of designing a proper visual display of force feedback
has not been sufficiently discussed yet. This is a very important aspect since
having a proper visualization of the force information has direct repercussion on
the surgeons’ performance, particularly, when it takes into account perceptual
and cognitive principles that are compatible with the surgeon.

The main goal of this work was twofold. First, to carefully assess the use
of visual cues to transmit the interaction forces information. Second, to offer
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recommendations for proper design of visual displays based on the surgeon’s
preference. To achieve these two goals, we conducted a perceptual user study to
demonstrate the potential benefits of using visual feedback, taking into account
the opinion and preference of the end users, i.e. the operating surgeons. Out
of the entire population, 96% of participating surgeons preferred having visual
feedback over none. Going back to the questions we posed in subsection 1.1, we
found that in order to present the force information in a way that can be easily
interpreted; we have to take into account the surgeon’s mental model. Meaning
that the design of the visual cues should fit the perceptional and cognitive
principles of the end user.



“The future of surgery is not about blood and guts:
the future of surgery is about bits and bytes.”

Richard Satava

5
Sliding to Predict: Improving

Vision-Based Beating Heart Motion
Estimation by Modeling Temporal

Interactions

Robotic-Assisted Minimally Invasive Surgery (RAMIS) has been an attractive
alternative to traditional and laparoscopic surgeries during the last years since it
offers diverse advantages to both surgeons and patients [198, 233]. Particularly in
the last decades, RAMIS has allowed performing complex procedures including
Off-Pump Coronary Artery Bypass Grafting (OPCABG). This procedure avoids
the associated complications of using Cardiopulmonary Bypass (CPB) since
the heart is not arrested while performing the surgery. Thus, surgeons have to
deal with a dynamic target which compromises their dexterity and the surgery
precision. When talking about RAMIS, one can observe that since its introduction,
the number of robot-assisted coronary procedures remained stable [174].

To compensate the heart’s motion, different authors have proposed solutions
based on mechanical stabilization (for example see [27, 239, 189, 72]), in which
small devices positioned over the heart surface keep the region to be repaired in
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Fig. 5.1 Left side shows a mechanical stabilizer called OctopusT M Nuvo (figure
reproduced from [137]) for heart motion cancellation. Compared with these type
of devices, the right side illustrates an alternative approach that tracks the area
of interest using the endoscopic camera.

a steady state. However, such works presented by Lemma and colleagues [119]
reported that there is still a significant residual motion (1.5 − 2.4 mm) after
mechanical stabilization. This entails needing manual compensation from the
surgeon, which is not possible since the heart’s motion exceeds the human tracking
bandwidth [65]. Moreover, these mechanical stabilizers can only be positioned
on a small region of the heart’s surface and they can cause irreversible heart
damage that affects the cardiac mechanics [63, 125].

To overcome the aforementioned difficulties, the pioneered work of
Nakamura [149] reported that motion cancellation is possible by tracking the
heart’s dynamics and continuously synchronizing this motion with the robot. This
was the start of different studies and developments in terms of cardiac motion
compensation using different sensors such as accelerometers [89], laser-scan
endoscope system [82] and whisker sensor [30]. However, these kind of sensors
present problems such as space restriction, biocompatibility and sterilization
constrains, size and cost, long-term stability and the difficulty to adapt them
to the surgical system. These issues prevent their adoption in real clinical
scenarios [144, 84].

A more practical option is the use of a vision sensor such as the one integrated
in the endoscope or a noninvasive real time system such as 3D ultrasound imaging.
This direction has been followed by different authors. An image-based motion
tracking algorithm was proposed in [116] for retrieving the cardiac surface
deformation using a stereo endoscopic system. In that work, authors formulated
the tracking problem as a time-varying optimization of a parametric function
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which described the disparity map. However, they did not take into account
the effect of occlusions from either the surgical tool or the specular highlights,
which can severely affect the performance and stability of the tracking algorithm.
Later on, Ortmaier et al. presented in [164] a 2D affine matching algorithm
using natural landmarks for estimating the heart motion. Authors dealt with
occlusions of the region of interest by integrating a prediction scheme based
on Takens Theorem and combining electrocardiogram and respiration pressure
signals.

The heart motion estimation problem was addressed in terms of displacement
and acceleration using calibrated landmarks placed on the heart surface in [195].
Afterwards they proposed tracking small regions of the heart based on texture
information and reported tracking failure in some situations, such as a change
of illumination. A probabilistic framework for recovering 3D tissue deformation
was presented in [126]. The authors used a Markov-Random Field based
Bayesian Network to achieve a good representation of the heart’s surface.
Although they took into account specular highlights using a color based filtering
approach, they did not consider occlusion events. In [240], authors proposed
a one-degree-of-freedom heart motion compensation using ultrasound imaging
data. They compensated the delay caused by the fast motion of the heart by
including an Extended Kalman Filter (EKF).

Richa et al. in [183] proposed tracking the heart surface using a thin-plate
spline (TPS) deformable model. They included an illumination compensation
solution based on finding the element-wise multiplicative lighting variation.
Another solution was presented in [35] in which the heart’s motion was retrieved
using a stochastic physics-based tracking approach. This approach was able to
deal with surface occlusions by using the Kalman filter. They tested the approach
in a vision system composed of three cameras. Another 3D tracking approach
based on a quasi-spherical triangle was introduced in [234]. Authors modeled the
heart surface using a triangle with a curving parameter. They handled occlusions
by applying an algorithm based on the peak-valley characteristics of motion
signals.

In more recent works [235], a tracking scheme for the heart motion using
two recursive processes was presented. In the first process, they represented
the target region in joint spatial-color space, and in the second, they applied
the thin-plate spline model to fit the heart shape around the region of interest.
Yang in [236] proposed a motion prediction scheme for tracking the heart motion
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during occlusion events. That scheme was based on the dual Kalman filter in
which a point of interest was modeled as a dual time-varying Fourier series.

In this chapter, we detail a new approach to compensate the heart motion
in a RAMIS setup. Our solution takes advantage of the primary information
obtained in a robotic surgical system which is the visual information obtained
from the endoscopic camera, avoiding in this way the use of additional devices.
We track the heart motion using a variational framework which we formulated in
both L1 and L2 and we then increase robustness in term of delays and occlusions
by adding a prediction stage. While this is an important part of our solution,
the main contributions are:

• We propose a diffeomorphic variational framework which is able to deal
with the inherent complex deformation of a beating heart. Unlike previous
chapters, here we maintain affine linear transformations by means of the
curvature penalizer and we extended our topology preserving penalizer to
the 3D space which is not trivial due to the optimization process. It also
incorporates a preprocessing stage for dealing with specular highlights.

• A key point is our prediction stage which is different from existing
approaches that use well-known algorithms from estimation theory such
as the Extended Kalman Filter. We slide the given sequential data to
formulate a standard supervised learning problem, which is handled via a
Conditional Restricted Boltzmann Machine.

The remainder of this chapter is organized as follows. After reviewing the
state of the art related to cardiac motion compensation in Section 5.1, we present
the challenges to keep in mind when vision-based motion compensation is used.
Section 5.2 describes our solution to capture the beating heart motion while
Section 5.2.3 details our prediction strategy for cases in which the camera view
is occluded or the master-slave communication is compromised. We evaluate our
solution in Section 5.3 using phantom and in-vivo datasets. Future work and
conclusion are presented in Section 5.4.

5.1 Challenges in Vision-Based Beating Heart
Motion Estimation

A suitable and practical solution for compensating the cardiac motion during
RAMIS is to track the heart using visual information and then synchronize the
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Fig. 5.2 Top row displays samples of typical endoscopic images while middle row
highlight.

resulted motion with the robots in what is called Vision-Based Cardiac Motion
Compensation. The robustness and accuracy of the visual based algorithms
depend heavily on having a consistent surface appearance of the object across
the images and it is very crucial to take into account sources of errors that impair
their performance. Typical endoscopic images are illustrated in Fig. 5.2 in which
the bottom row shows some factors that need to be taken into account in order
to have a suitable solution.

A potential source of error is specular highlights that appear as bright spots
resulting from the light reflection on the organs’s glossy surface. These spots
potentially occlude the field of view which generates discontinuities in the images
and causes loss of texture/color information [9]. Particularly, during heart motion
compensation, specularity on the heart’s surface cause one of the major tracking
disturbances.

A similar challenging factor related to surface occlusion occurs due to the
restricted workspace during a RAMIS procedure. The small volume makes it very
common that two spatially separated objects interfere with each other causing
partial occlusions. Particularly the endoscopic camera can be occluded, for a
period of time, by surgical tools, blood or surgical smoke. During the laps of
time where occlusion occurs, tracking precision is compromised which leads, in
some cases, to algorithm failure.

A comparison between everyday scenarios and organ’s surfaces is displayed in
the bottom row of Fig. 5.2. As evidenced by this comparison, outdoor images are
characterized by a global non-homogeneity in contrast to the strong homogeneity
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Fig. 5.3 Overview of our proposed approach composed of three main parts. (From
left to right) The image sequence acquired from the endoscope at the slave side
is passed to the first step which eliminates the specular highlight artifact. The
specular-free images then go trough our cardiac motion estimation step which
recovers a 3D deformable surface of the region of interest. Finally, the last step
guarantees information at all time by predicting the motion in cases where there
is occlusion.

of the organs’ surface. This is another challenging factor in Vision-based cardiac
motion cancellation since the majority of the heart’s surface is homogeneous,
thus, it does not have stable features or identifiable textures that the tracking
algorithm can use to infer the heart’s motion.

5.2 Towards Cardiac Motion Estimation

When vision-based cardiac motion cancellation is used, it is necessary to estimate
the beating heart motion and actively synchronize that motion with the surgical
system. In this section, we present our vision-based approach to cancel the
cardiac motion. Our approach is composed of three main parts illustrated in
Fig. 5.3:

1. Specular Reflection Elimination: this step allows eliminating discontinuities
produced in the image domain due to light reflection.

2. Cardiac Motion Estimation: in this step, we model the motion of the
beating heart using a variational framework.

3. Cardiac Motion Prediction: in this step, we ensure continues information
to our approach by predicting the missing data during occlusions

In this section, we describe our solution and provide more details about the
aforementioned parts.
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Fig. 5.4 Specular highlights detection and inpainting results of our proposed
algorithm on four different datasets. From left to right: input image; detected
specular regions and information retrieval via Sobelev inpainting.

5.2.1 Specular Reflection Elimination

Since the performance of the vision based solution are highly dependent on the
available visual information, it is very important to handle any source of error
that might affect the solution’s robustness and precision.

The visual information available on the robotic surgical setting is mainly
compose of videoscopic views of the internal organs which often have glossy
surface with strong reflectivity. This results in the appearance of specular
highlights on the organ’s surface which are white bright spots that correspond to
light reflection. Specular highlights hinder the performance of the vision-based
solution as they partially occlude the targeted surface, appear as additional
features, generate discontinuities in the images, or cause loss of texture or color
information. In this work, we eliminate these artifacts by carrying out a two-steps
correction on the input image sequence.

The first step is a segmentation step with the goal of accurately identifying
the specular regions. This is accomplished by using a robust threshold that
automatically adapts to the color variations in the input image sequence. We
coupled this threshold with a gradient-based edge detector to further enhance
the segmentation and as a result, the specular highlight regions within the image
are accurately isolated.

The second step involves retrieving the missing information in the regions
that were occluded by the specular highlights. We used a robust mask-specific
Sobolev inpainting approach to recover the missing pixels. The approach is based
on minimizing a functional using the projected gradient descendant to achieve
smooth and real-time inpainting. More detailed description of both steps can be
found in our work [5] and an illustration of our approach is shown in Fig. 5.4.



114
Sliding to Predict: Improving Vision-Based Beating Heart Motion Estimation by

Modeling Temporal Interactions

5.2.2 Cardiac Motion Estimation

Assume a calibrated image sequence G = {gs}S−1
s=0 composed of S stereo-pair

frames where gs = {f s
r , f

s
l }. Let f s

r → R2 and f s
l → R2 denote the left and right

views of s on its bounded domain Ω. To retrieve the heart’s motion, we start
defining a lattice in each stereo view according to the next definition:

Definition 13 A lattice, L, is a subgroup in a real vector space V of dimension
d that has the form Zv1 + ...+ Zvd

Consider Ls
l ,L

s
r ⊂ R2 as the lattices defined for the left and right views of

gs. We recover the 3D heart surface by computing the projections of the
corresponding points from Ls

l and Ls
r as illustrated in Fig. 5.6, which results in a

three dimensional lattice Ls ⊂ R3 with a set of lattice points B. In this work,
we represent the deformable heart surface by the tensor product of the b-splines
ξc for c = 0, 1, 2, 3. Assume a given position x ⊆ Rd , a d−dimensional lattice
point defined as z := y1...yd and n degree b-splines. Then, the deformation can
be represented as:

ϕ(x; B) =
n∑

j1=0
...

n∑
jd=0

Bj1,...,jd

d∏
k=1

ξk,c(xk)

ξk,0(x) = (1− x)3/6 ξk,1(x) = (4 + 3x3 − 6x2)/6
ξk,2(x) = (1− 3x3 − 3x2 + 3x)/6 ξk,3(x) = x3/6

(5.1)

The 2D Cardiac Motion Case

Although our goal is to recover the three-dimensional heart motion, we first start
by analyzing the repercussion in terms of the number of control points defined in
the lattice as in Definition 13. This is important since this application requires a
physical time as close to real-time as possible while taking into account getting a
good approximation. To do this, we first formulate the problem in 2D to have a
better view of this effect. We presented this work in [14, 13].

From the calibrated stereo-pair image sequence defined previously as G
for this 2D case and following previous notation, we rewrite our sequence as
Ĝ = {f s

l }S−1
s=0 . So far our energy functionals have been formulated using the L2

norm, but there are other alternatives such as the L1 norm which is pointed
out to provide, in some cases, a clearer model interpretation [219] or a better
performance within a space that contains irrelevant features [154]. Motivated
by this, in [14] we formulated the cardiac motion based on the L1 norm in the
form h(x) , L(x) + γ∥x∥1 where L is the loss function with the L1-penalty.
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Fig. 5.5 From left to right. Results obtained from our energy function with
different number of control points. CPU time reported during the optimization
process.

Particularly, we used the Total Variation penalizer [190] which is defined as
follows:

Definition 14 For a given image, the Total Variation is defined by duality for
u ∈ L1

loc (Ω) and is given by:

J(u) = sup
{
−
∫

Ω
udiv φ dx : φ ∈ C∞

c (Ω;RN), |φ(x)| ≤ 1 ∀x ∈ Ω
}

(5.2)

using Definition 14 and the sum of absolute differences (i.e. ∥jg − jd∥1)) as loss
function then, we can express the changes on the heart surface as:

E2D(f0, f1; B) =
∫

Ω
|f0(x+ ϕ(x; B)− f1(x))|dΩ + γ

n∑
j=1

∫
Ω
|∇ϕ(x; B)d|dΩ

≈
∑
Ω
|f0(x+ ϕ(x; B)− f1(x))|+ γ

n∑
j=1

∑
Ω
|ϕ(x; B)d| − flog

(5.3)
using n = 1, 2 and where flog is a barrier function used to deal with the
non-differentiability of the L1 norm defined as:

Definition 15 A barrier function is a continuous function b(x) defined over
the interior of a feasible set. The particular b(x) that is used in Eq. 5.3 is the
logarithmic barrier function flog expressed as:
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Fig. 5.6 3D Diffeomorphic surface reconstruction from the projection of the lattice
points defined at each stereo-pair image.

flog(u) = −ϕ
∑
x∈Ω

logcx(u)
{
u ∈ Rd|cx(u) > 0 for all x ∈ Ω

}
∇flog = −

∑
x∈Ω

ϕ

cx(u)∇cx(u)

∇2flog = ϕ
∑
x∈Ω

[
1

cx(u)∇cx(u)∇cx(u)T − 1
cx(u)∇

2cx(u)
] (5.4)

From the results reported in Fig. 5.5, it is clear that as the better
approximation is obtained, the more computational time is demanded. For
detailed discussion, refer to the Experimental Results section.

The 3D Cardiac Motion Case

After defining the deformation model in Eq. 5.1, the changes in the heart’s
surface deformation over time are computed using an energy functional. The
functional is composed of three terms: (i) a data term that allows measuring
the discrepancy between the current fr and fl, (ii) a regularization term that
enforces a plausible transformation and (iii) a topology preservation term which
ensures connectivity between the structures created within the lattice.

Particularly, we represent the data term as the Sum of Squared Differences
replacing the minimization of the residual error ∑i r

2
i with ∑

i ρ(ri), where ρ
is the Tukey’s M-estimator (refer to the Appendix) that we used to increase
robustness in sense of outliers. The second term is formulated using the curvature
method which has the advantage of penalizing oscillation and maintaining affine
linear transformations [69].

Definition 16 A map f : X → Y preserves topology if there exist f−1 and both
f and f−1 are smooth.
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For the third term and following Definition 16, we use the topology
preservation term that we first proposed in [20], which penalizes the Jacobian
determinant to preserve the anatomical structure of organs. Unlike works
like [195, 126, 183, 234] where topology preservation is not considered, in this
work, we demonstrate the relevance of preserving the heart’s anatomical structure
specially during complex deformations. Taking these three terms and assuming
a given reference R and a number of m pixels in the overlapped domain Ωfr,fl

,
our energy functional is given by:

Ês(B) =
(

1
m

)∫
Ω
ρ(f s

r (ϕ(x; B))−R(x))dx + ρ(f s
l (ϕ(x; B))−R(x))dx︸ ︷︷ ︸

data term

+
d∑

i=1

∫
Ω
(∆ϕ(x; B)i)2dx︸ ︷︷ ︸

regularization term

+
∫

Ω
δϕ(x; B)dx︸ ︷︷ ︸

topology preservation term

(5.5)

where δϕ is the topology preservation term defined as:

δϕ(x; B) :=
1
2π − arctan(|Jh(x; B)|)

π + ϕ
√
|Jϕ(x; B)|2 if (⋆)

0 otherwise

(⋆)| |Jϕ(x; B)| − 1 | ≥ τ

(5.6)

where ϕ ∈ R+ offers a balance in our penalization, and τ ∈ R+ is the margin
of acceptance for values close to one. Our penalizer ϕ was first introduced in
Chapter 2 and here we extended it to the three dimensional space, which is
nontrivial due to the optimization process.

5.2.3 Sliding to Predict: Improving Cardiac Motion
Estimation

The success or failure of any vision-based solution depends heavily on the
available visual information given as input. During a RAMIS procedure, a
common challenging factor is the presence of partial occlusions that results from
having two spatially separated objects interfering with each other and occluding
the endoscopic camera view. This causes loss of information in the occluded
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Fig. 5.7 A toy example that illustrates how we restructure our sequential data to
be used with a standard supervised learning approach

regions during the laps of time when occlusion occurs, which compromised the
tracking precision and leads, in some cases, to algorithm failure.

To deal with this issue, many of the studies in the literature of cardiac
motion estimation deal with the lost information by using prediction approaches.
The most commonly used algorithms come from the classic estimation theory
such as the Extended Kalman Filter (EKF) and the Auto-Regressive eXogenous
(ARX) model. The EKF is considered probably the most widely used estimation
algorithm particularly because in practice, measurements are nonlinear. In short,
the EKF takes the nonlinear model and linearizes the given transformations and
then, KF is applied to estimate the next state. The ARX model allows inferring
values by relating current state to a finite number of past states and exogenous
inputs to the set of states of interest.

Although algorithms from estimation theory have been exhaustively studied
and widely applied in diverse applications, in the last decades, machine learning
has provided useful tools as another alternative to solve prediction of sequential
data. In the standard supervised learning problem, a set of n training samples in
the form of input-output pairs {(xi, yi)}n

i=1 is needed to find the function M that
maps X M−→ Y and works well on unseen inputs x. Our problem at hand lacks of
true observed values Y . In order to use a standard supervised learning approach,
we restructure the given sequential data {(xi)}n

i=1 in the form {(xi, xi−d)}n−1
i=2

where d is the size of the lag [22]. This process is also known as the Sliding
Window Method which allows converting any sequential data into a standard
supervised learning [56]. A toy example of this process can be seen in Fig. 5.7.
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Fig. 5.8 Top part illustrates the architectures of both RBM and CRBM. The
left-bottom part shows illustration of how we use the reconstructed heart motion
as an input for CRBM while the right side shows the accumulated lattice points
over time.

Taking the previous tool, our key idea is to predict the heart’s motion
within the lattice domain not just during occlusions events, but as a feedback
information for improving the heart motion estimation restructuring the data
to have a standard supervised learning problem. In the literature, one can find
works for sequential data using machine learning as a tool for prediction in
different applications, using for example, Gaussian processes for human motion
prediction [226] or Encoder-Recurrent-Decoder for body pose prediction [70].
Unlike the works reported in the literature related to cardiac motion cancellation
that make use of the classic estimation theory, some examples can be found
in [240, 35, 236]. In this work we exploit machine learning tools. To our best
knowledge, this is the first work that shows the performance of a generative
model in the cardiac motion cancellation problem.

Definition 17 A Restricted Boltzmann Machine (RBM) is a two-layer graphical
model that learns a probability distribution of a given set of inputs and can be
defined as the energy E where the probability distribution of the visible and hidden
units is given in terms of E having:
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ERBM(v, h|W, bv, bh) = −(
∑

i

∑
j

viWijhj +
∑

i

vib
v
i +

∑
j

hjb
h
j )

= −(vᵀW vhh+ vᵀbv + hᵀbh)

P (v, h) = 1
Z
exp(−ERBM(v, h))

(5.7)

where W refers to the weights matrix, h and v are the hidden and visible units,
bv and bh are the unit bias, and Z the normalization factor.

Although RBMs are powerful models, they are not able to capture temporal
dependencies from the model data. To cope with this problem, an extension of
RBMs called Conditional Restricted Boltzmann Machines (CRBM) [217] have
been recently a focus of attention, and in particular, in dealing with motion
capture [241, 216, 217]. An important feature of the CRBMs is that, once
they are trained, they can build a deep belief network by stacking layers. For
illustration purposes refer at the top part of Fig. 5.8.

For improving the cardiac motion, within the lattice domain, we exploit
CRBM as a tool to, on the one side, improve the heart motion estimation and,
on the other side, predict the motion during occlusion events. Let c be the
vector (the conditional) that contains the past information in the form time
t− 1, t− 2, ..., t−M of the lattice (points motion). See illustration at bottom
part of Fig. 5.8. The joint probability function, given the hidden and visible
layers, the conditional data, and M past elements, is expressed in terms of the
energy ECRBM as:

ECRBM(vt, ht|c,W,W, bv, bh) = ERBM(v, h|W, bv, bh)
−
∑
m

(∑
k

∑
i

vki,t−mWki,t−mvit +
∑

k

∑
j

vkj,t−mWkj,t−mhj,t

)
p(vt, ht|c,W,W, bv, bh) = 1

Z
exp(−ECRBM(vt, ht|c,W,W, bv, bh))

(5.8)

For training the CRBM, we used the well-known contrastive divergence
algorithm [87]. Details about the architecture, for example number of units, is
explained in the experimental results.
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Fig. 5.9 Sample frames of the raw data from the two datasets used in our
experimentation

5.3 Experimental Results

This section describes in detail the experimentations that we conducted to
validate our proposed solution.

5.3.1 Cardiac Data Description

We used both phantom and in-vivo datasets to evaluate our approach. The
phantom dataset [211] is from a silicon heart with cardiac motion. It is composed
of stereo-pair images of size 720×288 with 3389 frames. We refer to this phantom
dataset as Dataset I in the remaining of this section (see left side of Fig. 5.9).

The in-vivo data [210] comes from a robotically assisted Totally Endoscopic
Coronary Artery Bypass (TECAB) surgery. It is composed of a stereo image
sequence of size 720× 288 with 1573 frames. In the remainder of this section, we
refer to this sequence as Dataset II. See right side of Fig. 5.9.

All the measurements and reconstructions in this section are taken from these
sequences. All test were ran on a Python based implementation under an Intel(R)
Core i7- 6700 CPU at 3.40GHz-32GB RAM, and a Nvidia GeForce GT 610.

5.3.2 Evaluation Scheme

Using Datasets I and II, we designed the next validation scheme to evaluate our
approach:

• Inspection of our specular-free approach: top part of Fig. 5.10
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Fig. 5.10 Top part shows results from our specularity elimination approach on
three different medical datasets while the bottom part shows zoom-in views of
the inpainting results along with signal-to-noise ration SNR plots

• Numerical results of the specular highlights detection: bottom part of
Fig. 5.10

• Illustration of the 3D heart surface reconstruction and inspection of the
accumulated displacement field: Fig. 5.11

• Numerical visualization of our energy functional: Fig. 5.12

• Assessment of the heart motion recovery at a point of interest: Fig. 5.13

• Numerical visualization of heart motion using NARX, EKF and CRBM
prediction: Figs. 5.14, 5.15, 5.16

• Error comparison of NARX, EKF and CRBM predictions schemes: Fig. 5.17

• Statistical comparison of NARX, EKF and CRBM predictions schemes
using the Wilcoxon and Friedman tests.
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Fig. 5.11 For each dataset from top to bottom: example frames of the input raw
data, accumulated displacement of the reconstructed 3D heart at different time
instances, and visualization of the recovered region of interest.

5.3.3 Results and Discussion

This section describes in detail the experimentations that we conducted to
validate the accuracy of the proposed solution.

Specular-Free Approach

We evaluated the performance of our specular highlight detection and elimination
approach and show the results in Fig. 5.10. We tested our approach in three
different datasets, the first two are cardiac sequences while the third are ureter
and kidney sequences. We included the kidney dataset in our tests in order to
evaluate the robustness of our approach and test its performance with organs
other than the heart. To offer a quantitative evaluation of our detection approach,
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Fig. 5.12 Left side shows the Jacobian Determinant results of our vision based
approach, with and without applying our topology preservation term, in two
different cases: the retrieval of complex deformation and the under illumination
variation. The right side shows the convergence results of our optimization
process on the two datasets while using the topology preservation term

we used a ground truth from each of the sequences. The results showed that the
specular highlight regions were detected with an > 99% accuracy in all datasets.
Aside from this numerical evaluation, we also show detection and inpainting
results on frames from each dataset in the top part of Fig. 5.10. For each frame,
we show the original RGB image with specular artifacts along with the detection
and inpainting results. From visual inspection, it is clear that our approach is able
to adapt well to diverse color variations and specular reflections and accurately
detect and eliminate their artifacts. The bottom part of Fig. 5.10 shows zoom-in
visualizations of the inpainting results along with plots that represent Sobelev
energy minimization and signal-to-noise (SNR) ratio improvement during the
inpainting process.

Vision-based Cardiac Motion Cancellation

We start evaluating our vision-based approach (see Eq. 5.5) by recovering the
heart’s motion. In Fig. 5.11, we show the resulted 3D reconstruction of the heart
surface using Datasets I and II. The top rows of Fig. 5.11 of both datasets show
stereo-pair image samples with the region to be repaired pointed out. The middle
rows show the accumulated displacement field of the complete image domain. As
it evidence by the images, unlike Dataset I which exhibits a strong homogeneity
in the surface, Dataset II presents strong visual texture which provide more stable
features during the tracking process of the region of interest. For visualization
purposes, at the middle row of Dataset II in Fig. 5.11, we magnified those regions
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Fig. 5.13 The motion of a point of interest over time used in the prediction stage.

with potential visual features. The bottom rows from both datasets illustrate
the 3D reconstruction of the region of interest (ROI), this information is the one
used as an input to the next stage (prediction stage). We only use information
from the ROI since the surgeon’s attention is focused on the zone to be repaired
and this allows decreasing the computational time to more than half the time.
The plots at the bottom rows clearly show pleasant visual results of the 3D ROI
with both phantom and in-vivo data.

For a more detailed quantitative analysis, we evaluated the global performance
of our vision-based approach. The first question that we pose is − How robust
is our vision-based cardiac motion cancellation approach?. To respond to this
question, we carried out two experiments under the following conditions:

• Experiment 1: We set δϕ = 0 in Eq. 5.5, i.e. we remove our topology
preservation term.

• Experiment 2: We include our topology preservation term by setting
ϕ = 3 · 10−3 in Eq. 5.5.

After running both experiments, we found that the average range [min,max]
of the Jacobian determinant for Exp. 1 was [−2.5471, 3.0012] with an average
residual error of the order of magnitude 10−2, while for Exp. 2, the Jacobian
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Fig. 5.14 Estimated vs predicted motions in the three direction using NARX
predictor over 200 frames

exhibited stable values with an average range of [0.9715, 1.015] yielding to an
average minima in the order of magnitude of 10−7. Some samples showing
the Jacobian determinant over the region of interest, for both experiments, are
displayed at the left part of Fig. 5.12. We used the nonparametric Wilcoxon
test to show if there is a statistical significant difference between Exps. 1 and
2 in terms of the Jacobian determinant. According to the results, we found
that the null hyphotesis was rejected with p < 0.05 significance level, which
lead us to conclude that there is a statistical significant difference if we use the
topology preservation term to preserve the anatomy of the heart. This yields
to a better result and stabilization of our approach in different cases such as
complex deformation or illumination variation.

The results also showed that Exp. 2 needed an average of 22 (Dataset I) and
16 (Dataset II) iterations per frame to converge compared to the 31(Dataset I)
and 27(Dataset II) needed in Exp. 1. Visualization of the convergence for Exp.
2 can be seen at the right side of Fig. 5.12.
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predictor over 200 frames

Cardiac Motion Prediction

Since the ultimate goal of this work is to accurately and robustly retrieve the
cardiac motion in order to synchronize it actively with the surgical instrument,
we need to make sure that our solution is robust enough to different kind of
disturbances. While at the beginning of this section, we coped with the problem
of specular highlights, in this subsection we analyze the performance of our
approach during partial occlusions. To do this, we first extracted the motion of
a point of interest in (x,y,z) directions from both datasets as shown in Fig. 5.13.
This data is the one used in the remaining of this section.

In order to offer a careful analysis of our prediction scheme, we took two
well-known predictors from classic estimation theory: the NARX and EKF (for
detailed description refer to Appendix B). We use these two predictors to check
whether a statistical significant difference exists between those schemes and the
one based on CRBM over 200 frames.
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Fig. 5.16 Estimated vs predicted motions in the three direction using CRBM
predictor over 200 frames

We begin by analyzing the NARX predictor and Fig. 5.14 shows the resulted
prediction for x,y and z directions. From visual inspection, it is clear that for the
x and y directions, the prediction was acceptable. However in the z direction,
the predicted values were far from the target. This is further supported by the
Root-Mean Square Error (RMSE) computed for all directions and plotted in the
left side of Fig. 5.17. The RMSE shows that NARX was able to predict x and y
direction within a maximum RMSE of 1.1mm while z was far to be retrieved
accurately since it reached a maximum RMSE of 1.7mm. The average RMSE
for NARX is 0.69mm.

We also evaluated the performance of the EKF, which is probably the most
used well-known predictor. The results are reported in plot 5.15. A visual
inspection shows that EKF overcame the NARX predictor in all directions. This
is also evidenced by the RMSE reported in the middle of Fig. 5.17 which exhibits
a concentration of error values lower than 0.2mm. Particularly, the maximum
errors for x,y and z are 0.38, 0.43 and 0.27 mm respectively, and the average
RMSE is 0.1153mm.
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Finally, we evaluated the CRBM for predicting the cardiac motion. For the
CRBM, we set the learning rate as 10−2, a momentum value of 0.9, and 350
hidden units. The results from the prediction can be seen in 5.16. In a visual
comparison of CRBM against NARX and EKF, one can see that the estimated
values of the CRBM are closer to the target values. This is supported by the
RMSE which offered a maximum value of 0.12 mm for all direction, and an
average RMSE of 0.071mm.

But is there a significant difference in terms of prediction between NARX,
EKF and CRBM? To answer this question, we computed the nonparametric
Friedman test to detect differences across multiple tests and the results indicated
statistically significant difference. This lead us to conclude that CRBM achieved
a better prediction, from a statistical point of view, than NARX and EKF.

5.4 Conclusions

Cardiovascular diseases are the leading global cause of death and thanks to the
recent technological advances; it has been possible to offer alternative solutions
oriented to the patient’s benefit. A clear example is the Robotic-assisted cardiac
surgery that is performed through small incisions and while the heart is still
beating. Although from a medical point of view, avoiding heart arrest offers
clear benefits to the patient, from a technical point view it is very challenging to
deal with a dynamic target, which compromise the surgery precision.

In this chapter, we offered a vision-based cardiac motion cancellation approach
as an alternative solution to the mechanical stabilizers. To achieve a robust
solution, we took into account different disturbances such as specular reflections
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and occlusion events. Particularly, we proposed recovering the 3D cardiac
motion by the means of a variation framework that guarantees diffeomorphic
transformations with the aim of preserving the anatomical structure of the heart.
Moreover, we incorporated a Sobolev based approach to achieve specular-free
images for dealing with the singularities produced by the specular reflections.

Another key point of our solution is its robustness in terms of partial occlusions.
To cope with this problem, we proposed restructuring the visual data to formulate
a supervised learning problem with the aim of predicting the missing information.
Specifically, we used a CRBM predictor.

Based on the results, we demonstrated that our visual approach reached an
average minima in the order of magnitude of 10−7 while preserving the heart’s
anatomic structure and providing stable values for the Jacobian determinant
ranging from 0.917 to 1.015. Moreover, we proved the accuracy of our specular
reflection detector of 99% based on a ground truth. In terms of prediction, our
approach reported the lower average RMSE of 0.071 in comparison with the
NARX and EKF of 0.69 and 0.1153 respectively. We further supported this
statement using a multiple comparison statistical test. The results pointed out
significant difference in estimation between the three predictors, this together
with the RMSE support the performance of the CRBM predictor.

Our approach avoids the risk of damaging the heart given by the mechanical
stabilizers. Our solution can also be effective for acquiring the motion of organs
other than the heart such as the lung or everyday dynamic objects.



“If a conclusion is not poetically balanced, it cannot
be scientifically true.”

Isaac Asimov

6
Concluding Remarks

In this thesis, we dealt with a central topic in computer vision − Estimating and
Understanding Motion with particular emphasis in clinical scenarios. Through
three applications, we set the basis for achieving a realistic motion estimation
with the aim of offering a better clinical understanding. We went beyond
existing solutions from the state of the art and presented alternatives drawn from
different areas such as mathematical modeling, machine learning, robust statistics,
computer vision and psychology. Ours solutions were strongly evaluated through
numerical experiments and a combination of statistical, graphical and perceptual
analyses.

In this chapter we summarize the conclusions of this thesis as follows:
In Chapter 2, we took advantage of the high temporal resolution of a

relatively new medical imaging modality Ultrafast Ultrasound imaging and used
it to estimate the complex motion patterns of the heart. We used this modality
since it offers a better temporal resolution compared with other modalities
such as MRI, CT, SPECT or PET, which is important to capture different
mechanical events of the heart. We estimated the cardiac motion using a
variational framework in which we highlighted the synergy between our proposed
topology preservation term and low-rank data representation. From a technical
point of view, we reported a RMSE less than 1 mm while keeping the CPU time
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low and a minima in the order of magnitude of 10−12. From a clinical point of
view, we offered to the physician objective clinical results of the strain profiles
and displacements that can be provided either in a global or in a local manner
by selecting a region of interest.
X Our approach is promising for the analysis other organs experiencing complex
motions such as the lungs in respiration or everyday deformable objects.

In Chapter 3, we transitioned from medical diagnostic to medical robotics.
In that Chapter, we tackled one of the major problems in medical robotics
that is the lack of force feedback. Our key idea came from the conservation of
continuum mechanics in which it is clear that the change in shape of an elastic
object is directly proportional to the applied force. Based on this, we extended
our variational framework from 2D to 3D to retrieve the deformation that tissues
undergo and then we found the nonlinear relationship between deformation
and force using a deep neural architecture. From a technical point of view, we
reported a RMSE less than 0.2N for all our experiments. We also pointed out
the advantages of our approach including robustness, accuracy, and stability over
long periods of time. From a clinical point of view, we connected Chapters 3 and
4 by posing the question - how to provide this information to the surgeon?

In Chapter 4, we carried out a user study with twenty eight surgeons from
three different hospitals to respond to the aforementioned question. We offered an
extensive discussion of our findings and recommendations on the best options to
display the force information in an efficient way based on the surgeon’s preferences.
We also proved the feasibility and potentials of using sensory substitution, vision
modality in particular, in surgical systems. We reported that it is important
to take into account the surgeon’s mental model so that the information can
be easily interpreted. Meaning that the design of the visual cues should fit the
perceptional and cognitive principles of the end user.
X Our approach can be useful in different situations in which knowing the applied
forces makes a difference in the results, including: detection and prevention of
diseases or abnormal behavior, needle-based procedures, microsurgery and knot
tying. Also, in outdoor environment such as in robotic grasping/recollection or
robot recognition and navigation.

Finally, in Chapter 5, we coped with a still open problem in medical
robotics which is cardiac motion cancellation for RAMIS. We used our variational
framework and optimized it to compute the heart beat. We dealt with the
real-time requirement by reducing the deformation structure to a region of
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interest such as the area in which the target vein lies. Moreover, we ensured
robustness of our approach by recovering the lost information caused by specular
highlights and including a prediction stage to guarantee visual information over
time in events such as occlusions or delays. After evaluating our solution using
in-vivo and ex-vivo datasets, we concluded that our solution offered a RMSE
less than 0.071mm in terms of prediction in comparison with classical algorithms
from estimation theory such as the NARX and EKF of 0.69mm and 0.1153mm
respectively.
X Our solution can be used in different scenarios such as video stabilization,
surface reconstruction or improving object recognition tasks. Also, our prediction
solution can be extrapolated in other applications such as trajectory planning or
walking prediction.

6.1 Future Work

In this thesis, we proposed novel solutions for challenging problems in medical
imaging and medical robotics. Particularly, we pointed out the necessity of
estimating and understanding motion in our world that is composed of an
inherent temporal dimension. Through these solutions, we set the basis of diverse
tools that can be further investigated.

For example in Chapter 2, further investigation of the synergy between
low-rank representation and topology preservation can answer important
questions like − What is the effect of integrating low-rank approximation within
the minimization procedure? Does it significantly affect the computation cost
and minima? From a clinical point of view, we set a proof of concept which opens
a new line of research for further clinical investigation. The next step should be
to analyze statistically our approach in terms of variation across subjects. This
requires a very large dataset of patients which is not an easy task particularly
with UUS being a relatively new modality.

Another focus for further investigation could be an extended analysis of the
solution presented in Chapter 3 using different tissues and/or other synthetic
materials. − Is it possible to find optimal hyperparameters that accurately
deal with diverse tissues using single training?, Is there a statistically significant
difference between different tissues/materials in terms of force estimation?

Since we tackled the problem of estimating the interaction forces in Chapters
3 and 4 and achieved motion cancellation in Chapter 5, a natural extension is to
put them together to get full feedback in RAMIS.
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Fig. 6.1 (a) Our proposed approach for achieving a specular-free object was
evaluated with synthetic data. (B) It first creates a superpixel representation
of the image domain to reduce computational time. (C) By restricting the
searching to only key areas in the temporal dimension, we can efficiently obtain
a specular-free object.

6.2 Beyond Medical Applications

Estimating and Understanding Motion are fundamental components in a lot
of applications. In this subsection, we want to highlight the adaptability of
our solutions to different applications in domains other than the medical. For
example, in our very recent work [6], we adapted our tools drawn from motion
estimation and image inpainting to accurately capture and then remove the light
reflections on dynamic objects, which remains a challenging problem in computer
graphics. We proved that having specular-free objects allows improving tasks
such as object recognition and visual tracking.
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An illustration of this work can be seen in Fig. 6.1 in which we used synthetic
data for evaluating our approach (see Fig. 6.1-(A)). Our main contribution in
that work is the use of the temporal dimension to retrieve in a low-rank manner
the specular features which takes into consideration N past frames. We reduced
computational cost by reducing the search space using a superpixel representation
(Fig. 6.1-(B)) of the image domain. After detecting the specular highlights, we
proposed an inpainting process based on minimizing an energy function, which
search the most consistent pixel for the missing information. The final result can
be seen in (Fig. 6.1-(C).
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A
Mathematical Proofs

Proof 1 (Singular Value Descomposition, SVD) Consider the n×n matrix AT A.
It is symmetric and positive semidefinite, and therefore its eigenvalues are all
nonnegative. By the spectral theorem AT A admits an eigenvalue decomposition
AT A = V ΛV T where V is a n× n matrix with orthonormal basis at the columns
and a diagonal matrix Λ = (λ1, ..., λr, 0, ..., 0). Let U be a orthogonal matrix of
m×m where

ui = 1
σiAvi

for i = 1, ..., r (A.1)

By orthogonalization procedure, the set of vectors ur+1, ..., um form an
orthogonal matrix U = (u1, ..., um) ∈ Rm. Then by showing that UTAV T =
S̃ := diag(σ1, ..., σr, 0, ..., 0) by

(UTAV )ij = uT
i Aavj =

 σju
T
i uj if j ≤ r

0 otherwise
(A.2)

then can be claimed the proof of Theorem 1.

Proof 2 (Eckart-Young) Having UTAkV = diag(σ1, ..., σr, 0, ..., 0) it follows that
Ak is rank k. Consider B = k for some B ∈ Rm×n. It can find orthornomal
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vectors x1, ..., xn−k so null(B) = spanx1, ..., xn−k. A dimension argument shows
that

spanx1, ..., xn−k ∩ spanv1, ..., vk+1 ̸= 0 (A.3)

Let z be a unit 2-norm vector in this intersection. Since Bz = 0 and

Az =
k+1∑
i=1

σi(vT
i z)ui (A.4)

it results

∥A−B∥2
2 ≥ ∥(A−B)z∥2

2 =
k+1∑
i=1

σ2
i (vT

i z)2 ≥ σ2
k+1 (A.5)



B
Estimation Theory

Extended Kalman Filter (EKF)

Consider the following non-linear dynamic system:

Xt = ft(Xt−1,Wt),
Yt = ht(Xt, Vt),

(B.1)

where Xt is the vector of system state, Yt is the vector of observation, and
Wt and Vt are the process and observation noises, with covariance Qt and Rt

respectively. The functions ft and ht are nonlinear and differentiable. The
Extended Kalman Filter (EKF) calculates an approximation of the conditional
expectation x̂t|t = E [Xt|Y1:t] by an appropriate linearization of the state transition
and observation models. The following is a summary of the EKF algorithm:

Initialization:
x̂0|0 = E [X0] , P0|0 = cov(X0). (B.2)

Prediction:
x̂t|t−1 = f(x̂t−1|t−1, 0), (B.3)

Ỹt = Yt − h(x̂t|t, 0), (B.4)
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Pt|t−1 = FXPt−1|t−1F
T
X + FWQtF

T
W . (B.5)

Update:
St = HXPt|t−1H

T
X +HVRtH

T
V , (B.6)

Kt = Pt|tH
T
XS

−1
t , (B.7)

x̂t|t = x̂t|t−1 +KtỸt, (B.8)

Pt|t = (I −KtHX)Pt−1|t−1. (B.9)

where FX = ∂Xf(x̂t−1|t−1, 0) and FW = ∂Wf(x̂t−1|t−1, 0) are the partial
derivatives of f (with respect to the system state and the process noise) evaluated
at (x̂t−1|t−1, 0) and HX = ∂Xh(x̂t|t−1, 0) and HV = ∂V h(x̂t|t−1, 0) are the partial
derivatives of h (with respect to the system state and the observation noise)
evaluated at (x̂t|t−1, 0).

Nonlinear ARX Model with multiple steps
prediction

The Nonlinear Auto-Regressive eXogenous (NLARX) model for the measured
system input and output y(t) and u(t) at discrete time instants t = 1, 2, 3, ... is
described as:

y(t) = f [y(t− 1), ..., y(t− na),
u(t− nk), ..., u(t− nk − nb + 1)] + e(t)

(B.10)

where na and nb are the number of the model’s past outputs and inputs, nk is
the pure input delay, f is a nonlinear functions, and e(t) represents the modeling
error.

The estimation of the NLARX model is typically achieved by minimizing some
criterion based on the error sequence e(t) with respect to some parameterization
vector of the nonlinear function f . While the one step prediction of the system
output at time instant t from past measured outputs is obtained by omitting the
error e(t) as follows:

ŷ(t) = f [y(t− 1), ..., y(t− na),
u(t− nk), ..., u(t− nk − nb + 1)]

(B.11)

For multiple steps prediction, the same formula is recursively applied as
follows. Let ŷ(k)(t) denote the k step prediction of the output y(t). For k = 1,
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the one step prediction ŷ(1)(t) , ŷ(t) is applied as defined in B.11. Then for
k = 2, 3, 4..., the k step prediction is recursively computed by:

ŷ(k)(t) = f [ŷ(k−1)(t− 1), ..., ŷ(k−1)(t− na),
u(t− nk), ..., u(t− nk − nb + 1)]

(B.12)

where the sequence ŷ(1)(t) (for t = 1, 2, 3, ...) must be computed first, then ŷ(2)(t),
then ŷ(3)(t), and so on.
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