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Abstract: Simultaneous Localization and Mapping (SLAM) do not result in consistent
maps of large areas because of gradual increase of the uncertainty for long term missions.
In addition, as the size of the map grows the computational cost increases, making SLAM
solutions unsuitable for on-line applications. This thesis surveys SLAM approaches pay-
ing special attention to those approaches aimed to work on large scenarios. In addition,
special focus is given to existing underwater SLAM applications. A technique based on us-
ing independent local maps together with a global stochastic map is then presented. This
technique is called Selective Submap Joining SLAM (SSJS). A global map contains relative
transformations between local maps, which are updated once a new loop is detected. Maps
sharing several features are fused, maintaining the correlation between landmarks and vehi-
cle's pose. The use of local maps reduces computational costs and improves map consistency.
This approach is compared to state of the art techniques using the Victoria Park dataset, a
well-known benchmark within SLAM community. Synthetic and experimental results show
that SSJS approach is able to map large areas consistently with lower computational cost
compared to state of the art methods. Once demonstrated the feasibility of SSJS, the method
is adapted to be used on Autonomous Underwater Vehicle (AUV). In this thesis, two sets
of experiments are presented: 1) the REMUS-100 AUV with a side-scan sonar, and 2) the
SPARUS AUV with a down-looking camera. In both cases it is necessary to de�ne their
corresponding motion and observation models. Moreover, imaging techniques are necessary
in order to extract and match robust landmarks, necessary for SLAM algorithms to work.
Experiments on real data demonstrate the capability to produce consistent localization and
precise mapping by combining automatic landmark extraction with SSJS.

Keywords: Simultaneous Localization and Mapping (SLAM), submapping SLAM,
Autonomous Underwater Vehicle (AUV), underwater imaging.
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Unió Selectiva de Submapes en SLAM per Vehicles Autònoms
Josep Aulinas
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Resum: Els algoritmes de localització i creació de mapes simultàniament (Simultaneous
Localization and Mapping � SLAM) no produeixen mapes correctes de grans àrees a causa
de l'augment gradual de la incertesa en les missions de llarga durada. El cost de computació
augmenta a mesura que el mapa creix, de manera que les solucions de SLAM no són aplicables
a temps real. Aquesta tesi presenta un estudi de les tècniques de SLAM, donant especial
èmfasi a aquells treballs pensats per operar en entorns grans. També s'estudien aquells
treballs de SLAM centrats en ambients submarins. En aquest context, es proposa una
nova tècnica basada en l'ús de submapes independents i un mapa estocàstic global. Aquesta
tècnica s'ha anomenat Unió Selectiva de Submapes en SLAM (SSJS) per Vehicles Autònoms.
El mapa global conté les transformacions relatives entre mapes, que s'actualitzen en revisitar
zones conegudes, és a dir, s'observen �tes que ja formaven part del mapa. Així doncs,
els submapes que comparteixen informació es fusionen, mantenint les correlacions entre el
vehicle i les �tes. L'ús de submapes redueix el cost de càlcul i millora la consistència del
mapa. La tècnica proposada es compara amb les tècniques existents utilitzant les dades del
Victoria Park, una base de dades de referència dins la comunitat de SLAM. Resultats sintètics
i experimentals mostren que l'SSJS és capaç de cartogra�ar consistentment zones de grans
dimensions i amb un cost menor en comparació a les altres tècniques. Un cop demostrada la
viabilitat del sistema, el mètode s'adapta per a ser utilitzat en vehicles submarins autònoms.
En aquesta tesi, es presenten dues sèries d'experiments: 1) amb el REMUS-100 equipat
amb un sonar d'escombratge lateral, i 2) amb el SPARUS equipat amb una càmera mirant
cap al fons. En ambdós casos, cal de�nir els models matemàtics que descriuen la dinàmica
del vehicle i el principi de mesura dels sensors. A més a més, es desenvolupen tècniques
de visió arti�cial per a extreure i associar �tes, necessàries en els algoritmes de SLAM.
Els experiments duts a terme utilitzant dades reals demostren la capacitat del sistema per
localitzar el vehicle i generar cartogra�a, combinant l'extracció automàtica de �tes amb el
SSJS.
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Resumen: Los algoritmos de localización y creación de mapas simultáneamente (Simulta-
neous Localization and Mapping � SLAM) no producen mapas correctos de grandes áreas
debido al aumento gradual de la incertidumbre en las misiones de larga duración. Además,
el coste de computación aumenta a medida que el mapa crece, de modo que las soluciones
de SLAM no son aplicables a tiempo real. Esta tesis presenta un estudio de las técnicas de
SLAM, prestando especial atención en aquellos trabajos pensados para operar en entornos
grandes. También se estudian los trabajo de SLAM centrados en ambientes submarinos. En
este contexto, se propone una nueva técnica basada en el uso de submapas independientes
combinados con un mapa estocástico global. Esta técnica se ha llamado Unión Selectiva
de Submapas en SLAM para Vehículos Autónomos. El mapa global contiene las transfor-
maciones relativas entre mapas, que se actualizan al revisitar zonas conocidas, es decir, se
observan puntos de referencia que ya formaban parte del mapa. Así pues, los submapas
que comparten información se fusionan, manteniendo las correlaciones entre el vehículo y
los puntos de referencia. El uso de submapas reduce el coste de computación y mejora la
consistencia del mapa. La técnica propuesta se compara con las técnicas existentes uti-
lizando los datos del Victoria Park, una base de datos de referencia dentro la comunidad de
SLAM. Resultados sintéticos y experimentales muestran que la SSJS es capaz de cartogra�ar
zonas de grandes dimensiones consistentemente y con un coste menor en comparación a las
otras técnicas. Una vez demostrada la viabilidad del sistema, el método se adapta para
ser utilizado en vehículos submarinos autónomos. En esta tesis, se presentan dos series de
experimentos: 1) con el REMUS-100 equipado con un sonar de barrido lateral, y 2) con el
SPARUS que lleva una cámara mirando hacia el fondo. En ambos casos, hay que de�nir
los modelos matemáticos que describen la dinámica del vehículo y el principio de medición
de los sensores. Además, se desarrollan técnicas de visión arti�cial para extraer y asociar
puntos de referencia, muy necesarios en los algoritmos de SLAM. Los experimentos llevados
a cabo utilizando datos reales demuestran la capacidad del sistema para localizar el vehículo
y generar cartografía, combinando la extracción automática de puntos de referencia con el
SSJS.
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This thesis brings together aspects of underwater robotics, localization and mapping, and
underwater imaging techniques. While the following chapters focus on the details for

each of these aspects, this chapter brie�y reviews the motivations and context behind this
thesis. Section 1.1 presents the motivations behind this work. Section 1.2 describes the
context in which this work has been carried out. Afterwards, an objectives statement is given
in Section 1.3, and �nally, the outline of this document is given, with a brief summary for
each chapter.

1.1 Motivation
It is not really necessary to �y beyond the atmosphere to �nd unknown worlds. Here on
Earth there are many untouched areas; places where no man has ever gone, among them
there is the Hydrosphere. The Hydrosphere is composed of oceans, seas, lakes and other
water systems present in the most super�cial layer of the Earth. Thus, if one accepts that
the Earth's surface is about seventy percent covered in water and that only three percent of
this water is continental, one can strongly claim that there is a magni�cent o�shore world to
explore. Scientists and science would make a signi�cant step forward if the deepest secrets
of this underwater world were known. Unfortunately, one faces complex technical issues and
major limitations for human survival down there due to high pressure and vast darkness even
only a few meters from the surface, as well as the impossibility of breathing underwater.

You may ask yourself, what signi�cance seas and oceans may have for us. Water is vital.
Firstly, human bodies are about seventy percent water [Harper 1977]. Water is an essential
element in the human diet, without it a person could only survive three or four days at
most. Secondly, water is a key element for our planet's climate [Parry 2007]. For example
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Figure 1.1: Types of o�shore oil and gas structures: 1, 2) conventional �xed platforms; 3)
compliant tower; 4, 5) vertically moored tension leg and mini-tension leg platform; 6) Spar ;
7,8) Semi-submersibles ; 9) Floating production, storage, and o�oading facility; 10) sub-sea
completion and tie-back to host facility [NOAA 2008].

the European continent remains at habitable temperatures thanks to great ocean currents,
speci�cally the Gulf Stream which brings warm water from areas near the equator and reaches
the upper latitudes where the water meets with that from the icy polar cap [Willis 1995].
This phenomenon is key to keeping Europe from being under a constant layer of ice. Thirdly,
the Hydrosphere is the habitat of many species. Finally, this huge mass of water is a source
of energy that should not be underestimated, neither its constant e�ect exerted on the Earth,
shaping it and giving it incredibly beautiful forms, nor its enormous potential as an energy
source, especially nowadays with a more energy demanding society worldwide.

The preceding paragraph presented several points which are scienti�cally very interesting.
The fact that humans and other living creatures need water to survive rises the interest on
water related topics research. Finding out more about the Hydrosphere may well help us
to become more e�cient in terms of water consumption and use. Furthermore, observing
and studying the Hydrosphere's behaviour will provide important information that might
be very useful to complement and complete Global Climate Models (GCM), thus allowing
us to foresee and prevent catastrophic consequences caused by climate changes. In addition,
humans consume a large amount of �sh, hence the need for massive aqua farming. Aqua
farming facilities require special control and maintenance. It is also worth highlighting the
growing importance of the oil industry's interest in drilling for oil underwater (see Figure 1.1),
which is now becoming economically desirable thanks to unbridled consumption and the
consequent increase in fuel prices. This type of industry requires intervention capabilities,
not only for its construction and maintenance, but also in case of accidents. There are many
examples of o�shore oil catastrophes, for instance the oil spill along the coast of Galicia in
2002, where an oil tanker sank, or the more recent example of the catastrophic oil spill in
the Gulf of Mexico in 2010. Other industries such as o�shore wind farms require underwater
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intervention systems during their installation and maintenance.
To achieve some of these objectives, one could send a �eet of divers to explore and

collect samples, but our oceans are too vast. Moreover, water is a hostile environment
for humans, �rst because a person can not breathe in it and second because the pressure
increases dramatically with depth and human bodies are not prepared for such pressure
levels. Over the past few decades, several underwater vehicles have been developed. Initially,
underwater submersibles carrying a crew were used. Afterwards, unmanned vehicles were
designed. These vehicles can travel longer distances and access hazardous environments
without endangering human beings. Two good examples of this kind of vehicle are the
Remotely Operated Vehicle (ROV) and, more recently, the AUV.

ROVs are unmanned vehicles that communicate with a vessel on the surface through a
cable, also referred to as an umbilical. These cables shuttle energy, control data, and col-
lected data like measures of vehicle's state or images acquired by an on-board camera back
and forth. ROVs have the advantages of ease of use, reliability due to human teleoperation,
and large range and depth of operation due to use of the umbilical cord. However, the major
disadvantages of ROV lie in their need for skilled teleoperation by humans and high oper-
ational costs. Additional drawbacks to the ROV technology include operator fatigue, low
operational e�ciency, limited access to man made structres and possible loss of the vehicle
due to umbilical cord damage [Xu 2006]. Instead, an AUV is completely wireless, no physical
connection with the mother vessel is needed. AUVs are fully autonomous systems that use
complex control and navigational algorithms. Most of these algorithms are hot topics in re-
search nowadays. For instance, SLAM, also known as Concurrent Mapping and Localization
(CML), is one of the fundamental challenges for autonomous vehicles [Durrant-Whyte 2006].

SLAM is a process by which a mobile robot can build a map of an environment and, at
the same time, use this map to deduce its location. Initially, both the map and the vehicle's
position are not known, but the vehicle has a known kinematic model, i.e. the movement of
the vehicle can be estimated. The vehicle is moving in an unknown environment populated
by arti�cial or natural objects. These objects are observed through on-board sensors and
are then used as landmarks. The principle behind SLAM is similar to what humans do when
walking in unknown areas; that is, after a while a human is more or less capable of telling
where he thinks he is, but without being completely sure about his position. He is capable
of guessing thanks to his senses. It will not be until the moment a known landmark is seen
again, i.e. a sign, a mountain, a house..., that the walker will be able to tell where he is with
a higher level of certainty. Similarly, an autonomous vehicle simultaneously estimates both
its and landmark locations through SLAM techniques, while navigating a new area. The
SLAM problem involves �nding appropriate representation for both the observation and the
motion models. These models are used to estimate the position of the vehicle. In order to
do this, the vehicle uses sensors capable of acquiring measurements of the relative location
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Figure 1.2: Prototypes developed by the VICOROB team. From left to right: GARBI-
ROVfor, URIS, GARBI-AUV, ICTINEU, SPARUS and GIRONA-500. [Source: VICOROB]

between landmarks and the vehicle itself, which is the equivalent to human's senses.
In conclusion, underwater research is high-level research that produces signi�cant tech-

nological advances as well as medical and scienti�c discoveries, which then become part of
our daily lives, and contribute to the improvement of the quality of life.

1.2 Context

The increasing trend towards the study and research of underwater technology has been
mainly motivated by the growing interest from oil and defense industries. Not to mention
the enormous bene�ts that could be accomplished if humans managed to develop a safe
an reliable technology for the exploration and exploitation of the ocean �oor. In this con-
text the Computer Vision and Robotics group (VICOROB) at the Universitat de Girona
(UDG) is carrying out research in underwater robotics and underwater vision. The underwa-
ter robotics laboratory is responsible for the study of control architectures for autonomous
robots, identi�cation and modeling of underwater vehicles operating environment, design
and development of vehicle simulators, missions in underwater environments, fusion of infor-
mation from di�erent sensors for navigation, location of vehicles and construction of visual
maps of submerged structures, all of which involves the development and commissioning of
underwater robots (see Figure 1.2). The Research Centre in Underwater Robotics (CIRS) is
the building that houses the underwater robotics laboratory (see Figure 1.3). This building
is located in the Scienti�c and Technological Park of the UDG. The complex is composed
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Figure 1.3: The CIRS research facility. In the left part of the complex, workshops and o�ces.
In the right part, the water tank and control room. [Source: VICOROB].

of two main buildings (see Figure 1.4); one contains laboratories, o�ces and workshops,
the other contains a water tank and a supervision control room with a direct view of the
water tank. The underwater vision laboratory focuses on the development of systems for the
construction of geo-referenced underwater mosaics, including the construction of large scale
maps, as well as 3D reconstruction of the seabed. VICOROB participates in several projects
funded by the Comisión Interministerial de Ciencia y tecnología (CICYT) in its national R
& D plans and by the European Union (EU) Framework Programmes.

Some examples of underwater technologies research �nanced by Comisión Interministerial
de Ciencia y tecnología (CICYT) at VICOROB are: AIRSUB - Industrial Applications of
underwater robotics (DPI2005-09001-C03-01), RAUVI � Recon�gurable AUV for Interven-
tion Missions (DPI2008-06545-C03-03) (see Figure 1.2), ACUAVISION � Computer Vision
systems for underwater mapping and aquaculture (DPI2007-66796-C03-02), FOTOGEO �
Development of a modular system to build georeferenced photomosaics of the ocean �oor
(CTM2004-04205), and an Autonomous Robot for Environmental Monitoring (CTM2007-
64751/MAR).

Furthermore, EU is funding robotics R & D as part of the so called Seventh Framework
Programme, which stresses the need for collaborative research and international cooperation.
Some examples of underwater robotics research at VICOROB �nanced by the EU are the
MOMARNET � Monitoring deep sea�oor hydrothermal environments on the Mid-Atlantic
Ridge and the TRIDENT � Marine Robots and Dexterous Manipulation for Enabling Au-
tonomous Underwater Multi-purpose Intervention Missions. In addition, the group is part
of the Initial Training Network (ITN), FreeSubNet � a European research training network
on key technologies for intervention Autonomous Underwater Vehicles, along with several
European research groups, including the Ocean Systems Laboratory (OSL) at Heriot Watt
University (HWU).
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Figure 1.4: Control room at CIRS with direct views to the water tank. [Source: VICOROB].

OSL is within the Joint Research Institute (JRI), together with the Vision, Image and
Signal Processing (VISP) group from HWU. Both groups work to develop computer vision
and underwater robotics. OSL and VISPhave been involved in this thesis. The OSL team
developed their own underwater vehicles and also have a Remote Environmental Measuring
UnitS (REMUS) AUV. Besides the vehicles, OSL has two water tanks (see Figure 1.5):
one capable of generating waves (see Figure 1.5(b)) and simulate realistic environmental
conditions. The OSL team closely collaborates with underwater technology companies such
as SeeByte, Subsea7 and others, and has a great international reputation for consulting in
important areas, such as transport, o�shore and underwater structures, and defense.

Good examples of the experience acquired by VICOROB and OSLin underwater robotics
are the vehicles they developed for the Student Autonomous Underwater Challenge - Eu-
rope (SAUC-E). SAUC-E's main objective is to promote research and development of under-
water technology. VICOROB won the competition with the ICTINEU in 2006 and SPAUS
in 2010 (see Figure 1.2). The OSL team won the competition with NESSIE III in 2008 and
NESSIE IV in 2009, while NESSIE VT made it to the �nal in 2010 (see Figure 1.6).

The expertise of both groups together with the needs of their projects have been the
ideal context and motivation for developing this thesis.
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(a) Test Tank. (b) Cartesian plotter wave tank.

Figure 1.5: Facilities available at OSL. [Source: OSL]

1.3 Objectives Statement

The on-board sensors of an autonomous vehicle provide information about the vehicle and
about the environment. Fusing this information by means of �ltering techniques can provide
the vehicle's state and map estimates, together with its uncertainties. Therefore, the basic
objective of this thesis is to enable large area 2D and 3D localization and mapping
from sensor readings acquired with robotic vehicles.

Given a sequence of measurements acquired from an autonomous vehicle, techniques
allowing simultaneous localization and mapping are studied, designed and implemented. In
order to achieve this objective, it is necessary to develpe auxiliary techniques that can:

• generate localization and map estimates that are globally consistent,

• provide uncertainty estimates for both the localization and the map,

• use navigation and sensor data to constrain the map and vehicle localization,

• reliably extract and match features,

• scale to hundreds or thousands of landmarks, long term missions and large areas,

• yield additional bene�ts such as developing a system useful for di�erent autonomous
vehicles (i.e, terrestrial, aerial and underwater).

1.4 Thesis Outline

The material presented in this thesis is structured as follows:
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Figure 1.6: Experimental capabilities of the OSL. From top-left to bottom-right: Hyball,
Rauver, Nessie III, Nessie IV, Nessie VT and REMUS-100 AUV. [Source: OSL].

• Chapter 2 presents the state of the art of the main topics involved in this work.
First, �ltering techniques are analysed and compared. Then, special attention is given
to SLAM approaches that tackle the problem by dividing the map into small submaps.
Afterwards, the most signi�cant underwater SLAM projects are introduced. Finally,
underwater imaging algorithms are brie�y summarized.

• Chapter 3 describes the basis behind SSJS. First, a probabilistic background is given
to introduce the reader to the topic. Then, the SSJS is described step by step. Finally,
a comparison between several submapping approaches is given in order to assess the
performance of SSJS.

• Chapter 4 focuses on the description of feature and matching approaches. Three
di�erent types of sensors are used in the experiments presented in this work: a laser
range �nder, a side-scan sonar and an optical camera. In this section, algorithms to
extract features and match them are presented and validated for each of these three
sensors.

• Chapter 5 presents SSJS implementations for two di�erent AUVs: REMUS-100 and
SPARUS. The former uses a side-scan sonar as the remote sensing device, while the
later uses an optical camera. Both implementations are detailed in this section together
with experimental results.

• Chapter 6 gives conclusions. A list of publications and scienti�c collaborations is
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given. Finally, future perspectives introduced by this work are commented on.

• Appendix A describes 2D and 3D transformations commonly used in stochastic map-
ping.
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A solution to the SLAM problem has been seen as a "holy grail" by the mobile robotics
community as it would provide the means of making a robot truly autonomous. For

this reason over the last two decades several research groups have been working on di�erent
approaches. A brief overview of SLAM is given in Section 2.1. In section 2.2, the most
signi�cant SLAM �ltering approaches are brie�y described, denoting their advantages and
disadvantages. Section 2.3 presents existing submapping SLAM strategies. Section 2.4 sum-
marizes underwater SLAM approaches. Finally, a survey of underwater imaging is given
in Section 2.5. A general classi�cation is given at the end of each section comparing the
surveyed techniques.

2.1 Overview
Robotic platforms are gaining importance in scienti�c, industrial, defense, and transporta-
tion applications. These robotic platforms demand autonomous localization solutions. For
this reason, SLAM algorithms have been extensively researched over the last two decades.
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SLAM is a process by which a mobile robot can build a map of an environment and at
the same time use this map to deduce its location. Initially, both the map and the vehicle
position are unknown, the vehicle has a known kinematic model and is moving through
the unknown environment populated by arti�cial and/or natural landmarks. A simulta-
neous estimate of both robot and landmark locations is required. The SLAM problem
involves �nding appropriate representation for both the observation and the motion models
[Durrant-Whyte 2006, Bailey 2006]. In order to do this, the vehicle must be equipped with
sensors capable of acquiring measurements of the relative location between landmarks and
the vehicle itself. Figure 2.1 shows a conceptual idea behind the SLAM problem.

Several research groups have worked and are currently working on SLAM. Research
groups that have made a signi�cant contribution to SLAM are listed below:

• Active Vision Group, University of Oxford1 (Andrew Davison, David Murray and Ian
Reid among others).

• Robotics Research Group, University of Oxford2 (Paul Newman among others).

• Robotics Perception and Real-time Group, University of Zaragoza3 (José A. Castel-
lanos, Juan D. Tardós, José Neira and José M. Martinez-Montiel among others).

• Department of Ocean Engineering at MIT, Computer Science and Arti�cial Intelligence
Laboratory4 (John Leonard, Mathew Walter among others)

• Australian Center for Field Robotics, University of Sidney5 (Stefan William, Eduardo
Nebot, Oscar Pizarro among others)

• Other important names in the context of SLAM are: Sebastian Thrun at the Stanford
University, Wolfram Burgard at the University of Freiburg and Dieter Fox at the
University of Washington.

The most commonly used sensors on autonomous robotics can be categorized into laser-
based, sonar-based, and vision-based systems. Additional sensors such as, compasses, infra-
red technology and Global Positioning System (GPS), are used to improve perception of
robot conditions and the outside world [Thrun 2002], . However, all these sensors are subject
to errors, often referred to as measurement noise, and range limitations making it necessary
to navigate through the environment; for example, light and sound cannot penetrate walls.

Laser ranging systems are accurate active sensors [Guivant 2000b, Grisetti 2005]. Their
most common con�guration operates on the time of �ight principle by sending a laser pulse

1http://www.robots.ox.ac.uk/ActiveVision/
2http://www.robots.ox.ac.uk/
3http://webdiis.unizar.es/GRPTR/
4http://www.csail.mit.edu/index.php
5http://www.acfr.usyd.edu.au/about/index.shtml
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.1: Conceptual basis of SLAM. Triangles are the vehicle's position and stars are
the landmarks. In red and orange the estimates, while the true positions are left empty.
In a) the vehicle starts a mission in an unknown scenario populated by several landmarks.
b) On-board sensors produce noise measurements of the scenario. c) The relative position
between the landmarks and the vehicle is estimated from the observation. d) The vehicle
starts moving and e) an estimate of its new position is computed. f-g) The vehicle enters
into a continuous operation of moving through the scene and observing it. h). If a known
landmark is observed for the second time, i) both the map and the vehicle's position are
corrected.

in a narrow beam towards the object and measuring the time taken by the pulse to be
re�ected o� the target and returned to the sender. Sonar-based systems are fast and pro-
vide measurements and recognition capacities similar to vision [Ribas 2008b, Mahon 2004].
However, their dependence on inertial sensors such as odometers implies that a small er-
ror can have a great e�ect on later position estimates [Thrun 2002]. Finally, Vision sys-
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tems are passive [Se 2002, Davison 2007, Jensfelt 2006]. They have a long range and
high resolution, but the computation cost is prohibitively high and good visual features
are more di�cult to extract and match. Vision is used to estimate the 3D structure,
feature location and the robot position, by means of stereo camera pairs for instance
[Salvi 2008, Mei 2009, Johnson-Roberson 2010] or monocular cameras with the structure
from the motion recovery [Nicosevici 2008, Civera 2010]. All these sensors produce large
amounts of data, making the use of data mining and computer vision algorithms to visualize
and interpret the data necessary.

Further classi�cation can be made in terms of the working environment, for in-
stance, indoor ground, outdoor ground, airborne or underwater. Most of the work done
so far has focused mainly on inddor ground environments [Leonard 2003, Estrada 2005,
Newman 2006, Davison 2007], with only a few papers dealing with airborne applications
[Kim 2007, Artieda 2009] and even fewer that present underwater SLAM, and these gener-
ally work with acoustic data [Leonard 2001, Williams 2004, Fair�eld 2007, Ribas 2008b].
In these latter cases, vision plays an important role in underwater SLAM approaches
[Eustice 2008, Sáez 2006, Johnson-Roberson 2010], mostly combined with other sensory sys-
tems to acquire both depth and feature information of the scene, i.e. acoustic or inertial
sensors.

This chapter presents a brief survey and lists some of the most representative work on
SLAM. Afterwards, the most signi�cant underwater SLAM approaches are summarized.
Finally, computer vision algorithms commonly used in SLAM to visualize and interpret the
data are surveyed.

2.2 A Review of SLAM Techniques

This section presents an overview of the most relevant contributions to SLAM �ltering
techniques. This overview does not intend to be a complete review of all the publications in
the literature, it merely presents the main authors and approaches and �nally a summary of
the strengths and weaknesses of these projects in Table 2.1.

Robotic map-building can be traced back 25 years and since the 1990s, probabilistic ap-
proaches have become dominant. The representation and estimation of spatial uncertainty
[Smith 1986, Smith 1988] and the creation of the statistical basis to describe spatial relation-
ships between the vehicle and surrounding landmarks [Durrant-Whyte 1988] is considered
to be the origin of SLAM. During the 1990s, many researchers started to consider the lo-
calization problem and the mapping problem as one. [Smith 1990] demonstrated that by
joining both problems, a consistent solution is possible due to the correlations that exist
between the vehicle and the landmarks, while [Leonard 1991] proved the joint solution to
be not only consistent, but also convergent. The convergence is given by the correlations
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between the vehicle and the landmarks, because every time a landmark is observed the rel-
ative position between this landmark and the vehicle is updated. These correlations make
the SLAM problem computationally expensive when dealing with a large number of land-
marks, i.e., large scenarios and long missions. In addition, �ltering algorithms are necessary
to deal with noisy measurements. Kalman Filter (KF) Particle Filter (PF) and Expectation
Maximization (EM) are the main probabilistic approaches being used in SLAM. The three
techniques are mathematical derivations of the recursive Bayes rule. The main reason for
this probabilistic technique's popularity is the fact that robot mapping is characterized by
uncertainty and sensor noise. Probabilistic algorithms undertake the problem by explicitly
modeling di�erent sources of noise and their e�ects on the measurements [Thrun 2002].

General SLAM terms are �rst introduced in order to ease the comprehension of this
review.

• State vector is a n × 1 column vector that describes the position, orientation and
other properties of the vehicle. This vector also includes landmark information. The
size of the vector grows with the number of landmarks.

• Covariance matrix is a n×n matrix that contains the uncertainty associated to each
of the state's vector components.

• Data association is the process by which the system has to determine whether a
detected landmark corresponds to a previously seen landmark or to a new one.

• Loop closing is the task of deciding whether or not a vehicle has, after an excursion
of arbitrary length, returned to a previously visited area.

• Motion model, also called process model, is the mathematical formulation that de-
scribes the dynamics of the vehicle.

• Observation model is the mathematial representation of a sensor measruement.

2.2.1 Kalman Filter and its Variations (KF)

KF are Bayes �lters that represent posteriors using Gaussian distributions, i.e. unimodal
multivariate distributions that can be represented compactly by a small number of parame-
ters. KF SLAM relies on the assumption that the state transition and the measurement func-
tions are linear with added Gaussian noise. The initial posteriors are also Gaussian. There
are two main variations of KF in state of the art SLAM: Extended Kalman Filter (EKF) and
its related Information Filter (IF) or Extended Information Filter (EIF). EKF accommodates
the non-linearities from the real world by approximating the robot's motion model using lin-
ear functions. These approximations make EKF a suboptimal solution [Castellanos 2007]
increasing the chance of having some divergences. Several existing SLAM approaches use
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EKF [Tardós 2002, Leonard 2003, Jensfelt 2006, Davison 2007, Ribas 2008b, Piniés 2009].
An IF is implemented by propagating the inverse of the state error covariance matrix. There
are several advantages of an IF �lter over a KF. Firstly, the data is �ltered by simply sum-
ming information matrices and vectors, providing more accurate estimates [Thrun 2003].
Secondly, an IF is more stable than a KF [Thrun 2004b]. Finally, an EKF is relatively slow
when estimating high dimensional maps, because every single vehicle measurement generally
e�ects all the parameters of the Gaussian, therefore updates require prohibitive times when
dealing with environments with many landmarks [Thrun 2004a].

However, IFs have some important limitations. One primary disadvantage is the need
of recovering a state estimate in the update step when applied to non-linear systems. This
step requires the inversion of the information matrix. Further matrix inversions are required
for the prediction step of these information �lters. For high dimensional state spaces the
need of computing all these inversions is generally believed to make an IF computationally
inferior to a KF. In fact, this is one of the reasons why EKFs have been vastly more popular
than EIFs [Thrun 2005]. These limitations do not necessarily apply to problems in which
the information matrix possesses structure. In many robotics problems, the interaction of
state variables is local; as a result, the information matrix may be sparse. Such sparseness
does not translate to sparseness of the covariance. Information �lters can be thought of as
graphs where states are connected whenever the corresponding o�-diagonal element in the
information matrix is non-zero. Sparse information matrices correspond to sparse graphs.
Some algorithms exist to perform basic updates and estimation equations e�ciently for such
�elds [Walter 2005, Walter 2007], in which the information matrix is (approximately) sparse
and allow the development of an extended information �lter that is signi�cantly more e�cient
than both a KF and a non sparse IF.

An Unscented Kalman Filter (UKF) [Wan 2001] addresses the approximation issues of
an EKF and the linearity assumptions of a KF. A KF performs properly in linear cases and
is accepted as an e�cient method for analytically propagating a Gaussian Random Variable
(GRV) through a linear system dynamics. For non-linear models, an EKF approximates
the optimal terms by linearising the dynamic equations. An EKF can be viewed as a �rst-
order approximation to the optimal solution. In these approximations the state distribution
is approximated by a GRV, which then is propagated analytically through the �rst-order
linearization of the non-linear system. These approximations can produce important errors
in the true a-posteriori mean and covariance, which may sometimes lead to divergence of the
�lter. In an UKF the state distribution is again represented by a GRV, but is now speci�ed
using a minimal set of carefully chosen sample points. These sample points capture the true
mean and covariance of GRVcompletely, and when propagated through the true non-linear
system, capture the a-posteriori mean and covariance accurately to the third order for any
non-linearity. In order to do that, the unscented transform is used.
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One of the main drawbacks of EKF and KF implementations is the fact that for long
duration missions, the number of landmarks will increase and, eventually, computer resources
will not be su�cient to update the map in real-time. This scaling problem arises because each
landmark is correlated to all other landmarks. The correlation appears since the observation
of a new landmark is obtained with a sensor mounted on the mobile robot and thus the
landmark location error will be correlated with the error in the vehicle location and the
errors in other landmarks on the map. This correlation is of fundamental importance for the
long-term convergence of the algorithm and needs to be maintained for the full duration of
the mission. The Compressed Extended Kalman Filter (CEKF) algorithm [Guivant 2001]
signi�cantly reduces the computational requirement without introducing any penalties in
the accuracy of the results. A CEKF stores and maintains all the information gathered in
a local area with a cost proportional to the square of the number of landmarks in the area.
This information is then transferred to the rest of the global map with a cost that is similar
to full SLAM but in only one iteration.

The advantage of a KF and its variants is that they provide optimal Minimum mean-
square Error (MMSE) estimates of the state (robot and landmark positions) and its covari-
ance matrix seems to converge strongly. However, the Gaussian noise assumption restricts
the adaptability of KFs for data association and number of landmarks.

2.2.2 Particle Filter (PF) Based Methods

PFs, also called Sequential Monte-Carlo (SMC), are recursive Bayesian �lters used in Monte
Carlo simulations. They execute SMC estimation with a set of random point clusters (par-
ticles) representing the Bayesian posterior. In contrast to parametric �lters (e.g., a KF),
a PF represents the distribution by a set of samples drawn from this distribution, what
makes it capable of handling highly non-linear sensors and non-Gaussian noise. However,
this ability produces a growth in computational complexity on the state dimension as new
landmarks are detected, becoming unsuitable for real time applications [Montemerlo 2002].
For this reason, PFs have only been successfully applied to localization, i.e. determining
position and orientation of the robot, but not to map-building, i.e. landmark position and
orientation; therefore, there are no important papers using PFs for the whole SLAM frame-
work, but there are a few projects that deal with the SLAM problem using a combination
of PFs with other techniques; for instance, the FastSLAM [Montemerlo 2002] and the fast-
SLAM2.0 [Montemerlo 2003]. FastSLAM takes advantage of an important characteristic of
the SLAM problem (with known data association): landmark estimates are conditionally
independent given the robot's path [Montemerlo 2007]. The FastSLAM algorithm breaks
the SLAM problem down into a robot localization problem and a collection of landmark
estimation problems that are conditioned on the robot position estimate. A key character-
istic of FastSLAM is that each particle makes its own local data association. In contrast,
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EKF techniques must commit to a single data association hypothesis for the entire �lter. In
addition, a FastSLAM uses a particle �lter to sample various robot paths which requires less
memory usage and computational time than a standard EKF or KF.

2.2.3 Expectation Maximization Based Methods

An EM estimation is a statistical algorithm developed in the context of Maximum Likelihood
(ML) estimation and o�ers an optimal solution resulting in an ideal option for map-building.
An EM algorithm is able to build a map when the robot's position is known, for example,
by means of expectation [Burgard 1999]. An EM iterates two steps: an expectation step (E-
step), where the a-posteriori probability over robot position is calculated for a given map,
and a maximization step (M-step), in which the most likely map is calculated given this po-
sition expectations, resulting in a series of increasingly accurate maps. The main advantage
of EMs with respect to KFs is that they can deal with the correspondence problem (data
association problem) surprisingly well [Thrun 2002]. This is possible thanks to the fact that
they repeatedly localize the robot relative to the present map in the E-step, generating var-
ious hypotheses as to where the robot might have been (di�erent possible correspondences).
In the latter M-step, these correspondences are translated into features in the map, which
then get reinforced in the next E-step or gradually disappear as the case may be. However,
the need to process the same data several times to obtain the most likely map makes it in-
e�cient, non-incremental and unsuitable for real-time applications [Chen 2007]. Even using
discrete approximations, when estimating the robot's position, the cost grows exponentially
with the size of the map and the error is not bounded; hence the resulting map becomes
unstable after long cycles. These problems could be avoided if the data association was
known [Thrun 2001] and if the E-step were simpli�ed or eliminated. For this reason, an EM
usually is combined with a PF, which represents the a-posteriori probabilities by a set of
particles (samples) that represent a guess of where the robot might be. For instance, some
practical applications use EMs to construct the map (only the M-step), while the localiza-
tion is done by di�erent means, i.e. using a PF-based localizer to estimate positions from
odometer readings [Thrun 2002].

2.2.4 Classi�cation: Pros and Cons

Table 2.1 provides a list of advantages and disadvantages of di�erent SLAM strategies in
terms of the method used to deal with uncertainties. EKF produces a convergent solution
and handles uncertainties. However, it produces a suboptimal solution due to gaussianity
assumption and linearization approximations. In addition, it su�ers a signi�cant increment
in computational cost as the map grows. A couple of variations of KF are CEKF and UKF.
The former addresses computational cost issues, but it still su�ers from linearization errors;
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while the later solves the linearization problem but at a higher cost. An IF has shown
itself to be fast for long missions, but it does not carry any uncertainty information which
means that data association becomes much more complex. PFs and EMs seem to address
some of the issues in EKFs. However, the former seem to be only successful for localization
problems, while the later are only optimal in map building. From this survey, the decision
towards using an EKF was made. EKF has been selected, because despite its weaknesses, it
has been proved to converge and handles uncertainties, i.e. data association becomes easier.
Furthermore, several approaches address the linearization errors and the computational cost
by dividing the map into submaps. These techniques are surveyed in the following section.

Table 2.1: List of strengths and weaknesses of �ltering approaches used in SLAM.
Pros Cons
Kalman Filter and Extended KF (KF/EKF)
[Davison 2002, Leonard 2003, Jensfelt 2006, Ribas 2008b]
- high convergence - Gaussian assumption
- handles uncertainty - computationally expensive in high-D

- linearization might cause divergences
Compressed Extended KF (CEKF) [Guivant 2001]
- reduces uncertainty - requires very robust features
- reduces memory usage - data association issues
- handles large areas - requires multiple map merging
- increases map consistency
Unscented Kalman Filter (UKF) [Wan 2001]
- robust and accurate estimation - complexity dependent on number
- no need for Jacobians of samples
Information Filters (IF) [Thrun 2003, Thrun 2004b]
- stable and simple - data association issues
- accurate - cubic complexity to recover covariances
- fast for large maps - in high-D is computationally expensive
Particle Filter (PF) [Montemerlo 2002, Montemerlo 2003]
- handles non-linearities - exponential growth in complexity
- handles non-Gaussian noise - only successful in localization
- multiple hypotheses
Expectation Maximization (EM) [Burgard 1999, Thrun 2004b]
- optimal to map building - ine�cient, cost growth
- solves data association - unstable for large scenarios

- only successful in map building
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2.3 A Review of Submapping SLAM Approaches

This section presents an overview of the most relevant submapping SLAM approaches. This
review does not intend to list all publications in the �eld, but will present the main authors
and approaches. Finally a summary of these works is given in Table 2.2.

The cost of updating the covariance matrix at each step limits the use of an EKF SLAM in
large environments and the e�ect of linearization in the �nal vehicle and landmark estimates
reduces the consistency. These considerations can be easily observed in Figure 2.2, in which
the inconsistency rate keeps growing during the process in the EKF case, while it stays under
a certain boundary in the multi-map case. In large areas, the EKF complexity grows with
the number of landmarks, because each landmark is correlated to all other landmarks. Thus,
the EKF memory complexity is O(n2) with a time complexity of O(n2) per step, where n is
the total number of features stored in the map.

Several researchers have proposed ways of tackling the issues associated with EKF
based SLAMs in large areas [Pizarro 2004]. In terms of computational complexity, in
[Guivant 2001, Knight 2001, Guivant 2002b, Folkesson 2003] the authors propose delaying
the global update stage after several observations, thereby signi�cantly reducing the costs.
Regarding map consistency, the UKF[Wan 2001] achieves better consistency when addressing
EKF approximation and assumption issues because it does not need linearization. However,
the UKF is computationally expensive. Other approaches reduce computational costs by
taking advantage of the sparsity structure of the inverse of the covariance matrix. These are
the so-called IF techniques [Thrun 2004a, Eustice 2006b, Walter 2007]. However, IF tech-
niques have problems with data association since no covariance matrix is involved in the
process.

The use of submaps has been shown to address both linearization errors and compu-
tational costs at the same time, thereby improving the consistency of EKF based SLAMs
[Castellanos 2007]. An early example of this strategy is the Decoupled Stochastic Map-
ping (DSM) [Leonard 2001], which uses non-statistically independent submaps. As a result,
correlations are broken and inconsistency is introduced into the map. The Constant Time
SLAM (CTS) [Newman 2003] uses multi overlapping local submaps with the frame refer-
enced to one of the features in the submap. This technique maintains a single active map
and computes a partial solution independently. However, in non-linear cases the consistency
is not proven. Di�erent techniques, such as the Constrained Local Submap Filter (CLSF)
[Williams 2002] or Local Map Joining (LMJ) [Tardós 2002] produce e�cient global maps by
consistently combining completely independent local maps. The main idea behind LMJ is to
build maps of limited size and then, once completed, merge these small maps into a global
one.

The Atlas SLAM [Bosse 2004] consists of a hierarchical strategy that achieves e�cient
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(a) EKF SLAM simulation (b) Submap SLAM simulation

(c) Robot error (d) Map error

Figure 2.2: Normal EKF SLAM solution vs. submapping approach [Paz 2007b]. On top:
loop closing scenario, ground true trajectory in red, estimated trajectory in blue, and el-
lipses representing uncertainty. Bottom: mean consistency index EKF SLAM (black) and
submapping SLAM (blue).

mapping of large-scale environments. They use a graph of coordinate frames with each vertex
in the graph representing a local frame and each edge representing the transformation be-
tween adjacent frames. In each frame, they build a map that captures the local environment
and the current robot position along with the associated uncertainties.

The Divide and Conquer SLAM (DCS) [Paz 2008] is capable of recovering a global map
in approximately O(n) time, by using the Divide and Conquer strategy from fundamental
graph theory. An example of its working principle is illustrated in Figure 2.3.

The Hierarchical SLAM (HS) [Estrada 2005] consists of the lower (or local) map level,
which is composed of a set of local maps that are guaranteed to be statistically independent,
and the upper (or global) level, which is an adjacency graph whose arcs are labeled with the
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Figure 2.3: A Divide and Conquer SLAM example. From top-left to bottom-right: submaps
are sequentially built and joined following the three structures plotted on top of each step.

relative location between local maps. An estimate of these relative locations is maintained
at this level in a relative stochastic map. Every time the vehicle closes a loop, a global
level optimization is performed, producing a better estimate of the whole map, as shown in
Figure 2.4.

A Conditionally Independent SLAM (CIS) [Piniés 2008, Piniés 2009] is based on sharing
information between consecutive submaps so that, a new local map is initialised with a-priori
knowledge. The Bayesian Network that describes the probabilistic dependencies between
submap variables is shown in Figure 2.5.

Table 2.2 compares memory complexity, computational time during local map building,
and computational time during loop closing. The main conclusion one can extract from this
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(a) (b)

(c) (d)

Figure 2.4: A Hierarchical SLAM example [Estrada 2005]. This �gure depicts the evolution
of the whole map during the mission. Submaps are painted in di�erent colours. Every
ellipse corresponds to the uncertainty of the link between two consecutive submaps (i.e.,
the uncertainty in the global level). a) The vehicle will close a loop for the �rst time; b)
the vehicle has just closed this �rst loop and the map has been corrected; c) after closing a
second loop; d) after closing a third loop.

table is the signi�cant di�erence between a standard EKF and submapping approaches in
terms of time consumption and memory usage. It is worth mentioning that recent approaches
[Estrada 2005, Piniés 2009] are those with higher performance, i.e. lower computational
demand.
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Figure 2.5: Conditional Independent SLAM [Piniés 2008]. The graph on the left describes
a map in which the vehicle has moved from x1 to x5. Five features f1:5 have been ob-
served during the trajectory. Control inputs u1:5 and observations z1:4 are given. In this
example, submap 1 starts at x1 and �nishes at x3 and has observed features f1:3 through
measurements z1:2. Afterwards, the submap 2 is initialized with a common feature f3 and
the last known vehicle position x3. The vehicle then moves and traverses two new positions
x4:5, re-observes feature f3 and indirectly x3 through z3 and observes two new features f4:5

through measurements z3:4. The graph on the right shows a simpli�cation of the one on the
left that makes it easier to see that the only connection between the set of nodes (xA, za)
and (xB, zb) is through node xC , i.e. given xC submap A and submap B are conditionally
independent.

2.4 A Review of Underwater SLAM
This section presents an overview of the most relevant underwater SLAM implementations.
This review does not enumerate all existing publications in underwater SLAM, but it gives
an idea of the main authors and approaches. Afterwards, a summary is given in Table 2.3.
A key issue for an AUV to navigate fully autonomously is the ability to localize itself. The
localization problem has been analysed from di�erent viewpoints: 1) assuming an a-priori
known environment map, and 2) assuming an a-priori unknown environment.

Several approaches tackle the localization problem on known scenarios. For instance,
some approaches use GPS-aided localization [Caiti 2005, Erol 2007], but the attenuation of
electromagnetic waves through the medium of water limits the application of GPS to near
surface activities, otherwise the vehicle is forced to pay frequent visits to the surface to recover
its position. A standard for bounded xyz navigational position measurements for underwater
vehicles is the Long-BaseLine (LBL) acoustic transponder system [Hunt 1974, Olson 2006].
The equivalent to GPS underwater are the acoustic transponders, such as an LBL or a
Short-BaseLine (SBL). These positioning systems have limited range but high accuracy and
an associated cost of deployment. An LBL operates on the principle of time-of-�ight and
has been proven to operate up to a range of 10 km [Whitcomb 1999]. The main drawback
of an LBL is that it requires two or more acoustic transponder beacons to be tethered to
the sea �oor. SBL systems provide more accurate positioning information, but su�er from
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Table 2.2: Summary of submapping SLAM approaches.
Method Memory T local T Loop
EKF [Smith 1986]
+ High convergence O(n2) O(n2) O(n2)
� Computationally expensive
CEKF [Guivant 2001]
+ Faster than EKF O(n2) O(n) O(n2)
� Computationally expensive
CLSF [Williams 2002]
+ Allows delayed map fusion O(n2) O(1) O(n2)
� Computationally expensive
LMJ [Tardós 2002]
+ Consistent map fusion O(n2) O(1) O(n2)
� Computationally expensive
CTS [Newman 2003]
� Not tested in non linear problems O(n) O(1) �
� Suboptimal
Atlas [Bosse 2004]
+ Modular O(n) O(1) �
� Strong constrains
HS [Estrada 2005]
+ Global convergence O(n) O(1) O(n)
� Optimization complexity
DCS [Paz 2008]
+ Fast data association O(n2) O(1) O(n)
CIS [Piniés 2009]
+ Fast back-propagation O(n) O(1) O(n)
+ Share information between submaps

the same drawbacks than the LBL. Recently, several AUVs have used Ultra Short-Baseline
(USBL) technology, which consists of a transceiver, usually placed on the surface, a pole
under the vessel, and a transponder mounted on the AUV. This technology is more accurate
than LBLs and SBLs. Another set of approaches avoids the use of external devices by using
computer algorithms. For instance, the use of particle �lters for AUV localization presented
in [Maurelli 2008]. This approach was shown to work with high performance, however, it
only works when the map is known a-priori.

When the map is unknown, SLAM is conducted. Underwater scenarios are still one
of the most challenging scenarios for SLAM because of the reduced sensory possibilities,
the unstructured nature of the seabed and the di�culty of �nding reliable features. Many
underwater features are scale dependant, sensitive to viewing angle and look very small. A
SLAM proposal attempts to solve the problem by using point features [Williams 2001]. This
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Figure 2.6: Terrain models built by projecting the texture of the visual images onto a surface
model generated by the sonar data.

approach fuses information from the vehicle's on-board sonar and vision systems. They use
highly textured information to estimate the vehicle's motion and to generate models of the
sea �oor structure. Later on [Williams 2004] proposed a similar approach using an EKF
based SLAM and combining sonar and vision to obtain the 3D structure and texture (see
Figure 2.6. [Leonard 2001, Newman 2003] also used point features. The former implemented
the DCS and performed tests in a water tank, while the later proposed the CTS and used
LBL information to help with the localization. A non-feature based approach to SLAM that
utilizes a 2D grid structure to represent the map and a Distributed Particle Filter to track the
uncertainty of the vehicle's state was presented in [Barkby 2009]. They named their method
the bathymetric distributed Particle SLAM �lter. This method does not need to explicitly
identify features in the surrounding environment or apply complicated matching algorithms.
However, they did require a prior low-resolution map generated by a surface vessel. Another
approach using bathymetric sub-maps is the one presented by [Roman 2007].

Another approach uses a 3D occupancy grid map representation, e�ciently managed with
Deferred Reference Counting Octrees [Fair�eld 2007]. A particle �lter is used to handle the
uncertainty of the navigation solution provided by the vehicle. This approach was successful
in minimizing the navigation error during a deep sea mapping mission. However, map based
localization was only available after the map building process had been carried out. This
prohibited any corrections in navigation during the map building process. Later on, they
proposed a similar but improved solution [Fair�eld 2008], capable of providing real-time
localization, with results comparable to those given by SBLs and USBLs.

A vision-based localization approach for an underwater robot in a structured environment
was presented in [Carreras 2003]. This system was based on a coded pattern placed on
the bottom of a water tank and an on-board down-looking camera. The system provided
three-dimensional position and orientation of the vehicle along with its velocity. Another
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Figure 2.7: RMS Titanic reconstruction, using optical imaging [Eustice 2005a].

vision-based algorithm [Eustice 2008] used inertial sensors together with the typical low-
overlap imagery constraints of underwater imagery. Their strategy consisted of solving a
sparse system of linear equations in order to maintain consistent covariance bound within
a SLAM information �lter. The main limitation of vision-based techniques is that they
are limited to near-�eld vision (1�5m). Deep water missions will require higher amounts of
energy for lighting purposes. In previous project [Eustice 2005b, Eustice 2006a] presented
the reconstruction of the RMS Titanic from a set of images using IF (see Figure 2.7). Using
a Sparse Extended Unformation �lter (SEIF) and a forward-looking sonar, [Walter 2008]
presented a SLAM approach to inspect ship hull.

Instead of vision, in [Ribas 2008b] a mechanically scanned imaging sonar was used to
obtain information about the location of vertical planar structures present in partially struc-
tured environments. In this approach, the authors extracted line features from sonar data
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Figure 2.8: Abandoned marina SLAM example, using imaging sonar [Ribas 2008a].

by means of a robust voting algorithm (see Figure 2.8). These line features were used in the
EKF base SLAM. In [Tena-Ruiz 2004] a side-scan sonar was used to sense the environment.
The returns from the sonar were used to detect landmarks in the vehicle's vicinity. Reob-
serving these landmarks allows correction of the map and vehicle location. However, after
long distances the drift is too large to allow the association of landmarks with current obser-
vations. For this reason, they proposed a method that combines a forward stochastic map
in conjunction with a backward Rauch-Tung-Striebel (RTS) �lter to smooth the trajectory.

Table 2.3 summarizes several aspects of existing underwater SLAM solutions. This in-
formation gives an idea of the remote sensing device used, the map representation and the
�ltering technique used. In addition, information about the vehicle and the research group
is given. Most of these approaches have some points in common, for instance, the most
commonly used sensor is an imaging sonar, the most common �ltering technique is the EKF
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Table 2.3: Summary of underwater SLAM approaches.
Method Group Vehicle Sensor Map Filter
[Leonard 2001] MIT � imaging sonar point features DSM
[Williams 2001] ACFR Oberon imaging sonar point features EKF
[Newman 2003] MRG/MIT Caribou imaging sonar point features CTS
[Tena-Ruiz 2004] OSL REMUS side-scan point features EKF
[Williams 2004] CAS Oberon camera/sonar point features EKF
[Fair�eld 2007] CMU DEPTHX sonar beams evidence grid PF
[Roman 2007] WHOI JASON multibeam bathymetry EKF
[Eustice 2008] WHOI SeaBED camera vehicle poses EIF
[Fair�eld 2008] CMU MBAUV sonar beams evidence grid PF
[Ribas 2008b] ViCoRob Ictineu imaging sonar line features EKF
[Walter 2008] MIT HAUV imaging sonar point features SEIF
[Barkby 2009] CAS Sirus multibeam bathymetry PF
[Mallios 2009] ViCoRob Ictineu imaging sonar vehicle poses EKF

Table legend:
ACFR Australian Center for Field Robotics Sydney, Australia
CAS Centre of excellence for Autonomous Systems Sydney, Australia
CMU Carnegie Mellon University Pittsburgh, PA, US
MRG Mobile Robotics Group Oxford, UK
MIT Massachusetts Institute of Technology Cambridge, MA, US
OSL Ocean Systems Laboratory Edinburgh, UK
ViCoRoB Computer Vision and Robotics group Girona, Spain
WHOI Woods Hole Oceanographic Institution Woods Hole, MA, US

and point features are commonly used to represent the map. Some approaches use side-
scan sonar or optical cameras, which seem to be becoming more important as technology
advances.

2.5 A Review of Underwater Imaging

This section presents an overview of the most relevant contributions to the underwater vision
community. This review gives some insights on those existing approaches that work on side-
scan sonar images and those working with underwater optical imaging. Later on in this
section, Table 2.4 and Table 2.5 summarize these works. The choice for these two sensing
devices (i.e., side-scan sonar and optical camera) is motivated by the fact that the technology
behind these sensors has evolved up to the point of providing useful data.
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2.5.1 Side-scan Sonar Imaging

Nowadays, side-scan sonar is widely used in industry and academic research programs to sur-
vey the sea �oor [Chandran 2002] and as a Mine Counter Measures (MCM) tool. Several ap-
proaches tackle the issues related to object detection and classi�cation, image segmentation
and registration, and feature extraction. For instance, [Johnson 1994] proposed a threshold
and clustering theory to segment a side-scan sonar image into bright spots, shadows and
background. Another approach uses adaptive threshold techniques to detect and extract
geometric features for both bright spots and shadows [Ciany 2000]. Similarly, [Ruiz 2001]
used a double threshold to generate a binary image and then extract features. Their choice
for feature matching was the Multiple Hypothesis Tracking Filter (MHTF) combined with
topological information from SLAM. [Bell 2002] presented a detection approach based on
the Co-operating Statistical Snake, which segmented the image into two regions: one for
highlights and one for shadows. They proposed two classi�cation techniques: 1) used several
views of the same object to generate a 3D model, easyly identi�ed by a human operator
(i.e., non-automatic classi�cation); and 2) used the Monte Carlo Markov Chain to compare
segmented shadows with others from a database. In [Reed 2003] the authors presented an
unsupervised model capable of extracting, detecting and classifying shadows automatically.
A Markov Random Field (MRF) model was used to segment the image into regions, using
the geometric signature of mines in side-scan sonar images. Later on, they presented a new
approach to segment side-scan sonar images using pixel-based textural features and a clas-
si�er based on fusing a voting strategy and MRF. They proved the method by generating a
mosaic of the surveyed area [Reed 2006]. A completely di�erent strategy is to use machine
learning techniques, such as neural networks used to detect man-made objects from sonar
images [Perry 2004] and eigen analysis as a MCM tool [Saisan 2008]. A recent approach
[Lianantonakis 2007], extracts texture features from side-scan images �rst and then a region
based active contour model is applied to segment objects. A di�erent approach using com-
puter vision techniques to generate multiresolution 3D reconstruction from side-scan sonar
images was presented by [Coiras 2007]. In this case, the side-scan image formation process is
represented by a Lambertian di�use model, which is then inverted by a multiresolution opti-
mization procedure inspired by expectation-maximization to account for the characteristics
of the sea �oor (see Figure 2.9).

2.5.2 Optical Imaging

As existing hardware improves, the interest in using optical cameras under water in-
creases. Optical cameras provide high resolution imaging of the sea �oor easyly inter-
preted by operators and scientists. These images are useful for many applications such
as inspection and maintenance of underwater man-made structures [Walter 2008], wreck
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Figure 2.9: Multiresolution 3D reconstruction from a side-scan sonar image. Original image
on the top and 3D model on the bottom [Coiras 2007].

localization [Kahanov 2001, Eustice 2005b], mine countermeasures and seabed surveying
[Johnson-Roberson 2010]. In these applications, computer vision algorithms might be use-
ful on station keeping [Cu� 2002, Negahdaripour 2006], cable tracking [Balasuriya 2002,
Ortiz 2008, Wirth 2008], motion estimation (as a navigation aid) [Garcia 2006], localization
[Garcia 2001] and/or mosaicking [Gracias 2003, Gracias 2005]. Mosaicking strategies nor-
mally assume planarity, which in large scale mosaicking is not very realistic. Large areas can
contain very rugged terrain, therefore, it is necessary to account for any three-dimensional
structures. [Hartley 2000] studies the theory to convert optical imagery to three-dimensional
representations extensively. Recent projects use optical cameras to generate 3D underwater
reconstruction of the scenario [Sáez 2006, Nicosevici 2008, Johnson-Roberson 2010]. In all
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Table 2.4: Summary of side-scan sonar object detection approaches.
Method Feature extraction Feature matching
[Ciany 2000] Threshold �
[Ruiz 2001] Threshold MHTF
[Bell 2002] CSS MCMC
[Reed 2003] MRF �
[Perry 2004] Geometry / Moments Neural Network
[Reed 2006] Texture MRF / voting
[Coiras 2007] Shape / Texture �
[Lianantonakis 2007] Texture / active contour �
[Saisan 2008] Texture Eigen analysis

Table legend:
CSS Co-operating Statistical Snake
MCMC Monte Carlo Markov Chain
MRF Markov Random Field
MHTF Multiple Hypothesis Tracking Filter

these approaches, computer vision algorithms are used to segment and interpret images,
extract features, and to detect and classify objects.

Features are selected to provide robustness when face with a certain degree of distortion,
so that the same point can be detected when observed from a di�erent point. Underwater
images are very challenging, because apart from changes caused by camera motion, they
normally su�er from speci�c artifacts due to the medium (see Figure 2.10). These dis-
tortions are caused by di�usion which produces low contrast, scattering, blur and loss of
colour (see Figure 2.10(a)), sun �ickering which produces random patterns in all directions
depending on the shape of the surface of the water (see Figure 2.10(b)), and non-uniform
lighting (see Figure 2.10(c)). Several approaches propose image processing algorithms to ad-
dress these issues, for instance [Garcia 2002] presents an approach to correct lighting e�ects
and [Gracias 2008] presents a technique to �lter �ickering.

In the SLAM context, features must be distinguishable in order to ease the associa-
tion of new observations to corresponding map features. In general, SLAM approaches use
features that can be detected by their location; this is, features that are far apart within
the map. However, in underwater environments, it is interesting to have as many features
as possible and to observe them repeatedly, in order to reduce the uncertainty caused by
any signi�cant vehicle drift. In this sense, features from optical images are used either to
estimate the motion on a frame to frame basis, but also as landmarks for the SLAM prob-
lem. These landmarks have to be very robust. Several methods exist to extract features
from optical images. Edge, corner and contour detectors are commonly used in computer
vision, for instance the well-known Canny edge detector [Canny 1986], or the Harris cor-
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(a) Di�usion. (b) Sun �ickering. (c) Non-uniform light.

Figure 2.10: Artifacts that appear on underwater images.

ner detector [Harris 1988]. These features are commonly used in cable tracking approaches
[Balasuriya 2002, Ortiz 2002] and for mosaicking [Gracias 2003]. In addition, texture patches
are used to provide more information on the points of interest, and improve the matching
step [Gracias 2005]. However, image patches show poor robustness to viewpoint changes
and scale. A di�erent invariant approach is to use moment based descriptors [Mindru 1999],
for instance, [Pizarro 2003] uses Zernike moments, which are robust to scale and rotation.
More robust approaches are the Scale Invariant Feature Transform (SIFT) [Lowe 2004] and
more recently the Speed Up Robust Features (SURF) [Bay 2006], which produce rotation
and scale invariant features. SIFT and SURF features are becoming important features in
recent approaches [Nicosevici 2007, Salvi 2008].

In most of these approaches, the output of the feature extraction step is a set of keypoints
with features and descriptors for every image. Feature matching algorithms are necessary
to allow proper data association. Traditionally, the cross correlation between two image
patches was used, but this metric is weak when face with slight rotations or scale variations.
A common practice is to match these keypoints between two images based on the similarity
of their descriptors, i.e., the Euclidean distance between descriptor vectors. This approach
is prone to �nd correct pairings, however, many features will not have a match, because
they either belong to the background or they were not detected in the second image. For
this reason, SIFT and SURF matching algorithms use the same distance together with a
comparison with neighbouring features, making the match more robust [Lowe 2004].

2.6 Discussion

This chapter introduced the SLAM problem. First a review of the most relevant �ltering
techniques in the literature was given. Afterwards, special attention was focused on those
solutions capable of dealing with large maps and long missions. Then, the most relevant
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Table 2.5: Summary of underwater SLAM approaches.
Method System Features Matching
[Balasuriya 2002] Monocular line features Hough transform
[Cu� 2002] Monocular corners correlation

texture similarity
[Ortiz 2002] Monocular contours / threshold correlation
[Gracias 2003] Monocular Harris corners correlation

Lucas Kanade
[Pizarro 2003] Monocular multiscale Harris descriptor vector

Zernike moments distance
[Gracias 2005] Monocular Harris / texture cross-correlation
[Sáez 2006] Trinocular disparity / texture correlation
[Nicosevici 2007] Monocular geometric features descriptor vector

SIFT distance
[Eustice 2008] Monocular Harris / SIFT SIFT match / pose

epipolar geometry
[Ortiz 2008] Monocular line features temporal correlation
[Salvi 2008] Stereo SIFT / SURF descriptor vector

3D structure distance
[Wirth 2008] Monocular line features particle �lter

underwater SLAM approaches were summarized. Finally, underwater computer vision tech-
niques were analysed, �rst those techniques that deal with side-scan sonar images and then
those techniques using optical images.

As has been seen in Section 2.2, several �ltering techniques can be used in SLAM to deal
with uncertainties and noise. It seems clear that an EKF based SLAM is the most common
option. However, the most interesting outcome of the survey is that for large scenarios, or
maps with a high population of landmarks, an EKF su�ers from several limitations:

• gaussianity assumption, which in the real world might not be true

• linearization approximations may cause divergences on long missions and large maps.

• memory demand increases with the size of the map

• computational time rises with the size of the map

An IF produces a fast stable solution, however there is no covariance matrix involved
in the process, which means important data association issues. The UKF solves the non-
linearities by using the Unscented transform, however its computation is very costly. On the
other hand, particle �lters handle linearization and gaussianity problems, but the cost grows
exponentially. To the best of the author's knowledge at the time of writing, particle �lters
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have only been shown successful on localization problems, while expectation maximization
proposals seem to be optimal for map building, but unstable for large scenarios.

Section 2.3 presented submapping SLAM solutions. The core for most of these submap-
ping approaches is the EKF. These approaches show signi�cant improvements in terms
of computational demand reduction and map consistency. Although these solutions show
promising results on structured indoor environment and outdoor terrestrial applications,
none of them have been used in underwater applications.

Section 2.4 demonstrated that underwater technologies, especially, underwater au-
tonomous technologies, are gaining importance. Most of these projects use EKF based
solutions with point features as landmarks. These features are obtained from acoustic sen-
sors such as imaging sonar and side-scan sonar. Recent approaches use optical cameras as
the main sensor which provides rich visual information for operators and scientists. Extract-
ing features from underwater data, either acoustic or optical, is a di�cult task due to the
artifacts from underwater environments and the vehicle's motion.

Section 2.5 summarized the most relevant projects that focused on feature extraction and
matching from side-scan sonar images and from underwater optical images. Initial proposals
were based on using thresholds to separate bright spots and shadows from side-scan sonar
images. In recent projects, there is a trend to machine learning algorithms which basically
means that a system is �rst trained with speci�c features which renders it capable of detecting
them in real missions. On the other hand, extracting features from optical images has been
traditionally done by means of corner and edge detectors. SIFT and SURF seem to be a
common choice nowadays because they are robust and fast. However, it seems clear that
there are still many di�culties in de�ning robust enough features under water.

From this survey, several points stand out: 1) an EKF based SLAM seems to be an
appropriate choice because it handles uncertainties and produces convergent solutions, 2)
using EKF based submapping strategies is even better because they address the issues of
standard EKF approaches, i.e. linearization errors and high computational demand, 3)
most existing underwater SLAM solutions use an EKF with acoustic remote sensing devices,
however none of them apply submapping strategies, and 4) the detection of robust features is
a very complex task in an underwater scenario because they have an added di�culty arising
from artifacts and noise due to the medium.

Therefore, the use of EKF submapping based SLAM combined with underwater imaging
techniques will be the starting point for the approach presented in this work.
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Simultaneous Localization and Mapping (SLAM) does not result in consistent maps of
large areas because of a gradual increase in uncertainty for long term missions. In

addition, as the map size grows the computational cost increases, making SLAM solutions
unsuitable for on-line applications. The SSJS is a novel solution based on the use of indepen-
dent local maps together with a global stochastic map. The global map contains the relative
transformations between local maps which are updated once a new loop is detected. The infor-
mation within local maps is also corrected. Thus, maps sharing a certain number of features
are fused, maintaining the correlation between landmarks and the vehicle's position. The
use of local maps reduces computational costs and improves map consistency. Synthetic and
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experimental results show that the proposed approach is able to map large areas consistently
with lower computational cost compared to state of the art methods.

3.1 Overview

This Chapter presents the probabilistic background for the well known KF and its extension
to the EKF. The EKF is the core of the proposed map building approach as well as other
state of the art submapping approaches which are brie�y introduced in this chapter to put the
reader in context. Afterwards, the Selective Submap Joining algorithm is detailed. Finally,
synthetic and real experiments and their results are presented.

3.2 Probabilistic Framework

3.2.1 Notation

In the following sections a common notation is used. These common variables and their
meaning are listed in Table 3.1.

Table 3.1: Notation

Variable Description
xk actual state vector at the current time step
Pk actual covariance matrix at the current time step
zk+1 next measurement vector for the current time step
x̂k+1 next state vector estimate
P̂k+1 next covariance matrix estimate
ẑk+1 next measurement vector estimate
xk+1 corrected state vector
Pk+1 corrected covariance matrix
Fk transition matrix (process model)
Hk measurement matrix (observation model)
uk control vector
Qk process uncertainty matrix
Rk observation uncertainty matrix
νk+1 innovation vector
Sk+1 innovation associated matrix
Wk+1 Kalman �lter gain
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3.2.2 Kalman Filter

The KF was invented in the 1950s by Rudolph Emil Kalman [Kalman 1960] as a technique
for �ltering and predicting in linear systems. The KF implements belief computation for
continuous states. It is not applicable to discrete or hybrid state spaces. The KF estimates
the belief of the state of a dynamic system at a certain moment in the time t from a series
of incomplete and noisy measurements through their mean µt and the covariance Σt.

3.2.3 Into the Maths: Assumptions

In order to obtain the correct a-posteriori probability, three assumptions have to be ful�lled.
First, the initial belief must be Gaussian (3.1). Second, the state transition probability must
be composed of a function that is linear in its argument with added independent Gaussian
noise (3.2). Third, the same applies to the measurement probability (3.3). Systems that
meet these assumptions are called linear Gaussian systems.

bel(x0) = p(x0) =
1

(|2πΣ0|) 1
2

exp{−1
2
(x0 − µ0)T Σ−1

0 (x0 − µ0)} (3.1)

xt = Atxt−1 +Btut + εt (3.2)

zt = Ctxt + δt (3.3)

In (3.2) and (3.3) At, Bt and Ct are matrices that multiply the state, control and mea-
surement vectors, allowing us to assimilate the transition and measurement functions as
linear systems. εt and δt are Gaussian random vector and matrix respectively, with zero
mean and covariances Qt and Rt.

3.2.4 The Kalman Filter Algorithm

The KF algorithm adapted to the SLAM context is presented in Algorithm 1. The algorithm
is composed of three main steps, prediction, observation and update1, which keep repeating
along time. In the prediction stage, the process model is used to obtain an estimate for
the state vector x̂k+1, the covariance matrix P̂k+1 and the measurement ẑk+1 for instant
k + 1 from the state vector xk and the covariance matrix Pk of the previous instant k.
The observation stage computes the innovation vector ν as a di�erence between real and
estimated measurements and the innovation associated matrix S. This matrix S is then
used in the update stage to compute the Kalman gain W . Both the ν and the W are then

1Various authors de�ne only two steps: prediction and update. They consider the observation as a part
of the update stage
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Algorithm 1 (xk+1, Pk+1) = Kalman Filter(xk, Pk, zk+1)
Prediction (estimate)

1: x̂k+1 = Fkxk + uk

2: P̂k+1 = FkPkF
T
k +Qk

3: ẑk+1 = Hkx̂k+1

Observation (innovation vector and matrix)
4: νk+1 = zk+1 − ẑk+1

5: Sk+1 = HkP̂k+1H
T
k +Rk

Update (correction, Kalman Gain)
6: Wk+1 = P̂k+1H

T
k S

−1
k+1

7: xk+1 = x̂k+1 +Wk+1νk+1

8: Pk+1 = P̂k+1 −Wk+1Sk+1P̂k+1

used to correct the state vector xk+1 and the covariance matrix Pk+1, which are used as
input for the next iteration.

3.2.5 The Extended Kalman Filter

The assumptions of linear state transitions and linear measurements with added Gaussian
noise are rarely ful�lled in practice. For example, a robot that moves with a constant
translational and rotational velocity typically moves in a circular trajectory which cannot be
described by linear next state transitions. This observation, along with the assumption of
unimodal beliefs, makes plain a KF inapplicable to all but the most trivial robotics problems.
The EKF overcomes this linearity assumption.

3.2.6 Into the Maths: Non-linear Systems

In the EKF, the assumption is that the next state probability (3.4) and the measurement
probabilities (3.5) are non-linear functions g and h which are essentially the equivalent to
(3.2) and (3.3) with g instead of At and Bt, and h instead of Ct.

xt = g(ut, xt−1) + εt (3.4)

zt = h(xt) + δt (3.5)

Unfortunately, with arbitrary functions g and h, the belief is no longer Gaussian. For
this reason the EKF calculates an approximation to the true belief. It represents this ap-
proximation with a Gaussian. Thus, the EKF inherits the basic belief representation from
the KF, but it di�ers in that this belief is only approximate, not exact as was the case in
the KF.
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Algorithm 2 Extended Kalman Filter(xk, Pk, zk+1)
Prediction (estimate)

1: x̂k+1 = g(xk, uk+1)
2: P̂k+1 = GkPkG

T
k +Qk

3: ẑk+1 = h(x̂k+1)
Observation (innovation vector and matrix)

4: νk+1 = zk+1 − ẑk+1

5: Sk+1 = HkP̂k+1H
T
k +Rk

Update (correction, Kalman Gain)
6: Wk+1 = P̂k+1H

T
k S

−1
k+1

7: xk+1 = x̂k+1 +Wk+1νk+1

8: Pk+1 = P̂k+1 −Wk+1Sk+1P̂k+1

The technique for linearizing non-linear functions used by an EKF is called Taylor Ex-
pansion, which constructs linear approximations taking advantage of the partial derivative
of the non-linear function (Equation 3.6). To do this, the Jacobian of a non-linear function
is computed. Within the EKF framework, g and h become G and H, being the Jacobian of
g and h.

g′(ut, xt−1) =
∂g(ut, xt−1)

∂xt−1
(3.6)

3.2.7 The Extended Kalman Filter Algorithm

The EKF algorithm applied to SLAM is presented in Algorithm 2. The iterative process is
similar to that in the KF algorithm (Algorithm 1), but now instead of the transition matrix
F and the measurement matrix H, the corresponding non-linear functions g and h and their
Jacobian G and H are used. Note that now the H matrix is the Jacobian of the non-linear
function h.

3.3 The Selective Submap Joining Basis

The main novelty in this approach is the loop closing strategy which involves a decision on
whether to fuse local maps when closing loops and is the inspiration behind the name of this
approach, SSJS (see Algorithm I). The basis of this approach is the EKF based SLAM. A
sequence on which EKF based submaps are built. The size of these submaps is prede�ned by
the total number of features per map and by the uncertainty boundaries. The links between
local maps are stored in a global stochastic map. This information can be used to check
the possibility of being confronted with a loop closing event. A loop closure is performed
when the vehicle revisits a certain number of previous observations and two maps are joined
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Algorithm 3 Selective Submap Joining SLAM.
begin mission
while navigating do

x̂i, P̂i = EKF SLAM() ← (Build submap Mi)
x̂G, P̂G = build global map(x̂i, P̂i)
HLoop = check possible loops(x̂G, P̂G)
for j = HLoop do

referMi andMj to a common base reference
Hij = data association(x̂i, x̂j , P̂i, P̂j)
if Hij > threshold then

x̂ij , P̂ij = map fusion(x̂i, P̂i, x̂j , P̂j , Hij)
x̂G, P̂G = update global map(x̂ij , P̂ij)

endif
endfor

endwhile

and fused. Deciding whether to fuse two maps or keep them independent, depending on the
number of landmarks they have in common, is the main di�erence between this method and
other approaches that fuse maps regardless of the information they share.

3.3.1 Map Building

The SSJS builds a sequence of submaps. A submap is built using a standard EKF algorithm.
Algorithm II summarises the adaptation of the EKF to the SLAM problem.

The EKF estimates belief about the state at a certain step at time k of a dynamic
non-linear system through the mean xk and the covariance Pk of a series of incomplete and
noisy measurements. The algorithm is composed of three steps: prediction, observation and
update, which repeat in a sequence over time.

The prediction stage uses the state estimate from the previous time step xk−1 to produce
an estimate of the state at the current time step x̂k (see Equation 3.7).

x̂k = f(xk−1,uk) P̂k = FkPk−1FT
k +GkQkGT

k (3.7)

If control inputs uk are available, they are used in the prediction stage. The motion
model f is used to estimate the state at a given step k from the state at a step k − 1.
The linearized function Fk in Equation 3.8 is used to estimate the changes in the covariance
matrix from time k − 1 to k.
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Algorithm 4 EKF based SLAM.
map initialisation()
z0,R0 = get measurements()
x0,P0 = add features()
for k = 1 until end of map do

xod,Qod = get odometry()
x̂k|k−1, P̂k|k−1 = EKF prediction(x̂k−1,P̂k−1,xod,Qod)
zk,Rk = get measurements()
Hk = data association(x̂k|k−1,zk,P̂k|k−1,Rk)
x̂k, P̂k = EKF update(x̂k|k−1,P̂k|k−1,zk,Rk,Hk)
x̂k, P̂k = add features(x̂k,P̂k,zk,Rk,Hk)

endfor
return: Mi = {x̂k, P̂k}

Fk =
∂f
∂x

∣∣∣∣
xk−1

(3.8)

During the observation stage, one can obtain measurements for the vehicle's orientation,
linear speeds, altitude, depth and other information about the world, through the vehicle's
on-board sensors. These measurements are stored in an observation vector zk.

The observation model gives the predicted sensor measurement from the last known
position. It is represented by the non-linear function ẑk = h(x̂k). Notice that each sensor has
its own observation model. This model needs to be linearized using Jacobian computation
(see Equation (3.9)), giving the linear function Hk.

Hk =
∂h
∂x

∣∣∣∣
xk

(3.9)

The observation model Hk is used to compute the innovation vector νk as a di�erence
between real and estimated measurements and the innovation associated matrix Sk (see
Equation (3.10)). Sk and νk are then used in the EKF update stage. Note that the term
Rk represents zero mean white Gaussian observation noise is (vk ∼ N (0,R)).

ẑk = f(x̂k) (3.10)
νk = zk − ẑk

Sk = HkP̂k−1HT
k +Rk
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Some of these observations are now being seen for the �rst time, but some of them
might correspond to features already observed in the past. It is, therefore, necessary to
identify the correspondences between existing features and observations, this is done by
means of data association algorithms. One of the main issues with the EKF based SLAM
is the lack of robustness to errors in the data association process. Robust data association
algorithms are therefore critical. Given a set of n features F1, ..., Fn, which have already
been observed in the past and are now part of the state vector xk, and given a new set
of m measurements E1, ..., Em, the data association algorithm must be able to generate a
hypothesis Hk = ji, ..., jm that pairs each measurement Ei with a map feature Fj . Notice
that for new or spurious measurements there is ji = 0. Data association techniques and
matching algorithms will be detailed in Chapter 4.

The prediction gives an a-priori state estimate x̂k|k−1 because, although it is an estimate
of the state at the current time step, it does not include observation information from the
current time step. In the update stage (see Equation (3.11)), the current a-priori prediction
is combined with current observation information zk. By knowing the data association Hk,
one can compute the estimates ẑk for the features that correspond to new observations zk

and obtain the innovation vector νk and matrix Sk. This matrix Sk is then used to compute
the Kalman gain Wk. Both, νk and Wk are necessary to produce an improved estimate xk

and Pk (the a-posteriori state estimate).

Wk = P̂k|k−1HT
k S−1

k (3.11)
xk = x̂k|k−1 +Wkνk

Pk = P̂k|k−1 −WkSkP̂k|k−1

Finally, after updating the states and their corresponding uncertainties, the observations
that were not associated with any existing landmark on the map are considered new map
features. They are added to the vector state and the associated covariance matrix is also
augmented.

3.3.2 Submapping and Global Map Building

Local mapsMi,Mi+1, ...,Mj are built sequentially (see Figure 3.1). The reference frame of
a submap is at the vehicle's starting point. This starting point of a local mapMi+1 coincides
with the last position of the previous map Mi. Therefore, the relative transformation
between two consecutive maps' Mi

Mi+1
T is the vehicle's pose at the last position ofMi. This

link is stored in a global map xG together with its uncertainty PG (see Equation (3.12)).
The information contained at this global level is very important in detecting loop events,
since a local map can be referred to the frame reference of any other local map.
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3.3.3 Map Joining and Fusion

A map building technique in which a sequence of local maps is built and then consecutive
local maps are joined was suggested by Tardós et al. [Tardós 2002]. In this case, local maps
do not need to be consecutive to be joined, but the same joining and fusion algorithm is
applied. Given two independent local maps, MB

i = (xBi ,PBi ), which contains a set of n
features F1, ..., Fn, and MB′

j = (xB′j ,PB
′

j ), which contains a set of m features E1, ..., Em,
one can use the transformations in the global stochastic map to refer them both to the
same frame (using the formulation in Appendix A). Features from both maps are therefore
expressed relative to the same base B forming a joint state vector xBi+j and covariance matrix
PBi+j (see Equation (3.13)).

xBi+j =

[
xBi
xBj

]
PBi+j = JiPBi JT

i + JjPBj JT
j (3.13)

Where the matrices for the Jacobian Ji and Jj are in Equation (3.14).

Ji =
∂xBi+j

∂xB
i

Jj =
∂xBi+j

∂xB
j

(3.14)

Assuming that MB
i and MB

j share a certain number of features f , a data association
algorithm is carried out. Features from MB

j are understood as new measurements for the
features from MB

i , so a non-linear measurement ẑijf = hijf mapping a feature EBjf corre-
sponding to a feature FBi needs to be linearized by means of Jacobian computation (see
Equation (3.15)).

Hijf =
[

∂hijf
∂xBvi

0 ... 0 ∂hijf
∂xBFi

0 ... 0 ∂hijf
∂xB′Ejf

0 ... 0
]

(3.15)

Next, the local map information and links between maps are improved using the EKF
update equations (see Equation (3.11)). Once the joint maps have been updated, the rows
and columns corresponding to common landmarks fromMj are removed from the joint state
to avoid repetitions.
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(a)

(b)

Figure 3.1: A Schematic representation of a submap sequence. The top plots show the global
level map, while the bottom ones depict a sequence of submaps. B0 ... B7 are the submap
base references, B0 being the world reference frame. In a) the vehicle has just �nished a
submap and this is closing a loop with the �rst map. In this situation, several landmarks
are common to both maps, they are coupled inside a circle. In b) the map joining and fusion
step has taken place, updating both the local maps and the global level map.
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Figure 3.2: The lowest mission times occur when the threshold for the number of correspon-
dences is approximately 40% and 50% the number of features per submap. The region in
grey corresponds to con�gurations that produced minimum mission time.

3.3.4 Loop Closing Strategy

In the previous section it was shown how a sequence of submaps and a global stochastic map
can be built. To improve the global consistency of the method it is necessary to navigate by
identifying the loops and using the newest information to update past information. Closing
a loop means revisiting a region, where some parts of the scenario with a higher level of
certainty are now visited again, as depicted in Figure 3.1. A loop closing procedure begins
with a search at the global map level each time a submap is �nished. According to the
proximity of the various submaps at the global level, loop closing hypotheses are formed.
Afterwards, the data association between those maps de�ned as loop closing candidates
is computed. If the correspondences between maps are higher than a threshold, they are
joined and fused in a single map, as explained in Section 3.3.3. The value for this threshold
is analysed in Section 3.4. This value is set to about �fty per cent of the size of the submap
because it is the con�guration with lowest computatinal cost (see Figure 3.2). Together with
the map fusion, the corresponding link at the global level is corrected. This correction is
directly obtained from the map fusion since the links within the fused maps are understood
as new observations for the global level. These new observations are then run through the
EKF update, resulting in a corrected and correlated global level map.

3.4 Experiments and Results

The SSJS algorithm is tested using synthetic and real data. In this section, the synthetic
set-up and the synthetic results are described. Afterwards, the real dataset on the Victoria
Park and the experimental results are presented.
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Figure 3.3: Vehicle kinematics. Bi represents a landmark. The sensors on-board the vehicle
are also shown; the laser range �nder on the front of the vehicle and the velocity encoder in
the left rear wheel.

3.4.1 Synthetic Experiments

The synthetic experiment is composed of a 3-DOF vehicle equipped with velocity odometer,
steering angle encoders, and laser range �nder. The vehicle state is given by (x y ψ)T,
where (x, y) is the vehicle's position and ψ the vehicle's orientation on a plane. The map
is composed of point-based features whose state is de�ned by the feature position (xli yli)

T.
Features are detected by a simulated laser range �nder that scans 360◦. The joint state
vector estimate x̂ contains both vehicle and map information, as in Equation 3.16. The
motion and observation models used in this simulation are detailed in the following paragraph
(also used by [Guivant 2001]).

x̂ = (x y ψ xl1 yl1 ... xli yli ... xln yln)
T (3.16)

A typical kinematic model for a land vehicle is the Ackerman Model (see Figure 3.3).
This model is described by Equation 3.17. This equation is a discrete approximation of the
motion model f(xk−1,uk) and is used to predict the position of the vehicle from steering
α and speed vc control inputs. Notice, that L, H, b and a are vehicle parameters.
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The linearized version of Equation 3.17 is given by its Jacobian F as in Equation 3.18.
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(3.18)

A laser range �nder is located on the front of the vehicle giving relative range zr and
bearing zβ . The observation model hk in Equation 3.19 is then used to refer the features
Bi from the environment with respect to the vehicle state. Its linearization Hk is given by
Equation 3.20. Notice that ∆x = xL − xv, ∆y = yL − yv and ∆ =

√
∆x2 + ∆y2.

[
zr

zβ

]
=

[ √
(xL − xv)2 + (yL − yv)2

atan
(

yL−yv
xL−xv

)
− φ+ π

2

]
(3.19)
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A scene simulator that allows the user to de�ne the position of the landmarks and the
vehicle's trajectory on a plane was implemented. The simulator begin then sensor readings
from the odometry and the laser range �nder come in. This is, the speed of the vehicle and
the steering wheel angle for each time-step of the odometer, as well as the range and bearing
of the observation with respect to the vehicle at each time-step of the laser range �nder.
In addition, the user was prompted to de�ne the amount of zero mean Gaussian noise to
be added to every sensor reading. This set-up consisted of a scenario of 100 m2 populated
with 441 landmarks. The vehicle performed a survey trajectory. Figure 3.4(a) shows the
ground truth, Figure 3.4(b) shows the dead reckoning with added Gaussian noise and the
output of SSJS is shown in Figure 3.4(c). Notice that for the noise levels used in this speci�c
experiment (i.e. laser range �nder noises are 10 cm in the range and 1 degree in the bearing
and the odometer noises are 1 m/s in speed readings and 7 degrees in steering), the �nal
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(a) Ground truth (b) Dead reckoning (c) SSJS Final Result

Figure 3.4: A synthetic scenario generated using a simulator.

(a) Before joining two maps (b) After joining two maps

Figure 3.5: An example of a map fusion step where two submaps are joined and fused after
closing the loop.

drift of the vehicle on the dead reckoning was around 25%, while for the SSJS the drift was
less than 2.5%. These results were obtained after tuning the submap size and the threshold,
that indicates whether to fuse maps as a trade-o� between computational cost and accuracy.
The map size was set to 15 landmarks per map and the threshold was set to 40% of the map
size. These sorts of synthetic experiments allowed us to check the precision, consistency and
computational cost of SSJS compared to other SLAM techniques.

The overall consistency of SSJS was checked qualitatively and quantitatively. Fig-
ure 3.5(a) and Figure 3.5(b) show a loop closing event. Quantitative results where ob-
tained via the Normalized Estimation Error Squared (NEES) statistical test depicted in
Equation (3.21).

NEES = (xk − x̂k)TP−1
k (xk − x̂k) < χ2

r,1−α (3.21)
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Table 3.2: Comparison of time consumption (in seconds and % over the whole mission time.
method total (s) local mapping (%) global mapping (%) others (%)
EKF 2028.21 99.0 �.- 1.0
LMJ 92.48 76.9 22.9 0.2
DCS 83.73 88.2 11.7 0.1
HS 78.37 91.0 8.6 0.4
CIS 85.26 89.3 7.3 3.4
SSJS 78.88 81.0 18.7 0.3

where r = dim(xk) is the degree of freedom and α is the desired signi�cance level (usually
0.05) [Paz 2008]. Given the ground truth, the state (x̂,P) estimation is consistent when
NEES < χ2

r,1−α, otherwise the estimation is too optimistic and becomes inconsistent. Fig-
ure 3.6 shows the SSJS algorithm performing within the consistency boundaries.

Regarding time complexity, results in Table 3.2 show that SSJS is faster than other
submapping techniques. In LMJ the cost grows exponentially but decreases as the mission
gets longer. DCS is faster than LMJ in the submapping stage and even in the joining step,
however, the complexity corresponding to the joining step varies with the size of the maps
to be joined. This complexity increases the cost considerably and can be very high after
several submaps. In fact, Joint Compatibility Branch and Bound (JCBB) does not perform
e�ciently in these situations because the exploration tree is too large. For this reason,
JCBB is substituted for Randomized Joint Compatibility (RJC) to address data association
in large maps, such as in DCS in the upper levels of the global level tree. The use of RJC
in DCS signi�cantly reduces the computational cost. HS is even faster than LMJ and DCS
because the local maps are considerably smaller. However, as the mission gets longer, some
of the maps become bigger and the optimization of the global level becomes more complex
producing a slight increase in the computational cost. CI-Graph SLAM is slightly slower
due to the extra cost caused by the back propagation step and the additional reobserving
and revisiting stages. Overall, SSJS and HS have similar computational costs and are faster
than the other SLAM techniques surveyed. The time spent during local map building is
similar in all these methods, but there is no extra cost arising from global level optimization
or from the map fusion stage and because the maps are only fused selectively. They are only
fused if they really share enough information to be considered a single map, otherwise they
are kept independent and small.

The precision (error) with respect to the ground truth is given in Table 3.3. Table 3.3
shows the maximum, mean and standard deviation of the �nal map and vehicle position
error for every technique. SSJS is one of the most precise thanks to the selective submap
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Table 3.3: Mapping and vehicle position precision compared to ground truth (in meters).

method map error localization error
maximum mean std maximum mean std

EKF 7.9213 0.5891 0.9875 1.5185 0.7272 0.3461
LMJ 4.8144 0.4857 0.6822 1.4635 0.7605 0.3268
DCS 6.2612 0.1260 0.5391 1.5003 0.9006 0.3332
HS 5.5558 0.5761 0.5761 1.4563 0.7477 0.3428
CIS 4.3284 0.1870 0.4568 1.2352 0.5267 0.3156
SSJS 4.5268 0.1960 0.3468 1.3214 0.5372 0.3201

fusion approach. Fusing only those maps that overlap signi�cantly is shown to be positive
since the amount of information used in the update step is higher. In addition, the data
association between maps becomes more robust since the matches are more constrained for
the rest of the features. CIS error is slightly lower compared to SSJS because it uses the
conditional independence between submaps to correlate their information, thus all available
information is taken into account. However, this conditional independence produces a higher
computational cost as reported in Table 3.2.

To sum up, the SSJS algorithm is shown to be computationally e�cient and produces a
convergent solution. These two properties are very important in long term missions or large
scale scenarios on-line solutions.

3.4.2 Real Experiments: the Victoria Park Dataset

Real experiments were conducted using the well-known Victoria Park dataset which uses a
3-DOF terrestrial vehicle. The Victoria Park dataset was recorded by [Guivant 2000a] at the
Australian Center for Field Robotics (ACFR) (see Figure 3.7). The Utility vehicle (UTL)
shown in Figure 3.8 was used to gather the data. This dataset describes a path through an
area of around 197m x 93m. The sequence consists of 7247 frames along a trajectory of 4
kilometres recorded over a total time of 26 minutes. The dataset contains sensor readings
from a steering and rear axle wheel (odometry) and a laser range �nder (one 360-degrees
scan per second), along with the ground truth position data from a GPS. For the laser range
data, a tree detector approach is described in Section 4.3.1. The detected trees are used
as point features. The motion and observation models for this vehicle and its sensors are
presented in the synthetic experiments section. All the experiments were conducted on a
Pentium Core Duo 1.77-GHz. The purpose of this experiment was twofold: 1) to evaluate
the consistency of the SSJS approach, and 2) to analyse its computational cost. Both were
compared with state of the art SLAM techniques.
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The �nal result of the SSJS for the Victoria Park dataset is shown in Figure 3.7, which
indicates the level of correction of the approach in qualitative terms. The �nal map (black
trajectory) is almost the same as the one generated using GPS data (grey trajectory). Note
that the GPS readings were not used in the SSJS. However, it is not possible to extract any
further conclusions such as the consistency of the method or the time consumption. In order
to perform a quantitative evaluation, the consistency of the SSJS approach is checked via
map consistency analysis. When the ground truth for the state variable is not known, the
Normalized Innovation Squared (NIS) (Equation 3.22), can be used as an alternative.

NIS = νT
k S−1

k νk < χ2
r,1−α (3.22)

Given the estimation of the innovation vector ν and the innovation matrix S, the state
(x̂,P) estimation is consistent whenNIS < χ2

r,1−α, otherwise the estimation is too optimistic
and becomes inconsistent. Figure 3.9 shows the SSJS constantly performing within the
consistency boundaries. The rest of the submapping techniques also perform inside these
consistency boundaries, while an standard EKF based SLAM with no submaps does not. It
can therefore be concluded that the use of submaps is a must to obtain consistent maps in
large missions.

Regarding computational cost, Figure 3.10 shows computing time evolution during the
Victoria Park mission, demonstrating that SSJS has a reduction on computing time com-
pared to the other techniques surveyed. This slight improvement can be explained by the
fact that these approaches only di�ere on the strategy to build the global map, which is
directly dependent on the association of the data from two maps. There is a signi�cant
increase on the data association cost for the MJ and DCS because maps' size grow with the
mission. HS, DCS or SSJS solve this issue by keeping maps' size small. SSJS only pays the
cost of a single EKF update step during the global mapping, while DCS has an additional
back propagation cost and HS has additional cost caused by the minimization process.

3.5 Chapter Summary
The suitability of the SSJS for mapping large scale scenarios has consistently been demon-
strated. The main contribution of SSJS is the local map fusion strategy. This strategy
is used to determine whether to fuse two local maps based on the amount of information
they share. SSJS produced consistent maps using synthetic data and the Victoria Park
dataset. In addition, a comparison between the SSJS approach and the state of the art
SLAM techniques showing their consistency, computational cost and precision was given.

The computational cost of SSJS outperformed those of other submapping methods. Com-
parisons between the LMJ, DCS, HS, CIS and SSJS methods were made. Although similar
results are obtained in terms of consistency, all the techniques have a higher computational
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cost compared to SSJS. This is due to the map joining strategy and the global graph opti-
mization. These steps increase the computing time considerably in LMJ, DCS and HS, while
SSJS does not require a global optimization, with a consequent reduction in complexity. The
precision of SSJS is similar to that of other submapping strategies. The main reason for this
improvement is that not all maps are always fused, as happens with LMJ, DCS and HS.
LMJ fuses each submap with the global map, DCS fuses maps following a tree strategy,
and HS fuses maps when a loop is detected. All of them fuse maps without considering the
number of matches between them, which might not be enough to produce a proper update.
Sometimes only very few features overlap and they may not be the most reliable ones. In
addition, data association between maps may not be correctly solved due to the lack of
jointly compatible constraints. SSJS addresses this weakness by only fusing maps when the
amount of common information is large, thereby improving the �nal update and correctness
of the fused map. Only CIS performs slightly better that the proposed solution in terms of
consistency, but at a higher computational cost.
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Figure 3.6: Consistency test using the NEES statistical test.

Figure 3.7: Satellite image of the Victoria Park dataset (source: Google Earth). The GPS
data captured during the mission is drawn in grey, while the vehicle's estimated trajectory
is represented in black. The �nal submaps obtained with SSJS are also shown.
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Figure 3.8: Utility vehicle used to gather the Victoria Park dataset. The vehicle is carrying
the scanning laser sensor (vehicle left front) and the optical speedometer (left back wheel)
(source: [Guivant 2002b]).

Figure 3.9: Consistency test, where the dashed line represents the χ2 corresponding to each
step and the continuous line corresponds to the NIS.
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Figure 3.10: Computation demand comparison. Time consumption throughout the Victoria
Park dataset is compared for the MJ, DC, HS, CIS and SSJS methods.
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Feature base SLAM solutions only work properly when new observations can be correctly
matched with past information. Once a landmark is observed, it is necessary to deter-

mine whether it is observed for the �rst time or is already inside the map information. The
�rst time a landmark is observed, it is added to the map and will serve as a landmark to
relocate the vehicle and correct map information in the event of a second observation, in a
similar way humans relocate themselves when they are lost and �nd a known building, sign
or street. Therefore, being able to spot these associations is a key factor in solving the SLAM
problem. To correlate these observations it is necessary to characterise a landmark using
robust features. Therefore, not only matching, but also feature extraction is very important
for SLAM to work consistently. In this chapter, approaches to extract features from three
di�erent sensors are presented together with their matching approach. The performance of
these approaches is analysed through experimental validation.
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Figure 4.1: Example of a point feature based SLAM approach [Aulinas 2010c]. The image
shows the resulting map composed of point features representing trees, together with the
SLAM trajectory represented in a satellite image of the scenario.

4.1 Overview

The goal of SLAM is to build a map of an unknown environment while simultaneously de-
termining the location of the robot within this map. This task is still one of the fundamental
challenges of robotics and one of its main di�culties is the lack of robust and consistent land-
marks. Several methods use features to describe these landmarks and achieve the SLAM
purpose. These landmarks are used as references for the localization problem and as map
elements on the mapping problem. For instance, a point feature based SLAM solution was
presented in [Aulinas 2010c], as shown in Figure 4.1. In this speci�c experiment, a vehicle
equipped with a laser range �nder navigates a park full of trees, which are then represented
as point features. Other approaches like the one in Figure 4.2 propose a line feature based
SLAM approach [Ribas 2008b]. In this example, an AUV navigates an abandoned marina,
in which line features are the best choice to represent the boundaries between water and
land. Finding a proper representation for these features is a key factor in solving a feature
based SLAM problem. These features must be very robust, in order to ensure that the
same feature will be observed again once revisited. Associating a new observation with a
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Figure 4.2: Example of a line feature based SLAM approach [Ribas 2008b]. The image shows
the resulting map together with the dead-reckoning (dash-dotted line), GPS (dashed line)
and SLAM (solid line) trajectories represented in a satellite image of the scenario.

previously seen feature is the key to improving the vehicle's localization and the �nal map.
Instead, wrong associations would introduce divergences and inconsistencies in the results
and the consequent loss of the vehicle.

The aim of this chapter is to describe the computer vision algorithms used to extract
robust features and to detect objects using di�erent sensors on-board di�erent vehicles. For
instance, the utility vehicle used to acquire the Victoria Park dataset carried a laser range
�nder, the REMUS AUV uses a side-scan sonar as its main remote sensing device, and the
SPARUS is equiped with a down-looking optical camera.

4.2 Laser Range Finder Data

The Victoria Park dataset used to compare submapping methods in Chapter 3 contains laser
range �nder readings. This information explains the environment, which in this particular
case, is populated with many trees. A laser range �nder is similar to radar sensors in the
sense that they both provide range and bearing measurements (see Figure 4.3). Following
the same strategy presented in [Guivant 2002a], trees were described by point features in
the centre of the trunk (see Figure 4.4(b)) and then they were used as landmarks inside the
SLAM algorithm.
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Figure 4.3: Laser range �nder observation principle. The laser range �nder reads a number
of beams covering 180 degrees. In this example, the trunk of trees are within the laser's
range.

4.2.1 Feature Extraction

The data provided in the Victoria Park dataset contains one laser reading per second. This
per second reading is composed of 360 values corresponding to the range of a semicircular
measurement, i.e. the bearing resolution is half of a degree. The maximum range in this
data is around 80 meters, see Figure 4.4(a). The uncertainty of the measurement increases
with distance due to bearing inaccuracies, therefore, only trees within a certain range are
taken into account, i.e. further than 3 meters and no more than 40 meters. At this distance,
more than one laser beam hits the same tree generating a semicircular shape, as shown in
Figure 4.4(b). The strategy used here to de�ne an estimation of the trunk's centre point is
explained in Figure 4.5. This �gure shows a zoom in the region of a tree. In this case, one can
observe a sequence of laser beams, some reaching the range limit of 40 meters, while some
stop before because there is an object in its way. The two laser beams at the boundaries of
the object are emphasised in red. These are assumed to be tangent to the trunk's surface,
i.e., the circle. Therefore, the centre point of the trunk should be on the bisectrix between
these two lines (dashed black). The radius of the trunk is then estimated by �nding the cord
(dotted black) that connects the two outer most beams of the tree (in green). This cord is
assumed to be a �rst approximation of the trunk's diameter. The radius is then added to
the range of the tree's middle beam (in yellow).

4.2.2 Feature Matching

In order to associate those trees that are already part of the map with new observations,
the only information used is their global position (x, y) in the map. The radius of the tree
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(a) Top view of a laser scan (b) Zoom in on a object

Figure 4.4: Top view of a laser scan. a) This particular example contains several objects
that cut the laser beam producing a circular shape, as shown in b).

Figure 4.5: The trunk center estimate conceptual idea. The triangle on the bottom represents
the car's orientation.

was initially thought as a distinctive feature for each tree. After several trials, the radius
was discarded because it was not robust when observed from a di�erent point of view or
from di�erent heights. For this reason, existing data association algorithms from the liter-
ature were tested and used on this dataset. The simplest criterion to �nd an association
for a given measurement is the Nearest Neighbor (NN) method. NN is based on associating
pairs with the smallest Mahalanobis distance (See Figure 4.6(a)), based on their covariances.
The Mahalanobis distance normalises feature-landmark distances based on their covariance.
This approach performs properly when the distance between features is large. However, as
the vehicle keeps moving and the uncertainties grow (see Figure 4.6(b)), this method leads
to misclassi�cation because the most compatible pairing from a global point of view (i.e.,
taking into account all the features) is never recomputed. The JCBB algorithm [Neira 2001]
addresses this issue by considering the compatibility of all the pairings globally (see Fig-
ure 4.6(c)). JCBB is very robust because it considers relative locations between features,
but there is a higher computational cost associated with the number of pairings. This in-
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(a) NN (b) NN failure (c) JCBB

Figure 4.6: Data association examples: points represent landmarks, ellipses represent uncer-
tainty and arrows represent the association between landmarks. a) example of easy associa-
tion; the closest one is easy to identify using the NN algorithm; b) example of a ambiguous
situation with two possible associations of a single new observation, in this example it is not
clear which is the nearest neighbour; c) but if one zoom out and consider other points and
associations from a global point of view, then it becomes clear which are the right associa-
tions. This is an example of JCBB, where the ambiguity in b) is now solved by considering
global associations.

crease in cost is not a problem when building local maps because the number of features to
be associated is always limited by the local map size. However, data association is a critical
issue during map joining because map joining involves �nding correspondences between two
local maps. As the ambiguity increases the cost to solve the compatibility between the two
maps becomes very expensive. In order to limit the computation cost of the data association
between local maps, a RJC [Paz 2007a] algorithm was created. The RJC approach is a vari-
ant of the linear relocation used for global localization [Neira 2003]. RJC �rst identi�es the
overlap between two maps using individual compatibility (i.e., Nearest Neighbour). A set of
b overlapping features is then randomly selected and associated through JCBB. Associations
for the remaining features in the overlapping area are obtained using NN. This process is
repeated several times so that the probability of missing a correct association is limited.

4.2.3 Experimental Validation

The performance of this method was tested on the Victoria Park dataset. Figure 4.19 shows
several examples of circle approximation. In addition, Figure 4.1 shows a �nal map gen-
erated through SLAM automatically detecting the trees in the park. The data association
algorithm employed in this particular example was the JCBB, producing consistent associa-
tions all along the path. In addition, spurious detections, such as moving elements or noisy
measurements, were properly spoted by the JCBB due to its incompatibility from a global
point of view.
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(a) case 1 (b) case 2 (c) case 3

Figure 4.7: Examples of the performance of the extraction of the tree's center.

Figure 4.8: A side-scan sonar image example with �ve objects shown as bright spots with
their corresponding shadows.

4.3 Side-scan Sonar Imaging

This section describes an approach able to detect objects in side-scan sonar images on-board
an AUV. Side-scan sonar provides high resolution acoustic images in which an object appears
as a bright spot with a dark shadow trail (see Figure 4.8). In order to have a fast and robust
object detector, an approach which is based on the Viola and Jones solution [Viola 2001] is
proposed. In this approach a cascade of classi�ers is used to detect faces with high detection
rates. Following the same idea but for the detection of speci�c objects observed from a
side-scan sonar and with a proper feature selection, the detection is signi�cantly improved,
providing high detection rates and very low false positives. The performance of the detection
method is shown to be a proper input for the SLAM algorithm, providing a consistent map
and a correct vehicle localization.

The following sections describe the principles of the object detector approach for side-
scan sonar images. First, a initial approach is described. Then, a discussion on the best
suited features for side-scan sonar images is summarized. Afterwards, basic concepts related
to the detection process are introduced. Finally, the training procedure is brie�y described.
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4.3.1 Feature Extraction

Initially, the approach to object detection is based on preprocessing the image followed by
a threshold, as shown in Figure 4.9 [Aulinas 2010a]. First, a median �lter is applied to
remove the salt and pepper e�ect of the sea �oor (Figure 4.9(b)). Second, a low intensity
threshold is used to binarize the image and �nd shadows (Figure 4.9(c)). The resulting image
is run through the 'erode' morphological operation in order to magnify shadow sizes, while
at the same time joining small noise areas. In this way, only dark regions of a certain size,
which depends on the image range, are accepted as object shadow candidates (Figure 4.9(e)).
Third, the process is repeated for bright spots. A high intensity threshold is applied in order
to binarize the image and �nd highly re�ective metallic objects (Figure 4.9(d)). In order to
magnify these small spots, a 'dilate' is applied and these spots are selected as possible object
candidates (Figure 4.9(f)). Finally, only those areas with both shadow and metallic object
candidates are accepted as real objects (Figure 4.9(g)).

The Viola-Jones object detection framework is capable of providing competitive face
detection rates [Viola 2001]. It can be trained to detect a variety of object classes. The
Viola-Jones cascade of classi�ers introduces a new algorithm to construct a robust classi-
�er [Viola 2004]. They use Haar-like features which are really simple (see Figure 4.10), fast
and cheap to compute using the integral image. All these features rely on more than one
rectangular area. The value assigned to this rectangular area is the sum of the pixels within
clear rectangles subtracted from the sum of pixels within shaded rectangles. The advantage
of these features is that they are sensitive to vertical and horizontal changes. With the use
of the so called integral image, rectangular features can be evaluated in constant time. The
integral image at location x, y contains the sum of the pixels above and to the left of x, y
(see Figure 4.11). Using the integral image any rectangular sum can be computed as shown
in Figure 4.12. Therefore, properly selected Haar-like features encode the oriented contrasts
between regions in the image and give a quantity for the presence or absence of contrast
characteristics at a speci�c image location.

Features are usually more e�cient to process than having to process the whole intensity
image. In side-scan sonar images, objects are simple (see Figure 4.13), which means that they
can be described by using only few features. Moreover, the performance of the classi�er is
e�ected by the number of features. In order to improve this performance, a feature selection
is necessary. In this approach, two di�erent types of features have been used: Haar-like
features and the distance from the boundary of the object to its centroid. The advantage
of these features is their invariance when face with rotations, scale changes, intensity shifts
and translations.

In this proposal, rectangular shaped features are used. Although rectangle features are
of limited �exibility, they provide a rich image representation which makes them extremely
computationally e�cient. The rectangle is divided into two regions: a dark one on the left
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(a) original image

(b) image after median �lter

(c) high intensity threshold binary image (d) low intensity threshold binary image

(e) shadow candidates detection (f) bright spot candidates detection

(g) detection = shadows + bright spots

Figure 4.9: Example of automatic detection performance.
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Figure 4.10: Haar-like feature examples.

Figure 4.11: The value of the integral image at (x, y) is the sum of all pixels in the shades
area [Viola 2001].
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Figure 4.12: The sum of pixels within rectangle D can be computed as the combination
4 + 1− (2 + 3) of the integral images at points 1 to 4.

Figure 4.13: The left column shows real objects as seen in a side-scan sonar image. The
right column shows those Haar-like features best suited to train the sort of real object from
the left column.



70 Chapter 4. Feature Extraction and Matching

Figure 4.14: Comparison of the detection performance using di�erent features not suited for
side-scan sonar objects. These features do not distinguish between true and false positives,
due to the fact that the orientation from which they discriminate is not the one from the
objects in the side-scan sonar images. The integral image results for the positive training
sample are in red, and in blue the negative ones.

Figure 4.15: Comparison of the detection performance using di�erent features well suited
for side-scan sonar objects. These features produce proper distinction of true and false
positives. They are very similar to real objects in side-scan sonar images, but with di�erent
proportions.

and a bright one on the right. The proportion of each region is di�erent in each feature
(see Figure 4.13). The value of a two-region feature is the di�erence between the sum of
the pixels within the two regions. Figure 4.14 represents a set of features, some of them not
suited for the problem presented in this work. In contrast, Figure 4.15 shows a set of features
well suited for side-scan sonar objects. These plots represent the ability of the system to
distinguish between true and false positives [Aulinas 2011]. The system used to run these
tests is a single weak classi�er analysed using a di�erent feature in each case. Each plot is
for a speci�c feature and shows the value obtained for each training sample after computing
the integral image on the corresponding feature. After analysing di�erent feature shapes
and proportions, it seems that the most discriminative one is the one with the proportion 8
dark to 1 bright because the values obtained for the positive set (in red) are easily separable
from the ones obtained for the negative set (in blue).

Another signi�cant feature is the distance from the boundary of the object to its centroid,
as in [Atallah 2005]. This feature not only improves a classi�cation stage, but also the object
detection.
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Figure 4.16: Schematic depiction of the detection cascade.

4.3.2 Feature Matching: the Cascade of Classi�ers

A cascade classi�er is a sequence of simple classi�ers (see Figure 4.16 from [Viola 2004]).
The main idea behind a cascade classi�er is to detect and reject background information
quickly. The initial classi�er eliminates a large number of negative examples with very little
processing. As the detection goes deeper in the cascade, a higher number of features are
used to reject negative objects. Each layer has a strong classi�er which is composed of one
or more weak classi�ers. It tries to keep high detection rate in all the layers by decreasing
the threshold of the strong classi�er. Classi�ers and their relevant features are selected using
AdaBoost [Freund 1995].

4.3.3 Training Stage

A classi�er with more features produces higher detection rates and lower false positives.
However, using more features means a higher computational cost. For this reason it is
necessary to �nd a trade-o� between computational cost and detection rates. The optimal
solution for a SLAM problem would be to detect all existing objects in the scene, therefore a
detection rate of a 100% would certainly be optimal. However, forcing the system to detect
as many real objects as possible will introduce false detections. For the SLAM algorithm to
work properly, this false positive rate must be kept to a minimum because detecting a false
object could produce a wrong data association and its consequent inconsistencies in the map
and the localization. In addition, on-line SLAM solutions demand fast detectors, therefore
only a few features should be used.

From all these requirements, the main constraints to be met during the training process
are summarized in Table 4.1. As explained in Table 4.1, each layer tries to keep a high
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Table 4.1: Training constraints.
Cascade layer 1 2 3 4 ...
Detection rate 99.9% 99.7% 99.6% 99.5% ...
False positive rate 50% 20% 10% 5% ...
Number of features 1 2 6 11 ...
Cascade layer ... 5 6 7
Detection rate ... 99.5% 99.3% 99%
False positive rate ... 1% 0.5% 0.05%
Number of features ... 20 30 30

Figure 4.17: The side-scan sonar working principle.

detection rates while maintaining low false positive rates. In order to achieve this objective,
it is necessary to add more features to obtain a stronger classi�er. The detection rates are
determined by testing the current detector on a validation set. If the overall target false
positive rate is not yet met then another layer is added to the cascade.

4.3.4 Experimental Validation

The experiments were conducted on a real environment dataset. This dataset was acquired
with a REMUS-100 AUV. The sea �oor was populated with objects, rocks and other salient
features. The vehicle was carrying a side-scan sonar pointing both ways, starboard and port
(see Figure 4.17). This side-scan sonar acquired high resolution acoustic images, like the one
shown in Figure 4.8.

The cascade of classi�ers was trained with the feature type explained in Section 4.3.1.
This cascade algorithm was the one in charge of detecting the objects, rocks and other salient
features. For the training stage a data set of side-scan sonar image patches was used, some
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Table 4.2: Cascade Performance.
Cascade layer 1 2 3 4 ...
Detection rate 99.5% 99.3% 99.2% 99% ...
False positive rate 53% 6% 1% > 1 ...
Number of features 1 2 4 > 1 ...

of them containing an object (positive set) and the rest without (negative set). According
to the behaviour of the classi�er, it is recommended to use twice the amount of negative
samples than positive ones. In this case, 2000 positive objects and 5000 negative objects
were used. Initially the dataset was much smaller, but the performance of the system was not
satisfactory. The cascade only improved the false positive rate until a certain layer. Then
there was no further improvement, not even after increasing the number of features. For this
reason, it was necessary to generate more training images from the original ones by changing
their scale, their intensity and adding synthetic noise. This augmented dataset produced
better results. In addition, during the training stage, several false object detections were
removed from the dataset, changing and improving the cascade structure.

Notice that a di�erent set of side-scan sonar images was used to test the performance of
the proposed approach, giving the results in Table 4.2. These results show that the obtained
cascade is only useful until its fourth layer because further layers su�er an increase in the
false positive rate and in computational cost. This means that there is a chance of detecting
a false object every hundred observations, which could be a real issue for the SLAM problem.
For this reason, the JCBB was used to perform a double check on spurious observations.

4.4 Down-looking Optical Camera

AUV are gaining importance on intervention missions. In order to conduct such tasks au-
tonomously, it is necessary to have precise and accurate information about the scene. To
achieve this goal, computer vision algorithms are necessary to enable 3D reconstructions
from underwater imagery. These algorithms must extract robust features from underwater
imagery and perform reliable feature matching.

AUVs typically use acoustic sensors to gather data from the environment: echo sounder
or multi-beam echo-sounder, multi-beam imaging sonar, forward-looking imaging sonar and
side-scan sonar. However, the use of such acoustic devices does not give any intensity
information, which might be necessary on intervention missions to detect speci�c objects, or
might be useful when navigating through shallow waters.

The SPARUS AUV is equipped with a down-looking camera, as shown in Figure 4.18.
This camera acquires three frames per second, like the one shown in Figure 4.19(a). These
images contain regions of interest with salient features, as shown in Figure 4.19(b). These
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Figure 4.18: The working principle for the SPARUS down-looking camera.

(a) Original image (b) Salient features (c) SURF features

Figure 4.19: A underwater image and its salient features.

salient features will then be used as landmarks in SLAM. The idea behind the landmark
detection used for the SPARUS dataset is based on using two sources of information: 1) con-
text information to characterize the Region of Interest (RoI); and 2) features extracted from
these RoIs. Contextual information is obtained by segmenting the image into background
and RoI. Features extracted from RoI are computed by using common feature extractors
such as SIFT and SURF 4.19(c). This information is then used together with the topologi-
cal location of these landmarks to match new observations with known landmarks obtained
from previous observations. The method is evaluated through experimental validation on a
real unstructured underwater environment using the SPARUS AUV.

4.4.1 Feature Extraction

Features are selected to provide robustness when faced with a certain degree of distortion
so that the same point can be detected when observed from a di�erent point of view. The
feature extraction procedure is shown in Figure 4.21. The process starts with an image
preprocessing stage. Preprocessing consists of single channel selection, i.e., gray, followed
by non-uniform light correction and a normalization. These preprocessing steps are done
by common �ltering techniques, in this particular case the ones presented in [Gracias 2008]
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Figure 4.20: Three di�erent examples showing original images taken by SPARUS' camera
(top row) and its corresponding preprocessed image (bottom row).

are used. Results from this preprocessing step are shown in Figure 4.20. In addition,
lens distortion is corrected, using the calibration obtained with the well known Bouguet's
calibration toolbox [Bouguet 2009].

The second stage is focused on detecting RoIs within these images, i.e. segmenting
RoIs. In order to do so, two parallel segmentation lines are computed. Both are based on
common image processing operations. The �rst line starts with edge detection, producing the
binary image shown in Figure 4.21(b). Afterwards erode/dilate operations are conducted
joining regions and eliminating insigni�cant spots (see Figure 4.21(c)). The next step is
a region search within this black and white image producing the segmentation shown in
Figure 4.21(d). On the other hand, the second line uses the Hue channel (see Figure 4.21(e)).
The hue channel is a well known photometric invariant with respect to both shading and
highlights. It is the most invariant channel against illumination changes [Momchilova 2007].
This channel is then blurred in order to smooth the whole image. Afterwards, a threshold is
applied, giving the results shown in Figure 4.21(f)). This threshold is automatically selected
according to the mean value of the Hue image. Afterwards, a region search is conducted
producing the results shown in Figure 4.21(g). At this point both lines are fused, this is, a
RoI is selected through the intersection of both segmentations (see Figure 4.21(h)).

The third stage uses SURF features (see Figure 4.21(i)). Depending on the previous
stage, if a RoI exists then SURF features are extracted within this RoI and associated with
it. Otherwise, if no RoI was segmented, SURF features are extracted from the whole image
and stored according to the camera's pose from the moment they were extracted for further



76 Chapter 4. Feature Extraction and Matching

(a) Pre-processed image

(b) Edge detection (c) Erode/dilate (d) RoI-1

(e) Hue channel (f) Binary image (g) RoI-2

(h) RoI intersection

(i) SURF features

Figure 4.21: Procedure to extract regions of interest (RoI). The �nal selected RoI is the one
shown in red in (h) and its SURF features are shown in blue in (i).
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Figure 4.22: This example shows two di�erent observations of a rock. SURF features ex-
tracted from the ROIs are matched. The ones that match in both images are connected with
a line. The stone is observed from di�erent angles, i.e, rotated almost 90 degrees clockwise.

matching when the camera revisits the same area.

4.4.2 Feature Matching

The output of the feature extraction step is a set of keypoints with their features and
descriptors for every image. These features have to be matched. Traditionally, the cross
correlation between two image patches was used, but this metric is weak when faced with
slight rotations or scale variations. A common practice is to match these keypoints from
two separate images based on the similarity of their descriptors, i.e., the Euclidean distance
between descriptor vectors. This approach is inclined to �nd correct pairings, however, many
features will not have a match because they either belong to the background or they were not
detected in the second image. For this reason, SIFT and SURF matching algorithms use the
same distance together with a comparison of neighbouring features, making the matching
more robust.

The matching approach used in this work is as follows. First, map information is used to
obtain a �rst approximation of pairable candidates, meaning, the three-dimensional position
of a landmark and its uncertainty are the �rst constraint. Therefore, only new observations
whose uncertainty intersects with the known landmark's uncertainty are checked as possible
pairing candidates. Initially, only a few landmarks are in the map and their uncertainties
might be small, producing only one candidate. However, as the mission continues, more
landmarks are added to the map and uncertainties may be larger. At this point, more than
one pairing candidate will be found and more information is necessary to �nd the correct
match. Therefore, the SURF matching algorithm is used to discard false matchings (see
Figure 4.22).
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Figure 4.23: A subset images used to calibrate the camera on-board the SPARUS AUV.

4.4.3 Experimental Validation

Experiments were conducted on a sequence of images acquired by the down-looking camera
on-board the SPARUS AUV. This sequence was composed of 3199 frames of size 320× 240
pixels at a rate of 3 frames per second. Firstly, camera calibration parameters were obtained
using the sequence of images shown in Figure 4.23. Available images for calibration were con-
siderably noisy, producing large calibration uncertainty, such as about ten pixels uncertainty
for the principal point location. The calibration was used to correct lens distortion.

Secondly, RoIs and features where extracted from the sequence of frames, in this case
RoIs where found in 627 images (i.e., 19.6% of the whole set of images), which meant that
the greater part of the scenario was either �at or without landmarks. Thirdly, the match-
ing solution performance was evaluated through the SLAM performance; correct matching
produced proper map estimates.

4.5 Chapter Summary

In this chapter, three di�erent approaches to detect robust features were presented. The �rst
approach was dedicated to solving the detection of trees from laser range �nder readings.
Then, di�erent data association techniques were evaluated, reaching the conclusion that the
JCBB and the RJC are the most suitable for point feature based SLAM problems. JCBB is
very robust with a high computational cost when the number of parings is high, while the
RJC is much faster without loosing accuracy. In the second approach, a selection of fea-
tures that improved the detection of objects in side-scan sonar images was presented. The
method used the distance to the centroid and an accurate selection of Haar-like features.
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This object detection strategy was used to segment objects located on the sea �oor observed
through side-scan sonar. These objects were then used as landmarks for the SLAM prob-
lem. The third approach, presenting the idea behind feature extraction and matching on
optical camera images. The core of this approach relied on SURF feature extraction and its
corresponding matching algorithm. After analysing every approach separately, the results
performed satisfactorily. The detection methods were shown to provide high detection rates,
but notice that these tests were conducted o�-line, therefore they need further improvement
to become real-time solutions.
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This chapter presents experimental results obtained with two di�erent AUV: REMUS-
100 and SPARUS. The former carries a side-scan sonar as its main remote sensing

unit, while the later used a down-looking optical camera. Their corresponding motion and
observation models are presented in this chapter. Later on, their validation is presented
through the performance of the SSJS.

5.1 Overview
Submapping SLAM techniques demonstrate that using submaps both linearization errors
and computational cost can be addressed at the same time, by improving the consistency of
EKF SLAM [Castellanos 2007]. Only few of them have been tested in underwater scenarios
where some extra constraints have to be taken into account. Firstly, seabed sensing is limited
to either acoustics [Ribas 2008b] or near-�eld vision [Eustice 2008], because electromagnetic
waves are strongly attenuated in the water. Secondly, underwater scenarios are in general
unstructured and require 3D navigation (6-DOF motion), while most current SLAM solutions
are used on man-made (geometrically simple) indoor spaces where a 2D map representation
is su�cient. Therefore, the use of SLAM in AUV navigation requires further testing and
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Figure 5.1: Underwater Mosaicking example. This �gure shows the perspective view of two
mosaics used for the underwater navigation tests with original camera path reconstruction.
The small dots mark the 3D positions of the camera centres for the image set selected to
create the mosaic. The world referential is represented by the 3 perpendicular axes in the
upper right of the image [Gracias 2003].

improvement. On the other hand, one can �nd several projects that tackle the mapping
problem or propose map aided navigation solutions through the use of 2D mosaicks (see
Figure 5.1). Instead, the example given in Figure 5.2 produces 3D mapping and localization
by the means of structure from Motion (SFM) algorithms.

In this chapter, two good examples of underwater SLAM implementations are described.
The implementation of the SSJS on two di�erent AUV is detailed and the results are de-
scribed.

5.2 SSJS on a REMUS-100 AUV

The AUV REMUS-100 in Figure 5.3 was used to gather experimental data. REMUS-100 was
equipped with a Doppler Velocity Log (DVL) and an Inertial Measuremet Unit (IMU), giving
navigation data relative to the vehicle's reference frame such as velocities, orientations and
depth. In addition, the vehicle was carrying a side-scan sonar pointing both ways, starboard
and port. From the navigation information provided by the sensors, the vehicle's state can
be de�ned by a 9-vector composed of the 6-DOF vehicle's pose xV = (x y z φ θ ψ)T and
the vehicle's frame linear velocities (vx vy vz)T.

The map was composed of objects, rocks and other detectable features, especially manta
type underwater mines. Therefore, this approach could be useful on MCM applications. The
features' state is de�ned as a 3D points xl = (xli yli zli)

T. Notice that the 3D point of an
object represents the gravity centre of the object. These features are extracted from side-
scan sonar images. In addition to feature information, side-scan sonar provides a measure
of altitude, i.e. distance from sensor to seabed ds−s. This distance is stored in the state
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Figure 5.2: Example of 3D reconstruction by means of Structure from Motion algorithms.
These plots show two di�erent views of positions and structure for the JHU tank. The
camera positions are connected by a red line. A Delaunay triangulation interpolates a
surface between the 3D feature points. The structure is color-coded according to height.
Units are in meters [Pizarro 2004].

Figure 5.3: REMUS 100 and some of the on-board sensors. The vehicle's reference frame is
also illustrated in the image.
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vector and used to give a �rst estimate of the landmark's depth. Notice that the seabed
where this mission took place was considerably �at, i.e. planarity assumption gives a �rst
landmark's depth estimate. The joint state vector estimate x̂ for this experiment contains
both the vehicle's state and map information, as shown in Equation (5.1).

x̂ = (xV yV zV φV θV ψV vx vy vz ds−s... (5.1)
... xl1 yl1 zl1 ... xli yli zli ... xln yln zln)

T

5.2.1 Motion Model

The motion model for REMUS-100 is a 6-DOF constant velocity kinematics model as shown
in Equation (5.2). Where xk−1Rxk is the rotation matrix necessary to go from instant k− 1
to instant k (as explained in Appendix A) and dt is the time increment from step k − 1 to
step k.

xk = f(xk−1,uk) =
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vz,k




=




xk−1Rxk



vx,k−1dt

vy,k−1dt

vz,k−1dt


 +



xk−1

yk−1

zk−1




φk−1

θk−1

ψk−1

vx,k−1

vy,k−1

vz,k−1




(5.2)

This motion model f(xk,uk) is a non-linear function, thus it needs to be linearized in
order to �t the linearization assumption of EKF. The linear version is denoted by Fk and is
computed by taking the jacobian of f(xk,uk), as in Equation (5.3).

Fk =
∂f
∂x

∣∣∣∣
xk−1

(5.3)

5.2.2 Observation Model

Through sensors on the REMUS-100, measurements for the vehicle's orientation, linear
speeds, depth, altitude (seabed's depth), and salient feature positions are obtained (see Fig-
ure 5.4). Each sensor has its own measurement model. An observation model gives the
predicted sensor measurement from the last known position. The observation model is rep-
resented by the non-linear function ẑk = h(xk) and its linearized version Hk. Equation (5.4)
shows a full observation model, i.e. all the sensors giving measurements at the same time.
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Hk =
∂h
∂x

∣∣∣∣
xk

=




Hk,o

Hk,v

Hk,d

Hk,ds−s

Hk,s




(5.4)

IMU gives the vehicle's rotation measurements in its three axis. The vehicle's heading,
i.e., yaw angle ψ, is given with respect to magnetic north. Therefore, a heading o�set
is stored and subtracted from each heading measurement in order to avoid its bias. The
observation model Hk,o, Equation (5.5), is the one used to relate orientation observations
with the state vector. Notice that the �rst three columns correspond to (x y z) of the vehicle,
the second three columns are orientations (φ θ ψ) of the vehicle, then the next three columns
are velocities (vx vy vz) and the tenth column corresponds to the distance from the vehicle
to the seabed ds−s. After that, the observation matrix is dimension so that it contains as
many zeros as landmark variables, i.e. three zero columns for each landmark n in the state
vector.

Hk,o =
[
03×3 I3×3 03×3 03×1 03×3n

]
(5.5)

IMU measurement noise Ro is represented by IMU's uncertainty, as in Equation (5.6).

Ro =



σ2

IMUφ
0 0

0 σ2
IMUθ

0
0 0 σ2

IMUψ


 (5.6)

DVL produces velocity measurements in the three axis of the vehicle. The observation
modelHk,v, Equation (5.7), is necessary to relate velocity measurments with the state vector.
Again, the matrix is adapted to the dimension of the state vector.

Hk,v =
[
03×3 03×3 I3×3 03×1 03×3n

]
(5.7)

DVL measurement noise Rv corresponds to DVL's uncertainty on each axis, as shown in
Equation (5.8).
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Rv =



σ2

DV Lx
0 0

0 σ2
DV Ly

0

0 0 σ2
DV Lz


 (5.8)

Depth measurments are obtained through pressure sensor. This depth corresponds to
the vehicle's z value and its corresponding observation model is given in Equation (5.9). Its
associated variance is used as measurement noise, Equation (5.10).

Hk,d =
[

0 0 1 01 01×3 01×1 01×3n

]
(5.9)

Rd = σ2
pressure (5.10)

The side-scan sonar sensor provides information from which 2D points corresponding to
a landmark's centroid are extracted. See Figure 5.4 for a better comprehension of these
2D points. A 2D point lays on the YZ plane from the vehicle's axis and is de�ned by
the horizontal distance between the vehicle's reference frame and the object's centroid in
the y component and by the vertical distance between the vehicle and the seabed. As the
vehicle's reference frame is rotated and translated with respect to the world frame, the
transformation WTV is used. Therefore, the observation model Hk,s is the linearization
of this transformation, as shown in Equation (5.11). Notice that in this case, all columns
corresponding to landmarks are �lled with zeros, except for the three columns corresponding
to the landmark in the state vector that is now being reobserved.

Hk,s =
[

∂WTV
∂xV 03×3 0 ... ∂WTV

∂xl ... 0
]

(5.11)

The uncertainty of a side-scan sonar observation is used to de�ne the landmark's mea-
surement noise Rs, as in Equation (5.12).

Rv =



σ2

sonarx 0 0
0 σ2

sonary 0
0 0 σ2

sonarz


 (5.12)

Finally, the side-scan produces an estimate of the vehicle's altitude, i.e. the distance
from the vehicle to the seabed. This distance is stored in the state vector in its tenth
row, therefore, its observation model Hk,ds−s corresponds to the one in Equation (5.13).
Its measurement noise Rds−s is represented by the side-scan sonar uncertainty in its range,
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Figure 5.4: A schematic representation of the side-scan sonar measurement procedure.

Equation (5.14).

Hk,ds−s =
[

0 0 −1 01×3 01×3 1 01×3n

]
(5.13)

Rds−s = σ2
sonarz (5.14)

5.2.3 Experimental Validation

The vehicle was sent underwater to perform a recognition mission. During the mission, the
vehicle navigated a large surface, about 300m × 400m. The whole navigation consisted of
a large number of loops, i.e. revisiting the same area several times. The vehicle's depth
was almost constantly around 12 meters �rst and around 14 meters later on, while the sea
�oor with respect to the water surface was slightly oscillating at a depth around 16 meters.
This scenario's sea �oor was considerably �at but with several salient objects. The total
navigation time was almost 4 hours. The experiment was conducted to gather data but not
to run the experiment on-line 1 during the mission. The data was post processed and run
through the SSJS algorithm, producing the results shown in Figure 5.5. This �gure presents

1Experiments were conducted o�-line as the system was all implemented in Matlab. However, for real
purposes the most critical issue should be the computational e�ort, which could be addressed by optimizing
the code for any speci�c on-board computer.
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Figure 5.5: Plot of the execution at a certain step during the mission. Top-left: side-scan
image with several detected objects. Bottom-left: 3D plot of the map and the trajectory of
the vehicle. Top-right: XY top view of the map and trajectory. This plot shows the submaps
in di�erent colours, together with their corresponding landmarks and uncertainty ellipses.
Bottom-right: XZ frontal view of the execution. In this plot, it is easy to see that the vehicle
had been navigating at around 12 meters, then went to the surface and dived back to around
14 meters.

the object detection performance (top-left), while the other three plots show di�erent views
of vehicle's trajectory and submaps that were generated until that speci�c time step.

Map consistency is shown qualitatively in Figure 5.6. This �gure compares the trajectory
given by dead reckoning to the one obtained by SSJS and LBL. LBL provides an accurate
positioning of the vehicle, therefore it can be considered as a reference. Notice that the SSJS
SLAM approach clearly improved dead reckoning results.

Another example that shows the consistency of the approach is shown in Figure 5.7.
Figure 5.7(a) shows that the discrepancy between LBL and SSJS is always kept inside the
uncertainty boundaries, which means that the �lter will not cause divergences due to overcon-
�dence. Figure 5.7(b) shows an example of an overcon�dent estimation of this discrepancy,
which will lead to inconsistencies [Aulinas 2010b]. This overcon�dence appeared in simula-
tions with larger submaps, and was an expected result, as with large submaps the approach
tends to become a standard EKF.
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Figure 5.6: Short paths of the vehicle's trajectory are compared. These trajectories are
obtained by means of an LBL, dead reckoning and our SSJS SLAM. The �gure shows a clear
improvement when using our SSJS SLAM compared to dead reckoning.

5.3 SSJS on the SPARUS AUV

The second set of experiments presented in this chapter were conducted in a real unstructured
underwater environment using the SPARUS AUV (see Figure 5.8). SPARUS was developed
with the purpose of participating in the Student Autonomous Underwater Challenges �
Europe (SAUC-E) competition. SPARUS won the 2010 SAUC-E edition. Since then, the
vehicle has been on several mission. On of them was a survey mission, which was then used
to validate the SLAM algorithm presented in this work.

SPARUS is equiped with several sensing devices: a DVL, an IMU, a down-looking camera,
a forward-looking camera, an imaging sonar and a GPS (see Figure 5.9). In this work, only
the DVL, the IMU and the down-looking camera are used, producing information about
velocities, orientations and the sea �oor. The vehicle's state vector for SPARUS is de�ned in
the same way as presented for the REMUS-100, a 9-vector composed of the 6-DOF vehicle's
pose xV = (x y z φ θ ψ)T and the vehicle's frame linear velocities (vx vy vz)T. However, in
this case, the vehicle is very stable in roll and pitch thanks to the three thruster design, which
means that the vehicle could be de�ned by using only 4-DOF, meaning that the vehicle's
pose could be xV = (x y z ψ)T. Despite the possibility of simplifying the state vector,
provided that the IMU gives measurements for the three orientations, the vehicle's state
vector was �nally chosen to be like the one for REMUS-100, as described in Section 5.2.

The vehicle's reference frame is set according to Figure 5.10 representation. Figure 5.9
shows the position of each sensor within the vehicle, giving an idea of rotations and trans-
lations necessary to bring all measurements to a common reference frame.
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(a)

(b)

Figure 5.7: a) An example of con�gurations for the SSJS approach, where the discrepancy
between the LBL and SSJS (solid line) and the uncertainty boundary (dotted line) are drawn.
a) consistent example; b) inconsistent example.

Figure 5.8: SPARUS vehicle.
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Figure 5.9: SPARUS 3D model with its sensors.
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Figure 5.10: SPARUS 3D model with its reference frame, together with world frame (W).
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5.3.1 Motion Model

A 6-DOF motion model for SPARUS corresponds to the one presented in Equation (5.2).
For a simpler modelling of the vehicle's kinematics, hereafter a 4-DOF model is described
in Equation (5.15). As this is a non-linear model, it is necessary to compute its Jacobian in
order to linearize it, as in Equation (5.3).

xk = f(xk−1,uk) =




xk

yk

zk

ψk

vx,k

vy,k

vz,k




=




xk−1 + vx,k−1dtcos(ψk−1)− vy,k−1dtsin(ψk−1)
yk−1 + vx,k−1dtsin(ψk−1) + vy,k−1dtcos(ψk−1)

zk−1 + vz,k−1dtψk−1

vx,k−1

vy,k−1

vz,k−1




(5.15)

5.3.2 Observation Model

The map is represented by point features extracted from optical images. The pinhole model
[Hartley 2000] is a common model used to project points in the scene onto the image plane.
A Euclidean representation is commonly used to represent a 3D point p in the scene, i.e.
p = (X, Y, Z)T. The basic principle of this model is shown in Figure 5.11. In this �gure,
an image plane I is located at a distance f from the optical center c = (xc, yc, zc) of the
camera on its z axis. This distance f is known as focal length. The projection of p on the
image plane p' is the intersection of plane I and the ray that connects the camera center
c with point p. From the point of view of the image plane (see Figure 5.11(b)), image axis
are (u, v) and the camera's axis are the ones corresponding to the principal point c', also
referred as (u0, v0). Mathematically speaking, the projection of p is obtained by using the
projection matrix K, as in Equation 5.16.

p' = Kp (5.16)

K is the so-called calibration matrix, Equation (5.17), which contains information about
focal length f , principal point coordinates (u0, v0), distortion parameters ku, kv, and pixel
skew s. The skew parameter generally equals zero.

K =



fku s u0

0 fkv v0

0 0 1


 (5.17)

Therefore, mapping a 3D point onto the image plane in homogeneous coordinates is
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(a) Pinhole camera geometry. (b) Image plane.

Figure 5.11: Pinhole camera model. c is the optical center and c' is its corresponding
projection onto the image plane, known as principal point (u0, v0). p is a 3D point in the
scene, whose projection onto the image plane is p' [Hartley 2000].

Equation (5.18):



xp'
yp'
zp'


 =



fku 0 u0 0
0 fkv v0 0
0 0 1 0







X

Y

Z

1




=




fkuX + u0Z

fkvY + v0Z

Z


 (5.18)

Equation (5.18) presents the mathematical model used to project a 3D point onto the
image plane, but in reality one might need to compute the inverse of this operation. A
2D point p' is known on the image plane, in pixel dimensions. Therefore, a parametriza-
tion able to encode p' into a 3D point p in metrics is necessary. In this case, instead
of using a common Euclidean representation of a 3D point, i.e. xl = (xl, yl, zl), the in-
verse depth parametrization presented by [Civera 2008] is used. Hereafter, the inverse depth
parametrization principle is introduced, as was done by the authors.

The inverse depth parametrization is de�ned by a 6-vector composed of xl =
(xc1 , yc1 , zc1 , αc1 , βc1 , ρc1)

T. This parametrization encodes the ray from the camera posi-
tion from which the feature was �rst observed, this is, the optical center (xc1 , yc1 , zc1), and
the azimuth αc1 and elevation βc1 , as shown in Figure 5.12. In this �gure, point pi in the
scene can be computed from point p'i on the image plane by using Equation (5.19).

pi =




Xi

Yi

Zi


 =




xc1

yc1

zc1


 +

1
ρc1

m(αc1 , βc1) (5.19)

where m(αc1 , βc1) is a unit vector pointing azimuth α and elevation β with respect to
the world, Equation (5.20).
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Figure 5.12: A schematic representation of the inverse depth parametrization. m is the unit
vector that points from the optical center c to the 3d point p, with a certain azimuth and
elevation with respect to the world frame.

m(αc1 , βc1) = (cosαc1sinβc1 − sinαc1 , − sinαc1 , cosαc1cosβc1) (5.20)

Being a monocular system, no depth information can be retrieved, therefore, one should
expect that a 3D point p lays on the ray but without any knowledge of its distance dc1 to
the optical center c. Using inverse depth parametrization, the inverse of this distance is �rst
initialized with ρc1 , together with its uncertainty, and then, as the same point is reobserved,
it is corrected.

Using this point parametrization, the observation model Ch can be de�ned as in Equa-
tion 5.21, where CRW and CrW are the rotation and translation to map components from
world frame to camera frame.

Ch =




Xi

Yi

Zi


 =C RW


ρc1







xc1

yc1

zc1


−C rW


 +m(αc1 , βc1)


 (5.21)

Ch codes a point from the world to the camera in metric dimensions. In order to have this
point projected on the image plane in pixel dimensions, it is necessary to use a normalized
pinhole model as in Equation (5.22). With this equation, an estimate of a point that was
in the map can be projected onto the current image plane, therefore it can be associated to
current observations.

h =

(
u

v

)
=

(
fku

Xi
Zi

+ u0

fkv
Yi
Zi

+ v0

)
(5.22)
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In the event of a new observation that is not associated with any existing landmark, it is
necessary to initialize this observation in the state vector, meaning, a 2D point on the image
plane p'n = (un, vn) must be transferred to world coordinates by means of inverse depth
parametrization, i.e. pn = (W cx

W cy
W cz

Wαp
Wβp

Wρp)T. This parametrization contains
the current camera position with respect to the world frame (W cx

W cy
W cz). Azimuth and

elevation are obtained following the idea shown in Figure 5.12. First, the camera frame is
rotated using WRC to match the world frame, Equation (5.23).




W p′x
W p′y
W p′z


 =W RC




un

vn

1


 (5.23)

Afterwards, Wαp and Wβp are computed as in Equation (5.24).




Wαp

Wβp


 =




arctan
(
W p′x, W p′z

)

arctan
(
−W p′y,

√
W p′2x +W p′2z

)


 (5.24)

According to [Civera 2008], an initial value for ρp = 0.1 is appropriate. The linearization
of this motion model is obtained by taking its Jacobian.

5.3.3 Experimental Validation

Experimental validation is done through the data acquired by SPARUS during a survey
mission. The mission consisted of navigating an area of about 20m × 20m, in a grid of
5m×5m. The vehicle's depth was almost constantly around 17 meters. The total navigation
time was about 17 minutes. The vehicle carried a down-looking camera that acquired a total
of 3199 images. Experimental results obtained with the SSJS approach show that there is a
signi�cant improvement for trajectory estimate using SSJS as compared to dead reckoning
(see Figure 5.13).

Automatic detection of features provides robust features. Features are considered to
be robust if they can be identi�ed even when observed from di�erent points of view and
orientations. However, these features are very few and widely spaced, which is positive for
the data association, but not interesting if one wants to test the performance of SSJS. If
the scenario contains only a few landmarks, it is not worth using submaps. Figure 5.14
shows the trajectory and map information obtained using automatic feature extraction, as
presented in Section 4.4. In this �gure, every 3D point in the map has been associated with
its texture patch in order to give an idea of extracted RoI.

In order to test the performance of SLAM using submaps, a subset of random 2D points
where extracted from a mosaic of the scene (see Figure 5.15). These 2D points were then
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(a) Dead reckoning (b) SSJS

Figure 5.13: A 3D view of the vehicle's trajectory. In a) one can observe the drift su�ered
during the mission, as the ending point is far from the starting point, while in b) this drift
has been corrected by the means of SSJS.

Figure 5.14: Top view of trajectory and texture patches of regions of interest.
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Figure 5.15: A 2D Mosaic of the scenario with 2D random points.

back referred to the image to which they belonged. This subset of points was used instead
of automatically detecting RoI and features.

The performance of SSJS using this set of points is shown in Figure 5.16. Figure 5.16
shows a sequence of 5 frames containing �rst one landmark and later on two landmarks. In
addition, the uncertainty projected on the image plane is drawn.

Figure 5.17 presents a top and a frontal view of the resulting map and trajectory. In
these views, one can see the vehicle's trajectory corrected with SSJS and the landmark's
location, as well as its associated uncertainties. Finally, �gure 5.18 shows a 3D plot of these
results.

5.4 Discussion
The main contribution of this chapter is a 6-DOF implementation of SSJS for underwater
vehicles. In addition, motion and observation models are detailed in this chapter. First, the
6-DOF motion model for REMUS-100 AUV is provided, together with an observation model
for side-scan sonar sensors. Experiments done with real data show a bounded e�ect of the
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Figure 5.16: A sequence of down-looking camera frames. in yellow (x) a new observation and
its associated measurement uncertainty. In red (+) the prediction of a landmark that was
already in the map and the projection of its associated uncertainty onto the image plane.
One can observe a reduction of uncertainty with the new observations.

linearisation error and also a precise reconstruction of the map since the drift su�ered in
shorter distances is smaller and the data association can be more robustly solved. The second
part of this chapter, describes an alternative 4-DOF motion model that could be used on
SPARUS AUV. However, after several tests and provided that measurements for 6-DOF are
available, the �nal motion model for SPARUS was chosen to be like the one for REMUS-100.
Also, the observation model for a down-looking optical camera was introduced. This model
is based on inverse depth parametrization. Experiments conducted in a real unstructured
environment demonstrated that SSJS improves the vehicle's trajectory as compared to dead
reckoning. Moreover, SSJS combined with inverse depth parametrization was capable of
producing a three-dimensional map.

The main bene�t of the system is the capacity to produce consistent maps of larger size
than the maps that could produce a standard EKF base method. This bene�ts arise from
the fact that subdividing the whole problem into small regions reduce the computational
cost and the uncertainty at the same time. Reducing the computational cost means being
closer to real time solutions. Reducing the uncertainty means being able to navigate larger
distances with a higher level of con�dence. Therefore, the use of such systems on real vehicles
shows a promising future.
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(a) (b)

(c) (d)

Figure 5.17: Di�erent views of the results produced by SLAM. a) and b) show a top view,
while c) and d) present a frontal view. On the left, landmark uncertainties are drawn, while
on the right, only the landmark is shown.



100 Chapter 5. Underwater SLAM

Figure 5.18: A 3D plot of the SLAM solution.
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This chapter presents the conclusions and future possibilities opened by this work. First,
the contents presented in each chapter are summarized. The scienti�c contributions of

this PhD thesis are discussed. Further work and future perspectives are discussed. Finally,
the list of publications related to this work is presented as well as scienti�c collaborations
conducted during this thesis preparation.

6.1 Conclusions
This thesis focused on developing new techniques to tackle the issues related to the problem
of SLAM. Over the last two decades this topic has been widely investigated but still remains
as an unsolved problem. Several approaches exist, some of which produce consistent maps
and precise localization but at a very high computational cost, i.e., optimization techniques,
such as bundle adjustment. Others produce suboptimal solutions which converge on short
missions but show several issues when dealing with large missions. These techniques were
reviewed in Chapter 2. Most SLAM approaches work under gaussianity assumptions, i.e.
noise is described using Gaussian distribution. This noise produce uncertainty, thus �ltering
techniques are necessary. In the �rst part of Chapter 2, a survey of common �ltering tech-
niques was presented, giving pros and cons, justifying the decision of using an EKF based
SLAM. The EKF was chosen because it converges and can handle uncertainties. However,
on large mission, the computational cost increases with the size of the map and lineariza-
tion errors accumulate, which means that the solution could become inconsistent. For this
reason, several researchers address this issue by using submaps.

Chapter 2 also surveyed existing submapping approaches and presented a comparison
table, reaching the conclusion that the use of submaps is appropriate to reduce computational
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costs and increase consistency. The survey focused on underwater SLAM solutions. The
main conclusion for this section was that most of the approaches use an EKF based SLAM
with point features from acoustic images. However, optical cameras are gaining interest
due to the fact that they provide texture information, which might be necessary during
intervention missions. Regardless of the sensor, SLAM algorithms require features in order
to build the map. Therefore, feature extraction and matching algorithms are necessary, and
a survey of underwater imaging approaches was presented in order to �nd which would be
the proper feature extraction technique and which would be the proper feature matching
approach. This section reviewed underwater imaging for two di�erent sensors: a side-scan
sonar and an optical camera. The reason the review was limited to these two sensing devices
was the fact that these were the sensors on-board available vehicles. The main outcome of
this chapter was the decision to focus e�orts on the research of an EKF submapping based
SLAM for autonomous robots.

Research conducted in this work produced the approach presented in Chapter 3. The ap-
proach proposed was called SSJS. SSJS uses an EKF to build submaps and a novel strategy
to fuse them, which consists of deciding whether to fuse two independent maps, depending
on the amount and the quality of the information they share. This chapter presented �rst
the theoretical background behind an EKF. Afterwards, SSJS was described step by step.
Finally, synthetic and real experiments were presented. Real experiments were conducted
using the Victoria Park dataset. In addition, a comparison between state of the art submap-
ping approaches and SSJS was presented in order to asses the performance of SSJS. These
results demonstrated that SSJS produces convergent and consistent results, allowing us to
go on and test the method on other vehicles. In this case, available vehicles were two AUVs:
REMUS-100 and SPARUS. The former was carrying a side-scan sonar, while the later was
carrying a down-looking optical camera. Both sensors acquired information from the sea
�oor, which needed to be processed in order to extract features for the SLAM.

Chapter 4 presented imaging algorithms used to extract and match features for three
di�erent cases: the Victoria Park dataset (taken from ACFR), the REMUS-100 dataset
(gathered at OSL) and the SPARUS dataset (acquired at VICOROB). The �rst dataset
contained laser range �nder readings from a park populated with several trees. For the
Victoria Park dataset, an approach capable of extracting point features from the laser range
�nder was presented. Each point feature corresponded to the centre of a tree. In addition,
data association algorithms were summarized and compared, reaching the conclusion that
the JCBB and the RJC are the most appropriate for this kind of scenario. For the second
dataset, two approaches to detecting objects in side-scan sonar images were presented. The
�rst approach used thresholds and common morphological operations to extract bright spots
and shadows. The second approach used machine learning techniques, more precisely, the
Viola and Jones approach, which was initially designd to detect faces. In this case, the
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algorithm was trained to detect objects that appear in side-scan sonar images, i.e. manta
type mines. For the SPARUS dataset, computer vision algorithms were presented. These
algorithms can tackle the issues caused by underwater artifacts (distortion, back-scattering
and non-uniform light conditions). Salient features were extracted by segmenting RoIs and
SURF features. The results for each sensor were presented through experimental validation.
All of them were capable of extracting features with high rate detection and a low rate of
false positives.

Chapter 5 presented SSJS results for the REMUS-100 and the SPARUS using feature
extraction and matching approaches presented in Chapter 4. Motion and observation models
were described for the REMUS-100 AUV, later on the performance of SSJS was analysed.
This performance was shown to be consistent and produced a convergent solution. Moreover,
observation and motion models were described, but this time only for SPARUS. In this case,
the observation model used was based on inverse depth parametrization. Despite a signi�cant
amount of noise in the sequence of images, SSJS performed consistently.

6.2 Contributions

The main contributions of this thesis are:

• A novel SLAM strategy based on dividing the whole scenario into several submaps.
Although the method is similar to other state of the art techniques, it introduces the
idea of deciding when to fuse two maps and when to leave them independent.

• A robust SLAM framework suitable for any autonomous platform. The core is an
EKF based SLAM algorithm which takes advantage of sensor fusion to provide robust
localization and map estimates.

• This thesis demonstrates the integration of several sensor systems and SLAM to provide
reliable estimates of large scenes.

• The approach is validated with synthetic experiments. Large scale results are consistent
and shown to be close to ground truth. Afterwards, the approach is also validated using
the well known Victoria Park dataset [Guivant 2000a]. Our results were compared to
those produced by state of the art approaches. This comparison showed that SSJS is
consistent and its computational cost does not grow exponentially.

• Once the performance of the approach was tested and validated, it was adapted to
underwater vehicles equipped with di�erent sensors. These were a side-scan sonar used
on a REMUS AUV and optical imagery on the SPARUS AUV. Both implementations
produced consistent maps and accurate vehicle localization.
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• Underwater imaging algorithms for underwater object detection and matching were
presented, performing at a high detection rate and a low false positive rate.

6.3 Future work
Short term perspectives

• The approach presented in this work was compared using a 3-DOF example. After-
wards, the proposed approach was adapted to 6-DOF models in order to be tested
on underwater vehicles. It would be interesting to compare di�erent approaches with
these 6-DOF models, so, this remains as immediate future work.

• It would be very useful to optimize the code by coding it into C++ or any other
language that could suit the on-board computers of any given vehicle.

Long term perspectives

• It is worth mentioning that there is a very recent trend to use multiple target tracking
with Probability Hypothesis Density (PHD) �lters. This seems to be a good mathe-
matical background that could solve data association issues. In fact, within VICOROB
there is a student currently conducting a PhD on SLAM focusing on the use of PHD
�lters.

• Another interesting point arises from the increase of computational capabilities,
namely, optimization techniques, such as bundle adjustment based approaches and
SFM approaches. These are now gaining interest within SLAM community.

• In terms of sensing devices, the use of stereo optical cameras would be very interesting
in order to produce better three-dimensional landmark estimates and a denser map
reconstruction.

• It would be interesting to integrate SSJS into other AUVs, such as ICTINEU and
Girona-500 from VICOROB.

6.4 Publications and Scienti�c Collaborations
The work developed in this thesis has produced three (one under review) journal publica-
tions and several contributions to international conferences. Contributions are presented in
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the following list. Finally, scienti�c collaborations made during the thesis preparation are
summarised.

Journal papers:

• Y. Petillot, F. Maurelli, N. Valeyrie, A. Mallios, P. Ridao, J. Aulinas, J. Salvi,
"Acoustic-based techniques for AUV localization", Journal of Engineering for Mar-
itime Environment, 224(4): 293�307, 2010.

• J. Aulinas, J. Salvi, X. Lladó, Y. Petillot, "Local map update for large scale SLAM",
Electronic Letters (ELT), 46(8), 564�566, 2010.

• J. Aulinas, J. Salvi, X. Lladó, Y.R. Petillot, J. Batlle, "Selective submap joining in Si-
multaneous Localization and Mapping", Robotics and Autonomous Systems, in prepa-
ration, 2011.

Conference papers:

• J. Aulinas, J. Salvi, X. Lladó, Y. Petillot, J.J. Serrano, "Feature extraction for vi-
sual SLAM based 3D reconstruction", IEEE/OES Oceans Conference, OCEANS'11,
Santander (Spain), June 6-9, 2011.

• J. Aulinas, Y. Petillot, X. Lladó, J. Salvi, "Vision based underwater SLAM for the
SPARUS AUV", 10th Conferenece on Computer Applications and Information Tech-
nology in the Marine Industries, pp. 171�181, COMPIT, Berlin (Germany), May
2-4, 2011.

• J. Aulinas, A.Fazlollahi, J. Salvi and X. Lladó, "Robust automatic landmark detection
for underwater SLAM using side-scan sonar imaging ", 11th International Conference
on Mobile Robots and Competitions, ROBOTICA, pp. 22�27, Lisboa (Portugal),
April 6-10, 2011.

• J. Aulinas, C.S. Lee, J. Salvi, Y. Petillot, "Submapping SLAM based on acoustic
data from a 6-DOF AUV", 8th IFAC Conference on Control Applications in Marine
Systems, IFAC/CAMS, Rostock-Warnemünde (Germany), September 15-17, 2010.

• J. Aulinas, x. Lladó, J. Salvi, Y. Petillot, "Selective Submap Joining for underwater
Large Scale 6-DOF SLAM", IEEE/RSJ International conference on Intelligent Robots
and Systems, IROS, pp. 2552-2557, Taipei(Taiwan), October 18-22, 2010.

• J. Aulinas, X. Lladó, J. Salvi, Y. Petillot, "Feature based SLAM using Side-Scan salient
objects", MTS/IEEE Oceans conference, OCEANS'10, Seattle (USA), September
20-23, 2010.
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• J. Aulinas, X. Lladó, J. Salvi, Y. Petillot, "SLAM base Selective Submap Joining for
the Victoria Park Dataset", 7th IFAC Symposium on Intelligent Autonomous Vehicles,
IFAC/IAV, Lecce (Italy) September 6-8, 2010.

• J. Aulinas, X. Lladó, Y. Petillot, J. Salvi, "Independent Local Mapping for Large-Scale
SLAM", Proceedings of the 4th European Conference on Mobile Robotics, ECMR'09,
Dubrovnik (Croatia) September 23-25, pp. 67-76, 2009.

• J. Aulinas, "Submapping and Hierarchical SLAM: Selective Submap Joining SLAM",
Workshop on Stochastic Filtering, Smoothing and Estimation for Multi-Sensor Target
Tracking and Data Fusion, ICMS, Edinburgh (Scotland) November 9, 2009.

• J. Aulinas, Y.R. Petillot, J. Salvi, X. Lladó, "The SLAM problem: a survey",
11th International Conference of the Catalan Association for Arti�cial Intelligence,
CCIA'08, Sant MartÃ d'EmpÃories (Spain) October 22-24, 2008. Frontiers in Arti-
�cial Intelligence and Applications, vol. 184, pp. 363-371, 2008.

• J. Salvi, Y. Petillot, S.J. Thomas, J. Aulinas, "Visual SLAM for Underwater Vehicles
using Video Velocity Log and Natural Landmarks", MTS/IEEE Oceans Conference,
OCEANS'08, Quebec City (Canada) September 15-18, 2008

Scienti�c collaborations
This thesis was developed during the period between 2008-2011. A large part was made
at VICOROB at the University of Girona. However, a total of 6 months were spent at
Heriot Watt University (Edinburgh, Scotland) for a research stay in the OSL group. Several
meetings occured during the whole period, according to the following information:

• A 2 week stay with the OSL group at Heriot Watt University. Period: 01/03/2008 �
15/03/2008. Supervisor: Prof. Yvan R. Petillot.

• A 6 month stay with the OSL group at Heriot Watt University. Period: 01/09/2009 �
28/02/2010. Supervisor: Prof. Yvan R. Petillot.

• A 2 week stay with the OSL group at Heriot Watt University. Period: 28/03/2010 �
10/04/2010. Supervisor: Prof. Yvan R. Petillot.
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Auxiliar Transformations

We use a 3-vector representation to de�ne some fundamental coordinate frame operations.
These operations are particularly useful in map-to-map relationships, when referring two
uncorrelated maps to a common base reference.

Figure A.1: Three arbitrary coordinate frames i, j and k, chosen to illustrate the operations
used in stochastic mapping.

A.1 3-Degree Of Freedom (DOF) Pose De�nition

The location of a reference j relative to a reference i (or transformation from i to j) can be
expressed using a vector with a 3-Degree Of Freedom (DOF) vector xij = (xij yij ψij)T (see
Figure A.1). Two basic operations used in stochastic mapping are composition of transfor-
mations and inverse transformation, which were suggested by [Smith 1988] using operators
⊕ and ª, respectively.

A.2 Transformations and their Jacobians in 2D

Given pose vectors xij = (xij yij ψij)T and xjk = (xjk yjk ψjk)T, the composition operation
yields frame k with respect to frame i (i.e., xik = (xik yik ψik)T) as illustrated in Eq. (A.1).
Its associated Jacobians are a useful quantity that allow us to compute a �rst-order covari-
ance estimate of xik.
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xik = xij ⊕ xjk =



xij + xjkcosψij − yjksinψij

yij + xjksinψij + yjkcosψij

ψij + ψjk


 (A.1)

J1⊕{xij ,xjk} =
∂(xij ⊕ xjk)

∂xij
=




1 0 −xjksinψij − yjkcosψij

0 1 xjkcosψij − yjksinψij

0 0 1




J2⊕{xij ,xjk} =
∂(xij ⊕ xjk)

∂xjk
=




cosψij −sinψij 0
sinψij cosψij 0

0 0 1




The inverse transformation is another fundamental operation. Given pose vector xij , the
inverse operation yields frame i with respect to frame j, (i.e., xji), as shown in Eq. (A.2).

xij = ªxji =



−xijcosψij − yijsinψij

xijsinψij − yijcosψij

−ψij


 (A.2)

Jª{xij} =
∂(ªxij)
∂xij

=



−cosψij −sinψij −xijsinψij − yijcosψij

sinψij −cosψij xijcosψij + yijsinψij

0 0 −1




A.3 Transformations in 3D

Two basic 3D transformations are necessary in stochastic mapping: direct transformation
(see eq. (A.3)) and inverse transformation (see eq. (A.4)). Given a 6DOF pose of a frame j
with respect to frame i, i.e. (ixj ,

iyj ,
izj ,

iφj ,
iθj ,

iψj), one can obtain the corresponding
transformations iTj and jTi from eq. (A.5) and eq. (A.6).

iTj =

[
iRj

itj
0 1

]
(A.3)

jTi =

[
iRt

j −iRt
j∆

itj
0 1

]
(A.4)



A.3. Transformations in 3D 109

iRj = rotz(ψ)troty(θ)trotz(φ)t

=




cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1




t



cos(θ) 0 −sin(θ)

0 1 0
sin(θ) 0 cos(θ)




t




1 0 0
0 cos(φ) cos(φ)
0 −sin(φ) cos(φ)




t

(A.5)

itj = [ixj
iyj

izj ]t (A.6)
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