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"La biologie est une science comme les autres, soumise aux mêmes lois, aux
mêmes règles, à la même évolution ; les mêmes méthodes lui sont applicables.
Comme les autres sciences, elle doit être successivement descriptive, analytique
et synthétique."

[Leduc, 1906]

"Perhaps there has been an optimisation of the variable parameters and rela-
tionships over many cycles in such a sense that the emergence of structure is
increasingly favoured. Perhaps cosmic evolution shares this general theme with
the evolution of life. Perhaps..."

[Jantsch, 1980]

"Complexity by itself is not the catalyst in which a system might crash. Rather, it is
how the complexity emerges in a system that determines whether that system will
do what it was intended to do or morph into an unworkable organization clogged
by bottlenecks and blockages"

[Samuels, 2013]
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Resumen
Una de las preguntas sin resolver en la biologia celular, es como las células mamí-
feras logran generar patrones estables como organos o seres vivos, en un entorno
variable. El concepto matemático del bucle de retreoalimentación, es una herra-
mienta que puede generar orden. En esta tesis, presento dos proyectos que forman
parte de una idea iterativa para recrear patrones biológicos sintéticamente en cé-
lulas mamíferas. En la primera parte, presento la creación de una linea celular
que funge como detector de niveles de la hormona HGF a través de una reportero
transcripcional. En la segunda parte, demuestro la reprogramación de esta célu-
las con fin de producir HGF en respuesta a HGF, en efecto creando un bucle de
retroalimentación positivo. En ambos proyectos, utilizo microscopia cuantitativa
espaciotemporal para analyzar y medir la evolución dinámica de las células en
respuesta a un estímulo de HGF.

Abstract
One unanswered riddle in biology is how can mammalian cells organize to gen-
erate ordered patterns such as organs and living beings, in an ever changing en-
vironment. An underlying mathematical principle for the generation of order is
given by feedback motifs. Here, I present two projects which are part of an ef-
fort to recreate stable ordered patterns in a cellular system through information
encoded in DNA. In the first part, I present a receiver mammalian cell line which
can accurately sense the diffusible Hepatocyte Growth Factor (HGF) through a
transcriptional reporter. In the second part I reprogrammed this cell line so that it
produces more HGF in response to HGF, in effect creating an autocatalytic posi-
tive feedback. In both cases, I have used spatiotemporal quantitative microscopy
analysis to monitor the dynamic evolution of the cell lines in response to a HGF
stimulus.
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Part I

Introduction
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Chapter 1

BIOLOGICAL SYSTEMS:
ORDER, DISORDER AND
INFORMATION

In this chapter, I will start by elaborating on a definition of biological systems
through systems theory. This will serve as a primer for the second chapter of the
introduction, which will focus on the synthesis of biological form and function.
In the third chapter I will introduce the particular system topology which I have
attempted to synthesize, and its particular manifestations and properties in systems
of all kinds.

The advent of systems biology has shown us that indeed an interaction of (A+
B) is not always stoichiometrically equivalent to the result (AB), a conclusion
with far reaching consequences in the design of synthetic biological systems. In
this context, I have worked on engineering a cellular signaling system which may
help future scientists study the properties of non-linear systems.

As a biologist, it is truly exceptional times to do science. On the one hand,
biological systems theory provides an excellent conceptual framework through
which to filter our understanding of cells. On the other hand, the tools available to
modify and interact with these systems are becoming ever more powerful, as our
understanding of nature deepens. Lastly, the rule-book for the behavior of systems
show remarkable similarity across scales, thus systems science is emerging as an
interdisciplinary bridge. I will use advances from different scientific disciplines
in the work presented here, in an attempt to recreate and analyze complex patterns
encoded in simple instructions. The motivation of this work was to try to bring
order to complexity, so in the next chapters I will give a brief definition of complex
systems.
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1.1 Classifying biological complexity
That biological systems are immensely complex is undeniable. However, for sev-
eral reasons, we are still lacking a universally accepted quantitative measure of
the degree of complexity of systems. In order to describe the world around us,
the traditional reductionist western scientific approach will dissect an object to be
studied and describe it by division into elemental units of measurement (length,
mass, time, temperature, electric charge). This approach to simplify the world
serves as a filter for unnecessary information, so choosing the appropriate mea-
surement unit strongly depends on what we are trying to achieve.

When it comes to measuring complexity, the attempts thus far have been algo-
rithmic in nature, meaning that truly random processes, regardless of how easily
they are defined, will have infinite complexity (see [Li and Vitányi, 2009]). Need-
less to say, these measures of complexity leave myriads of questions unanswered:
What information if any should a unit of complexity contain? If we were to com-
pare a crystal made of a rare mineral and a dog, can we capture which is more
complex? Should a measure for complexity be a common integrating measure-
ment of all the accepted units of measurement? If there is a unit, will there also
be a natural unit such as for length, speed, mass etc.. for complexity? Are there
limits or is complexity infinite?

We choose to categorize objects in terms of the objective we want to achieve.
For example, in a ship’s log book, the objective will be not to overload, thus a unit
of weight will help us decide how much we can carry on a barge to cross a river.
In this case, a crystal and a dog with weights of 10kg, will be indistinguishable
from each other. If however, the objective is to measure displacement potential,
then clearly there will be differences in our two objects.

Biology presents us with a further conundrum: Let us say we take our dog,
and measure the exact weight of every atom in his body at a given time-point, and
we then place all the atoms one-by-one in a container. It is not to be expected that
these components will arrange themselves back into a dog. Physical and chemical
systems follow the laws of thermodynamics and progressively move towards more
and more disordered states. Conversely, it appears that, instead of becoming more
disordered as time progresses, the components of biological systems seem to have
an intrinsic drive towards order. This would seem to go against the second law
of thermodynamics and its principle of irreversibility in time. The attempts to
reconcile the biological evolution of form and function and the second law are
as old as the theories themselves. Erwin Schrödinger popularized the question in
his famous book What is Life?, where he claimed that life feeds on negentropy,
or negative entropy. And life’s apparent negentropic drive is maintained in the
micro-scales, too. For example a ribosome will always only order amino acids
with an mRNA template to make a more ordered protein structure and never the
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reverse. If we look at larger biological sizes, we see that the bias towards order of
biological system is conserved across scales; barring mutations, a fertilized egg
will always strive towards forming a higher ordered organism from the chemical
components it encounters in disordered states. An adult being will, however, never
revert to a fertilized egg, although there is no known physical law that forbids this.

Biological systems require, of course, energy to drive this curious channeling
towards order. So where do biological systems take this free energy from? The
solution to this conundrum lies on the cosmological scale. Yes, life does seem
to tend towards order, but the energy is being fed by nuclear fusion occurring in
the sun and converted into ordered structures on earth. The net balance in entropy
is maintained overall. Nonetheless, the amount of entropy produced by planet
earth as a whole might well be different than if life was not present: an interesting
thought experiment when it comes to the search of “life as we don’t know it”
[Azua-Bustos and Vega-Martínez, 2013].

It is then not but a mere curiosity that chemical processes have evolved biology
to incorporate this energy and transform it into structure and form. Even so, cu-
riosity is one of the key drivers of human innovation, and in the following section
I will highlight some of the historical efforts to describe these processes. It will
become evident that one common feature of systems that do work with energy to
generate order, whether alive or not, is that they all must have autocatalytic pro-
cesses, also known as positive feedbacks. Since engineering positive feedbacks
using a synthetic biology approach is the main research topic of this thesis, it is
important to place these in a wider context.

1.1.1 Biological systems - the theory of dissipative systems
Ilya Prigogine devised the theory of so called dissipative systems in the 1970s
for which he was awarded the Nobel prize in Chemistry in 1977. Prigogine’s
stroke of genius was to see that non-equilibrium in microscopic systems, far from
being transitory states of equilibrium states, could be a source of macroscopic
order. It was an observation which at the time contrasted with the understand-
ing of physical systems, which were always thought to tend towards stable states
[Prigogine, 1977].

Dissipative systems were defined by Prigogine so that they do not violate the
second law of thermodynamics. Up until that time, the reversibility of chemical
reactions was thought to depend solely on the law of mass action to maintain sto-
ichiometric balance in chemical reactions. Furthermore, thanks to Boltzmann, it
was theoretically known that molecules left on their own would very rarely spon-
taneously form ordered chemical reactions. The caveat to these effects: all reac-
tions had to occur in closed systems. By imagining and describing systems which
were open to the environment, Prigogine opened a world which would have enor-
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Equilibrium system

Dissipative system

time

energy

time

energy

Figure 1.1 – A dissipative system will take energy from the environment and transform it
into order. A thermodynamic stable system will release energy in time at the expense of
order.

mous repercussions. His main finding was the discovery of certain microscopic
processes under specific conditions far from equilibrium could very well be irre-
versible and thus follow the “arrow of time” (Figure 1.1). In order to do this,
these systems had to contain at least one autocatalytic reaction. The work pre-
sented here is an attempt to generate and study one such reaction in a mammalian
cell system.

In contrast to closed systems, where energy, number of particles, and total
volume must remain constant, dissipative systems are open and these parameters
will widely vary. This allows dissipative systems to absorb energy to maintain
continuous entropy production, and to dissipate the accumulated entropy. Thus, a
dissipative system is by definition intrinsically in a non-equilibrium state, main-
tained as long as energy exchange occurs. Far from being constrained to this non-
equilibrium state though, these systems are in constant fluctuation. Given high
enough disturbances in the system, these fluctuations will lead to transitions be-
tween non-equilibrium states. The disturbances needed are dynamic and depend
solely on each particular dissipative structure.

An interesting conclusion from this is that a system may be described by the
total amount of order it contains and the total amount of energy and order it can
process from outside such that:

dS = deS + diS (1.1)

diS ≥ 0 (1.2)

Where dS - the total entropy in the system - is the summation of the change
in the entropy due to the exchanges between the environment and the system deS,
and the intrinsic internal entropy of the system diS. If diS is higher than that
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which the environment can absorb, then the entropy may manifest itself in the
form of macroscopic structure: the spontaneous emergence of order.

In his book, The Self-Organizing Universe, Erich Jantsch argues that biologi-
cal systems particularly favor dissipative systems in the following ways:

–They are linked with their environment by energy exchange which permits
the maintenance of the structure far from equilibrium.

–They include a large number of chemical reactions and transport phenom-
ena, the regulation of which depends [...] on non-linear factors of molecular
origin.

–They are in high non-equilibrium, not only from the point of view of energy,
but of matter exchange, since the reaction end products are either eliminated
from the system or are transported to other locations in order to fulfill their
functions there.

[Jantsch, 1980]

Although the outcome of events are unpredictable, the individual components
of a dissipative structure follow self-consistency rules, which means that whatever
comes into being has to be consistent with itself and its parts. This is particularly
interesting as it makes it possible in theory to represent and simulate these systems
mathematically.

1.1.2 Arguments against dissipative structures
Ilya Prigogine’s explanation for dissipative systems is thought to be a close ap-
proximation to reality. However a main paradox remains, as first noted by Daniel
R. Brooks et. al, in [Weber et al., 1988] and Collier in the same book. Namely,
in Prigogines theory, there must exist a preordained configuration of a system to
trap energy, and differentiate it from the outside world. This is accurate when
performing experiments with chemical systems, which are defined by the experi-
mentalist. However the application to biological systems might not be so straight-
forward. Brooks and others (for a more recent attempt see [Pascal et al., 2013]),
take a more cosmological approach, and try to determine whether biological sys-
tems need be closed from the environment physically, or whether in theory it is
possible to generate form-replicating systems without the need for boundaries.

Brook’s main thesis is that the equivalent for the second law of thermodynam-
ics in biology is a combination of Dollo’s irreversibility law and natural selection.
The former, proposed by Louis Dollo in the 1890s [Dollo, 2016], states that evo-
lution is irreversible and has inherent ordering constraints; the latter states that the
environment orders and places constraints on life. This irreversibility principle,
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however, is not without its own controversy and evidence against it may be found
in nature.

To understand Daniel Brooks’ reasoning we can follow the example presented
in [Weber et al., 1988] for a developing embryo. Although life exists at different
pressures and temperatures, during the lifetime of a biological system these usu-
ally do not vary, and thus we can write entropy in relation to the free Gibbs energy
of a system:

∆(PV/T ) ∝ S (1.3)

Where V = the number of cells, P = the environmental pressure on the organism,
T = the metabolic temperature, and S = the entropy of the system. In contrast
to dissipative systems, here V is not a boundary condition to which the system
must conform, but a key determinant in the evolution of the system. Thus, in
Brooks’ model the amount of entropy is directly proportional to the number of
components of a system for a general system where all components are equal. As
for the right side of the proportionality, namely the entropy of the system, if one
takes the general accepted formula for closed systems:

S = k(loge(W )) (1.4)

where k is Boltzmann’s constant (Energy/Temperature) and W is the number of
possible micro states of the system. And if one assumes that particles in a system
are not homogeneous (as is usually the case) then entropy is:

S = −
∑
i

[(pi)loge(pi)] (1.5)

where pi is the frequency of occurrence of the ith particle. One way of mea-
suring the complexity in the system is proposed by Brooks as “information”, and
here is where the conceptual difference with dissipative structures lies. Brooks
proposes a Hierarchical Information Theory (HIT) to try to generate a general
measure to describe complexity. Briefly, HIT is constructed by equating the ther-
modynamic entropy to the Shannon-Weaver entropy. In a K-dimensional system,
composed of Nk parts, which can assume M states, the total number of possible
states is MNk . Brooks argues that the information content of the system can be
defined generally as:

I = Smax − S (1.6)

With that assumption in mind, for our MNk possible states, one can measure the
Shannon-Weaver entropy or information capacity of the system for a particular
state as:

CI = Nk ((Nk + 1)

2
log2(M)bits (1.7)

8
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Now of course, one can easily argue that for a biological developing cell, not all
developmental fates are accessible. Firstly because most states possibly lead to
death of the system (and thus dS < 0 ) and secondly because diS is naturally also
constrained. We are only now starting to map out the possible pathways a cell can
take (for a recent exciting computational approach see: [Rackham et al., 2016]),
but the options will be limited. Brooks foresaw this dilemma, and suggests two
forms of the information capacity for a system:

CI = CO + CD (1.8)

Where CO is the capacity for order or “information” of the system and CD is
the capacity for disorder or “entropy” of the system. Thus, Brooks is reconciling
the second law by introducing information content. A second important concep-
tual difference to dissipative structures is that HIT recognizes that “the whole may
be greater than the sum of its parts”.

1.1.3 Dynamics: Reaction-Diffusion systems
All the above examples try to reconcile the fact of entropy dissipation in biologi-
cal systems from the thermodynamic point of view. In reality, biological systems
do consume and move energy, however this energy is usually stored and moved
in matter (chemical potentials, etc.). Thus, it has been more intuitive to describe
the flows in biological systems, through the dynamics of diffusion of matter, ex-
pressed through reaction-diffusion equations of the type:

δtu = Dδ2xu+R(u) (1.9)

where u is the diffusing chemical, D is the diffusion coefficient in m2/s and
R(u) is the reaction kinetics of u. One of the key conceptual changes in this field
was brought by the mathematician Alan Turing in his seminal paper on chemical
diffusion [Turing, 1952]. Turing expanded the field by introducing a second com-
ponent v which would inhibit u and with different diffusion coefficient D so that:

•u catalyzes itself and v and diffuses slowly

•v inhibits u and diffuses quickly

As we saw with the theory of systems in previous sections, the addition of
feedback to a system will produce order that is somewhat unexpected from a
classical thermodynamic perspective. Thus, perhaps unsurprisingly to us now,
Turing’s simple addition to the theory of diffusion can give rise to a seemingly

9
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endless number of patterns. Nowadays, the conceptual framework set by Turing
has been applied to model a myriad of chemical and biological processes.

In the particular case of biochemical systems, where reactants are expected to
be produced and degraded, one can represent the Turing system as:

u = Du∆
2 + puf(u, v)− µuu (1.10)

v = Dv∆
2 + pvg(v, u)− µvv (1.11)

Where p and µ are functions describing production and degradation respec-
tively. We recently showed [Diambra et al., 2015] that it is theoretically possible
for a system with a single function p to generate Turing instabilities; yet another
demonstration of the possibilities of reaction-diffusion systems.

1.2 The theory of communication in biology
Biological systems undergo constant exchange of energy and entropy with their
environments and with each other. As described in section 1.1.2, it is possible
to equate energy and information. Thus, both information and energy exchange
might be the driver of order we observe in biology. Jantsch [Jantsch, 1980] dis-
sects communication into four hierarchical domains shown in Figure 1.2a de-
pending on the spatio-temporal scales at which exchange of information takes
place. The four domains are: Genetic, Metabolic, Biomolecular, Neuronal (ex-
amples are given below). Jantsch proposes that all dissipative systems possess this
intrinsic communication hierarchy. He further argues that, for communication be-
tween systems to occur, there must be a level of cognition and recognition at the
hierarchical level between two systems.

Let us examine this in a practical worked example. Vervet monkeys (Chloro-
cebus pygerythrus) are a small primate species which lives in highly complex
social groups of between 10 and 70 individuals. We will look at the differ-
ent levels of communication in two systems, the individual vervet and the com-
munity, and I will highlight the hierarchy of communication in italics. Let the
start of the signaling cascade be a Vervet identifying a menacing shadow lurking
above (Neuronal:Biology), a sudden adrenaline rush (Metabolic:Biology) invades
it and it immediately starts to make a series of whistles that are partly innate (Ge-
netic:Biology) and partly learned from others in the community(Genetic:Society).
The signal is received and interpreted correctly immediately by other vervets
(Neuronal:Biology learned through (Genetic:Society)). Some monkeys encourage
each other to whistle further in a group to amplify the signal (positive feedback) to
make sure that every individual receives the message (Metabolic:Society), while
others scramble for cover.

10
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(a)

Genetic

t=generations

d=∞

Metabolic

t=seconds -hours

d=milimiters

Biomolecular

t=miliseconds

d=nanometers

Neuronal

t=miliseconds

d=meters

(b)
Genetic Metabolic

Culture, Technological 

innovation
Economy, money Face to face communication,

Internet

Neuronal

Evolution, Instinct, DNA

Decadal Oscillations,

Seasons

Glycolisis, Kinase 

signalling, Hormones

Nervous system, Electric 

communication (bio!lms)

Carbon/Nitrogen

cycles, water vapour

Society

Biology

Climate
Weather, Tornadoes, 

hurricanes

Figure 1.2 – Communication hierarchies in 1.2a are shown as self encompassing forms
as envisioned by Erich Jantsch, and in 1.2b a few examples are listed in three different
systems.

One can see several things from this example. First, the signals can be accu-
rately described and these seem to act in synchrony across the hierarchies. This
link between the different levels is key for the survival of dissipative structures.
Second, the signals have clear sender and receiver modules, which can only inter-
pret certain signals whilst ignoring all other inputs. And third, communication is
restricted to systems, i.e. the adrenaline will be sensed and interpreted by a spe-
cific receptor module in the body, the whistles can be heard by other organisms,
but will not be interpreted, etc. Communication events which occur outside the
system can be called interactions. Last, although it might not be evident, feed-
back mechanisms play crucial roles in interpreting and transferring the signals
into ordered responses.

In Figure 1.2b I have listed other examples of hierarchical communication in
different systems. As this classification of systems can apply to different scales
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at least qualitatively, it would be beneficial to find common quantitative measures
that describe and help to predict such systems. Generating a reproducible system
where one can test the predictions from mathematical models in a relatively simple
setup was the fundament of creating the sender-receiver system presented in Part
II.

1.2.1 Information theory applied to biology
To explain communication between biological cells, scientists initially postulated
a theory of an invisible force driving communication between cells which they
called Mitogenic Rays [Lorenz, 1934]. This theory was never accepted, since
the rays were never found. A similar philosophical conundrum arises whilst try-
ing to quantify information in biological communication. The debate revolves
around the question of whether or not signals are carriers of transmitted infor-
mation (TI). On the one side, there are those who ascribe informational value in
signals, whereas on the other side some argue that information is not transmitted
at any time; rather, it is only assigned this property because of a perceiver’s correct
interpretation thereof. Whichever side of the argument you take, it is nonetheless
useful to postulate information signals and quantify biological communication.

Mathematical definitions of information

The first to define information mathematically was Claude Shannon, in his sem-
inal work published together with Warren Weaver [Shannon and Weaver, 1949].
In this section I would like to highlight its main tenets and what I believe to be
its main consequence for biological systems. According to Shannon, a variable is
defined to carry information when knowing the exact value of the variable reduces
the uncertainty of the observer. As such, information transfer between a sender
and a receiver will reduce uncertainty for both actors. Uncertainty, in this case
being the sum of probabilities for a set of elements.

To define the uncertainty of a variable, Shannon used Boltzmann’s description
of thermodynamic particles (see equation1.5) to ascribe the amount of informa-
tion contained in these particles. From this, just as is the case with energy in
the second law of thermodynamics, it follows that information by itself transmit-
ted through a channel cannot increase as it is transmitted, it can only decrease or
remain the same.

As to the quantifiable measure of the uncertainty of a variable, Shannon called
it Entropy. For example for a random variable x the entropy is defined as:

H[x] = −
∑
x

(px)log(px) (1.12)
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In this case px is the probability distribution of the variable x and the logarithm
can be chosen arbitrarily (log2 makes the unit bits, the natural logarithm makes
the units nats - natural units). In other words, the entropy of a variable x is a
measure of the information gained from a given observation given a probability
distribution px. In general, if H[x] is high, there is a higher uncertainty on the
information carried by element xi. If, however the value for x is known, then the
entropy will be zero as there will be very low uncertainty in the system.

The next logical step in Shannon formalism was to define the relationship of
two (or more) variables whence they depend on each other through the conditional
entropy of H(y|x). Such that if we know the distribution px, then the additional
information gained by a second variable py is given by log2(p(y|x) and the addi-
tional entropy is:

H[x, y] = −
∫ ∫

p(y, x)log2p(y|x)dydx (1.13)

Intuitively, this tells us that the information needed to describe a variable y
alone can be estimated from the information provided by x plus the information
to specify y given x. In such a system, it is then possible to calculate the amount
of shared information both from the probability distributions:

MI(X;Y ) =
∑
X

∑
Y

p(x, y)log2p(x, y)

p(x)p(y)
dxdy (1.14)

and from the individual and joint entropies, such that the total shared infor-
mation per unit time of measurement is the summation of the information on the
input x plus an output y, less the joint entropy:

MI(X;Y ) = H[X] +H[Y ]−H[X, Y ] (1.15)

The mutual information between two events is also known as the rate of trans-
mission of information between x and y.

Shannon and Weaver’s mathematical description of information theory was
widely applied to telecommunication, where bits of information in the form of
electrical currents can be driven through copper wires and transmitted to a re-
ceiver on geographical distance scales. It has also been used extensively in ana-
lytic linguistics to describe language rules. Surprisingly, in the research for this
thesis I found that for all its scope, Shannon’s definition for information, fails
to accommodate for the effects of feedback. In view of the incredible speed
and reliability of microelectronic devices to transmit signals and communicate
with one another, it has been a subject of intense investigation to understand
how Shannon’s laws behave in the presence of feedback [de Ronde et al., 2010,
Tostevin and ten Wolde, 2009]. Furthermore, in light of the apparent function of
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feedbacks in the translation of environmental information within systems, it might
provide some insight to apply information theoretical analysis to these interesting
network topologies.

Examples of information theory applied to biology

Intuitively, just as with dissipative systems and diffusible systems, information
must be a scalable property. Although - perhaps as a particular warning for fu-
ture scientists who might be tempted to ascribe predictive properties to this robust
mathematical model - even Shannon himself is reported to have found “applica-
tions of his work outside of communication theory to be suspect” [Ritchie, 1986].
Perhaps, Shannon failed to see that the real world could very well be described by
his theories.

Cells undoubtedly communicate with each other, and communication can be
broken down into three parts: a sender, a receiver, and a channel. When a cell
is not in its normal state, say when it enters a cancerous state, the information
processing capacities will change [Levchenko and Nemenman, 2014]. For home-
ostasis and order to be maintained in multicellular organisms, there needs to be
a constant awareness and adaptation to a changing environment. To achieve this,
the signaling molecules used by multicellular organisms have evolved to transmit
and receive information over short-(e.g. the notch signaling system) mid-(e.g.
morphogens such as WNTs and Growth/Morphogenic factors) or long-ranges
(hormones in the blood, insulin, small molecules). If biological systems have
evolved from chemical manifestations of feedback motifs, as some have suggested
[Kauffman, 2011], they might provide an interesting tool to reconcile Shannon’s
mathematical description of communication with Prigogines definition of dissipa-
tive systems.

In Part II, of this thesis I have first focused on constructing a cell line which
can detect a diffusible signal. Then in Part III I expanded this cell line, to include
an autocatalytic positive feedback. This work was partly inspired as an approach
to describe a biological system both from the point of view of transport of mat-
ter (diffusion) and transfer of information (bitrate). This system will hopefully
serve as a fundament for future studies of these properties and the extent to which
different network topologies affect them.

In [Barcena Menendez et al., 2015] we reviewed some systems that have been
constructed through synthetic biology and propose how information theory could
prove to become a powerful tool to construct and help understand biological pro-
cesses. Furthermore, in section 6.2.3 I describe an information theoretical ap-
proach to analyze a biological feedback which could perhaps serve as a basis for
further research into this area.

14
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Feedbacks and information transmission

Interestingly, some work has been done in regard to the capacity of feedbacks to
induce long-term information transmission, e.g. memory in systems (reviewed in
[Purcell and Lu, 2014]). Evidently, in rationally designed biological systems both
negative and positive feedbacks can confer some sort of memory effects, similar
as to those observed in computer memory.

It is my opinion that biology does not function as a set of transistors transfer-
ring information by RNA-polymerases, although this view has recently found ex-
citing applications (see: ([Nielsen et al., 2016])). Biological matter is more com-
plex than electrons transferring information in chips. Unlike transistors, biological
systems are disspiative structures which must remain flexible whilst challenged
by an ever changing environment. If feedbacks do indeed function as memory de-
vices, these effects will be nothing similar to what microchips exhibit both in scale
and heterogeneity. Further down I will go into the technical details of measuring
memory effects of feedbacks (section 3.3).
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Chapter 2

SYNTHESIS OF BIOLOGICAL
SYSTEMS

In the previous chapter two different approaches were proposed to categorize a
system, which seemingly converge in the term entropy, a measure of information
content in communications theory, and a measure of disorder in thermodynamics.
This thesis is based on constructing a positive feedback to further our understand-
ing of these interesting network topologies in biology. The act of “constructing”
something in biology has recently being crystallized into a new field termed syn-
thetic biology. In this chapter I will give a very brief overview of the field, and
I will defend why I believe synthetic biology provides an excellent approach for
studying biological phenomena beyond genome editing. I will begin by describing
the first attempts to synthesize biological form and function by the french chemist
Stephane Leduc in the beginning of the 20th Century. I will use the conceptual
framework set by Stephane Leduc to categorize distinct fields of synthetic biol-
ogy. This section will serve as an introduction to the final chapter in which I will
introduce the main matter of my dissertation: the generation and characterization
of a synthetic positive feedback cell line.

2.1 Stephane Leduc: The first synthetic biologist.

The first recorded mention of synthetic biology is found at the beginning of the
20th century when a French chemist named Stephane Leduc published a book ti-
tled “La Biologie Synthetique” [Leduc, 1912]. This book followed his first more
controversial book “Theorie Physico-chimique de la Vie et Generations Sponta-
nee?” [Leduc, 1906] which translates to “Physical-Chemical theory of life and
spontaneous generations [emergence]” and was translated to English in 1914 by
the British doctor W. Deane Butcher [Leduc, 1914].
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Leduc presented a very interesting idea, namely that any human science seemed
to go through three distinct and ordered phases of discovery:

1. Observational - Describe a phenomena

2. Analytical - Dissect the phenomena

3. Synthetic - Reproduce the phenomena

Leduc main thesis in his books is that biological sciences were at the time
deep in the observational phase, and slowly entering the analytic one. For exam-
ple, scientists were discovering that the basic components of life were of chemical
nature. The “Chromatin theory of inheritance” based on Walther Flemming’s dis-
covery of chromosomes by staining with basic dyes [Flemming, 1880], hinted
strongly at the chemical nature of biological cells. Still, beyond carbon and some
organic compounds, the actual chemical composition of life eluded researchers
at the time. Morphological form, it seemed, was conserved and inherited from
macroscopic organisms to the microscopic world within cells. But how?

To make sense of this, Stephane Leduc attempted to synthesize some of the
forms and functions he could observe. He first defined what he believed were
three distinctions within synthetic biology of which only one was being pursued:
synthetic organic chemistry. Scientists working in this field were proving once
and again that it was possible to synthesize chemicals in the lab, which were pre-
viously thought to exist solely in natural organisms (e.g. amino acids). Then there
were two divisions of synthetic biology that had yet to be studied and Leduc in-
tended to establish himself at the forefront: morphogeny, which dealt with the
synthesis of form and physiogeny which consisted of the synthesis of function.
Leduc was fascinated by these two ideas and particularly intent on whether he
could synthesize morphological aspects of life with the simple mixture of chem-
icals compounds in solution. He attempted to reconstitute conserved biological
forms both microscopically as shown in Figure 2.1a, and macroscopically as
shown in Figure 2.1b.

To the contemporary observer, it is obvious that Stephane Leduc had deep
misconceptions about his observations. Take for example the mechanistic expla-
nations he put forth, where he believed that the forms he was generating could be
explained by “field-like forces” underlying diffusion, which would act similarly
to Faraday’s electromagnetism, or the ’mitogenic waves’ I mentioned in section
1.2.1. But it is perhaps unfair to criticize him in hindsight, because his larger
vision was truly remarkable.

As Leduc’s experiments evidence, biological systems are not alone in gen-
erating “order” (as covered in chapter: 1) which we perceive as aesthetically
pleasing (e.g. stalagmites, clouds), and which sometimes can have clear functions
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(a)

(b)

Figure 2.1 – Stephane Leduc believed that he could synthesise biological form and func-
tion. In the left panel of a) Leduc placed a drop of ink in the middle of the figure, and then
a drop of lightly coloured hypertonic salt solution on either side. The pictures were taken
after a few hours and one can clearly observe “spindles” [Leduc, 1912]. Leduc believed
he was recreating what histologist Walther Flemming had described as chromosomes in
salamander cells a) right panel [Flemming, 1880]. On a macroscopic level, he experi-
mented with what he called “osmotic growth”, by mixing CaCl2 and MnCl2 at different
concentrations in alkaline solutions, he observed what he believed where synthetic fungi
[Leduc, 1912] b) left panel.

or properties (stones, sand dunes, the sun). Our current understanding of living
things requires that both form and function be reproduced and passed on through
generations. Furthermore, they must adapt an organism to its environment. In
the face of intense scientific scrutiny, Stephane Leduc’s experiments were quickly
forgotten. After Leduc, there was no more mention of Synthetic Biology until
the 1980s. But the idea thereof was brewing as early as the 1970s. At the same
time as Ilya Prigogine was devising his theory of dissipative systems (see section
1.1.1), a pair of Chilean scientists who had met in Harvard, Maturana and Varela,
proposed for the first time that biological systems could be viewed as “autopoi-
etic machines” that reproduced intrinsically [Maturana and Varela, 1972]. They
provided a definition that first captured the singularity of life’s drive to repro-
duce itself, and second to differentiate living systems from non living machines,
which they would refer to as “allopoietic” (reproduced extrinsically). Maturana
and Varela put forth the suggestion of “introducing perturbations in an autopoi-
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Synthetic Biology vs. Genetic Engineering in Title or Abstract 
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Figure 2.2 – Number of publications per year with the term “Synthetic Biology” either in
the abstract or in the title. Source: Pubmed.gov

etic machine so as to make it allopoietic”, which is very close to both Stephane
Leduc’s and a modern definition of synthetic biology.

Subsequently, the scientific community used the term “genetic engineering” in
reference to efforts being made to treat biological life as machines. As one can see
in Figure 2.2, it was in the middle of the 2000’s when the term synthetic biology
saw exponential growth. The term “synthetic biology” is nowadays used widely
and even whole institutes and journals have sprung up under this umbrella. There
is possibly an equally wide range of scientists doing synthetic biology who may
be reticent to use this name to describe their work, thus making it difficult to put
an exact number on the size of this field.

In the following chapters I will briefly review three examples that are clearly
synthetic biology according to Stephane Leduc’s categories of Synthetic organic
chemistry, Physiogeny and Morphogeny.
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2.1.1 Physiogeny: Genetic engineering, or changing the force
within

Unbeknownst to Stephane Leduc, both biological form and function is encoded
in the DNA of every living organism. In what would become one of the most
ground-breaking discoveries in biology, Avery and colleagues isolated “a highly
polymerised and viscous form of deoxyribonucleic acid” which was responsi-
ble for the “chemically induced alterations of structure and function” respon-
sible for transforming avirulent Type II pneumococcus into the virulent Type III
[Avery et al., 1944]. Years later, after this DNA structure had been chemically
modeled and after DNA had been found to code for Proteins [Crick et al., 1961],
these pioneering biologists discovered something even more fascinating: novel
functions could be written in the language of biology, and this language was (al-
most) universal. Our understanding has grown substantially in the past 50 years,
however it is still impossible to write completely de novo instructions to create
simple dividing organisms [Isalan, 2012] . Thus, to further our understanding in
the complexity of life, it is an imperative to go beyond the study of what is already
there, and to generate novel forms and functions.

The major target of editing life is of course the DNA molecule itself, either
exogenously by reintroducing it into an organism, or endogenously within the or-
ganism. Our capacity to do this has dramatically increased with the discovery
and re-purposing of DNA binding proteins. Most noticeably, the clustered reg-
ularly inter-spaced short palindromic repeat (CRISPR) sequences and associated
proteins, a bacterial adaptive immune system of sorts, has been shown and ex-
ploited to edit nucleated cells ([Mali et al., 2013]). We are now at a point where
the genome might be edited just as a book might be modified with word processor.

The relative ease for a skilled person to target and modify DNA sequences
inside a living cell is being harnessed to create tailor made immune cells to iden-
tify and eliminate cancerous cells [Su et al., 2016] and indeed even to eliminate
whole species from this planet by tinkering with the sex chromosomes of a species
([Hammond et al., 2016]), which some fear might be used to edit human em-
bryos to confer novel functions ([Kang et al., 2016b]). The power of this tech-
nology cannot be overstated and parallels can be drawn to the discovery of nuclear
fusion to generate energy, both positive and negative. Indeed the discoverers and
future users of CRISPR (whomever history will ascribe this decorum to) might
yet do well to heed Robert Oppenheimer’s famous words from the Bhagavad Gita
after watching the detonation of the first atomic bomb: “Now I am become Death,
the destroyer of worlds.”

During my PhD, I considered very carefully whether to attempt to introduce
the functional DNA sequences required directly into the genome through CRISPR-
mediated editing. However, I stumbled upon an unexpected hurdle: given a set of
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“instructions” of >3,000,000,000,000 letters plus the 3-dimensional configuration
of these, it is not at all trivial to choose an appropriate position where to insert nov-
elty without disrupting the system too much. Although ’neutral’ genetic insertion
loci such as ROSA26 or AAVS1 ([Perez-Pinera et al., 2012]) are being devel-
oped in other organisms, the canine cells we use did not have these well-defined.
Therefore, this work is based on random genomic integration of synthetic genetic
constructs and selection for function, rather than site-directed genome editing.

2.1.2 Synthetic organic chemistry: x DNA and x Amino Acids

Most organic compounds have been synthesized chemically in the time since
Leduc lived. Using the machinery of life, including properties such as evolution, it
is nowadays possible to generate novel functional proteins or alter the functions of
existing enzymes ([Esvelt et al., 2011]). So what remains to be done? If one takes
the basis of life as being DNA and protein, then perhaps the greatest conceptual
breakthrough in recent years has been the introduction of new synthetic oligonu-
cleotides and synthetic amino acids into a biological organisms’ repertoire.

For example, scientists have recently demonstrated that not only is it possible
to insert novel nucleotides into the genetic code, but that these synthetic DNA
molecules (or xDNAs) are inherited given the right starting material and avail-
able machinery [Pinheiro et al., 2012]. Interestingly, further research has found
that when incorporated into DNA aptamers, these synthetic bases can be tuned
to specifically bind target proteins, with possible implications in cancer therapy
[Kimoto et al., 2013].

On the protein side, initially, scientists used the “promiscuous” activity of
tRNA-acyl synthetases to trick the cells into incorporating non-naturally occurring
amino acids, that were structurally similar to their natural analogs. Later on it was
shown that rarely-used codons, also known as amber codons, could be efficiently
used as templates for orthogonal t-RNA/tRNA synthase pairs ([Wang et al., 2001]).
After this, a deluge of novel functional unnatural amino acids has emerged, and
more than 200 unnatural amino acids [Sun et al., 2014] have been successfully
incorporated into bacteria, nematodes, insects [Chin, 2014] and, most recently,
mammalian cells [Elsässer et al., 2016]. Functionally, there are a myriad of exam-
ples, from non-natural amino acids that fluoresce under specific protein conforma-
tions and thus help studying protein structural changes ([Summerer et al., 2006]),
to amino acids that degrade under specific conditions, to study kinase pathways in
vivo [Gautier et al., 2011]. Advances in this field have been enormous yet, as with
the genome editing technologies, work remains if we ever want to achieve the fi-
delity of natural orthologues [Aerni et al., 2015] (reviewed in [Wang et al., 2012]).
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2.1.3 Morphogeny: from transplantation to 3D printing of or-
gans

As we have seen in the examples mentioned in the two previous sections, it is
possible to generate novel chemical form and function within biological systems.
If we refer back to the holoarchy of communication (see Figure 1.2a, we observe
that synthesis at higher levels will affect a system more profoundly, as this is
impossible to do without modifying lower level parts.

Form is then a spatial property of, or within, an object (for example the shape
of a hand) and, more deeply, the DNA sequence which holds the instructions
for the hand to form. Function can be seen as the temporal dimension of the
object and in some cases the interaction of the form with its environment. In the
example of the hand, this will be the specific function of the appendage during a
specific timeframe, in a specific environmental context. Thus, form and function
are inseparable properties, but also independent from each other.

From the above definitions, it follows then that morphogeny may be subcate-
gorised further. Firstly, one can attempt to mimic form and functions that already
exist. An example of this is the synthesis of organs in vitro, such as skin to treat
burn injuries, or recent advances in 3D printing of cells together with scaffolds to
create long-lasting transplantable organs [Kang et al., 2016a]. The second aspect
of morphogeny would deal with generating completely novel forms and functions
such as gliding jelly-fish made of muscle cells, as shown in [Nawroth et al., 2012].

Major questions in biology remain not fully explained: how can one cell, con-
taining a set of DNA instructions, have all that is needed to create living forms?
How can some of these cells retain their functions even when explanted? Sub-
stantial advances to answer these questions have been made by studying biolog-
ical forms outside their context. We now know that almost any cell in our body
can be reprogrammed to its primordial stage or to any other cell, moreover these
cells can later on be steered to generate organoid structures which resemble organs
morphologically (reviewed extensively in: [Lancaster and Knoblich, 2014]).

Novel forms and functions can also be generated artificially. In my thesis I
have worked with synthetic biological organoid structures, as cells cultivated in
extracellular matrix (ECM) grow in different forms to cells grown in a plastic
dish. The distinct forms appear to interpret the function I programmed in their
DNA differently; however, even when new forms were generated (see: section
6.3.2) remnants of the the underlying genetic functions were observed. In the final
Chapter, I will describe in detail the genetic function that I aimed to engineer.
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Chapter 3

FEEDBACKS: FUNDAMENTS OF
LIVING SYSTEMS

The purpose of this work is to use the conceptual framework provided by syn-
thetic biology (Chapter 2) to expand our understanding of the underlying rules
and principles of form and function in dissipative systems (Chapter 1). It is an at-
tempt to generate a system with both microscopic and macroscopic function. I will
show in the results section, how I have generated new biological functions with
information encoded in the form of DNA, and novel forms by growing cells un-
der different environmental conditions. Functions encoded in DNA are conserved
when cells are grown in specific forms. Choosing a well-characterized system
was crucial for my attempt at synthesizing new functions. It is in the synthetic
biologist’s best interest to use this cumulative knowledge of the past to explore
beyond forms and functions.

In this chapter, I will expand on the importance of positive feedbacks in sys-
tems. The main objective of my four year pre-doctoral research has been to de-
sign and characterize such a topology in a mammalian cell system. As I described
in Chapter 1, feedbacks seem to fulfill a fundamental function in systems: to
transform and translate the energy from outside a system into order and struc-
ture within. In information theory, feedbacks can confer systems with properties
such as memory, signal amplification and digital-analog signal conversions (sec-
tion 1.2.1). This chapter will lead directly into the Results section of this thesis,
where I will show the experimental work to create and characterize a synthetic
positive feedback in a mammalian cell line.

But first, what defines a feedback exactly?
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3.1 General definition of a positive feedback
A feedback can be defined as an autocatalytic reaction of two components X and
Y, whereby Y gets converted to X, such as:

X + Y −→ 2X (3.1)

with rate equations such that:

[X] = −p[X][Y ] + µ[X]2 (3.2)

[Y ] = p[X][Y ]− µ[X]2 (3.3)

If one plots the concentration of X over time, one will observe that the increase
of X is non-linear, namely it will increase exponentially ad infinitum. There is of
course a dependence on Y, and a reaction with unlimited supply of Y would be an
infinite positive feedback. In contrast, a negative feedback is an autocatalytic reac-
tion where one of the reactants inhibits the production of the other. Ilya Prigogine
proposed a reaction scheme called the Brusselator which contains both positive
and negative feedback:

2X + Y −→ 3X

A −→ X

B +X −→ Y +D

X −→ E (3.4)

As we can see, in this case the concentration of X is not expected to grow
exponentially, as it is transformed into Y and D in the third step. Thus, feedbacks
can also serve to control the amount of order in systems.

Feedbacks are an efficient way for a closed system to increase utilization of
available information and energy. It is likely that when multicellular organisms
first evolved, the majority of cells’ immediate surroundings contained other cells;
cells had to communicate in a coordinated manner to produce responses to ex-
ternal stimuli and so naturally fed back information. Eventually, when multi-
cellular organisms began communicating with each other, feedbacks guided the
way towards a balance between self and environment. Instead of inventing a new
mechanism for transmitting this information, biological systems became masters
of controlling and utilizing feedbacks.

In technology, feedbacks have become pivotal in the last two centuries. As
well as guiding our machines, they have given us a better understanding of reality
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by helping us grasp non-linear dynamics. Once we learned how to tame electri-
cal signals with feedbacks, we were quick to transmit messages across enormous
distances with unimaginable speeds and reliability. Furthermore, the increasing
processing power of interconnected devices is allowing engineers to develop ever
more precise feedbacks that help existing devices become more efficient. For ex-
ample, the Swedish miner LKA utilizes trains that feed back energy generated
when going downhill (with full loads of iron ore) towards a port. This mechanism
makes the net energy of the round trip of the train essentially close to zero.

Feedbacks are time-scalable and inherent to systems which generate informa-
tion through the consumption of energy. But, as we shall see, it is not trivial to
put a quantitative measure on the magnitude, or velocity, of a feedback. Particu-
larly in molecular and cell biology, there has been a focus on studying feedbacks
that are strong in nature, and thus easy to define, analyze and synthesize. As
I will present in the next sections, studies in other disciplines demonstrate that
weak feedbacks can have measurable effects on systems. Moreover, these feed-
backs display certain additive features which could be possibly mimicked through
synthetic biology. Thus, observations from reproducible feedback systems can
potentially be translated to other scientific disciplines which study these motifs.

In fact, one of the main inspirations for the present work is that the importance
of these motifs are being recognized as critical in two other scientific disciplines
which have a high impact on civilization and which also study systems: Climate
and Finance. As these systems do not lend themselves to easy manipulation and
synthesis without affecting the lives and livelihoods of people, it will be useful
to understand and study feedback mechanisms in organisms so as to gain a better
control of the world we live in. Vice versa, methodologies used in other scientific
fields can be used to attempt to describe feedbacks in biology.

3.2 Positive feedbacks in climate

The Earth’s climate is an example of a dissipative system with different commu-
nication hierarchies (see figure 1.2b). The planet receives radiative energy from
the sun, and reflects this radiation in the form of excess heat. Towards the end
of the 19th century, Svante Arrhenius noticed that for the planet to have the tem-
perature to support life, some of that energy must be captured in the atmosphere
and not reflected, thus came the discovery of the so called greenhouse gases (such
as CO2) [Arrhenius and Holden, 1897]. What Arrhenius and his contemporaries
could not know at the time, was that this captured energy, also gave rise to mul-
tiple “ordered” time-variant structures, which we observe as weather, climate and
environmental landscapes.
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(a)

(b)

Figure 3.1 – Climate Feedbacks between Temperature and Carbon emissions. A schematic
depiction of Earth’s climatic system with some of its feedbacks is shown in 3.1a. The signs
inside the feedbacks are taken from the literature. The two feedbacks shown in red which
correspond to the Carbon and Nitrogen cycles, are heavily influenced by anthropogenic
action. The 11 models compared in [Friedlingstein et al., 2006] are shown in 3.1b, which
show the increase in the “gain” factor between temperature and climate within the next
century.

As a dissipative system, we expect the climate to contain multiple feedback
mechanisms at any of the hierarchies. Understanding these feedbacks is of utmost
urgency for our species, as we have at last reached population and greenhouse gas
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emission levels which directly influence the global climate system. Exceeding
thresholds of which we know very little, could lead to a potentially catastrophic
“runaway feedback”. On the upside, this also means that we can, for the first time
in our history, directly predict and possibly intervene in near-to-long term future
global climate scenarios.

The United Nations International Panel on Climate Change (IPCC) was con-
ceived to warn us that anthropogenic carbon emissions are leading towards an
unknown path of planetary warming. The IPCC and, more recently, the COP21
nations have set specific temperature rise boundaries beyond which it is believed
that life on earth as we know will be unviable. One of the main reasons these
limits or thresholds were set, is the general respectful fear of the power of feed-
backs. Unfortunately, scientists are warning of the thermodynamic reality of our
planet: policies to mitigate emissions have been lackluster and are highly influ-
enced by economic principles based on infinite growth, and prosperity through
energy consumption.

3.2.1 Holoarchical feedbacks in climate
The debate on feedbacks in the climate system is not centered around whether
these exist but around the accuracy of quantitative measurements of the feed-
backs’ contributions to the balance of temperature and carbon in the planet. The
first proposition to measure the strength of these feedback mechanisms in climate
was put forth by James Hansen in [Hansen et al., 1984]. Here, Hansen describes
what could be referred to as the most basic holon of the climate system. In this
seminal paper, Hansen defines several mechanisms which might exert temperature
feedbacks on the Earth’s climate, some of which are shown in figure 3.1a. Hansen
proposes a simplified model to capture these feedbacks in which the earth’s tem-
perature is at equilibrium ∆Teq ; that is there is a constant difference in radiated
energy received and reflected from the sun. This measure can be decomposed to
the Earth’s temperature at departure from equilibrium ∆To, plus the addition of
some temperature feedback ∆Tfeedback so that:

∆Teq = ∆To + ∆Tfeedback (3.5)

From this, Hansen proposed two parameters. Firstly, the feedback factor f
which defines the relation of ∆Teq to ∆To, and a gain factor which describes the
ratio between the feedback contribution and the equilibrium temperature.

∆Teq = f∆To

g =
∆Tfeedback

∆Teq
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A feedback is then positive when f > 1 and g > 0. Thermodynamics were
originally devised to describe the conversion of heat into work. As we have seen in
previous chapters, the relationship g was derived by Hansen from its analogue in
thermodynamics, namely the thermal efficiency η, which measures the efficiency
between output and input energy in a heat engine, and is also known as Carnot’s
theorem:

η =
W

QE

= 1− TC
TH

(3.6)

Here, W is the work a system performs and loses through heat, and QE is the
input energy into the system. This is equal to the difference in temperatures from
a cold reservoir TC and a hot reservoir TH .

Most IPCC climate models have at their cores this proposition by James Hansen.
In the latest IPCC report, several coupled climate-carbon models from different
scientific institutions around the world were compared. What they found is in-
deed worrying: independent of the complexity of the model, when adjusted to data
measurements, all models simulated positive feedback [Friedlingstein et al., 2006,
Friedlingstein et al., 2011] and figure 3.1b. Furthermore, all models predict an in-
crease in the feedback strength in the coming decades. And yet, the summary
report of the IPCC emphasizes that the “Confidence in the magnitude, and some-
times even the sign, of many of these feed-backs between climate and carbon and
other biogeochemical cycles is low.” [Ciais et al., 2013].

Thus, although a feedback of the positive kind in temperature (a high temper-
ature at time t leads to a higher temperature at t + 1) can become the sole driver
of temperature increase, negative feedbacks are also at play.

The important message in the IPCC reports is that failure to reduce the anthro-
pogenic contribution to these feedbacks, could tip the balance towards runaway
positive feedback which could push the planetary temperatures away from the
relative stability experienced during the holocene [Clark et al., 2016]. Unfortu-
nately, little is being done in this respect, as the mantra of societal well being
through economic prosperity continues to drive policy.

Although some of the feedbacks in figure 3.1a are directly linked to human
action, some are clearly not. It is also not clear what the “strength” of these indi-
vidual feedbacks is. This parameter should however be strongly taken into con-
sideration, as some of these feedbacks such as methane hydrates being released
have led to “abrupt climate change” in the past (this being an average tempera-
ture rise or decrease over a very short geological time-scale of 100-200 years).
Although any reference to this term is absent from IPCC reports or COP21 sum-
maries, evidence of recent methane plume activation from 500m depth sediments
off the North American coast have been observed and linked to a rising global
temperature [Johnson et al., 2015]. On the other side, cloud cover if more heat,
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more evaporation, more clouds. if clouds form horizontally then less sun, negative
feedback. if clouds form vertically. more sun

Like climate models, our understanding of natural biological feedbacks is
hampered by complexity and difficulties in quantification. Here, synthetic biology
can allow us to find a compromise between setting up controlled hypotheses and
having a ’black box’ signalling environment. Analysis of feedbacks in biology
have focused mainly on examining the effects of strong and clear feedbacks in
noise modulation ([Dublanche et al., 2006]) and analog to digital signal conver-
sion ([Daniel et al., 2013]). To my knowledge, there has not been any attempt at
characterizing the strength of feedbacks. Thus, in the results section I will try to
use the methodology from climate scientists to measure the gain g and feedback
factor f in a biological system.

3.3 Positive feedbacks in Economy and Finance. The
Minsky moment

The financial system consists of an intricate network of exchange transactions
of services and goods. The agents in financial systems are human beings and
their actions and interactions with their environment are the links. Fundamentally,
financial systems are like any other system, transformers of energy into entropy.
The energy, once again, ultimately comes virtually all from the sun. Along human
history has been utilized in different forms, but has come predominantly from
carbon-based storage forms such as biomass, coal and, in its most recent iteration,
petroleum [Duran and Reyes, 2014]. Thus, growth in economic terms is closely
linked with the amount of energy being consumed.

The conversion efficiency by which energy is translated into order by eco-
nomic feedbacks takes the form of monetary value. Importantly, as I have dis-
cussed in previous sections, it is not possible to reverse this process, i.e. gener-
ating monetary volume or debt by printing more money cannot by itself generate
more energy. This result is is true with one exception: if one decides that time
is no constraint, and one initiates the activation of the feedback loops into the
future, in a manner defined by Hyman P. Minsky. According to Minsky, there
are three distinct forms of financing structures, which can nonetheless all transi-
tion into each other. A first form is one in which the future payments are made
by a constant income stream and is called a “hedge”. A second is in which the
future payments are not covered by a constant income stream, which he called
“speculative”. Finally, a third exists in which future payments are only assured
by issuing new commitments, known as “Ponzi”. The proposition goes as fol-
lows: an economic corporation will convert energy into a product (i.e. reduces
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entropy) which is assigned a specific economic value (output). If this scheme
shows a profit during a business cycle then there is an expectation that it will
generate a profit during the next business cycle and thus, if as Minsky proposed,
“Investment determines output, output determines investment,” investment will
tend to flow towards these corporations. This investment will generate an increase
in output and an initial financial “hedge” will be attractive. If the cycle continues,
then individuals can take higher risk (more entropy) and invest in a “speculative”
manner, and even in a “Ponzi” scheme. Thus, the output of the corporation will
be diverted more and more into fulfilling financial commitments at an increasing
uncertainty or entropy. It is at this point that Minsky believe that this positive
feedback-grown system is at its weakest, and that surprise events could expose
this fragility, thus causing the whole interlinked system to come down. Indeed,
one of Minsky’s key motivations was to answer the question whether an eco-
nomic depression - such as the one experienced during the 1930’s - could happen
again [Toporowski, 2005, Minsky, 1982]. The problems have biological parallels
in ecology and ecosystem modelling, although it is not yet clear to what extent
competing cells or organisms ’borrow from the future’ in order to survive natural
selection in the now. Nonetheless, the tools of economics have the potential to be
applied in biology in a manner that has not yet been sufficiently explored.

3.3.1 Autocorrelation

Economics is a statistical science. This implies that economics is data-rich and
mechanism-poor: features become visible only above a certain number of obser-
vations. Correlation functions are statistical measures by which one can estimate
the similarity of two time-dependent noisy functions and include the “autocorre-
lation” function. Let R be a function for an autostationary process X , then the
autocorrelation function will be:

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2
(3.7)

This function is valid for processes with standard variation 0 < σ <∞. The time
variable τ is referred to in the literature as the “lag” between a time t and t + i.
The result for each lag is an indicator of similarity between -1 and 1 which will
be positive for correlation and negative for anti-correlation.

As stated, the autocorrelation function is used in economics, and can be un-
derstood, for example, by the statement that a high GDP at time t will most of the
time imply a higher GDP at time s. This function is applied to identify such motifs
in noisy economic data and it can also be used to search for oscillatory behaviors
(for a biological example, see Figure 3e in: [Stewart-Ornstein and Lahav, 2016]).
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The specific decay of the autocorrelation function can give an indication of the
duration of memory in a process. An important measure to estimate this effect is
the

τ

2
. For example, as the lag increases, the correlation of a noisy function will

tend to decrease. In processes which contain positive feedback, it is thought that
this decay occurs slower, and thus one can expect a higher half-autocorrelation
lag, or longer lasting memory. This can have implications when it comes to mak-
ing future predictions about time correlated data, such as those presented in the
Results section of this thesis.

3.3.2 Hurst Exponent

A second interesting measure used in financial time-series is the Hurst exponent of
a time series ([Peters, 1996]). Named after the hydrologist Harold Edwin Hurst,
who was exploring methods to reliably predict future water usage in the Nile delta
by looking at time-series from the past, to do this, he developed a method by
which he could establish long term correlations [Hurst, 1956].

To do this, Hurst proposes to re-scale the range of the data he collected (which
included water-gauge levels which went back hundreds of years) to the mean over
the whole observations. Dividing the rescaled time series by the standard devia-
tion of the measurements:

H =
Rt

σt
(3.8)

In contrast to being a completely random process, Hurst unexpectedly dis-
covered that there were long-lasting memory effects in the data, namely, if the
reservoirs in the Nile had more water than the mean over a very long time period,
then a tendency existed to accumulate more water over time, conversely, if the wa-
ter levels were below the mean, then the tendency would be towards less water in
the future. Thus, by comparing how a function relates to itself, Hurst looked at the
change in the cumulative deviations from the mean in time and found a surprising
correlation.

The regularities that Hurst uncovered had a further property, namely that they
were scalable. It took a few decades until re-known mathematician Benoit Man-
delbrot applied the methods used by Edwin Hurst to describe the laws governing
the self-similar scalable functions he developed. It was Mandelbrot himself who
named the exponent after Edwin Hurst.

There is a simple relationship between the Autocorrelation function and the
Hurst exponent [Lillo and Farmer, 2004]. For long-term memory processes, the
decay of the correlation function p with lag k degrades as a power law with expo-
nent α such that:
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p(k) = xKα (3.9)

Then the Hurst exponent can be defined as:

H = 1− α

2
(3.10)

Regardless of the method to estimate the Hurst exponent, the values will
vary between 0 and 1. In the financial literature it is generally assumed that
a Hurst exponent below 0.5 is a sign of negatively correlated time processes,
a Hurst exponent above 0.5, can show positively correlated processes, and the
exponent is used to detect long-term “memory” trends in economic time series
[Weron, 2002, Tom and Andrew, 1991]. As with the autocorrelation, the Hurst
exponent might help unravel hidden relationships in biological time-series. Fur-
thermore, in contrast to financial time-series, biological experiments can be re-
produced, and modified, so as to be used to test the validity of these widely used
methods in finance.

3.4 Positive Feedbacks in Biology

3.4.1 Naturally occurring feedbacks

I have briefly mentioned the importance of feedbacks in the field of synthetic biol-
ogy to generate memory devices (section 1.2.1). Examples of naturally occurring
feedback mechanisms also abound, and the functions are as expected very wide,
and operate at different scales. Intracellularly in [Lahav et al., 2004] the authors
show that mammalian cells are constantly checking for DNA damage and feeding
back the information through the MDM2-P53 interaction. This interaction occurs
at a nano meter scale, however feedbacks have been shown to work within bigger
cells such as Xenopus Oocytes (diameter of 600µm compared to 10µm in epithe-
lial cells used in the experiments of Lahav and collegues) to coordinate mitotic
entry and thereby achieve supra diffusion velocities [Chang and Ferrell, 2013].

Feedbacks operate at multicellular levels too, to ensure tissue homeostasis, re-
laying the positional information ([Dubuis et al., 2013]) to cells, and stabilizing
the chemical gradient patterning cues given by chemical molecules during devel-
opment. Surprisingly, in biological systems the receptor and ligand are rarely
produced in the same cell; the case is quite different in synthetic biology.
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3.4.2 Positive feedbacks in synthetic biology
Positive feedbacks have been synthetically generated in biological systems. Many
of these feedbacks have been generated using well known trans-activators and
promoter sequences. The goals or utility to generate these feedbacks vary from
group to group, for example in [Daniel et al., 2013], the authors generated a feed-
back to significantly increase the dynamic range of response in a bacterial strain
by computing an input signal in an analog as opposed to digital manner. Similar
conclusions were reached in [Becskei et al., 2001], where the authors introduced
stability into a noisy gene network by introduction of positive and negative feed-
backs. Others such as [Ajo-Franklin et al., 2007], have exploited the intrinsic bi-
modality of positive feedbacks, to construct a memory device in Saccharomyces
Cerevisae. This approach is particularly interesting, as it can present a non-genetic
mechanism for the transmission of information across generations. A more recent
study has used S. Cerevisae, to design and characterize the strengths and signs of
synthetically designed feedbacks by using a feedback factor “F ” that accurately
describes the sign and strength of the feedback [Schikora-Tamarit et al., 2016].

Only a few authors have ventured into generating positive feedbacks in mam-
malian cell cultures (for example [Siciliano et al., 2011]) and none to my knowl-
edge have explored the effect of feedbacks in organoid cultures. The reasons for
this lack of mammalian cell studies might be varied. The most likely contributor is
the technical laboriousness and cost of doing genetic studies in mammalian cells,
which might hamper the reproducibility of experiments across different labs.

Interestingly, no mention of a general measure for feedback contribution to
the systems is made in any of the works presented above and others. Such a
dimensionless measure could be of utmost relevance to compare feedbacks across
organisms and scales. In Part III, I will suggest a general measure to describe
feedbacks.
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Chapter 4

SCOPE OF THIS WORK

In this Introduction I have written mostly about mathematics and relatively lit-
tle about biology. This has been a conscious decision because, although I have
learned from both approaches and later chapters focus heavily on biology, it is
important to put the basis of this thesis in a broader philosophical context. This
basis is to further our understanding into what the basic elements of spontaneous
order are.

The work presented here is synthetic in nature, and thus should fit in the broad
field of synthetic biology (Chapter 2). In this sense, it was firstly an engineering
approach, whereby the biological questions would come once the system was en-
gineered. Although, perhaps unconventional for the investigative biologist, some-
times building something can help us better understand this process. For example,
the laws of aerodynamics were not established by watching birds fly, but by build-
ing airplanes.

In this thesis I have focused on studying and using the Hepatocyte Growth Fac-
tor (HGF) [Montesano et al., 1991] as a transmitter of information. As with other
growth factors, HGF is produced and secreted by mesenchymal cells and is sensed
by a sole known membrane bound receptor c-Met ([Park et al., 1986]) in epithelial
cells. The HGF <-> c-Met interaction leads to a signaling cascade within cells,
and triggers diverse phenotypes mostly associated with disruption of tissue archi-
tecture and increased cell motility. During development, this signaling pathway is
essential in the coordinated transition of epithelial cells to mesenchymal cells. For
example, the knock-out of HGF in mice embryos renders them non-viable after
days 13.5 and 15.5 [Uehara et al., 2000].). In cancer, it has been shown that aber-
rant increase in HGF-c-Met signaling can substantially increase the metastatic po-
tential of cells (reviewed in [Mizuno and Nakamura, 2013]). This phenotypic con-
sequence has also been exploited in an example of inter-kingdom “hack” by the
bacterium H. Pylori through the Cag-A to c-Met intracellular interaction which
leads to morphological changes in host cells that are beneficial for the bacterial
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infection to progress ([Tan et al., 2009, Bagnoli et al., 2005]).
In the work presented here this HGF-c-Met signaling was exploited to synthe-

size a sender-receiver cell line with a measurable HGF-dependent output, in the
form of GFP driven by a matrix metalloproteinase promoter (pMMP1). MMPs
have been shown by ourselves in Part II of this work and others to be differen-
tially upregulated by an HGF stimulus in MDCK cells [Chacon-Heszele et al., 2014,
Hellman et al., 2008]. To obtain the HGF-receiver cell line presented in chapter
II I generated a cell line with a genomically integrated pMMP1-d2EGFP DNA
sequence (henceforth called the ACS1 cell line).

The goal of this thesis is to investigate whether the creation of an auto-catalytic
gene signaling network can generate macroscopic spatio-temporal patterning. For
this, in Part II I first engineered a mammalian cell line to read-out the spatiotem-
poral diffusion of the morphogenic Hepatocytic Growth Factor (HGF) protein.
Once this cell line had been established, using the same genetic components, in
Part III I introduced an inducible autocatalytic feedback loop into this cell line.
To confirm that the feedback loop was functioning, I applied some of the time-
series analysis methods described above. As I will show, some of these methods
succeed in identifying a positive feedback in the data whereas others do not.

The results of Part II have been published in a peer-reviewed journal (see
[Carvalho et al., 2014]) and have been included here. Further discussion of some
of the topics presented in this work, have also been published in form of a review
in [Barcena Menendez et al., 2015].
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Part II

A genetically-encoded
sender-receiver system in 3D
mammalian cell culture. ACS

Synthetic Biology 3 (5), 264–272
(2014).
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Part III

Generation and characterization of
a positive feedback cell line
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Chapter 5

INTRODUCTION

In vitro tissue engineering has been recognized to hold the potential to revolution-
ize medicine. Still, a fundamental unresolved challenge remains: how to deliver
nutrients and signaling molecules to masses of tissues generated in vitro in the
absence of vascularization? During development, an active vascular network only
starts to develop between the 5th and 6th week after gestation in humans, and
roughly at days 7-8.5 in mice, leading to a fully functional murine heart at day
13 [Kaufman and Navaratnam, 1981] and [Kau, 1994]. At this stage, the embryo
consists already of billions of cells which act in coordinated manner to position
themselves both in space and time to form tissues.

For synthetic biologists, there are currently two approaches to engineering tis-
sues, both of which I described in detail and presented examples in Chapter 2.1.3.
The first, top-down approach uses biomimetic scaffolds designed specifically so
that cells will follow physical cues and assume their biological potential. The sec-
ond approach is a bottom-up approach, in which a starter colony of cells is led to
develop and construct all necessary structures without the need for a “pre-printed”
scaffold.

It is unclear which approach is closer to nature, regardless, robust signaling
mechanisms which transform disordered energy from the environment into or-
dered forms and structures must exist (see Section: 1.1.1). Mammalian cells,
for example have a vast repertoire of pathways to signal within themselves, with
other cells, and with the environment. The communication agents are varied and
include structures such as exosomes, RNA molecules, small chemicals, proteins,
or through direct sensing of physical cues.

In the following section (6.1) I will present experimental results expanding on
my findings of Chapter II. The goal was now to expand the system by introducing
a positive feedback. To do this, I introduced into the ACS1 cell line HGF itself and
a red fluorescent protein (tdTomato) under the control of the pMMP1 promoter,
thus generating a synthetic autocrine feedback loop. There were two main moti-
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vations to generate this system: first, it is biologically relevant to study the syn-
thetic cell line, due to the aforementioned developmental and carcinogenic effects
of HGF; to my knowledge there are no reported cases in which HGF and c-Met
are expressed in the same cell. Secondly, from a dynamical systems perspective,
building such a system could give insights into the consequences of autocatalytic
reactions in naive systems, putting to the test their entropy-generating capacity.
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Chapter 6

RESULTS

6.1 Synthesis of a positive feedback cell line

6.1.1 Design

The promoter for MMP1 is activated by HGF in MDCK cells grown in 3D col-
lagen cultures (Part II). I now set out to introduce the signaling molecule HGF
itself under the control of this promoter, to generate a “positive feedback” cell
line (PF Cell line). To abrogate the expected strong mitogenic properties of HGF
- hypothesizing that a constant stress could be detrimental to cellular health - I in-
troduced a switch-like control via tetracycline-dependent repression (Figure 6.1).
Furthermore, to be able to measure directly the positive feedback contribution to
the signal, a second PEST destabilized fluorescent reporter (d2tdTomato) was in-
troduced and linked to the HGF cDNA sequence via a self-cleaving P2A peptide.
This module should allow me to monitor the dynamical nature production of HGF
by cells. Lastly to monitor the influence of the positive feedback, this module was
inserted into the ACS1 line, allowing me to compare results in a single mono-
clonal cell line. This strategy would allow me to eliminate potential genetic or
epigenetic sources of uncertainty from the system. The added caveat is that there
could be a potential competition for transcription factors between the two pMMP1
promoters.

Thus, there will be two sources of HGF throughout this work with corre-
sponding nomenclature: HGF applied exogenously will be referred to as HGFext
and was primarily purchased from Sigma-Aldrich R© unless specified otherwise.
On the other hand, HGF produced by cells from the positive feedback module
plasmid will be referred to as HGFint.
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HGFintd2tdTomatoPmmp1TetRPCMV

HGFextTetracycline

Pmmp1d2GFP

Positive Feedback Module Receiver ModuleInsulator

p2a

Figure 6.1 – Schematic representation of the plasmid modules used to generate a cell line
with both an HGF receiver module (green) and a positive feedback (PF) module (red).
The PF module has a tet-operator sequence, and is kept in an OFF state by the insulator
module (gray) which produces Tet Repressor. Addition of tetracycline should switch the
PF module to an ON state. HGF and tdTomato in the PF module are transcribed as a
single transcript linked by a P2A peptide and translated from a single ATG.

6.1.2 Cell line creation

I introduced the plasmids containing the modules shown in Figure 6.1 into the
receiver cell line used in [Carvalho et al., 2014] by Lipofectamine R© transfection.
I then submitted cells to several rounds of antibiotic and fluorescence selection to
generate a monoclonal cell line (details are shown in the materials and methods
section 8.2.2). I was specifically looking to generate a cell line which displayed
high GFP/Tomato expression, upon addition of tetracycline. I observed that im-
mediately after transfection, a high percentage of cells had this phenotype (figure
8.1a). I initially attempted to sort these freshly transfected cells into single wells
of a 96-well plate. Using this method, I found that 1) the survival of these colonies
was very low, and 2) colonies that did survive, lost the desired phenotype after cul-
turing them for prolonged periods of time. To overcome these issues, I performed
a two-step sorting strategy by first sorting cells in bulk, and selecting these with
an antibiotic. After cells were selected for around 7 days, I subjected them again
to treatment with tetracycline and sorted this time single cells into 96-well plates.
This approach allowed me to generate positive clones.

In accordance to what I did with the receiver cell (Part II), clonal colonies
were tested in 2D for activation of the PF module, and further tested in 3D-
Collagen cysts. This was necessary, as I had previously observed that even though
cells might respond to HGFext when grown in 2D-monolayers, this did not im-
mediately translate to a response to HGFext in 3D cultures. Out of >200 tested
clones, I found only one which responded to the HGFext cue. In Figure 6.2 I
show fluorescent imaging for this positive clone grown in 3D collagen, observed
under a fluorescence microscope. Positive traits which are consistent with the fact
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that this clone has autocrine HGF signaling:

–Low GFP and tdTomato expression in the absence of HGFext (6.2 Row 1)

–GFP translation and tubulation in response to HGFext (6.2 Row 2)

–Production of GFP and tdTomato in the presence of tetracycline (6.2 Row 3)

–Activation of the GFP and morphological response to HGFint (6.2 Row 3)

–GFP and tdTomato expression in response toHGFext in the presence of tetra-
cycline (6.2 Row 4)

+HGFext

PF-ON

-HGFext

PF-ON

+HGFext

PF-OFF

-HGFext

PF-OFF

PH GFP Tomato

Figure 6.2 – The positive feedback (PF) cell line responds to extrinsic and intrinsic HGF.
Images of a clone generated through the FACS sorting method described in Figure 8.1a.
PF cells were grown as cysts in collagen for 7 days and were then stimulated for 24 hours
with a dose of 50ng/ml HGF (+HGFext) and imaged in both GFP and tdTomato channels.
Additionally, cysts were also imaged in the absence (PF-OFF) and presence (PF-on) of 1
µg/ml tetracycline. The yellow arrow indicates cysts tubulating in the absence ofHGFext
but presence of tetracycline indicating the production of HGFint.
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Of these traits, the observation of tubulation in the absence of HGFext is the
clearest indication that functional signaling is occurring Figure 6.2 3rd row ar-
row. Furthermore, this was a confirmation that the ’ground state’ of the system
without repression is leaky and on. The elevated GFP levels observed in this
condition further indicates that the receiver module is also sensing the produced
HGFint.

To quantitatively assess the activity of this cell line, I analyzed the images with
a modified version of the custom Matlab R© script used in Part II (see Materials
and Methods section 8.3.2 for detailed explanation). This code allowed me to
analyze the images in high throughput and thus estimate the percentage of cysts
expressing GFP and tdTomato for a given experimental condition. In Figure 6.3
Comparative results of the PF cell line grown as cysts versus cells grown as 2D
monolayers and stimulated to HGFext or tetracycline. I can confirm the observa-
tion from the ACS1 receiver line (Part II) that activation of the pMMP1 promoter
by HGFext is stronger in 3D cysts than in monolayers (Figure 6.3 top row). I
can also deduce that de-repression of the positive feedback induced primarily td-
Tomato expression, while GFP signaling could be detected in only about 4% of
cysts under these conditions (Figure 6.3 third row). In the presence of HGFext
and tetracycline (PF-ON), GFP and tdTomato were both upregulated, indicating
that although the promoters are independent of each other, both respond to the
external HGF stimulus.

One of the main objectives of this thesis is to generate and study emergent
“macroscopic” intercellular patterning using intracellular microscopic “compo-
nents”. For such patterns to arise in the presented MDCK system, it is indis-
pensable that cells secrete the communication signal HGFint into the medium.
In Figure 6 of Part II, I showed that the ACS cell line can be used to measure
a diffusible HGFext signal and that this signal could be inhibited through the
NK4 inhibitor. In these experiments, both HGF and NK4 were in fact produced
in MDCK cells, albeit these cells had been transfected with a constitutively ex-
pressed HGF plasmid. In the PF-cell line, I observed phenotypically that HGFint
was being produced and sensed by at least a fraction of MDCK cysts, as was ev-
ident from the tubulation of some of the PF-cysts in the presence of tetracycline,
and the activation of the GFP reporter. It was however unclear whether HGF pro-
duced under the weak mmp1 promoter would be secreted into the medium, and
given the low levels of activation observed in Figure 6.3, I decided to pursue this
further.
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Figure 6.3 – Cysts Respond To HGF with higher fluorescence than monolayers, in a com-
parison of Receiver (second row) and Positive feedback (third and fourth rows) module
activities. The PF-cell line was grown as monolayers or cysts and in both experiments
cells were treated 24 hours prior to analysis with stimuli as in (6.2). The left row of
plots shows the response in monolayers as assessed by FACS sorting (n=10,000 cells).
The right row shows the response of cysts as assessed by quantitative microscopy (n=100
cysts). Numbers are the percentage of cells in either of the four gates.
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To prove that HGFint was being secreted into the medium, and not merely
activating cells locally, I used the Quantikine Elisa kit to quantify the amount of
HGF in supernatant of cells treated with tetracycline which were grown on filter
inserts. MDCK cells are known to polarize, forming an apical and a basal side
when grown in confluent adherent 2D cultures. Thus, this experiment would give
me information as to whether HGFint was being secreted and whether the secre-
tion displayed a polarization bias. In Figure 6.4 I show that I could detect HGF
from the apical supernatant after cells were treated with tetracycline at a concen-
tration of 3ng/ml. In contrast, I could not detect HGF from the basal side of the
insert. It was not immediately clear whether this was due to the lack of permeabil-
ity of the membranes to HGF, as I could not detect any significant HGF from a
cell-less control were HGF was applied on the apical side, and apical supernatant
was analyzed or vice-versa (data not shown).
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Figure 6.4 – MDCK monolayers produce
HGF in the presence of tetracycline. Cells
were grown on a 0.4µm filter insert until con-
fluent and treated with 1 µg/ml tetracycline
for 24 hours. 1ml supernatant from either the
apical (top) or basal (bottom) side was then
analyzed and with the HGF Quantikine Elisa
kit. Samples were taken from three different
wells (n=3). Experiments were performed by
Natalie Scholes Sian. Data analysis and inter-
pretation was performed by me and N.S.S.

Taken together, there was prelim-
inary evidence that I had indeed gen-
erated a cell line with inducible au-
tocrinic HGF signaling. Throughout
this Chapter, the cell line will be re-
ferred to as the PF cell line. From
the beginning, we anticipated that one
of the biggest limitations to generat-
ing the PF cell line would be that
the de-repression of the feedback mod-
ule could lead to runaway feedback
by means of the leaky expression ob-
served with the pMMP1 promoter in
the receiver cell. This does not seem
to be the case, if anything, the feed-
back seems to be rather weak, as can be
seen in row three of Figure 6.3, only
a small fraction of cells express both
tdTomato and GFP when the feedback
is de-repressed by addition of tetracy-
cline. In the following sections I shall
describe analysis I carried out on this
cell line in an attempt to quantify the
strength of this feedback. I will then
go on to describe attempts to generate

spatiotemporal signalling experiments, to assess whether the signal could be prop-
agated spatially and temporally between cysts.
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6.2 Characterization of a positive feedback cell line

6.2.1 Feedback induced changes in Dose-Response

Receiver module (via GFP fluorescence)

I first performed a dose-response experiment using the same methodology for the
analysis as in Figure 3a and 3b in Part II. To do this, I initially imaged cysts on
two different days (n=2) and then pooled the experiments for the analysis, as the
raw values did not differ significantly (See Figure 6.5 upper left panel). In Figure
6.5 I show the results of this experiment. The left panels show the raw data after
background substraction and area correction. The right panels show the normal-
ized data using the same normalization as in Part II. The dose dependent response
of the PF cell line in the absence of tetracycline (PF-off) did indeed resemble that
of the ACS1 cell line presented in Part II, with one notable exception: the mean
maximum fold-activation was almost double at 8-fold (Figure 6.5 upper panel).
This higher activation could be attributed to technical measurement variability as
the measurements were carried out on a different, more sensitive microscope, as
outlined below.

For example, the maximum fluorescence measured in [Carvalho et al., 2014]
(measurements taken at the CRG in Barcelona) hovered around 300 arbitrary flu-
orescence units (a.u.) with a 3 second exposure. In contrast, the measurements
presented in this section (taken at Imperial College London), were carried out with
a 300ms exposure time, and the measured a.u. reached 5000. This significant in-
crease is expected to alter the dynamic range of signal detected and thus can alter
the fold-activation results. Evidence pointing to the setup as a cause of significant
contribution to the deviation in the observations included a different light sources,
different camera module and different objectives (listed in Chapter 8, Materials
and Methods).

I designed the PF-cell line specifically to act as its own control in the presence
or absence of a positive feedback, and thus be able to draw conclusions from
it in spite of technical variability. This setup helps abrogate the technical noise
mentioned above. In Figure 6.5, I show that as expected in a system with positive
feedback, the mean fold activation value increases when the feedback is on, both
in the raw and the normalized data. Given that the differences observed were
minimal, I resorted to statistically assess whether these differences in activation
were significant. To do this, I computed the power of the data to differentiate
the two conditions using Student’s two sample t-test. The power test compares
the distributions between PF-ON and PF-OFF at each timepoint and tests the
null-hypothesis that PF-ON was higher than PF-OFF at a confidence greater than
95% given the number of observations, and the standard deviations (for details
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of implementation: see sampsizepwr formula in Matlab). In (Figure 6.5 lower
panel), I have plotted the power of the test in time. The experimental data was
observed to prove the null-hypothesis only at the specific HGFext concentrations
of 0, 1.0, and 4.2 ng/ml. Interestingly, the normalization of the data to the initial
time value qualitatively increases the power of the test for all conditions.
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Figure 6.5 – Quantitative GFP response of the positive feedback PF cell line were grown
in Collagen and stimulated with different concentrations of HGFext with PFon (straight
lines) or PFoff (dotted lines) of tetracycline. The upper panels are the medians over all
cysts (arbitrary fluorescence units. n=100-192 depending on the condition) for either raw
fluorescence data or data normalized to timepoint 1 (as in [Carvalho et al., 2014]), the
shaded region represents the upper and lower bounds of the 95% confidence interval. The
lower panels show the statistical power that the data for each concentration of HGFext
with and without PF are from different distributions.

This initial observation seemed to indicate that the Feedback in the PF-Cell
line is only acting at lower HGFext concentrations. Deviating from this trend
however, the distributions for the 2.1 ng/ml HGFext could not be differentiated.
The raw fluorescence values deviate substantially from cyst to cyst, and it is non-
trivial to make an estimate of protein amount from this number. In Part II, I
showed that the fold-increase normalization relative to the first timepoint can be
a good way of making the different experimental conditions comparable to each
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other. Indeed, as can be seen in (Figure 6.5 right panel) the power of the data qual-
itatively improves in most of the conditions, however it only remains significant
for the aforementioned concentrations.

Positive Feedback module (via tdTomato fluorescence)

The tdTomato response and in consequence that of HGFint was designed to be
dose sensitive to HGFext. The insulator module (TetR Figure 6.1) should ensure
that in the absence of tetracycline (PF-Off), there will be no detectable tdTomato
signal, even at higher concentrations of HGFext. This aspect of the cell line de-
sign is essential so as to minimize unwanted runaway positive feedback activation.
In the left panel of Figure 6.6, I show that the tdTomato signal responds differen-
tialy to the range of HGFext stimuli similar but not exactly to the response curves
of GFP. There could be a number of reasons for this observation, for example,
the TetO sequence could have altered the pMMP1 promoter dynamics making it
more sensitive to HGF. Alternatively, the genomic integration of both the Positive
Feedback module and the ACS1 receiver module are random. Thus, it is plausible
that these modules reside in different locations of the MDCK genome, or even at
a different copy number. These two hypothesis correspond to the activation pa-
rameters of the proteins. Unfortunately, these traits are both non-trivial to validate
experimentally in mammalian systems. Attempts to validate the integration site by
reverse PCR or the integration copy number by southern blot, were not successful.
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Figure 6.6 – Fluorescence activation of tdTomato in response to different doses of
HGFext in the presence and abscence of tetracycline (solid vs dotted lines respec-
tively)(left panel). Cysts (n=121) were also treated with cycloheximide after 24 hours
of 17ng/ml HGFext stimulus and imaged for 12 hours (right panel). a.f.u = arbitrary
fluorescence units
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A third hypothesis to account for the different dynamics of tdTomato activa-
tion could be that the rate of degradation of the tdTomato fluorophore was altered
in relation to that of GFP. If this were the case, the accumulated tdTomato would
saturate the signal at much lower concentrations of stimulus. In (Figure 6.6 right
panel) I show results of cysts imaged after a dose of 1µg/ml cycloheximide to in-
hibit protein biosynthesis 24h afterHGFext and tetracycline treatment. Evidently,
there is a clear difference in the degradation rates of the two fluorophores. The td-
Tomato signal does not degrade at all whereas the GFP signal is completely gone
after 12 hours. This discrepancy alone could account for the apparent difference
in response dynamics between the PF and Receiver modules.

I did not attempt to characterize this difference in degradation. There are two
plausible explanations on which I will briefly elaborate. On the one hand, the
self-cleaving P2A peptide sequence between the HGF and the tdTomato cDNA is
known to leave peptide residues both in the c terminal and n-terminal proteins after
being cleaved ([Rothwell et al., 2010]). Although not reported, it is possible that
the carboxy terminal scar might interfere with the PEST domains’ targeting to the
proteosome. A second possibility could be the conformation of the homodimeric
tdTomato protein might obstruct the PEST domain, as I have found no reference
in the literature of a d2tdTomato protein. Further experiments to resolve this issue
will be needed; to date, attempts to generate a degradable red fluorescent protein
which would display no fluorescence spectral overlap with our microscope con-
figurations were unsuccessful. Thus for most quantitative analysis, I have used
only the GFP channel where the tdTomato channel served as a qualitative guide
on whether HGF was being expressed in cells.

Correlation between HGFint production and GFP

The PF cell line was designed to monitor the amount of HGFint that is dynami-
cally being produced at any given moment by means of the intensity of tdTomato
fluorescence. The rationale behind this was to provide a tool to directly measure
the contribution of the positive feedback to the system, and establish how this con-
tribution behaves in time. As shown in Figure 6.6, and discussed above, the dif-
ference in degradation rates between GFP and tdTomato abrogates this functional
design of the PF cell line. Notwithstanding, some measures could be extracted
from the available data. For example, I found particularly intriguing to explore
how the activation of receiver and feedback modules correlate within each cyst.
In Figure 6.7 the estimated Pearson correlations of GFP and Tomato for individual
cysts from the experiment in Figure 6.5 are shown. As expected, in the absence of
feedback (no tetracycline) the correlation was negligible. Interestingly, at higher
HGFext doses a sub-population of cysts displayed correlation which could hint to
leakiness in the repression by TetR of the positive feedback module.
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Figure 6.7 – Pearson correlation of GFP and td-
Tomato trajectories in time at increasing concen-
trations of HGF (colors), with and without posi-
tive feedback.

In the presence of feedback
(with tetracycline), there is a small
increase in the correlation in the ab-
sence of HGFext which confirms
that there is communication be-
tween the two modules, at least in
a subset of cysts. Interestingly un-
der these conditions, there is also
a small percentage of cysts (10%)
which are apparently anticorrelated.
This could be an indication but does
not prove promoter competition
within these cysts. Above a concen-
tration of 4.2ng/ml of HGFext, the
correlations in cysts is maximized
(more than 90% of cysts show a cor-
relation above 0.9). This dose de-
pendence of the correlations, was
further proof that both promoters
are being dynamically regulated by
different amounts of HGFext.

Analysis of the Steady State

The time window of observation of the experiment presented and discussed in the
previous section (Figure 6.5) was not sufficient to observe the saturation of the
response signal. The differences in mean fold activation between the two states
- PF-on and PF-off - were barely significant. I hypothesized that perhaps some
effects of the positive feedback could manifest while at steady state. In Figure
6.8 upper left panel I show the behaviour of PF cells under similar conditions
as in the previous experiment, however these cysts were imaged starting 24 hours
post stimulus. In this case, the fold changes are not in regard to the first timepoint,
but in regard to the mean of the PF-off and 0ng/mlHGFext condition (red dotted
line). Under these conditions, the positive feedback causes a shift upwards in
the steady state levels in all conditions except for the highest (17ng/ml purple
lines) HGFext. This observation can be seen as further evidence of a functioning
autocrinic signalling.

In agreement with a the observations made in the previous section (Figure 6.6)
of deficient tdTomato degradation, the mean fluorescence for the cysts continues
to increase and seems to converge to a single point (Figure 6.8 upper right panel).
This is shown in clearer format in Figure 6.8 lower left panel where I am showing
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the average velocities over the time-series for every cyst. The GFP fluorescence
displays a net decrease over the time periods observed except for the higher con-
centration which reaches the maximum activation at roughly 24 hours. In contrast
the net difference in time of the tdTomato fluorescence is mostly positive except
at the higher concentrations where the saturation level of roughly 6-fold activation
have been reached earlier.
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Figure 6.8 – Quantitative GFP response of the PF cell line were grown in Collagen and
stimulated with different concentrations of HGFext with PFon (straight lines) or PFoff
(dotted lines) of tetracycline. The upper panels are the medians over all cysts (n=100-
192 depending on the condition) for either raw fluorescence data or data normalized to
timepoint 1 (as in [Carvalho et al., 2014]), the shaded region represents the upper and
lower bounds of the 95% confidence interval. The lower panels show the statistical power
that the data for each concentration of HGFext with and without PF are from different
distributions.

To quantify HGFext induction, and in particular the contribution of HGFint
to this quantitative measure, I analyzed the response dynamics at the steady states.
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Table 6.1 – Best fit parameters using Markov Chain Monte Carlo exploration.

Parameter GFP ACS GFP Thesis GFP PF Thesis TOM Thesis
b 0.9 1.1 1.7 5.2
V 3.65 6.3 5.9 1.14
Kd (ng/ml) 12.6 9.1 7.6 6.32
n 1.19 1.16 0.99 1.4
Rmax 4.55 7.41 7.6 6.2

I use the same approach as in Part II section 8.1, by fitting the data points to the
sigmoidal response given by:

b+
V ∗ an

Kn
d + an

(6.1)

The correct parameters were searched by fitting the data shown in (Figure
6.8 lower right panel) using the Markov Chain Monte Carlo (MCMC) algorithm,
varying the initial baseline response b, the half activation V , the dissociation con-
stant kd and the hill coefficient n. Given the microscopy technical measurement
difference discussed above, the parameter values were not expected to be those
presented in Part II and are listed in Table 6.1.

A clear conclusion from these initial experiments is that the “strength” of the
positive feedback, did not seem to be enough to elicit full activation of the MMP1
promoter in the time-frame of the observations, causing runaway “feedback”. This
could hint to the fact that the feedback is either globally thresholded across cysts,
or that the HGFint signal is not reaching cells unimpeded. The observation that
only a subset of cysts respond strongly to the de-repression of the HGF module
Figure 6.3, lends support to the hypothesis that there could also be a stochastic
element whereby, a sub-population of cysts is hypersensitive to HGF . If this
is the case, at higher doses of HGFext this population would be masked by the
response of a high percentage of cysts, rendering the hyperactive outliers of lower
concentrations practically invisible.

Data from Figure 6.3 seems to lend credence to the outlier hypothesis. It is
unclear what the underlying cause for this observation could be. I can at this point
only speculate about the reasons for this observation. For example, the lack of sig-
nal propagation in a cyst which produces HGFint could indicate that the receptor
is not perceiving this signal. One tantalizing explanation for this is that HGFint
secretion occurs towards the opposite direction of where the HGF receptor c-Met
is localized. Given the heterogeneous composition of the collagen I fibrils upon
which the cells grow, and the sensitivity of the cells to their substrate (see further
down in section 6.3 for evidence supporting this hypothesis) it is fathomable that
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a subset of cysts mis-localize the receptor or the morphogen or both, and are thus
more sensitive.

The above conclusions made it particularly interesting to further analyze the
effects of the positive feedback at lower HGF concentrations, to discern what
the contribution if any it makes to the response dynamics to HGF. Furthermore,
it would be interesting to explore other measures beyond the mean fold activation
differences. In the next sections I will elaborate on potential methods to discern
and quantify the feedback in the PF-cell line.

6.2.2 Estimating the feedback gain and factor
As discussed in the previous section, at certainHGFext concentrations, I observed
a positive feedback effect on the mean of a population of cysts. The feedback
seemed to be rather “weak”, in this section I will demonstrate some approaches
to estimate what, if any measures can be attributed to the feedback contribution
to the PF-cell line. In the first part of this section I repeated the dose-activation
for three independent HGFext concentrations. Firstly, 0ng/ml HGFext which will
serve as a control on how the positive feedback influences the system without
external inputs. Secondly 4.2ng/ml of HGFext as this was the concentration at
which the strongest difference between PF and non PF was observed. And lastly
I also chose the highest concentration of HGF 17.0ng/ml, as no PF was observed
and this can serve as a negative control for feedback.
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Figure 6.9 – Normalized means of three different experiments at three different concen-
trations ofHGFext in the presence (straight line) or absence (dotted lines) of tetracycline.
The mean of the means are shown as black lines.For each individual Replicate (Rep 1-3)
n>100 cysts.
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In Figure 6.9, the colored lines labeled as Rep 1-3 I represent each the mean
of individual biological replicates. This representation is important to illustrate
the high variability in these experiments comes both from intrinsic (each cysts
variability within a given day) and extrinsic (batch effects such as temperature,
basal membrane composition, etc..) sources. Furthermore, it shows that both
variabilities increase at higher concentrations of HGFext. Again, cysts with the
de-repressed positive feedback were distinguishable only at lower concentrations
of HGFext, confirming the previous observations.

Positive feedback strength

I first explored the hypothesis that HGFint production was acting as a dynamical
non-linear amplifier of the HGFext signal. I applied a methodology originally
used by climatologists (who adapted it from electronics, see introduction section:
3.2) to estimate the feedback contribution to the system. In this case I assume that
a concentration of HGF forces the system to express a response GFP . The total
amount of HGF in the system for any given time-series of observation can be
thus be described as:

HGFtotal = HGFint +HGFext (6.2)

The presented data demonstrate that I can measure the fold-output response of
the system via quantitative microscopy analysis of GFP fluorescence. The effect
of the feedback in the system, can be discerned by comparing the response of the
PF-cell line in time with and without a positive feedback. Therefore, the total
amount of GFP can be decomposed in the parts coming from HGFext and a part
coming from HGFint so:

GFPtotal = GFP0 +GFPPF (6.3)

Where GFP0 is the measured response of the cysts to HGFext and GFPpf
is the response of the cysts in the presence of the positive feedback. To estimate
the dynamic contribution of the feedback to the system, the rate of activation per
unit time can be analyzed, which allows me to calculate the feedback gain g as
described in section 3.2:

g =
∆GFPfeedback

∆GFPfeedbackOFF
(6.4)

For the analysis, I have assumed ∆GFP to be the difference in normalized
fold GFP values for each time-point by the time preceding it. In order to estimate
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∆GFP for each condition, I calculated the mean of the differentials of GFP ex-
pression between two contiguous time-points for each individual cyst. These val-
ues remained relatively constant in the time frame of observations, thus I deemed
it possible to compare between conditions.

By this measure, the rate of GFP production increases with higher HGFext
concentrations (Figure 6.10). At lower HGFext concentrations, there was also
a statistically significant increase in GFP rate in cells with the positive feedback.
This difference can be solely attributed to the effect of HGFint on the cysts. The
net feedback contribution to the system can be calculated by ∆GFPfeedback −
∆GFPfeedbackOFF , and the gain of the feedback could be estimated by dividing
this value by the equilibrium change of GFP.
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Figure 6.10 – The rate of GFP production increases
with HGF concentration and with the positive feed-
back. Boxplots of the average change in GFP per unit
time for each individual cysts. Boxes represent the
95 percentile of cysts, and contain lines for the me-
dian and a circle for the mean. Error bars represent 1
standard deviation from the mean, and single dots are
outliers. The significance between positive feedback
(dark blue) and no positive feedback cysts was calcu-
lated using the Kruskal Wallis test method and *** p
< .001, n.s. not significant p > .05.

For the condition with 0ng/ml
HGFext the ∆GFP is close
to zero, thus the feedback gain
tends towards infinity. For
the higher concentrations how-
ever it was possible to esti-
mate a feedback gain contribu-
tion to the system of 0.4679 for
4.2ng/ml HGFext. An almost
undetectable gain of 0.0423 for
the condition with 17ng/ml,
was deemed non-significant.

The feedback factor f as
per [Hansen et al., 1984] is re-
lated to the gain g by:

f =
1

1− g
(6.5)

and is an “intuitive quantifica-
tion of the strength of feed-
backs”. For the above men-
tioned conditions, I found a
feedback factor of 1.8793 for
the 4.2ng/ml concentration and
1.0442 for the higher condition
17ng/ml. To my knowledge
there have been no previous ef-
forts in the experimental biol-
ogy literature to quantify the
strength of a feedback using the
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above mentioned methodology, thus it is not possible to compare the feedback
gain of my system to that of other biological systems, synthetic or natural.

Where possible, it would be interesting to compare other purported feedback
systems in biology using this measure, as it is a dimensionless attribute. One
advantage of the synthetically designed system presented here, is that the effect
of the feedback can be turned on and off at will, thus making the detection of said
feedback more straightforward.

6.2.3 Computational Feedback Model

Given the lack of standardized quantification methods for strengths of biological
feedbacks in the literature, with the help of Marc Sturock I devised a simple ki-
netic model for a linear autocatalytic reaction. I hypothesized that such a model
could serve as a guide to find relative quantities of the PF system. This model
was not devised to fit or model the observations in the data, but rather to theoreti-
cally guide me to understand feedbacks, and help me devise a method to ascertain
whether the PF cell line was indeed a positive feedback. The model consists of
three simple reactions with respective rate constants:

∅
k1⇀↽
k2
A −→

k3
A+ A (6.6)

I reasoned that with this simple model I could explore parameters for different
birthrates k1 and positive feedback strengths k3 of an activator A. The parameter
rate k2 is akin to a degradation rate, and in this form is a negative feedback which
serves to set a limit to growth. I have introduced this parameter in order for the
concentrations of A not to tend towards infinity, and have not varied it throughout
the exploration.

The rates and concentrations are given in arbitrary and dimensionless units,
and the changes in concentration of A are calculated using Gillespie’s method
whereby each time-step of the simulation was akin to 1 simulated minute of the
reaction ([Gillespie, 1977]). This model will serve as a guide, to test other mea-
sures for positive feedbacks. I have manually chosen the parameters so that levels
similar to the absolute raw values of GFP in the data are reached, however the
results observed here apply generally. The steady state concentration of A will be

reached at:
k1

k2 − k3
. A copy of the code for the model is found in the Materials

and Methods section 8.3.1.
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Figure 6.11 – Results from the stochastic model in equation 6.6, with variation of produc-
tion rate k1 (upper panels k1 = 0, 2.7, 5.7, 8.7) and a fixed k3 of 0.0019. I also varied
the positive feedback rate k3 (lower panels k3 = 0, 0.00045, 0.00093, 0.00141) and fixed
k1 to 11. 1000 timesteps are plotted for either the growth phase (left column) or the
steady state phase (right column). The color lines are the averages over 1000 runs of the
stochastic model. Black lines show an example of 100 model runs.

In Figure 6.11 I show example traces for different values ofK3 andK1 for and
average of 100 simulations for each condition. In this case, I chose parameters so
that they match the raw values observed in the experimental data. I have displayed
the concentration of A for both the growth phase and the steady phase for different
parameters of K1 and K3.

Running the stochastic model at such high copy number of molecules is com-
putationally expensive, thus for the following analysis, I used different parameters
for K1 and K2, which resulted in a equal range of A steady state means between 0
and 200. The result of runs of 10,000 steps are represented as a heatmap in Figure
6.12, and the mean of each trace is shown in Figure 6.13. Using these parameters,
there are no obvious differences in the behaviors of the means between the model
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runs. This was necessary, as the objective of this analysis was to differentiate be-
tween a positive feedback and no positive feedback. In the following sections I
will elaborate on the measures we explored to understand the effects of positive
feedback.
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Figure 6.12 – Stochastic model shows similar mean activities at the steady state levels with
and without positive feedback. Results are shown from the stochastic model in equation
6.6, with fixed K2 = 0.01 and variation of production rate k1 = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
(upper panel) with k3 = 0, and variation of k3 = 0, 0.0016, 0.0028, 0.0037, 0.0045, 0.005
with K1 = 1.0 (lower panel). 1e5 timesteps are displayed.
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Figure 6.13 – Stochastic model shows similar mean activities at the steady state levels
with and without positive feedback. Results are shown of the mean of the stochas-
tic model in equation 6.6, with fixed K2 = 0.01 and variation of production rate
k1 = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 and k3 = 0 (circles). The mean of the runs with
k3 = 0, 0.0016, 0.0028, 0.0037, 0.0045, 0.005 and K1 = 1.0 are displayed as crosses.

Autocorrelation

An autocatalytic process can induce a memory effect by means of its concentra-
tion. Intuitively, this explains the increase in “GFP velocity” observed above in
the data in the exponential phase (Figure 6.10), as more HGF will lead to more
HGF, etc... I asked myself, whether it was possible to observe this self-similarity
in the steady state too. An unbiased indicator of this effect used widely in eco-
nomics is the autocorrelation function (see equation 3.7 in the Introduction). This
function serves to measure how a series of data correlates to itself at different in-
tervals (τ ). A long-term memory process will show an increase in autocorrelation
if feedback is present, i.e. the parameter K3 is higher.
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Figure 6.14 – Effects on the autocorrelation time for the stochastic positive feedback
model. The model was run for 100,000 time steps for each value of either K1 or K3

(x-axis). The auto-correlation of each run was calculated for a maximum lag of 1000 us-
ing the acf function in R. The average autocorrelations are plotted for increasing number
of runs (y-axis).

I looked at how the autocorrelation time for the concentration of A behaves
in the model presented above. When I initially ran the model for short periods
of time (1000 minutes), or few stochastic repetitions (1000 runs) I could observe
no apparent difference in autocorrelation times when increasing either the K3 or
the K1 parameters. As I increased the number of runs, and averaged the autocor-
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relation times, indeed a trend emerged of an increase in autocorrelation time for
higher K3 parameter values. In contrast, variation of the K1 parameter had no
effect on this parameter under the same conditions (Figure 6.14).

This observation indicates that positive feedback can in fact induce long-term
memory in a system, albeit mathematically, this can only be observed closer to the
deterministic limits of the system, or when making high numbers of observations.
For example, the model uses timesteps of 1 minute, thus the total time of “obser-
vation” in the above run (1e5 timesteps) was of 69 days, this is an unreasonably
long time in biological setups. Furthermore, as is evident in Figure 6.14 even at
these high number of observations, the autocorrelation only increases significantly
above 10 observations.
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Figure 6.15 – Positive feedback decreases half auto-correlation time in cysts in steady
state. Boxplots of half-autocorrelation times (lag=5) of individual cysts for the different
HGF concentrations. Results are of observations at steady state (start at 24h) and growth
phase (start at 2h). * p < 0.005, ** p < 0.001, n.s. not significant p > 0.05. HGF amounts
are shown in colors, whereby the shaded color always indicates the condition without
positive feedback.

I next proceeded to measure the auto-correlation times of the individual cysts
in terms of GFP . To do this, I used the autocorr function in the Matlab statistics
toolbox to analyze the time series of cysts with and without positive feedback for
individual cysts using the raw GFP values, and then averaged these over time for
the different HGFext concentrations at steady state from Figure 6.8.

Interestingly, as I show in Figure 6.15, the half-autocorrelation time behaved
opposite of what the model predicted. Under all HGFext concentrations, the au-
tocorrelation time decreased when the positive feedback was present. There was
no immediate explanation for this observation, however it is possible that the ex-
trinsic noise inherent to the system could influence this measure. It could be
interesting for future explorations to include extrinsic noise in the model.
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Thus, results from the model indicates that there is indeed a measurable differ-
ence in the auto-correlation time depending on the strength of a positive feedback.
This effect however, is only visible when comparing different strengths of feed-
backs, which might be difficult to observe in nature. On the other hand, even
if a feedback process could be differentiated by the autocorrelation time, I have
shown that the observation time or data required to observe any effect is high and
not easily attainable in biological experiments. The reasons for this are mainly
technical: keeping cells alive and under observation for such a long period is not
trivial. Furthermore, the vast amount of imaging data such a set of experiments
could generate, would be overwhelming.

Hurst Exponent

As discussed in the introduction the Hurst exponent is another measure of long
memory effects in systems related to the autocorrelation function of a time se-
ries. The exponent is a measure from 0 to 1 whereby 0.5 is a brownian random
process. As with the half autocorrelation time above, the Hurst exponent is ex-
pected to increase with the positive feedback ([Lillo and Farmer, 2004]).To calcu-
late the Hurst exponent of A in the model, I used the corrected Hurst function of
the pracma package in R ([Weron, 2002]). The results of this analysis are shown
in Figure 6.16. The Hurst exponent indeed increases in the longer runs of the
model simulations with higher K3 values, albeit this trend is only visible again
with increasing number of repeats. Interestingly, the Hurst exponent was above
0.8 regardless of the strength of the K1 parameter. This fact seems to indicate that
the process analyzed was not completely random.

An attempt to estimate the Hurst exponent from the steady state experimental
data, was not technically possible. The time measurements were not sufficient to
correctly fit the rescaled range time series. Thus, as with the autocorrelation, it
would seem that with the Hurst exponent I was again met with the paradigm of
having a predictor of feedback but too low number of experimental observations
to be able to use this measure with precision.
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Figure 6.16 – Effects on the corrected Hurst exponent ([Tom and Andrew, 1991] and
Physica A 312, 285-299) of variation of parameters in the stochastic positive feedback
model. The Hurst exponent was calculated using the hurst function in the pracma R pack-
age using the default boxsize of 50. The model was run for 100,000 time steps for each
value of either K1 or K3 (x-axis). The Hurst exponent was calculated for different time
lengths (y-axis).
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Measures of noise
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Figure 6.17 – Effects on the noise of the stochastic positive feedback traces. The model
was run for 100,000 time steps for each value of either K1 or K3 (x-axis). The Fano
factor of each run was calculated by dividing the variance by the mean for a maximum
time length of 100,000 at increasing time windows (y-axis).

Another measure that is expected to increase in the presence of feedback, is the
variance in activity. Whereas negative feedbacks are usually applied to modulate
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noise in systems, positive feedback is projected to increase noise. To measure the

noise in the model I used the measure for noise known as the Fano factor:
σ2

µ
for different time windows in a simulation run for 1e6 time steps. In contrast to
the coefficient of variation, which is a ratio between noise and signal, the Fano
factor is a measure of noise to signal. As with the previous measures, the Fano
factor increased with higher positive feedback parameters (Figure 6.17). Again,
this observation was only significant at higher number of observations. In contrast
to the increase in autocorrelation observed previously, which became evident as
more samples were observed, to calculate the fano factor I looked at different time
window lengths within a longer run of the model data.

I next estimated the Fano factor of the data presented in Figure 6.8. Assuming
that the cyst expression of GFP is truly in steady state, I concatenated the individ-
ual cyst traces of 22 hours to construct a long time series. I then calculated the
fano factor for each of the long series of HGFext conditions (Figure 6.18).
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Figure 6.18 – Fano factor changes on steady state cysts in the presence or absence of
feedback. The timeseries of the individual cysts for each condition was concatenated to
create a long trace. The fano factor was calculated as the variance over the mean of the
concatenated trace. HGF amounts are shown in colors, whereby the shaded color always
indicates the condition without positive feedback.

Using the Fano factor obtained from the different HGFext conditions, it be-
comes apparent that the noise in the PF cell line only increases when no external
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HGF is applied. This is an indication of the hypersensitive outliers mentioned
above and seen clearly in Figure 6.3. The noisiest state of the system is seen at
the maximum of HGFext.

Most effects I looked at in the model, became apparent only after looking at a
high number of repetitions. Alternatively, I could also detect differences when I
observed longer time-frames. For this reason, for most of the measures discussed
below I have run the model starting from the steady state for 100,000 time steps.

Measures from Information Theory

The mathematical theory of communication as postulated by Shannon, is a mea-
sure which has found applications in many fields, and is slowly gaining credence
in biology. This theory provides with two measures, firstly it can serve as an in-
dicator of the uncertainty of a variable given a set of observations via the entropy.
And secondly, it provides for a framework of comparing two uncertainties and
establish whether information is shared between them via the Mutual Information
(see section 1.2.1 formula 1.14).

In terms of the entropy, I used similar methodology as above to first extract
this measure from the stochastic model at different parameters. The entropies of
the variations of the K3 parameters, are constantly higher than the entropies of
the K1 variants. This could be due to slight variations in the means, however,
in contrast to the Fano Factor, increasing either parameters induces a change in
entropy. At the highest observed parameter for both K1 and K3, the mean of the
time series in both cases is equal to 200 (see Figure 6.12). In this case, the system
contains slightly more entropy if it has a positive feedback.

An advantage of using information theoretical measure of entropy, is that it
is relatively straightforward to compare the entropies of two variables, via the
Mutual information. In my case, I computed the Mutual Information of the two
entropies for different K parameter levels with same means. In this case, I was
looking for regions where information was maximized between the two graphs,
which intuitively translates to the biggest observed differences. Using this anal-
ysis it becomes apparent, that as the length of the data analyzed increases, the
differences between the two parameters decreases, and eventually stabilizes at
roughly 0.2 bits independent of the run (Figure 6.20). At lower repetitions, the
differences between the two parameter runs becomes more apparent, this is due to
the stochastic nature of the model. In conclusion, although the entropy of the sys-
tem increases slightly with the positive feedback strength, the information shared
between the two parameters is very similar, thus this might not be a good measure
to capture differences under these circumstances.
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Figure 6.19 – Effects on the Entropy of A of variation of parameters in the stochastic
positive feedback model. The entropy was calculated using the entropy and discretize
functions in the entropy R package using the default parameters. Data was discretized
into 20 bins of size roughly 10. The model was run for 100,000 time steps at increasing
time windows (y-axis), for each value of either K1 or K3 (x-axis).
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Figure 6.20 – Mutual information between stochastic model runs with similar means.
The mutual information was calculated using the mi.empirical function in the entropy R
package using the default parameters. Data was discretized into 20 bins of size roughly
10.

Seeing the results from the model, I did not analyze the data using the entropy
function, as it was not obvious what the differences would be. Furthermore, there
might be another reason as to why the entropy could be a misleading quantity for
the presented data set. The measure of entropy was originally postulated by Shan-
non as a solution for a continuous variable, as opposed to the discrete data usually
acquired in experiments. As such, outliers which play a hugely important role in
biology might be overlooked when analyzing just the mean. In physical sciences,
on the contrary, observations of variables very often obey the mathematical rules
and behave as gaussians.
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Figure 6.21 – Histograms of the experiment shown in figure 6.8. All histograms are
divided into 800 bins of size 100, and normalized to frequency of counts. HGFext con-
centration increases downwards. Arrowheads point towards “outlier” cysts.

The design of the PF cell line was meant to serve as a way of measuring the
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input and output of the system by means of the fluorescent molecules. However,
given the differences in degradation of the two fluorophores (Figure 6.6) it was
not possible to assess the question of mutual information experimentally. In this
section will first show as above, how the Entropy of the theoretical model behaves
in comparison with the non positive feedback. And later on I will briefly touch
upon the theoretical framework I envisioned to address the question of mutual
information, which, although not applied to the data, might serve as a guide to
biologists working on sender and receiver systems.

The basic idea was to address the question of whether HGFint is received
by the receiver module, and if there is a communication channel, then what the
rate of information transfer is, and whether the positive feedback influences this
rate as time progresses. The framework to address this question, again comes
from information theory (section 1.2.1). In the PF cell, HGFint is coupled to a
tdTomato fluorophore, I hypothesized I could use the measured fluorescence as a
proxy of how much HGFint was being produced at any given time. As discussed
above, one method to estimate the relationship of two variables is through their
shared or mutual information (MI). In the context of the PF cell line, the mutual
information and entropies could be calculated using equation 1.15 so that:

MI(GFP ;TOM) = H[GFP ] +H[TOM ]−H[GFP, TOM ]

H[GFP ] = −
∑
GFP

P (GFP )logP (GFP )

H[TOM ] = −
∑
TOM

P (TOM)logP (TOM)

H[GFP ;TOM ] = −
∑
GFP

∑
TOM

P (GFP, TOM)logP (GFP, TOM)(6.7)

In order for this approach to provide robust insight, the data collected must be
sufficiently dense to generate a good approximation of the theoretical probability
distribution function (PDF) of the system for each variable. From what I have
seen, the PDF should be composed of a minimum number of roughly 150 cysts
per meassurement, although as we have seen, this might vary depending on the
condition, and one must decide whether outliers are important in this context.
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6.3 Morphogenic engineering of MDCK cells

One of the long-term goals of biologists, is to understand and perhaps recreate
both temporal and spatial biological patterning mechanisms observed during the
process of embryonic development. Biological feedbacks have been shown to
significantly enhance the speed of propagation of spatial signals by generating
signaling waves [Chang and Ferrell, 2013]. In this section, I set out to explore
whether the weak autocatalytic feedback presented in the previous section affects
signaling transmission in the spatial dimension. I will also describe a novel form
achieved by the morphogenetic engineering of MDCK cells.

I initially set out to mimic the HGF spatial diffusion experiments presented in
Part II this time with the PF cell line. Cells were observed for up to 48 hours, and
no significant difference in signal propagation in the presence or absence of the
positive feedback could be detected(data not shown). Evidently the low observed
strength of the positive feedback discussed in the previous section was not suffi-
cient to transmit a signal in space. This again, could be due to the small number
of cysts which are hyper-sensitive to the feedback. This weak production and se-
cretion of HGFint from the PF cell line is not enough to create a diffusible signal
that covers the distance between cysts, which can range from a few microns to a
few hundred microns. This problem could possibly be overcome, by decreasing
the space between cysts, or by creating a continuous cell epithelium.

6.3.1 Matrigel reduces HGF mitogenic properties preserving
pMMP1-Response

One of the most prominent effects of HGF on MDCK cysts is the formation of
tubule like structures. Ultimately at higher HGF concentrations, the cysts dissoci-
ate into single very motile cells (section 6.2). When cells are grown at close prox-
imity to each other, then this motility interferes with a signal propagation mecha-
nism driven solely by diffusion, as the cells would come in contact with each other.
To abrogate this phenotype, I explored growing cysts in a Matrigel substrate as it
has previously been reported that MDCK cells grown in Matrigel do not tubulate
under high doses of HGF stimulus [Santos and Nigam, 1993, Kwon et al., 2014].
These results could be recapitulated, and furthermore, I could show that the HGF
to GFP signaling channel remained functional in cells grown in a Matrigel sub-
strate (Figure 6.22).

In order to study temporal or spatial signal propagation, the protocols so far
discussed for quantitative fluorescence imaging require that cells lie on a single
Z-plane. This is necessary for the quantitative analysis, so that there is no spectral
overlap from point spread functions of cysts lying directly above or underneath
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the focal plane. In this regard, Collagen I substrate was ideal, as in a two layer
system, the top layer could easily be pealed off with forceps, leaving a single
layer of cysts at the interface. Matrigel however, is somewhat less rigid, as it
is mainly composed of Collagen IV fibrils which in contrast to Collagen I, form
more heterogeneous molecular structures. This made the pealing off of the top
Matrigel layer almost impossible.

+HGF

-HGF

Figure 6.22 – The positive feedback cell line responds to HGF when cells are grown in
Matrigel. 50,000 cells were diluted in 1ml Matrigel (3mg/ml final concentration in MEM)
and grown for 5 days. After which 50ng/ml HGF was added to the medium, and then cells
were imaged after 24 hours.

I reasoned that introducing further collagen I to the matrigel mix would confer
the right balance to the matrix between rigidity and non tubulation properties. In
Figure 6.23 I show the results of growing the PF cell line under different ratios of
Collagen I to Matrigel. I first coated wells with a layer of the mix at the indicated
ratios (bottom), and let it solidify for 60 minutes. I then mixed cells into a second
mix at the indicated ratio (top) and carefully deposited this onto the solid bottom
layer. The results of Figure 6.23 could not be technically reproduced for the
higher Matrigel concentrations.

Generally in Figure 6.23, I observed a difference in phenotypic response to

87



“Thesis” — 2016/7/12 — 18:32 — page 88 — #98

HGF depending on the ratio of Matrigel:Collagen used. For example, at higher
concentrations of Matrigel in the scaffold membrane, tubulation subsided sub-
stantially in response to an HGF stimulus. Notwithstanding this observation, the
problems with rigidity remained, as it was impossible to remove the top layer re-
producibly even with the lower Matrigel ratios making it impossible to image the
cells quantitatively under these conditions. The most reproducible condition with
the least tubulation was found to be the one where both the bottom and the top
layer consisted of 40µl Matrigel and 120µl Collagen I.

Collagen

BOTTOM

TOP Collagen Matrigel 40

Matrigel 80

Matrigel 160

Matrigel 80

Matrigel 40     Not 
Recorded

   Not
Recorded

Figure 6.23 – Different ratios of Matrigel:Collagen have phenotypic effects on MDCK
morphogeny. Cells were seeded on a precoated well with indicated amount of Ma-
trigel:Collagen ratio. The total volume was kept constant at 0.2 ml and the numbers
indicate the volume of 16mg/ml Matrigel which was mixed with collagen at both bottom
and top layers. Cells were stimulated with 50ng/ml HGF.
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Figure 6.24 – Micromass cultures respond to HGF on the edges of the colonies. 40,000
cells were “sandwiched” between two collagen layers. Only the GFP channel is shown
for the condition without positive feedback (PF-OFF). Scale bars are slightly different in
each image, as the colony shapes and sizes are very variable. A 2µl drop of 10ng/µlHGF
was added to a rectangular Whatman paper (white rectangle on figures), and cells were
imaged after 24 hours.

In the process of experimenting with the different substrates for MDCK cells, I
made the observation that occasionally when cells were plated on a matrigel plate
and let to settle, after which a second layer was added, groups of cells would form
cyst-like structures. I observed that cells seeded this way, would form cysts after
24 hours of addition of Matrigel/Collagen mix. Interestingly, when cells were
seeded this way only with collagen 1, the cells grew as 2D monolayers, albeit at a
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slower rate. This observation led me to attempt to explore whether I could make
bigger continuous cyst like structures which would help me reduce the space in
between the cysts, ideally to 0.

I cultured cells in micromass cultures such as is done routinely in mouse em-
bryonic fibroblasts [Raspopovic et al., 2014]. I seeded PF cells at a concentra-
tion of 10,000 cells/µl on a collagen substrate, and then added a local source of
HGFext impregnated on a sterile Whatman paper. Cells grew as a single large
colony and upon addition of a top layer of collagen formed tubule-like structures
mainly at the edges of the cultures. Upon addition of the localizedHGFext source,
cells in fact responded by expressing GFP at the edge of the colony Figure 6.24.
Furthermore, in the presence of tetracycline, the tubule like structures at the edges
of the colonies, activated both the GFP and the tdTomato reporter.

Taken together these results support previous observations of baso-lateral lo-
calization of c-met. It seems reasonable to suggest that, since MDCK cells ex-
press the c-MET receptor on the baso-lateral membrane, cells at the edge of such
a micromass would have more exposed receptors if an HGF stimulus was applied
locally. This also supports the theory mentioned previously in section 6.2, where
I postulated that the presence of outliers in Figure 6.3 could be due to mislocal-
ization of either c-met given that the internally produced HGF is mostly secreted
apically (Figure 6.4).

The results mentioned above were encouraging, however there was still no
clear evidence of spatial signal propagation within the micro-mass culture. Al-
though the edges appeared to be responsive to HGF, It was unclear whether this
difference was due to day to day experimental variation. Furthermore, as the edge
of the micromass is very heterogeneous, the quantification of a spatial signal prop-
agating is non-trivial. With this in mind, I reasoned that the signal might be able
to propagate in a structure composed of “edge” only cells.

6.3.2 Cellular Cables

From the micromass culture experiment above, I concluded that the responding
cells at the edges had the basolateral side exposed to the HGFext source. In or-
der to this to happen, cells must mechanically fold onto each other, and thus,
would form cyst like structures at the edges. Following up on this observation, I
attempted to generate a cell structure composed of edges only, as this could pos-
sibly be the ideal system to study spatial signal transition in a continuous system.
To do this, I generated a scaffold for the cells to grow into such structures. A
schematic drawing of this and the other methods used in this work is shown in
Figure 6.25a. The exact method used is described in Chapter 8. Representative
images of the different stages in this protocol are shown in Figure 6.25b).
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Figure 6.25 – Different morphogenic growth methods for MDCK cells. MDCK cells
grow in collagen/matrigel matrices, form a polarized cell layer with a pseudo lumen.
A schematic diagram depicting a cross section of a cell chamber is shown in Figure
6.25a. Depending on the initial growth conditions, these cells will grow into roughly
100cell diameter cysts left column, a micromass colony (middle column), or a cable (right
column). In Figure 6.25b, the three stages of the formation of cables are shown.

I next proceeded to characterize these “cables” by immuno-labelling actin and
cadherin proteins. I was interested in seeing whether the well characterized apical-
basal polarity of MDCK cysts was maintained in these structures. In Figure 6.26a
lower panel these “cables” are shown to retain the apico-basal polarity of cysts,
with actin localized apically and cadherin junctions localized baso-laterally. At-
tempts to label the c-met receptor failed, however it is well established that the
receptor co-localizes to the tight junctions with E-cadherin, thus, I also expected
that the c-met receptor would be baso-laterally localized.

Another interesting conclusion from these experiments is, that some cables
which had larger “diameters” were observed to form multiluminar structures, hint-
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ing to a physical constraint of the “cables” diameter Figure 6.26a upper panel.
All attempts to generate consistently sized “cable” failed using this protocol, thus,
all subsequent experiments do not take this architectural constraint into account.

(a) (b)

Figure 6.26 – Cables are diverse and show bipolarity as cysts. Representative confocal im-
age sections show that actin (green) was localized at the apical side of the cables 6.26a top
panel, and E-Cadherin (red) was localized at tight junctions and apically 6.26a bottom
panel. PF cells with GFP are localized in the inside of the cables 6.26b.

The experimental data shown in Figure 6.26a were performed with wildtype
MDCK cells. I found that both the receiver and the PF cell line formed “cables”
when grown under this protocol. I next imaged the the PF-Cell line under the
confocal microscope. In this case, GFP positive cells were seen to localize mainly
on the inside (apical side) of the cables even in the absence of HGFext (Figure
6.26b). This seems to indicate that the cables and possibly the cysts do not express
the pMMP1 promoter homogenously.

HGF response in cables

I deemed this novel growth form intriguing enough to explore whether these
structures would respond to HGFext and propagate the signal in the presence
of a positive feedback (PF). The “cables” after all fulfilled the requirement for
a quasi-continuous system. Moreover the observations from the micromass ex-
periments in Figure 6.24, indicated that the morphological change of the MDCK
cells, would expose their basolateral sides in a direction that would allow HGF to
come in contact with c-Met.
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Figure 6.27 – Cable response to a localized HGFext source after 24 hours. PF cells were
cultured as cables as described and in all experiments shown, tetracycline was added 4
hours prior to the HGFext (PF-ON). Thick cables (6.27a) contain roughly 40,000 cells
whereas thin cables (6.27) contain 4,000 cells only.

I setup “cables” to test whether there was a response to a localized source of
HGFext. As mentioned above, there were two possible configurations for the “ca-
bles”, 1) a thicker multiluminar structure, and 2) a thinner cylindrical structure. It
was generally easier to form the thicker structures, however as with the micromass
experiments above, I found that the response to the HGF source would be some-
what localized to the edge closer to the source (figure Figure 6.27a). In contrast,
when cables are mainly “thin” as is shown in Figure 6.27 then as expected the
response is homogeneously distributed.

In both the above experiments I have shown how the cables respond to HGF
in the presence of tetracycline (positive feedback on) after 24 hours. In neither
of these cases does the signal seem to propagate far from the source in the time
window of observation. Regardless of the thickness of the cables, it would seem
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that the distance traveled of the signal is similar as to what would be expected
from diffusion only processes.

6.3.3 Spatiotemporal response in MDCK cables

Next I tested whether there were significant differences between the non-positive
feedback and the positive feedback case in terms of spatial signal propagation. For
the analysis, with the help of Yuriy Alexandrov at Imperial College, I modified the
previous Matlab script used to analyze cysts, which can be found in the Materials
and Methods section.The modifications of the code was to automate the detection
of the cable structures. As the cables do not change shape in time, it was no
longer necessary to detect and track multiple cysts in one image. Instead, it was
now necessary to identify the source of HGF, and to establish a coordinate system
to measure the GFP and tdTomato response as a function of distance to the source
in time. This allowed me to extract quantitative data from fluorescent images and
to get an initial overview on how the cables responded to an HGF stimulus.

I set up multiple cables as the ones described in Figure 6.27. Furthermore,
as there was no apparent effect visible after 24 hours, I imaged the cells for pro-
longed periods of time after addition of HGFext. To display the spatio-temporal
dynamics of the GFP signal, in Figure 6.28 I represent the results of individual ex-
periments in form of a kymograph observed over a period of 7 days. As expected,
the system has a very high variability which stems both from the experimental
setup (extrinsic variability), and the internal configuration of the cables (intrinsic
variability). There does seem to be a trend towards temporal signal propagation by
the positive feedback (PF-On of Figure 6.28). In all replicates of the PF-on con-
dition, the GFP signal persists even after 7 days, in stark contrast to the PF-OFF,
which seems to switch off after 4 days.
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Figure 6.28 – Kymographs of three replicates showing variability between experiments.
HGFext was applied on a sterile Whatman paper and, cables were imaged in 4 hour
intervals for 170 hours (7days). For the normalization of the image data, I used the data
from each cable from the 20% end furthest away from the source, if this area did not show
any significant temporal change in GFP fluorescence. The cables used in this case were
like the thicker ones in figure: 6.27a.Distances are given in “image pixels”, with each
pixel representing 1.5µm

In light of the persistent temporal GFP signal detected after 7 days of observa-
tion, I reasoned thatHGFint was being produced in the PF-ON cells as opposed to
the PF-off cells. It was possible, that the produced HGF was accumulating close to
the source, and that the diffusion thereof could be slower than expected.Hormonal
signaling across tissues by diffusion only, and in the absence of vascularization
might be a slow process, or require certain thresholds to occur. If this was the
case, then spatial propagation would begin only at a later point in time. I explored
how the system responded over extended time periods, the results are shown in
Figure 6.29. In this case I am displaying the raw data of these longer observa-
tions. The GFP signal was visible throughout the cable structures, and as such I
could not apply the same normalization as in Figure: 6.28. Once again, I could
detect a signal in close proximity to the source of HGFext which persisted for up
to 7 days in the PF-on but not in the PF-off condition.
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Figure 6.29 – Kymographs of three replicates showing variability between experiments.
HGFext was applied on a sterile Whatman paper and, cables were imaged in 4 hour
intervals for 280 hours (10days). Raw values are shown. The cables used in this case
were like the thinner ones in Figure: 6.27a.Distances are given in “image pixels”, with
each pixel representing 1.5µm.

A very notable feature in these experiments, is that even in the absence of
the positive feedback a distinct signal propagated spatiotemporally throughout the
cable structures. On closer inspection, however, It became apparent that this sig-
nal was present even in the absence of any HGFext (data not shown). As can
be seen in PF-off Rep 2 and PF-on Rep 3 of Figure 6.29, this moving signal
of GFP expression emanated from the ends of the cables after about 180 hours
of observation. The signal seemed to precede cell death, as assessed by morpho-
logical changes in the overall cable structure (i.e. lack of cell movement, and
apparent disruption of tight junctions within individual cells). The death could be
attributed to the fact that cells remain under observation for prolonged periods of
times, without the replenishing of growth medium. Upon closer inspection of the
cables after the experiments, it would appear as though an unidentified microbial
contamination was present at great number in the cables. It was not immediately
clear at what point this contamination was acquired, or whether it contributed to
the death of the cables.

In conclusion it would seem that the positive feedback can transmit the initial
impulse of HGF temporally in the section of the cables exposed to the stimulus.
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This observation supports the hypothesis, that the PF cell line indeed undergoes
an autocatalytic reaction. From these experiments it is also clear that the internal
production of HGF is not not propagating in space along the cables. As of this
moment it is not clear why this is the case, however several hypotheses have been
briefly touched upon above. A likely explanation, as I have shown, is that the
secretion of HGF and the localization of the receptor is in two distinct parts of
the cables. In the next section I will show preliminary results of how one could
overcome this obstacle.

6.3.4 Disruption of epithelial integrity enhances spatial signal
propagation

As I have shown, MDCK cells respond to a HGF stimulus when grown both as
cysts in collagen, or in matrigel as assessed by a GFP reporter. Furthermore,
when cells were coerced to extend and form cylindrical “cables”, these structures
also responded to a stimulus of HGF. The cells all contain a putative autocatalytic
module of HGF, that, when turned on propagates a signal temporally. In contrast
to my expectations, regardless of the morphological form that MDCK cells were
grown in, there was no apparent spatial propagation of HGF from a localized
source. One potential culprit, is that the intrinsic polarization of MDCK cells
causes a spatial segregation of morphogen and receptor to different sections of
the cells. To solve this, I reasoned that polarity disruption might be a strategy to
enable communication between cells.

A wide range of strategies have been proposed to disrupt cell polarity reviewed
extensively in [Deli, 2009]. Genetically, for example, it is possible to redirect the
sorting of proteins by adding signal peptides to the amino acid sequences of a
protein of interest. Alternatively, it is possible to chemically degrade the polarity,
by attacking the tight junctions which serve as a quasi barrier between apical and
basal side. A key component of tight junctions is the calcium dependent bind-
ing of the extracellular component of E-Cadherin. In [Deli, 2009], two studies
are mentioned by which addition of Ethylenediaminetetraacetic acid (EDTA) to
cells, increases the permeability of epithelial monolayers to small molecules. The
mechanism proposed being that the binding affinity of EDTA to calcium cations
is higher than that of E-cadherin. Addition of EDTA to the medium, sequesters
calcium reducing the availability at the tight junctions which in consequence are
disrupted. Among the multiple consequences of this disruption are the permeabi-
lization of the cell layer, and further, the disruption of polarity in cells.
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Figure 6.30 – Disruption of E-cadherin tight junctions via EDTA in 2D monolayers. PF-
cells were plated on a solidified collagen layer and grown until completely confluent.
HGFext was applied on a sterile Whatman paper where indicated, after which cells were
covered with a collagen layer. Tetracycline and EDTA were added as indicated. Cells
were imaged 13 hours post stimulus. Experiments were performed by Natalie Scholes
Sian. Data analysis and interpretation was performed by me and N.S.S.

To test whether inter-cellular HGF signaling could be enhanced in MDCK
cells by disrupting tight junctions, I grew a confluent layer of the positive feed-
back (PF)-cell line in 2D cultures on top of a collagen layer, and treated the cells
with the strong bivalent cation chelator EDTA. Indeed after treatment with 4.5mM
EDTA for 1 hour, MDCK cells displayed a rounded morphology, close to an ide-
alized sphere with no extrinsic force interactions. In Figure 6.30 I show that cells
treated with EDTA can indeed respond to HGF by expressing GFP. Qualitatively,
the GFP signal seems to extend further than in the cells not treated with EDTA.
In the presence of feedback there was a strong activation of all cells, even in the
absence of EDTA. As I had previously observed high variability in these experi-
ments, and given that the experimental setup was less laborious than the cysts or
cables, I increased the signal to noise ratio, by performing more observations.

I repeated the above experiment with EDTA biologically, and increased the
number of technical repeats for each biological replicate. In Figure 6.31, I show
the results of two biological replicates each consisting of the means of five techni-
cal repeats (n=5). To calculate the means and standard deviations, I first generated
the kymographs for each individual technical repeat, and then averaged the images
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Figure 6.31 – Disruption of E-cadherin tight junctions via EDTA enhances positive feed-
back signalling in 2D monolayers. HGFext was applied on a sterile Whatman paper and,
cells were imaged continuously for 24 hours post stimulus. Each condition for the repli-
cates is the averages fluorescence intensity of kymographs of 5 technical repeats. Standard
Deviation is calculated from the same 5 technical repeats. Distances are given in “image
pixels”, with each pixel representing 1.5µm.

There were similarities in both biological replicates. For example, the con-
dition with a turned on positive feedback and an initial HGFext stimulus could
be distinguished from the other samples in that the GFP response persisted both
spatially and temporally compared to the other conditions within each replicate.
These results support the hypothesis that the disruption of the tight junctions may
indeed enhance the diffusion of HGF produced by MDCK cells. In both biological
replicates, the condition with the positive feedback displayed the highest variabil-
ity (as assessed by the standard deviation plot in Figure 6.31). This again serves
to highlight the properties of the system.

The background signal detected for each individual experiment differs signif-
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icantly. On the technical side, the background in replicate 1, hovers around 5000
fluorescent units, whereas in replicate 2 it hovers at 4500. This difference is also
markedly high between technical repeats, evidence by the standard deviation in
replicate 1, and can be attributed to the intrinsic background fluorescence of col-
lagen in the blue/green spectrum. In the experiments with cysts, it was feasible
to estimate the background fluorescence, by using the area where no cysts were
present. In a epithelial cell layer, there is no such cell-free area, thus the quantita-
tive measures will be non-trivial.

On the biological side, there are differences in respect with the timing and
duration of the GFP signal after addition of HGFext. In the case of cells with-
out feedback, both replicates show an initial increase in GFP signal followed
by a fade out at roughly t=10h. The maximum distance reached by the signal
is roughly at 800µm from the source. In the case of cells with feedback, the
variability is higher. In replicate 1, the signal increases monotonically and per-
sists temporally up to T=20h. No difference was observed in terms of the spatial
propagation. In replicate 2, there is a temporal lag in the response, however at
T=10h, the signal initiates and propagates at a rate of 1.1µm/min, which is some-
what below the estimated diffusion coefficient of HGF we previously measured in
[Carvalho et al., 2014].

The reason for the biological variability within experiments remains unclear.
There are several factors that might contribute to this variability, some of which
can be addressed technically. First and foremost, a technical solution to the
method of delivery of HGFext throughout the spatial experiments must be found,
as the cellulose Whatman paper used, might strongly influence the diffusion prop-
erties of HGFext. Furthermore, it is unclear how crucial the timing of application
of the reagents including, tetracycline to derepress the PF or EDTA to disrupt the
tight junctions might influence the system. The nature of gellification of Colla-
gen/Matrigel, makes it difficult to exactly reproduce this timing, as it can some-
times take up to 2 hours for the matrix to solidify. In this sense, it could be inter-
esting to attempt to grow the cells on different even inorganic substrates, which
might be more homogenous in their composition.
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Chapter 7

CONCLUSIONS

A main goal for biologists is to understand the incredible spatiotemporal order
that emerges from the sack of organic and inorganic chemicals we refer to as
cells. Autocatalytic reactions are hypothesized to play a fundamental role in the
generation of order in these and other systems [Kauffman, 2011]. Synthesis can be
proof and aide of understanding, thus to help understand autocatalytic reactions,
in this work I presented the engineering and characterization of an inducible au-
tocatalytic positive feedback (PF) into the MDCK cell line reported in Part II
by genetic introduction of a Hepatocyte Growth Factor (HGF) module. The ef-
fects of the PF on both the temporal and spatial response of an externally supplied
source of HGFext, were weak and I proposed possible solutions to strengthen this
interaction.

I also proposed the adoption of a universal measure of strength of feedbacks in
biological systems through the feedback gain. I demonstrate how to measure this
gain in the MDCK cysts. Using this method, I can detect the presence of feedback
only at certain concentrations of initial HGFext stimulus, and found a maximum
gain of 0.4679 to the system at a concentration of 4.2ng/ml HGFext. The fact
that feedback gain was not observed at other concentrations of externally sup-
plied HGF, seems to indicate inefficient communication or some sort of negative
feedback present in the system. I presented a hypothesis as to why this might be,
namely the mis-localization of HGFint secretion in respect to the c-Met receptor.

Roughly 24 hours after an initial stimulus ofHGFext, the mean fold activation
ofGFP reaches a prolonged steady state. Here, the levels of GFP in cysts with the
PF turned on remain invariably higher than their non-PF counterparts. Although
this observation is supportive of the presence of a feedback, a higher mean does
not offer an irrefutable proof thereof. This was clearly evident in a stochastic
model presented in 6.2.3. I used this model to present three different mathematical
methods that can accurately distinguish the temporal effects of a process with
feedback from one without. On the one hand two measures of time dependent self
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similarity, the autocorrelation function and the Hurst Exponent of the rescaled
range, both increased in the presence of feedback as opposed to the non-feedback
process. On the other hand, I found that the temporal “noise” of the stochastic
process, as estimated by the Fano factor of the time series, also increases in the
presence of feedback.

All these measures of feedback have two important caveats. Firstly, a non
feedback process is needed to provide a reference although the inducible system
presented here addresses this issue. Secondly, the increases in both autocorrela-
tion and Fano factor, become evident only after a large number of observations.
This caveat is somewhat more challenging to overcome in biological experiments,
and will depend on the available resources. For example, when I measured the au-
tocorrelation function of the data generated in section 6.2.1, in contrast to the
model, the autocorrelation function decreased in the presence of PF. Thus, the au-
tocatalytic feedback loop seems to reduce the temporal transmission of informa-
tion in cysts that have a self activating HGF module. In terms of the Fano factor,
the results seemed to agree with the model, the feedback increases the variability
of the system. However, as with the gain, this effect is only detectable at certain
HGFext input concentrations.

In parallel to the temporal characterization of the PF cell line, I presented a
method to study the effects of feedback on the spatial transmission of informa-
tion. This was important, as a feedback mechanism can help amplify multicellu-
lar signaling. MDCK cells have been grown in different forms, and are known
to be quite maleable [Harris et al., 2012]. In section 6.3 I demonstrate my efforts
to coerce cells to grow in different forms. It was clear to me from the temporal
exploration that the feedback was weak, and given the non-continuous method-
ology to explore spatial diffusion used in [Carvalho et al., 2014], it would prove
challenging to observe differences in the presence of feedback. I thus attempted
several different protocols to create a continuous MDCK cell layer.

I confirmed that the substrate of growth for MDCK cells strongly influences
their phenotypic response to an HGF stimulus. For example, cysts which were
grown in a substrate containing matrigel, did not tubulate in the presence of HGF,
but responded by production of GFP. MCDCK cells tend to form polarized layers,
both when grown in 2D cultures or as 3D cysts. One key aspect of the polar-
ization, is the localization of the receptor for HGF (c-met) to the basolateral side
[Mojallal et al., 2014]. In 2D monolayers, it was non-trivial to deliver HGF to this
side, as it is usually the “bottom” side. To generate a continuous layer of MDCK
cysts, I developed a protocol for generating a scaffold for cells made of Collagen
and Matrigel. When the cells were grown under these conditions, they formed
long cylindrical structures resembling “cables”. I demonstrated that these cables
were still receptive to an HGFext stimulus. Moreover, these structures seemed
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to confirm the weak temporal signal propagation via the PF. Interestingly, I could
not detect any spatial propagation, even after extended periods of observation (up
to 10 days).

Finally, I reasoned that disruption of the epithelial polarization in the MDCK
cells would facilitate the intercellular diffusion of HGF produced internally (HGFint).
To test this hypothesis, I cultured cells in the presence of a bivalent ion chelator
EDTA, which in principle should disrupt tight junctions by removing the neces-
sary Calcium ions from the medium. Under these conditions, a propagation of
GFP signal could be observed in response to an localized stimulus of HGFext
only in the presence of the positive feedback.

Although culturing of the cables or cysts under the same conditions proved to
be toxic to the cells, it is possible that further adjustments to the growth protocols
could find a window in which signal propagation will be observed. It would be
useful to further genetically engineer the MDCK cells by adding either basolateral
localization signals to the HGFint module, or by introducing a modified c-Met
receptor with apical localization signals. From the current standpoint and results,
it is conceivable that such modifications of the system will generate stable long-
term spatiotemporal patterns.
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Chapter 8

MATERIALS AND METHODS

8.1 Supplementary Materials for Part II

Carvalho A, Bárcena D, Senthivel VR, Zimmermann T, Diambra L, 
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mammalian cell culture. Suplementary material. ACS Synth Biol. 
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8.2 Experimental

8.2.1 Plasmid Cloning
pMMP-1-d2tdTomato-p2A-HGF I used the Gibson method to clone the Positive
Feedback plasmid. I used the receiver plasmid used in ACS1 as a template for the
MMP1 and the PEST degradation domain. HGF cDNA was provided by Andreia
Carvalho in the lab.

Key Position (bp)
Human MMP-1 promoter (bp -512 to +63) 4 - 627
tdTomato with c-Terminal PEST 634 - 2187
P2A linker 2188 - 2253
HGF 2254 - 4440
Gentamicin resistance 5683 - 6478

1 CTACTAGCGC TTAACAAAGG CAGAAGGGAA CCTCAGAGAA
41 CCCCGAAGAG CCACCGTAAA GTGAGTGCTG GGGGAGCTGA
81 ACTTCAGTCA GTACAGGAGC CGAACAGCCA TCAGGTGCGC
121 AGTGTTAGTA ATTCCACCCT CTGCCCTGGG AGCAAGGTGT
161 GTGGAGAAAC CTGTAGCACT TTATGACCAT CAGAACCAGT
201 CTTTTTCAAA AAGACCATGG AGTACTCTTT GACCTGTGTA
241 TATAACAAGA ACCTTTCTCA AATAGGAAAG AAATGAATTG
281 GAGAAAACCA CTGTTTACAT GGCAGAGTGT GTCTCCTTCG
321 CACACATCTT GTTTGAAGTT AATCATGACA TTGCAACACC
361 AAGTGATTCC AAATAATCTG CTAGGAGTCA CCATTTCTAA
401 TGATTGCCTA GTCTATTCAT AGCTAATCAA GAGGATGTTA
441 TAAAGCATGA GTCAGACACC TCTGGCTTTC TGGAAGGGCA
481 AGGACTCTAT ATATACAGAG GGAGCTTCTC CCTATCAGTG
521 ATAGAGACTT CCCTATCAGT GATAGAGATC CCTAGCTGGG
561 ATATTGGAGC AGCAAGAGGC TGGGAAGCCA TCACTTACCT
601 TGCACTGAGA AAGAAGACAA AGGCCATACc ACCATGGTGA
641 GCAAGGGCGA GGAGGTCATC AAAGAGTTCA TGCGCTTCAA
681 GGTGCGCATG GAGGGCTCCA TGAACGGCCA CGAGTTCGAG
721 ATCGAGGGCG AGGGCGAGGG CCGCCCCTAC GAGGGCACCC
761 AGACCGCCAA GCTGAAGGTG ACCAAGGGCG GCCCCCTGCC
801 CTTCGCCTGG GACATCCTGT CCCCCCAGTT CATGTACGGC
841 TCCAAGGCGT ACGTGAAGCA CCCCGCCGAC ATCCCCGATT
881 ACAAGAAGCT GTCCTTCCCC GAGGGCTTCA AGTGGGAGCG
921 CGTGATGAAC TTCGAGGACG GCGGTCTGGT GACCGTGACC
961 CAGGACTCCT CCCTGCAGGA CGGCACGCTG ATCTACAAGG
1001 TGAAGATGCG CGGCACCAAC TTCCCCCCCG ACGGCCCCGT
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1041 AATGCAGAAG AAGACCATGG GCTGGGAGGC CTCCACCGAG
1081 CGCCTGTACC CCCGCGACGG CGTGCTGAAG GGCGAGATCC
1121 ACCAGGCCCT GAAGCTGAAG GACGGCGGCC ACTACCTGGT
1161 GGAGTTCAAG ACCATCTACA TGGCCAAGAA GCCCGTGCAA
1201 CTGCCCGGCT ACTACTACGT GGACACCAAG CTGGACATCA
1241 CCTCCCACAA CGAGGACTAC ACCATCGTGG AACAGTACGA
1281 GCGCTCCGAG GGCCGCCACC ACCTGTTCCT GGGGCATGGC
1321 ACCGGCAGCA CCGGCAGCGG CAGCTCCGGC ACCGCCTCCT
1361 CCGAGGACAA CAACATGGCC GTCATCAAAG AGTTCATGCG
1401 CTTCAAGGTG CGCATGGAGG GCTCCATGAA CGGCCACGAG
1441 TTCGAGATCG AGGGCGAGGG CGAGGGCCGC CCCTACGAGG
1481 GCACCCAGAC CGCCAAGCTG AAGGTGACCA AGGGCGGCCC
1521 CCTGCCCTTC GCCTGGGACA TCCTGTCCCC CCAGTTCATG
1561 TACGGCTCCA AGGCGTACGT GAAGCACCCC GCCGACATCC
1601 CCGATTACAA GAAGCTGTCC TTCCCCGAGG GCTTCAAGTG
1641 GGAGCGCGTG ATGAACTTCG AGGACGGCGG TCTGGTGACC
1681 GTGACCCAGG ACTCCTCCCT GCAGGACGGC ACGCTGATCT
1721 ACAAGGTGAA GATGCGCGGC ACCAACTTCC CCCCCGACGG
1761 CCCCGTAATG CAGAAGAAGA CCATGGGCTG GGAGGCCTCC
1801 ACCGAGCGCC TGTACCCCCG CGACGGCGTG CTGAAGGGCG
1841 AGATCCACCA GGCCCTGAAG CTGAAGGACG GCGGCCACTA
1881 CCTGGTGGAG TTCAAGACCA TCTACATGGC CAAGAAGCCC
1921 GTGCAACTGC CCGGCTACTA CTACGTGGAC ACCAAGCTGG
1961 ACATCACCTC CCACAACGAG GACTACACCA TCGTGGAACA
2001 GTACGAGCGC TCCGAGGGCC GCCACCACCT GTTCCTGTAC
2041 GGCATGGACG AGCTGTACAA GAAGCTTAGC CATGGCTTCC
2081 CGCCGGAGGT GGAGGAGCAG GATGATGGCA CGCTGCCCAT
2121 GTCTTGTGCC CAGGAGAGCG GGATGGACCG TCACCCTGCA
2161 GCCTGTGCTT CTGCTAGGAT CAATGTGGGA TCCGGAGCCA
2201 CGAACTTCTC TCTGTTAAAG CAAGCAGGAG ACGTGGAAGA
2241 AAACCCCGGT CCTgactggg tgaccaaact cctgccagcc
2281 ctgctgctgc agcatgtcct cctgcatctc ctcctgctcc
2321 ccatcgccat cccctatgca gagggacaaa ggaaaagaag
2361 aaatacaatt catgaattca aaaaatcagc aaagactacc
2401 ctaatcaaaa tagatccagc actgaagata aaaaccaaaa
2441 aagtgaatac tgcagaccaa tgtgctaata gatgtactag
2481 gaataaagga cttccattca cttgcaaggc ttttgttttt
2521 gataaagcaa gaaaacaatg cctctggttc cccttcaata
2561 gcatgtcaag tggagtgaaa aaagaatttg gccatgaatt
2601 tgacctctat gaaaacaaag actacattag aaactgcatc
2641 attggtaaag gacgcagcta caagggaaca gtatctatca
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2681 ctaagagtgg catcaaatgt cagccctgga gttccatgat
2721 accacacgaa cacagctttt tgccttcgag ctatcggggt
2761 aaagacctac aggaaaacta ctgtcgaaat cctcgagggg
2801 aagaaggggg accctggtgt ttcacaagca atccagaggt
2841 acgctacgaa gtctgtgaca ttcctcagtg ttcagaagtt
2881 gaatgcatga cctgcaatgg ggagagttat cgaggtctca
2921 tggatcatac agaatcaggc aagatttgtc agcgctggga
2961 tcatcagaca ccacaccggc acaaattctt gcctgaaaga
3001 tatcccgaca agggctttga tgataattat tgccgcaatc
3041 ccgatggcca gccgaggcca tggtgctata ctcttgaccc
3081 tcacacccgc tgggagtact gtgcaattaa aacatgcgct
3121 gacaatacta tgaatgacac tgatgttcct ttggaaacaa
3161 ctgaatgcat ccaaggtcaa ggagaaggct acaggggcac
3201 tgtcaatacc atttggaatg gaattccatg tcagcgttgg
3241 gattctcagt atcctcacga gcatgacatg actcctgaaa
3281 atttcaagtg caaggaccta cgagaaaatt actgccgaaa
3321 tccagatggg tctgaatcac cctggtgttt taccactgat
3361 ccaaacatcc gagttggcta ctgctcccaa attccaaact
3401 gtgatatgtc acatggacaa gattgttatc gtgggaatgg
3441 caaaaattat atgggcaact tatcccaaac aagatctgga
3481 ctaacatgtt caatgtggga caagaacatg gaagacttac
3521 atcgtcatat cttctgggaa ccagatgcaa gtaagctgaa
3561 tgagaattac tgccgaaatc cagatgatga tgctcatgga
3601 ccctggtgct acacgggaaa tccactcatt ccttgggatt
3641 attgccctat ttctcgttgt gaaggtgata ccacacctac
3681 aatagtcaat ttagaccatc ccgtaatatc ttgtgccaaa
3721 acgaaacaat tgcgagttgt aaatgggatt ccaacacgaa
3761 caaacatagg atggatggtt agtttgagat acagaaataa
3801 acatatctgc ggaggatcat tgataaagga gagttgggtt
3841 cttactgcac gacagtgttt cccttctcga gacttgaaag
3881 attatgaagc ttggcttgga attcatgatg tccacggaag
3921 aggagatgag aaatgcaaac aggttctcaa tgtttcccag
3961 ctggtatatg gccctgaagg atcagatctg gttttaatga
4001 agcttgccag gcctgctgtc ctggatgatt ttgttagtac
4041 gattgattta cctaattatg gatgcacaat tcctgaaaag
4081 accagttgca gtgtttatgg ctggggctac actggattga
4121 tcaactatga tggcctatta cgagtggcac atctctatat
4161 aatgggaaat gagaaatgca gccagcatca tcgagggaag
4201 gtgactctga atgagtctga aatatgtgct ggggctgaaa
4241 agattggatc aggaccatgt gagggggatt atggtggccc
4281 acttgtttgt gagcaacata aaatgagaat ggttcttggt
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4321 gtcattgttc ctggtcgtgg atgtgccatt ccaaatcgtc
4361 ctggtatttt tgtccgagta gcatattatg caaaatggat
4401 acacaaaatt attttaacat ataaggtacc acagtcatag
4441 CCCGGGATCC ACCGGATCTA GATAACTGAT CATAATCAGC
4481 CATACCACAT TTGTAGAGGT TTTACTTGCT TTAAAAAACC
4521 TCCCACACCT CCCCCTGAAC CTGAAACATA AAATGAATGC
4561 AATTGTTGTT GTTAACTTGT TTATTGCAGC TTATAATGGT
4601 TACAAATAAA GCAATAGCAT CACAAATTTC ACAAATAAAG
4641 CATTTTTTTC ACTGCATTCT AGTTGTGGTT TGTCCAAACT
4681 CATCAATGTA TCTTAAGGCG TAAATTGTAA GCGTTAATAT
4721 TTTGTTAAAA TTCGCGTTAA ATTTTTGTTA AATCAGCTCA
4761 TTTTTTAACC AATAGGCCGA AATCGGCAAA ATCCCTTATA
4801 AATCAAAAGA ATAGACCGAG ATAGGGTTGA GTGTTGTTCC
4841 AGTTTGGAAC AAGAGTCCAC TATTAAAGAA CGTGGACTCC
4881 AACGTCAAAG GGCGAAAAAC CGTCTATCAG GGCGATGGCC
4921 CACTACGTGA ACCATCACCC TAATCAAGTT TTTTGGGGTC
4961 GAGGTGCCGT AAAGCACTAA ATCGGAACCC TAAAGGGAGC
5001 CCCCGATTTA GAGCTTGACG GGGAAAGCCG GCGAACGTGG
5041 CGAGAAAGGA AGGGAAGAAA GCGAAAGGAG CGGGCGCTAG
5081 GGCGCTGGCA AGTGTAGCGG TCACGCTGCG CGTAACCACC
5121 ACACCCGCCG CGCTTAATGC GCCGCTACAG GGCGCGTCAG
5161 GTGGCACTTT TCGGGGAAAT GTGCGCGGAA CCCCTATTTG
5201 TTTATTTTTC TAAATACATT CAAATATGTA TCCGCTCATG
5241 AGACAATAAC CCTGATAAAT GCTTCAATAA TATTGAAAAA
5281 GGAAGAGTCC TGAGGCGGAA AGAACCAGCT GTGGAATGTG
5321 TGTCAGTTAG GGTGTGGAAA GTCCCCAGGC TCCCCAGCAG
5361 GCAGAAGTAT GCAAAGCATG CATCTCAATT AGTCAGCAAC
5401 CAGGTGTGGA AAGTCCCCAG GCTCCCCAGC AGGCAGAAGT
5441 ATGCAAAGCA TGCATCTCAA TTAGTCAGCA ACCATAGTCC
5481 CGCCCCTAAC TCCGCCCATC CCGCCCCTAA CTCCGCCCAG
5521 TTCCGCCCAT TCTCCGCCCC ATGGCTGACT AATTTTTTTT
5561 ATTTATGCAG AGGCCGAGGC CGCCTCGGCC TCTGAGCTAT
5601 TCCAGAAGTA GTGAGGAGGC TTTTTTGGAG GCCTAGGCTT
5641 TTGCAAAGAT CGATCAAGAG ACAGGATGAG GATCGTTTCG
5681 CATGATTGAA CAAGATGGAT TGCACGCAGG TTCTCCGGCC
5721 GCTTGGGTGG AGAGGCTATT CGGCTATGAC TGGGCACAAC
5761 AGACAATCGG CTGCTCTGAT GCCGCCGTGT TCCGGCTGTC
5801 AGCGCAGGGG CGCCCGGTTC TTTTTGTCAA GACCGACCTG
5841 TCCGGTGCCC TGAATGAACT GCAAGACGAG GCAGCGCGGC
5881 TATCGTGGCT GGCCACGACG GGCGTTCCTT GCGCAGCTGT
5921 GCTCGACGTT GTCACTGAAG CGGGAAGGGA CTGGCTGCTA
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5961 TTGGGCGAAG TGCCGGGGCA GGATCTCCTG TCATCTCACC
6001 TTGCTCCTGC CGAGAAAGTA TCCATCATGG CTGATGCAAT
6041 GCGGCGGCTG CATACGCTTG ATCCGGCTAC CTGCCCATTC
6081 GACCACCAAG CGAAACATCG CATCGAGCGA GCACGTACTC
6121 GGATGGAAGC CGGTCTTGTC GATCAGGATG ATCTGGACGA
6161 AGAGCATCAG GGGCTCGCGC CAGCCGAACT GTTCGCCAGG
6201 CTCAAGGCGA GCATGCCCGA CGGCGAGGAT CTCGTCGTGA
6241 CCCATGGCGA TGCCTGCTTG CCGAATATCA TGGTGGAAAA
6281 TGGCCGCTTT TCTGGATTCA TCGACTGTGG CCGGCTGGGT
6321 GTGGCGGACC GCTATCAGGA CATAGCGTTG GCTACCCGTG
6361 ATATTGCTGA AGAGCTTGGC GGCGAATGGG CTGACCGCTT
6401 CCTCGTGCTT TACGGTATCG CCGCTCCCGA TTCGCAGCGC
6441 ATCGCCTTCT ATCGCCTTCT TGACGAGTTC TTCTGAGCGG
6481 GACTCTGGGG TTCGAAATGA CCGACCAAGC GACGCCCAAC
6521 CTGCCATCAC GAGATTTCGA TTCCACCGCC GCCTTCTATG
6561 AAAGGTTGGG CTTCGGAATC GTTTTCCGGG ACGCCGGCTG
6601 GATGATCCTC CAGCGCGGGG ATCTCATGCT GGAGTTCTTC
6641 GCCCACCCTA GGGGGAGGCT AACTGAAACA CGGAAGGAGA
6681 CAATACCGGA AGGAACCCGC GCTATGACGG CAATAAAAAG
6721 ACAGAATAAA ACGCACGGTG TTGGGTCGTT TGTTCATAAA
6761 CGCGGGGTTC GGTCCCAGGG CTGGCACTCT GTCGATACCC
6801 CACCGAGACC CCATTGGGGC CAATACGCCC GCGTTTCTTC
6841 CTTTTCCCCA CCCCACCCCC CAAGTTCGGG TGAAGGCCCA
6881 GGGCTCGCAG CCAACGTCGG GGCGGCAGGC CCTGCCATAG
6921 CCTCAGGTTA CTCATATATA CTTTAGATTG ATTTAAAACT
6961 TCATTTTTAA TTTAAAAGGA TCTAGGTGAA GATCCTTTTT
7001 GATAATCTCA TGACCAAAAT CCCTTAACGT GAGTTTTCGT
7041 TCCACTGAGC GTCAGACCCC GTAGAAAAGA TCAAAGGATC
7081 TTCTTGAGAT CCTTTTTTTC TGCGCGTAAT CTGCTGCTTG
7121 CAAACAAAAA AACCACCGCT ACCAGCGGTG GTTTGTTTGC
7161 CGGATCAAGA GCTACCAACT CTTTTTCCGA AGGTAACTGG
7201 CTTCAGCAGA GCGCAGATAC CAAATACTGT TCTTCTAGTG
7241 TAGCCGTAGT TAGGCCACCA CTTCAAGAAC TCTGTAGCAC
7281 CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCAGTGGC
7321 TGCTGCCAGT GGCGATAAGT CGTGTCTTAC CGGGTTGGAC
7361 TCAAGACGAT AGTTACCGGA TAAGGCGCAG CGGTCGGGCT
7401 GAACGGGGGG TTCGTGCACA CAGCCCAGCT TGGAGCGAAC
7441 GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCTATGA
7481 GAAAGCGCCA CGCTTCCCGA AGGGAGAAAG GCGGACAGGT
7521 ATCCGGTAAG CGGCAGGGTC GGAACAGGAG AGCGCACGAG
7561 GGAGCTTCCA GGGGGAAACG CCTGGTATCT TTATAGTCCT
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7601 GTCGGGTTTC GCCACCTCTG ACTTGAGCGT CGATTTTTGT
7641 GATGCTCGTC AGGGGGGCGG AGCCTATGGA AAAACGCCAG
7681 CAACGCGGCC TTTTTACGGT TCCTGGCCTT TTGCTGGCCT
7721 TTTGCTCACA TGTTCTTTCC TGCGTTATCC CCTGATTCTG
7761 TGGATAACCG TATTACCGCC ATGCATg

8.2.2 Cell Line Generation
I co-transfected the 2e5ACS1 cells with the PF plasmid and a Tet-Repressor plas-
mid (Tet-OFF purchased from Invitrogen) in a 1:3 ratio to a total of 5µg DNA
and 20µl Lipofectamine 2000 R© according to the manufacturers instructions. An-
tibiotic resistance of the PF plasmid where the same as the ACS1 cell line, nonethe-
less G418 was used in the medium (3mg/ml). For selection of TetR integration,
cells were treated with Blasticidine (1mg/ml).

Previous experience gained whilst generating the ACS1 line, led to the three-
step protocol detailed in figure 8.1a. Briefly, initially, ACS1 cells are co-transfected
with the TetR and PF plasmids and treated with and without tetracycline. Al-
though cells expressing GFP and tdTomato were observed under both conditions,
I could detect a consistent sub-population of cells which were brighter in the pres-
ence of tetracycline (ranging between 1-5% of the total cell population). These
cells are FACS sorted into 5ml tubes (Sort 1) and kept in culture under Blastici-
dine and Gentamycin selection for 8-10 days. I next performed a second round of
tetracycline stimulation and FACS sorted cells (Sort 2) into individual 96-wells
with the highest stringency available. These cells were left to divide for up to two
weeks, after which a final tetracycline stimulation was applied to select for clones
which expressed tdTomato and GFP.

8.2.3 3D Cell culture
MDCK cells were purchased from the American Type Culture Collection (ATCC)
kept in minimum essential medium (MEM) supplemented with 10mg/ml L-Glutamine,
and 10% Fetal Bovine Serum.

To prepare cysts in Collagen I for imaging, I used the same protocol as in
II. To grow “cables”, the substrate was a composition of 160µl of High Concen-
trated Matrigel from Cornig R© with 40µl of Collagen I (3mg/ml) from Advanced
BioMatrix R© . This substrate was first deposited on a glass bottom MatTek 6-well
dish with a 14mm diameter, and spread evenly. Then up to two purpose fire bent
borosilicate 1µl HPLC glass capillaries per well were placed on top. The plates
were then incubated at 37C without CO2 for 30-60 minutes, or until the substrate
had solidified. Glass capillaries were then carefully removed, and 5000 cells were
pipetted under the microscope and aseptic conditions onto the through left by the

119



“Thesis” — 2016/7/12 — 18:32 — page 120 — #130

(a)

td
To

m
at

o 
(a

.u
.)

GFP (a.u.)

Analysis

Sort 2

    1.19%
 1000+ cells

    1.18%
single cells

60-90%

Sort 1-tet +tet

Figure 8.1 – The General Protocol for generation of Positive feedback cell lines is shown.

capillary. The cells were left in the incubator overnight to form a thin eptithelium,
after which a fresh layer of 100µl matrigel/collagen was delivered and solidified
as before. “Cable” like structures formed within 24 hours of this step.

8.2.4 Image Acquisition

Time-Lapse Microscopy

Due to logistical move of the laboratories (CRG in Barcelona, and Imperial Col-
lege London)during my PhD, two different microscopes were used for the acqui-
sition of the microscopy timelapses. These were:
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CRG Imperial
Lightsource Xenon Lamp Mercury Lamp
Camera Module Hammamatsu EM-CCD Hammamatsu Orca Flash 4 CMOS
Objectives Zeiss 20x PH 0.4NA Zeiss 10x PH 0.3NA
Acquisition Time 3s 200ms
Filter Cube GFP 38HE 38HE
Filter Cube tdTomato NA 46HE
Software Axiosvision ZEN and Volocity

For time-lapse acquisitions the cells were kept under a 37C and 5% CO2 at-
mosphere. Experiments were setup using the proprietary Zeiss Zen software. To
account for the collagen variability, 5 Z-stacks were taken in each of the fluores-
cent channels, and then the Maximum z-Projections were reconstructed in ImageJ.
For the spatial images, an overlap of 5% was chosen.

Confocal Microscopy

For the 3D confocal images in section 6.3.2 the following protocol was followed.

Other Materials:
Permeabiliztion solution
0.5% Triton-X in PBS
test 0.1% vs 0.5%
Glycine rinse solution
PBS 1X
100 mM glycine
Primary Block (IF) Buffer
PBS 1X
7.7 mM NAN3
10% goat serum or horse
0.1% bovine serum albumin
0.2% Triton X-100
0.05% Tween-20
Secondary Block Buffer
IF Buffer
Materials for staining
Phalloidin: FITC, TRITC, 594
E-Cadherin: DECMA-Alexa 594 conjugated antibody Cell Signaling Technolo-
gies (Catalog number: 7687).
C-Met: N17 (Santa Cruz)
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Nuclei: To-PRO3,DAPI
Secondary Ab anti-goat: Alexa-546
Method:

1. Wash with PBS and fix with 4% PFA for 20min at RT. Wash 3xPBS and
proceed to staining. 10% goat or horse serum.
2. Permeabilization: If formalin or paraformaldehyde is used for fixation, per-
meabilize with PBS containing 0.5% Triton X-100 for 10 min at 4C. Depend-
ing on the antibody used for immunostaining, the detergent concentration or
duration of permeabilization may require modification.
3. Glycine rinse: Rinse three times with PBS/glycine 10–15 min per wash at
room temperature.
4. Primary block: Incubate with 200 µl/well IF Buffer for 1–1.5 h at room
temperature.
5. Secondary block: Aspirate the primary block and incubate with 100 µl/well
secondary block for 30 min.
6. Primary antibody: Incubate with primary antibody in the primary block so-
lution (see step 5) overnight (15–18 h) at 4C. 1:100 to 1:200 dilutions of the
primary antibody.
7. Rinse three times (20 min each) with IF Buffer at room temperature with
gentle rocking.
8. Secondary antibody: Incubate with fluorescent conjugated secondary anti-
body in IF Buffer +10% goat serum for 40–50 min at room temperature.
9. Rinse three times (20 min each) with IF Buffer at room temperature with
gentle rocking.
10. To counterstain nuclei, incubate with PBS containing 5 µM TOPRO-3
(Molecular Probes R© ) and/or 0.5 ng/ml (DAPI, Sigma R© ) for 15 min at room
temperature.
11. Rinse once with PBS for 5 min at room temperature.
12. Mount with freshly prepared Prolong Antifade Reagent (Molecular Probes)
and allow to dry overnight at room temperature. Once dry, slides can be stored
at 4C for up to 1 week or at -20C for up to 2 months.

Imaging was done on a Leica SP5 upright confocal microscope using a 63X
low NA, long working distance water objective (HCX APO L 63x 0.90 W U-
V-I). The illumination sources were an Argon laser for 488nm and HeNe2 for
534nm and 633nm, all were used at 30% intensity. The acquisition was done
with a HyD detector, The z-Stacks were 40µm deep, and acquired by line
scanning. The images were reconstructed in ImageJ after applying a gaussian
blur filter of 2.0 pixels.
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8.3 Computational

8.3.1 Model

The stochastic model was coded in R. The inputs for the model are the param-
eters k1, k2, k3; the maximum time for the simulation, the timestep at which the
stochastic model will add a molecule to the system, the number of realisations and
the initial concentration of activator.

simple_positive_feedback <- function(k_1,k_2,k_3, maxtime,
timestep, numberofrealisations, initial_condition=0){

output_GFP =
matrix(0,nrow=(maxtime/timestep)+1,ncol=numberofrealisations);

for (realisation in seq(1,numberofrealisations,by=1)){
#print(realisation)
GFP= initial_condition;
a = rep(0,3);
a[1] = k_1;
a[2] = k_2*GFP;
a[3] = k_3*GFP;
asum = sum(a);
time=0.0;
count = 1;
for (ts in seq(0,maxtime,by=timestep)) {
while (time < ts){
tau = log(1/runif(1))/asum;
time = time + tau;
#DETERMINE WHICH REACTION WILL OCCUR
psm = 0;
drxn = asum*runif(1);
j = 0;
while (psm < drxn){
j = j + 1;
psm = psm+ a[j];
}
#UPDATE SYSTEM CONFIGURATION AND FURTHER PARAMETERS
if (j == 1){
GFP = GFP + 1;
a[2] = a[2] + k_2;
a[3] = a[3] + k_3;
asum = asum + k_2 + k_3;}
else if (j == 2){
GFP = GFP - 1;
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#HGF diffusion
a[2] = a[2] - k_2;
a[3] = a[3] - k_3;
asum = asum - k_2 - k_3;
}
#positive feedback
else if (j == 3){
GFP = GFP + 1;
a[2] = a[2] + k_2;
a[3] = a[3] + k_3;
asum = asum + k_2 + k_3;
}
} # End of integration loop
output_GFP[count,realisation] = GFP;
count = count + 1;
}
}
return(output_GFP)
}

8.3.2 Image Analysis
Cysts

The code for the analysis of cysts in time can detect and track single cysts from
TIF files.

clear all
direc=’E151215B_GFP’; %specify directory where experiment

can be found
ini=2; % specify time in hours, post initial stimulus

stimulus
interv=1; %interval in hour*e-100
tamx=1024;
tamy=1024;
binv=4;
bin=0:tamx/binv:tamx;
se90=strel(’line’,5,90);
se0=strel(’line’,5,0);
se90b=strel(’line’,10,90);
se0b=strel(’line’,10,0);
xbin=0:800;
xbin8=xbin/800;
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%% read files
cd(direc);
filist=dir(’*GFP*.tif’);
filist2=dir(’*TOM*.tif’);
lentot=length(filist);
scenelist=(dir(’*GFP*t01m01_ORG.tif’));
lenscene= length(scenelist);
mosaiclist=(dir(’*GFP*s01t01m*ORG.tif’));
lenmos=length(mosaiclist);
timelist=(dir(’*GFP*s01t*m01_ORG.tif’));
lentime=length(timelist);
times=lentime;
%% first part of the code segments images
for iiii = 0:lenscene-1

for iii=0:lenmos-1
clock

BW=zeros(tamx,tamy);%%GFP
M=zeros(times,5);
background_GFP=zeros(times,1);
background_TOM=zeros(times,1);
cyst=zeros(times,1);
M(:,1)=ini:interv:ini+((times-1)*interv);
dali=zeros(times,tamx,tamy);
dalitom=zeros(times,tamx,tamy);
ali=zeros(times,tamx,tamy);
clock

j=1;
for jn=

(lentime*lenmos*iiii+1+iii):lenmos:(lentime*lenmos*(iiii+1))
strfil=filist(jn).name %looking for file with

name depedent on jn
j
jn
strfilsplt=strsplit(strfil,’_’);
filsplt1=char(strfilsplt(1));
filsplt2=char(strfilsplt(2));
filsplt3=char(strfilsplt(3));
filsplt4=char(strfilsplt(4));
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%% % % %GFP segmentation and data extraction

image=imread(filist(jn).name);
yy=reshape(image,tamx*tamy,1);
peaks=histc(yy,xbin);
pks=max(peaks);
locs=find(peaks==pks);
shiftb=xbin(locs(1));
background_GFP(j)=shiftb;
dali(j,:,:)=image;
image=wiener2(image);
image =

adapthisteq(mat2gray(image),’Range’,’Original’);
yy=reshape(image,tamx*tamy,1);
peaks=histc(yy,xbin8);
pks=max(peaks);
locs=find(peaks==pks);
if locs(1)==800

shift=0.36;
else

shift=xbin8(locs(1))+0.09+0.03*j/times;
end
BW=im2bw(image,shift);

BW=im2bw(BW,0.9);

BW=bwareaopen(BW,200);
BW=imdilate(BW,[se90,se0]);

BW=bwareaopen(1-BW,2000);

BW=imerode(1-BW,[se90,se0]);
BW=bwareaopen(BW,2000);

BW=bwareaopen(BW,20);
BW=imerode(BW,[se90,se0]);
BW=imclearborder(BW);
[labi,num]=bwlabel(BW);
res=regionprops(labi,’Area’,’PixelList’);
%

%% TOMATO segmentation and data extraction only
if Tom channel present
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while
exist(strcat(filsplt1,’_’,’TOM’,’_’,filsplt3,’_’,filsplt4),’file’)

strfilTOM=strcat(filsplt1,’_’,’TOM’,’_’,filsplt3,’_’,filsplt4);
image=imread(strfilTOM);
yy=reshape(image,tamx*tamy,1);
peaks=histc(yy,xbin);
pks=max(peaks);
locs=find(peaks==pks);
shiftb=xbin(locs(1));
background_TOM(j)=shiftb;
dalitom(j,:,:)=image;
break
end

shiftb_GFP=3000;
shiftb_TOM=3000;
for jk=1:num

marea=res(jk).Area;
if marea>1000

vec=res(jk).PixelList;
long=size(vec,1);
veco_GFP=zeros(long,1);
veco_TOM=zeros(long,1);
for it=1:long

veco_GFP(it)=dali(j,vec(it,2),vec(it,1));
veco_TOM(it)=dalitom(j,vec(it,2),vec(it,1));

end
q_GFP=quantile(veco_GFP,.05)
q_TOM=quantile(veco_TOM,.05)

if q_GFP < shiftb_GFP
shiftb_GFP=q_GFP;

end
if q_TOM < shiftb_TOM

shiftb_TOM=q_TOM;
end

end
end
background_GFP(j)=shiftb_GFP;
background_TOM(j)=shiftb_TOM;
ali(j,:,:)=BW; %save cyst binary mask cysts=1

(cyst location)
j=j+1
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end
%second part of the script data extraction
[lab,num]=bwlabeln(ali);
res=regionprops(lab,’Area’);
h=1;
ll=zeros(num,1); %cyst label
for j=1:num

if res(j).Area > 3000 %label cysts only if volume
in time is higher than
ll(h)=j;
h=h+1;

end
end
h=h-1;
media_GFP=zeros(h,times);
media_TOM=zeros(h,times);
sumtot_GFP=zeros(h,times);
sumtot_TOM=zeros(h,times);
sup=zeros(h,times);
correc=zeros(h,times);
correc_GFP=zeros(h,times);
correc_TOM=zeros(h,times);
maxarea=zeros(h,1);
partix=zeros(h,times);
partiy=zeros(h,times);
centx=zeros(h,times);
centy=zeros(h,times);
for j=1:times

[labxy,xy]=bwlabeln(ali(j,:,:));
resc=regionprops(labxy,’Centroid’);

AA(:,:)=lab(j,:,:);
for ii=1:h

%% look for real cysts in image
[r, c]=find(AA==ll(ii));
sla=size(r);
average_GFP=0;
average_TOM=0;
area=0;
if sla(1)~=0

for k=1:sla(1)
average_GFP=average_GFP+dali(j,r(k),c(k));
average_TOM=average_TOM+dalitom(j,r(k),c(k));
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area=area+1;
end
% substract background
average_GFP=average_GFP-area*background_GFP(j);
average_TOM=average_TOM-area*background_TOM(j);
if area>maxarea(ii)

maxarea(ii)=area;
end

media_GFP(ii,j)=average_GFP/area;
media_TOM(ii,j)=average_TOM/area;
sumtot_GFP(ii,j)=average_GFP;
sumtot_TOM(ii,j)=average_TOM;
correc_GFP(ii,j)=background_GFP(j);
correc_TOM(ii,j)=background_TOM(j);
sup(ii,j)=area;

else
media_GFP(ii,j)=0;
media_TOM(ii,j)=0;
sumtot_GFP(ii,j)=0;
sumtot_TOM(ii,j)=0;
correc_GFP(ii,j)=background_GFP(j);
correc_TOM(ii,j)=background_TOM(j);
sup(ii,j)=0;

end

end

end
%% save the extracted parameters per good cyst
for ii=1:h

M(:,2)=media_GFP(ii,:); % background substracted
and area corrected GFP

M(:,3)=sumtot_GFP(ii,:); % sum of GFP
M(:,4)=correc_GFP(ii,:); % measured GFP

background value
M(:,5)=media_TOM(ii,:); % background substracted

and area corrected TOM
M(:,6)=sumtot_TOM(ii,:); % sum of TOM
M(:,7)=correc_TOM(ii,:); % measured TOM

background value
M(:,8)=sup(ii,:,1); % area of cyst
cleo=find(sup(ii,:)==0);
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ss=size(cleo);
% save cysts which are not lost in time
if ss(2)<4

filename_of_responsive_cyst=strcat(strcat(’11.final.time._scene_’,int2str(iiii+1),’_mosaic_’,int2str(iii+1),’_cyst_’,int2str(ll(ii))),’.dat’)
dlmwrite(filename_of_responsive_cyst, M);

end
end

end
end
cd ..

cd ..

Cables

The original matlab code to analyze the cables described in Section 6.3.2, has a
GUI interface. For simplicity I have included only the key sections of the code
here.

% Image is previously saved in obj
% obj.sources_mask contains localization of source Whatman

paper
% obj.object_mask contains localization of cable
% obj.imgdata contains multidimensional time-lapse image

data

function [X,Y,sd,bin_thresh,t,a]= calculate_time_stuff(obj)
c = 1;
[sizeX,sizeY,~,sizeC,nT] = size(obj.imgdata);
if c > sizeC, return, end;
bin_num=1; end;
time_num=1; end;

%%Background substraction
ylen=length(obj.imgdata(:,1,1,1,1));
xlen=length(obj.imgdata(1,:,1,1,1));
tlen=length(obj.imgdata(1,1,1,1,:));
backmat=nan(ylen,xlen,tlen);
sturmat=nan(ylen,xlen,tlen);
sturback=nan(ylen,xlen,tlen);
sturbacki=nan(ylen,xlen,tlen);
sturcont=[];
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for jj = 1:tlen
backmat(:,:,jj)=

obj.imgdata(:,:,1,c,jj).*~obj.object_mask;
sturmat(:,:,jj)=

obj.imgdata(:,:,1,c,jj).*obj.object_mask;

parfor ll = 1: xlen
sturback(:,ll,jj)=sturmat(:,ll,jj)-quantile(backmat(:,ll,jj),.05);

end

sturbacki(:,:,jj)=sturback(:,:,jj);%./sturcont(jj);
end
sturbacki=bsxfun(@times,sturbacki,obj.object_mask);
ucen=zeros(sizeX,sizeY);
timesb = (1:time_num:nT);
timesb = length(timesb);
uc=regionprops(obj.sources_mask,’Centroid’);
ucx=round(uc.Centroid(2));
ucy=round(uc.Centroid(1));

ucen(ucx,ucy)=1;
u = bwdist( ucen,’cityblock’ ); %obj.sources_mask;
u(~obj.object_mask)=0;
uthresh=(min(min(u)):bin_num:max(max(u)));
bins=(1:length(uthresh));
ubin=imquantize(u,uthresh);%alternatively maybe user can

input what to quantize, as multithreshold is limited
to 20 levels

mean_activity= zeros(timesb,length(uthresh));%bin_num
sd_activity=zeros(timesb,length(uthresh));%bin_num
area=zeros(timesb,length(uthresh));
time_count=zeros(timesb,1);
max_act=zeros(timesb,length(uthresh));
median_activity=zeros(timesb,length(uthresh));

for k = 1 :time_num :nT
plane=squeeze(sturbacki(:,:,k));

for j = 2:length(uthresh);%bin_num
[x, y] = find(ubin == j);
mean_act=zeros(length(x),1);
for n = 1:length(x);

mean_act(n)=(plane(x(n),y(n)));
end
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mean_activity(k,j)=(mean(mean_act));
max_act(k,j)=max(max(mean_act));
sd_activity(k,j)=std(mean_act);
area(k,j)=length(x);

end
time_count(k)=k;

end
X = bins;
Y = mean_activity(1:time_num:nT,:);
sd = sd_activity(1:time_num:nT,:);
bin_thresh=transpose(uthresh);
t=time_count(1:time_num:nT);
a=area(1,:);
end
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Part IV

Global Conclusions
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The projects presented in this thesis are interlinked and construct upon each
other. The common denominator is to synthesize in order to understand sender-
receiver systems (S-R) in cell biology. It is important to make the distinction
between studies of cell-cell communication and an S-R system. Whereas the for-
mer deals with the mechanistic view of the transmission of information, in an S-R
system the observable is the macroscopic dynamic behavior emerging from the
underlying mechanism. There is not (yet) a scientific field dealing solely with the
studies of S-R systems. I would argue that, such a field is necessary and has the
potential as a tool or approach to understand the “big-picture” of biological phe-
nomena. Given enough data, the underlying rules and principles of S-R systems,
could be derived from the mathematical theory of communication.

In the first project presented in Part II, I have documented how the promoter
sequence of the Matrix Metalloproteinase I in the Madine Darby Canine Kidney
(MDCK) cell line, can serve as a transcriptional reporter to a stimulus of Hep-
atocyte Growth Factor (HGF). The transcriptional reporter utilizes the intrinsic
sensing machinery of the MDCK cells.

It is apparent to me, and hopefully to the reader that the generation of a true
positive feedback mammalian cell line in which an initial input is both the input
and the output is both a daunting and interesting proposition. Autocatalytic reac-
tions are a natural force to be reckoned with, although their control in biological
systems, requires further investigation. In this work, I started with the assumption
that introducing an autocatalytic Hepatocyte Growth Factor (HGF) module into
an HGF responding cell, would lead to uncontrollable feedback, and to cell death.
I designed experiments with the prospect of taming the feedback to make it ob-
servable. In reality the contrary was the case, the feedback was weak,and barely
detectable. I can only speculate as to the reasons, however I find it plausible that
nature has optimized systems to inhibit positive feedbacks as much as possible.

Because feedbacks are immensely powerful. As I write this, the atmospheric
CO2 levels have for the first time in our species’ history surpassed the 400ppm
mark. Despite governmental efforts to curtail these emissions, last years’ esti-
mated emissions of CO2 levels is about 35.7 Gt (as a comparison in 1997 the
emissions were “just” 25 Gt)[Jackson et al., 2015]. The consensus among the sci-
entific community, is that the increase in CO2 levels is due to the burning of fossil
fuels, and is a major contributor to the warming of the planet [Cook et al., 2013].
There is also a consensus, that beyond a certain atmospheric concentration of
greenhouse gases, some of the positive feedbacks mentioned in Section 3.2 will
increase to a strength which is beyond our control. What is not clear is the tem-
poral dimension of the upcoming changes. As a scientific community we can and
should adapt to the urgency of the matter and address this question together.
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