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ABSTRACT

Risk associated with landslides of natural or man-made origin depends on the
prediction of the post-failure behaviour of the mobilized mass. Numerical models
capable of integrating the landslide geometry and its evolution, the coupled hydro-
mechanical interaction and the soil properties in the context of dynamic forces and
large displacements are currently under development. This thesis is a contribution
to this effort.

In this sense, the material point method (MPM) is especially suited for analysing
landslides with large displacements. This numerical procedure must be accompa-
nied by tests under controlled conditions in order to accurately check and calibrate
the numerical response.

In this thesis the capabilities of the MPM code developed are evaluated through
the modelling of scaled laboratory slope tests with large displacements. In order
to achieve an adequate comparison of the experimental and numerical results,
the experiments are analysed by means of the interpretation of sequential digital
images of the movement of the granular medium during the test (PIV technique).
A novel procedure is developed to obtain the field of deformations over time and
the tracking of particle path in a manner suitable for comparison with numerical
results calculated in MPM.

The main objective of the thesis was the development of a comprehensive cal-
culation tool capable of simulating the behaviour of the slides from the initial
triggering to the post-failure phase including thermal effects that determine the
evolution of the movement.

A formulation for non-isothermal problems coupled with hydraulic and mechanical
behaviour in MPM was developed and implemented. The formulation includes the
dissipation of frictional work as heat, which takes place, mainly, in shear bands.
The described phenomena are strongly dependent on the thickness of the shear
band and this results in a strong dependence of the numerical result in MPM with



the discretization mesh. A novel procedure to solve this problem is presented in
this thesis.

Finally, very rapid Vajont landslide (Italy 1963) is modelled. A plane strain 2D
model is presented without an “a priori” definition of the sliding surface. In fact,
in a generalization of previous and recent work, the mobilized materials are not
restricted to rigid solids interconnected along a predefined contact surface and the
heat generation is not it is limited to a single predefined surface. Thus, thermal
interaction processes are developed throughout the model as a function of the
location and intensity of deformations.
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RESUMEN

El riesgo asociado con deslizamientos de origen natural o artificial depende de
la prediccion del comportamiento posterior a la rotura de la masa movilizada.
Actualmente se estan desarrollando modelos numéricos capaces de integrar la ge-
ometria del deslizamiento y su evolucién, la interaccién hidromecénica acoplada y
las propiedades del suelo en el contexto de fuerzas dindmicas y grandes desplaza-
mientos. Esta tesis es una contribucién a este esfuerzo.

En este sentido, el método del punto material (MPM) es especialmente adecuado
para analizar deslizamientos con grandes desplazamientos. Este procedimiento
numérico debe ir acompanado de ensayos bajo condiciones controladas para poder
comprobar y calibrar la respuesta numérica.

En esta tesis se evaliian las capacidades del cédigo MPM desarrollado, mediante la
modelacién de ensayos de laboratorio a escala con grandes desplazamientos. Para
lograr una adecuada comparacion de los resultados experimentales y numéricos, se
analizan los experimentos mediante la interpretaciéon de imagenes digitales secuen-
ciales del movimiento del medio granular durante el ensayo (técnica PIV). Con
este fin, se desarrolla un procedimiento novedoso para la obtencién del campo de
deformaciones en el tiempo y el seguimiento de la trayectoria de las particulas de
forma idénea para la comparacién con resultados numéricos calculados en MPM.

El principal objetivo de la tesis fue el desarrollo de una herramienta potente de
calculo capaz de simular el comportamiento de los deslizamientos desde la rotura
inicial hasta la fase de post-rotura incluyendo efectos térmicos que determinan la
evolucién del movimiento.

Para esto, se desarrolla e implementa una formulacién para problemas no isotérmicos
acoplados con el comportamiento hidraulico y mecanico en MPM. Esta formu-
lacién incluye la disipacién del trabajo friccional en forma de calor, lo cual ocurre
principalmente en las bandas donde se localiza la deformacién de corte. Este
fenémeno descrito es fuertemente dependiente con el espesor de la banda de corte
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y esto se traduce en una fuerte dependencia de los resultados numéricos en MPM
con la malla de discretizacién empleada. En esta tesis se presenta un novedoso
procedimiento para solventar este problema.

Por 1ltimo se presenta la modelaciéon del movimiento ocurrido en el deslizamiento
rapido de Vajont (Italia 1963). Se introduce un modelo 2D en deformacién plana
sin una definicién “a priori” de la superficie de deslizamiento. De hecho, gen-
eralizando los trabajos hechos anteriormente, los materiales movilizados no se
restringen a solidos rigidos interconectados a lo largo de una superficie de con-
tacto predefinida y la generacién de calor no se limita a una tnica superficie
predefinida. Asi, los procesos de interacciéon térmica se desarrollan en todo el
modelo en funcién de la localizacién e intensidad de las deformaciones.
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CHAPTER 1

THESIS DESCRIPTION

The first Chapter describes the motivation and antecedents of this work and
highlights the objective of the thesis. Finally, the organization of the document
is outlined.

1.1 Motivation and background

Landslides have been a big threat to human beings, their communities and the in-
frastructures built to have a functional civilization. There are several history cases
well documented that show the casualties and damage that landslides caused (So-
sio et al., 2008). The scale of damage associated with landslides is directly related
with the final displacement of the mobilized mass, its velocity and acceleration
of the soil movement besides the volume of the unstable mass and the internal
characteristics of the deforming body.

There are not only natural landslides but also man excavated slopes. The first
ones, as mentioned before, can cause large catastrophic events (loss of lives and
material damages) but have low occurrence frequency, while the second ones have
a larger rate of occurrence and incidence in infrastructure.
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CHAPTER 1. THESIS DESCRIPTION

In order to have an assessment of the risk a relevant issue refers to their “static”
stability as well as the consequence of possible instability. For a given case of a
potential unstable mass, risk assessment depends on the post failure behaviour in
terms of run-out and velocity. What is observed in the field is that landslides may
exhibit widely different velocities ranging from extremely slow (velocities lower
than 16 mm/year) to extremely rapid (velocity values higher than 5 m/sec).
Several factors determine the evolution of the motion, i.e. external actions, kine-
matic restrictions and constitutive response of the involved material that may
depend on the range of strains and thermal interaction due to frictional work dis-
sipation. Taking into account all of these factors into a comprehensive tool able
to predict the behaviour of slopes becomes a challenge.

A simple way to advance in the understanding of the response of landslides is by
means of scaled tests carried out in the laboratory under controlled conditions.
Scaled slopes can be built under predefined initial and boundary conditions in
terms of stress and pore water pressure and simplified homogeneous geometries.
The materials involved can be characterized by means of laboratory tests providing
the constitutive parameters. In addition, with current techniques such as particle
images velocimetry (PIV) (Adrian, 1991; Take et al., 2004; Thielicke and Stamhuis,
2014; White et al., 2003), the slope movement during failure can be recorded and
analysed to obtain very accurate data about displacements and velocities and
their evolution in time. With the appropriated methodology, this information can
be used to identify strains and shear surfaces.

On the other hand, real slopes can exhibit a complex behaviour over long periods
of time involving changes in velocity and acceleration. Such variations of static and
dynamic equilibrium of landslides cannot only be explained by taking into account
the modifications of external actions. Changes in resistant forces depending on the
sliding velocity should also be included (Dieterich, 1979; Ruina, 1983; Skempton,
1985; Tika et al., 1996; Wedage et al., 1998).

Regarding landslide failures at high velocities, there are few explanations to the
phenomena of rapid acceleration after a status of creeping behaviour. One con-
dition that explains this behaviour is the progressive failure in brittle materials
that can cause the reduction in strength parameters from peak to residual values
even under small deformations (Yerro et al., 2014, 2016a,b; Zabala and Alonso,
2011). However, even this reduction of soil strength cannot explain some known
extremely fast landslide failures such as Vajont landslide that reached almost 30
m/s in around 15 seconds (Hendron and Patton, 1985). According to simulations
(Alonso and Pinyol, 2010; Alonso et al., 2016; Pinyol and Alonso, 2010a,b; Yerro,
2015), the only way to explain the displacements, velocities and acceleration cal-



1.1 - MOTIVATION AND BACKGROUND

culated for Vajont landslides, is to accept that the frictional soil strength drops
to zero. The main accepted idea for this phenomenon is the reduction of the soil
strength by an increment in the pore pressure due to changes in water density
by temperature increments developed during the mechanical energy dissipation in
the sliding area.

This idea of fast sliding due to changes in temperature was introduced by Habib
(1967). Other authors (Alonso et al., 2016; Cecinato and Zervos, 2012; Cecinato
et al., 2011; Goren and Aharonov, 2007, 2009; Goren et al., 2010; He et al., 2015;
Uriel and Molinia, 1977; Vardoulakis, 2000, 2002; Veveakis et al., 2007; Voight
and Faust, 1982) have used the same approach combining different analysis meth-
ods trying to explain Vajont rapid motion. Those works shared two simplified
assumption, the first one is that the slope kinematics are solved over a simplified
geometry of the real problem and the second one is the assumption that me-
chanical work dissipation in concentrated shear bands predefined by a simplified
geometry.

A general approach to analyse static, creeping conditions and post-failure be-
haviour requires therefore adequate tools capable of reproducing complex models
and perform numerical simulations at global and local scale. The formulation of
displacement, thermal interactions and rate dependent constitutive models should
be integrated in general numerical tools capable of handling large displacements
and inertial terms under dynamic conditions. In this way the assumption of a
predefined rupture surface is removed from the analysis.

In the last decades, different types of numerical methods have been developed
taking advantage of the improvements in the technology and hardware. These de-
velopments increase the complexity of the models and get closer to real conditions.
The numerical approaches to describe the soil behaviour require the discretization
of the domain. Some methods consider the material as a continuum formed by
sub-domains (Collatz, 1955; Donea et al., 1977; Eymard et al., 2000; Zienkiewicz,
1977) and some others methods analyse the material as a discontinuum medium
formed by particles (Belytschko et al., 1994; Cundall and Strack, 1979; Gingold
and Monaghan, 1977; Idelsohn et al., 2003; Monaghan, 1988). Each approach has
advantages and disadvantages when examining the deformation range, bound-
ary conditions, internal boundaries between materials, contact surfaces for soil-
structure interactions, computational cost, among others. Despite this, one of the
most important criteria to select a numerical method to perform an analysis is the
field of application and the material type to be modelled. For example, modelling
a granular material with large particle size, will be most suited for a discontinuum
media method in order to get the adequate representations of the problem. The
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contribution of Soga et al. (2016) provided detailed description of the application
and limitations of several numerical methods.

In this Thesis, the material point method (MPM) (Sulsky et al., 1994; Sulsky and
Schreyer, 1996) has been selected as a convenient tool to analyse landslides. This
method consist of a mixed formulation (Fig. 1.1) that couples the advantages of
meshless methods and the finite element method (FEM). It was an evolution of
the “particle in cell” method used in fluid dynamics. The MPM models a solid as a
collection of material points transporting the discretized information of the porous
medium (strains, stresses, velocities, accelerations, water pressures, temperature,
porosity, etc) moving through a background mesh (Fig. 1.1). The governing
equations are solved in the nodes of the background mesh. Each material point
has an initial mass that is preserved during the whole calculation process. The
solution of governing equations is used to update the material points. All the
information is mapped between material points and mesh nodes by means of
standard shape functions as in FEM.

Detailed information for the mechanical problem (single-phase MPM formulation)
can be found in Sulsky et al. (1995). The coupled hydro-mechanical problem
(two-phase MPM formulation, solid-liquid) for saturated soils is described in de-
tail by Zabala (2010), Jassim et al. (2013) and Al-Kafaji (2013). The coupled
hydro-mechanical problem (three phase MPM formulation, solid-liquid-gas) for
unsaturated soils was presented by Yerro (2015). These formulations were made
under the one point multiphase assumption. Recently Abe et al. (2014) and Ban-
dara (2013) have presented a new two-point formulation where the solid skeleton
and the liquid phase are represented separately by two sets of material points.

In this work, a two-phase single point MPM formulation has been developed with
the aim of analysing landslide including thermal effects. This MPM approach is
capable of removing the limiting assumptions used so far to explore the thermal
pressurization effects on landslides. In fact, the kinematics of the motion should
not be an assumption made “a priori” but part of the solution. In general, heat
sources are generated wherever plastic work develops.

The Geopart code, initially developed by Zabala et al. (2004) and Zabala (2010)
was selected as a base code. The code follows an explicit MPM integration in a
2D formulation using structured rectangular mesh with four node elements. This
code was used to analyse dam failures (Zabala and Alonso, 2011, 2012). Basic
validation of simulations results (wave propagation, one-dimensional consolidation
problem, stability of the solution) have been performed in the studies listed here.
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Material point Background mesh
5 |
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Figure 1.1: MPM approach. (a) Initial discretizacion; (b) Lagrangian phase; (c)
Convective phase; (d) final phase and initial for next cicle

The displacement-water pressure-temperature (v —p — T') formulation integrated
in the MPM framework follows the flow chart indicated in Figure 1.2. Appendix
A describes a detailed step by step of the algorithm developed.

Following the ideas previously described, this thesis proposes the objectives stated
next.
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Figure 1.2: Simplified flow char of the code developed
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1.2 Objectives

This Thesis focuses on developing the Material Point Method (MPM) with the
aim of modelling landslides including thermal interaction, in brittle and saturated
soils. In order to achieve such general purpose, the following specific objectives
are formulated.

Regarding numerical improvements:

e Extending the formulation of 2 phase (solid and liquid) MPM to non-
isothermal hydro-mechanic problems in saturated soil.

e Developing new numerical approaches to simulate thermally induced land-
slides.

e Developing a novel procedure to post-process displacement measurements
taken from digital images of granular soils involving large deformations and
to be able to track the position of the particles and the deformation field.

Regarding geotechnical knowledge:

e Evaluating the capability of MPM to model large deformation and displace-
ments by simulating scaled laboratory test and centrifuge test of slope in-
stabilities.

e Modelling the development of heating processes during landslide motion.

e Modelling Vajont landslide with MPM to analyse the development of the ini-
tial failure triggering mechanism and the subsequent post failure behaviour.

e Modelling the transition from slow to rapid landslide motion.

1.3 Methodology

After the evaluation of the state of art on landslide behaviour and its modelling,
the first step carried out in the Thesis was to simulate scaled laboratory tests of
slope failure to evaluate the capability of MPM (Geopart code) to simulate real
cases. The experiments, which involved large displacements, were analysed by

7
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means of particle image velocimetry (PIV) technique. Some difficulties appeared
when the PIV measurements were analysed with the purpose of tracking the path
of the solid particles and recovering the evolution of displacement and strain fields
in time. To overcome such difficulties, a novel procedure was developed which is
presented as an interesting tool to compare PIV measurements with numerical
results. This is specially interesting for the case of MPM results.

Some drawbacks and limitations of the initial code were addressed to improve its
capabilities:

e The Implementation of a Mohr-Coulomb constitutive models with strain
softening with the aim of modelling the soil behaviour during progressive
failure, following the substepping procedure proposed by Sloan (1987), in
which the elastoplastic deformations are integrated in an explicit scheme
by means of subdividing the increment of deformation looking for the mini-
mization of the error. The modification in the Mohr-Coulomb law presented
by Abbo and Sloan (1995) to avoid gradient discontinuities of the yield sur-
face criterion were also included in the implementation of the constitutive
model.

e Improvement the stability of the solution by inclusion of artificial damping
(Cundall, 1987).

e Implementation of alternative options to integrate the internal force (GIMP,
Bardenhagen and Kober (2004)).

e Implementation of changes in boundary conditions and several ways to apply
external forces to obtain different triggering conditions of failure (increasing
mass of a body, variation of water level and water pressures, excavation in
soil)

e Implementation a the contact algorithm to deal with soil-structure problems
(Alvarado et al., 2016) following the procedure proposed by Bardenhagen
et al. (2000) and Bardenhagen et al. (2001).

e Improving the pre-process and creating a post-process for visual interpreta-
tion of simulation’s results.

e Reducing computational cost by calculating and storing shape functions one
time per computational cycle and applying a parallel calculation algorithm
using OpenMP interface.
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Later, the work carried out focused on the extension of the code to non-isothermal
problems and its applications to thermally driven accelerated landslides. A cou-
pled thermo-hydro-mechanical formulation was developed including the dissipa-
tion of the frictional work into heat as a source term in the energy balance equa-
tion. Synthetic cases of slopes failures were evaluated and the obtained results
evidenced the mesh dependency due to the fact that the generation of heat is
strongly dependent to the shear band thickness which, in the numerical simula-
tions, is of the same order than the mesh element size.

This pathological dependence was overcome by defining embedded shear bands
which a thickness is defined as an input parameter. Local thermal and hydrauli-
cal equilibrium was established between the “continuous” domain and embedded
shear bands.

The procedure was applied to simples examples of slope failures used to carry out
parametric studies with the aim of obtaining practical conclusions.

Finally, Vajont landslide was simulated.

1.4 Thesis layout

The Thesis is organised in 6 Chapters. The main contents are introduced here:

Chapter 2 shows a novel methodology developed to interpret sequential digital
images processed with PIV technique of solids in motion with large displacements.
The methodology is inspired in the MPM numerical scheme. The method is
applied to synthetic cases of rectangular samples in which known displacements
are imposed in order to validate the developed procedure. Finally, a laboratory
scaled slope failure is analysed to show capabilities of the methodology.

In Chapter 3, two laboratory-scale sandy slope failures, involving large displace-
ments, are interpreted with the methodology presented in Chapter 2. Results of
MPM modelling for both cases are compared with the processed data from the
laboratory tests in order to evaluate the accuracy of the MPM Geopart code to
reproduce soil behaviour under dry and isothermal conditions.

The governing equations for saturated soils under non-isothermal conditions are
presented in Chapter 4. This formulation is integrated into a general MPM
numerical code following an explicit Euler approach, providing a thermo-hydro-

9
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mechanical coupled MPM code (THM-MPM code). A reference case of an un-
stable saturated slope is then analysed to explore the effect of some relevant
parameters. A key point regarding the effect of the shear band thickness on the
motion of the landslides and the consequences of such dependence on the nu-
merical modelling is later discussed. A new numerical strategy to overcome the
mesh dependency under some assumptions is presented. The capabilities of the
proposed methodology is evaluated by means of a reference case.

In Chapter 5, the THM-MPM code described in Chapter 4 is applied to analyse
the well-known Vajont landslide (Italy, 1963), taking into account the available
documentation on the geometry, materials involved and boundary conditions. The
case is taken as a good opportunity to validate the code developed.

Finally, in Chapter 6, the general conclusions are summarised and future devel-
opments are outlined.

10



CHAPTER 2

NOVEL PROCEDURE FOR PIV
MEASUREMENTS IN LARGE
STRAIN PROBLEMS

Over the last few decades, the particle image velocimetry (PIV) technique has
become an interesting tool used to measure displacements in the field of experi-
mental mechanics. This chapter presents a procedure to interpret PIV displace-
ments, measured following an Eulerian scheme, with the purpose of providing
accumulated displacements, velocities, accelerations, and strains on points repre-
senting physical particles. Strains are computed as the gradient of displacements.
When compared with other standard procedures already published, the presented
methodology is especially well suited to interpret large strains and large displace-
ments. The basis of the procedure is to map displacement increments measured
through PIV analysis on the subset (or patch) centres into numerical particles
(NP) that are defined as portions of the moving masses whose deformation is
analysed. The implementation of the method called PIV-NP is explained in de-
tail, highlighting its simplicity. The procedure can be used as a post-processor of
currently available PIV software packages. The methodology is first applied to
synthetic cases of rectangular samples in which known displacements are imposed
and also to a sandy slope failure experiment carried out in a centrifuge machine
involving large displacements. The method reproduces satisfactorily the recorded

11
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images.

This chapter is part of the published paper “Novel analysis for large strains based
on particle image velocimetry (2017)” (See list of publication)

2.1 Introduction

Particle image velocimetry (PIV), also known as Digital Image Correlation (DIC),
is widely used as a non-invasive technique to measure displacements in the field
of experimental mechanics. By comparing two digital images of an object before
and after deformation, incremental displacement fields are calculated to subpixel
accuracy without installing sensors that may disturb the material observed. A
digital photograph, understood as a set of pixels with different colour intensities,
is divided into a virtual grid of subsets (also called “patches”). The entire set
of pixels is integrated into regions or subsets which play the role of points. The
displacement vectors observed between two photographs taken at different times is
determined for each subset. The displacement is defined as the difference between
the position of the reference subset centre and the corresponding subset centre
in the deformable image (Fig. 2.1). A region or subset is selected instead of
an individual pixel because a pixel characterized by its colour intensity will not
be distinguished from others pixels. However, a set of pixels distributed in a
particular manner in a given area (I, x [, in Fig. 2.1) which contains sufficient
texture is capable of being identified in the subsequent image. A correlation
criterion should be predefined to find the corresponding position of the subset in
a search region of the deformed image by identifying the pattern of pixel intensity
values that best represent the reference subset. It is assumed that, although
the shape of the subset changes, a set of neighboring points in the reference
subset remains as neighboring points in the deformed subset. The position of
the deformed subset is then defined by the maximum value of the correlation
coeflicient.

During the last few years, research on the method led to a high accuracy on
displacement and strain measurements and several image analysis algorithms and
techniques have been developed to suit different applications. A description of
Digital Image Correlation (DIC) and a review of the different methodologies used
are presented by White et al. (2003), Pan et al. (2009) and more recently by
Take (2015). Readers are referred to these contributions for a description of the
methodology and a full discussion on factors that affect accuracy and precision of
the technique.
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Figure 2.1: Schematic illustration of displacement measurement by means of PIV
technique. (Pinyol and Alvarado, 2017)

When using PIV, the direct measurement is the “instantaneous” displacement oc-
curred during the time interval elapsed between the capturing of two images. The
displacements are measured in points located in the centres of rectangular subsets,
the collection of subsets form a mesh that covers the whole image. In order to
evaluate the accumulated displacement in time, the set of images captured along
time can be analysed in two different ways. In the so-called “leapfrog” method,
the images taken at different times are compared with an initial reference image
(Fig. 2.2a). In this case, the displacement measured at each time corresponds to
the displacement occurred during the time elapsed between the image analysed
and the reference one. The correlation between the deformed image and the first
one has a clear limit due to mismatch in regions experiencing large deformations.
Alternatively, a “sequential” scheme can be selected in which the reference image
is updated after every computational step and each deformed image is compared
with the previous one. The coordinates of the subset are also updated to the
nearest integer pixel coordinates (Fig. 2.2b). In this way, distortion which affects
the correlation between images is reduced but random walk errors (White and
Bolton, 2004) increase significantly because the accumulated displacement should
be calculated as the sum of the displacements measured between images. Mixed
options combining these two schemes are also possible. In this case, displace-
ments are calculated with respect to a fixed reference image whilst maintaining
a tolerable correlation. Once the correlation loss is significant, the reference im-
age is updated. There are available procedures to update the reference image
automatically (Stanier et al., 2016).

Alternatively, measurements can be made in an Eulerian mode in which a mesh
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Figure 2.2: Schematic illustration of (a) leapfrog and (b) sequential schemes. (Pinyol
and Alvarado, 2017)
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of patches is fixed in the space and displacements measured between images refer
to the same points at each computational step (Fig. 2.3). Each patch of the
first image is searched in a defined area of the second image called “interrogation
area”. Time elapsed between images must ensure good relationship for the patch of
pixels. In addition to a good correlation between the two sequential images, there
are two main factors that affect the accuracy and precision of PIV measurements:
the size of interrogation area and the texture of the analysed material. White et al.
(2003) show that for small interrogation area (patch size lower than 10 pixels), the
error substantially increases and regarding the texture of the material, a better
contrast in the texture gives more precision in the measurements. Using this
Eulerian scheme, the tracking of physical particles of the observed object during
the motion is not directly possible.

Another important aspect of the analysis of motion is the estimation of strains.
Strain distributions are required in many applications of PIV in solid mechanics
where the response of the material depends on the strain path histories. In addi-
tion, the evolution of strains is of especial interest in the validation of numerical
methods and constitutive models by comparing numerical results with direct or
indirect PIV measurements.

Field strain distributions can be obtained directly from digital image correlations
using a non-zero-order approximation mapping functions for the displacement
field in the subset region (Lu and Cary, 2000). First-order mapping functions
only allow rigid translation between reference and deformed subset. A second-
order functions are required in order to allow translation, rotation, shear, normal
strains and their combinations.

Alternatively, displacement gradients (strains) can be directly calculated by dif-
ferentiating (numerically) the measured displacement field. This issue is discussed
by Pan et al. (2009) who highlight the fact that the differentiation of the displace-
ments amplifies the noise (errors inherent to the PIV technique) associated with
the computed displacement. The accuracy of strain estimated by differentiating
displacements can be improved by smoothing previously the computed displace-
ment field. Smoothing algorithms (Sutton et al., 1991; Tong, 1997) and (Wang
et al., 2002) have been presented to remove the noise inherent to the measured dis-
placement. This aspect is out of the discussion presented in this work. Strains will
be calculated from displacements assuming the noise level has been significantly
decreased after applying some technique.

One of the techniques available to estimate strains is the point wise local least
squares fitting technique used and advocated by Wattrisse et al. (2001) and Pan
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Figure 2.3: Schematic illustration of Eulerian approach. (Pinyol and Alvarado,
2017)

et al. (2009, 2007). The strains at a given point are calculated by selecting a
square window where it is assumed that the strains are small enough to approx-
imate the displacement distribution as a linear plane. This technique is limited
to estimate the “instantaneous” strains calculated from “instantaneous” displace-
ment distributions referred to fixed points in the space. Therefore, accumulated
strains occurred in a deformable object cannot be directly calculated.

White and Bolton (2004) presented a procedure to calculate strains from single
displacements increments by dividing the PIV subset into triangular elements
and calculating the deformation gradient matrix expressed in strain and rotation
components. Based on finite element methods, strain fields occurred during a
given interval of time are calculated in the nodes from the displacements measured
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by PIV technique of the triangular elements. This methodology has the same
limitations present in the finite element method. Large deformation implies severe
distortion of the defined elements leading to computation errors.

This chapter addresses some limitations encounter when using PIV technique
in large deformation problems by presenting a numerical tool for processing the
PIV measurements. The methodology allows the calculation of the accumulated
displacements and strains in points as well as other variables such as velocity
and acceleration. Such points, called numerical particles (NP), will represent
a portion of the soil analysed and their motion will be tracked. The variables
resulting from the methodology are calculated from PIV measurements following
an Eulerian approach (Fig. 2.3). The methodology is inspired by numerical tools
that combine two spatial discretizations: Eulerian based on, fixed reference points
in the space, and Langrangian, which follow the moving reference points attached
to the material. This double discretization of the domain and the deformable
objects allow the estimation of large accumulated displacements and strain fields
without numerical problems resulting from the distortion of elements of the mesh
discretizing the space.

A description of the proposed methodology is first presented by giving the basis of
the method and the equations required to calculate the displacement field in points
attached to the observed deformed object. To facilitate the understanding and
implementation of the presented methodology the formulation is given in detail.
Applications of the method are finally presented. Synthetic cases of constant
deformation of rectangular samples are first presented and, later, a scaled landslide
experiment of a sandy slope is analysed.

2.2 PIV-NP post-process: Calculation procedure

2.2.1 Description

In the procedure presented here, the input data are the displacement occurred
during the time elapsed, At, between two successive digital images, measured by
means of PIV in the centres of a rectangular grid defining the subsets. Eulerian
mode is selected (Fig. 2.3) which means that displacement are measured at the
centre of each subset, fixed in the space, and the reference image is updated after
every computational step. It is assumed that the data provided by PIV is: (i)
the time interval At elapsed between image capturing; (ii) the coordinates of

17




CHAPTER 2. NOVEL PROCEDURE FOR PIV MEASUREMENTS IN LARGE STRAIN
PROBLEMS

each centre of the rectangular grid where displacements are measured at each
computational step (they remain fixed throughout the analysis); and (ii7) the
corresponding displacement increments, wu(t), at each centre of the rectangular
grid.

Object (deforming material)

/ Mesh of PIV subsets

0O 0 0 0 00
0O 0 0 0 00
0O 0 0 0 00 0 0 0 0
ololol0jo 01019400 \Centres of subsets where PIV
0O 0 0 000 0 0 0 0 .
07007000070 0l0 displacements are measured
ogojogojolojogologo (nodes of the support mesh)
0O 0 0 0 0 0 O Q [eliNe]

Support mesh Numerical particles Element of support mesh

(4 per element)

Figure 2.4: Schematic illustration of discretizations. (Pinyol and Alvarado, 2017)

Consider now a rectangular mesh, which will be called support mesh, formed
by rectangular elements defined by nodes coinciding with the subset centres in
which displacement increments are measured in PIV (Fig. 2.4). Each rectangular
element will be constituted by four nodes in which displacement are measured
by PIV analysis. This is an assumption. However, other alternatives of elements
having a higher number of nodes would be possible (as discussed in a next section).
This mesh should cover all the subsets used in PIV. The object or objects analysed
have to be located on this mesh.

The elements of the support mesh that are totally or partially filled by the refer-
ence continuous mass should be identified. This identification can be done man-
ually or using a preprocessor program as those typically used for finite element
calculations. Notice that the support mesh will be extended beyond the limits of
the initial configuration of the deforming solid in order to track the evolution of
the entire motion. In the elements occupied by the objects, one or more points
should be assigned and distributed inside of each element, for example in the gauss
points position. These points, called “numerical particles” (NP), will represent
the portion of the material initially contained in the element. Figure 2.4 shows
a representation of the PIV subsets, the support mesh and 4 numerical particles
per element. The numerical particles tracked throughout the deformation his-
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tory of the body and their position in time will be determined by projecting the
displacement increments from the nodes of the support mesh to the numerical
particles, allowing them to move through the domain. Standard shape functions
(N;) (Zienkiewicz, 1989) are used to map the displacement increments from nodes
of the supporting mesh to numerical particles. The displacement of any numerical
particle located at position of the domain is then approximated as follows:

Nn
w, (t) = Y (H)N; (x) (2.1)
j=1

where N, is the total number of nodes of the support mesh (which are equivalent
to the number of centres of the subset) and u; (¢) is the displacement of node j at
time ¢. Linear shape functions have been selected here since the elements of the
support mesh are defined by 4 nodes. Shape functions are calculated analytically
by defining a local system of coordinates, £ and 7, located at the centre of the
element, whose coordinates are (z.,y.). Then:

T — Te | Y—Ye
n

T L,/2

(2.2)

where [,, and [,, are the horizontal and vertical lengths of the element (Fig. 2.1).
The value of the interpolation function at node j is:

N, = i (1 + 2553) (1 + 2W> (2.3)

by

where (£;,7;) are the local coordinates of node j. A discussion on the selection of
the order of the shape function is presented later.

Time is discretized into time steps coinciding with the times of image capturing.
The displacement of each numerical particle, p, located at x, is then calculated
with Equation (2.1) for each time:

Nn,
uf;kﬂ _ Z u§k+1 Nj (Xik) (2‘4)
j=1
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where u§k+1 is the displacement increment read as a input data at time t;41 and
subindex p indicates the numerical particle, which ranges from 1 to N,,.

. t . t . .
The velocity, v,"™",and acceleration, a,**",of the numerical particles can be now
calculated:

tet1
tk+1 — Up 2 5
vy Aty (2:5)
tkt1
betr _ Ve 2.6
ar Atr (2:6)

The strain increments of each numerical particle can be expressed as a function
of the nodal displacement increments:

Nn
AE;,’““ = Z B;.’“ (xp) uj’““ (2.7)
j=1

where B}“ (xp) is the strain matrix of the elements at time k evaluated at the
position of the numerical particle p:

8Nj i
ox 61(37'
Bl=| 0 i (2.8)
ON;  ON;
oy ox

and % = 88412% and % = %g—;}l can be (:asily calculated with Equation (2.2)
k+1

and Equation (2.3). Accumulated strains Ae," ™ during large displacements result
from the sum of the incremental strains ey = er + Ael* which are calculated
assuming small displacements.

Finally, the position of the numerical particles is updated as follows:

tht1 t tk+1
x, M = x4+ uw)t (2.9)
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At the next time step, new displacement increments are considered in the same
nodes of the mesh from PIV measurements. These values of displacement incre-
ments are mapped to the particles located at the new position calculated in the
previous step.

2.2.2 Algorithm steps

To summarize, the algorithm steps are indicated below including some particular
details that may be useful for the numerical implementation of the method.

e Step 1. Identification of the rectangular mesh nodes by reading their coor-
dinates from PIV results

The advantage of using a rectangular mesh is that the position of nodes can
be determined by knowing the position of one node (assigning coordinates
(0,0) to the reference node), the width and the height of the elements, and
the number of rows and columns of elements. Notice that this informa-
tion should be specified in PIV because it corresponds to the dimension of
the subsets. The position of the nodes can be then identified by means of
the numbering of the columns and rows instead of their coordinates, which
is advantageous regarding numerical aspects. However, the PIV-NP post-
process procedure presented in this chapter is general, and it can be also
implemented in a general mesh defined by nodes (corresponding to the sub-
set centres) not regularly distributed.

e Step 2. Identify the elements that are filled by the observed deforming
material

An input file should be specified, indicating in which elements numerical
particles should be defined. They define the initial position of the observed
material.

e Step 3. Locate numerical particles in the non-empty elements

Step 3 is defined by

X for p =1, Ny, (2.10)
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After defining the number of numerical particles per element, they should
be distributed into the element assigning coordinates to particles.

e Step 4. Read, from PIV measurements, displacement increments at nodes

Step 4 is defined by

wikt for i =1, N, (2.11)

e Step 5. For each numerical particle, identify the nodes of the element in
which the numerical particle is located

Identifying the nodes can be easily done specially in case of a regular mesh.
e Step 6. Map the displacement to the numerical particles
Step 6 is defined by

(e)

4

u£k+l _ Z u§k+1Nj (X;k) forp=1,N, (2.12)
Jj=1

Since local expressions of shape functions are used, the displacement of each
numerical particle is calculated at element level (e), taking into account the
four nodes surrounding the particle identified in the previous step (step 5).

e Step 7. Calculate strain increments at numerical particles

Defined by:

Aeptt = > B, (x;’“) u’;’““ (2.13)

Since local expressions of spatial derivatives of shape functions are used,
strain increments are calculated at element level (e) for the nodes surround-
ing the particle in which strain increments are calculated. Such nodes have
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been identified for each particle in step 5. In order to avoid mesh lock-
ing problems due to linear shape functions, the gradient of displacement is
calculated in the center of the element.

e Step 8. Update the position of the numerical particles and other variables
of interest:

X = gk 4ol (2.14)

e Step 9. Calculate variables of interest that are stored in the numerical
particles:

te+1 lkt1
v = B . gl = Y2 i Lelb = gtk 4 Al (2.15)
P = P = = .
Aty At P p P

2.2.3 Discussion on shape function order and number of particles

In the description of the PIV-NP post-process methodology presented earlier,
the support mesh selected is defined by linear rectangular elements (four nodes)
(Fig. 2.5); therefore, linear shape functions are used for interpolation. Other
alternatives would be possible, for instance, rectangular elements with nine nodes
or triangular elements with three nodes (Fig. 2.5). In any case, notice that the
total number of nodes and their position is fixed, since they are defined in the
previous PIV analysis. The element selected and the shape function associated
will allow the interpolation of the displacement field between nodes of the support
mesh, which coincide with the subset centres where displacements are measured in
PIV. The accuracy of the results will depend on the real displacement field analysis
as well as on the number of nodes defined as an input data in PIV. Given a support
mesh, the use of elements of higher order will allow a better approximation of the
field displacement. Consider for discussion a one-dimensional case that deforms
during a time step following a polynomic function of third order (Fig. 2.6a). The
displacement increments at each computational step will only be known in the
nodes (five nodes in the one-dimensional example of Fig. 2.6a). If four linear
elements (two nodes per element) are selected (Fig. 2.6b), the displacements will
be interpolated linearly, and the approximation will be poorer than the solution
obtained from two quadratic elements (three nodes per element) (Fig. 2.6¢). The
exact solution is obtained in the case of using cubic elements (four nodes). Notice
that for this case of cubic elements, there is a node that cannot be included in the
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analysis, and the displacement measured at this node will be lost. This possibility
should be taken into account in the definition of the region of interest in PIV.

<

(@ (b) \

Mesh of subsets

|
|

!L T

/ Centres of subsets where
C—— displacement are measured
\ in PIV

(nodes of the support mesh)

Figure 2.5: Examples of alternative elements of the support mesh. (Pinyol and
Alvarado, 2017)

The accuracy will be better if the number of nodes defined in PIV is higher (Fig.
2.6d). For this case, it will probably be an acceptable linear interpolation. Linear
elements, and linear shape functions for interpolation, are able to reproduce de-
formation modes with constant gradient of displacement (constant strain) into the
element. Therefore, they allow the exact representation of translations, rotations,
uniform normal and shearing strains, and their combinations.

In general cases, taking into account the complexity of real experiments, com-
plicated deformation states may occur. However, displacement increment fields,
successfully obtained in PIV techniques, are subjected to a proper correlation be-
tween images analyzed at subset level. The subset size, which will determine the
number of nodes, is a critical factor to control the accuracy of measured displace-
ments (Pan et al., 2009). On one hand, the size of a subset should be large enough
to exhibit a sufficiently distinctive intensity pattern contained in the subset to dis-
tinguish itself from the other subsets. It is directly related with the texture of the
sample analyzed. On the other hand, the subset size should be selected taking
into account the underlying deformation field and the type of the approximated
displacement mapping used in PIV analysis. Given a deformation field occurs
in a computational step, a small subset can accurately be approximated by low-
order approximation mapping (zero-order or first-order subset shape functions),
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Figure 2.6: Interpolation of cubic polynomic function with five nodes: (a) analytical
function; (b) linear interpolation with four elements of two nodes; (c) quadratic inter-
polation with two elements of three nodes; (d) lineal interpolation with eight elements
of two nodes. (Pinyol and Alvarado, 2017)

whereas larger subset sizes leads to larger errors in the approximation and may
lead to loss of correlation in those subsets subjected to significant strains.

When using zero-order subset shape functions in PIV analysis, it is assumed that
the subset does not deform (motion of a rigid solid), whereas first-order subset
shape functions involve linear deformation of the subset. In both cases, once PIV
measurements are successfully obtained and given a subset size, a linear interpo-
lation of the displacement increments between nodes of the support mesh in the
PIV-NP post-process analysis will approximate reasonably well the displacements
because PIV data were obtained using functions of the same or lower order than
the interpolation functions in PIV-NP. Only in those cases in which the subset
size is so large and the level of the deformation is such that the use of subset
shape functions of second-order is required, the use of non-linear shape functions
in PIV-NP post-process will be justified.

The criterion for the selection of the number of numerical particles per element
should take into account that the numerical particles represent a portion of the
material, and they act as points where the displacement field is stored. The data
evaluated in the nodes are lost at each computational step. A greater number of
numerical particles may be able to provide a better approximation.

In addition, a low number of particles, i.e., one per element, may result in empty
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elements during calculations. Then the displacements given by PIV in subse-
quent computational steps in nodes belonging to such empty elements will not be
considered in the analysis.

2.3 Simple validation examples

2.3.1 Constant deformation of rectangular samples

Consider rectangular samples of 2 x 2 m, in which displacements are imposed
at the nodes of the support mesh with mesh element of 0.5 x 0.5 m to simulate
the following cases: (i) constant horizontal deformation (Fig. 2.8); (i7) constant
shearing (Fig. 2.10); and (4¢7) a combination of a translation and rotation with-
out deformation (rigid solid) (Fig. 2.12). The imposed displacement at nodes
simulates the input data from a PIV analysis in Eulerian mode. All cases will be
simulated with one and four particles per element to examine their effect.

Figure 2.8b shows the results of constant horizontal deformations of a sample.
Displacement field simulating a 24% horizontal constant strain is imposed in
nodes. The computational mesh is also plotted in the figure. The incremental
displacements are imposed at each of the 15 computational steps. Note that the
displacement increments in nodes located at the sixth column of the mesh are
initially zero. Nodal displacements on the sixth column become positive once the
sample deformation is large enough to reach the position of those nodes. A linear
distribution of the position of the particles along the horizontal correlation is ob-
tained in both cases (for one and for four particles per element) (Fig. 2.7a). The
displacement in time for the particle at the right in 1-particle discretization and a
mean value for the 2 last particles at the right for the 4-particle discretization is
plotted in Figure 2.7b. The horizontal strain accumulated in particles is exactly
equal to the imposed one (24%) (Fig. 2.9).

An exact solution of deformation is also computed in the case of a sample with an
imposed shearing equal to 10%. Figures 2.10 and 2.11 show the final displacement
field and the computed strain, respectively. Finally, Figure 2.12 shows the results
when the sample is translated and rotated with respect its centre. The exact
solution is obtained in calculated results of the PIV-NP.

In these cases, in which the exact solution is computed because the strain gradient
is constant, the number of particles does not affect the results.
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Figure 2.7: Displacements [m] for case of imposed constant horizontal deformation
on rectangular sample for one and four particles per element. (a) Total horizontal
displacement calculated in numerical particles at the end of analysis; (b) total dis-
placements in time (4 particles calculated as mean value of last 2 particles at right)
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Figure 2.8: Displacements [m] for case of imposed constant horizontal deformation
on rectangular sample: (a) initial configuration of numerical particles; (b) final posi-
tion and displacement. For cases of one and four particles per element. Grey mesh
corresponds to computational mesh.
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Figure 2.9: Horizontal deformation for the case of imposed constant horizontal
deformation on rectangular sample. Computed with (a) one and (b) four particles per
element.
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Figure 2.10: Final displacement field [m] for the case of imposed shearing. Computed

with (a) one and (b) four particles per element.
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Figure 2.11: Case of imposed shearing. Final total strain computed with (a) one
and (b) four particles per element.
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Figure 2.12: Final displacements field [m] for the case of translation and rotation.

Computed with (a) one and (b) four particles per element.
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2.4 PIV-NP analysis of a slope failure in a centrifuge
machine

A laboratory silty clayey slope failure is analysed with the procedure previously
described. The slope was built in a box with transparent walls placed in a cen-
trifuge machine. An increased gravity is applied to ensure more realistic stresses.
The increase of the gravity acceleration is applied to the slope under unsaturated
conditions. The slope is later wetted by water injection from the bottom. The
deformation of the slope and the subsequent failure is analysed.

2.4.1 Description

The slope model was carried out in the centrifuge machine of the geotechnical
laboratory of the University of Andes in Bogota (Colombia). The model of the
slope was built in the transparent box shown in Figure 2.13a (where the dimensions
on the slope are indicated). The slope inclination is 50°. The soil is a silty clay
of low plasticity (wr, = 33%, IP = 18%) used in the construction of a dam core
(Albagés dam, Spain). Initially, the soil had an average water content equal to
10% and an average dry density equal to 1500 kg/m?>. A column of gravel is built
on the right side of the slope at the contact between the soil and the box lateral
wall, to facilitate the saturation of the slope in the manner observed in Figure

2.13.

Prototype

S

Figure 2.13: Silty clayey slope after construction in the transparent box located
inside the centrifuge machine. (a) Model 1g; (b) Equivalent dimensions in prototype
50g. Ruiz et al. (2017b)

After slope construction, the centrifuge flight started, increasing the gravity until
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50¢g which corresponds to an increase the scale of the model of 50 times. Therefore,
the 15 e¢m height of the slope model is equivalent to 7.5 m (Fig. 2.13b) in the slope
prototype. During centrifuge flight water injection from the box base is imposed.

The whole experiment is recorded by means of a digital image captured in a video
with a digital camera GoPro with 1440 pixels resolution and 60 FPS. The images
were analysed in PIV. This technique allows the non-invasive measurement of
displacements occurred in the time elapsed between the capture of two images. In
the analysis performed here, interrogation areas of 100 x 100 pixels were selected,
a mesh size of 0.212 x 0.212 m in the prototype and 9 numerical particles per
element were used.

The images show the settlement of the slope when gravity increases. During wet-
ting, water went up through the soil and, more quickly, through the sandy column.
The settlement of the slope is also observed during wetting as a consequence of

the collapse strains. At a certain time, the failure of the slope took place and the
final inclination of the slope, after equilibrium is restored, is equal to 28°.

Displacements [m]

| _SEEEE.
- 0 ] \
@ (b)

Equivalent shear strain Volumetric strain
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0 0.005

Figure 2.14: Measurements at the end of the gravity increase stage (t = 10s). (a)
Incremental PIV displacements vectors occurred during 2 seconds; (b) Accumulated
displacement [m]; (¢) Accumulated deviatoric strain; (d) Accumulated volumetric
strain.
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2.4.2 Experimental results

Three stages of the motion of the slope were identified. Firstly, the slope settled
due to the increase of gravity till 50g. Figure 2.14 shows the displacement and
strains occurred during this first stage of loading. Figure 2.14a shows the dis-
placement vectors measured by comparing two images captured at the end of the
loading stage which are directly obtained by PIV. The accumulated displacements,
obtained by means of PIV-NP, are plotted in Figure 2.14b. The displacements
are larger in the zone where the slope is higher. A maximum displacement of 5
cm is measured. A clear shear zone is observed in the middle of the slope due to
the different settlements between the toe and crest zone. Maximum volumetric
strains are measured in the deepest zone of the slope.

Incremental Incremental
displacements [m] volumetric strain
EHTEE
0 0.015 0.03 -0.06 -0.03 0.0

(b)

Figure 2.15: Wetting stage. (a) Post-processed incremental displacements [m]; (b)
Incremental volumetric strains.

During the wetting process, water injected from the bottom of the slope went
up through the silty soil and through the gravel column. A horizontal flow from
the gravel column (quickly saturated) into the soil is also observed. The wetting
front in time can be clearly distinguished because of the change in the colour of
the sand between unsaturated and saturated states. The wetting-induced slope
deformation is shown in Figure 2.15. The volumetric compression strains due to
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the collapse of the soil are concentrated in the material becoming saturated and
displacements are observed only in the zone above the wetting front which settles
as a rigid block.

Figures 2.16a and 2.16b show the evolution during the test of a normalised total
displacement and velocity, respectively, of a numerical particle located at the edge
in the top of the slope. The first peak in velocity plot is the movement due to
collapse of the soil and the second peak is the slope failure.

0.8 -

0.6

0.4 -

0.2 4

Displacement /Max Displacement

—

0 0.2 0.4 0.6 0.8
time / total time
(a)
0.8

0.6

0.4 -

Velocity / Vmax

0.2 A

time / total time
(b)

Figure 2.16: Evolution during the test of the numerical particle located at the edge
in the top of the slope for (a) Normalised total displacements; (b) Normalised velocity.

Finally, the wetting induce the failure of the slope (Fig. 2.17) due to effective
stress reduction and loss of suction. There is a time interval where collapse and
shear deformation occurs at the same time. The failure surface is located in the
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wetting front. From Figure 2.17b, it can be identified two principal shear surfaces,
the first, which is the main shear band, is a circular one that defines the superficial
motion of the slope and is the principal, and a second surface located deeper that
is also appreciated in the laboratory test.

Displacements [m] Deviatoric strain
NN [ TEEEEE |
0 0.015 0.03

-0.06 -0.03 0.0

T=90s T=90s

(@

Figure 2.17: Failure stage. (a) Accumulated displacements [m]; (b) Deviatoric
strain.

2.5 Concluding remarks

A novel procedure to interpret PIV results is described with the purpose of gener-
ating a comprehensive identification of kinematic variables of a deforming contin-
uum. The method relies on a combination of Eulerian and Lagrangian interpreta-
tion of the incremental displacements provided by PIV techniques in a set of fixed
spatial points that cover the whole domain where the deforming body is moving
(the region of interest). The key idea was to discretize the mass moving across
the reference Eulerian frame by a set of “numerical particles”. Measurements of
displacement increments from PIV in the nodes of the fixed mesh are interpolated
by means of mapping functions (also used in finite elements). The displacements
are then assigned to the numerical particles that move through the mesh. Strains
are calculated in the numerical particles from the displacement increments of the
nodes. Other variables of interest such as velocity and acceleration can be also
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stored in the numerical particles.

The method, compared with other available procedure, is especially well suited to
interpret scaled laboratory test of granular material involving large displacements.
The method may be used in connection with currently available PIV software
packages.

The capability of PIV-NP has been shown for the case of a scaled silty clayey
slope failure carried out in a centrifuge machine.

Regarding PIV limitations, any type of soil could be used for the analysis while
the texture has enough contrast. Rapid motion requires a camera with high
shutter speed, otherwise the correlation between two subsequent images cannot be
reached. The resolution of the images is directly related with the accuracy of the
measurements. Small interrogation areas and small mesh size, increase the error
in the precision of the method. These limitations of PIV affects the capability to
capture the observed behaviour of the body, but in any case, PIV-NP reproduce
very well the data obtained.

The methodology presented allowed the identification of the strain and displace-
ment field at the different stages of the experiment (wetting, collapse and failure).
The method provides the numerical value of several variables in a massive way,
which is for great interest to be compared with numerical results to validate nu-
merical tools. In particular, PIV-NP is very useful to evaluate and validate MPM
numerical results because numerical particles representing small portion of gran-
ular material in the laboratory test could be identified as material points in the
MPM calculation. Such comparison is presented in the next chapter of this thesis.
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CHAPTER 3

MPM MODELLING OF
SCALED LABORATORY TEST

Modelling small-scale experiments and well-instrumented real cases is an inter-
esting way to validate numerical codes and to evaluate their capabilities and lim-
itations. Laboratory experiments present some drawbacks in the study of real
phenomena due to the difficulty of reproducing the actual conditions of the field
and the scale effects. However, regarding the validation of numerical tools, scaled
laboratory experiments are very useful since the materials, geometry and bound-
ary conditions are controlled. In addition, simulating reduced geometries allow
reducing the computational cost involved in modelling real cases.

3.1 Introduction

The method presented in Chapter 2 called PIV-NP is especially useful to compare
experimental measurements with MPM numerical results. The variables from the
numerical model stored in material points can be directly compared with the
experimental measurements obtained by means of the PIV-NP. In this chapter,
two scaled laboratory test of slope failure are simulated in MPM in order to
evaluate the capabilities of the code and the numerical results are compared with
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the PIV measurements processed with PIV-NP

The instability of the slopes was recorded with a digital camera with appropri-
ate resolution and frame rate. The images were processed using PIV technique
(Thielicke and Stamhuis, 2014) to obtain the displacement vectors of pre-selected
points. From the measured displacements in time, velocities and strains were
calculated by means of PIV-NP. The experiments was modelled by means of the
MPM Geopart code to characterized the initiation of the failure and the post-
failure response, which involves large displacements.

With the aim of modelling the soil behaviour, a Mohr-Coulomb model was im-
plemented in the MPM code following the substepping procedure proposed by
Sloan (1987), in which the elastoplastic deformations are integrated in an explicit
scheme by means of subdividing the increment of deformation looking for mini-
mizing the error. The modification of the Mohr-Coulomb law, presented by Abbo
and Sloan (1995) to avoid gradient discontinuities of yield surface criterion, were
also included in the implementation of the constitutive model.

The scaled laboratory slope failures analysed have two main characteristics differ-
entiating them; the triggering condition and more importantly, the scale of gravity
acceleration applied to each one. The first case presented here wass performed
under 1g of gravity acceleration force and the failure was triggered by a removing
a constraining wall holding the slope face. The second case is a slope built in a
centrifuge machine where 50¢g of gravity acceleration was applied and the failure
was achieve by imposing and incremental load on the top of the slope.

Centrifuge modelling is a valuable geotechnical tool to avoid problems of reduced
scaled model and to obtain an extrapolate result of a full-scale prototype by
reproducing confining stresses more similar to the ones in a real slope in field, by
increasing the gravity acceleration (Caicedo and Thorel, 2014)

3.2 Slope failure induced by removing an inclined re-
taining wall under “1¢g” conditions

3.2.1 Test description

This study case is the failure and run-out of a 60° sand slope in dry conditions
carried out in the soil mechanics laboratory of the UPC (Barcelona, Spain) (Pinyol
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et al., 2017b). The granular soil is a calcareous-siliceous sand from Castelldefels
beach (Catalonia, Spain). The slope was built in a transparent and instrumented
box. The slope dimensions are 250 mm height, 200 mm width and 330 mm long
(Fig. 3.1a). In the case presented here, the slope is initially stable because an
inclined guillotine is restraining the motion. Failure is triggered by removing this
guillotine. The landslide motion lasts 0.5 seconds after removing the guillotine.
The final stable geometry is shown in Figure 3.1b.

The test was recorded in a 50 fps Full HD video using a reflex camera with shutter
manual control. A sequential scheme was selected to correlate each image with
the previous one. Quadrilateral patches of 0.0075 x 0.0075 m were selected for
the analysis.

Figure 3.2a shows the instantaneous velocity measured by PIV at three different
times. The grid of patches centres is indicated by red crosses. The equivalent
instantaneous velocity field plotted by the PIV-NP code are also indicated in
Figure 3.2b. A mesh of rectangular elements whose nodes are located in the
centres of patches has been selected. Four numerical particles per element were
defined. The deformed slope, obtained by PIV-NP code, is plotted using the
accumulated displacements of numerical particles, representing physical volumes.
Once PIV measurements are processed, displacements, velocities, accelerations
and strains are available for each numerical particle defined at each time step
during the recorded motion.

330mm

(a) (b)

Figure 3.1: (a) Diagram of the selected case study; (b) Photograph of the slope at
equilibrium after failure. Pinyol et al. (2017b)
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(a) (b)

Figure 3.2: Contours and vectors of velocities in m/s at different times (indicated
in the figures). (a) Measured by means of PIV-Lab (Thielicke and Stamhuis, 2014) in
the centres of patches; (b) reproduced by PIV-NP code.

3.2.2 MPM simulation

The slope simulation is perform under the assumption of a plane strain (2D)
formulation. The MPM model was created using the same mesh size defined in the
PIV analysis and four material points per element are used for the discretization.
The boundary conditions imposed in the base suppress the motion in x and y axis,
while in the lateral faces only the y axis restriction is applied. In order to simulate
initial conditions, zero displacements in the y axis direction are also applied in
the slope surface when the gravity load is applied. The failure triggering was
reproduced by removing the constrains acting in the slope surface.

The constitutive behaviour of sand is simulated as a one-phase material (dry soil)
with the Mohr-Coulomb model implemented. Sand density is measured as an
average value taking into account the volume of the slope and the total weight of
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Table 3.1: Sand Properties.

Parameters Value Units
Sand density 1545 kg/m?
Grain density 20665 kg/m?
Porosity 0.42 -
Poisson’s coefficient 0.3 -
Young’s modulus 30 MPa
Cohesion 0 kN
Friction angle 43° -

the material. The maximum and minimum density of the sand measured in the
laboratory by a standard procedure (UNE 103-105-93) are 1795 kg/m? and 1442
kg/m?3, respectively. An average relative density of 28% is calculated for the sand
used in the experiment.

The sand was previously tested in a conventional direct shear test to evaluate the
strength. A friction angle equal to 30° was measured in the range of 50 — 200 kPa
of vertical stress and a nil value for cohesion was obtained. A higher friction angle
(43°) has been considered in the MPM simulation which has been calibrated by
back analysis to fit better the observed post-failure behaviour of the slope. An
increment of the friction angle with respect to the value measured in the direct
shear tests can be explained because of the low value of the stress actually acting
on the failure surface (Sture et al., 1998, 2009). The failure surface observed in
the experiment is located at few centimeters deep which involves a vertical stress
lower than 2 kPa. This value is close to two orders of magnitude lower than
the stress applied in the laboratory tests, where a friction angle equal to 30° was
measured.

Sture et al. (1998, 2009) indicates that the operating sand friction in scaled 1g
test performed in the laboratory should be substantially larger than the value
measured in standard shear box tests. The back analysed friction by fitting MPM
results is consistent with the mentioned data. Note also that the calculation code
used does not consider the non-linearity of the strength envelope expected at low
confining stresses. Sand’s properties for model’s parameters introduced in the
MPM calculation are indicated in Table 3.1.

In addition, the friction angle (43°) introduced in calculations coincides with the
average slope angle of the final geometry in the upper part of the slope once
the slope stabilizes after failure. This can be observed in Figure 3.3a where the
final slope geometry is plotted once the equilibrium is restored. In the figure,
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Figure 3.3: Final geometry. The mobilized material is indicated in black. Green
colour indicates the material than remains at rest. (a) PIV-NP post-process measure-
ments; (b) MPM results.

two colours are selected to distinguish the material mobilized during the landslide
with respect to the material that remains at rest. The slope angle of the material
at rest is also equal to 43°.

The final geometry (Fig. 3.3a) can be compared with calculated results plotted
in Figure 3.3b. The calculated volume of the material which did not move is
similar to the volume observed in the experiment. On the contrary, the final
geometry of the mobilized material is not fully captured because in the model,
sand accumulates in the central and upper parts of the slope which is a result not
observed in the experiment.

Even if the observed and calculated final geometry differs from each other, the
evolution in time for both geometries match quite well for the first half of the test
(Fig.3.4 and Fig. 3.5). In the final seconds of the slope motion, the sand particles
were sliding over the smooth base glass and no visible shear band could be observed
at this contact. This “zero thickness” slip motion is difficult to capture by the
PIV and moreover, the numerical approximation of MPM used in this work is
unable to reproduce this motion. A consequence is a reduced calculated run-out,
if compare with measurements.

The equilibrated average sand slope in the experiment was 26° (measured in Figure
3.3a) while the calculated value was 31° (measured in Figure 3.3b).

The time evolution of accumulated displacements at three material points is plot-
ted in Figure 3.5. Numerical results are compared with values calculated from
PIV measurements once post-processed by PIV-NP. The agreement is reasonably
good. Omnce again, differences can be observed at the point nearest the surface
during the test’s final half.
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0.25

(a) (®)

Figure 3.4: Deviatoric plastic strain. (a) Post-processed PIV-NP results; (b) MPM
simulation results.

Displacement [cm]

(a)

Figure 3.5: Accumulated post-failure displacements of three points in the slope. (a)
Position of the selected points; (b) Comparison of MPM results and PIV-NP post-
process experimental observations.
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A possible explanation to the described discrepancies could be due to the MPM
natural “sticky” contact between material points. In MPM the soil is modelled as
a continuum medium with numerical interaction between adjacent subdomains.
This characteristic adds an artificial, numerical cohesion to the medium by the
interaction between material points at nodes; two material points are not fully
decoupled until there is at least, one empty mesh element between them. This
numerical issue could be interfering with superficial zero thickness sliding material
and also with the lower part of the slope where the real boundary condition allows
free motion (material slides over glass).

Making the assumption that sand exhibits small or near null elastic deformations,
the strains obtained from PIV-NP can be considered directly as plastic strains
and deviatoric plastic strain (g) can be obtained. The deviatoric plastic strains
field was plotted in Figure 3.4a for PIV-NP results and in Figure 3.4b for MPM
simulation results at three different times. PIV-NP measurements are compared
with MPM numerical results.

A unique shear band is observed in the experimental results whereas numerical
calculation indicate that shear strains localize in two shear bands that develop
simultaneously (Fig. 3.4). This discrepancy is probably associated with the com-
plex behaviour of sand at very low confining stresses (non-linear strength enve-
lope) (Sture et al., 1998, 2009) which are features not reproduced by the standard
elastoplastic Mohr Coulomb model used.

3.3 Bearing capacity of scaled slope in centrifuge ma-
chine under 50¢g conditions

3.3.1 Test description

A sand slope model was carried out in the centrifuge machine of the geotechnical
laboratory of the University of Andes in Bogotd (Colombia) (Ruiz et al., 2017a).
The slope was built in a transparent box with sand from Guamo (Tolima, Colom-
bia). The initial slope inclination was 32°. After slope construction, the centrifuge
flight started increasing the gravity until 50g which corresponds to an increase the
scale of dimension 50 times larger. The dimensions of the slope are indicated in
the Figure 3.6. The so called slope model refers to real laboratory dimensions of
the slope (Fig. 3.6a), while the slope prototype refers to scaled dimensions of the
slope according to the gravity acceleration applied (3.6b). Therefore, the 7 em
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height of the slope model are equivalent to 3.5 m in the slope prototype.

(a) (b)

Figure 3.6: Sand slope after construction in the transparent box located inside the
centrifuge machine. (a) Model 1g; (b) Equivalent dimensions in prototype 50g. (Ruiz
et al., 2017a)

During the centrifuge flight, an imposed load with a rotational piston on the top
of the slope was increased until failure. The time elapsed until slope failure was
40 seconds. After reaching failure conditions, the rotational piston applying the
surface load reached its maximum limit of vertical displacement and the slide
stops.

The whole motion of the slope was recorded with a digital camera taking 1 picture
per second and images where interpreted with PIV technique. Taking into account
the possibility of scaling dimensions according to the gravity accelerations applied,
two quadrilateral patches of 1.6 x 1.6 mm for the slope model and 80 x 80 mm
for the slope prototype were selected for the PIV-NP analysis. It is important to
highlight that the accuracy of the method depends on the relation between total
number of mesh elements and the size of the domain. Then, both cases, model
and prototype will provide the same results because the mentioned correlation is
kept equal.

3.3.2 MPM simulation

The slope modelling was perform under the assumption of plane strain (2D) for-
mulation. The MPM discretization was created following the same mesh size
defined for the slope model and the slope prototype in the PIV-NP post-process.
Nine material points per mesh element was used (Fig. 3.7). The boundary con-
ditions imposed in the base includes motion constrains along x and y axis. Both,
the lateral sides of the domain have the motion in y axis restricted. The initial
conditions are reached after applying the gravity acceleration force for each case
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(50¢g for slope model dimension and 1g for slope prototype dimensions). In order
to simulate the triggering condition for the slope failure, a rigid body is located
on top of the slope (Fig. 3.7) and its density was increased, reproducing the same
rate of the applied incremental load in the laboratory test.

Table 3.2: Sand Properties.

Parameters Value Units
Sand density 1755 kg/m?
Grain density 2700 kg/m?
Porosity 0.35 -
Poisson’s coefticient 03 -
Young's modulus 30 MPa
Cohesion 0 kN
Friction angle 35° -

The sand is simulated as a one-phase material (dry soil) with the Mohr-Coulomb
constitutive model implemented. Sand density is measured as an average value
taking into account the volume of the slope and the total weight of the material.
The sand was tested in a conventional direct shear test to evaluate the strength. A
friction angle equal to 35° was measured and nil value for cohesion was obtained.
Other parameters required for the simulation were assumed based in the previous
case. Parameter are indicated in Table 3.2.

MPM simulations were made for the slope model as well as for the slope prototype.
As expected, results obtained in both simulations were exactly the same due to
the same mesh proportion (element size / mesh size), number of elements and
number of material points per element for each case. The confining stresses,
boundary conditions, initial displacements and strains and the destabilizing load
per unit of volume are the same for both cases. Then, the results presented here
can be interpreted as the results for either of them. Values for displacement are
presented for slope prototype and must be divided by 50 in order to obtain the
values corresponding to the slope model.

The deformed geometry and the total displacement field obtained by PIV-NP are
plotted in Figure 3.8a, the MPM results are given in 3.8b, for three different times.
The time to reach the final stage was 40 seconds. The values obtained with the
simulations are quite similar to the obtained from the laboratory test and the final
geometry is almost the same. The maximum displacements are around 40 cm.

Making the same assumption as previous case, elastic strain in sands can be
considered negligible. Then, measured deformation can be interpreted as plastic
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deformations and deviatoric plastic strains (¢})) can be calculated. Figure 3.9 com-
pares PIV-NP measured and MPM computed deviatoric plastic strain at different
times. Shear strains in the test are located in a wide sheared zone, while in MPM
simulations localized in a thin shear band. However, the MPM model results is
remarkably good providing the path of shear strain localization processed with
PIV-NP.

1.6mm /8 cm Aem/zm
[ N N ]
iy 1.6mm R

00 /8 cm

< 144cem/7.2m >

Figure 3.7: MPM discretization of the slope. Mesh and element size for (model /
prototype)
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Figure 3.8: Total displacements [m] at different times. (a) PIV-NP measurements;
(b) MPM simulation results.
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Figure 3.9: Shear deviatoric strain €] at different times. (a) PIV-NP measurements;
(b) MPM simulation results.
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3.4 Concluding remarks

The study cases presented in this chapter illustrate the capability of the PIV post
processing method PIV-NP, described in Chapter 2, to interpret the response of
slope failures. The method provides time evolution of displacements, velocities,
accelerations and strain fields. The laboratory test were simulated in MPM, mod-
elling the sand with a Mohr-Coulomb constitutive model. The variables obtained
by PIV-NP were directly compared with MPM results.

Shearing behaviour of sand at very low normal stresses typical of small scale
1g experiments is rather complex and this observation probably explains some
discrepancies highlighted in the first slope failure case. Despite this, the MPM
provides results reasonably good in terms of geometry, displacements and shearing
surfaces.

The first case can be understood as an experiment of a slope failure and also as
a column collapse. The numerical simulation is complex (Pouliquen, 1999) due
to transition from solid-like to fluid-like behaviour and the low stresses. Taking
into account this, it is possible that a Mohr-Coulomb constitutive model is not
the most accurate way to simulate the soil behaviour. In addition, field measure-
ments indicate a compressive behaviour during shearing of the loose sand that
was not compacted during experiment preparation. This compressive response is
not capture by the MPM simulation with Mohr-Coulomb.

In case of the centrifuge test, the sand is densified when the gravity acceleration
(50g) in applied and the compressive behaviour is not observed.

The MPM simulation of the slope in the centrifuge machine under 50g presents
good reproduction of the real behaviour observed during the test and matches
the results processed with PIV-NP. The increasing load produces a superficial
shearing surface and the MPM simulation reproduce very well its evolutionary
geometry.
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CHAPTER 4

THERMO-HYDRO-
MECHANICAL COUPLING FOR
SATURATED SOILS IN MPM

This chapter describes a thermo-hydro-mechanical formulation to model thermally-
induced effects due to the irreversible work input generated during the soil de-
formation. The governing equations of the phenomena were discretized and im-
plemented into a Material Point calculation procedure. The method is applied to
the analysis of landslides. A simple slope stability is analysed. Mechanical work
essentially dissipates in shearing bands inducing excess pore water pressures that,
eventually, reduce the effective strength. The marked effect of soil permeability
to control the slide motion after failure is described. Shear band thickness is also
a relevant control variable. The problem posed by the non-realistic thickness of
shear bands in numerical calculation is addressed by means of a novel numer-
ical procedure that includes the consideration of embedded shear bands where
the strains are assumed to be localized. Balance equations describing local flow
and thermal interactions between shear bands and the remaining material are
formulated.

This chapter is part of the published paper “Thermal effects in landslide mobility
(2017)” (See list of publication)
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CHAPTER 4. THERMO-HYDRO-MECHANICAL COUPLING FOR SATURATED SOILS IN
MPM

4.1 Introduction

One of the mechanisms invoked to explain the rapid acceleration eventually ob-
served in landslides is the heating of shearing bands induced by the mechanical
energy dissipated during sliding. It leads to thermal-induced dilation of solid
particles and water filling the pores in saturated soils which, in turn, leads to in-
crements of pore water pressure essentially dissipated as flow from the shear band
towards the surrounding soil. As a result, effective frictional resistance forces
reduce and the landslide accelerates.

The idea of explaining fast sliding due to heating generated by frictional work was
first introduced by Habib (1967) who explained that the rapid motion of Vajont
landslide was a consequence of the vapour pressure generated in the sliding surface.
Later, Uriel and Molinia (1977) combined a limit equilibrium model and the heat-
induced water pressure to explain Vajont rapid motion. Voight and Faust (1982)
were the first to formulate the physics of the problem by combining the mass and
heat balance equations inside the shear band and the dynamic equilibrium of the
moving mass. Further contributions (Alonso et al. (2016); Cecinato and Zervos
(2012); Cecinato et al. (2011); Goren and Aharonov (2007, 2009); Goren et al.
(2010); He et al. (2015); Pinyol and Alonso (2010a,b); Vardoulakis (2000, 2002);
Veveakis et al. (2007)) followed Voight and Faust (1982) pioneering development
and introduced additional improvements. They concluded that the generated
excess pore pressures were able to explain the acceleration of landslides.

The mentioned contributions share two simplifications: (a) the slope kinematics
are solved in simple geometries defined by interacting solid blocks. Often the
motion is simply defined by a rigid body motion of a block sliding on a planar
surface; and (b) dissipation of the mechanical work is concentrated in shear bands
defining the contacts between rigid bodies.

These restrictions have been removed in the work reported in this thesis with
the purpose of generalizing the basic concepts and, also, with the ultimate aim
of exploring the implications of thermally induced pore pressures on the vast
majority of landslides, irrespective of its size, kinematic deformation mechanisms
or assumptions concerning the dominant mode of energy dissipation. To do that,
the dynamic behaviour of saturated soil under non-isothermal conditions has been
formulated and integrated in Material Point Method framework.

The numerical analyses of the dynamic behaviour of porous media have been ap-
proached under different assumptions. For the case of and isothermal conditions,
Verruijt (2010) and Zienkiewicz and Shiomi (1984) developed the governing equa-
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tions based on the theoretical basis presented by Biot (1941, 1962) and Prevost
(1980). Later, numerical approaches were formulated in Finite Elements (FEM)
by Pastor et al. (1990), Huang et al. (2004), Jeremic et al. (2008) and Gajo and
Denzer (2011), among others. The general “u — w” approach (a notation which
refers to the displacement of the solid and the relative fluid displacement, respec-
tively) can be reduced to the “u — p” formulation (where p is the pore water
pressure) when material derivatives of the relative acceleration of the fluid with
respect to solid is neglected (Lopez-Querol et al. (2008); Zienkiewicz et al. (1999);
Zienkiewicz and Shiomi (1984)). The uw — p formulation is able to capture the
dynamic response for low frequency phenomena.

Zienkiewicz et al. (1999), Schrefler and Scotta (2001) and Uzuoka and Borja (2012)
extended the formulation to partially saturated soils. The non-isothermal dynamic
analysis for non-saturated porous media (u —p — T approach) has been published
by Cao et al. (2016). They included vapour pressure below the saturation water
pressure (cavitation) and the evaporation of the pore liquid water due to thermal
loads. Some application examples, solved by FE, involve small strains.

In this work, the u — p — T formulation has been developed for saturated porous
media without including evaporation. In the cases and applications analysed here,
the evaporation of the pore liquid pressure is not expected because of the range
of temperatures developed. The governing equations have been solved and dis-
cretized numerically in MPM with the aim of simulating the transition from static
to dynamic conditions of landslides and the expected motion after failure. The
u — p formulation presented by Zhang et al. (2009) and Zabala and Alonso (2011)
is extended to non-isothermal conditions by including the energy balance equa-
tion and by applying the assumption that the mechanical plastic work generated
dissipates in heat. The fundamental phenomena are highly coupled: (a) Plastic
work and, therefore, thermal effects in the entire calculation domain are the result
of sliding kinematics and the particular constitutive model; (b) Pore pressures are
a consequence of the rate of temperature changes, but also on their dissipation in
real time because of flow effects; (c) Pore pressures and temperature modify the
stress paths and the constitutive equations. These effects will be highlighted in
the cases described.

The resulting MPM u — p — T approach is capable of removing the limiting as-
sumptions used so far to explore the thermal pressurization effects on landslides.
In fact, the kinematics of the motion should not be an assumption made“a priori”
but part of the solution. In general, heat sources are generated wherever plastic
work develops.
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4.2 Basic governing equations

The equations are expressed in terms of the following primary unknown vari-
ables: acceleration of solid particles (ag), liquid pressure (pr) and temperature
(0). Relative acceleration of the liquid with respect to the solid skeleton is assumed
negligible (a;/s = ag —ar, = 0; ag = ar). The formulation is then simplified to
a u — p formulation commonly used in finite-element implementation.

4.2.1 Momentum balance of the mixture

The equation of motion is formulated for both fluid and solid particles assuming
the saturation of pores.

pag =V -0+ pb (4.1)

where ag is the acceleration of the solid skeleton, o is the Cauchy stress tensor,
b the body forces vector, and p is the density of the mixture defined as: p =
npr + (1 —n) ps, where n is the porosity and pr and pg are the fluid and solid
density respectively. indicates the divergence vector operator.

4.2.2 Conservation of momentum of fluid

From the dynamic equilibrium equation for the fluid, the following generalized
equation for Darcy flow rate, qr, can be obtained:

K
qr = = (VpL — pLb + prar) (4.2)

where Vpy, is the gradient of pore water pressure, vy, is the specific weight of
liquid and K is the permeability, also called hydraulic conductivity.
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4.2.3 Mass balance of mixture

The mass balance equation of both solid particles and liquid can be expressed as
follows:

Dpr | pL Dps
"D +ps( n) oy TPV VstV (prar) =0 (4.3)

where the material derivative is defined with respect to the solid as % = % +
vgV (+). The Darcy’s flow q;, in Equation (4.3) has been defined in Equation

(4.2).

Constitutive equations defining the variation of solid and liquid density are now
introduced with the aim of expressing the governing equations in terms of the
primary unknown variables. Exponential functions have been selected to define
the density variations:

ps = pYexp [—55 (9 - 90>] (4.4)

pL = p% exp {aL (pL —p%) — 8L («9 — 90” (4.5)

where pOS and pOL are the solid and liquid density at reference temperature #° and
liquid pressure pOL. The parameter «j defines the liquid phase compressibility
and Bg, B, are the volumetric thermal expansion coefficients for solid and liquid
phase, respectively. The compressibility of the solid particles against changes in
stress is assumed negligible.

Taking into account Equations (4.4) and (4.5), assuming constant constitutive
parameters and assuming the distribution of the water density sufficiently smooth,
the following mass balance equation is obtained:

D
et LI

D
o B, TV Vet Vioar=0 (4.6)

t

where a volumetric thermal expansion coefficient for the mixture 5 = (1 —n) Bg+
nfBr, is introduced.

Note that the spatial variation of the liquid density is neglected (Vpr, =~ 0).
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4.2.4 Energy balance of mixture

The internal energy balance per unit of volume can be written as:

ot (nprer + (1 —n) pscs) 0] + V- [-T'VO] +

4.
V- lprerb(ar + nvs) + (1 —n) pscsbvg] = H (4.7)

which states that the external supply of heat rate, H should be equal to the sum of
the following terms: (a) internal energy in solid and liquid phase which depends on
their specific heats, c¢s and cr,, respectively; (b) the heat flow conduction driven by
temperature gradients (Fourier’s law) which depends on the thermal conductivity
coefficient, I'; and (c¢) the convective heat transport due to liquid and solid flows.

Assuming that the specific heat of the phases remains constant, Eq. (4.7) can be
simplified to:

Do
(pc)mﬁ +V-ay+prerdV-ar + (pc),,0V -veg = H (4.8)

where the specific heat of the mixture has been defined as (pc),, = nprcr +
(1 —n) pscs and

a, = -T'V6 (4.9)

is the heat flow conduction.

4.2.5 First law of thermodynamics

It is assumed that the plastic work,

H=0¢:¢° (4.10)

dissipates in heat. In Equation (4.10),
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o' =0—prm (4.11)

is the effective stress tensor, m is defined by means of m;; = J;; and J;; the
Kronecker delta. P is the plastic strain rate.

4.2.6 Constitutive equations of the porous media

A constitutive law,

do’ =D - de (4.12)

where D is the tangent matrix and defines the relationship between effective stress
and strains. The soil behaviour is characterized by means of an elastoplastic
Mohr-Coulomb model. Alternatively, more complex constitutive models could be
defined. However, since the main purpose of this work is to model the response
of landslides including thermal effects, this is a proper option to simulate the
shearing behaviour of soils in first time failures (Yerro et al. (2016a); Zabala and
Alonso (2011); 7). The yield surface is defined in terms of effective cohesion,
c, and effective friction angle, ¢/, whose values decrease exponentially with the
accumulated deviatoric plastic strain invariant e = ,/%efjefj, where efj is the
deviatoric part of the plastic strain tensor as follows:

=g+ (peak — res) e "a (4.13)
P
¢I = ¢;ﬂes + <¢/peakz - (z)lres) e 1 (414)

Peak and residual values of cohesion and friction angle indicated by the subindex
“res” and “peak”, respectively, are model parameters. The rate of the strength
decrease is controlled by the softening shape factor 7.

o7




CHAPTER 4. THERMO-HYDRO-MECHANICAL COUPLING FOR SATURATED SOILS IN
MPM

4.3 MPM Discretization of governing equations for
saturated conditions

The mass of a saturated porous media is discretized by a set of material points
representing both the solid and the liquid phase. Each material point represents a
portion of the total volume of the porous media and it is assumed that the mass of
each volume portion is concentrated in the material point. Therefore, the spatial
distribution of the mass density of the mixture in time, p (x,t), can be discretized
in the domain following the next expression:

Np
1) = Z mpd (X — Xp) (4.15)
p=1

where the density is expressed as the sum over the all number of material points,
N, and m,, is the mass of each material point located at x, coordinate. 4 (-) is
the Dirac delta function.

4.3.1 Momentum balance equation

The equation (4.1) is solved as a boundary value problem in which displacement,
(t), and tractions, t (), are imposed in I',, and T, respectively. Applying the
Weighted Residual Method (Finlayson, 1972; Finlayson and Scriven, 1966), select-
ing adequate test function and substituting p by the expresion (4.15), integrals
over the domain reduces to sums of material points and the following system of
equations is obtained:

N, Np Np
> mpNPNPag, = / pNP - dT; — Z (VN?) -0,V + > myNPb, (4.16)
j=1p=1 =1 p=1

where the stress tensor has been recovered, NP refers to the shape function asso-
ciated to the node ¢ and evaluated in the position of the particle p and V), is the
volume associated to the particle p.
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4.3.2 Conservation of liquid momentum and mass balance

Replacing equation (4.2) into equation (4.6) and applying the same procedure
described for the momentum balance, the equation (4.6) becomes into:

N, N,
K p p
Bpr, = == | S NE (A0, + Acv, Vi + / NigLAtdl, — S VNP - quALY,
q

(4.17)

4.3.3 Energy balance of mixture

The temperature increment is calculated by means of solving the energy balance
equation per unit of volume, Eq. (4.8), numerically in the domain Q described in
the following boundary value problem:

AO(x, 1) + 12— [V - qn (%, 1) At + pucwdV - qr(x, ) At] + 0Ac,0(x, 1) = H(x,1)

(PO,
0(x,t) = 0 onl'y
an(x,t) = g, onl'y,
(4.18)

where q, and qp is defined in equation (4.2) and (4.9) respectively. The tem-
perature and the temperature flow are prescribed in the boundary I'y and T'y,,
respectively. Applying the Weighted Residual Method, substituting p and remov-
ing notation (x,t) to simplify. The equation 4.18 becomes:

Ny Np
AbY; = 4(pc)lmvg Zl (VN?) an, At V, *Ff NigpAtdl' + Zl puwcwt (VN]) apAtV,—
p= a p=
Np " NP .
I pwcwdNiGrAtdL — 3 (pc),,ONF Aeyor, Vi + 3. NYH,LV,
Ty p=1 p=1
(4.19)

which gives the temperature increment at each node ¢ depending on the variables
at particles and boundary conditions.
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4.4 Analysis of a reference case

The performance of the THM formulation was first tested by means of a 2D nu-
merical stability analysis. Consider in Figure 4.1 the geometry of a homogeneous
saturated slope. For this case, the soil is described by a perfectly plastic Mohr-
Coulomb model defined by an effective friction angle equal to 28° and an effective
cohesion equal to 2.0 kPa. The rest of parameters are indicated in Table 4.1. A
square support mesh (12.5 x 12.5 ¢m) defines the computational domain (also
plotted in Fig. 4.1). Four particles per element are initially located at each fill
element representing the soil of the slope. The slope failure is triggered by the
simple procedure of reducing the cohesion from 2 kPa to 1 kPa.

An isothermal case (no source term in the energy balance equation) defines the
reference case. Figure 4.2a shows the accumulated displacement computed at the
end of the motion (once the slope recovers a new stable geometry) five seconds
after failure triggering. The distance between the initial and the final position of
the slope toe is equal to 1.7 m.

According to the previous works published by Goren and Aharonov (2009) and
Pinyol and Alonso (2010a,b), heating effects on the landslide motion are highly
dependent on the pore water pressure dissipation, mainly controlled by the value of
the saturated permeability. In those articles, the problem was analysed for simple
geometries and the THM problem was solved at the scale of the shear band coupled
with the momentum balance equations defining the whole motion of the unstable
mass. The conclusion derived from the sensitivity analyses performed was clear:
given a slope, a range of permeability values can be defined which separate rapidly
accelerating landslides from non-accelerated landslides. For relatively low values
of permeability, excess pore water pressure generated during the motion cannot
dissipate and its accumulation induces the acceleration of the landslide, which
feeds back the motion. On the contrary, higher values of permeability allow the
dissipation of the excess pore pressures and the motion slows down. In this case,
when compound landslides are analysed (Pinyol and Alonso (2010b)), changes in
the slope geometry during the motion make the slope more stable and, after a
certain time, the acceleration reduces and the slide run-out is shorter, if compared
with the case of more impervious shearing bands.

Consider now the effect of permeability when thermal effects are activated in the
model slope (Fig. 4.2b and 4.2c). The slope response for the more pervious case
(K = 1075m/s) does not change if compared with the isothermal case. However,
the thermal effects lead to an increased slide run-out in the more impervious case
(K =1071m/s).
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The slide motion depends not only on the soil permeability, but also on the shear
band thickness because this dimension is involved in the accumulation of plastic
work per unit of volume of soil inside the band as well as in the pore pressure
and heat dissipation towards the surrounding soil. Shear band thickness in the
reference case depends on the size of computational mesh. This introduces a
mesh-dependent problem which will be addressed below.

10 m

12.5 cm

m 12.5 cm

13m 8m 13m

Figure 4.1: Slope geometry and discretisation of the reference case.

Table 4.1: Model parameters

Parameters Symbol [ Value Units
Water
Density L 1000 kg/m®
Bulk modulus or 2200 MPa
Thermal dilation | fL 0-00034 1EE
coefficient
Specific heat L 4186 N m/(kg °C)
1 cal/(kg °C)
Solid particles
Density Ps 2700 kg/m?
Thermal dilation | fig 0-00003 1/°C
coefTicient
Specific heat Cs 837 N m/(kg °C)
0-2 cal/(kg °C)
Clay Soil
Porosity n 0-4 —
Permeability K 1:00 x 107" | m/s
Young’s modulus | E 20 000 kPa
Poisson ratio v 0-33 —
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Figure 4.2: Accumulated displacements at the end of the motion for the reference
case: (a) heating effects not included; (b) heating effects included and K = 1075 m/s;
(c) heating effects included and K = 107! m/s.

4.4.1 Effect of the shear band thickness

Consider he effect of the shear band thickness illustrated by a simple example.
Figures 4.3 show two reference volumes subjected to shear deformation defined by
a rate of displacement 4. It is assumed that the shear band of each sample has a
different thickness. For simplicity, a planar deformation is assumed. Accepting a
linear distribution of the shear strains inside the sheared zone and assuming that
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the soils are at failure, the rate of the generated mechanical work per unit volume
can be calculated as:

. _ 5

Wi =7 = T (4.20)
. _ 5

Wy =T15y2 =17f (4.21)

ha

where 7 is the shear strength, 7 is the shear strain rate and 1 and 2 refers to
the reference volumes represented in Figure 4.3. According to this, the dissipated
work per unit of volume depends on the thickness of the shear band; however the
total work on the band volume will be equal for both cases:

Wlhll = Wghgl = ngl (4.22)

Since temperature increments are computed from the heat generated per unit of
volume (Eq. 4.10), higher increments of temperature and pore water pressure are
expected in the case of the thinnest shear band (Fig. 4.3c).

vl

:Sample 2
Sample 1

h, ]

* Sample 1 Sample 2 W=H

Figure 4.3: Schematic representation of two shear bands exhibiting different shear
band thicknesses. Pinyol et al. (2017a)

Figure 4.4: Loaded block sliding at constant velocity. Pinyol et al. (2017a)
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The effect of the shear band thickness can be derived for the case of a simple
block sliding on a horizontal surface at an imposed constant velocity (v) (Fig.
4.4). With the aim of getting an analytical solution, heat and pore water pressure
dissipation will be neglected. Under these assumptions, the system of equations
given in Section 4.2 reduces to the following differential equation:

dpr Btan ¢'v B
At (my +narg) (pc),,2e lon = pi] (4.23)

where the unknown variable is the excess pore water pressure (pr) in time, 2e is the
thickness of the shear band and m,, is the oedometric compressibility coefficient.
Equation (4.23) has the following analytical solution:

___ pranglv
pr =0n |1 —exp (mvinop)leeim2e (4.24)

which is represented in Figure 4.5 for the case of an imposed velocity of 0.1 m/s,
a normal stress o, = 1 M Pa, an oedometric compressibility coefficient equal to
my = 1.5-1073M Pa~! and different values of shear band thickness. The rest of
parameters are selected according to Table 4.1. The results show a large effect of
the shear band thickness: the larger the shear band thickness the lower the excess
pore water pressures generated.

1.2 4

Shear band thickness:
1 mm

0.8 -

5 mm

Excess pore water pressure [MPa]

0.6
04 - lcem
0.2 Sem
10 cm
0 T T 1
0 10 20 30 40 50 60

Time [seconds]

Figure 4.5: Analytical results for the excess pore water pressure for different values
of shear band thickness in the case of a planar motion on a horizontal surface at
constant imposed velocity. Pinyol et al. (2017a)
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On the other hand, the thickness of the shear band has an influence on the liquid
pressure and temperature dissipation, which has been neglected in the previous
analytical solution. Following the simple example illustrated in Figure 4.3, the
heat-induced increments of temperature and liquid pressure will be distributed
homogeneously inside the shear band. For a given soil permeability, the dissipation
will be faster in the case of the thinner shear band because of the higher water
pressure gradients.

The thickness of shear band depends on the grain size distribution of soils (Alshibli
and Hasan (2008); Miithlhaus and Vardoulakis (1987); Scarpelli and Wood (1982);
Vardoulakis (1980)). A sensitivity analysis of the effect of the shear band thickness
on landslide behaviour including thermal effects was given by Pinyol and Alonso
(2010a,b) and Alonso et al. (2016). They solved the THM coupled phenomena
at the scale of the shear band as a one-dimensional problem and solved it by
finite differences. The geometry of the slide and the position of the sliding surface
was predefined in theses contributions and they do not depend on the numerical
discretization. The thickness of the shear band was also defined as an input data
and it does not depend on the element size of the FD discretization.

Alonso et al. (2016) also solved the case of a zero-thickness shear band. In this
case, the shear band is assumed to be a contact plane and the heat generated
was included as a boundary condition. A heat flow per unit of surface of the
sliding plane, calculated as the product of the shear strength and the landslide
velocity, was imposed. Heat inflow induces the increments of temperature that
leads to increments in pore water pressure. Based on the analyses performed, they
concluded that for realistic shear bands thicknesses (in the range of few millimiters
including also the zero-thickness case) the results in terms of pore liquid pressure,
temperature and landslide velocity are not significantly different among them.
This is an interesting conclusion which suggests that it is not necessary to specify
the shear band thickness, always difficult to quantify.

However, when the shear band thickness increases the results are significantly
affected. The case is analyzed here following the 1D finite difference analysis
presented in Alonso et al. (2016) for a planar landslide described in Figure 4.6a,
which corresponds to a situation of strict equilibrium. Consider a case of a low
value of permeability (K = 107! m/s). The rest of parameters are indicated in
Table 4.1. The landslide is triggered by increasing the water level by 10 e¢m. The
results in terms of landslide velocity during the first 50 m of travelling are plotted
in Figure 4.6b for different values of shear band thickness ranging from 1mm to
1m. The pore water pressure dissipation during the motion is negligible in all
cases. The isothermal case is also included in the plot. The results show that the
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effect of the shear band thickness becomes relevant for values higher than 1 cm.

Shear band
thickness
—=1,5,10mm
5cm

10 cm

Velocity: m/s

Displacement: m

(b)

Figure 4.6: (a) Scheme of a planar slide. (b) Effect of the shear band thickness on
the velocity for K = 107! m/s. 1D finite-difference analysis. Pinyol et al. (2017a)

In numerical approaches such as FEM, FDM and MPM, the size of the shear
band developed when shear strains localize depends on the element size and on
the inclination of the band with respect to the mesh lines. In practice, strains
tend to localize into a single or a few elements. Therefore, in view of the previous
results (Fig. 4.6b), the size of the elements of the computational mesh in a
MPM numerical model should be similar to the thickness of the actual shear band
(i.e. few millimiters or perhaps centimetres) in order to obtain realistic results.
Otherwise, the computed heat generated in the slip zone per unit of volume will
be lower than the heat actually generated. However, in real landslide modelling,
the size of landslides requires element sizes in the order of decimeters or meters if
the computational cost is to be kept within limited and tractable limits, especially
in cases of coupled THM analysis.
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Figure 4.7: Maximum displacement calculated for the reference case for a perme-
ability value of K = 107! m/s and for different sizes of mesh elements (indicated in
the figure).

It follows that a direct application of Equation (4.10) to calculate the energy
dissipated in a shear band will results in work rates per unit volume significantly
smaller that the rates dissipated in real sliding surfaces. The consequence is an
underestimation of excess pore pressures generated in shear bands. This effect
can be readily observed in a mesh size sensitivity analysis of the reference case
discussed in the previous section for a low value of permeability (K = 1071t m/s).
The case has been run again using two additional coarser discretizations described
by square meshes of 0.5 x 0.5 m and 0.25 x 0.25 m. The calculated displacement
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and excess pore water pressure at the end of the motion are plotted in Figure
4.7 and 4.8, respectively. Both depend markedly on the mesh size. A numerical
alternative to overcome such dependency is described in the next section.
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Figure 4.8: Excess pore water pressure at the end of the motion calculated for the
reference case for a permeability value of K = 107! m/s and for different sizes of
mesh elements (indicated in the figure).
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4.5 Embedded shear bands

A numerical procedure has been developed in order to consider the real shear band
thickness when performing numerical modelling of THM phenomena in landslides.
It should be noted that the proposed procedure does not provide a methodology
to solve the mesh dependence effect in strain localization problems simulated by
continuous numerical models such as FEM and MPM (caused or not by strength
softening). The proposed procedure provides a solution to account properly for
the magnitude of the heat and excess pore water pressure generated because of
the generated frictional work and their dissipation, which depends on the shear
band thickness.

The idea was to include a set of embedded shear bands into the material domain
whenever the plastic deviatoric strain exceeds a reference value. Figure 4.9 illus-
trates the explanation. A reference volume corresponding to the initially assigned
to each material point is characterized by a reference length, L,.;. The strain
computed at each material point will be assumed to be localized in an embedded
shear band whose thickness will be given as an input parameter, Lpg, which will
depend on the soil type. Heat due to friction work dissipation and the induced
liquid pressure will be assumed to be generated into the embedded elements. Dif-
ferent variables for temperature and liquid pressure in the embedded shear bands
and the rest of the soil are defined: 672, 6™, pf, pﬁ/f , respectively.

Dissipation processes of heat and liquid flow between the embedded shear bands
and the rest of the material domain, called matrix, will be formulated at local
level. Energy and mass balance equations are now formulated at matrix and
embedded shear band level as follows:

Dﬂt [(pc)mﬁM} tV- {_FVHM} +V- [PLCLqu + (,oc)mvSQM} = fPM (4.25)

D B )
By (00, 07] = g7~ 1" (4.26)
D DpM 1 .5
E[BOMM—TLO@ gf +V-VS+V'qL=p7LBM (4.27)
D DpP 1 .5

Local source terms of heat and liquid flow rate per unit of volume and time are
included in the balance equations to take into account the dissipation of heat and
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Figure 4.9: Schematic representation of embedded shear bands generated. Pinyol
et al. (2017a)

liquid pressure between matrix and embedded elements. Flow rates are defined
proportional to the difference between band and matrix temperature and liquid
pressure:

7M=L (pf — pﬁ”) (4.29)

f7M = g (07 — 0M) (4.30)

¥y, and 1y are defined as liquid and energy transfer coefficients, respectively.

Equation (4.29) for the local liquid source term, f 5 M (mass per unit volume per
unit time) is approximated in terms of a difference in pressures to facilitate the cal-
culation at the local level. From a physical perspective it should be related to the
gradient of pressures through some permeability coefficient. This consideration
suggests that the transfer coefficient, 11, has the following structure:

I (4.31)

B :U’LAref
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expressed in terms of liquid density, pr,, liquid viscosity, pr, intrinsic permeability,
k, Fourier’s coefficient, I', and a reference area, A,.y.This area is directly related to
the expected distance of fluid transfer from the shear band, included in a material
point, and the surrounding clay matrix associated with the material point under
consideration. Therefore, A, .y was made equal to the element area contributing
to the MP (one fourth of the element area if four material points per element are
adopted). A similar argument, in the case of local heat interchanged leads to

(4.32)

Computations run for the reference case described below to show the effect of
varying A,cr from A,.¢/4 to 4A,.f resulted in minimum changes in results.

In Equations (4.25 to 4.28), convective and advective terms are defined exclusively
at the matrix scale to impose that the interaction between embedded elements
and matrix are defined locally at the scale of the reference volume.

The heat source term, HZ, included into the heat mass balance equation of the
band is supplied by energy generated into the embedded shear band. It is made
equal to the frictional work rate dissipated assuming that the plastic strains lo-
calize in the shear band:

(4.33)

The effective stress controlling the constitutive behaviour will be governed by
the maximum value of liquid pressure prevailing in the embedded elements or in
the matrix because they occupy the same position of the material point under
consideration:

o' = o — max (pf,p%) m (4.34)
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4.6 Sensitivity analysis. Effect of the mesh size, shear
band thickness and permeability

The reference case evaluated previously using different element sizes is analysed
again including the embedded shear band with the aim of evaluating the capa-
bilities of the methodology. In all the cases analysed, embedded shear bands are
generated at those elements in which the computed plastic deviatoric strain is
different from zero. The distribution of excess pore water pressure and maximum
displacement is plotted in Figures 4.10 and 4.11. The effect of the mesh size is
observed in minor details of the plots. However, the pathological dependence on
the shear band thickness has been removed. In fact, the calculated maximum
pore pressure in the shearing band (Fig. 4.10) and the displacement (Fig. 4.11)
are the same. In the three cases analysed, an embedded shear band thickness Lp
of 1 ¢m was introduced as an input parameter.

The effect of the shear band thickness is shown in Figure 4.12 in terms of maximum
displacement. Band thickness varying between 10 cm and 0.5 ¢m are evaluated.
Thinner shear bands lead to higher values of thermal induced pore water pressure
and the associated reduction of the shear strength results in higher values of
maximum velocity and displacement.

The effect of the permeability is now evaluated. In all the cases evaluated, Lp
= 1 c¢m. Figure 4.13b shows the evolution of displacements of a point located
initially at the surface in the middle of the slope (Fig. 4.13a) for different values
of permeability ranging from 10~ m/s to 107! m/s. Figure 4.13c shows the
calculated pore pressure records on a central point of the sliding surface. Zero
values of pore water pressure are calculated in the most pervious case (K = 1073
m/s). When permeability decreases to K = 1075 m/s, low values of excess pore
pressure are accumulated. For K = 107 m/s pore pressure initially increases,
to reduce during the motion. As the values of permeability decrease further, the
maximum velocity and the displacements increase due to additional excess pore
water pressure accumulating in the shear band (Fig. 4.13b).

The distributions of plastic strains, excess pore water pressures and temperature
for the case of K = 10~!' m/s are plotted in Figure 4.14. The shear strain
increments localize in a band affecting one or two elements of the computational
mesh. The generation of the excess pore water pressure concentrates at those
elements and, due to their low permeability and the short time of the motion,
pore pressure does not dissipate.

72



4.6 - SENSITIVITY ANALYSIS. EFFECT OF THE MESH SIZE, SHEAR BAND THICKNESS
AND PERMEABILITY

Temperature increments are generated in all cases as a consequence of the fric-
tional work dissipated during the motion (Fig. 4.14c). Calculated temperature
increments are small but their effect is significant because of the induced changes
in thermal dilation coefficient of water and solids.

Excess pore water
pressure in bands [kPa]
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Figure 4.10: Excess pore water pressure at the end of the motion calculated for the
reference case, including embedded shear bands, for a permeability value of K = 107!
m/s and for different sizes of mesh elements: (a) 0.5 x 0.5 m; (b) 0.25 x 0.25 m; (c)
0.125 x 0.125 m.
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Figure 4.11: Maximum displacement calculated for the reference case, including
embedded shear bands, for a permeability value of K = 10~ m/s and for different
sizes of mesh elements: (a) 0.5 x 0.5 m; (b) 0.25 x 0.25 m; (c) 0.125 x 0.125 m.
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Figure 4.12: Maximum displacement calculated for the reference case with mesh
size 0.125 x 0.125 m for a permeability value of K = 10~!! m/s and for different
values of shear band thickness: (a) 10 em; (b) 5 em; (¢) 0.5 em.
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Figure 4.13: (a) Position of points analysed. (b) Displacement of point S2 and (c)

excess pore water pressure evolution of point F2 for the reference case and different
values of saturated permeability, K.
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Figure 4.14: Distribution of (a) accumulated deviatoric plastic strains, (b) excess
pore water pressures and (c) temperature for the reference case at the end of the
motion. Saturated permeability K = 107! m/s and shear band thickness of 1 cm.
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4.7 Concluding remarks

This chapter describes a general formulation to include the heat dissipated in ir-
reversible shear deformations into a coupled hydro-mechanical framework. The
problem is inspired by observations and past contributions in the field of land-
slides. The formulation is general and based on physical principles and therefore it
has applicability to sliding deformation mechanisms. The formulation of the basic
theory and the subsequent elaboration is a generalization of previous contribu-
tions in the domain of fast landslides which describe the slide motion by means of
a predetermined simple geometry characterized by blocks of bodies interacting at
the boundaries through shearing surfaces. Furthermore, previous contributions
formulate the necessary balance equations in a one-dimensional space, perpen-
dicular to the shearing surface. This limitation is also removed in the present
analysis.

One difficulty of the model developed, which was numerically solved by means of a
Material Point Method approach, is the dependence of the results on the thickness
of the shear bands developing in a failure scenario. In fact, the method predicts
the generation of heat induced excess pore water pressures in shear bands, which
controls the available drained shear strength. Excess pore pressures dissipate
in a consolidation-like processes controlled by permeability, soils stiffness and
shear band thickness. Permeability is the main controlling factor for pore water
pressure and heat development as well as for the resulting slide kinematics once
failure is triggered. However, shear band thickness is also a critical parameter
which depends on the size of elements and geometry of the computational mesh.
Given the small thickness expected in shear bands in clayey soils, the appropriate
computational mesh would become unrealistically dense. The effect of shear band
thickness is first discussed with the help of a simple sliding model which was solved
analytically.

A two-dimensional plane strain MPM analysis of the failure of a reference sim-
ple slope illustrates the significant effect of mesh size in results. The procedure
described in the chapter to solve the shear band thickness issue is to embed a
ubiquitous set of shear bands into the material domain whenever plastic strains
develop. These strains are assumed to be localized in a shear band whose thick-
ness is selected in view of the material properties or other observations. A set
of balance equations for the local transfer of liquid and heat is formulated to
reproduce the expected physical phenomena in the vicinity of the shear bands.
The procedure was successfully tested in a reference slope analysis. Excess pore
pressures and slope deformation were found to be independent of mesh size.
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CHAPTER 5

VAJONT LANDSLIDE IN
THM-MPM

In the previous chapter, the thermo-hydro-mechanical formulation in MPM was
presented. In this chapter the MPM code developed is applied to model the insta-
bility and subsequent rapid motion of Vajont landslide (Italy, 1963). Calculated
run-out and sliding velocity reproduce, in a satisfactory manner, field observa-
tions.

5.1 Vajont landslide

An ancient slide in the left bank of the Vajont river (Italy), under creeping motion,
presented a rapid failure in October 1963, when the reservoir provided by the built
dam, reached the maximum level. The mobilized mass developed great speed,
provoking a gigantic water wave over 220 m high that flew over the dam.

According to observations of geological study, since the construction and partially
impounded of the reservoir in 1960, a long, peripheral crack developed, indicating
creeping motion towards the reservoir (Hendron and Patton, 1985) (Fig. 5.1)
that continued until the rapid failure in October 1963, exhibiting a wide range of
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rate of movement over the years. Velocities of 20 — 30 ¢m/day were registered
near failure date, while estimations of the field reached velocity on 9th October
1963 was of 30 m/s. The accumulated displacements of surface markers showed
correlation with reservoir elevation (Nonveiller, 1987).

Semenza (2001) included a tentative reconstruction of the past history of the slide
in a series of cross sections. Two representative cross-sections of the slide, located
upstream of the dam’s position at distances of 400 and 600 m (5.2), respectively,
are reproduced in Figure 5.2 (Sections 2 and 5. (Hendron and Patton, 1985)).

Regarding the sliding surface of the landslide, Hendron and Patton (1985) indi-
cates that it was located in a thin continuous layer of high plasticity clay. Other
authors suggest the existence of a more complex geometry defining not a unique
sliding surface but by several sliding layers or even a thick sliding area. This topic
is discussed in the next section.
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Figure 5.1: Map of the Vajont sliding area. Alonso et al. (2010)
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Figure 5.2: Two representative cross-sections of the landslide: (a) Section 2; (b)
Section 5 (see the location in Fig. 5.1). After Hendron and Patton (1985). The
position and length of piezometers P1 and P2 are shown on Cross-section 5.

5.2 MPM model

The model developed in this thesis departs significantly from the analysis de-
scribed in previous publications on modelling Vajont landslide. Alonso et al.
(2016) compares the modelling approaches of previous contributions taking into
account a few topics: problem formulation, sliding geometry and constitutive
modelling. The analysis described here is no longer based on the 1D approxima-
tion for THM processes in the vicinity of the shear band, the geometry respects
the geological conditions of the case and the failure mechanism and landslide
geometry are not imposed “a priori”. There was an interest in checking if this
generalization could reproduce the Vajont accelerated motion.

Initially the gravity acceleration is applied with the reservoir level at the very
bottom, then the landslide trigger was the elevation of the water level in the
reservoir. The impoundment of the reservoir is modelled as a continuous increase
in water level, imposing the groundwater level at material points. Modelling the
creeping stage previous to the failure would involve the consideration of additional
features. In particular, Veveakis et al. (2007), Alonso et al. (2016) and Alonso
and Pinyol (2012) invoked rate effects on the strengthening of the behaviour of
the material located in the basal surface to explain the slow motion observed in
Vajont slope. In addition, the internal shearing of the mobilized mass during the
motion, discussed in Alonso and Pinyol (2010) and Yerro et al. (2016a), probably
had also an important role which contributed to maintain the slope at a slow
motion. These aspects are out of the scope in this chapter, which focuses on the
thermal pressurization phenomena and its consequences on the Vajont landslide
run-out.
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510 m
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Figure 5.3: Computational model, mesh and initial distribution of material points.

The two-dimensional section selected for the analysis follows Section 2 (Fig. 5.2a)
proposed by Hendron and Patton (1985). Figure 5.3 shows the cross section
modelled. The mobilized mass is characterized by a unique homogeneous rock
whose behaviour is defined by the strain-softening Mohr-Coulomb model. In the
MPM model, the rock was defined by a c i = 2800kPa and qﬁ/ = 43° and

pea pea
Cos = 200kPa and qﬁ;]eak = 34°. The softening shape factor selected (n = 100)
leads to a drop of strength from peak to residual value in 30 mm of relative
displacement for this mesh size. The selected values are accepted as a rough
average approximation of the complex stratification of limestone and marl layers
Semenza (2001) with different degrees of fracturing. They are also consistent with
the range of average strength parameters suggested by Alonso and Pinyol (2010)
for the Vajont rock above the sliding surface. A porosity equal ton = 0.2, a Young
modulus E = 5000 M Pa and a Poisson’s coefficient v = 0.33 were estimated for
the rock mass. Parameters for the model are the same used in previous chapter

for the reference case (Table 4.1).

The model is able to simulate the progressive failure along shearing planes of
the rock. This is expected because the kinematics of the motion force internal
shearing of the rock in direction crossing the sedimentary surfaces at high angles.
This is shown in the plots of shearing bands given below. This internal shearing
was also discussed in Alonso and Pinyol (2010) and Yerro et al. (2016a), Yerro
et al. (2016b). Yerro et al. (2016b) found that a unique sub-vertical shear band
develops from the sharp kink defined by the two planar basal sliding surfaces.
This band acts as a rock degradation mechanism as the slide moves forward. A
progressive failure develops along the shear band during all stages of motion. It
was also shown that the internal development of shearing bands in the rock mass
is controlled by the geometry of the basal sliding surface. Progressive failure of the
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brittle rock mass alone was not capable of explaining the high sliding velocities of
the slide. An apparent basal friction angle of 0° was required to match the high
velocities of the slide.

A significant aspect of the analysis is the nature of the basal sliding surface. In
their comprehensive report, Hendron and Patton (1985), even if they accept the
dominant role of the residual clay strength, they recognize the existence of areas
in which shearing was across bedding planes, the presence of sections not having
clay, of areas where the clay was squeezed into rock voids and of brecciated rock
fragments within the clay beds. Paronuzzi and Bolla (2015) characterized the
basal “detachment” surface by a stepped pattern involving a variety of materi-
als: limestone and marly limestone strata, clay interbeds, clay lenses and angular
gravels. Wolter et al. (2014) describe in detail the basal surface by means of
terrestrial photogrammetry. The exposed surface is characterized by a complex
geometry of undulations and ridges which probably entered into rock-to-rock con-
tact during sliding. They introduce four roughness classes to describe the sliding
surface. They conclude that in some areas the asperities would imply the shearing
of rock mass or a dilatant behaviour. Figure 5.4 shows the aspect of the basal
surface in the spring of 2007, immediately above the displaced rock mass. Some
of the mentioned features could be observed in the photographs. The set of ob-
servation summarized above indicate that the basal sliding motion was far from
being a smooth planar uniform shearing across a layer of clay. Rock shearing and
rock-to-rock friction was present during the landslide.

The available information is not enough to adopt a precise model of the basal
surface and it was decided to represent it by a number of brittle rock bridges
separated by a clay areas (Fig. 5.3). The rock bridges were characterized by the
rock properties adopted for the sliding rock mass. Residual strength of the high
plasticity clay of the basal surface measured in shearing tests (Ferri et al., 2011,
2010; Hendron and Patton, 1985; Tika and Hutchinson, 1999) suggest a value of
11° for the residual friction angle. A low permeability (K = 10~ m/s) was
adopted for the clay in view of its high plasticity.

The underlying stable bedrock below the clayey layer was given the same prop-
erties to the overlying rock. This material is also present in the opposite valley
slope. The river canyon on the bottom of the valley was not represented. The
calculations indicated that the failure surfaces did not affect the lower boundary
rock because of the significantly lower strength of the clayey layer with respect
to the rest of the rock. Therefore, the thickness of the material below the clayey
layer is small in order to reduce the dimension of the model and the computational
cost.
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Figure 5.4: Exposed basal surface of Vajont landslide in 2007. Photographs taken
in the lower part of the exposed sliding surface. (Pinyol et al., 2017a)

The model includes also the reservoir water as an elastic material characterized
by its real volumetric compressibility coefficient and imposing a shearing modulus
close to zero. This procedure allows to apply the weight of the water and the
corresponding water pressure on the slope surface at the initial time and also
during the motion. The dynamic water forces induced during the motion are also
included automatically in the calculation. This is a better option than imposing
the effect of the reservoir water as a supporting force because these conditions
should be applied on the slope surface, which is not fixed, and the position of the
nodes or material points defining the slope surface are unknown “a priori”.

Figure 5.3 also shows the computational mesh used, which defines the entire do-
main of the problem. Four materials points are initially distributed within the
elements representing the materials. They are located at the corresponding inte-
gration points of a four-point Gaussian quadrature. The rectangular elements are
5 x 5 m. This size is limited by the computational cost of the calculation. Using
such element size, it is not possible to define accurately the sedimentary layers of
Vajont slope. The lower heterogeneous clayey layer was defined by four elements
across its thickness. The purpose of this discretization was to avoid that inner
elements of the clay band shared nodes with the hard rock material.

According to the discussion presented in Chapter 4, the mechanical work dissi-
pated in heat was scaled, within the embedded localization bands, by assuming a
reference clay band thickness of 3 ¢m. No excess pore pressures were allowed in
the rock material because of its high permeability. The initial stress state is the
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result of applying the gravity loading.

5.3 Numerical results

The application of weight before the rise of the reservoir level leads to the mo-
bilization of the strength of the clay material as shown in Figure 5.5a where the
equivalent plastic shear strains are plotted. The slope remains in static equilib-
rium thanks to the strength provided by the rock bridges and rock mass. The
increase of the water reservoir level leads to the rise of pore water pressures on the
sliding surface. The supporting action of the water is also accounted for. Failure
initiates when the water level is 100 m above the toe. It corresponds to the eleva-
tion 700 m according to the cross-section 2 from Hendron and Patton (1985). At
this time, equivalent plastic shear strains localize as shown in Figure 5.5b. Shear
surfaces grow from the basal sliding surface at those points where the geometry of
the sliding surface, conditioned by the geometry of the clay layer, exhibit a change
in curvature. In fact, the infinite curvature radius of the planar sliding surfaces
reduces to a radius of approximately 200 m in the curved zone around the kink
created at the junction between the planar surfaces. The localized shear bands
are curved and tend to join inside the rock mass. The associated strain softening
result in a weak fracture surface which is visible in the plots of Figures 5.5 and
5.7.

The damage experienced by the rock mass at the end of the motion, once the
landslide recovers a new static equilibrium, is shown in Figure 5.5c. Figure 5.5
shows the displacement and velocity records calculated as average of several ma-
terials points located in the five elements of the computational mesh forming the
landslide toe. The maximum velocity reached by the landslide was reported by
several authors. Miiller (1964) mentions 25 m/s to 30 m/s. Ciabatta (1964) cited
by Nonveiller (1987), performed a dynamic analysis to find 17 m/s. Nonveiller
(1987) calculates a maximum velocity of 15 m/s. Voight and Faust (1982) in
his pioneering contribution found a maximum velocity of 26 m/s (for a planar
geometry). Hendron and Patton (1985) estimates values in the range 20m/s to
25 m/s. These are estimations based on a particular model for the dynamics
of the motion and therefore they should be regarded as approximations to the
actual field velocity. The maximum velocity calculated here (20 m/s) (Fig. 5.6)
fits into the set of values mentioned. The calculated run-out (320 m) (Fig. 5.6) is
close but somewhat smaller than other estimated values based on field observation
(Hendron and Patton, 1985).
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Figure 5.5: Equivalent plastic shear strain: (a) before reservoir impoundment upon
application of gravity loading; (b) at the initiation of the motion when reservoir level
is at 100 m; (c) at the end of the motion.

Temperature, heat-induced pore water pressure increment and displacement dis-
tributions are given in Figure 5.7. Increments of temperature around 50°C' are
computed in the basal shear band. Maximum temperature increments of around
40°C are computed inside the rock mass. Excess pore water pressures concentrate
in the impervious clayey soil where the work has been scaled. Pore water pressure
dissipates outside of the shear band affecting the rock overlying the clay layer.
The presence of the previous rock bridges accelerates the pore water pressure dis-
sipation. Figure 5.8 shows the calculated final positions of the landslide materials.
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Figure 5.6: Calculated (a) displacement and (b) velocity of Vajont landslide.

What is actually plotted in the figure is the position of all material points. The
basal clay layer has extended along most of the failure surface during the motion.
In some places the clay has opened its way through the rock. Some field observa-
tions mentioned before support this result(Hendron and Patton, 1985; Paronuzzi
and Bolla, 2015). Note also that a horizontal layer of clay was located beyond the
toe of the slide to avoid a direct rock to rock contact during the motion. Part of
this clay was dragged by the landslide and is visible in Figures 5.5c, 5.7 and 5.8.
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Figure 5.7: (a) Temperature; (b) excess pore water pressures and (c) displacements
at the end of the motion.
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Figure 5.8: Distribution of landslide materials at the end of the motion. The plot
indicates the position of material points.
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5.4 Concluding remarks

The well-known Vajont landslide case was selected as a real case to check the
thermo-hydro-mechanical model developed within the framework of the MPM.
Vajont, for the purpose of calibrating model, offers essentially two key items of
information: the estimated sliding velocity and the run-out. The model built is
based on a representative two-dimensional cross section. The geometry and rock
parameters selected profit from previous work on the case and, also, on recent
geological investigations. The rock mass above the basal clayey shearing zone
was characterized by a brittle Mohr-Coulomb model. A residual friction angle
(11°) was adopted for the basal high plasticity clay. However, in view of recent
descriptions of the complex nature of the shearing zone, a few “rock bridges” were
introduced in an effort to account for the complex geometry and heterogeneous
materials involved.

In agreement with real conditions, the failure was triggered by a progressive ele-
vation of the water level in the reservoir (which was also included in the model).
Failure and the subsequent accelerated motion occurred at a water elevation close
to the actual value. The calculated velocity and run-out also match well the
estimated values reported in previous publications.

The model developed is believed to offer an advanced tool to systematically in-
corporate thermal effects into landslides modelling. It contributes to an increased
understanding of phenomena leading to landslide acceleration after failure. The
model is capable of reproducing the initial pre-failure state, the onset of failure
and the subsequent motion. In the examples described and notably, in the well
documented case of Vajont, a single set of material parameters is used.
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CHAPTER 6

CONCLUSIONS AND FUTURE
DEVELOPMENTS

This final chapter presents the main conclusions of the research work carried out
and outlines the main contributions of this thesis. Finally, the current on-working
status and future developments are described.

6.1 Final conclusions and contributions

The main goal of this thesis was to develop a model for landslide motion in the
presence of thermal effects, by means of the material point method.

A briefly description of existing background information regarding thermally in-
duced landslides was introduced in the first chapter along with the motivation,
objectives and methodology of the thesis. The MPM code developed was pre-
sented highlighting the improvements made in this work.

The formulation developed to include the heat dissipated by shear deformations
into a coupled thermo-hydro-mechanical framework, was included in a material
point method framework. A comprehensive calculation tool, capable of simulating
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the behaviour of thermally driven landslides from the initial triggering to the
post-failure phase was developed. The formulation of the basic theory and the
subsequent developments is a generalization of previous contributions in the field
of fast landslides. The model developed is believed to offer an advanced tool to
systematically incorporate thermal effects into landslides modelling. It contributes
to an increased understanding of phenomena leading to landslide acceleration after
failure.

One difficulty of the model developed within Material Point Method approach, is
the dependence of the results on the thickness of the shear bands developed in a
failure scenario. In fact, the method predicts the generation of heat induced excess
pore water pressures in shear bands, which controls the available drained shear
strength. The described phenomena are strongly dependent on the thickness of
the shear band, this results in a strong dependence of the MPM calculations with
the discretization mesh. A novel procedure to solve this problem is presented.
The shear band thickness, which depends on the material features, is defined as
an input parameter. A set of balance equations for the local transfer of liquid and
heat is formulated to reproduce the expected thermo-hydro-mechanical coupled
physical phenomena inside and in the vicinity of the shear bands.

The procedure to overcome shear band dependence was successfully tested in a ref-
erence slope analysis. Thermal interaction phenomena inducing the acceleration
of the landslide were found to be independent of mesh size.

A parametric study in a reference case regarding the value of permeability was
performed. The MPM formulation presented is capable of recovering no heating
effects for high values of permeability as expected.

The well-known Vajont landslide case was selected to evaluate the thermo-hydro-
mechanical model developed. Vajont, for the purpose of calibrating model, offers
essentially two key items of information: the estimated sliding velocity and the
run-out. The model built is based on a representative two-dimensional cross sec-
tion. In agreement with real conditions, the failure was triggered by a progressive
elevation of the water level in the reservoir. Failure and the subsequent accelerated
motion occurred at a water elevation close to the actual value. The calculated
velocity and run-out also match well the estimated values reported in previous
publications.

An additional contribution of the thesis is the analysis of scaled slope failures

experiments. It was a useful procedure to check the capabilities of MPM sim-
ulations to capture the observed behaviour in the laboratory. The experiments
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were analysed as single phase “dry” materials without including neither water or
suction effects nor thermal effects. To carry out this analysis, a novel procedure
called, particle image velocimetry - numerical particle, was developed to process
data from PIV. This procedure is inspired by the MPM calculation procedure
and allows tracking information during the motion as strains and displacements
assigned to portions of granular materials.

6.2 On-going work status and Future work

There are some numerical limitations with the actual MPM code developed. First,
the explicit time integration algorithm used restricts the analysis of long time cases
which is a determining factor to analyse creeping behaviour of landslides. To solve
such limitation, implicit time integration schemes will be explored as well as the
combination of alternative numerical techniques (as FEM) to explore the coupling
of creeping phase and rapid motion within MPM.

In addition, the dynamic MPM formulation needs additional stabilization tech-
niques to avoid the oscillations that are present even when the stable solution
is reached. Including local damping and smoothing techniques may improve the
solution.

On the other hand, regarding localization of shear strains, the thesis faces the
dependence of the problem with the shear band thickness. The solution proposed
in the thesis to approximate the real thickness of shearing bands will be explored
in more detail in the future by means of other regularization techniques such as
non-local formulations.

In particular, limitations mentioned above should be overcome in order to be able

to simulate problems of landslides covering creeping behaviour and thermally
induced rapid motions.
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APPENDIX A

MPM CODE STEP BY STEP
ALGORITHM

In this Appendix, the computational cycle of the MPM code is presented step
by step. Detailed information is given for each step. The governing equations
presented in Chapter 4 (balance equation of momentum, heat and mass) are
solved explicitly as boundary value problems using the weighted residual method,
in particular the Galerkin method.

A.1 Computational algorithm

Time integration follows an explicit Euler approach. Solid acceleration, increment
of temperature, liquid pressure and stress at time *1¢=Ft + At are calculated as
a function of the variables evaluated at the previous time step.

The computational algorithm consists of the steps indicated below:
1. For time step %¢: definition of the computational mesh and initial material
properties, initialization of variables at material points such as the initial

position Oxp at the Gauss points, volume OVP, mass my, velocity Ovp, stress
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chp, temperature 09p, liquid pressure %p L, and embedded band variables and
assignation of constitutive properties and history variables.

2. For time step ¥t: calculation of the shape functions and their gradient asso-
ciated to nodes evaluated at the position of particles:
NP = N (M) (A.1)

(VNP) = VN (Fxy) (A.2)

3. Calculation of the lumped mass matrix and lumped volume matrix:
Np
Fm; = Z mpk'Nf’ (A.3)
p=1

4. Calculation of internal forces at nodes using element-wise stress averaging
(Zabala, 2010; Zabala and Alonso, 2011) and using selective reduced inte-
gration strategy:

N,
= Zk (VNP) - Fa, k’:f "V (A.4)
l

p=1 €

5. Calculation of body forces at nodes:

NP
"b; = Zmpgszp (A.5)
i=1
6. Calculation of external forces at nodes:

b port _ / NP KRaT, + b, (A.6)
It

7. Calculation of the increment of momentum at nodes:
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FELA (mav) = F AL =R AL (A.7)

8. Update of the position, velocity and acceleration of material points:

My, =Fx, + T > [k (miv;) + A (mivi)}ka (A.8)
ti=1
1 Nn
My, =Fv, + e Z {kHA (mivi)}kNip (A.9)
vi=1
Nn
k:-i—la _ 1 Z [k—l—lA (mv)}kNp (A 10)
P kmiAt P A i .

9. Update of the nodal velocities following the Modified Update Stress Last
(MUSL) (Sulsky et al., 1994):

Np
R (myvy) = Z mpkvakNip (A.11)
p=1

This step is required to avoid divisions by a shape function which may in-
volve numerical problems when a particle is near to a node. For a discussion
on this, the readers are referred to Zhang et al. (2017).

10. Calculation of strain increment using reduced integration strategy and up-
date of the strain tensor at particles:

Nn k+1A (kNZp) m;Vv;

FAe, = ALY P (A.12)
i=1 ¢
e, =Fe, + FH1Ag, (A.13)

11. Map temperature from material points to nodes:
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1 X
"0; = - Q:mp’fepkzvf (A.14)
’Lp:1

12. Calculation to the Fourier’s heat flow associated to material points:

=-T Z (VNP)* (A.15)

13. Map liquid pressure in material points to nodes:

Z mpkapkNip (A.16)

14. Calculation of gradient of liquid pressure associated to material points:

Ny,
"Wpr, =Y VNFpy, (A.17)
=1

15. Calculation of Darcy’s flow:

k
Qp = o <kVPLp + PLkbp + PLkaSp) (A.18)

16. Calculation of temperature increment at nodes:

N,
A = oty [f M(VNP)Fqn, ARV, — [ FNFg,AtdT+
m [ p:1 th
N,
ZP Puca 0% (VNPYEquAtV, — [ pucy 0P NFGL AT (A.19)
FqL
N
S (pe), ENPROF A o BV, + z NPy (*0, —’%)J)Vl

p=1
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17. Update temperature at material points:

Nn
16, =6, + > FTIAGFNP
i=1

18. Calculation of liquid pressure increment at nodes:

Np
k—HApL,' = %‘/z lQ Zl kNZp (/Bk+1A‘9p + k—HAefuolp)k‘/p + f kNi(?LAtqu_
p:

r
NP NP ’
S, FUNE auAtV, + 5 NPy (P, — i)
p=1 p=1
(A.20)
19. Update pore pressure at material points:
Nn
pre =" pr, +> T ApLFN? (A.21)
i=1
20. Calculation of effective and total stress increment at particles:
1A, =FD - M Ag, (A.22)
MlAo, = 1A, + 1 Ap,, (A.23)
21. Update total stress:
k+10_/p — ko_/p + k+1AO_/p (A24)
22. Calculation of temperature and liquid pressure at joints:
k+1 A nJ k kgJ Lrey k1 & .p
A0 = At (g (*op —"0p) + Tt ) (A.25)
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FAp], = QBFA0L — Aty (*pr, — ) (A.26)

23. Update properties such as porosity, liquid density and porosity dependent
variables.

24. Go to step 2 for a new time step calculation.

100




NOMENCLATURE

D()

NN
)
E\.N
<

23 33

F

acceleration of liquid

acceleration of liquid with respect to the solid particles
acceleration vector at time ¢tk + 1 of the numerical particles p
reference area for interaction between band and matrix
acceleration of solid particles

body forces

strain matrix at time k at position of the numerical particle p
effective cohesion

specific heat of liquid

specific heat of solid

tangent matrix

material derivative with respect the time

half thickness of the shear band

ij component of the deviatoric part of the plastic strain tensor
local flow rate of liquid per unit of volume and time
local flow rate of energy per unit of volume and time
heat rate per unit of volume

heat rate per unit volume at embedded shear bands
height of samples 1 and 2 respectively

intrinsic permeability

permeability

sample lenth

horizontal and vertical lengths of the element

matrix of elements m;; = d;;

mass of the mesh element

oedometric compressibility coefficient

porosity

Standard shape functions

Total number of nodes of the support mesh
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NOMENCLATURE

utk—&-l

tk+1
Vp |
W1, Wy

tht1
Xp

Total number of numerical particles

liquid pressure

reference liquid pressure

liquid pressure at embedded shear bands

liquid pressure at matrix

heat flow conduction

darcy flow rate

time

velocity

volume of the mesh element

displacement vector increments

displacement vector of node j at time ¢

displacement vector inc. time tk + 1 of numerical particle p
displacement vector inc. at time ¢ of numerical particle p
velocity vector at time tk 4 1 of numerical particle p
mechanical work rate per unit of volume of samples
position vector at time tk + 1 of numerical particles p
liquid phase compressibility

volumetric thermal expansion coefficient for the mixture
volumetric thermal expansion coefficient for liquid
volumetric thermal expansion coefficient for solid
displacement rate

kronecker delta

partial derivative with respect to time

increment of the deviatoric strain invariant at different times
strain increment at time tk + 1 of numerical particles p
deviatoric component of the strain increment

time elapsed between two successive digital images
plastic strain rate tensor

accumulated strain at time tk 4+ 1 of numerical particles p
effective friction angle

fourier’s thermal conduction coefficient

specific weight of liquid

shear strain rate of samples 1 and 2 respectively

shape factor controlling strength softening

liquid viscosity

temperature

reference temperature
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J/(m-s-°C)
N/m?
1/s

Pa-s
°C
°C



Cj» My

temperature at embedded shear bands
temperature at matrix

density of the mixture

specific heat of the mixture

liquid density

liquid density at reference liquid pressure and temperature
solid density

solid density at reference temperature
cauchy total stress tensor

cauchy effective stress tensor

total normal stress

final shear strength

energy transfer coefficient

liquid transfer coefficient

local coordinates of node j

divergence vector operator
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°C

°C

kg/m?
J/(m3-°C)
kg/m3
kg/m3
kg/m3
kg/m3

Pa

Pa

Pa
kg/(m?-s-Pa)
J/(m?s.°C)

1/m
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