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Abstract
Brain activity during rest exhibits a robust intrinsic spatio-temporal struc-
ture characterized by correlated patterns of neural activity. The study of
the brain in altered states of vigilance or drug-induced brain states has re-
vealed a number of local and global alterations of this activity and changes
in the spatio-temporal correlation patterns. Yet, we are still missing a
mechanistic explanation of the dynamics underlying these experimentally
observed phenomena. In this thesis we will use whole-brain computational
modeling to try to elucidate the dynamical processes governing these dis-
tinct brain states. We will show how models of whole-brain activity and
dynamical alterations thereof on a local level can be applied to efficiently
dissociate between different brain states by their dynamical properties and
how they therefore provide a mechanistic characterization of each state. We
will demonstrate that one unified framework can account for an effective de-
scription and identification of several entirely distinct brain states.
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Resumen
La actividad cerebral en reposo presenta una estructura espacio-temporal
intŕınseca robusta caracterizada por patrones de actividad neuronal cor-
relacionados. El estudio del cerebro en estados alterados de conciencia o
estados bajo influencia de drogas ha revelado alteraciones locales y glob-
ales de esta actividad aśı como cambios en los patrones de correlación. Sin
embargo, los mecanismos de la dinámica subyacente no han sido revela-
dos del todo. En esta disertación se aplicarán modelos computacionales
de actividad cerebral a gran escala para intentar a esclarecer los procesos
dinámicos que dominan dichos estados cerebrales. Se mostrará cómo las
alteraciones de las dinámicas locales pueden ser aplicadas para diferenciar
estados cerebrales distintos aśı como para proporcionar una caracterización
mecańıstica de cada estado. Finalmente, se revelará como un único marco
teórico puede ser utilizado para describir e identificar de manera efectiva
estados cerebrales completamente diferentes.
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Preface

Understanding the functioning of the brain has intrigued numerous
thinkers, philosophers and scientists throughout the past few thousand
years. The study of the brain and the nervous system requires a multi-
disciplinary approach, which is why originally researchers from different
fields, such as philosophy, psychology, medicine, biology, chemistry and
physics, dedicated themselves to the understanding of brain function. It
was not until recently in the 20th century that neuroscience became a
unified academic discipline. In the past decades neuroscientific research
has revealed a lot about brain function and the structure it is based on
extending from a molecular point of view to a whole-brain level. Albeit
the enormous amount of information we have at hand nowadays, there still
remains much to be discovered. Recent advances in technology have had
a huge impact on the better understanding of brain functioning, such as
measuring the nervous system’s electrical activity or advanced functional
neuroimaging methods like magnetoencephalography (MEG) or functional
magnetic resonance imaging (fMRI). With these techniques we have gained
a huge amount of valuable knowledge especially on meso- and macroscopic
brain functioning and organization. One of the most fascinating discoveries
of the last decades has probably been the finding that the brain manifests
correlated activity patterns even in the absence of any kind of task or
stimulus – a feature which was formerly thought to be inherent to task
activated brain activity only. This discovery changed the rationale about
how the brain works as a complex system entirely. Perhaps an even more
fascinating question to investigate though is, what happens in the brain
during altered states of consciousness or vigilance, distinct from the before
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xii preface

mentioned resting-state. A lot of research has been performed in recent
years trying to answer this question mainly focusing on experimentally
identifiable changes such as alterations in neuronal activity or correlation
patterns. Yet, there still exist no clear mechanistic explanations of these
experimental observations. To understand the underlying processes causing
these specific alterations from a dynamical point of view, one has to go
beyond the pure analysis of experimental data. Computational models
of brain activity are one way of exploring the dynamical principles that
govern local and global brain function and changes thereof in different
brain states. This dissertation is dedicated to the deeper understanding of
the mechanisms and dynamical processes underlying the changes in neu-
ral activity and functional correlation patterns in distinct states of the brain.

In Chapter 1 we will introduce the characteristics of the brain states
we will work with in this thesis, namely resting-state, states of reduced
vigilance such as sleep and anesthesia and the psychedelic brain state.
We will discuss previous findings in these different fields and introduce
computational brain models as imperative for the deeper understanding
of the experimental results. To this aim, we will introduce a specific
whole-brain computational model which will be used as a global framework
to explore the underlying brain dynamics in different states throughout the
whole thesis. Additionally we will talk about the characterization of global
brain dynamics through external brain perturbation, an approach we will
focus on in Chapters 3 and 4.

Chapters 2 and 3 of this thesis are dedicated to elucidating the underlying
mechanisms governing brain activity during deep sleep, where we will
show how computational brain modeling can provide new insights into
the global differences between a state of low vigilance and wakeful rest
from a dynamical systems point of view. In Chapter 3 we will introduce a
novel methodology for investigating the dynamical stability and complexity
of distinct brain states by applying a perturbative approach based on
a whole-brain computational model simulating external perturbations of
local brain activity.

This concept will be further applied to elucidate the inherent pro-
cesses and mechanisms dominating the psychedelic brain state after the
intake of hallucinogenic drugs, which will be explored in detail in Chapter 4.
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In Chapter 5 we will finally discuss all the results obtained in the previous
chapters in detail and try to put them into a global unifying perspective.
We will furthermore consider the limitations of the studies presented in this
dissertation, but as well underline the contributions to the understanding
of global and local brain function in different brain states obtained through
the work in this thesis.
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Chapter 1

Introduction – The brain in
different states

Whether we are performing a specific task, or whether we are resting
and thus not doing anything in particular, whether we are asleep or
even anesthetized, or whether we are under the influence of intoxicating
substances such as alcohol or drugs, our brain is always active. It is always
active, no matter what state the brain is in. What will change though,
are the spatio-temporal patterns of brain activity and the local or global
dynamics underlying this activity.

Since the beginning of the recording of electrical brain activity introduced
by Richard Caten in 1875 and later made famous with the electroen-
cephalogram (EEG) by Hans Berger in 1929 (Haas, 2003), it has been
demonstrated many times that the brain is continuously active, producing a
rich pattern of spontaneous activity (Biswal et al., 1995; Arieli et al., 1996;
Raichle et al., 2001; Laufs et al., 2003; Leopold et al., 2003; de Pasquale
et al., 2010; Brookes et al., 2011), which changes depending on the state
the brain is in (Alkire and Miller, 2005; Vincent et al., 2007; Horovitz et al.,
2009; Sämann et al., 2011; Boly et al., 2012; Carhart-Harris et al., 2012;
Tagliazucchi et al., 2012a; Carhart-Harris et al., 2014; Tagliazucchi and
Laufs, 2014; Tagliazucchi et al., 2014; Barttfeld et al., 2015; Carhart-Harris
et al., 2016a,b; Tagliazucchi et al., 2016c). These behaviorally different
brain states must also reflect distinct underlying dynamics shaping the
observed changes in measurable brain activity (Hill and Tononi, 2005;
Molaee-Ardekani et al., 2007; Esser et al., 2009; Deco et al., 2011; Cabral

1
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et al., 2014a; Ching and Brown, 2014; Atasoy et al., 2017b). The question
is though, how can these dynamical differences be characterized? How can
we access them? The mere observation of empirically observable alterations
in brain activity in different states does not answer the question of what is
causing these changes.

In this thesis we will present a collection of studies aiming at understanding
the underlying mechanisms and whole-brain dynamics generating these
known modifications in the spatio-temporal patterns of brain activity.
We will show how computational whole-brain modeling can be applied
to explore these underlying dynamics and provide possible mechanistic
explanations of what is causing the activity patterns to change. We will
furthermore introduce a novel framework of in silico model perturbation
of whole-brain dynamics which gives us important new insights into
the characterization of different brain states merely identified by their
dynamical changes.

Before explaining these studies in detail, we will first review the most im-
portant concepts relevant for understanding the various approaches applied
in each of the main chapters.

1.1 The brain at rest

The classic focus of cognitive neuroscience studies has for a long time been
the measurement and localization of brain activity while performing a
certain task (Friston et al., 1998; Cabeza and Nyberg, 2000). The study of
the spontaneous activity of the brain while it is at rest, i.e. not performing
any specific task, not obtaining any visual inputs and not being asleep,
has gained importance only during the past two decades. In 1995 Biswal
et al. (Biswal et al., 1995) laid the ground for the – what could almost be
called – avalanche of studies on the resting-state of the brain that followed
(Raichle et al., 2001; Greicius et al., 2003; Fox et al., 2005; Damoiseaux
et al., 2006; Fox and Raichle, 2007; Mantini et al., 2007; Greicius et al.,
2009; Honey et al., 2009; Van Den Heuvel et al., 2009; Brookes et al.,
2011), by showing that the specific brain areas activated during a certain
task also exhibited correlated fMRI BOLD (blood-oxygen-level dependent)
activity while not performing any task, i.e. during rest (Biswal et al.,
1995) (see Fig. 1.1). With this finding the previously practiced approach
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Figure 1.1: Spontaneous fluctuations resemble task activity. Left: Activated
brain areas in response to a bilateral finger movement task. Right: Spontaneous
BOLD fluctuations during rest. a, b and c were the statistically similar regions in
both brain states, whereas d and e were present only during rest. Figure reproduced
from Biswal et al. (1995).

to take the resting activity as baseline activity or background noise when
analyzing task-induced activations needed to be changed radically (Raichle,
2009b). The observed activity during rest reflects the brain’s global
intrinsic characteristics (Deco et al., 2011) by not being externally driven
or influenced by any kind of task and makes therefore an ideal candidate
to study large-scale brain mechanisms.

The vast majority of resting-state studies in humans have been and are
still performed using non-invasive recording techniques such as fMRI
(Raichle et al., 2001; Fox et al., 2005; Greicius et al., 2009), MEG (Brookes
et al., 2011) and EEG (Mantini et al., 2007). Due to its excellent spatial
resolution and the fact that it primarily represents the activity of the neural
populations of the brain region where it is measured from (Rees et al., 2000;
Logothetis et al., 2001; Attwell and Iadecola, 2002; Shmuel and Leopold,
2008; Schölvinck et al., 2010), fMRI represents an optimal technique for
studying global and local brain activity and especially correlations thereof.
This, on the other hand, is not the case for MEG or EEG, where source
modeling needs to be applied to localize the origins of the measured brain
activity (Baillet and Garnero, 1997; Wolters et al., 2004; Grech et al., 2008).

One of the main tools to investigate resting-state brain dynamics is deter-
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mining the functional connectivity (FC) between distinct brain regions. FC
is defined as the statistical dependence between the time courses of brain
signals originating from different voxels or brain areas. This can be deter-
mined by Pearson correlations, phase synchronizations, covariance, mutual
information or causality measures (Friston et al., 1993). This definition is
based on the assumption that if two separate brain regions show correlated
activity it is very likely that they integrate information together and are
thus participating in the same function or process. This makes it possible
to construct whole-brain networks, also called functional connectomes, and
analyze their topological properties in order to understand connections
between distinct brain areas not only anatomically but also functionally
(Bullmore and Sporns, 2009). For these types of analyses it is convenient
to apply graph theoretical and complex networks tools, representing the
brain architecture as vertices and edges (Sporns et al., 2004; Rubinov and
Sporns, 2010). These methodologies yield important insights about how
distributed networks integrate information in order to be able to execute
complex cognitive functions and processes and furthermore how these
properties change under different brain states or diseases (Sporns, 2013).

One of the main findings in resting-state fMRI research is the spatial organi-
zation of the BOLD signal fluctuations into large-scale networks. These net-
works were termed resting-state networks (RSNs) (Fox et al., 2005; Damoi-
seaux et al., 2006) and consist of groups of brain regions, which display
correlated spontaneous activity, i.e. which are functionally connected, dur-
ing rest. The organization of the brain into distinct networks allows for the
functional integration of spatially segregated information making it possi-
ble to perceive external stimuli, respond to cognitive demands and produce
coordinated movement (Tononi et al., 1992, 1994; Jirsa and Kelso, 2000;
Sporns, 2000). One of the most striking properties of RSNs is the obser-
vation that specific tasks evoke brain activity patterns which resemble the
RSNs (De Luca et al., 2005; Cole et al., 2014; Glasser et al., 2016), thus mak-
ing it possible to study the same connectivity patterns without having to
apply costly task protocols. Furthermore it has been observed by Fox et al.
(2005) that sets of brain areas which showed correlated activity patterns
between each other, anticorrelated with other networks (see Fig. 1.2).

This finding paved the way for the discovery of several functionally relevant
RSNs measured principally with fMRI (Fox et al., 2005; Damoiseaux et al.,
2006; De Luca et al., 2006; Van Den Heuvel et al., 2009), but also MEG/EEG
(Laufs et al., 2003; Mantini et al., 2007; de Pasquale et al., 2010; Brookes
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Figure 1.2: Resting-state functional correlations between a seed region in
the posterior cingulate cortex (PCC) and all other voxels in the brain
(single subject). Both positive and negative correlations can be observed in the
upper panel (threshold at R = 0.3). In the lower panel the BOLD time courses of
the seed region (PCC, yellow), of a positively correlated region in the medial pre-
frontal cortex (MPF, orange) and a negatively correlated region in the intraparietal
sulcus (IPS, blue) is shown. Figure reproduced from Fox et al. (2005).

et al., 2011). The most famous RSN is probably the default mode network
(DMN), a set of regions comprising the bilateral medial and lateral parietal
cortices, the bilateral medial prefrontal cortex, and the bilateral medial and
lateral temporal cortices, which show correlated activity between each other
during rest in the absence of any task, which is why this network is also
called task-negative network (Raichle et al., 2001; Raichle, 2015). The DMN
has been consistently found in humans (Raichle et al., 2001; Damoiseaux
et al., 2006), in non-human primates (Vincent et al., 2007) and also in rats
(Lu et al., 2012; Bettinardi et al., 2015) (see Fig. 1.3).

Other common RSNs, which have been robustly found in several studies,
are the visual, auditory, sensorimotor, salience, attention and executive
control network (Beckmann et al., 2005; Damoiseaux et al., 2006; De
Luca et al., 2006; Mantini et al., 2007; Brookes et al., 2011; Raichle,
2011; Moussa et al., 2012) (see Fig. 1.4). Especially the DMN has been
extensively studied and seems to be involved in many different processes
such as different self-referential operations (Fransson, 2005; Mason et al.,
2007), consciousness of the environment (Fernández-Espejo et al., 2012)
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Figure 1.3: Comparison of the DMN in different mammals (rats, monkeys
and humans). In the three panels the brain regions with increased activity during
rest and light sedation are shown. Figure reproduced from Lu et al. (2012).

and of the self (Spreng and Grady, 2010; Qin and Northoff, 2011), episodic
memory (Desgranges et al., 1998; Cabeza et al., 2002) and information
retrieval (Desgranges et al., 1998; Maguire and Mummery, 1999; Cabeza
et al., 2002). Additionally it seems to play an important role in mental
disorders such as Alzheimer’s disease, autism, schizophrenia, and depres-
sion (Buckner et al., 2008). Furthermore the DMN has been shown to be
modulated in form of within- or between-network changes in correlation
during sleep (Horovitz et al., 2009; Sämann et al., 2011; Tagliazucchi et al.,
2013) and the psychedelic experience provoked by psychedelic drugs such
as psilocybin or LSD (Carhart-Harris et al., 2013; Tagliazucchi et al., 2014;
Carhart-Harris et al., 2016b).

In the next two sections we will introduce the experimentally observable
changes characterizing brain states altered through sleep, anesthesia and
psychedelic drugs, which can be determined using the above described meth-
ods, such as changes in the functional connectome, altered blood flow in
certain brain regions as measured with fMRI and consequently changes in
the neuronal activity (Rees et al., 2000; Logothetis et al., 2001; Attwell
and Iadecola, 2002; Shmuel and Leopold, 2008; Schölvinck et al., 2010), or
variations of the connectivity strength in or between RSNs, just to name a
few.
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Figure 1.4: Major resting-state networks (RSNs). Seven major RSNs ex-
tracted through seed-based spatial coherence from fMRI BOLD signals recorded
during rest. Figure adapted from Raichle (2011).

1.2 Deep sleep and anesthesia

Sleep is a reversible brain state, which differentiates itself from wakefulness
with reduced responsiveness, immobility and a decreased ability to react
to external stimuli (Cirelli and Tononi, 2008). The human sleep cycle is
usually classified into phases of rapid eye movement (REM) and non-REM
(NREM) sleep, which are further sub-divided into N1, N2 and N3 sleep
stages (Iber et al., 2007). These sleep stages are classically characterized
applying EEG based on the occurrence of different EEG events (Carskadon
and Dement, 2005; Léger et al., 2018).

The lightest sleep stage, N1, is defined as a state between wakefulness and
deeper sleep with a usual duration of only a few minutes. In this stage
the electrical brain activity as measured with EEG is characterized by the
disappearance of the alpha rhythm, the most dominant electrical activity
during wakeful rest, and the increased presence of moderate-amplitude
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theta waves (Léger et al., 2018).
The next sleep stage, N2, is marked by the appearance of sleep spindles
(events which last 0.5-1 s characterized by 10-15 Hz waxing and waning
oscillations (Zepelin and Rechtschaffen, 1974)) and K-complexes (delta
waves with a more biphasic shape which often occur together with a spindle
(Steriade and Amzica, 1998; Cash et al., 2009)). With progression of the
sleep depth the appearance of K-complexes and delta waves increases,
leading into sleep stage N3, also called deep sleep or slow-wave sleep (Léger
et al., 2018). Slow-wave sleep is characterized by delta oscillations (1-4 Hz)
and slow oscillations (< 1 Hz), visible in the EEG (Iber et al., 2007). In
the here presented studies we will focus on the deepest sleep stage, N3.

Sleep is characterized by widespread changes in neural network activity.
In the last decades large-scale neural networks have been identified which
are involved in different stages of the human sleep cycle. Decreased neural
activity has been found in frontal and parietal cortices during NREM sleep
(Braun et al., 1997), as well as in other brain areas such as the temporal
cortex, amygdala, hippocampus and hippothalamus (Nofzinger et al.,
2002).
In terms of network neuroscience global and local changes in FC have been
identified in different stages of the human sleep cycle. fMRI recordings
have shown that the FC decreases in fronto-parietal areas during NREM
sleep (Horovitz et al., 2009; Sämann et al., 2011; Boly et al., 2012; Nobili
et al., 2012). In general, it was shown that cortico-cortical FC decreases
significantly during slow-wave sleep (Kaufmann et al., 2005; Horovitz et al.,
2009; Sämann et al., 2011; Spoormaker et al., 2012; Tagliazucchi et al.,
2012a). In a recent study by Tagliazucchi and Laufs (2014) an extensive
whole-brain FC analysis on wakefulness and NREM sleep data divided in
the sleep stages explained above, has been performed, where it was shown
that while FC increases in N1 and N2 with respect to wakefulness, it
drastically decreases in the slow-wave sleep stage (Tagliazucchi and Laufs,
2014) (see Fig. 1.5).

Furthermore it has been demonstrated that the whole-brain functional
connectivity becomes more similar to the anatomical or structural connec-
tivity (SC) during deep sleep as compared to wakefulness (Tagliazucchi
et al., 2016b) (see Fig. 1.6).
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Figure 1.5: Whole-brain functional connectivity patterns for awake and all
3 NREM sleep stages. For each pair of sleep stages the significantly different
functional connections are visualized as a graph and in functional connectivity
matrix form. Figure reproduced from Tagliazucchi and Laufs (2014).

Given the above described global changes of FC during sleep, one would
imagine that higher-order cortical RSNs would vanish with progressing
sleep depth. It has however been shown that – regarding the spatial extent
– the RSNs are generally preserved during all 3 NREM sleep stages and can
still be identified even in the deepest sleep stage (Boly et al., 2008; Horovitz
et al., 2009; Larson-Prior et al., 2009; Boly et al., 2012; Tagliazucchi et al.,
2013) (see Fig. 1.7). These results though concern only the spatial extent of
the RSNs, they do not take into account changes in connectivity strength
within or between networks. In fact, the DMN has been demonstrated
to exhibit altered connectivity strength, especially reduced involvement
of the frontal cortex, a reduced network integrity and altered relations to
other networks (Horovitz et al., 2009; Sämann et al., 2011), underlining yet
again the global changes of spatio-temporal brain activity during reduced
vigilance states.
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Figure 1.6: Increased similarity between functional and anatomical con-
nectivity in deep sleep. Upper panel: schematic representation of anatomical
and functional connectivity during wakefulness and deep sleep. Bottom panel:
regions with weaker anatomical connections between each other show higher prob-
ability of FC decreases during N2 and N3 sleep, whereas for FC increases the oppo-
site is observed. Figure adapted from Tagliazucchi et al. (2016b) and Tagliazucchi
and van Someren (2017).

In addition to changes in neural activity, FC and RSN connectivity during
sleep, combined transcranial magnetic stimulation and EEG (TMS-EEG)
studies, performed by Massimini and colleagues (Massimini et al., 2009;
Ferrarelli et al., 2010; Tononi, 2012; Casali et al., 2013), have shown a
decrease in cortical effective connectivity (EC) during N3 sleep. Effective
connectivity was defined in these studies as the capacity for causal interac-
tion between distinct brain areas in response to an external perturbation
with TMS (Massimini et al., 2005, 2007, 2009; Casali et al., 2013). This
decrease in EC suggests a reduction of the brain’s capability to integrate
information on a global level accompanied by a limited communication be-
tween different brain areas and a lowered capability of the brain to amplify
local stimuli. These findings are also in agreement with leading theories of
consciousness, which hypothesize that the capacity of the brain to integrate
information corresponds to a conscious brain state and that consciousness



1.2. deep sleep and anesthesia 11

Figure 1.7: RSN topographies are preserved during NREM sleep. Default
mode, dorsal attention, executive control, visual, sensorimotor and auditory RSN
extracted from fMRI BOLD data recorded during wakefulness and all 3 NREM
sleep stages. Figure adapted from Tagliazucchi and van Someren (2017).
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requires effective communication between different brain regions, which
has been shown to be impaired during states of unconsciousness (Dehaene
et al., 1998; Tononi et al., 1998; Alkire et al., 2008; Dehaene et al., 2014).

To put the changes in brain activity during sleep in a more general concept
of alterations of activity in reduced vigilance states, we will additionally
quickly review the anesthetized brain state. General anesthesia introduces
a state of temporary loss of awareness or consciousness. At low doses,
anesthetics first provoke a state similar to drunkenness with a decrease in
focused attention and working memory, amnesia, depersonalization and
increased sleepiness (Alkire et al., 2008; Hudetz, 2012). With the increase
of the anesthetic dose autonomic reflexes are suppressed (Hudetz, 2012)
and at an even higher dose the brain activity decreases until its complete
suppression, which would be one of the criteria indicating brain death
(Wijdicks, 2001).

One of the main alterations in brain activity during general anesthesia is
a global decrease in the cerebral metabolic rate and the cerebral blood
flow (Alkire et al., 1995), with especially large effects in the thalamus
(Alkire et al., 2008), the cuneus, precuneus, and posterior cingulate and
retrosplenial cortex (Fiset et al., 1999) as well as in the frontal cortex
(Veselis et al., 2004).
Further, brain connectivity changes under the influence of anesthetics:
it has been found that thalamocortical and cortico-cortical interactions
are impaired during anesthesia, showing disrupted functional connectivity
within fronto-parietal areas and between fronto-parietal areas and the
thalamus (Alkire and Miller, 2005). A recent study by Barttfeld et al.
(2015) demonstrated in anesthetized non-human primates that FC de-
creases globally with the depth of anesthesia (see Fig. 1.8) and that with
progressing depth of anesthesia the FC becomes more similar to the under-
lying anatomical activity. A similar result was also described by Vincent
et al. (2007), where the coherent spontaneous fluctuations of resting-state
activity was analyzed in anesthetized monkeys, and where it was shown
that the spontaneous correlation patterns during anesthesia highly correlate
with the anatomical connections (see Fig. 1.9) The described disruption of
cerebral connectivity indicates a reduction of the brain’s ability to integrate
information (Bonhomme et al., 2011), characteristic for an unconscious
brain state (Dehaene et al., 1998; Tononi et al., 1998; Alkire et al., 2008;
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Figure 1.8: Functional connectivity for different vigilance states. Average
functional connectivity matrices for each of the 3 vigilance conditions. Figure
adapted from Barttfeld et al. (2015).

Figure 1.9: Coherent spontaneous BOLD fluctuations resemble task-
evoked responses and anatomical connectivity. a. BOLD correlation map
within the oculomotor system during anesthesia. b. Activation pattern evoked by
a saccadic eye movement task. c. Density of cells labeled by retrograde tracer
injections into the right lateral intraparietal area. Figure reproduced from Vincent
et al. (2007).

Dehaene et al., 2014).

On an RSN level, it was demonstrated by Vincent et al. (2007) that robust
RSNs (somatomotor, oculomotor, visual and DMN) were retained during
anesthesia, but leaving the doubt if these networks were altered in con-
nectivity strength with respect to wakefulness. Other studies focusing on
the DMN, which in analyzing consciousness is of great interest because of
its theorized role in self-referential operations (Buckner and Carroll, 2007;
Buckner et al., 2008), consciousness of the environment (Fernández-Espejo
et al., 2012) and of the self (Spreng and Grady, 2010), have shown that
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FC was reduced in the posterior cingulate cortex (one of the main hubs of
the DMN) (Greicius et al., 2008). Deshpande et al. (2010) on the other
hand demonstrated that FC was globally reduced across the entire DMN.
Furthermore it has been found that other higher-order RSNs, such as
the external control network and the salience network, disconnected from
the thalamus during anesthesia (Boveroux et al., 2010; Liu et al., 2012;
Guldenmund et al., 2013) and the external control network showed also
reduced activity in anesthesia (Boveroux et al., 2010). On the other hand
lower-order RSNs, such as the auditory, sensorimotor and visual networks,
were not affected from correlation decreases (Boveroux et al., 2010).

It is evident that both states of reduced vigilance – deep sleep and anes-
thesia – have lots of traits and characteristics in common, such as reduced
neuronal activity, changes in global FC, connectivity alterations within and
between RSNs and also a reduction of the capacity of the brain to inte-
grate information, which is why these distinct brain states are often named
together when talking about reduced vigilance or unconsciousness. In this
thesis, in the Chapters 2 and 3, we will focus on the human brain dur-
ing deep sleep, trying to find a mechanistic explanation of the discussed
characteristic changes in brain activity and connectivity.

1.3 The psychedelic state

The usage of serotonergic hallucinogens in distinct human cultures all over
the world – principally for ritual and therapeutic purposes – is a very
ancient one (Grinspoon and Bakalar, 1979; Schultes et al., 1992). Classic
examples of hallucinogens are lysergic acid diethylamide (LSD), mescaline
(present in the peyote cactus), psilocybin (the hallucinogenic component of
the so called “magic mushrooms”) and ayahuasca, a psychedelic beverage
traditionally used by Amazonian Amerindians (Schultes et al., 1992; Labate
and Cavnar, 2011; Labate and Jungaberle, 2011; Labate and Cavnar, 2014;
McKenna and Riba, 2016). These drugs have in common that they
produce a hallucinogenic effect on the human brain, including alterations
of perceptions, mood, cognition and awareness (dos Santos et al., 2016).
In this section we will mainly focus on the altering effects on the brain of
LSD.



1.3. the psychedelic state 15

Studies on the effects on the brain of psychedelic drugs, especially lysergic
acid diethylamide (LSD), but also psilocybin, have increased drastically
within the past few years. LSD is a strong psychoactive drug, which was
first synthesized in 1938 by Albert Hofmann, who discovered its psycho-
logical effects later in 1943 (Hofmann, 1980). In the 1950s and 1960s LSD
was widely used by psychologists and psychiatrists for pharmacological
research purposes and clinical applications. In this period the “psychedelic
psychotherapy” was extensively applied on psychiatry patients (Grinspoon
and Bakalar, 1979). Investigations were performed on possible positive
effects of the drug on anxiety associated with terminal cancer, alcoholism,
opioid use disorder and depression (Passie et al., 2008). In the late 1960s,
though, research on LSD came to a halt due to the prohibition of its use
because of its widespread recreational use by the 1960s youth culture.
In the past few years we have witnessed a revival of clinical, pharmaco-
logical and neuroimaging research studies performed on psychedelic drugs,
mainly on LSD and psilocybin (Carhart-Harris et al., 2012, 2013; Muthuku-
maraswamy et al., 2013; Carhart-Harris et al., 2014; Roseman et al., 2014;
Tagliazucchi et al., 2014; Kaelen et al., 2015; Carhart-Harris et al., 2016a,b;
Kaelen et al., 2016; Tagliazucchi et al., 2016c; Carhart-Harris et al., 2017;
Preller et al., 2017a,b).

From a neuroimaging point of view, Carhart-Harris et al. (2016b) analyzed
fMRI BOLD resting-state data recorded in healthy subjects under the influ-
ence of either LSD or Placebo. They found significantly increased cerebral
blood flow in the visual cortex (see Fig. 1.10), increased resting-state FC
between the primary visual cortex (V1) and various cortical and subcortical
areas and increased FC also in other brain areas, such as the parahippocam-
pal region, the dorsomedial prefrontal cortex and the right dorsolateral pre-
frontal cortex, the ventromedial prefrontal cortex and bilateral caudate and
inferior frontal gyrus.

Furthermore they could demonstrate that subjective ratings of hallucina-
tions were significantly correlated with increases in FC in V1. Another
main finding in this study was the decrease in FC within the DMN, which
was correlated with the subjects’ subjective ratings of “ego dissolution”.
Moreover they observed a within- and between-network decrease of
resting-state FC in several other commonly found RSNs (see Fig. 1.11)
(Carhart-Harris et al., 2016b).
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Figure 1.10: Maps of whole-brain cerebral blood flow in LSD and Placebo
conditions. Visual areas show significantly elevated cerebral blood flow after LSD
intake as compared to Placebo. Figure adapted from Carhart-Harris et al. (2016b).

In another recent study by Tagliazucchi et al. (2016c) the effects of LSD
on global and local changes in resting-state FC using fMRI BOLD data
recorded in a group of healthy participants having been administered either
LSD or Placebo have been analyzed. They have shown that after intake of
LSD the global FC increased significantly in the thalamus and in high-level
association cortices (see Fig. 1.12) and also the communication between
association and sensory cortices was increased (see Fig. 1.13). Moreover,
the authors demonstrated that the increases in global FC correlated with
subjective reports of “ego dissolution” (Tagliazucchi et al., 2016c).

Brain connectivity related changes of the LSD experience have also been
studied in combination with music. It has been shown by Kaelen et al.
(2016) that under LSD influence simple and complex hallucinations
increased as well as personal memory recollection. Furthermore LSD
combined with music increased significantly the FC between the parahip-
pocampal cortex and V1, the left anterior insula and the left inferiorfrontal
cortex (Kaelen et al., 2016). In another study Kaelen et al. (2015)
showed that LSD enhances the emotional response to music, producing



1.3. the psychedelic state 17

Figure 1.11: LSD provoked changes in resting-state network integrity,
cerebral blood flow, signal variance and segregation. A. Mean percentage
differences (+SEM) in cerebral blood flow, integrity (within-network FC) and sig-
nal variance in different RSNs after LSD intake relative to Placebo (red asterisks
represent statistical significance). B. RSN segregation (between-network FC) un-
der LSD as compared to Placebo. In the first two matrices positive strength of
FC between a pair of different RSNs is indicated in red, negative strength in blue.
In the matrix on the right the differences in covariance (t values) between the two
conditions are shown: red = reduced segregation, blue = increased segregation un-
der LSD (white asterisks indicate significant differences). Figure reproduced from
Carhart-Harris et al. (2016b).
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Figure 1.12: FC increases under LSD. Significant increases of FC after LSD
intake as compared to Placebo primarily in frontal, parietal, and inferior temporal
cortices, and in the bilateral thalamus. Outlines of the frontoparietal, salience,
and default-mode RSNs are visualized on top of the map. Figure adapted from
Tagliazucchi et al. (2016c).

intensified feelings of wonder and transcendence with respect to Placebo
intake combined with music, making it therefore an important element in
psychedelic-assisted psychotherapy (Kaelen et al., 2015). Yet another very
recent study by Preller et al. (2017a) found that previously meaningless or
neutral music excerpts were rated more meaningful after LSD intake by
healthy participants, demonstrating that LSD assigned meaning to stimuli
which were previously meaningless (Preller et al., 2017a).

Similar results have been found in studies applying psilocybin: In an fMRI
BOLD study by Carhart-Harris et al. (2013), resting-state network and
thalamocortical FC was analyzed under the influence of psilocybin, where
it was shown that the FC between the DMN and the salience network, the
right frontoparietal network and the auditory network were significantly
increased, whereas thalamocortical FC did not show any significant changes
(Carhart-Harris et al., 2013). In another study by Tagliazucchi et al. (2014)
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Figure 1.13: Between-network FC increases under LSD. Representation of a
seed-based correlation analysis based on 4 seeds taken from the map of significant
FC increases (see Fig. 1.12) (seed areas in left column). The three right columns
show the maps of significantly higher connectivity with the seed regions. These
increases overlap with four RSNs: sensorimotor (SM), auditory (Aud), visual me-
dial (Vis M) and visual lateral (Vis L) (outlines visualized on top of the FC maps).
Figure reproduced from Tagliazucchi et al. (2016c).
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it was demonstrated that under psilocybin the variability of BOLD signal
variance and total spectral power was significantly increased in the anterior
cingulate cortex and bilateral hippocampi. Furthermore they showed that
psilocybin provoked widespread decreases in low frequency power (0.01-0.1
Hz) in frontal and parietal regions, which correspond to higher-level
association networks. Moreover, they found an increase in entropy of the
dynamical FC states suggesting an expanded repertoire of connectivity
states under the influence of psilocybin (Tagliazucchi et al., 2014)

All these results suggest that psychedelic drugs have profound effects on
global brain function, whose underlying dynamics have still to be elucidated.
So far, very little work has been done on what is causing these experimen-
tally observable changes in global and local brain activity and connectivity.
Chapter 4 will be dedicated to analyzing the underlying mechanisms of the
psychedelic brain state.

1.4 The need for computational brain models

In the last sections we have discussed some experimentally observed phe-
nomena regarding differences between distinct brain states, such as changes
in global and local brain activity, FC, RSN connectivity and effective
connectivity. The goal of this thesis is to find a possible explanation of the
underlying mechanisms causing these emergent properties to change, and to
understand the whole-brain dynamics which they are based on. This is why
we need other approaches with more than only the descriptive data anal-
ysis perspective, as sophisticated or complex these analysis methods may be.

The main idea is the application of mathematical modeling to simulate the
functional characteristics of the empirically observed data to gain insights
into the underlying dynamical properties of the system as a whole during
a particular brain state. The main advantage of modeling is the fact that
we know exactly the underlying conditions which the model is based on
and can such tune them and modify them in order to obtain an optimal
representation of the experimental data while having total control over the
dynamics producing these representations.

Computational brain models can simulate the brain activity on different
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levels depending on the model which is applied: microscopic models, which
simulate the activity of synapses or individual neurons, mesoscopic brain
model, such as neural-mass models simulating the emergent behavior of
groups of neurons as measured with local field potentials (LFPs) and
macroscopic models, like neural field models, simulating the whole-brain
dynamics and interactions between different brain regions, as measured
with fMRI, EEG or MEG (Deco et al., 2008; Breakspear, 2017). Within the
context of this work we will focus on models representing the macroscopic
scale, since in the three studies presented in this thesis our goal is to explain
large-scale whole-brain mechanisms emerging from interactions between
different cortical and subcortical brain regions measured with fMRI. These
models are less complex in the sense that they have a reduced parameter
space to explore. Large-scale whole-brain models simulate the activity of
large neuronal populations making it possible to reproduce fMRI (Ghosh
et al., 2008; Deco et al., 2009; Honey et al., 2009; Cabral et al., 2011;
Deco and Jirsa, 2012), MEG (Cabral et al., 2014b; Nakagawa et al., 2014),
or EEG signals (Hindriks et al., 2014). In these types of models each
brain area is representing a node which is connected to the other nodes
by the underlying anatomical connectivity, which has been empirically
obtained beforehand. The whole-brain anatomical connectivity or also
called structural connectivity is usually based on tract-tracing or diffusion
tractography techniques, where diffusion tensor imaging (DTI) (Basser
et al., 1994; Le Bihan and Iima, 2015) or diffusion spectrum imaging
(DSI) (Wedeen et al., 2005; Fillard et al., 2011) is used to track the fiber
tracts in the brain through the direction of the diffusion of water molecules1.

With the information of the anatomical connections at hand, a global model
is built simulating the activity in each brain node, which are connected
between each other through the underlying structural connections. The
simulated brain activity thus emerges from the anatomical connectivity
and the dynamics the applied model is based on, and can then be used
to perform all kinds of analyses, while being treated the same way as
experimental data. In order to be able to compare the simulated activity to

1Obtaining the anatomical connections between different brain regions using DTI/DSI
fiber tracking or tract tracing is a well established method, of which in this thesis the
resulting structural connectivity matrix is only used as a tool for basing the whole-brain
computational models on. It would be out of scope of this introduction going into a
detailed explanation of the methods and procedures applied to obtain the anatomical
connections. See e.g. Mori and van Zijl (2002), Hagmann et al. (2006) or Dell’Acqua and
Catani (2012) for more detailed explanations of the method.
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the recorded activity, the model needs to be adapted to the experimental
data by fitting some characteristic feature, which describes best the state or
condition one is interested in (Deco et al., 2009; Honey et al., 2009; Cabral
et al., 2011; Deco et al., 2011). Very often, the global FC matrix is used for
fitting the simulated to the experimental data. This is done by tuning the
free model parameters such that the model becomes an optimized represen-
tation of the empirical data. How well the final encountered representation
fits the underlying data is determined by the capabilities of the model itself.

Whole-brain computational models can help us on one hand to investigate
the large-scale dynamics characterizing different brain states and hence
bring us one step further to understand their underlying mechanisms,
and on the other hand they represent an important tool to elucidate the
connection between anatomical and functional connectivity. In the past
decade there have been major advances in applying large-scale brain models
to whole-brain activity especially as measured during the resting-state
(Honey et al., 2007; Deco et al., 2009; Honey et al., 2009; Knock et al., 2009;
Cabral et al., 2011; Deco and Jirsa, 2012; Deco et al., 2013b; Breakspear,
2017). A major finding discovered through the application of whole-brain
modeling, is the observation that the brain seems to operate at a critical
point during rest, at the edge of a bifurcation representing a transition
point between different dynamical regimes (Deco and Jirsa, 2012; Deco
et al., 2013b, 2017b). At this point the simulated activity was found to
be most similar to the empirically observed features. It is speculated that
this property of being close to criticality serves the brain during rest to
increase its flexibility and to facilitate the exploration of different func-
tional states, i.e. resting-state networks, in order to be able to efficiently
respond to possible external inputs (Deco et al., 2009; Deco and Jirsa, 2012).

The question we want to answer in this thesis is how the system behaves
in brain states different from the resting-state and how these altered states
affect the dynamical regime the brain is working in. Before elaborating on
these topics, we will introduce the large-scale computational brain model
which we have applied in the three main studies explained in Chapters 2, 3
and 4 and another model of which the main model can be seen as an exten-
sion of.
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1.4.1 The Kuramoto model of coupled phase oscillators

The Kuramoto model is a simple, but very powerful model based on a
network of coupled phase oscillators simulating synchronization behavior
of populations of any kind in different natural systems, may these be bio-
logical, physical, chemical or social (Strogatz, 2000; Pikovsky et al., 2003).
This model has reached special attention in the field of neuroscience, since
it has been associated with neural mass models, where it has been shown
by Hoppensteadt and Izhikevich (1997) that the interaction dynamics
between weakly-coupled Kuramoto oscillators and weakly-coupled Wilson-
Cowan oscillators (Wilson and Cowan, 1972, 1973) resemble each other.
Furthermore it has been demonstrated by Schuster and Wagner (1990) that
the Wilson-Cowan model (Deco et al., 2009), a type of neural mass model,
can be reduced to a network of coupled phase oscillators by only taking
into account the phases and not the amplitudes. Cabral et al. (2011) have
then successfully simulated whole-brain dynamics during rest applying
the Kuramoto model of coupled phase oscillators by approximating the
above described reduction of the Wilson-Cowan model. Some years later,
Ponce-Alvarez et al. (2015a) applied the Kuramoto model to simulate the
emergence of transiently synchronized networks between segregated brain
regions.

With the reduction of neural mass models to a model of coupled phase
oscillators, the dynamics of a group of neurons representing a brain node is
exclusively measured by its phase. Kuramoto (1984) demonstrated that a
network of coupled phase oscillators with weak coupling and similar phases
can approximate the long-term behavior of interacting oscillatory systems.
Assuming that we have a network of N brain nodes, which interact with
each other through their phase differences, where the phase of node i (i =
1, . . . , N) is given by ϕi(t), the temporal evolution of each phase can be
represented by the following set of coupled differential equations:

dϕi
dt

= ωi +G
N∑
j=1

Cij sin(ϕj(t)− ϕi(t)) (1.1)

Here ωi is the natural intrinsic frequency of the i-th oscillator, Cij
the N × N -matrix containing the anatomical connections between the
different brain regions and G represents the global coupling strength,
which globally scales the anatomical connections. The global strength
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level of the anatomical coupling is not known a priori, since the fiber
strengths only approximate the effective couplings between different
neuronal populations (Honey et al., 2009). The parameter G is used to
determine the optimal working point of the model, where the simulated
and empirical observations, such as the global FC, are most similar. Two
given oscillators are interacting through the sine of the phase differences,
sin(ϕj −ϕi), which tends to synchronize the oscillators due to the fact that
if one of the oscillators is lagging behind the other one (ϕj −ϕi > 0) it will
speed up, whereas in the opposite case of one oscillator leading the other
(ϕj − ϕi < 0) it will slow down. Thus this model is a very simple, but very
powerful way of simulating synchronization behavior in all kinds of systems.

In the next section we will discuss another computational model, which
has been applied in the three main studies presented in this thesis in the
following chapters. This model can be viewed as an extension of the Ku-
ramoto model, where not only the phases of the oscillators vary, but also
their amplitudes.

1.4.2 The Hopf model

This section is based on and reproduces parts of the Methods-sections of two published
articles: Increased stability and breakdown of brain effective connectivity during slow-wave
sleep: mechanistic insights from whole-brain computational modelling published in Scien-
tific Reports in 2017. Link: https://www.nature.com/articles/s41598-017-04522-x

and Perturbation of whole-brain dynamics in silico reveals mechanistic dif-
ferences between brain states published in NeuroImage in 2018. Link:
https://www.sciencedirect.com/science/article/pii/S1053811917310236 and
one article in preparation for submission: A perturbational approach for characterizing
the dynamics underlying the psychedelic state. Beatrice M. Jobst, Selen Atasoy, Adrián
Ponce-Alvarez, Ana Sanjuán, Leor Roseman, Mendel Kaelen, Robin Carhat-Harris,
Morten L. Kringelbach, Gustavo Deco.

The Hopf computational model applied in neuroscience to simulate whole-
brain resting-state dynamics as measured with fMRI, is quite a novel for-
malism adopted by Deco et al. (2017b) based on the normal form of a su-
percritical Hopf bifurcation (Freyer et al., 2011, 2012). This model has been
recently successfully applied to simulate the network dynamics occurring at
the ultra-slow scale of resting-state fMRI BOLD signal fluctuations (Deco
et al., 2017b; Jobst et al., 2017; Saenger et al., 2017; Deco et al., 2018).
The basic idea behind the application of this model to simulate resting-

https://www.nature.com/articles/s41598-017-04522-x
https://www.sciencedirect.com/science/article/pii/S1053811917310236
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state dynamics is to combine the two main types of neural mass models,
namely oscillatory and asynchronous models, into one (Kringelbach et al.,
2015). In the Hopf model the local dynamics in each brain area are simu-
lated by the normal form of a supercritical Hopf bifurcation, which is able
to describe the transition from noise-induced oscillations to full sustained
oscillations (Kuznetsov, 1998; Deco et al., 2017b) (see Fig. 1.14). When
coupled together using brain network architectures, it has been shown that
the complex interactions between the local Hopf oscillators can replicate
features of brain dynamics observed with electrophysiology (Freyer et al.,
2011, 2012), magnetoencephalography (Deco et al., 2017a), and ultimately
– as mentioned before – fMRI (Deco et al., 2017b; Jobst et al., 2017; Saenger
et al., 2017; Deco et al., 2018).

The model is based on the coupling of the local nodes of the underlying
structural connectivity matrix Cij , obtained through DTI based tractog-
raphy, which contains the fiber densities between all pairs of brain areas.
The dynamics of a given uncoupled node j are represented by the following
complex-valued equation:

dzj
dt

= z(a+ iωj)− z|zj |2 + βηj(t), (1.2)

where zj = ρje
iθj = xj + iyj , ηj(t) is additive Gaussian noise with standard

deviation β, and ωj is the intrinsic node frequency.

The following set of coupled equations represents the dynamics of an un-
coupled node in Cartesian coordinates:

dxj
dt

=
dRe(zj)

dt
=
[
aj − x2j − y2j

]
xj − ωjyj + βηj(t) (1.3)

dyj
dt

=
dIm(zj)

dt
=
[
aj − x2j − y2j

]
yj + ωjxj + βηj(t). (1.4)

This normal form possesses a supercritical Hopf bifurcation at a = 0, mean-
ing that for a > 0 the local dynamics settle into a stable limit cycle, pro-
ducing self-sustained oscillations with frequency fj =

ωj

2π , while for a < 0
the damped oscillations lead the system to a stable fixed point (or focus),
at zj = 0, and, in the presence of noise, noise-induced oscillations are ob-
served.
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Figure 1.14: Construction of the Hopf whole-brain model. A. The whole-
brain model is based on the structural connectivity matrix obtained through trac-
tography of DTI (left) between all the distinct brain nodes. The control param-
eters of the model are adjusted using the FC matrix derived from fMRI BOLD
data (right). B. For the simulation of the local neural masses in each node the
normal form of a Hopf bifurcation is used, where depending on the dynamical
regime the model is in, depending on the bifurcation parameter a (see description
of the model equations), the local model produces a noisy signal (left), an oscilla-
tory signal (right) or – at the bifurcation point – a mix of both (middle). It has
been shown that the resting-state fluctuations are best approximated in the regime
close to the bifurcation, at the border between noisy and oscillatory behavior (Deco
et al., 2017b). Figure reproduced from Deco et al. (2017b).
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In order to simulate the whole-brain dynamics a coupling term is added
which represents the input from node j to node i scaled by the structural
connectivity matrix Cij . The whole-brain dynamics are then described by
the following set of coupled equations:

dxj
dt

=
[
a− x2j − y2j

]
xj − ωjyj +G

∑
i

Cij(xi − xj) + βηj(t) (1.5)

dyj
dt

=
[
a− x2j − y2j

]
yj − ωjxj +G

∑
i

Cij(yi − yj) + βηj(t). (1.6)

As mentioned above, this model can be interpreted as an extension of the
Kuramoto model with amplitude variations, hence the choice of coupling
(xi − xj), which relates to a tendency of synchronization between two
coupled nodes.

Due to the macroscopic nature of the ultra-slow Hopf model considered
herein – which explicitly neglects the contribution of faster neurophysiolog-
ical rhythms – the variable xj directly emulates the ultra-slow dynamics of
the BOLD signal at each node j, without the need to apply a hemodynamic
response function, which is necessary in more detailed models of neuronal
activity (see also Cabral et al. (2017) for a detailed review exposing this
difference between neuronal and large-scale models). The global coupling
parameter G is – as in the Kuramoto model described before – the con-
trol parameter with which the model is adjusted to the dynamical working
region where the simulations optimally fit the empirical data (Deco et al.,
2017b; Jobst et al., 2017; Deco et al., 2018).

1.5 Perturbative studies on the brain

Another way of elucidating the underlying mechanisms of brain functioning,
besides looking at the spontaneous activity patterns arising during rest,
is perturbing the system and evaluating its response. A perturbation
of the system can involve different kinds of procedures, ranging from
task instructions, external stimuli, brain states which differ from the
resting-state, such as those described in the previous sections, artificial
external perturbations such as transcranial magnetic stimulation (TMS)
and deep brain stimulation (DBS), or a combination of more than one of
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these schemes. Here we will mainly focus on artificial external perturbation
methods, since a main part of this thesis is dedicated to the introduction
and application of a novel method for an artificial in silico perturbational
approach based on whole-brain computational modeling helping us to
reveal the dynamical properties underlying different brain states.

Within the last 15 years a number of studies have been performed analyzing
artificial external perturbations of different brain regions applied in com-
bination with whole-brain electrophysiological and neuroimaging methods
to investigate brain function by exploring the dynamical responses to the
perturbations (Massimini et al., 2005; Kringelbach et al., 2007a; Litvak
et al., 2007; Massimini et al., 2009; Ferrarelli et al., 2010; Mohseni et al.,
2012; Casali et al., 2013; Saenger et al., 2017). The artificial perturbations
were provoked with either TMS combined with EEG (Massimini et al.,
2005; Litvak et al., 2007; Massimini et al., 2009; Ferrarelli et al., 2010;
Casali et al., 2013) or DBS combined with MEG (Kringelbach et al., 2007a;
Mohseni et al., 2012) or fMRI (Saenger et al., 2017).

Deep brain stimulation (DBS) is based on the implantation of a so
called DBS pacemaker or neurostimulator in specific brain regions which
electrically stimulates certain brain areas (Kringelbach et al., 2007b).
This technique is mainly used in clinical applications, since it has been
shown to alleviate the symptoms of certain treatment-resistant disor-
ders such as chronic pain (Marchand et al., 2003; Owen et al., 2006),
Parkinson’s disease (Krack et al., 2003; Bittar et al., 2005; Little et al.,
2013), tremor (Koller et al., 1999; Rehncrona et al., 2003), depression
(Mayberg et al., 2005; Schlaepfer et al., 2008) and dystonia (Vidailhet
et al., 2005). But DBS can also be applied to study fundamental brain
function due to its causal and interventional nature by combining it
with non-invasive neuroimaging methods such as MEG, as performed by
Kringelbach et al. (2007a), or recently also with fMRI (Saenger et al., 2017).

Transcranial magnetic stimulation (TMS) on the other hand is a non-
invasive stimulation technique based on the principle of electromagnetic
induction, with which the brain can be stimulated in a noninvasive manner
(Barker et al., 1985; Hallett, 2000). For this technique an induction coil is
placed over the subject’s head while short current pulses are driven through
it, which produces a transient magnetic field inducing an electrical current
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in the tissues of the head, which is strongest at the cortical surface (Litvak
et al., 2007). The activated surface area is usually several square centime-
ters while the depth of the activation is approximately 2-3 cm (Ruohonen
and Ilmoniemi, 1999; Thielscher and Kammer, 2002). One single TMS
pulse is capable of activating contralateral muscles when applied over the
primary motor cortex (Litvak et al., 2007). This perturbational technique
combined with whole-brain neuroimaging or electroencephalography makes
it possible to study global brain function, functional connections and causal
interactions during rest or other brain states by analyzing the dynamical
responses to the perturbations (Massimini et al., 2005, 2009; Ferrarelli
et al., 2010; Casali et al., 2013).

In the highly cited study of Massimini et al. (2005), TMS combined
with high-density EEG was applied to analyze the changes in cortical
information transmission during wakefulness and early non-REM sleep.
The authors investigated how the activation of the premotor area was
transmitted to the rest of the brain and how this transmission changed
under the different brain states. What they found was that during rest after
an initial response at the perturbation site a sequence of waves followed
which propagated to connected cortical areas, while during sleep the initial
response, although being stronger, did not propagate to other areas but was
extinguished immediately at the stimulation site. The authors interpreted
these results as a breakdown of cortical effective connectivity during sleep
in terms of causal interactions between distinct cortical brain regions.

In a later study performed by Ferrarelli et al. (2010), a similar analysis
performed on loss of consciousness (LOC) induced by pharmacologic agents
was performed, where again the EEG responses to TMS were analyzed.
Also here they found more localized activity with shorter duration in the
LOC state as compared to wakefulness.

A few years later Casali et al. (2013) introduced an index – the Per-
turbational Complexity Index (PCI) – to measure the spatio-temporal
propagation of an external perturbation on a whole-brain level, with which
the authors were able to discriminate the level of consciousness on a single
subject level during wakefulness, sleep, anesthesia and minimally conscious
levels. The PCI is based on the level of complexity present in the brain
which is hypothesized to change during different states of consciousness



30 introduction

(Tononi, 2004; Seth et al., 2008; Boly, 2011). It measures the amount of
information contained in the thalamocortical response to a direct pertur-
bation caused by TMS by first localizing the significant electromagnetic
sources of the EEG activity and then applying the Lempel-Ziv complexity
measure to the binary matrix of sources (matrix dimensions in space and
time). With this index the information content of cortico-cortical causal
interactions in response to an external perturbation is measured (Casali
et al., 2013).

In this thesis, in Chapters 3 and 4, we will introduce a novel method of in
silico model perturbation, which can be seen as complementary to the works
performed by Massimini and colleagues just described. With this novel
approach the recovery after the offset of a long-lasting model perturbation
is measured, which will be applied to distinguish and characterize different
brain states. The perturbation used in this approach is simulated through
a computational model by strongly deviating the local node dynamics
at the perturbation site from the basal activity, determined through the
experimental data, into another dynamical regime, unnatural to its normal
behavior. Consequently, the recovery from this perturbation is measured
applying a novel index, the Perturbative Integration Latency Index (PILI)
over a large number of trials, only possible in a computational model. An
important difference to the previously described perturbation procedures
by Massimini and colleagues is the fact that with this new approach we
measure the recovery characteristics of the system after the offset of the
perturbation, not the dynamical reaction to the perturbation itself.
With this concept of in silico perturbation as compared to experimental
in vivo perturbation protocols, the main advantage is the fact that there
are no ethical implications or guidelines to follow as for example with DBS
(Siebner et al., 2009; Clausen, 2010; Kringelbach and Aziz, 2011), while
also being much simpler and much less expensive to perform. Furthermore
it is possible to stimulate different brain nodes singularly or even several
nodes at a time with strong, long-lasting unnatural perturbations, which
can be repeated over large amounts of trials, which is all not feasible in in
vivo perturbations with TMS or DBS.

A detailed description of this novel method and its application on different
brain states will be presented in Chapters 3 and 4.
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So far in this introduction we have discussed the functionally relevant
differences of distinct brain states when compared to the spontaneous
resting brain activity. We have seen that the changes under altered brain
states range from alterations in global and local brain activity, functional
connectivity, RSN connectivity and effective connectivity. We have also
introduced concepts and methods to elucidate the underlying mechanisms
and dynamics governing these changes under different brain states. In the
following chapters we will elaborate carefully on all of these topics, ranging
from the underlying dynamics of slow-wave sleep to an LSD influenced
state applying whole-brain modeling and in silico perturbation. Chapters 2
and 3 contain already published work which can be found under the
following links:

Chapter 2: Increased stability and breakdown of brain effective con-
nectivity during slow-wave sleep: mechanistic insights from whole-brain
computational modelling published in Scientific Reports in 2017. Link:
https://www.nature.com/articles/s41598-017-04522-x.

Chapter 3: Perturbation of whole-brain dynamics in silico reveals mech-
anistic differences between brain states published in NeuroImage in
2018. Link: https://www.sciencedirect.com/science/article/pii/

S1053811917310236.

Chapter 4 on the other hand is being prepared for submission under the title:
A perturbational approach for characterizing the dynamics underlying the
psychedelic state. Beatrice M. Jobst, Selen Atasoy, Adrián Ponce-Alvarez,
Ana Sanjuán, Leor Roseman, Mendel Kaelen, Robin Carhat-Harris, Morten
L. Kringelbach, Gustavo Deco.

https://www.nature.com/articles/s41598-017-04522-x
https://www.sciencedirect.com/science/article/pii/S1053811917310236
https://www.sciencedirect.com/science/article/pii/S1053811917310236




Chapter 2

The underlying brain dynamics
of slow-wave sleep

This chapter contains published work which can be found in: Increased stability and
breakdown of brain effective connectivity during slow-wave sleep: mechanistic insights
from whole-brain computational modelling published in Scientific Reports in 2017. Link:
https://www.nature.com/articles/s41598-017-04522-x.

Recent research has found that the human sleep cycle is characterized by
changes in spatio-temporal patterns of brain activity. Yet, we are still miss-
ing a mechanistic explanation of the local neuronal dynamics underlying
these changes. We used whole-brain computational modeling to study the
differences in global brain functional connectivity and synchrony of fMRI
activity in healthy humans during wakefulness and slow-wave sleep. We
applied a whole-brain model based on the normal form of a supercritical
Hopf bifurcation and studied the dynamical changes when adapting the bi-
furcation parameter for all brain nodes to best match wakefulness and slow-
wave sleep. Furthermore, we analyzed differences in effective connectivity
between the two states. In addition to significant changes in functional
connectivity, synchrony and metastability, this analysis revealed a signif-
icant shift of the global dynamic working point of brain dynamics, from
the edge of the transition between damped to sustained oscillations during
wakefulness, to a stable focus during slow-wave sleep. Moreover, we identi-
fied a significant global decrease in effective interactions during slow-wave
sleep. These results suggest a possible mechanism for the empirical func-
tional changes observed during slow-wave sleep, namely a global shift of the
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brain’s dynamic working point leading to increased stability and decreased
effective connectivity.

2.1 Introduction

One of the great challenges in neuroscience is to understand the underlying
mechanisms taking place in different conscious brain states. Sleep is a re-
versible state characterized by unresponsiveness and altered consciousness,
distinguished from wakefulness by a decrease in the ability to interact with
the external world (Cirelli and Tononi, 2008). A long line of sleep research,
using primarily EEG, underlies our current classification of sleep into rapid
eye movement (REM) and non-REM sleep. Current consensus further
sub-divides non-REM sleep into three stages: N1, N2, and N3, where N3 is
often referred to as slow-wave sleep (Iber et al., 2007).

From a behavioral point of view the contrast between sleep and wakefulness
is clear. However, while the EEG shows clear changes between the
two, it is less clear how the brains spatio-temporal dynamics supports
these different behavioral states. From this perspective recent decades
research has improved our understanding of wakefulness in particular,
characterizing the organization of the brain’s spontaneous activity in terms
of correlated activity patterns across different brain regions (as measured
with fMRI), commonly known as ‘resting-state networks’ (Biswal et al.,
1995; Fransson, 2005; Fox and Raichle, 2007; Lee et al., 2012; Smith et al.,
2012). Using ICA and seed-based methods have found that resting-state
networks appear to be preserved during sleep, even during slow-wave sleep
(Boly et al., 2008; Horovitz et al., 2009; Larson-Prior et al., 2009; Boly
et al., 2012; Tagliazucchi et al., 2013). Specifically, the DMN has been
shown to be retained during slow-wave sleep (Tagliazucchi et al., 2013)
albeit with altered connectivity strength and relations to other networks
(Horovitz et al., 2009; Sämann et al., 2011). More generally, slow-wave
sleep is associated with a general decrease of cortico-cortical functional
connectivity (Kaufmann et al., 2005; Horovitz et al., 2009; Sämann et al.,
2011; Spoormaker et al., 2012; Tagliazucchi et al., 2012a), and a diminished
level of information integration (Spoormaker et al., 2010; Boly et al., 2012;
Spoormaker et al., 2012; Tagliazucchi et al., 2013). The repertoire of
functional brain connectivity is constrained by the underlying anatomical
connectivity (Greicius et al., 2009), and the functional connectivity is more
correlated to the anatomical backbone during states of deep sleep and
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anesthesia compared to wakefulness (Barttfeld et al., 2015; Tagliazucchi
et al., 2016b).

Furthermore, combined transcranial magnetic stimulation and electroen-
cephalography (TMS-EEG) studies have shown decreased cortical effective
connectivity during deep sleep, with effective connectivity understood
here as the capacity for a causal interaction in response to an external
perturbation (Massimini et al., 2005, 2007, 2009; Casali et al., 2013).
This result suggests a lowering of the capability of the brain to integrate
information across different cortical areas and a diminished capacity to
amplify local perturbations.
These major alterations during deep sleep suggest a change in collective
brain dynamics compared to wakefulness, raising the challenge of providing
a mechanistic understanding of the empirical observations based on
qualitative changes in the local underlying dynamics of the brain.

To address this problem, we first study the differences between wakefulness
and deep slow-wave sleep by analyzing functional connectivity and phase
synchrony in an fMRI dataset consisting of 18 participants falling asleep in
the scanner. We apply a whole-brain computational model based on the
normal form of a supercritical Hopf bifurcation incorporating underlying
brain dynamics and unfolding over realistic brain anatomical connectivity
(Deco and Kringelbach, 2016). This novel model is able to describe the
transition from a stable focus presenting noisy oscillations to a stable limit
cycle defined by fully sustained oscillations, and can characterize global
brain dynamics in terms of their stability and global coupling. We investi-
gate how these parameters change between wakefulness and slow-wave sleep
by estimating them from the empirical data and identifying the optimal dy-
namic working point of each brain state. Finally, to identify the actual level
of interaction between different brain nodes, we investigate the differences
between the two brain states in terms of their effective connectivity based
on the previously mentioned whole-brain model. This approach allows us to
find a possible underlying mechanism explaining the empirically observed
phenomena.
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2.2 Methods

2.2.1 Experimental data

2.2.1.1 Participants

In this study we included a total of 18 young, healthy consecutive par-
ticipants with data of sufficient quality. Written informed consent was
obtained from all subjects. The experimental protocol was approved by
the local ethics committee ”Ethik-Kommission des Fachbereichs Medizin
der Goethe-Universität Frankfurt am Main, Germany” with the ethics
application title ”Visualisierung von Gehirnzuständen in Schlaf und Wach-
heit zum Verständnis der Abnormitäten bei Epilepsie und Narkolepsie”
and the assigned number: 305/07. The subjects were reimbursed for their
participation. The applied methods were carried out in accordance with
the relevant guidelines and regulations.

Participants entered the scanner in the evening and underwent a resting-
state fMRI session with simultaneous EEG acquisition lasting for 52 min-
utes. Participants were not instructed to fall asleep, but were asked to relax,
close their eyes and not to fight sleep. Lights were dimmed in the scanner
room and subjects were shielded from scanner noise using earplugs. For the
day of the study all participants reported a wake up time between 5:00 AM
and 11:00 AM the night before and a sleep onset time between 10:00 PM
and 2:00 AM. These values remained similar throughout the 6 days prior to
the experiment. All of the 18 participants included in this study (8 females,
mean ± SD age of 23.1± 2.6 years) reached deep sleep (N3) as determined
by sleep staging simultaneously acquired polysomnography data according
to the standard rules of the American Academy of Sleep Medicine (Iber
et al., 2007). For these participants the mean (± SD) durations of con-
tiguous sleep epochs were 12.37± 6.61 minutes for wakefulness, 8.52± 2.83
minutes for N1, 14.69 ± 5.72 minutes for N2 and 16.56 ± 8.39 minutes for
N3. These subjects were part of a larger cohort (63 participants in total, 36
females, mean ± SD age of 23.4±3.3 years). A sub-selection of participants
was necessary in order to obtain comparable stretches of time in each sleep
stage, since only the aforementioned 18 subjects reached N3 sleep. In this
study only wakefulness and deep sleep (N3) were considered.
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2.2.1.2 fMRI and EEG data collection

EEG via a cap (modified BrainCapMR, Easycap, Herrsching, Germany)
was recorded continuously during fMRI acquisition (1505 volumes of
T2*-weighted echo planar images, TR/TE = 2080 ms/30 ms, matrix
64× 64, voxel size 3× 2× 2 mm3, distance factor 50%; FOV 192 mm3) at
a 3T Siemens Trio (Erlangen, Germany). An optimized polysomnographic
setting was employed (chin and tibial EMG, ECG, EOG recorded bipolarly
[sampling rate 5 kHz, low-pass filter 1 kHz] with 30 EEG channels recorded
with FCz as the reference [sampling rate 5 kHz, low-pass filter 250 Hz].
Pulse oxymetry and respiration were recorded via sensors from the Trio
[sampling rate 50 Hz]) and MR scanner compatible devices (BrainAmp
MR+, BrainAmpExG; Brain Products, Gilching, Germany), facilitating
sleep scoring during fMRI acquisition (Iber et al., 2007).

MRI and pulse artifact correction were performed based on the average
artifact subtraction (AAS) method (Allen et al., 1998) as implemented in
Vision Analyzer2 (Brain Products, Germany) followed by objective (CBC
parameters, Vision Analyzer) ICA-based rejection of residual artifact-laden
components after AAS resulting in EEG with a sampling rate of 250 Hz.
EEG artifacts due to motion were detected and eliminated using an ICA
procedure implemented in Vision Analyzer2. Sleep stages were scored man-
ually by an expert according to the AASM criteria (Iber et al., 2007). This
type of data has been published and well described in several publications
(Jahnke et al., 2012; Tagliazucchi et al., 2012a, 2013).

2.2.1.3 fMRI pre-processing

Using Statistical Parametric Mapping (SPM8, www.fil.ion.ucl.ac.uk/

spm) Echo Planar Imaging (EPI) data were realigned, normalized (MNI
space) and spatially smoothed (Gaussian kernel, 8 mm3 full width at half
maximum). Data was resampled to 4 × 4 × 4 mm resolution to facilitate
removal of noise and motion regressors. Note that resampling introduces
averaging of BOLD signals, which are finally averaged over cortical and sub-
cortical regions of interest (determined by the automatic anatomic labeling
[AAL] atlas). Cardiac, respiratory (both estimated using the RETROICOR
method (Glover et al., 2000)) and motion-induced noise (three rigid body
rotations and translations, as well as their first 3 temporal derivatives, re-
sulting in 24 motion regressors) were regressed out using least squares and
retaining the residuals. Data was band-pass filtered in the range 0.01-0.1

www.fil.ion.ucl.ac.uk/spm
www.fil.ion.ucl.ac.uk/spm
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Hz 58 using a sixth order Butterworth filter.

2.2.2 DTI data collection and processing

We used the normal structural connectome obtained using DTI in 16
healthy right-handed participants (11 men and 5 women, mean age:
24.75 ± 2.54), recruited through the online recruitment system at Aarhus
University. In this study, participants with psychiatric or neurological
disorders (or a history thereof) were excluded from participation. The
MRI data (structural MRI, DTI) were recorded in a single session on a
3T Siemens Skyra scanner at CFIN, Aarhus University, Denmark. The
following parameters have been applied for the structural MRI T1 scan:
voxel size of 1 mm3; reconstructed matrix size 256 × 256; echo time (TE)
of 3.8 ms and repetition time (TR) of 2300 ms.

The DTI data were collected using TR = 9000 ms, TE = 84 ms, flip angle
= 90◦, reconstructed matrix size of 106 × 106, voxel size of 1.98 × 1.98
mm with slice thickness of 2 mm and a bandwidth of 1745 Hz/Px.
Furthermore, the data were recorded with 62 optimal nonlinear diffusion
gradient directions at b = 1500 s/mm2. One non-diffusion weighted image
(b = 0) per 10 diffusion-weighted images was acquired, approximately.
Additionally, the DTI images were recorded with different phase encoding
directions. One set was collected applying anterior to posterior phase
encoding direction and the second one was acquired in the opposite
direction. We used the automated anatomical labeling (AAL) template
to parcellate the entire brain into 90 regions (76 cortical regions and 14
subcortical regions, AAL90). The parcellation contained 45 regions in
each hemisphere (Dang-Vu et al., 2005). In order to co-register the EPI
image to the T1-weighted structural image, we used the linear registration
tool from the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford)
(Jenkinson et al., 2002). We co-registered the T1-weighted image to the T1
template of ICBM152 in MNI space. The resulting transformations were
concatenated and inversed and further applied to warp the AAL template
(Tzourio-Mazoyer et al., 2002) from MNI space to the EPI native space,
where we preserved the discrete labeling values by applying interpolation
using nearest-neighbor method. Accordingly the brain parcellations were
conducted in each individuals native space. The acquired DTI data was
used to generate the structural connectivity maps for each participant. The
two recorded datasets were processed, each with different phase encoding

www.fmrib.ox.ac.uk/fsl
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to optimize signal in difficult regions. To construct these structural
connectivity maps we applied a three-step process. First, we defined the
regions of the whole-brain network with the AAL template as used in
the functional MRI data. Secondly, we used probabilistic tractography to
estimate the connections between nodes in the whole-brain network (i.e.
edges). Finally the data was averaged across participants.
In order to ensure that the resulting group SC matrix was representative of
the average single subject and that no unwanted biases were introduced by
averaging across subjects, the single subject SC matrices are represented in
Fig. A.1 in Appendix A. Furthermore we performed a consistency analysis
following Roberts et al. (2017) (see Fig. A.1 in Appendix A).

In accordance with the procedure applied for analyzing the rs-fMRI data,
the AAL template was used to parcellate the entire brain into AAL90. In
order to co-register the b0 image in diffusion MRI space to the T1-weighted
structural image and then to the T1 template of ICBM152 in MNI space
(Collins et al., 1994), we used the FLIRT tool from the FSL toolbox (www.
fmrib.ox.ac.uk/fsl, FMRIB, Oxford). We concatenated and inversed
the two transformation matrices from the described co-registration steps
and applied them correspondingly to warp the AAL templates (Tzourio-
Mazoyer et al., 2002) from MNI space to the diffusion MRI native space.

2.2.3 Construction of surrogate data

In order to assess the statistical significance of the results found in this
study, surrogate data were constructed under the null hypothesis of no
difference between conditions (wakefulness and slow-wave sleep) based on
randomly shuffled group assignments. Each of the 18 datasets consists of
an awake session and a sleep session recorded in the same subject. Based
on these original datasets, surrogate data were created by randomly shuf-
fling the vigilance state assignments with a probability of 0.5. This means
that the group sizes remained the same as in the original data, with the
difference that for each subject there existed a 50% chance that its brain
state assignments were switched between the two recordings. In this way
the recordings were not mixed between participants, but the vigilance con-
ditions were randomly shuffled within each group instead. Applying this
method, there exists a 50% chance that a data pair ”awake-sleep” either
remains ”awake-sleep” or becomes ”sleep-awake”, meaning that the groups
get randomly mixed and thus fulfilling the null hypothesis of no difference

www.fmrib.ox.ac.uk/fsl
www.fmrib.ox.ac.uk/fsl


40 slow-wave sleep and its dynamics

between conditions. Due to computational demands 100 surrogate datasets
were produced which resulted in a minimum possible p-value of 0.0099.

2.2.4 Group averaged functional connectivity matrices

First, the signals were detrended and demeaned before they were band-pass
filtered within the range of 0.04-0.07 Hz following Glerean et al. (2012). In
order to be able to extract the instantaneous phases of the BOLD signals
(see Section 2.2.6), the signals must be filtered within a narrow band. We
chose the frequency range of 0.04-0.07 Hz because this frequency band has
been mapped to the gray matter and it has been shown to contain more
reliable and functionally relevant information compared to other frequency
bands and to be less affected by noise (Biswal et al., 1995; Achard et al.,
2006; Buckner et al., 2009; Glerean et al., 2012). Subsequently the filtered
time series were z-scored, meaning that the mean was subtracted and they
were divided by their standard deviation. This was done for each subject,
because the standard deviation of the BOLD signal is subject-specific. Next,
we calculated the FC matrices for each of the 18 participants for each of the
two recordings. The FC matrix is defined as the matrix of Pearson corre-
lations between the BOLD signals of all pairs of regions of interest (ROIs)
in the AAL atlas over the whole acquisition duration. Fixed-effect analy-
sis was used to obtain group-level FC matrices, meaning that the Fisher’s
r-to-z transform was applied to the correlation values before averaging over
participants within the two vigilance states and back-transforming to corre-
lation values. This resulted in two final FC matrices, one for each condition.
In order to compare the averaged FC matrices between the two vigilance
states, we calculated the mean and standard deviation of the upper trian-
gle matrix of both of the FC matrices. We subtracted the resulting mean
value for the sleep state from the mean value of the awake state. Finally,
to test for significance, the same procedure was performed on the surrogate
datasets.

2.2.5 Brain state classification with Gaussian classifier

In order to establish how specific the functional connectivity is to the con-
dition (i.e. wakefulness and slow-wave sleep), we classified the brain state
based on the covariance of fMRI signals using a jackknife cross-validation ap-
proach, assuming that observations are drawn from a multivariate Gaussian
distribution. First, for each vigilance state, the data of n − 1 participants
(train set) was used to estimate the covariance (Σawake and Σsleep), where
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n is the number of participants. Note that since the data was z-scored,
the mean of each fMRI time series was zero and, thus, in the Gaussian
approximation, the fMRI signals were fully determined by their covariance.
Second, the data of the remaining subject (test set) was associated to a
vigilance state by choosing the zero-mean multivariate Gaussian process
(N(0,Σawake) or N(0,Σsleep)) that maximizes the log-likelihood of the test
data given the trained model. The percentage of correct classifications was
computed across the n participants. The likelihood of a test N-dimensional
vector Xt, representing the t-th time step of the test data, given the zero-
mean multivariate Gaussian process N(0,Σ), is given by:

P (Xt|Σ) = [2πdet(Σ)]−
1
2 exp

(
−1

2
X∗
t Σ−1Xt

)
, (2.1)

where det(Σ) is the determinant of the covariance Σ and the superscript
∗ is the transpose. Assuming independence of the observations, the log-
likelihood L of the entire test time series X = X1,...,T , where T is the
number of time steps, is given by:

L(X|Σ) = log
T∏
t=1

P (Xt|0,Σ) =
T∑
t=1

logP (Xt|Σ) , (2.2)

In summary, for each test data X, we calculated L(X|Σawake) and
L(X|Σsleep) and if L(X|Σawake) > L(X|Σsleep), the predicted vigilance state
was awake, otherwise the predicted vigilance state was sleep.

To assess statistical significance of the classification performance we calcu-
lated the probability of getting k correct classifications (hits) by chance,
which is given by: Pr(k) = Cknp

k(1 − p)n−k , where p is the probability of
getting a hit by chance

(
p = 1

2

)
and n is the number of tests. Significant

decoding was reached when the decoding performance exceeded the 95th
percentile of Pr(k).
We used a similar procedure to evaluate how similar the time series of
a single subject are to a random sample from the grouped time series
of the other n − 1 subjects, in each behavioral condition. Let X(i) be
an N -by-T matrix containing the time series of the i-th subject. We es-
timated the covariance Σtrain using the data from the remaining n − 1
subjects, but excluding T N -dimensional vectors randomly selected that
form a surrogate N -by-T time series Xpseudo. We then compared the
ratio between the log-likelihoods L(X(i)|Σtrain) and L(Xpseudo|Σtrain), i.e.
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ri = L(X(i)|Σtrain)/L(Xpseudo|Σtrain, using equations 2.1 and 2.2. We re-
peated this procedure for 5000 random selections of Xpseudo and calculated
the average log-likelihood ratio 〈ri〉. We expected that 〈ri〉 ∼ 1 if the time
series of the i-th subject were indistinguishable from a random sample taken
from the time series of the remaining subjects.

2.2.6 Phase synchrony and metastability

For each of the 90 brain regions, we extracted the phases of the band-pass
filtered fMRI BOLD signals for each of the 36 recordings (Glerean et al.,
2012). The phases were obtained by applying the Hilbert transform to
the filtered time series, which results in the associated analytic narrow-
band signal, a(t). The analytic signal a(t) of a signal x(t) is defined as
a(t) = x(t) + i ·H [x(t)], where i is the imaginary unit and H [x(t)] denotes
the Hilbert transform of x(t).

We quantify the global level of synchronization between the nodes across
time with the Kuramoto order parameter (Kuramoto, 1984), R(t), a mea-
sure of phase locking, given by:

R(t) =

∣∣∣∣∣ 1n
n∑
k=1

eiϕk(t)

∣∣∣∣∣ , (2.3)

where n is the total number of nodes and ϕk(t) the instantaneous phase of
the narrow-band signal at node k. Thus, the Kuramoto order parameter
measures the modulus of the average phase of the system at each time
point and takes values from 0 to 1, where 0 represents complete phase
asynchrony and 1 the completely synchronized case implying phase-locked
behavior with a phase difference of 0.

Then, to obtain measures on the group level, we calculated the temporal
average and standard deviation of the Kuramoto order parameter per sub-
ject and subsequently averaged these measures within groups. Thus, we
obtained for each vigilance group two measures: the group average of the
mean and of the standard deviation over time of the Kuramoto order pa-
rameter, which we termed synchrony and metastability (Shanahan, 2010;
Deco and Kringelbach, 2016), respectively. The synchrony represents the
global, temporally averaged level of synchronization between all the nodes
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of the system, whereas the metastability gives us information about the
temporal variation of the synchronization level.

2.2.7 Hopf computational whole-brain model

The Hopf whole-brain model was based on the 90 coupled brain areas or
nodes, containing cortical and subcortical regions, derived from the AAL
parcellation explained above. The details of the model have been ex-
plained in the Introduction of this thesis (see Section 1.4.2 in Chapter 1);
a schematic overview of the model and the procedure is presented in Fig-
ure 2.1.

The structural connectivity matrix has been scaled to a maximum value
of 0.2, following Deco et al. (2017b), leading to a reduced parameter space
to search for the optimal parameter combination. Since here we were in-
terested in modeling the slow BOLD signal fluctuations observed in the
different brain states, the intrinsic frequency ωj of each node j was set to
the empirical peak frequency estimated directly from the data, as in Deco
et al. (2017b) within the frequency range 0.04-0.07 Hz according to the
data analysis (see Section 2.2.4). The standard deviation of the additive
Gaussian noise was set to β = 0.04. The final fMRI BOLD signal was sim-
ulated by the variables xj for each node j using the Euler algorithm with a
time step of 0.1 ·

(
TR
2

)
, where TR represents the repetition time, meaning

the temporal resolution of the fMRI signal. The two free model parame-
ters, which are used to adjust the model to the empirical dynamics are the
bifurcation parameter a and the global coupling parameter G.

2.2.8 Model fitting

We performed a parameter space exploration of the whole-brain model by
varying the two free model parameters: the global coupling strength G was
varied from 0 to 3 in steps of 0.1 and the bifurcation parameter a from
-0.5 to 0.5 in steps of 0.02, where the bifurcation parameter a was changed
homogeneously over nodes. The simulated time series were filtered in the
range of 0.04-0.07 Hz in accordance with the empirical data and also their
length coincided with the duration of the empirical data recordings. Next,
we estimated the FC matrix for each parameter combination with the
same procedure as explained above. Subsequently we calculated the fitting
between the empirical and the simulated FC matrices for the two vigilance
states for each parameter combination as the Euclidean distance between
the two matrices. This resulted in one fitting value for each parameter
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Figure 2.1: Whole-brain model linking anatomical connections and FC.
The anatomical connectivity data were obtained using DTI averaged over a group
of healthy participants. Using the AAL 90 parcellation we obtained an SC matrix
linking 90 cortical and subcortical nodes with each other anatomically. Based on
this matrix, a Hopf whole-brain computational model was built which simulates
the resting activity of the 90 coupled brain areas. The simulated functional connec-
tivity matrix (FCmodel) was then fitted to the empirical functional connectivity
matrix (FCemp) for different model parameter combinations using the Euclidean
distance between the values of FCmodel and FCemp (see Section 2.2.8). With
this framework the model parameter space could be explored in order to find the
optimal parameter combination for each brain state.
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combination per vigilance state. The whole simulation procedure was
performed 50 times under exactly the same conditions, over which the
results were then averaged. This was done in order to minimize the random
effects caused by the Gaussian noise introduced into the model. In order
to compare the two states, the minimum distance was calculated for each
G from 0.2 onward and the according a was determined for each of the
minima. Then, we computed the difference between the awake and the
sleep state by subtracting the bifurcation parameter values (in concordance
with the optimal fit for each G) of the sleep state minus the awake state.
The resulting curve was finally compared to the curves based on the
surrogate datasets. The same procedure was performed for each a: the
minimum distance was determined for each a and the differences between
the two states were computed.

As a next step the synchrony and metastability were computed for the whole
parameter space (with G and a varying as above) based on the filtered sim-
ulated time series by applying the same procedure as on the empirical data.
To compare again the two vigilance states with each other, we determined
for each global coupling value G the according bifurcation parameter value
a, where the simulated synchrony and metastability, respectively, was clos-
est to the empirical one.

2.2.9 Effective connectivity analysis

The effective connectivity matrix is based on the existing anatomical
connections, which were obtained through the DTI fiber tractography as
explained above. The general idea of the effective connections between
different brain regions is here an update of the existing synaptic weights
taking into account the dynamics of the whole-brain model fitted to the
empirical data.

For the computation of the EC matrix we used the SC matrix as a primer.
Since we took into account only the existing anatomical connections,
meaning only the non-zero entries of the SC matrix, we added very small
non-zero entries (Matlab machine epsilon: 2−52) compared to the smallest
SC non-zero entry (∼ 8.4 · 10−5) to the diagonal of the interhemispheric
connections, since these are known to be missed by DTI based tractog-
raphy (Messé et al., 2014). Next, as a first step of the fitting procedure,
the SC matrix was weighted with the fraction between the empirical
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and the simulated synchrony by applying the Hopf model in order to
simulate the BOLD signals as done before. For the model simulations
regarding the EC calculation the global coupling parameter and bifurcation
parameter were fixed (G = 1, a = 0). The weighting procedure of the
SC matrix was performed as long as the difference between the empirical
synchrony and the simulated one was not smaller than 0.1. This weight
adjustment was realized in order to bring the SC matrix closer to the
final EC estimate and to avoid an exhaustive number of iteration steps in
the main EC estimating procedure, which we explain in the next paragraph.

We estimated the EC for each vigilance state using a gradient descent algo-
rithm. The previously updated SC matrix was iteratively adjusted to min-
imize the Euclidean distance between the empirical FC matrix (‘FCemp’)
and the FC matrix predicted by the model (‘FCmodel’) through simulations
of the network activity. Specifically, each iteration is given by:

SCold
ij = SCold

ij + α
(
FCempij − FCmodelij

)
, (2.4)

where α is the learning rate (α = 0.01) and (i, j) are the non-zero links
of the original SC. We iterated this algorithm while the current Euclidean
distance between the empirical and model values was smaller than the one
obtained in the previous iteration step. We stopped the re-estimations
after 200 iterations. After this procedure, the effective connectivity was
given by the last updated SC matrix. Again, as in the general parameter
space exploration of the model, the complete procedure for calculating
the effective connectivity was performed 50 times with the exact same
starting conditions. As before, the reasoning behind this was to min-
imize the random effects caused by the Gaussian noise present in the model.

In order to assess the differences between the EC matrices in both modali-
ties and to investigate whether the differences were of global or rather local
nature, we calculated the node strength of each node of the EC matrix (Bar-
rat et al., 2003). Next, we calculated the mean and the standard deviation
over the node strength and to test for significance we did the same for the
surrogate datasets. We subtracted the mean of the sleep condition from
the mean of the awake state and did again the same for the surrogate data,
resulting in a global difference measure. In order to determine local differ-
ences, we computed the number of nodes displaying higher node strength
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during wakefulness than during sleep, and again, for significance testing, we
performed the same computation on the surrogate data.

2.2.10 Effective connectivity model validation

In order to test the reliability of the procedure for computing the effective
connectivity between different brain areas a simple model validation simula-
tion was performed. First, the EC matrix was calculated as described above
by updating the weights of the anatomical connections by fitting FCmodel
and FCemp in each iteration step. As a second step the same procedure
was repeated, with the difference that the original empirical FC matrix was
replaced by the simulated one resulting from the EC calculation in the first
step. This is the optimal FC matrix resulting in the nth iteration step,
where n = 1, . . . , 200, which displays the lowest distance to the empirical
FC matrix. This optimal simulated FC matrix served as the new FC ground
truth for the computation of the EC matrix. The anatomical connectivity
matrix, on the other hand, was kept the same. The EC matrix obtained
with this strategy should highly correlate with the original one if the EC
computation procedure is reliable.
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2.3 Results

We investigated the differences between two different vigilance states: an
awake resting-state condition and a slow-wave sleep condition in a group of
18 healthy human participants. We applied a data analysis approach and, to
gain further insight, a whole-brain modeling approach in order to examine
the differences between the two states in functional connectivity, synchrony,
metastability and dynamic working region. Furthermore we analyzed the
effective connectivity in both conditions using whole-brain modeling.

2.3.1 Lowering of functional connectivity, phase synchrony
and metastability in deep sleep

We analyzed the differences between the awake and the sleep state in func-
tional connectivity, phase synchrony and metastability. We calculated the
functional connectivity matrices for the two vigilance states by averaging
the matrices of the Pearson correlations between the BOLD signals of all
pairs of regions of interest (ROIs) over subjects within one vigilance group.
This resulted in two FC matrices, one for each condition. Then, for compar-
ing the two vigilance states, we computed the mean and standard deviation
of both of the FC matrices and finally subtracted the mean FC value of
the sleep state from the awake state. We found that the difference between
the mean FC values in the two conditions was significantly higher than the
differences found in the surrogate data created by randomly shuffling vigi-
lance state assignments (awake: 0.471±0.125, sleep: 0.293±0.152; p-value:
0.0099) (Fig. 2.2B). The surrogate data we applied was constructed under
the null hypothesis of no difference between conditions, hence appropriate
for comparing the two states amongst each other. Additionally, in order to
verify that the group FC matrices were indeed representative of the average
subject, we calculated the node strength for each individual FC matrix. We
found that 83% of all the subjects exhibited higher FC node strength dur-
ing wakefulness than during sleep (see Fig. A.2A in Appendix A), indicating
that the group FC matrices indeed represented the average participant with
high accuracy.
Next, in order to quantify the global level of synchronization between the
signals of each of the nodes, we computed the Kuramoto order parameter,
a temporal measure taking values from 0 to 1, where 0 represents complete
phase asynchrony and 1 complete synchronization. Consequently we cal-
culated the temporal mean and standard deviation of the Kuramoto order
parameter and averaged over all subjects within one vigilance state group.



2.3. results 49

We termed these two measures synchrony and metastability, respectively
(see Section 2.2.6). We found significantly higher synchrony in awake than
in sleep (awake: 0.560, sleep: 0.431; p-value: 0.0099) (Fig. 2.2C) and sig-
nificantly higher metastability in awake than in sleep (awake: 0.206, sleep:
0.181; p-value: 0.0099) (Fig. 2.2D).

2.3.2 Classification of consciousness state with Gaussian
classifier

We evaluated how specific the functional connectivity was to the vigilance
state. We used a jackknife cross-validation procedure consisting of: first,
calculating the covariances on a subset of the data from N −1 participants,
separately for each vigilance state, and then using these covariances to clas-
sify the data of the remaining subject (see Section 2.2.5). We found that
the Gaussian classifier significantly predicted the vigilance state with high
accuracy (83.33% and 94.44% for awake and sleep test sets, respectively)
(Fig. 2.2E). Thus, the whole-brain covariance of single participants reliably
related to the vigilance state, justifying the use of group measures.
Furthermore, we tested how similar the time series of a single subject were
to a random sample from the grouped time series of the other n − 1 sub-
jects by using a similar procedure (see Section 2.2.5). We expected the
log-likelihood ratio to be approximately 1 if the time series of the i-th sub-
ject were indistinguishable from a random sample taken from the time series
of the remaining subjects. We found that this was the case for most of the
subjects: the log-likelihood ratio ranged between 0.67-1.52 and it was equal
to 1.07 ± 0.13 and 1.00 ± 0.06 averaged over subjects, for awake data and
sleep data, respectively (see Fig. A.2B in Appendix A). This result confirms
that the fMRI time series of single subjects strongly resemble the ones of
the group and can be viewed as a random sample taken from it.

2.3.3 Shift of the dynamic working point during sleep

To gain theoretical insights, we fitted a large-scale model of coupled nonlin-
ear oscillators to the data of each of the vigilance states (see Sections 2.2.7
and 2.2.8). We compared the two vigilance states with regards to their dy-
namic working point, meaning the parameter region where the model fits
the data best. We simulated the fMRI BOLD activity in each of the 90
brain regions by using the Hopf whole-brain model with the brain nodes
coupled through the empirical SC matrix (see Section 2.2.7 and Fig. 2.1).
We performed a parameter space exploration by varying the two free pa-
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Figure 2.2: Data Analysis. In A the FC matrices averaged over participants are
shown for the two different vigilance states. In B the difference of the mean of the
upper triangle FC matrices (group average) between the awake and the sleep state
are shown. The histogram (black) represents the distribution of the test-statistic
under the null hypothesis of no difference between vigilance states, whereas the
green line shows the difference of the means of the empirical FC matrices. In the
upper left corner the mean FCs and their standard deviations are shown. They
were significantly different with a p-value of 0.0099. C demonstrates the difference
between the mean synchrony (see Section 2.2.6) in the awake state and the sleep
state. Again, the histogram represents the distribution of the test-statistic and
the green line the difference between the synchrony in awake and sleep obtained
from the empirical data. In the upper right corner the means and the standard
deviations are shown, the mean synchrony was significantly higher in awake than
in sleep with a p-value of 0.0099. In D the difference between the metastability (see
Section 2.2.6) in awake and in sleep is shown. The histogram and the green line
are to be read as in B and C. In the upper right corner the metastability in awake
and in sleep is represented, also in this modality a significant difference (p-value
0.0099) can be observed. In E the classification performance using a Gaussian
classifier is shown for awake (violet) and sleep (yellow) test sets, respectively (see
Section 2.2.5). The vigilance state was predicted with high accuracy (83.33% and
94.44% for awake and sleep test sets, respectively) exceeding the 95th percentile of
chance level.
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rameters of the model: the global coupling parameter G and the bifurcation
parameter a, where a was changed homogeneously over all nodes. We cal-
culated the model’s FC matrix, phase synchrony and metastability for each
parameter combination in the same fashion as for the empirical data. Then,
we computed the best fit between the empirical and the simulated FC ma-
trices for the two vigilance states (see Section 2.2.8) and found a significant
difference between the optimal bifurcation parameters in awake and sleep
from a global coupling strength of 1.6 onwards (p-value 0.0396). In detail
the optimal fit between empirical and simulated data lied in awake in the
bifurcation parameter range between -0.04 and -0.06 and in sleep between
-0.08 and -0.12. In general, we observed a better fit in the whole negative
bifurcation parameter region in sleep as compared to awake from G = 0.4
onwards for awake and from G = 0.3 onwards for sleep (Fig. 2.3A+B). Re-
garding the global coupling parameter, we found that during wakefulness
the optimal fit as a function of the bifurcation parameter lied in a higher
range of G-values in the vicinity of the bifurcation (−0.1 ≤ a ≤ 0) than
during sleep. This means that the connectivity strength between different
brain areas was higher during wakefulness as compared to sleep (Fig. 2.3C).
Furthermore we analyzed the optimal concordance in the parameter space
between the simulated and empirical phase synchrony and equally for the
metastability, and also here we found a shift of the optimal fit in sleep as
compared to awake to more negative bifurcation parameter values and to
lower global coupling strengths (Fig. 2.3D+E).
In summary, the dynamic working point shifted significantly to more neg-
ative bifurcation parameter values during sleep as compared to the awake
state, where the system remained closer to the bifurcation. Additionally
the system presented higher connectivity during wakefulness than during
sleep, which benefits the propagation of interaction between different brain
regions.

2.3.4 Lowering of the effective connectivity during sleep

In order to determine the actual level of interaction and connectivity
between different brain areas, we investigated the differences between
the two brain states by studying the changes in the effective connections
between different brain nodes. Here we define effective connectivity as
a combination of anatomical connectivity and connection weights (i.e.,
synaptic conductivity), meaning the effective interaction between different
brain areas. The EC was estimated by iteratively updating the weights
of the non-zero anatomical connections with the weighted difference
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Figure 2.3: Whole-brain model parameter space exploration and fitting.
A i.+ii. Euclidean distance between FCmodel and FCemp for different values of
the global coupling strength G and the bifurcation parameter a in awake (i.) and
sleep (ii.). The optimal fit corresponds to a minimal Euclidean distance. In B
the difference between the optimal Euclidean distance fit in awake and in sleep
is shown as a function of G. The broken black lines represent the surrogate data
constructed under the null hypothesis of no difference between vigilance states,
whereas the green line shows the difference between the optimal fit in awake and
sleep. In the upper left corner the optimal fit for awake (violet) and sleep (yellow) is
shown as a function of G. There was a significant difference between the two states
from G = 1.6 onward with a corresponding p-value of 0.0396. In C the difference
between the optimal Euclidean distance fit in awake and in sleep is displayed as a
function of a. The broken black lines and the green line are to be read as in B. In
the upper right corner the optimal fit for awake (violet) and sleep (yellow) is shown
as a function of a. There was a significant difference between the two states for
−0.1 ≤ a ≤ 0 with a corresponding p-value of 0.0099. D represents the simulated
global synchrony as a function of G and a. The black line shows the optimal fit
for the awake state, namely the closest value to the empirical global synchrony
for each G. The gray line shows the same for the sleep state. In E the simulated
metastability is displayed, also here as a function of G and a. The black and the
gray lines are to be read as in D. Note the observable global shift to more negative
bifurcation parameter values in D and E.
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between the empirical and the simulated FC matrix (see Section 2.2.9).
In each iteration step the Euclidean distance between the empirical and
the simulated FC matrix was calculated and if this distance was smaller
than the previous one, the EC matrix was updated with the optimized
structural weights (see Section 2.2.9). This optimization procedure was
performed for 200 iterations, after which the fitting had already reached a
stable value (Fig. 2.4C i.+ii.).
Comparing the resulting final EC matrices between the two brain states,
we observed a global lowering of the strength of the effective connections
in sleep with respect to the awake state (Fig. 2.4A i.+ii.). In order to
assess these differences we computed the node strength of the EC matrix
for each of the 90 brain nodes (Fig. 2.4D). We found that the mean node
strength of the effective connections was significantly higher in awake than
in sleep (awake: 0.3520 ± 0.0898, sleep: 0.2804 ± 0.0854, p-value: 0.0099)
(Fig. 2.4E i.). In addition to that we investigated the local differences
between effective connection node strengths and we found that the total
number of nodes displaying higher node strength during wakefulness with
respect to sleep was significantly higher in the data as compared to the
surrogate data. (84 nodes, p-value 0.0495) (Fig. 2.4E ii.). The few regions
displaying higher node strength during sleep were the calcarine sulcus (left
and right), the cuneus (left and right), the lingual gyrus (right) and the
paracentral lobule (left). The 10 regions with the highest difference in node
strength between wakefulness and sleep were in order from the highest dif-
ference onward: Superior temporal gyrus (right); Precentral gyrus (right);
Superior temporal gyrus (left); Postcentral gyrus (right); Putamen (left);
Postcentral gyrus (left); Insula (left); Inferior frontal gyrus, pars opercu-
laris (right), Middle occipital gyrus (left) and Inferior occipital cortex (left).

Overall, the effective connections were significantly lower during sleep than
during wakefulness. Being this the case for the mean over nodes and also
for 93% of the local brain nodes, we suggest, that this observable difference
is of global rather than local nature.

2.3.5 Validation of the effective connectivity modeling
procedure

Next, we tested the reliability of the procedure for computing the effec-
tive connectivity by applying a simple model validation simulation. We
computed the EC matrix starting from the optimal simulated FC matrix,
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Figure 2.4: Effective connectivity in awake and sleep. In A the final EC
matrices are shown in awake (i.) and in sleep (ii.). The above row in B displays
the empirical FC matrices in awake (i.) and in sleep (ii.), the row underneath the
simulated FC matrices (i. awake, ii. sleep) after the EC optimization procedure.
C demonstrates the fitting as a function of the iteration steps: in i. the Euclidean
distances between FCmodel and FCemp for awake (violet) and sleep (yellow) are
shown, and in ii. the Pearson correlation between the two matrices is represented.
We obtained node-wise EC values by calculating the node strength of the EC
matrices (D). E i. shows the difference between the mean node strength in awake
and in sleep. The histogram (black) represents the distribution of the test-statistic
under the null hypothesis of no difference between vigilance states, whereas the
green line shows the same difference between the actual EC matrices. In the upper
left corner the mean node strengths and their standard deviations are shown. They
were significantly different with a p-value of 0.0099. In ii. the number of nodes
with node strength higher during wakefulness than during sleep are displayed. As
before, the histogram represents the test-statistic and the green line the actual
number of nodes. The number of nodes with higher node strength in awake than
in sleep was significantly higher than obtained with the surrogate data (p-value:
0.0459).
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Figure 2.5: Effective connectivity procedure validation. The original EC
matrix was computed based on the experimental FC matrix. Additionally we
calculated the EC matrix based on the optimal simulated FC matrix resulting
from the original EC calculation, which served as the new FC ground truth. The
anatomical connectivity matrix was kept the same. The two EC matrices were then
compared to each other by calculating the Pearson correlation coefficient, which
was found to be 0.992.

obtained through the original EC calculation (Fig. 2.4 simulated B i.+ii.),
instead of using the empirical one (Fig. 2.4 empirical B i.+ii.) (see Sec-
tion 2.2.9). We correlated the resulting validation EC matrix with the
original one and found a Pearson correlation coefficient of 0.992 (Fig. 2.5),
meaning that the procedure for computing the EC matrix was reliable.

2.3.6 Theoretical model response to external stimulus

We have shown that the awake state is associated with a model in which the
whole system is positioned closer to a Hopf bifurcation, meaning a closer to
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0. This is a functionally relevant feature, since it is known that, close to the
bifurcation, the Hopf model has optimal resonance and nonlinear amplifica-
tion behaviors (Camalet et al., 1999). Indeed, if the system is subjected to
a sinusoidal stimulus F (t) = FeiωF t at frequency ωF , the node’s response
presents a resonance when it is stimulated at its intrinsic frequency ωF = ω0

(Fig. 2.6A+B). Moreover, in the vicinity of the bifurcation and if the node
is stimulated at its intrinsic frequency, the amplitude of the response, |Z|,
follows the power law Z ∝ F

1
3 (Fig. 2.6C+D). Such power law relation

indicates that weak inputs are highly amplified, while strong inputs elicit
responses with lower gain. This makes the network to have a large dynamic
range of responsiveness.
In conclusion, in the vicinity of the bifurcation the node presents sharp fre-
quency selectivity with high sensitivity allowing for a better communication
between nodes and a better reaction to external stimuli.



2.3. results 57

Figure 2.6: Single node response to external stimulus for two different
dynamic working regimes. In A the response – the absolute value of the sim-
ulated complex signal z – of a single node is shown as a function of the input
frequency for different input strengths F . ω0 is the intrinsic frequency, which was
here set to 1. B displays the model response as a function of the input strength for
different input frequencies. The red line shows hypothetical power law behavior.
Both A and B were simulated with the bifurcation parameter a very close to the
bifurcation at a = 0. C and D show the same as A and B, with the difference that
the bifurcation parameter used for the simulations was set to a negative value in
the noisy regime of the model. Note that for a close to the bifurcation the model
response follows the power law Z ∝ F 1

3 for an input frequency equal to ω0, whereas
for a in the negative regime this is not the case: weak inputs are no more amplified.
In this analysis no noise was added to the system.
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2.4 Discussion

We used data- and model-driven analyses to compare the brain states of two
different behavioral conditions, namely wakefulness and slow-wave sleep.
Using the whole-brain model we found a significant shift of the brain’s
global working point from the edge of the transition between noisy and
sustained oscillatory behavior during wakefulness to a noisy regime charac-
terized by a stable focus during slow-wave sleep as a possible mechanistic
explanation of the observed empirical functional changes between those
two brain states. We also found that the effective connectivity was reduced
in slow-wave sleep compared to wakefulness. Overall, these results suggest
that the propagation of external perturbations is decreased in slow-wave
sleep compared to wakefulness, with incoming inputs being transmitted
with sharper selectivity and higher sensitivity during wakefulness.

Interestingly, in our data-driven analysis, we found that the metastability
(i.e. the standard deviation of the phase synchrony) decreased during sleep
(Fig. 2.2D). This is particularly interesting given the recent focus on the
non-stationarity of resting-state activity, where studies have demonstrated
that functional correlations are dynamic and evolve over time (Chang and
Glover, 2010; Tagliazucchi et al., 2012b; Hutchison et al., 2013; Allen et al.,
2014; Hindriks et al., 2016). Importantly, Ponce-Alvarez and colleagues
have shown that the global phase synchrony of the BOLD signals evolves
at a very slow time scale of < 0.01 Hz and that with this variability the
system visits different synchronized brain states (Ponce-Alvarez et al.,
2015a). If, as observed in the case of slow-wave sleep, this variability
decreases compared to wakefulness, the dynamical repertoire of the brain
during this vigilance state could be limited, indicating that the brain must
operate in a different dynamic working region. The finding that slow-wave
sleep is more constrained by the underlying structural connectivity further
supports this interpretation (Tagliazucchi et al., 2016b).

This fits with our further demonstration that, on average, the func-
tional connectivity was lower during sleep as compared to wakeful rest
(Fig. 2.2A+B). This finding is consistent with previous studies showing that
the resting-state networks are generally preserved during sleep, but with
altered connectivity strength (Horovitz et al., 2009; Sämann et al., 2011).
These previous studies show that in slow-wave sleep the cortico-cortical
functional connections lose their strength (Kaufmann et al., 2005; Horovitz
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et al., 2009; Sämann et al., 2011; Tagliazucchi et al., 2012a), in particular,
almost all cortico-cortical connections in the AAL template are reduced
during deep sleep (Spoormaker et al., 2010; Tagliazucchi and Laufs, 2014).
This clearly demonstrates that the functional connectivity decreases on a
global level.

Furthermore, we have shown that the mean phase synchronization was
lower during sleep than during wakefulness (Fig. 2.2C). This result sup-
ports the fact that the communication in the brain is constrained during
slow-wave sleep, as has been found in intracerebral (EEG) recordings,
where slow oscillations appear often out-of-phase in different brain regions
and appear as events of a local nature (Nir et al., 2011). While these results
are valid for electrophysiological data, it has been demonstrated that
slow cortical potentials recorded with intracerebral EEG show a similar
correlation structure as spontaneous BOLD fluctuations during slow-wave
sleep (He et al., 2008; Hiltunen et al., 2014).

In order to find a mechanistic explanation of the empirical results and
to learn more about the underlying dynamics, we applied a whole-brain
model based on the normal form of a supercritical Hopf bifurcation. We
showed that the region where the model fits the data best lied during
wakefulness close to the bifurcation, on the edge between noise-induced and
self-sustained oscillations, whereas during sleep it shifted to a more negative
regime characterized by noisy oscillations. Furthermore, we demonstrated
that during wakefulness the optimal global coupling parameter value as
a function of the bifurcation parameter was higher in the vicinity of the
bifurcation than during sleep (Fig. 2.3). These results indicate that the
brain is operating in a different dynamical regime during deep sleep when
compared to wakeful rest. The brain’s global working point presented
higher connectivity and less stability during wakefulness, suggesting that
the propagation of activity is increased in this brain state. This allows
for better communication between different brain areas and an improved
reaction to stimuli during wakefulness. Increased stability implies a failure
to amplify weak stimuli, as required, for instance, for the firing of few
cells in V1 to globally propagate to the fronto-parietal cortex during
conscious access of visual information, according to the Global Neuronal
Workspace theory proposed by Dehaene and Changeux (Dehaene et al.,
1998; Dehaene and Changeux, 2005; Dehaene et al., 2014). This ignition
of the global workspace is facilitated during wakefulness, instead, since
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dynamics are posed near the bifurcation point (Fig. 2.6). Our analysis
was global in nature and thus could not localize the dynamical changes to
sensory areas or the fronto-parietal cortex. Further analyses are needed
to identify if the dynamical changes are due to global processes or in fact
to local changes influencing the system on a global level. A possible way
of expanding the current method in order to look into local region wise
changes could be to adapt the bifurcation parameter for each node instead
of taking one value homogeneously for all the regions as is done here. In
fact this approach has been performed by Deco and Kringelbach (2016),
where they optimized the spectral characteristics of each local brain region
and thus gained a heterogeneous optimal working point for each brain
region. Nevertheless, the here presented method shows a clear shift in
the bifurcation parameter and in the global coupling strength, which is
an indication for this phenomenon to be more of global nature than of
a local one. This is supported by the fact, that for a fixed bifurcation
parameter a the model for sleep becomes the model for wakefulness when
G = G + ∆G, as can be observed in Figure 2.3A. The whole system is
shifted between the two brain states. By increasing the global coupling
strength, the mean node strength of the SC matrix is increased, which
directly influences the simulated FC matrices in a global way, resulting
in a better fit with the empirical FC matrix during wakefulness. On the
contrary, decreasing the global coupling strength results in a better fit
with the empirical FC matrix during sleep. We tested the scenario of
equal FC node strengths in wakefulness and sleep and found that indeed
the differences in the dynamical range which fits the data best vanish (see
Fig. A.3 in Appendix A). Still, we cannot exclude that local region wise
changes are responsible for the globally observed effects.
Another important point is the fact that the Hopf model possesses optimal
resonance and amplification behavior when close to the bifurcation as shown
in Figure 2.6. We showed that in the vicinity of the bifurcation, as it is the
case during wakefulness, the system demonstrates a large dynamic range of
responsiveness, showing frequency specificity and power-law behavior. The
proximity of the optimal dynamical working point to the bifurcation during
wakefulness is functionally relevant in the sense that in this regime sensory
inputs are transmitted with sharper selectivity and higher sensitivity due to
a better communication between nodes. Furthermore the network has the
largest dynamic range of responsiveness. These properties are important
and characteristic for an awake state. Additionally the response to stimuli
is non-linear. For lower bifurcation parameters, as during deep sleep, we do
not observe these properties, and instead the response is dominated by the
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linear terms (Camalet et al., 1999). This implies further that close to the
bifurcation the system needs to have a higher level of complexity to show
the previously mentioned characteristics. This confirms the findings in the
studies performed by Massimini and colleagues (Massimini et al., 2009;
Ferrarelli et al., 2010; Tononi, 2012; Casali et al., 2013), where the level
of consciousness is assessed by measuring the Perturbative Complexity
Index (PCI), characterizing the deterministic cortical responses to external
perturbations. It has been observed that the PCI is lower during an
unconscious state such as slow-wave sleep. This agrees with the fact that
during sleep the system is located in the negative bifurcation parameter
regime, where it is less complex in the sense that the dynamic range of
responsiveness is smaller.

Besides the parameter space exploration of the model, we also simulated
the effective connections between different brain areas in order to get
a better insight into the actual level of connectivity between different
brain nodes. We found decreased effective connectivity on a global
level during slow-wave sleep in comparison to wakefulness (Fig. 2.4).
Effective connectivity is usually defined as a causal connectivity measure,
meaning the directional influences of one brain area or neural element
over another (Friston et al., 2003; Tononi and Sporns, 2003; Massimini
et al., 2005; Stephan and Friston, 2010). In this work we have applied
another approach: here the effective connections were estimated using the
anatomical connections, the functional connections and the dynamics given
by the model. They can be interpreted as the synaptic weights between
the different brain nodes, which are not captured by the structural or
functional connections alone. Effective connectivity can be understood
as the biophysical ”mechanistic causes” of the apparent changes in the
functional connections, given that we can explain those changes with
changed effective interactions in only existing anatomical links given by
the anatomical connections. The observable decrease in EC during deep
sleep indicates a drop of integration in the brain on the global level: the
communication between different brain areas is limited. This result is
compatible with the Integrated Information Theory of Consciousness,
which states that consciousness corresponds to the capacity of the brain to
integrate information, and other studies which have shown that integration
is impaired during unconsciousness (Alkire et al., 2008; Dehaene et al.,
2014). Furthermore it is evident, when looking at the node strength of each
brain area (Fig. 2.4D), that the effective connections in the two brain states
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are only a scaled version of one another. A possible interpretation of this
particular result could be that during wakefulness the system demonstrates
higher excitability which supports the finding that excitability increases
with the time awake (Huber et al., 2013; Ly et al., 2016). When looking
more deeply into the set of regions which showed the highest differences
in node strength between wakefulness and sleep, we observed that most
of these regions are related to the processing of sensory information
(superior temporal: auditory, somatosensory: postcentral), motor planning
(precentral gyrus which contains the primary motor cortex) and include
a subcortical structure (putamen), which is densely connected to both
primary somatosensory and motor cortices. The functional isolation of
these areas from the rest of the cerebral cortex could indicate diminished
levels of arousal during deep sleep. Such diminished arousal comprises
lack of motor activity and increased thresholds for awakening – with
awakenings due to stimulation during sleep being generally related to either
somatosensory and/or auditory stimulation.

The results from the dynamical brain model described in this chapter were
obtained using fMRI BOLD signals, but similar, matching brain activity
patterns were shown in EEG signals. Deep sleep is characterized by the
onset of high amplitude delta (1-4 Hz) waves, which indicates an increment
in the local synchronization of neural populations (Amzica and Steriade,
1998). Deep sleep, such as other states of unconsciousness, is governed
by bistable oscillations that reflect alternating periods of firing and neural
quiescence. This stereotypical pattern of neural firing entails a decrease in
the differentiation of brain activity which is related (via the information-
integration theory) to diminished conscious awareness (Tononi, 2004).
Our results obtained from modeling whole-brain BOLD dynamics and con-
nectivity reflect these and other electrophysiological observations. Increased
stability of oscillations has been reported for the unconscious state induced
by propofol, a general anesthetic drug (Solovey et al., 2015; Tagliazucchi
et al., 2016a). Furthermore, the effective connectivity of neural activity
measured using EEG is notoriously reduced during unconscious states such
as deep sleep, general anesthesia and in patients with disorders of conscious-
ness. While in many of these brain states EEG recordings yield patterns of
activity with seemingly high levels of local and global synchronization, the
propagation of externally induced perturbations (using TMS) is damped
during unconscious brain states (Casali et al., 2013). We can speculate
that the loss of stability, global coupling and effective connectivity revealed
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from fMRI data using our computational model represents the hemody-
namic counterpart to these results.
This speculation is consistent from combined EEG-fMRI and positron-
emission tomography (PET) studies that relate fluctuations in brain
metabolism to delta band power during deep sleep. The work of Dang-
Vu et al. (2005) established that frontal metabolism presents an inverse
correlation with delta band oscillations during deep sleep. A similar result
was obtained by Lei et al. (2014) using concurrent EEG-fMRI recordings.
In their paper, Lei et al. showed that fronto-parietal BOLD signals present
an inverse correlation with fluctuations in delta power during deep sleep.
These studies suggest that frontal (and possible parietal) BOLD signals
reflect fluctuations in delta power and that their computational modeling
might, in turn, yield insights about the stability and effective connectivity
of slow oscillations during deep sleep. To which extent BOLD signal fluc-
tuations from other brain areas reflect slow activity or other independent
electrophysiological phenomena remains to be investigated in the future.

2.5 Conclusion

In this work we have suggested a possible mechanistic explanation of the
empirical functional changes observed during slow-wave sleep. We have
shown that the dynamic working point of the human brain is significantly
different during slow-wave sleep compared to wakeful rest. We have
demonstrated that during deep sleep the system shifts to a noisy oscillatory
state, whereas during awake it stays closer to the bifurcation, and discussed
how this might allow the brain to better process information in more
complex ways during wakefulness. We have also shown that the brain’s
global working point presents higher connectivity during wakefulness than
during sleep. We suggest that these dynamical changes occur mainly on
a global rather than a local scale. This claim is further supported by the
fact that the effective connections between different brain areas decrease
globally during sleep, which suggests a higher level of integration and
excitability during wakefulness on a whole-brain level. Further studies are
required to verify if these changes are in fact due to effects on a global
level or if the observable effects can be explained by a group of local nodes
driving the dynamic system.

Overall, by exploring the mechanistic properties of whole-brain dynamics
in two different behavioral states, wakefulness and slow-wave sleep, we have
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added complementary evidence to the developing understanding of the brain
as a complex system that supports widely different purposes. Importantly
the whole-brain modeling allowed us to explore features of the functional
connectome not immediately tractable to standard analysis strategies.



Chapter 3

Perturbation of whole-brain
dynamics in different brain

states

This chapter contains published work which can be found in: Perturbation of whole-brain
dynamics in silico reveals mechanistic differences between brain states published in
NeuroImage in 2018. Link: https://www.sciencedirect.com/science/article/pii/

S1053811917310236.

Human neuroimaging research has revealed that wakefulness and sleep in-
volve very different activity patterns. Yet, it is not clear why brain states
differ in their dynamical complexity, e.g. in the level of integration and seg-
regation across brain networks over time. Here, we investigated the mecha-
nisms underlying the dynamical stability of brain states using a novel offline
in silico perturbation protocol. We first adjusted a whole-brain computa-
tional model to the basal dynamics of wakefulness and deep sleep recorded
with fMRI in two independent human fMRI datasets. Then, the models of
sleep and awake brain states were perturbed using two distinct multifocal
protocols either promoting or disrupting synchronization in randomly se-
lected brain areas. Once perturbation was halted, we used a novel measure,
the Perturbative Integration Latency Index (PILI), to evaluate the recovery
back to baseline. We found a clear distinction between models, consistently
showing larger PILI in wakefulness than in deep sleep, corroborating previ-
ous experimental findings. In the model, larger recoveries are associated to

65

https://www.sciencedirect.com/science/article/pii/S1053811917310236
https://www.sciencedirect.com/science/article/pii/S1053811917310236


66 perturbation of whole-brain dynamics

a critical slowing down induced by a shift in the model’s operation point,
indicating that the awake brain operates further from a stable equilibrium
than during deep sleep. This novel approach opens up for a new level of ar-
tificial perturbative studies unconstrained by ethical limitations allowing for
a deeper investigation of the dynamical properties of different brain states.

3.1 Introduction

Investigating brain function often requires a black box approach, from
which information can be obtained by either measuring the spontaneous
activity arising from the non-perturbed system, or perturbing the system
and measuring how the system responds. This information then serves
to postulate mechanistic scenarios, which may be verified via mathemat-
ical/computational models. In the case of perturbation, a wide range of
schemes is available, ranging from natural interventions such as sensory
stimuli or task instructions, to artificial – usually electromagnetic –
interventions such as transcranial magnetic stimulation (TMS) or deep
brain stimulation (DBS).

Alterations in brain activity elicited by natural perturbations can be
detected non-invasively and at the whole-brain level using fMRI, allowing
to map the brain regions whose activity correlates with different stimuli or
tasks, resulting in a detailed repertoire of task-specific functional networks
(Rissman et al., 2004; Raichle, 2009a; Yarkoni et al., 2011). Notably,
many of these task-specific functional networks have also been detected
in baseline brain activity during rest (Biswal et al., 1995; Raichle et al.,
2001; Damoiseaux et al., 2006; Smith et al., 2009; Zhang and Raichle,
2010). With hindsight, the fact that the brain at rest still exhibits highly
structured spatio-temporal patterns of activity has important implications
for our understanding of brain function (Raichle et al., 2001; Deco et al.,
2011; Cabral et al., 2014a; Cole et al., 2014; Deco and Kringelbach, 2016).

Beyond the insights obtained under natural conditions, direct artificial
perturbations allow for the systematic exploration of dynamical responses
elicited by controlled perturbative protocols. However, such perturbative
approaches are generally limited to TMS in healthy humans (Siebner
et al., 2009), or DBS in human patients, due to ethical considerations
(Kringelbach et al., 2007b; Clausen, 2010; Kringelbach and Aziz, 2011;
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Fox et al., 2014). Combining these direct stimulation techniques with
whole-brain neuroimaging allows exploring how the system leaves the
resting equilibrium by characterizing the resulting dynamics in terms
of complexity and latencies using TMS-EEG (Ilmoniemi et al., 1997;
Massimini et al., 2005; Litvak et al., 2007; Casali et al., 2013), DBS-MEG
(Kringelbach et al., 2007a; Mohseni et al., 2012) and DBS-fMRI (Saenger
et al., 2017).

There is a long history of trying to characterize the global dynamics of
brain activity in terms of complexity and dynamical stability, particularly
in EEG studies (Pereda et al., 1998; Stam, 2005). The general picture that
emerges is that brain activity during some diseases, coma and sleep is char-
acterized by dynamical stability and loss of complexity. This phenomenon
has been variously characterized in terms of principal component analysis
and related decompositions into spatial modes, correlation dimension and
dynamical formulations in terms of Lyapunov exponents (Pradhan and
Sadasivan, 1996). Indeed, the (fractal) dimension is usually estimated
using the Kaplan-Yorke conjecture, based upon estimates of Lyapunov
exponents. Heuristically, the Lyapunov exponents reflect the degree of
dissipation, decay or relaxation rate of various modes following endogenous
or exogenous perturbation (Pradhan and Sadasivan, 1996). In sleep and
some pathological brain states the fall in complexity of brain activity is
generally accompanied by a loss of critical unstable modes, which increases
dynamical stability usually associated with the emergence of slow brain
rhythms.

Using an artificial perturbative approach, Massimini and colleagues inves-
tigated the perturbation-elicited changes in global brain activity during
wakefulness and sleep using TMS-EEG, showing that non-REM sleep is
accompanied by a breakdown in cortical effective connectivity, where the
stimuli rapidly extinguish and do not propagate beyond the stimulation
site (Massimini et al., 2005; Ferrarelli et al., 2010; Casali et al., 2013).
These findings corroborate leading theories of consciousness postulating
that consciousness requires effective communication between brain regions
(Dehaene et al., 1998; Tononi et al., 1998; Dehaene et al., 2014), which ap-
pears impaired in certain stages of sleep and anesthesia (Alkire et al., 2008).

To assess the brain-wide spatio-temporal propagation of external stim-



68 perturbation of whole-brain dynamics

ulation, Casali et al. (2013) introduced the Perturbational Complexity
Index (PCI), which measures the amount of information contained in the
amplitude of the average perturbation-elicited responses by calculating the
Lempel-Ziv complexity of the binary matrix describing the statistically
significant sources, in space and time, of the EEG signals,. PCI has been
successfully used for separation of brain states in healthy subjects during
wakefulness, dreaming, sleep, under different levels of anesthesia and in
coma (Ferrarelli et al., 2010; Rosanova et al., 2012; Casali et al., 2013).
Nevertheless, it is important to note that PCI is obtained from a grand
average of an evoked potential, typically with relatively short latencies
of 12 s, and ignores the pre-existing variability prior to every individual
perturbation as well as the variability in responses across the series of
perturbations.

In this work, we expand the traditional perturbative approaches to a new
level by using the Hopf whole-brain computational model (see Section 2.2.7
in Chapter 2) that can be systematically perturbed offline in silico in
ways not possible in vivo. This allows for a deeper investigation of the
biophysical mechanisms underlying the changes in dynamical complexity
observed experimentally between brain states. Using this approach, in
Jobst et al. (2017) (see Chapter 2) we have shown that fMRI dynamics
of wakefulness and deep sleep can be differentiated by a global coupling
parameter that shifts the dynamical regime of the network model.

Following these recent theoretical and experimental insights, we hypoth-
esize that the in silico perturbation of the sleep model would result in a
faster rate of decay of prominent synchronization modes relative to the
awake model, consistent with less complex and more stable dynamics. Op-
erationally, we conjecture that this is associated with a shift in the brain’s
dynamical regime, which alters the rate of dissipation of induced (or dis-
rupted) synchronization among coupled brain areas, perhaps linked to the
phenomenon of critical slowing down (Wissel, 1984; van Nes and Scheffer,
2007). We measure this dissipation using the Perturbative Integration La-
tency Index (PILI), which measures the recovery of global integration levels
back to baseline, scoring the persistence of the largest connected component
in terms of BOLD phase synchronization.
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3.2 Methods

3.2.1 Overview of perturbative approach

The following procedure, illustrated in Figure 3.1, was implemented:

1. Fit the whole-brain computational model to fMRI data recorded in
each brain state, i.e. during wakefulness and deep sleep (stage N3).

2. Compute from simulations the evolution of integration for each un-
perturbed brain state.

3. Systematic application of two offline perturbation protocols (noise and
synchronization) in 1-10 random brain regions and compute the evo-
lution of integration after the offset of perturbation for each brain
state.

4. Compute the PILI as the area under the normalized curve of perturbed
integration until it reaches the basal integration levels. Repeat trials
to estimate significance levels.

3.2.2 Experimental data

We used fMRI data from two independent studies recorded in Frankfurt,
Germany (Tagliazucchi et al., 2012a) and Liège, Belgium (Boly et al., 2012)
where participants fell asleep during a simultaneous EEG-fMRI scanning
session. As in the previous study, also here we only considered the subset
of subjects who reached deep sleep (stage N3).

3.2.2.1 Frankfurt dataset

This dataset has been previously described in Tagliazucchi et al. (2012a)
and is the same dataset as described in Chapter 2 (see Section 2.2.1 for
detailed description). Again, we selected the 18 subjects out of the total
63 who reached slow-wave sleep (N3 stage).

3.2.2.2 Liège dataset

Participants Twenty-five young healthy participants (eleven females,
mean age of 22.0 years; age range 18-25 years) were recruited by advertise-
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Figure 3.1: Procedure for computing the Perturbative Integration La-
tency Index (PILI). A. First, the whole-brain computational model was con-
structed based on the empirical structural and functional connectivity between
90 brain regions, each represented by a Hopf bifurcation model. B. Second, the
simulated time series for each brain region were band-pass filtered and the instan-
taneous phases obtained using the Hilbert transform. C. Third, the integration
was calculated over 200 s in the basal unperturbed state and after the suppression
of a perturbation protocol. For each time point a phase locking matrix was con-
structed and binarized, calculating the number of regions in the largest connected
component for each threshold value. The integration is defined as the integral over
all thresholds. D. Finally, the PILI was computed to characterize, in a single value,
the recovery to basal equilibrium after the suppression of perturbation. The PILI
was computed as the integral between the curves of integration values over time
(in light blue) for the perturbed dynamics (dark blue line) compared to the max-
imum or minimum (black dotted line) of the basal state dynamics (orange line)
(see Section 3.2.9 for details).
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ment. From this group, only the 12 participants that maintained periods
of steady slow-wave N3 sleep were included in this study. None were on
medication or sleep deprived. See further details in Boly et al. (2012).

EEG-fMRI acquisition and pre-processing Functional MRI time
series were acquired using a 3-Tesla MR scanner (Allegra; Siemens). Multi-
slice T2*- weighted fMRI images were obtained with a gradient echo-planar
sequence using axial slice orientation [32 slices; voxel size, 3× 3.4× 3 mm3;
matrix size, 64× 64× 32; repetition time (TR) = 2460 ms; echo time (TE)
= 40 ms; flip angle = 90◦; field of view (FOV) = 220 mm; delay = 0]. The
three initial scans were discarded to avoid magnetic saturation effects. A
structural T1-weighted 3D Magnetization Prepared RApid Gradient Echo
(MP-RAGE) sequence (TR = 1960 ms; TE = 4.43 ms; inversion time,
1100 ms; FOV = 230 × 173 mm2; matrix size, 256 × 192 × 176; voxel size,
0.9× 0.9× 0.9 mm3) was also acquired in all participants.

EEG was recorded using two MR-compatible 32-channel amplifiers
(Brainamp MR plus; Brain Products) and an MR-compatible EEG cap
(Braincap MR; Falk Minow Services) with 64 ring-type electrodes. The
EEG cap included 62 scalp electrodes that were online referenced to a fron-
tocentral electrode (FCz), as well as one electro-oculogram (EOG) and one
electro-cardiogram (ECG) channel. Using abrasive electrode paste (ABR-
ALYT 2000; FMS), electrodeskin impedance was kept below 5 kOhm in ad-
dition to the 5 kOhm resistor built into the electrodes. To avoid movement-
related EEG artifacts, participants’ heads were immobilized in the head coil
by a vacuum pad. EEG was digitized at a 5000 Hz sampling rate with a
500 nV resolution. Data were analog filtered by a band-limiter low-pass
filter at 250 Hz (30 dB per octave) and a high-pass filter with 10 s time
constant corresponding to a high-pass frequency of 0.0159 Hz. Data were
transferred outside the scanner room through fiber-optic cables to a personal
computer where the EEG system running Vision Recorder Software v1.03
(Brain Products) was synchronized to the scanner clock. Sleep EEG was
monitored online with BrainProductsRecView Software. For analysis, EEG
data were low-pass filtered (finite impulse response filter, 36 dB at 70 Hz),
down-sampled to 250 Hz, and re-referenced to linked mastoids. Scanner
artifacts were removed in Vision Analyzer, using an adaptive average sub-
traction. Ballisto-cardiographic artifacts were removed using an algorithm
based on independent component analysis.
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fMRI processing Processing of the functional fMRI data was carried
out using MELODIC (Multivariate Exploratory Linear Decomposition into
Independent Components) Version 3.14 (Beckmann and Smith, 2004), part
of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). We used
the default parameters of this imaging pre-processing pipeline on all par-
ticipants: motion correction using MCFLIRT (Jenkinson et al., 2002); non-
brain removal using BET (Smith, 2002); spatial smoothing using a Gaussian
kernel of FWHM 5 mm; grand-mean intensity normalization of the entire
4D dataset by a single multiplicative factor and high-pass temporal filtering
(Gaussian-weighted least-squares straight line fitting, with sigma = 50.0 s).
We used tools from FSL to extract and average the time courses from all
voxels within each cluster in the AAL90 atlas (i.e. the AAL atlas using
cortical and subcortical but not cerebellar regions) (Tzourio-Mazoyer et al.,
2002) which were then used to constrain the global coupling of the Hopf
model. In brief, our FSL pipeline used fslmaths to create a binary mask
of each of the 90 clusters in AAL90 in MNI space, which was then used
with fslmeants to extract and average the full time series for each of these
clusters.

3.2.3 Structural connectivity

In the whole-brain network model, the interactions between the 90 brain
areas were scaled in proportion to their white matter structural connec-
tivity (Fig. 3.1A). For the present study, we used the structural connec-
tivity between the 90 AAL regions already obtained in previous studies
(Deco et al., 2017a; Jobst et al., 2017) and described in Chapter 2 (see Sec-
tion 2.2.2) averaged across 16 healthy young adults (5 females, mean ± SD
age: 24.75± 2.54).

3.2.4 Group averaged functional connectivity matrices

The same pre-processing steps were applied to the time series as described
in Chapter 2 (see Section 2.2.4). Pairwise Pearson correlation between all
90 regions was then computed resulting in a 90 × 90 FC matrix for each
participant and brain state. Correlation values were converted to z-values
applying Fisher’s transform before averaging across participants in the same
cohort, resulting in a 90×90 FC matrix for each brain state (rest and sleep)
and for each dataset (Frankfurt and Liège).

www.fmrib.ox.ac.uk/fsl
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3.2.5 Whole-brain computational model

The whole-brain computational model applied in this study was the same
as used in the previous chapter (see Section 2.2.7 in Chapter 2), which has
been described in detail in the Introduction of this thesis (see Section 1.4.2
in Chapter 1). Also here the intrinsic node frequencies ωj of each node j
were set to the empirical peak frequency of the BOLD signal in each brain
region and for each brain state within the frequency range 0.04-0.07 Hz.
The distributions of peak frequencies are reported in Figures B.1 and B.2
in Appendix B. In this study we adjusted only one of the two free model
parameters – the global coupling parameter G – to the empirical dynamics.
The bifurcation parameter a was set to 0 corresponding to the bifurcation
point of the model.

3.2.6 Fitting the model to empirical data

To obtain a representative model of BOLD activity in both wakefulness
and deep sleep, we first adjusted the model parameters to fit the spatio-
temporal dynamics of BOLD signals recorded in each brain state and in
each dataset.

In order to mimic the unperturbed basal dynamics in wakefulness and deep
sleep, we followed the study by Jobst et al. (2017) where we performed a
careful exploration of the model’s parameter space in terms of the global
coupling G and the bifurcation parameter a in these two brain states
(see Chapter 2). In particular, there we have found that the optimal fit
was obtained when the nodes operate in the vicinity of the bifurcation
(−0.1 ≤ a ≤ 0) and, for a fixed a in this range, consistently occurred
for higher G during wakefulness as compared to sleep (Jobst et al., 2017)
(see Section 2.3.3 in Chapter 2). As such, we fixed the local bifurcation
parameters at an = 0 for all nodes, i.e. at the edge of a Hopf bifurcation
describing the transition from a noisy to an oscillatory state as in Deco
et al. (2017b), and adjusted only the global coupling parameter G in
order to match the global level of BOLD phase synchronization measured
empirically in each brain state.

To match the level of BOLD phase synchronization, the BOLD sig-
nals (both empirical and simulated) were band-pass filtered within the
narrow-band 0.04-0.07 Hz and the time-varying phases ϕn(t) of each
narrow-band signal were computed using the Hilbert transform (Fig. 3.1B)
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(Glerean et al., 2012; Ponce-Alvarez et al., 2015a). The Hilbert transform
represents a signal, s(t), in the time domain as a rotating vector with
an instantaneous phase, ϕ(t), and an instantaneous amplitude, A(t), as
s(t) = A(t) cos(ϕ(t)). Knowing the instantaneous phase ϕi(t) of each
narrow-band BOLD signal at node n, the level of global BOLD phase
synchronization over time is given by the Kuramoto order parameter
R(t) described in Chapter 2 (see Section 2.2.6). For each value of G
ranging between 0 and 1 (with increments of 0.01), we computed the
absolute difference between the mean levels of synchronization of simulated
and empirical BOLD signals for each brain state and each dataset (see
Fig. 3.2, red lines). Note that, for the mean levels of BOLD phase syn-
chronization to be meaningful, the global signal should not be regressed out.

In addition, for each value of G, we calculated a simulated FC matrix as the
90× 90 correlation matrix between the simulated BOLD signals (xn) in all
90 regions. Correlation values were converted to z-values applying Fisher’s
transform and the simulated FC matrices were compared to the empirical
ones obtained for each brain state (see Section 3.2.4) by calculating the
Pearson correlation coefficient between the elements of the upper triangular
part of both empirical and simulated FC matrices.

3.2.7 Offline perturbation protocols

Despite being purely phenomenological, the Hopf model is particularly well-
suited for perturbative studies because each brain area n has a local parame-
ter an that defines the distance to a supercritical Hopf bifurcation, inducing
synchronized BOLD fluctuations for an > 0 and strong noise for an < 0
(Kringelbach et al., 2015; Deco et al., 2017b). We used two different offline
perturbation protocols eliciting strong deviations from the basal (i.e. un-
perturbed) state dynamics by artificially imposing more synchronization or
temporarily suppressing synchronization in different brain regions. In order
to attenuate the local effects associated to the perturbation of specific brain
areas, we systematically repeated each protocol 3000 times, perturbing a
different set of randomly selected brain regions in each trial.

1. Synchronization perturbation protocol : 1 to 10 randomly selected brain
regions were simultaneously perturbed for 100 s by shifting their local
bifurcation parameter values to the positive range (an = 0.6), which
imposes more synchronized oscillatory BOLD signals.
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Figure 3.2: Adjusting the Hopf whole-brain model to the basal brain
activity of wakefulness and deep sleep. Before applying the perturbative
protocol, we first defined the model parameters of the Hopf whole-brain model in
order to obtain a representative model of the brain activity recorded during wakeful
rest and deep sleep using fMRI from two independent studies (Frankfurt and Liège)
(Jobst et al., 2017). The red line shows the difference between synchrony degrees,
such that, when the synchrony error reaches zero, the mean synchrony degree of
simulated BOLD signals matches the one measured empirically. In addition, the
black line shows the correlation between empirical and simulated FC matrices,
which is kept high for the range where the synchronization error is optimal.
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2. Noise perturbation protocol : To temporarily suppress synchronization,
the local parameters of 1-10 randomly selected brain regions were si-
multaneously shifted to the negative region (an = −0.6) for 100 s
eliciting more noisy behavior and hence causing an artificial pertur-
bative destruction of the basal synchronization across the different
brain areas.

In both protocols, the bifurcation parameters were reset to zero after per-
turbation.

3.2.8 Integration over time

To characterize the level of brain-wide BOLD signal interactions across
time, we used an observable measure that summarizes in a single value for
each time point the level of integration across the whole brain previously
defined in Deco et al. (2015), and which characterizes the broadness of
communication between brain regions at the instantaneous level (Lord
et al., 2017).

To calculate the integration, first we used the BOLD signal phases ϕn(t)
(obtained using the Hilbert transform, see Section 3.2.4) to calculate a phase
locking matrix P , describing for each time point the level of pairwise phase
synchronization between regions n and p as:

Pnp(t) = Re
∣∣∣e−3(ϕn(t)−ϕp(t))

∣∣∣ = cos(ϕn(t)− ϕp(t)) (3.1)

Based on this phase locking matrix, we computed the level of integration
I(t) at each time point t as the size of the largest connected component of
P (t) averaged over thresholds (Deco et al., 2015). More specifically, for a
given absolute threshold θ between 0 and 1 (scanning the whole range), P
was binarized (0, if |Pnp| < θ, 0 and 1 otherwise). For each threshold θ and
for each time t, the number of nodes in the largest connected component
of P (t) was extracted (see Fig. 3.1C). The largest component is the largest
sub-graph of the binarized P (t), in which any two vertices are connected to
each other by paths, and which connects to no additional vertices. In order
to be independent of a given threshold, we repeated this procedure scanning
all possible thresholds (between 0 and 1) and defined the integration at each
time t, I(t), as the integral of the largest component curve as a function
of the thresholds. It has been shown recently that this measure is both
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sensitive and specific with the ability to classify FC differences associated
with different diseases and brain states (Deco et al., 2015). Following this
procedure, we calculated the integration over 200 s of simulated BOLD
signals in the basal conditions and right after perturbation offset.

3.2.9 Perturbative Integration Latency Index

The Perturbative Integration Latency Index (PILI) characterizes the
recovery of the perturbed brain dynamics to regain basal equilibrium
after suppression of the perturbation (see Fig. 3.1D). The key idea is to
characterize the latency of extinction of a massive stimulation perturbing
a basal state. Thus, to determine when the evoked perturbative dynamics
relax back to the basal dynamics of wakefulness or deep sleep after the offset
of perturbation, we measured the alterations in the level of integration over
time (see Fig. 3.1D).

In more detail, we first computed the integration for 200 s of the simulated
unperturbed basal cases, and detected the maximal and minimal values,
Ibasalmax and Ibasalmin , for each brain state (see Fig. 3.3, red lines). Then, we
perturbed the system and computed the integration for 200 s after the off-
set of perturbation, averaged across 3000 trials. The values Ibasalmax and Ibasalmin

were used as the criterion for reaching the basal values for the synchroniza-
tion and for the noisy perturbative protocols, respectively. The PILI was
obtained by normalizing the extrema of I to 1 at the offset of perturba-
tion (i.e. for t = 0) and 0 at the point where the integration reaches the
basal values and calculating the integral of that curve. Larger values of
this integral mean longer latency of extinction of the perturbative effects
and smaller values indicate shorter latencies. The process is sketched in
Figure 3.1. Significance levels were estimated over the 3000 trials over 200
repetitions thereof, calculating the mean of the distribution and estimating
the error.
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Figure 3.3: Response to perturbation in silico for wakefulness and deep
sleep. Blue lines: Responses in the level of global integration after 10 random
brain areas were perturbed using the synchronization protocol (left column) or
the noise protocol (right column) during wakefulness (top line) and deep sleep
(bottom line) averaged over 3000 trials. Red lines: Baseline levels of integration in
the unperturbed simulated dynamics, different for wakefulness (top) and deep sleep
(bottom). Once perturbation is halted (at t = 0 s), the integration slowly decays
(left) or rises (right) towards the baseline values of each state (see Section 3.2.9 for
details). For the purpose of illustration, the results are shown for the Frankfurt
dataset only, but similar plots were obtained with the Liège dataset.
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3.3 Results

We investigated the differences between two brain states, wakefulness
and deep sleep, in healthy human participants from 2 independent pre-
viously published studies using a new offline perturbative approach in
which we focused on the latency that the system takes to recover back
to baseline after the offset of a strong multifocal perturbation applied offline.

3.3.1 Optimal working point

As a first step, the whole-brain computational model was adjusted to the
baseline activity of each brain state recorded with fMRI in each study (see
Section 3.2.6). In Figure 3.2 (red lines) we show how the global coupling
parameter G was adjusted such that the mean degree of synchronization
in simulated BOLD signals matched the ones measured empirically in each
brain state and in each dataset. We found that this match – i.e. when
the difference between the mean synchronization levels reaches zero (red
lines) – occurred for a very specific value of G, which was consistently
lower in deep sleep than wakefulness for both datasets. This result goes in
agreement with previous findings suggesting that functional connectivity
at the level of the BOLD signals is stronger during wakefulness than deep
sleep (Jobst et al., 2017). In addition, we show in Figure 3.2 (black lines)
the correlation between the empirical and simulated FC matrices as a
function of G. This measure, however, is less constrictive since a good fit
is obtained not only for the optimal G determined above but also when
the simulated BOLD signals highly differed from the real ones in terms of
phase synchronization.

3.3.2 Perturbation of whole-brain dynamics

Once we obtained a representative model of the whole-brain dynamics of
each brain state, i.e. a Wakefulness Model and a Sleep Model (adjusted
to each dataset), the models were perturbed offline following two distinct
perturbation protocols in which we induced either more synchronization or
more noise in 1-10 random brain regions for 100 seconds (see Section 3.2.7).
After perturbation was stopped, we measured the perturbation-elicited
changes in terms of global integration, which captures the brain-wide
connectedness of BOLD signals in terms of phase locking (see Section 3.2.8)
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(Deco et al., 2015; Lord et al., 2017).

In Figure 3.3, we show the evolution of integration (averaged over 3000
trials) right after the perturbation of 10 random brain areas (blue lines)
compared to the basal condition (red lines) for each model and for each
perturbation protocol. Notably, the basal integration was consistently
higher during wakefulness (red line, top plots) than during sleep (red
line, bottom plots), which means a higher connectedness at the level of
BOLD signal phases during unperturbed wakefulness. At the offset of a
long-lasting perturbation, i.e. at t = 0 (blue lines), the levels of integration
were strongly deviated from the baseline, with increased integration after
the synchronization protocol (left plots) and decreased integration after
the noise protocol (right plots). During the recovery period, the levels
of integration slowly decayed (or rose) towards their corresponding basal
levels lasting on average more than 100 s to fully recover. Importantly,
we found that each brain state, here wakefulness and sleep, recovered
differently after being submitted to the same perturbation protocols.

3.3.3 Higher latencies after perturbation during
wakefulness

To characterize the recovery after a long-lasting perturbation, we de-
fined the Perturbative Integration Latency Index (PILI), which can be
interpreted from Figure 3.3 as the area between the normalized red and
blue curves. To capture only the recovery dynamics in the PILI, the
curves of perturbed integration were normalized such that I(t0) = 1 at
the offset of perturbation, irrespective of the brain state, and I = 0 at
the point where the integration reached the basal values. We calculated
the PILI for each brain state and each perturbation protocol with varying
number of perturbed areas. In Figure 3.4, we show the values of PILI
as a function of the number of brain regions perturbed, for each brain
state and synchronization protocol. Importantly, for both datasets, we
found consistently higher PILI values for wakefulness than for sleep, with
significance p < 10−5, irrespective of the number of nodes perturbed. This
result shows that two brain states, here wakefulness and deep sleep, can
be dissociated based on their dynamical response to a strong long-lasting
perturbation, which is efficiently characterized using the PILI. Whether
the perturbation acts on promoting or disrupting synchronization, the
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Figure 3.4: Slower recoveries in the Awake model compared to the Sleep
model following systematic perturbation reveal critical slowing down of
the network dynamics. Mean PILI values obtained in the awake (blue) and deep
sleep (red) models as a function of the number of random brain regions perturbed,
for each dataset and perturbation protocol. Larger PILI values correspond to
slower recovery rate. Error bars represent the standard error of the mean over 200
repetitions of the 3000 trials. We found clear significant differences in PILI values
between wakefulness and deep sleep, with p-value < 10−5, in both datasets and
synchronization protocols.

recovery is consistently longer during wakefulness as compared to deep sleep.
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3.4 Discussion

In this chapter we presented a novel methodological approach designed to
investigate the dynamical complexity of brain states through their recovery
from strong long-lasting perturbations using the PILI. This approach has
the potential to significantly expand our understanding of the dynamical
complexity underlying different conscious and unconscious states. Our
results show that the PILI efficiently dissociated two brain states, here
wakefulness and deep sleep, with significantly higher PILI values in
wakefulness in both datasets and perturbation protocols, regardless of the
number of areas perturbed. Overall, these results show that a shift in the
dynamical regime of the brain – induced by a change in the global coupling
weight potentially linked to cholinergic levels (Deco et al., 2014) – turns
the brain more rigid to external perturbations during deep sleep, returning
faster to its equilibrium dynamics, whereas during wakefulness the brain
integrates perturbations in the dynamics for longer. Theoretically, these
results express the critical slowing down of a system when it is shifted
away from an equilibrium point (Wissel, 1984; van Nes and Scheffer, 2007),
in line with previous EEG studies showing that sleep is characterized by
dynamical stability and loss of complexity (Pereda et al., 1998).

Importantly, all perturbations in this work are applied offline to a
whole-brain computational model, which allows eliciting strong unnatural
deviations from the basal activity with recoveries lasting more than a
hundred seconds. The model is previously adjusted to the basal activity
recorded with fMRI in each brain state, here wakefulness and deep
sleep, resulting in two distinct models representative of each unperturbed
brain state (Jobst et al., 2017). These models can then be exhaustively
perturbed in silico without the ethical and safety constrains of in vivo
perturbations (Clausen, 2010; Kringelbach and Aziz, 2011). Previous
studies have used whole-brain computational models to simulate the effects
of structural lesions, i.e. by removing links or nodes, and studying its
impact in whole-brain dynamics (Cabral et al., 2012; Váša et al., 2015;
Aerts et al., 2016; Deco et al., 2017c). In particular, it has recently been
shown that the removal of specific binding regions impacts subsequent
brain activity, specifically in terms of integration and information encoding
capability (Deco et al., 2017c). Rather than removing regions, we per-
turbed regions by making them either more oscillatory or more noisy and
measured the recovery of the system’s global integration. Other studies
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have recently started to locally perturb models of resting-state activity
to investigate their response to stimulation, particularly focusing on the
activation/stabilization of meaningful functional networks in task (Cocchi
et al., 2015; Spiegler et al., 2016; Gollo et al., 2017). Yet the strategy
presented herein differs from previous offline stimulation approaches
because it does not aim to simulate natural perturbative interventions
(pathological or not) but rather to further investigate why brain states
can be dissociated based on their response to perturbations, revealing
important features of their dynamical complexity.

The introduction of our novel method for revealing the dynamical com-
plexity following systematic perturbation is complementary to the seminal
work of Massimini and colleagues who have used TMS with EEG for
characterizing different conscious brain states (e.g. wakefulness, sleep and
anesthesia) (Massimini et al., 2005; Ferrarelli et al., 2010; Casali et al.,
2013). In contrast to this previous method, which uses brief TMS pulses
and thus measures the weak perturbation-elicited dynamics, our approach
measures the recovery after the offset of a long-lasting perturbation. More-
over, since the perturbation-evoked activity is influenced by fluctuations in
spontaneous brain activity present at the time of perturbation, we reduce
the effect of such fluctuations by strongly deviating the dynamics from
the basal activity through a substantial long-lasting perturbation – only
possible in a computational model – and then measuring the recovery from
this perturbation over 3000 trials.

Following a growing trend in the analysis of dynamic BOLD signal
connectivity, we consider only the coupling at the level of BOLD phases
(Glerean et al., 2012; Cabral et al., 2017; Deco et al., 2017a). Measuring
changes in phase space allows for a better characterization of the rich
BOLD signal dynamics and any changes arising from perturbations. In
particular, this makes it possible to directly determine the global level
of synchronization across the whole brain, to obtain the phase locking
matrices at the instantaneous level and derive the global level of integration
over time (Deco et al., 2015). This reduction to phase space relies on
the fact that the non-linear brain dynamics share more features with the
non-linear phenomena observed in the waves and turbulence of the ocean
than with that of a sedate pond, which can be characterized solely with
amplitude measurements. The fundamental idea behind our hypothesis is
that a strong perturbation to the turbulent ocean of brain activity elicits
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alterations in phase (rather than amplitude) space.

There are a number of limitations to our analysis that deserve mention.
First, we have modeled directly the hemodynamics with a Hopf normal
form model, which presupposes that the temporal scale of hemodynamics
can be represented solely by the slow fluctuations of neuronal activity
inherent in fMRI time series. Second, we are characterizing the stability
(or complexity) of coupled dynamical units – not the neuronal dynamics
generating brain signals. Practically, this means that we have shown that
changing the global (symmetric) coupling parameter G of coupled Hopf
units induces a shift in the dynamical regime of the model, which changes
its global stability (i.e. complexity). The importance of this observation
has been motivated by previous results showing that the global coupling
required to emulate sleep and waking functional connectivity in empirical
data also changes (Jobst et al., 2017) (see Chapter 2).

But the link between the empirical and the simulated dynamics does not
rest solely upon global coupling. It is equally important to consider the
role of specific BOLD frequencies, as the ones within the most meaningful
resting-state narrow-band. We found a wider distribution of BOLD
frequencies during sleep (see Figures B.1 and B.2 in Appendix B), which,
in a network model, allows for increased segregation and lower integration.
As such, the lower BOLD integration levels in the baseline sleep model
are likely to be a combination of both the weaker coupling strength and
the wider frequency distribution obtained from empirical data. Here,
we show that these two features of brain dynamics shift the model’s
dynamical regimes into different levels of baseline integration, which may
be directly or indirectly related to different states of consciousness. Yet,
other ingredients and features certainly play a role in regulating the
dynamical complexity of different brain states, namely the asymmetric,
region-specific and context-sensitive coupling in real brains. Since our
methodological approach is not exclusive to the Hopf model used herein, it
will be interesting in future work to fit more realistic models of effective
connectivity to empirical data and pursue a more detailed characterization
along the lines above.

Here we exposed two dynamical features inducing changes in the complexity
of brain activity while the underlying network structure remained intact,
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namely the global coupling strength and the intrinsic ultraslow frequency
of each brain area. From an analytic perspective, recent studies on the
stability and controllability of the human brain’s structural connectivity
matrix have made significant achievements in relating the dynamical
complexity with the underlying network architecture (Gu et al., 2015;
Betzel et al., 2016), in particular under artificial stimulation (Muldoon
et al., 2016). Thus, such analytical studies in combination with the
insights obtained from numerical simulations have the potential to become
important tools for the development of personalized stimulation protocols.

Overall, in silico perturbations of whole-brain dynamics open up for a new
level of artificial perturbative studies unconstrained by ethical limitations
allowing for a deeper investigation of the dynamical properties of different
brain states. To introduce the model, we restricted our analysis to two
healthy brain states, wakefulness and sleep, but it would be important to
test the method on other natural or pathological brain states such as vege-
tative coma, minimal conscious state, locked-in syndrome and various levels
of anesthesia (Casali et al., 2013; Deco and Kringelbach, 2014) or in altered
states elicited by drugs such as morphine, amphetamines, psilocybin and
LSD (Carhart-Harris et al., 2014), which will be covered in Chapter 4.

3.5 Conclusion

In this chapter we have presented a novel approach for studying the under-
lying dynamics of different brain states. The here described Perturbative
Integration Latency Index (PILI) characterizes the dynamical stability of
brain states in terms of their recovery following in silico perturbation. After
perturbing the whole-brain computational model by shifting it away from
its basal state either into a synchronous or a noisy regime, the recovery of
the system back to the equilibrium state is evaluated applying the PILI.
We have shown that this novel measure can efficiently dissociate between
the two analyzed brain states (wakefulness and slow-wave sleep), with
significantly higher PILI values in wakefulness as compared to sleep. This
result could be reproduced in two independent datasets and with both
perturbation protocols. The here presented results show that a shift in
the global brain dynamics causes the brain to be less affected by external
perturbations during deep sleep as compared to wakefulness, returning
faster to its equilibrium state after a strong model perturbation. The
approach presented in this chapter opens up for a new level of artificial
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perturbative studies, making it possible to study the underlying dynamics
of different brain states in ways not possible experimentally.

Beyond the dissociation between brain states via massive perturbation pro-
tocols, the perturbative approach proposed herein offers a new strategy for
effectively introducing probabilistic causality into neuroimaging studies and
may be modified to further explore the minimal perturbation necessary to
induce a significant dissociation between states, or to evaluate the efficacy of
different perturbation protocols applied to different target regions. By offer-
ing the possibility to causally perturb a whole-brain computational model
that fits human empirical neuroimaging data, this method could become
a tool for determining where efficacious perturbation might help rebalance
the dynamical complexity of the brain (Kringelbach et al., 2011; Saenger
et al., 2017). It may therefore be useful in clinical contexts for predicting
the outcome of DBS or TMS for specific disorders, perhaps even at the
individual level.



Chapter 4

Characterizing the psychedelic
state through perturbation of

whole-brain dynamics

This chapter introduces work in preparation for submission as an original research arti-
cle: A perturbational approach for characterizing the dynamics underlying the psychedelic
state. Beatrice M. Jobst, Selen Atasoy, Adrián Ponce-Alvarez, Ana Sanjuán, Leor Rose-
man, Mendel Kaelen, Robin Carhat-Harris, Morten L. Kringelbach, Gustavo Deco.

Lysergic acid diethylamide (LSD) is a potent psychedelic drug, which has
seen a revival in clinical and pharmacological research within the last years.
Human neuroimaging studies have shown fundamental changes in brain-
wide functional connectivity and an expansion of dynamical brain states,
thus raising the question about a mechanistic explanation of the dynam-
ics underlying these phenomena. We here applied a novel perturbational
approach, presented in Chapter 3, based on a whole-brain computational
model, which opens up the possibility to externally perturb different brain
nodes in silico and thus investigate differences in dynamical complexity of
different brain states. After adjusting the whole-brain model to the dynam-
ics of fMRI BOLD signals recorded under the influence of LSD or Placebo,
perturbations of different brain areas were simulated by introducing either
more synchronization or more noise into the regarding node. After per-
turbation offset we quantified the recovery of the brain node to its basal
dynamical state with the Perturbational Integration Latency Index (PILI)
and used this measure to distinguish between the two brain states. We
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found significant changes in dynamical complexity, showing consistently
higher PILI values after LSD intake on a global level, indicating a shift
of the brain’s global working point further away from a stable equilibrium
as compared to normal conditions. On a local level we found that the high-
est differences were located within the limbic network, the visual network
and the default mode network, confirming results of previous experimen-
tal studies. Additionally we found changes in the hierarchical organization
of the brain between the two states, exhibiting stronger hierarchy under
LSD. The here presented results provide important new insights into the
brain-wide dynamical changes underlying the psychedelic state and under-
line possible future clinical applications of psychedelic drugs in particular
psychopathological states.

4.1 Introduction

In the past few years we have witnessed an increasing interest in the study
of the effects of psychedelic drugs, especially lysergic acid diethylamide
(LSD), on the human brain. LSD is a potent psychoactive drug, which was
first synthesized in 1938 and whose hallucinogenic effects were discovered
in 1943 (Hofmann, 1980). Between the 1950s and the late 1960s LSD was
widely used in psychology and psychotherapy and its clinical applications as
a pharmacological substance were well studied (Passie et al., 2008; Nichols,
2016). Due to political reasons because of its widespread uncontrolled
recreational use, LSD was made illegal in the late 1960s, which is why
human research with LSD came to a halt for approximately 50 years. It
was not until recently, that the drug has lived a renaissance in clinical and
especially brain research.
Within the last years a significant number of human neuroimaging studies
have been performed to study the psychedelic state (Carhart-Harris et al.,
2012; Muthukumaraswamy et al., 2013; Tagliazucchi et al., 2014; Palhano-
Fontes et al., 2015; Carhart-Harris et al., 2016b; Tagliazucchi et al., 2016c;
Preller et al., 2017a,b), reporting an increase in visual cortex blood flow
and an expanded visual cortex functional connectivity, a reduction of the
integrity of functional brain networks, a global increase in connectivity
between networks and an enhanced repertoire of dynamical brain states.
While these results offer us valuable insights into the major functional
alterations taking effect in the brain during the psychedelic state, we are
still missing a mechanistic understanding of these empirical observations
providing us information about the underlying whole-brain dynamics.
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To address this problem, we here apply a novel method combining a
whole-brain computational model with an in silico model perturbation,
previously described by Deco et al. (2018), where it is possible to simulate
external perturbations of any brain region for an unlimited amount of time
in ways not possible experimentally (see Chapter 3).
In the last 15 years there has been a number of studies investigating
brain function by systematically exploring the dynamical responses to
controlled artificial external perturbations of different brain regions and
combining them with whole-brain neuroimaging (Massimini et al., 2005;
Kringelbach et al., 2007a; Litvak et al., 2007; Mohseni et al., 2012; Casali
et al., 2013; Saenger et al., 2017). These approaches are limited though to
transcranial magnetic stimulation (TMS) in healthy human subjects and
to deep brain stimulation (DBS) in patients due to ethical considerations
(Siebner et al., 2009; Clausen, 2010; Kringelbach and Aziz, 2011). In ad-
dition to that, these procedures are usually costly and expensive to perform.

Here we apply a novel in silico model perturbation approach, introduced
in Chapter 3, to study the perturbation-elicited changes in global and lo-
cal brain activity and to obtain a deeper understanding of the mechanisms
underlying the experimentally observed dynamical brain changes under the
influence of LSD in different conditions (rest and while listening to music).
This approach is based on a whole-brain model, described in Section 1.4.2
in Chapter 1, directly simulating the resting-state BOLD signal fluctuations
(Clausen, 2010; Deco et al., 2017b; Jobst et al., 2017; Saenger et al., 2017;
Deco et al., 2018), which we perturb systematically on a node-by-node level.
Based on the above described experimental insights on LSD and on the re-
cent application of this approach to human neuroimaging sleep data, where
the decay after perturbation was found to be faster during sleep than during
awake (Deco et al., 2018), we expect that under the influence of LSD the
system would take longer to regain baseline activity after a strong model
perturbation, which is consistent with more complex and less stable dynam-
ics (Deco et al., 2018). We further expect this predicted observation to be
even stronger in the Music condition, where the effects of LSD have been
found to be amplified (Kaelen et al., 2015, 2016; Preller et al., 2017a). The
expected results could be related to a shift in the dynamical working regime
of the brain in the LSD state, consistent with previously described results,
like globally increased connectivity, an enhanced repertoire of brain dynam-
ical states and closeness to criticality (Tagliazucchi et al., 2014; Carhart-
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Harris et al., 2016b; Tagliazucchi et al., 2016c; Atasoy et al., 2017b).
We furthermore analyze the differences between LSD and Placebo induced
brain states by comparing the perturbation-elicited dynamical responses on
a resting-state network level, where we hypothesize to find larger differ-
ences in brain sub-networks experimentally known to be relevant for the
LSD state. Finally we introduce an index for hierarchical information pro-
cessing in the brain, and evaluate eventual differences between the LSD and
Placebo states, expecting to find higher hierarchical organization under the
influence of LSD.
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4.2 Methods

4.2.1 fMRI data

For the fMRI BOLD data, 20 healthy participants were scanned in 6 differ-
ent conditions: LSD resting-state, Placebo (PCB) resting-state, LSD and
PCB while listening to music, and LSD and PCB resting-state after listen-
ing to music. All participants gave informed consent. The experimental
protocol was approved by the UK National Health Service research ethics
committee, West-London. Experiments conformed with the revised decla-
ration of Helsinki (2000), the International Committee on Harmonization
Good Clinical Practice guidelines and the National Health Service Research
Governance Framework. The data collection was sponsored by the Impe-
rial College London, which was carried out under a Home Office license for
research with schedule 1 drugs. 8 out of the 20 subjects needed to be ex-
cluded from further analyses for the following reasons: the scanning session
of one participant needed to be terminated early due to the subject re-
porting significant anxiety. 4 participants were excluded due to high levels
of head movement (as described in the original publication by Carhart-
Harris (Carhart-Harris et al., 2016b) the exclusion criterion for excessive
head movement was subjects displaying more than 15% scrubbed volumes
with a scrubbing threshold of FD = 0.5). 3 participants needed to be
excluded due to technical problems with the sound delivery in the Music
condition. Thus, 12 subjects were considered for further analyses. Each par-
ticipant received either 75 µg of LSD (intravenous, I.V.) or saline/placebo
(I.V.) 70 minutes prior to MRI scanning. LSD and PCB sessions were sep-
arated by at least 14 days with the condition order being balanced across
participants, who were blind to this order.
The fMRI BOLD data were recorded using a gradient echo planer imaging
sequence, TR/TE = 2000/35 ms, field of view = 220 mm, 64 × 64 acqui-
sition matrix, parallel acceleration factor = 2, 90◦ flip angle. The exact
length of each of the two BOLD scans per participant was 7:20 minutes.
BOLD signals were averaged over cortical and sub-cortical regions of inter-
est following the automated anatomical labeling (AAL) atlas parcellation of
the brain into 90 regions of interest (76 cortical and 14 subcortical regions,
AAL90), comprising 45 regions in each hemisphere (Dang-Vu et al., 2005).
The full details on the study design, the scanning protocol and the fMRI
pre-processing can be consulted in the supplementary information of the
original publication (Carhart-Harris et al., 2016b).
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4.2.2 Anatomical connectivity

The anatomical connectivity data between the different brain areas applied
in this study has already been described in various publications (Deco et al.,
2017a; Jobst et al., 2017; Deco et al., 2018) and was the same as used in
Chapters 2 and 3 (see Sections 2.2.2 and 3.2.3) for basing the interactions
between the distinct brain areas of the whole-brain network model on.

4.2.3 Hopf computational whole-brain model

The whole-brain computational model which was used in this study to
simulate the empirical dynamics observed in the two different drug states
matches the models applied in the previous chapters (see Section 2.2.7 in
Chapter 2, Section 3.2.5 in Chapter 3 and Section 1.4.2 in Chapter 1 for a
detailed description of the model). Again, as in Chapter 3, only the global
coupling parameter G was adjusted to the empirically observed dynamics,
while the bifurcation parameter a was set to 0 corresponding to the bifurca-
tion point of the model, the transition point between noisy and oscillatory
behavior.

4.2.4 Functional connectivity estimation

After detrending and demeaning, the BOLD signals were band-pass filtered
within the range of 0.04-0.07 Hz following the procedure applied in Chap-
ters 2 and 3 (see Sections 2.2.4 and 3.2.4) (Glerean et al., 2012), since this
frequency band has been shown to be less affected by noise and to be more
functionally relevant compared to other frequency bands (Biswal et al., 1995;
Achard et al., 2006; Buckner et al., 2009; Glerean et al., 2012). Next, after
z-scoring the filtered time series, the FC matrices were first calculated for
each participant in each condition and then averaged over groups apply-
ing fixed-effect analysis (see Sections 2.2.4 and 3.2.4 in Chapters 2 and 3).
Thus we obtained 6 final FC matrices, one for each condition. For compar-
ing the group level FC matrices between the LSD and PCB conditions, we
compared the mean FC values among drug induced states for each LSD –
PCB condition pair (i.e. Rest, Music and Rest after Music). To test the
significance of the differences of the conditions, we generated 100 surrogate
datasets, applying the same strategy as in Chapter 2 (see Section 2.2.3),
where the LSD and PCB conditions were randomly permuted with a 50%
chance of switching of the condition assignment. This way, the group pairs
get randomly mixed and thus fulfill the null hypothesis of no difference
between drug induced conditions.
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4.2.5 Fitting the model to experimental data

We explored the parameter space of the whole-brain computational model
by varying the global coupling strength parameter G from 0 to 2 in steps
of 0.01, similar to the procedure explained in Chapters 2 and 3 (see Sec-
tions 2.2.8 and 3.2.6). To match the procedure applied on the empirical
data, we filtered the simulated BOLD time series as well in the range of
0.04-0.07 Hz. Furthermore the signal lengths of the simulated data coin-
cided with the duration of the empirical data recordings. Next, the FC
matrix was estimated on the simulated data for the whole parameter space
applying the same procedure as on the empirical data. As a consequence
we calculated the fitting between the empirical and the simulated FC ma-
trices for each LSD – PCB condition pair (i.e. Rest, Music and Rest after
Music) for the whole parameter space as the Kolmogorov-Smirnov distance
(KS distance) between the two matrices, amounting in one fitting value per
parameter value G for each condition. We simulated the BOLD time series
and fitted them to the empirical data under the same conditions 50 times
and averaged subsequently over the final results in order to minimize the
random effects due to the Gaussian noise present in the model. We com-
pared the resulting fitting curve minima to the surrogate data explained
above in order to test for significant differences between the LSD and PCB
conditions. The coupling parameter values where the fitting curves were
minimal were then used for the following analysis steps.

4.2.6 Model perturbation protocols

Following the procedure applied in Chapter 3 (Deco et al., 2018), we
made use of the locally defined bifurcation parameter a of the Hopf model
to simulate two kinds of offline perturbation protocols evoking either
deviations from the basal state (a = 0) into the synchronous regime (a > 0)
or into the noisy regime (a < 0). In order to investigate the local effects
provoked by the perturbation of single brain areas, we perturbed one node
at a time repeating this procedure 3000 times so that finally we could
average over the 3000 trials and perform statistical analyses based on the
error of the distribution. One perturbation trial consisted in perturbing one
out of 90 nodes for 100 seconds by setting its local bifurcation parameter
value a to either a > 0 or a < 0 . Specifically, for the synchronization
perturbation protocol a was set to 0.6 and for the noise perturbation
protocol to -0.6. This leads in the synchronization case to more oscillations
in the perturbed node and in the noise case to an artificial destruction of
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the basal synchronization between the perturbed node and the other brain
areas. After perturbation, the bifurcation parameter was reset to zero in
the perturbed node.

The procedure applied herein is very similar to the one explained in the
previous chapter in Section 3.2.7 with the difference that here we mainly
focus on the local effects by perturbing only one node at a time while leaving
the other nodes at their basal state (a = 0). A similar procedure has been
performed by Deco et al. (2018) (Fig. 5), where the node-wise perturbations
were correlated with various node-wise metrics, but no details about the
local effects of node-wise perturbation differences were analyzed.

4.2.7 Integration measure

In order to measure the level of brain-wide simulated BOLD signal interac-
tions over time, we applied the integration measure described in Chapter 3
(see Section 3.2.8), which characterizes the level of integration across all
brain regions for each time point (Deco et al., 2015, 2018). As in the pre-
vious chapter, we computed the integration over 200 seconds of simulated
BOLD time series in the basal state and starting at perturbation offset in
the perturbed case.

4.2.8 Perturbative Integration Latency Index (PILI)

To characterize the return of the brain dynamics to the basal state
after a model perturbation of the system we calculated the Perturbative
Integration Latency Index (PILI) (Fig. 4.1). As in the previous chapter in
Section 3.2.9 we used the changes of the level of integration over time from
the basal dynamics to the perturbed state.
First, the integration was calculated for 200 seconds of the simulated basal
state (orange curve in Fig. 4.1), the average over 3000 trials was calculated
and finally the maximum and minimum values of the averaged curve were
identified. This was done for each of the 6 conditions. Then, the system
was perturbed following the procedure described above and again the inte-
gration was computed over 200 seconds after the offset of the perturbation.
This procedure was performed 3000 times. The maximum and minimum
values of the basal integration curve were used to determine the moment
of recovery after the model perturbation, for the synchronization and noise
protocol, respectively. Then, the PILI was calculated as the integral of
the integration curve from perturbation offset to the reaching point of the
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basal state. Finally, we computed the average PILI over trials to obtain
one final value for each brain area. The PILI gives us information about
how strong the system reacts to a model perturbation and how long it
takes for it to regain its basal dynamical state. The statistical significance
tests were performed across the 3000 trials applying a Mann-Whitney U
test to compare between the drug and PCB induced states.

The here described procedure for calculating the PILI, was adopted from
Chapter 3 (see Section 3.2.9) (Deco et al., 2018), with some slight differ-
ences. First of all, in this study the integration curves were not normalized
between 0 and 1 after perturbation offset until reaching baseline. As a con-
sequence not only the time it takes for the integration curve to reach the
basal state after a model perturbation is taken into consideration, but also
how strong it deviates from the baseline in the first place. We found that
this was an equally important feature, since a perturbation with the same
strength can cause a much stronger deviation from the basal state depend-
ing on the brain state.
Second, here we averaged over trials only after calculating the PILI values
for each trial as the integral of the integration curve (see Fig. 4.1 as com-
pared to Fig. 3.1D in Chapter 3). Thus it was not necessary to repeat the
3000 trials various times in order to calculate the statistical significance lev-
els, but the 3000 trials could be used directly to test for significance. This
simplification procedure was possible in this study, since, in contrast to the
previous chapter, here we only perturbed one node at a time, thus making
various trials to vary the randomly picked nodes irrelevant.

4.2.9 Region-wise and resting-state network analysis

The above described procedure resulted in one PILI for each of the 90
brain areas. We compared the p-values between all brain regions for each
of the 3 conditions (Rest, Music, Rest after Music), computed with the
above described statistical significance test, by ordering them from small-
est to largest. Bonferroni correction was applied in order to correct for
the number of brain areas, meaning that a p-value had to be lower than
0.05/90 ≈ 5.556e− 04 to be significant.
Next, we evaluated the differences between PILI values in seven commonly
observed RSNs, default mode, executive control, dorsal attention, ven-
tral attention, visual, limbic and somato-motor network, as described in
Thomas Yeo et al. (2011). The parcellation of the cerebral cortex into
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Figure 4.1: Calculation of the Perturbative Integration Latency Index
(PILI). For each trial, the PILI was computed as the integral under the curve of
integration values after the offset of the model perturbation (blue) until reaching
the maximum or the minimum of the basal state (orange). The final PILI was
obtained by averaging over trials. The PILI characterizes the return of the brain
dynamics to the basal state after a model perturbation of the system.
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these seven networks has been extracted from the intrinsic functional con-
nectivity data from a group of 1000 participants (Thomas Yeo et al., 2011)
and is available online at http://surfer.nmr.mgh.harvard.edu/fswiki/
CorticalParcellation_Yeo2011. We computed for each reference RSN
(Thomas Yeo et al., 2011; Atasoy et al., 2016) the standardized difference
between LSD and PCB induced states by calculating Cohen’s d-values (Co-
hen, 1988) taking into account only those brain areas being part of one
RSN. Cohen’s d-value is defined as follows (Cohen, 1988):

d =
(µ1 − µ2)
spooled

, spooled =

√
(σ21 + σ22)

2
, (4.1)

where µ1 and µ2 are the means of the PILI values within one RSN group
and σ1 and σ2 the standard deviations of either group.
The RSNs were then ordered from highest to lowest Cohen’s d-value, where
the higher the value, the higher the difference between PILI values and thus
the higher the response to a model perturbation under the influence of LSD
in one particular RSN.

4.2.10 Hierarchy index

Following the concept of Deco and Kringelbach (2017), we here introduce
an index for the hierarchy of information processing in the brain, short
hierarchy index, by making use of the variability of the PILI values over
different brain regions. We thus define the hierarchy index as the standard
deviation of the PILI values over brain nodes, implying that the higher the
variability over nodes, the stronger the hierarchy. We calculated this index
for each of the 3 conditions for the LSD and the PCB state for each of the
3000 trials and then compared the distributions over trials between LSD and
PCB. We evaluated statistically significant differences between the LSD and
PCB induced brain states applying a two-sided t-test.

http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011
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4.3 Results

We investigated the differences between two drug-induced brain states in
3 different conditions, namely LSD and PCB during rest, LSD and PCB
while listening to music and LSD and PCB during rest after listening to
music. We applied a previously published offline perturbational approach
based on a whole-brain model which characterizes the return of the brain
dynamics to the basal state after a model perturbation of the system (see
Chapter 3) (Deco et al., 2018).

4.3.1 Functional connectivity and optimal working point

First of all we looked at the differences in functional connectivity between
LSD and PCB induced brain states in all 3 conditions. After filtering the
data, the FC matrices were calculated on a subject-level basis, after which
they were averaged over subjects within each condition. To analyze the
differences between the LSD and PCB brain states, the mean FC value was
computed for each condition and then compared to the surrogate data. We
found a significant difference between the mean FC values in the Music
condition (LSD: 0.204 ± 0.179, PCB: 0.140 ± 0.197; p-value: 0.0297). We
furthermore found a slight increase in mean FC values during the LSD
state with respect to PCB in the other conditions as well (Rest: LSD:
0.186 ± 0.175, PCB: 0.154 ± 0.202; Rest after Music: LSD: 0.181 ± 0.171,
PCB: 0.163 ± 0.191), which did not hold the statistical significance test,
though (Fig. 4.2A).
Next, we fitted the Hopf whole-brain model to the data in each condition in
order to compare between the two drug induced states with regards to their
dynamical working point, being that the parameter region where the model
fits the data best. The Hopf whole-brain model has been introduced in the
previous chapters and has already been shown in several publications to be
able to simulate fMRI BOLD network dynamics (Kringelbach et al., 2015;
Deco et al., 2017b; Jobst et al., 2017; Deco et al., 2018). Furthermore it is
especially well suited for simulating external perturbations to distinct brain
nodes, as discussed in Chapter 3 and demonstrated in Deco et al. (2018).
We computed the KS distance between the empirical and the simulated
functional connectivity matrices and found a shift in the optimal global
coupling parameter G, being that the minimal KS distance, to higher values
under the influence of LSD in all 3 conditions (Rest: LSD: 0.31, PCB: 0.27;
Music: LSD: 0.35, PCB: 0.25, Rest after Music: LSD: 0.29, PCB: 0.28)
with a significant difference in the Music condition (p=0.0099) (Fig. 4.2B).
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Figure 4.2: Empirical functional connectivity and model fitting. In A the
functional connectivity matrices are shown for each of the 6 conditions. Significance
tests have been performed between the LSD and PCB conditions resulting in a
significant difference in the mean functional connectivity between the LSD and the
PCB state in the music scanning session. In B the mean and standard deviation
over 50 realizations of the KS distance between the empirical and the simulated
functional connectivity matrices are shown for each condition as a function of the
global coupling strength. The optimal fit corresponds in each condition to the
minimal KS distance. We found a significant difference between the optimal fit in
the LSD and the PCB state in the music scanning session.

As above, to assess statistical significance, the values were compared to
surrogate data obtained by randomly permuting group assignments (see
Section 4.2.4).
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4.3.2 Global differences in integration

With the adjustment of the whole-brain model to the data, we obtained a
representative model of the basal brain state for each condition and drug
state. We then simulated two kinds of model perturbation protocols, by
either shifting one brain node to a more synchronous state or to a more
noisy state for 100 seconds (see Section 4.2.6). This was done for each
of the 90 brain nodes. Immediately after perturbation, we quantified the
perturbation-caused changes in brain-wide signal interactions over time by
computing the global integration measure (see Sections 4.2.7 and 3.2.8 in
Chapter 3).
In Fig. 4.3 the integration averaged over 3000 trials and all 90 brain nodes is
displayed as a function of time. The integration is shown immediately after
perturbation offset for each condition and drug state. The first thing to
note is that the basal integration (black) was higher for each condition dur-
ing LSD administration than for PCB, being this difference highest in the
Music condition. This means that without perturbation the level of BOLD
signal connectedness was higher in the LSD state than in PCB. It is also
noteworthy that, comparing the basal integration among conditions within
one drug state, the basal integration increased under the influence of LSD
while listening to music, while in the PCB state it decreased with music.
Regarding the perturbation protocols, we can observe that for all conditions
the deviations from the basal activity were both stronger and longer lasting
under the influence of LSD with respect to PCB after being exposed to the
same kind of perturbation. While this is valid for both synchronization pro-
tocols (red) and noise protocols (yellow), we can already see that the effects
on the differences in integration in the LSD state compared to the PCB
state were much smaller for the noise protocol than for the synchronization
protocol (detailed analysis in Section 4.3.3 and Appendix C). We therefore
decided to mainly focus on the synchronization protocol for the rest of the
study. The results of the noise perturbation protocol can be consulted in
Appendix C.
Furthermore, we can again observe the differences in integration after per-
turbation among conditions within one drug state, where also after per-
turbation the integration increased in the Music condition for LSD, while
during PCB it decreased.
Another interesting observation is that the differences between LSD and
PCB were diminished in the Rest after Music condition. This is most likely
due to the vanishing effect of LSD during the experiment, being this par-
ticular condition the last one in the sequence of experimental conditions
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Figure 4.3: Mean integration. Here the integration averaged over trials and
nodes and the standard deviation of the integration over nodes is shown as a
function of time for each of the 6 conditions. In black the mean and standard
deviation of the integration of the basal state are shown. In red and yellow the
mean and standard deviation of the integration for the synchronization protocol
and the noise protocol, respectively, are represented.

(Carhart-Harris et al., 2016b).

4.3.3 Global and local differences in Perturbative
Integration Latency Index

In order to formally characterize the above observed phenomena of changes
in the integration strength and duration of the return of the brain dynamics
to its basal state after a model perturbation, we computed the Perturbative
Integration Latency Index (PILI). We here defined the PILI as the area
under the integration curve until it reaches the basal state. This way the
PILI captures both strength of deviation from the basal state and duration
of the recovery. The PILI was calculated for each node by only perturbing
this specific node and leaving the other ones at their basal dynamics for
3000 trials, which were finally averaged in order to obtain one single PILI
value for each brain area (see Section 4.2.8).
In Figure 4.4 we show the mean PILI for the synchronization protocol for
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each condition for all 90 brain areas. We found consistently higher PILI
values for the LSD induced brain state than for PCB in all 3 conditions,
where the effect was strongest for the Music condition. Again, the effect
was diminished in the Rest after Music condition, which is most likely due
to the vanishing drug effect, as explained above. Most importantly, we
demonstrate here, that the LSD and PCB brain states show very different
dynamical responses to a model perturbation, being that the responses to
the same perturbation are stronger and longer lasting under the influence
of LSD with respect to PCB.
Similar results can be observed for the noise protocol (see Fig. C.1 in Ap-
pendix C). Also here we found a global increase in PILIs for LSD when
compared to PCB for all 3 conditions.

Next, we looked at the PILI values on a node-to-node basis. We checked for
statistical significance of the difference in the mean PILI value between LSD
and PCB for each condition for each node applying a Mann-Whitney U test
with Bonferroni multiple comparison correction to correct for the number
of brain nodes. The results for the synchronization protocol are shown in
Table 4.1, where the 20 brain areas with the highest PILI differences are
shown in order from smallest to largest p-value. The ordering of the rest
of the brain regions and the results for the noise protocol can be found in
Tables C.1 and C.2 in Appendix C.

By ordering the brain regions by p-values for each condition, we can observe
that globally p-values were much lower for the Music condition with respect
to the other resting conditions, which confirms again the amplified effect of
LSD while listening to music. The brain regions which were dominant in all
3 conditions, were the cingulate cortex areas, the precuneus, the gyrus rectus
and the supplementary motor area. Other regions where high differences
between LSD and PCB could be observed, were the calcarine sulcus, the
olfactory sulcus, the superior frontal gyrus and the medial frontal gyrus,
thalamus and hippocampus.

4.3.4 Relationship of PILI to resting-state networks

We were then interested in differences in the PILI values between LSD and
PCB brain states on an RSN level. We assessed the differences in PILI val-
ues based on the synchronization protocol in seven reference RSNs – default
mode, executive control, dorsal attention, ventral attention, visual, limbic
and somato-motor network – by computing Cohen’s d-values, a standard-
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Figure 4.4: PILI – Node level analysis. Here the mean and the standard
error of the mean of the PILI values over trials are shown for the synchronization
protocol for each of the 3 conditions for the LSD and the PCB state for all 90 brain
regions. We found that the global differences between the LSD and PCB induced
brain states were amplified in the Music condition. Node-by-node analysis with
corresponding p-values can be found in Table 4.1 and Table C.1 in Appendix C.
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Table 4.1: Node level PILI differences.

Rest Music Rest after Music

Brain region p-value Brain region p-value Brain region p-value

Olfactory R 2,986e-37* Cingulum Mid R 1,235e-172* Hippocampus R 1,632e-34*

Thalamus L 2,695-36* Precuneus L 2,205e-166* Cingulum Ant R 2,200e-21*

Supp Motor Area R 4,742e-35* Rectus R 2,930e-166* Precuneus R 4,968e-18*

Cingulum Mid L 3,338e-33* Frontal Sup Medial R 1,317e-159* Precentral R 4,119e-15*

Calcarine L 1,413e-32* Frontal Sup Medial L 3,682e-158* Hippocampus L 7,243e-12*

Cingulum Ant R 1,803e-31* Frontal Sup R 9,976e-157* Supp Motor Area R 9,001e-12*

Occipital Sup R 9,135e-30* Frontal Sup L 1,237e-156* Occipital Mid L 3,359e-11*

Cingulum Post R 1,030e-29* Precuneus R 1,676e-154* Frontal Sup Medial R 5,164e-11*

Precuneus L 2,193e-29* Cingulum Post L 5,073e-151* Cingulum Mid L 6,657e-11*

Rectus L 3,739e-29* Cingulum Mid L 4,485e-149* ParaHippocampal R 7,575e-11*

Putamen L 4,219e-29* Cingulum Post R 6,785e-149* Rectus L 2,798e-10*

Thalamus R 8,444e-29* Rectus L 2,748e-147* Cingulum Ant L 9,305e-10*

Calcarine R 2,847e-28* Caudate L 2,643e-144* Frontal Sup R 3,584e-09*

Putamen R 2,857e-28* Olfactory R 1,631e-139* Fusiform R 3,615e-09*

Lingual L 3,515e-28* Frontal Sup Orb L 1,256e-136* Cingulum Mid R 4,108e-09*

Olfactory L 1,103e-27* Frontal Med Orb R 1,221e-132* Calcarine R 4,543e-09*

Precuneus R 1,119e-26* Cingulum Ant R 5,574e-132* Temporal Pole Sup L 1,097e-08*

Cingulum Post L 1,584e-26* Supp Motor Area R 5,637e-131* Frontal Mid Orb L 1,550e-08*

Frontal Sup Medial L 2,995e-26* Cingulum Ant L 1,028e-130* Precuneus L 2,142e-08*

Cingulum Ant L 3,867e-26* Frontal Sup Orb R 5,134e-130* Temporal Inf L 3,254e-08*

In this table brain nodes are ordered for each condition by p-values – from smallest
to largest –, based on the PILI differences between LSD and PCB by perturbing
each specific node at a time. Here the 20 regions with the smallest p-values are
shown. The asterisk indicates statistically significant differences after Bonferroni
correction.

ized difference measure, between LSD and PCB PILI values for each RSN.
The results are shown in Figure 4.5, where the RSNs were ordered for each
of the 3 conditions by Cohen’s d-values, showing in black-red the highest
differences and in light-orange the lowest differences.
The most noticeable result is that in all 3 conditions the 3 RSNs with the
highest PILI differences between the LSD and PCB state were the limbic,
the visual and the default mode network, where the limbic network showed
the highest differences in all 3 cases. In both resting-state conditions the vi-
sual network took the second most important position and the default mode
network the third, where this order was switched in the Music condition. In
both resting conditions the somato-motor network went to the fourth po-
sition, followed by executive control, ventral attention and dorsal attention
networks in the first resting-state and ventral attention, executive control
and dorsal attention networks in the second resting condition, respectively.
In the Music condition the ventral attention network gained more impor-
tance in PILI differences between LSD and PCB and went up to position 4,
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Figure 4.5: PILI – RSN analysis. Here the differences between the PILIs in LSD
and PCB are shown on an RSN level for the synchronization protocol. For all the
nodes forming part of one RSN the Cohen’s d-value was calculated based on the
mean and standard deviation over nodes in each state, indicating the standardized
mean difference between the PILIs of each RSN in LSD and PCB. This was done for
each of the 7 RSNs. The RSNs were ordered for each condition (Rest, Music, Rest
after Music) by Cohen’s d-values, showing in black-red the highest differences and
in light-orange the lowest differences. The white area is to be discarded. Thus, the
color-coding is in each condition a mere representation of the size of the Cohen’s d-
value with respect to the Cohen’s d-values of the other RSNs in the same condition.
This indicates that the darker the color representation of one RSN in one condition,
the higher the PILI differences between LSD and PCB in the regarding RSN.

followed by executive control, somato-motor and dorsal attention networks.

4.3.5 Increased hierarchy in LSD condition

Ultimately, we introduced an index for the hierarchy of information process-
ing in the brain by calculating the standard deviation of the PILI values
over brain nodes, where higher variability over nodes means stronger hier-
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Figure 4.6: Hierarchy. Here the distribution over trials of the hierarchy indices
is shown for the 3 different conditions for LSD and PCB. Statistical differences
between LSD and PCB brain states were evaluated with a two-sided t-test re-
sulting in highly significant differences in all 3 conditions with significantly higher
hierarchical organization in the LSD state with respect to PCB. Especially in the
Music condition under the influence of LSD a considerably stronger hierarchical
organization can be observed.

archy. In Figure 4.6 we show the distribution over the 3000 trials of the
hierarchy indices for all 3 conditions and both drug states for the synchro-
nization protocol. We can see that the differences between LSD and PCB
were highly significant (p < 0.01) in all 3 conditions, with higher hierarchi-
cal organization under the influence of LSD than for PCB. This effect was
strongest in the Music condition and again less apparent in the Rest after
Music condition, which, as already mentioned above, most likely depends
on the vanishing effect of the drug during the experiments.
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4.4 Discussion

We applied a novel in silico model-based perturbational approach to analyze
the perturbation-elicited changes in global and local brain activity under
the influence of LSD compared to Placebo (PCB) in three consecutive
behavioral conditions, namely a resting-state followed by resting while
listening to music and finally another resting-state. Besides finding global
functional connectivity changes and a shift of the brain’s global working
point to higher connectivity for the LSD state, we showed that under the
influence of LSD the system takes longer to regain baseline activity after
a strong model perturbation compared to the PCB state. We found that
this was globally the case but underlined that certain brain regions and
networks, such as the limbic network, the visual network and the default
mode network highlighted these differences on a local level. Finally, we
analyzed the differences between LSD and PCB with regards to hierarchical
brain organization and found a stronger hierarchy of information processing
under the influence of LSD.

In the data-driven part of our analyses, we found that the functional
connectivity was higher on average in the LSD state than in the PCB
state, which was especially emphasized in the Music condition (Fig. 4.2A),
where the effects of LSD seem to be amplified as already shown in previous
publications (Kaelen et al., 2015, 2016; Preller et al., 2017a). This finding
confirms the results of previous studies, where it was shown that high-level
association cortices and the thalamus showed increased functional connec-
tivity under the influence of LSD (Tagliazucchi et al., 2016c), thalamic
functional connectivity to various cortical regions was significantly increased
(Müller et al., 2017) and that the functional connectivity of the primary
visual cortex to other cortical areas was significantly higher under the drug
(Carhart-Harris et al., 2016b). Similar results have been found with other
psychedelic drugs such as psilocybin (the main hallucinogenic component
of “magic mushrooms”) (Carhart-Harris et al., 2012, 2013; Roseman et al.,
2014; Tagliazucchi et al., 2014) and ayahuasca, a psychedelic beverage
traditionally used by Amazonian Amerindians (Palhano-Fontes et al., 2015).

In order to study the whole-brain dynamics underlying the psychedelic
state, first, we applied a whole-brain model based on the normal form
of a supercritical Hopf bifurcation simulating directly the fMRI BOLD
response. We demonstrated that the optimal global working region of the
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system shifted to higher global coupling parameters in the LSD state when
compared to PCB. Yet again, statistical significance was only reached in
the Music condition (Fig. 4.2B). This means that in the LSD state the brain
shows higher connectedness on a global level, agreeing with the previously
discussed increase in functional connectivity, suggesting enhanced propaga-
tion of activity and better communication between distinct brain regions.
This finding is in agreement with previous studies, where it was shown
that the dynamical repertoire of the brain increases in the psychedelic
state (Tagliazucchi et al., 2014), implying that the brain operates in a
different dynamic working region under the influence of hallucinogenic
drugs. This result has again been demonstrated by Atasoy et al. (2017b),
where it was shown that LSD tunes brain dynamics closer towards crit-
icality, entailing an increase in the diversity of the repertoire of brain states.

With the optimal working point representative of each condition, we
studied the responses to strong offline model perturbations in each state.
This novel methodology has recently been described by Deco et al. (2018),
where it was successfully applied to two distinct datasets containing human
fMRI BOLD data from two vigilance conditions: awake and slow-wave
sleep. There we could dissociate the two distinct brain states based only on
the perturbation-elicited responses (see Chapter 3). The importance of this
new methodology lies in the fact that perturbations are exclusively applied
in silico to a whole-brain computational model, allowing for stronger,
longer lasting and brain node-specific perturbations in ways not possible
experimentally. Another important difference to previously described
perturbation procedures (Massimini et al., 2005; Ferrarelli et al., 2010;
Casali et al., 2013) is the fact that with this new approach we measure the
recovery characteristics of the system after the offset of the perturbation,
not the dynamical reaction to the perturbation itself.
The return to the basal brain activity is characterized by the Perturbative
Integration Latency Index (PILI), which takes into account the time it takes
for the system to return to the baseline as well as how strong it deviates
from the basal activity after the perturbation. The PILI is calculated
from the global level of integration across all different brain areas based
on the instantaneous signal phases. Interestingly, we found differences
in the global integration even without applying any perturbation, where
the basal integration was shown to be increased under LSD in contrast
to PCB, where this effect was again amplified in the Music condition
(Fig. 4.3). This means that the communication and interaction between
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distinct brain areas are enhanced under the influence of LSD, agreeing with
the previous study of Tagliazucchi et al. (2016c), where, amongst other
things, they show that LSD enhances the between-module integration
of highly coupled nodes. The interesting observation that in the Music
condition under LSD the basal integration increases while during PCB
it slightly decreases could be due to the fact, that as already described
before, music is known to enhance the psychedelic experience and therefore
brings out the LSD specific brain changes even more, whilst under PCB
listening to music represents a distraction from the resting-state, a kind
of task, which as a consequence diminishes the brain-wide integration and
the general repertoire of activity (He, 2013; Ponce-Alvarez et al., 2015b).
The fact that the differences between the LSD and PCB states decreased
in the Rest after Music condition, is, as already mentioned above, most
likely due to the vanishing effect of the drug in the course of the experiment.

When looking at the differences in the PILI values between the LSD and
PCB states, it is evident that the responses after a model perturbation to
each specific brain node at a time were very different for the two drugs in
all 3 conditions (Rest, Music, Rest after Music), with highest differences
observed in the Music condition (Fig. 4.4). PILI values were significantly
higher in almost each node (exact information with corresponding p-values
in Tables C.1 and C.2 in Appendix C) under the influence of LSD, meaning
that the underlying dynamical complexity is significantly enhanced in this
brain state. A higher PILI value indicates that the perturbed node shows
increased sensitivity to a model perturbation, it reacts stronger to it and it
takes more time for it to turn back to normal baseline activity. This indi-
cates that the brain is working further away from a stable equilibrium point
under the influence of LSD than under normal conditions. Interestingly,
the response to a synchronous offline perturbation was much higher in LSD
than to a perturbation into the noisy regime (Fig. 4.3). Also the noise
perturbations yield slightly increased responses under the influence of LSD,
but the differences are almost negligible (Fig. 4.3). A possible explanation
for this observation could be the fact that the amplitude of the perturbation
is higher when the bifurcation parameter a increases, which is the case in
the synchronization protocol in comparison to the noise protocol and thus
leading to longer relaxation times after a perturbation in the synchronous
regime. For this reason we focused our analyses on the synchronous model
perturbations. Another interesting observation is the fact that the PILI
decreased on a global level during the Music condition in the PCB state
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(Figures 4.3 and 4.4). Yet again, this result could be due to the fact
that listening to music compared to the ”normal” resting-state represents
a kind of task, a distraction from being at rest, generating a reduced
response to an external model perturbation and thus a reduction of the
dynamical repertoire of brain states (He, 2013; Ponce-Alvarez et al., 2015b).

Analyzing the perturbation-elicited differences on a local node level
(Fig. 4.4 and Table 4.1), we found that some brain regions were more
dominant regarding differences in PILI in all 3 conditions than others. The
cingulate cortex areas reached very low p-values in all 3 conditions. The
cingulate cortex is an integral part of the limbic system, which is mainly
responsible for emotional formation and processing (Hadland et al., 2003),
which plays an important role in the psychedelic experience. Another
dominant node with large PILI differences was the precuneus, where the
activity is known to correlate with processes involved in self-consciousness
and self-reflection (Johnson, 2002). Next, the gyrus rectus showed low
p-values in all 3 conditions, which is part of the inferior frontal lobe. Its
function is not yet completely clear, but it may be involved in higher
cognitive function (Orrison, 2008). Finally, the supplementary motor area
displayed high differences between the two brain states, which is known
to be involved in self-referential cognition and self-relevant processing
(Northoff et al., 2006; Schneider et al., 2008; Preller et al., 2017a).

With the local node information, we then investigated the differences in
PILI values on a resting-state network level, where the results were quite
consistent across behavioral conditions (Fig. 4.5). In all 3 conditions
the limbic network yielded the highest perturbation-elicited differences
between the LSD and the PCB state. One of the main responsibilities of
the limbic network is, amongst other things, the processing of emotions like
fear, rage and placidity (Morgane et al., 2005; RajMohan and Mohandas,
2007). This result confirms the well known effect of LSD to produce
emotional arousal and lability (Carhart-Harris et al., 2016a). Yet again,
the highest difference was reached in the Music condition, agreeing with
previous experimental results, that LSD enhances the emotional response
to music (Kaelen et al., 2015). Interestingly, the limbic network has
also been previously associated with depression. Both structural and
functional abnormalities, such as decreased activity, have been found
in limbic areas in major depressive disorder (MDD) patients (Bennett,
2011; Pandya et al., 2012). This connection supports the already studied
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positive effects of LSD and other psychedelic drugs as a possible therapy
base in MDD patients (Carhart-Harris and Goodwin, 2017; Carhart-Harris
et al., 2017). Another resting-state network presenting high differences
compared to the PCB state was the visual network. This result is not
surprising, since the effects and hallucinations are mainly visual during the
LSD experience and furthermore visual areas have previously been shown
to change significantly under the influence of the drug (Carhart-Harris
et al., 2016b). Next, the DMN displayed high PILI differences in the LSD
state. The DMN has recently been associated to the LSD experience,
where it was shown that functional connectivity from the DMN to other
networks increased and within network connectivity decreased under the
influence of the drug, which are both traits of psychedelic drug effects
on brain networks. Furthermore DMN activity correlates with various
typical characteristics of the psychedelic experience, such as self-reflection
processes, out-of-body experiences and internal awareness which could
set the ground for the experience of ego dissolution associated with LSD
(Tagliazucchi et al., 2016c). Importantly, all resting-state networks become
more sensitive to external model perturbations in the LSD state compared
to PCB, which, yet again, indicates a general shift in global brain dynamics.

Finally, we introduced a measure for determining the hierarchical organi-
zation of the brain by simply looking at the variance over nodes of the
perturbation-elicited responses. Larger variance over brain nodes means
higher heterogeneity and thus can be interpreted as a stronger hierarchi-
cal organization, with leading and following nodes. We found that in the
LSD state the hierarchical organization of the brain was significantly higher
in all 3 conditions than in PCB (Fig. 4.6). Thus, under the influence of
LSD each brain node becomes more individual after a strong model per-
turbation, certain areas react more sensitive to an offline perturbation than
others. This result also agrees with the before discussed finding that some
particular nodes or networks show higher recovery times after perturbation
than others. It also concurs with a recent study where it was shown that the
brain is operating closer to criticality in the psychedelic state which implies
a higher hierarchical organization of cortical networks (Moretti and Muñoz,
2013; Atasoy et al., 2017b). Furthermore, disrupted hierarchical organiza-
tion has previously been associated with different neuropathological disor-
ders such as schizophrenia or depression, with changes in the multimodal
network organization (Bassett et al., 2008), a shift toward randomization in
the brain networks (Zhang et al., 2011) and attenuated top-down cognitive
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control (Disner et al., 2011), once again setting the base for possible clinical
applications of psychedelic drugs.

4.5 Conclusion

In this chapter we have presented a novel offline perturbational method ap-
plied on Lysergic acid diethylamide (LSD) data. We have shown that the
brain’s global working point shifts to more complex dynamics after LSD in-
take when compared to Placebo intake, suggesting fundamental changes in
brain dynamics and complexity under the influence of psychedelic drugs. By
exploring the underlying mechanistic properties of the whole-brain dynam-
ics in the LSD state by perturbing the whole-brain computational model one
node at a time, we have found a consistently higher recovery time under
LSD influence implying enhanced dynamical complexity in this brain state.
We have shown that this was globally the case, but have added that certain
brain regions and resting-state networks highlighted these differences on a
local level, being that especially the limbic network, the visual network and
the default mode network. Furthermore we have found a higher hierarchical
brain organization under LSD influence as compared to Placebo, suggesting
an enhanced repertoire of brain dynamical states and closeness to criticality
in this brain state.
The here applied perturbational approach based on whole-brain modeling
gave us the possibility to explore characteristic changes in whole-brain dy-
namics of the psychedelic state in ways not possible experimentally. Addi-
tionally, the results presented in this study add further evidence to possible
future clinical applications of psychedelic drugs in specific psychiatric and
neurological disorders.



Chapter 5

General Discussion

The overall goal of this thesis was to elucidate the underlying mechanisms
and dynamical processes governing different brain states. In the first
chapter, we provided an introduction to the features and characteristics of
distinct brain states, which included the resting-state, sleep and anesthesia
and the psychedelic state of the brain. We have seen how the field of
resting-state brain research has evolved over the past two decades and
have described the main tools to investigate the features of resting-state
brain activity, such as functional connectivity, and also the main discovery
in this field: resting-state networks (Raichle et al., 2001; Fox et al., 2005;
Damoiseaux et al., 2006; Mantini et al., 2007; Van Den Heuvel et al., 2009;
Brookes et al., 2011).

We have then reviewed the experimental evidences of global and local
changes in brain activity and connectivity during human NREM-sleep and
anesthesia. It was shown that on the one hand FC decreases on a global
level during a state of reduced vigilance and that it becomes more similar
to the underlying structural connectivity, and that on the other hand RSNs
are generally preserved during deeper stages of sleep or anesthesia, while
the within- and between-network connectivity strength is altered (Boly
et al., 2008; Horovitz et al., 2009; Larson-Prior et al., 2009; Sämann et al.,
2011; Boly et al., 2012; Tagliazucchi et al., 2013). We have furthermore
seen that the effective connectivity in terms of causal interactions between
different brain regions is lowered (Massimini et al., 2005, 2009; Ferrarelli
et al., 2010; Tononi, 2012; Casali et al., 2013).

113
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Another brain state we were interested in was the brain under psychedelic
substances, such as LSD or psilocybin, where we pointed out that within
the last few years an increasing number of neuroimaging studies (Carhart-
Harris et al., 2012; Muthukumaraswamy et al., 2013; Tagliazucchi et al.,
2014; Palhano-Fontes et al., 2015; Carhart-Harris et al., 2016b; Tagliazucchi
et al., 2016c; Preller et al., 2017a,b) have reported different types of brain
alterations under these types of drugs, such as increased visual cortex blood
flow and functional connectivity, a reduction of the integrity of functional
brain networks, a global increase in connectivity between networks and an
enhanced repertoire of dynamical brain states.

All these distinct types of altered brain states, as different they may be,
have some traits in common. All of the cited studies, which were mainly
performed with whole-brain neuroimaging, found changes in neuronal
activity in distinct areas of the brain or on a global level, alterations in
functional connectivity, differences in RSN within- or between-network
connectivity or integrity, changes in effective causal connectivity or in the
repertory of dynamical brain states. Even though these brain states have
little in common at first sight, when looking deeper into whole-brain func-
tioning, they seem to be similar regarding the features and characteristics
which change under these altered conditions, even if how they change is
different. This reasoning calls for a common method when trying to find a
mechanistic explanation for the experimentally observed changes which are
characteristic for each different state.

As explained in Chapter 1, the obvious approach for elucidating the
underlying dynamics governing these distinct brain states, is to build
a computational model which simulates the activity we are interested
in, based on more or less biologically realistic assumptions. The main
advantage of this approach is that we have total control over the param-
eters and underlying dynamical properties of the model, which makes it
possible to deduce possible explanations of “real” brain dynamics, once
we have found a good fit with the model. The model which we applied
in all three studies elaborated in this thesis was the Hopf whole-brain
model, a quite novel approach applied in combination with whole-brain
neuroimaging data, which can simulate both oscillatory and noisy behav-
ior and with which the fMRI BOLD signals can be simulated directly
(Deco et al., 2017b; Jobst et al., 2017; Saenger et al., 2017; Deco et al., 2018).
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The characteristic of the Hopf model to be able to shift between oscillatory
and noisy behavior is the basis of the in silico model perturbation approach
introduced in Chapter 1, where we also put this novel approach into a
perspective of pre-existing literature on the topic of brain perturbation
and stimulation methods. We explained that the novel model-based
perturbational approach introduced by Deco et al. (2018) comple-
ments the existing perturbational studies performed by Massimini and
colleagues (Massimini et al., 2005; Ferrarelli et al., 2010; Casali et al., 2013).

In the second chapter of this thesis we analyzed fMRI BOLD signals
recorded in healthy subjects during wakefulness and slow-wave sleep, which
represents the deepest of the 3 NREM sleep stages (Iber et al., 2007). We
compared the two states by looking into differences between the mean FC
matrices, where we found significantly higher functional connectivity on a
global level during wakefulness. Furthermore we looked into a dynamical
measure, the metastability, which was lowered during sleep, indicating
a reduced repertoire of brain dynamical states in this condition. These
results coincide with various results from the literature, where it was
shown, that functional connectivity is lowered during sleep (Kaufmann
et al., 2005; Horovitz et al., 2009; Sämann et al., 2011; Spoormaker et al.,
2012; Tagliazucchi et al., 2012a). Tagliazucchi et al. (2016a) showed
additionally that the repertoire of transient network states was decreased
during propofol-induced anesthesia, supporting our finding of diminished
metastability in a state of reduced vigilance. In another very recent article
by Atasoy et al. (2017a) sleep was linked to a reduction of the repertoire
of connectome harmonics – a framework of extracting harmonic brain
modes, i.e. fundamental building blocks of spatio-temporal neural activity
patterns, from the structural connectivity data – yet again affirming our
finding of lowered metastability during sleep.
We then applied the Hopf whole-brain model to the data after fitting it
to the mean FC in each of the two vigilance states. What we found, was
that on a global level, the dynamic working region where the model fitted
the data best, was shifted significantly away from the bifurcation point
to a noisy oscillatory state. This is a very important finding, which is
able to explain the experimentally observed changes in sleep compared
to wakefulness from a mechanistic point of view. The proximity of the
underlying dynamics of the whole system to the bifurcation, i.e. the
critical regime, allows for a better exploration of different dynamical states
in the brain and helps to process incoming stimuli in a faster and more
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efficient way (Deco et al., 2011; Deco and Jirsa, 2012; Deco et al., 2013a,
2017b). During sleep, on the other hand, incoming stimuli need to be
stronger in order to be “recognized” by the system, which is exactly what
we experience during sleep.
We wanted to go even deeper to find the actual level of interaction and
connectivity between different brain nodes by calculating the effective
connectivity between all brain regions. Effective connectivity was here
based on the anatomical connections, of which the connection weights were
optimized based on the similarity between the simulated and the empirical
FC. This model optimization stabilized after a certain amount of iterations
and can such be interpreted as the “real” effective interaction between
distinct brain areas. We found a global decrease in effective connectivity in
the sleep state, meaning that the communication between different brain
regions is limited. Even though this approach is completely different from
the well-known method introduced by Massimini and colleagues (Massimini
et al., 2005; Ferrarelli et al., 2010; Casali et al., 2013), where effective
connectivity is understood as causal interactions between different brain
regions, our approach still reflects a similar result, namely that the distinct
brain nodes communicate less with each other and that the propagation
of interactions is decreased during sleep , which in the original approach
manifests itself with a local perturbation dying out on the perturbation
site and not being propagated to other brain areas.
The approach explained in this chapter brings us one step closer to
understanding the dynamical basis of the neural and functional processes
underlying a reduced vigilance or “unconscious” state. This quite simple,
yet powerful model is able to capture important features of the mechanisms
governing different brain states and also effective connections in the brain
can be extracted in a quite simple way. With this work we contribute
significantly to an enhanced understanding of the fundamental principles
governing different states of consciousness, which is still an ongoing field of
research.

In the third chapter we continued elaborating on the state of reduced
vigilance during deep sleep by repeatedly analyzing fMRI BOLD data
recorded during wakefulness and deep sleep taken from two independent
datasets. We introduced a novel in silico perturbational approach, where
one node or a group of nodes of a whole-brain model were perturbed by
shifting its dynamics away from its basal state after which the latency the
system takes to recover its normal dynamics was calculated. This method
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is based on the Hopf whole-brain model, where we take advantage of the
bifurcation parameter, which regulates in which dynamical regime – oscil-
latory or noisy – the model is in. After adjusting the model to each brain
state by fitting the global coupling parameter such that the mean degree
of synchronization between simulated and empirical BOLD signals was
most similar, the bifurcation parameter of single brain nodes was shifted
for a certain amount of time away from the bifurcation, either in positive
or negative direction. This procedure simulates an external perturbation
to a particular brain node. After perturbation offset we measured the
latency the system took to recover its baseline activity, which we called
Perturbative Integration Latency Index (PILI). Applying this approach we
found that for the awake model the recovery was significantly slower on a
global level than for the sleep model, indicating higher complexity during
wakefulness and less stable dynamics, a phenomenon which has also been
called “critical slowing down” in the literature (Wissel, 1984; van Nes and
Scheffer, 2007; Meisel et al., 2015). This refers to a system’s tendency to
take longer to recover from a perturbation the closer it gets to a transition
point (Meisel et al., 2015), which is exactly what we can observe in an
awake resting-state.
The presented perturbation method is a completely new concept of
studying whole-brain dynamics underlying different brain states, which
complements the previously performed experimental perturbation studies
by Massimini et al. (2005), Ferrarelli et al. (2010) and Casali et al. (2013).
The here presented results are conform with the findings by Massimini
and colleagues, since they also indicate reduced communication and lower
dynamical complexity during sleep. Additionally this novel approach
gives us insights into the dynamical processes occurring after a model
perturbation, while previously only the direct response was analyzed
(Casali et al., 2013). Further advantages are of course the model nature
of the method, meaning that on the one hand no costly and expensive
experimental and ethical protocols need to be followed, and on the other
hand there are no limitations in perturbation duration, number of nodes
perturbed at the same time and number of trials. Especially the number
of trials is an important point to take into consideration, because as
discussed in Chapter 1, it is known that resting-state brain activity can
not be taken simply as a trivial baseline state without any structure or
dynamics. Therefore it is important to be able to average over a large
number of trials when calculating the return to the original dynamics,
since the original dynamics, the baseline state itself, changes with each trial.
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In the last of the 3 main chapters of this thesis, Chapter 4, we applied this
very perturbational approach to a completely different kind of data, namely
fMRI BOLD signals recorded in healthy participants under the influence of
LSD, a hallucinogenic drug. We first analyzed possible changes in func-
tional connectivity on a global level, where we found elevated FC in the
LSD state, especially in the condition where the subjects were listening to
music, which is known to amplify the psychedelic experience (Kaelen et al.,
2015, 2016; Preller et al., 2017a). When fitting the Hopf whole-brain model
to the data, we found that the global working point was shifted compared
to the Placebo state, namely to higher connectivity, the exact opposite of
what we found for the sleep state. By applying the perturbative method,
we demonstrated that under LSD the system took significantly longer to
regain baseline activity as compared to Placebo, which was valid almost
uniformly for all brain nodes implying an enhanced underlying dynamical
complexity in the psychedelic state. While during slow-wave sleep we could
observe a reduced complexity with regards to resting wakefulness, under
the influence of psychedelic drugs we could detect even higher dynamical
complexity than during “normal” rest. As such, the perturbational method
in combination with the Hopf whole-brain model can be seen as a unifying
concept of uncovering the underlying dynamical mechanisms governing dif-
ferent brain states.
In this study we went deeper and also looked at regional changes, especially
regarding different resting-state networks. Thus, we analyzed the laten-
cies after model perturbations to each brain node representative of each
of 7 analyzed resting-state networks. Here we found some very intriguing
results, which revealed that the most affected resting-state networks by a
simulated perturbation, meaning those which showed the highest latencies
in the LSD state as compared to the Placebo state, were those networks
which were either expected or already known to play an important role for
the psychedelic experience, being that the limbic, the visual and the default
mode network (Carhart-Harris et al., 2016b; Tagliazucchi et al., 2016c).
This result contributes significantly to the quite recently newly discovered
field of research of human neuroimaging with LSD or other psychoactive
drugs, since it shows the importance of these networks for the first time
from a computational neuroscience view.
Subsequently we analyzed differences in the hierarchical brain organization
by applying a simple method leaning on a previous publication by Deco
and Kringelbach (2017), where we looked at the variability of the PILI
values over brain nodes. Higher variance over brain nodes implies higher
heterogeneity and can therefore be interpreted as a stronger hierarchical
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organization. We found that after LSD intake the variability of PILI val-
ues over brain nodes was significantly higher than after Placebo intake,
which suggests a stronger hierarchy among brain nodes, where some nodes
react more sensitive to an external model perturbation than others. The
resting-state of the brain has been linked before to possess a hierarchical
modular functional organization (Zhou et al., 2006; Meunier et al., 2010;
Doucet et al., 2011). A hierarchical organization of the brain has been pre-
viously related to high dynamic complexity (Sporns, 2000; Meunier et al.,
2010) and closeness to criticality (Moretti and Muñoz, 2013; Atasoy et al.,
2017b), indicating that under LSD the brain possesses these properties in
an enhanced way compared to the “normal” resting-state.
The results presented in this study make some significant contributions to
the very recent field of neuroimaging applied on the psychedelic brain state.
We show important new insights into the underlying dynamics governing
the psychedelic experience, along with – to our knowledge – only two other
preceding studies on the dynamical mechanisms underlying this state: on
the one hand a study by Carhart-Harris et al. (2014), where the authors sug-
gest that changes in brain dynamics which manifest themselves in elevated
entropy, are a fundamental mechanism producing the elevated conscious-
ness during the psychedelic experience, and on the other hand a very recent
study by Atasoy et al. (2017b), which shows that, by applying their novel
methodology of “connectome-harmonic decomposition”, where fMRI data
is decomposed into a set of independent, frequency-specific brain states,
the repertoire of active brain states is increased after LSD intake, suggest-
ing a general re-organization of brain dynamics in this state. Additionally
the here presented results provide further theoretical insights into possible
future applications of psychedelic drugs in certain psychiatric and neurolog-
ical disorders as schizophrenia or depression, since some of the traits and
characteristics which we showed affected by LSD in an enhancing way, have
been previously associated with these disorders to manifest the opposite
effect (Bassett et al., 2008; Bennett, 2011; Disner et al., 2011; Zhang et al.,
2011; Pandya et al., 2012).

5.1 Study limitations and general research
contributions

As every research study, the here presented work has some limitations,
partly due to technical reasons, partly due to simplicity reasons.
In the first study presented in Chapter 2 we almost explicitly focused on
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global changes of the dynamical working regime the brain is operating in in
different states. We shifted the two free model parameters homogeneously
for all brain nodes when searching for the optimal parameter region which
fitted the data best. Especially the bifurcation parameter could have
been adapted for each node by using the spectral information of the fMRI
BOLD signal in each brain region, as previously shown in Deco et al.
(2017b). On the other hand we analyzed the effective connectivity between
all brain nodes, which does represent a node-wise measure. We did not
dig very deep though into node-wise differences, we only looked at the 10
regions with the highest effective connectivity strengths among the whole
90. Our reasoning for not going deeper into the analysis of local dynamical
changes was the fact that with the global analysis we had already found
a good model description of the data. Usually, when simulating data
with computational models, one attempts to chose the simplest possible
model to sufficiently explain the features or observations in question.
Furthermore, when looking at the effective connectivity for each node, we
found that almost all nodes manifested higher effective connections (84 out
of 90), indicating that most probably the effects of sleep on brain dynamics
are of global nature. Nevertheless, an exhaustive investigation would be
needed to confirm this hypothesis.

Another limitation, which is applicable on all three main studies presented
in this thesis, is the fact that we only employed one type of model,
rather of phenomenological nature, to study the underlying dynamical
processes of different brain states. The here presented methods and
results are however not exclusive to the Hopf model used herein, other
more realistic models based on biophysical mechanisms can be used to
study the brain mechanisms governing these distinct states, such as neural
field models or also more realistic models of effective connectivity, which
could possibly provide a more detailed characterization of the underlying
dynamical processes. On the other hand, as discussed above, we always
seek to explain the mechanisms producing the experimental results we are
questioning in the most simple way possible, while maintaining a realistic
and complex enough set-up, to be still able to reproduce certain features
of the experimental data (such as for example group-averaged functional
connectivity). The here applied Hopf whole-brain model represents a very
simple way of introducing different dynamical regimes by only adapting
one model parameter. Additionally it has been previously shown to
be able to give a good representation of the resting-state as measured
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with fMRI (Deco et al., 2017b), and moreover it has the advantage of
simulating directly the fMRI BOLD signal, without having to apply an
extra hemodynamic model based on the main model. Notwithstanding,
it would still be desirable to test the here presented results with other
types of models and compare the outcomes, in order to obtain yet another
confirmation of the results shown in this thesis.

Coming back to more localized analysis methods, in the second study
presented in Chapter 3 it would have also been interesting to look at the
perturbative latency indices based on a node-wise adapted bifurcation
parameter as starting value for the perturbation instead of setting all
bifurcation parameters to 0 before and after each perturbation. We
performed this analysis in Deco et al. (2018), but there we did not analyze
very profoundly the differences in latencies between distinct nodes. Instead
we focused our investigation on the correlations between PILI values and
other node-wise metrics, since the general focus of this work, was – as the
previous study in Chapter 2 – a more global one. This is still a possible
future analysis step though, which can be performed quite easily.

In the last study presented in this thesis in Chapter 4, the just explained
limitation is valid as well. Even though here we based our analysis on
node-wise perturbations, the bifurcation parameter was not adapted
specifically to each node, but set to 0 before and after perturbations. Also
in this study, this expansion of the method could be implemented quite
easily.

Despite of these limitations inherent to the studies presented in this thesis,
we made some important contributions to the investigation of the dynamical
mechanisms underlying different brain states with our work. First of all, we
employed a whole-brain model of phenomenological nature to fMRI BOLD
data recorded in different brain states and were able to provide a good de-
scription of the underlying dynamical processes, mainly on a global level,
in these states, even though the model is not directly based on biophysical
brain mechanisms. Based on this model we found a possible mechanism ex-
plaining the experimentally observed differences between wakefulness and
sleep. To expand the model analysis, we introduced a novel perturbative ap-
proach, which was able to successfully classify different brain states of com-
pletely distinct nature, namely wakefulness and sleep and the psychedelic
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state from normal rest. We furthermore added a major contribution to the
newly rediscovered field of research on psychedelic drugs, where up to now
basically no studies were available which provide information on the dy-
namical mechanisms underlying the psychedelic state, with only very few
exceptions (Carhart-Harris et al., 2014; Atasoy et al., 2017b).

5.2 Conclusion

The collection of studies presented in this thesis provides novel insights into
the brain mechanisms and dynamical processes underlying different brain
states by using whole-brain computational modeling. It was demonstrated
that a global shift of the dynamical working region to a noisy oscillatory
state could represent a possible mechanistic explanation of the empirical
functional changes observed during deep sleep when compared to resting
wakefulness. Additionally it was shown that the effective connections
between different brain areas decreased globally during sleep suggesting a
lower level of integration and excitability during sleep on a whole-brain level
(Jobst et al., 2017). Next, we introduced a novel perturbative approach to
study brain dynamics by characterizing the latency of the system’s recovery
after an in silico model perturbation, indicating the dynamical stability
of different brain states. We found that globally the system took more
time to regain baseline activity after a model perturbation during resting
wakefulness as compared to deep sleep, suggesting that the global shift of
the dynamical working point causes the brain to be less affected by external
perturbations during sleep (Deco et al., 2018). Lastly we applied the herein
presented perturbational approach to data recorded under the influence of
LSD and showed that the recovery time after a model perturbation was
consistently higher under LSD, suggesting enhanced dynamical complexity
in this brain state. We furthermore demonstrated that this result was
especially pronounced in resting-state networks which are assumed to
play an important role in the psychedelic experience. Finally we showed
that under LSD the brain presented a higher hierarchical organization,
indicating an augmented repertory of brain dynamical states and closeness
to criticality.

The here presented methods and results contribute significantly to the on-
going investigation of the dynamical mechanisms underlying different brain
states and pave the way for the possible application of computational models
in future clinical contexts.
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Appendix Chapter 2

This chapter contains published work which can be found in: ‘Electronic Supplementary
Material’ of Increased stability and breakdown of brain effective connectivity during slow-
wave sleep: mechanistic insights from whole-brain computational modelling published in
Scientific Reports in 2017. Link: https://static-content.springer.com/esm/art%
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Figure A.1: Subject-specific SC analysis. In the first four rows the subject-
specific SC matrices are shown. In the bottom row we show (from left to right)
the subject-specific SC weights as a function of the group-averaged SC matrix,
which clearly shows the consistency of the group, the group-averaged SC matrix,
the group consistency matrix (std/mean; as per Roberts et al. (2017)) and the
group consistency as a function of group SC weights, which correspond to Fig. 1 in
Roberts et al. (2017). These representations demonstrate that the use of a group
level SC matrix is justified.
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Figure A.2: Subject level data analysis. In A a boxplot of the node strength
of individual subject-specific FC matrices is shown for awake (black) and sleep
(red). It can be observed that almost all subjects (83%) exhibited higher node
strength in awake than in sleep. In B the average log-likelihood ratio ri =
L
(
X(i)|Σtrain

)
/L (Xpseudo|Σtrain) over 5000 random samples is shown for each

subject used as testset (see Section 2.2.5), where wakefulness is represented by
the black line and sleep by the red line. 〈ri〉 is expected to be approximately 1
if the time series of the i-th subject are indistinguishable from a random sample
taken from the time series of the remaining subjects.
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Figure A.3: Global FC fitting with same node strength. In this figure we
show the Euclidean distance between FCmodel and FCemp for different values of
the global coupling strength G and the bifurcation parameter a in awake and sleep
as in Figure 2.3A i.+ii. with the difference that here the empirical FC matrix
in sleep has been adapted such that the mean node strength was equal to the
empirical FC matrix in awake. This was achieved by adding weight uniformly to
all connections of the sleep FC matrix, leaving the maximum possible value at 1,
until it reached the same mean node strength as the awake matrix. We can observe
that there were no significant differences between the two states.
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Appendix Chapter 3

This chapter contains published work which can be found in: ‘Supplementary
Information’ of Perturbation of whole-brain dynamics in silico reveals mecha-
nistic differences between brain states published in NeuroImage in 2018. Link:
https://www.sciencedirect.com/science/article/pii/S1053811917310236.
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Figure B.1: Distribution of peak frequencies in the band-passed BOLD
signals in all brain areas during wakefulness and deep sleep. In each AAL
brain area, we detected the peak frequency of the band-pass filtered (0.04-0.07Hz)
BOLD signals and averaged across subjects in each condition. Top: Distribution
of peak frequencies during wakefulness (left) and deep sleep (right). Bottom: Peak
BOLD frequency averaged across subjects for each AAL brain area, in each condi-
tion. Results from the Frankfurt dataset.



appendix b 129

Figure B.2: Distribution of peak frequencies in the band-passed BOLD
signals in all brain areas during wakefulness and deep sleep. Same as
above but with the Liège dataset.
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Figure C.1: PILI – Node level analysis for noise protocol. Here the mean
and the standard error of the mean of the PILI values over trials for the noise
protocol are shown for each of the 3 conditions for the LSD and the PCB state
for all 90 brain regions. Also in the noise protocol, the global differences between
the LSD and PCB induced brain states were amplified in the Music condition.
Node-by-node analysis with corresponding p-values can be found in Table C.2.
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Table C.1: Node level PILI differences – synchronization protocol.

Rest Music Rest after Music

Brain region p-value Brain region p-value Brain region p-value

Cuneus R 5,682e-26* Putamen R 8,759e-127* Frontal Inf Oper R 3,282e-08*

Occipital Sup L 1,575e-25* Caudate R 2,258e-125* Temporal Sup L 3,939e-08*

Rectus R 2,618e-25* Calcarine R 1,803e-124* Amygdala L 4,118e-08*

Frontal Sup R 7,958e-25* Supp Motor Area L 3,142e-120* Frontal Sup L 4,439e-08*

Pallidum L 1,567e-24* Occipital Sup L 1,113e-119* Amygdala R 5,172e-08*

Frontal Sup Orb R 7,943e-24* Paracentral Lobule L 1,121e-118* Frontal Mid R 8,056e-08*

Frontal Mid Orb R 8,771e-24* Temporal Pole Sup L 1,904e-118* Occipital Inf L 8,302e-08*

Frontal Med Orb L 1,422e-23* Hippocampus R 4,807e-118* Frontal Sup Medial L 8,313e-08*

Caudate L 3,397e-23* Frontal Med Orb L 1,513e-117* Cingulum Post L 1,806e-07*

Cingulum Mid R 3,965e-23* Amygdala R 4,546e-116* Frontal Med Orb R 1,842e-07*

Insula L 4,348e-22* Putamen L 3,462e-110* Parietal Sup R 2,048e-07*

Parietal Sup R 7,266e-22* Frontal Mid Orb L 1,259e-109* ParaHippocampal L 2,226e-07*

Parietal Sup L 5,427e-21* Frontal Inf Orb L 3,358e-108* Occipital Sup R 2,965e-07*

Amygdala L 9,792e-21* Lingual R 2,201e-107* Occipital Sup L 3,358e-07*

Hippocampus L 1,018e-20* Insula R 5,816e-105* Caudate L 3,645e-07*

Occipital Inf L 1,561e-20* Temporal Pole Sup R 9,940e-105* Supp Motor Area L 4,385e-07*

Occipital Mid L 1,805e-20* Fusiform L 1,117e-104* Olfactory R 1,081e-06*

Paracentral Lobule L 2,707e-20* Occipital Mid L 1,816e-103* Pallidum L 1,438e-06*

Frontal Sup L 3,553e-20* Olfactory L 1,004e-96* Calcarine L 1,488e-06*

Frontal Mid Orb L 4,835e-20* Frontal Inf Tri 5,333e-95* Olfactory L 1,670e-06*

Frontal Inf Orb L 6,598e-20* Occipital Mid R 5,398e-92* Paracentral Lobule R 3,013e-06*

Frontal Inf Orb R 2,662e-19* Insula L 1,958e-91* Temporal Pole Sup R 3,321e-06*

Fusiform R 2,688e-19* Thalamus L 7,819e-91* Frontal Med Orb L 6,157e-06*

Frontal Sup Orb L 2,809e-19* Temporal Sup R 1,282e-90* Frontal Sup Orb L 6,741e-06*

Frontal Sup Medial R 8,699e-19* Frontal Inf Oper R 7,427e-88* Parietal Sup L 8,315e-06*

Cuneus L 1,623e-18* Cuneus L 5,525e-87* Cingulum Post R 1,269e-05*

Lingual R 3,428e-18* Fusiform R 4,084e-86* Temporal Mid L 2,866e-05*

Frontal Med Orb R 7,240e-18* Frontal Mid R 7,931e-86* Temporal Sup R 3,463e-05*

Temporal Inf R 1,713e-17* ParaHippocampal R 9,089e-86* Occipital Mid R 4,490e-05*

Insula R 2,565e-17* Occipital Sup R 3,390e-84* Caudate R 5,663e-05*

Supp Motor Area L 2,821e-16* Calcarine L 6,622e-84* Thalamus L 7,069e-05*

Pallidum R 2,851e-16* Temporal Mid R 5,225e-83* Putamen R 7,504e-05*

ParaHippocampal L 1,190e-15* Temporal Pole Mid L 5,463e-83* SupraMarginal R 9,255e-05*

Temporal Mid R 1,522e-15* Hippocampus L 6,030e-83* Fusiform L 1,098e-04*

Temporal Mid L 1,549e-15* Occipital Inf L 1,083e-82* Precentral L 1,145e-04*

Occipital Inf R 1,922e-15* Cuneus R 1,689e-82* Insula R 1,271e-04*

Occipital Mid R 8,098e-15* Frontal Inf Tri R 2,955e-82* Postcentral L 1,459e-04*

Precentral R 8,855e-15* Thalamus R 3,190e-82* Lingual L 1,915e-04*

Caudate R 9,012e-15* Lingual L 4,210e-81* Paracentral Lobule L 2,464e-04*

Frontal Mid L 9,245e-15* Parietal Sup L 5,660e-81* Heschl L 3,117e-04*

Temporal Pole Sup R 3,257e-14* Temporal Mid L 1,002e-80* Rectus R 3,465e-04*

Paracentral Lobule R 5,423e-14* Rolandic Oper R 7,337e-79* Insula L 4,097e-04*

Frontal Inf Oper L 5,634e-14* Precentral R 1,095e-77* Frontal Sup Orb R 4,259e-04*

Frontal Mid R 9,484e-14* Paracentral Lobule R 3,432e-77* Temporal Pole Mid L 5,099e-04*

Amygdala R 1,081e-13* Frontal Mid Orb R 6,078e-77* Frontal Inf Orb R 6,210e-04

Parietal Inf R 2,141e-13* Frontal Inf Oper L 2,928e-72* Postcentral R 9,3136e-04

Rolandic Oper L 2,969e-13* Temporal Inf L 2,077e-69* Temporal Inf R 9,509e-04

Precentral L 4,101e-13* Postcentral L 1,175e-65* Putamen L 1,300e-03

Fusiform L 4,906e-13* Rolandic Oper L 2,712e-65* Frontal Inf Orb L 1,302e-03

Rolandic Oper R 7,263e-13* Precentral L 6,352e-65* Frontal Inf Oper L 4,398e-03

table continues on next page
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Rest Music Rest after Music

Brain region p-value Brain region p-value Brain region p-value

Frontal Inf Oper R 7,833e-13* Temporal Pole Mid R 1,525e-63* SupraMarginal L 4,527e-03

Temporal Sup L 1,237e-12* Frontal Mid L 5,591e-62* Frontal Mid Orb R 4,888e-03

Postcentral R 2,691e-12* Temporal Inf R 1,160e-61* Cuneus L 0,0115

Heschl L 7,004e-12* Amygdala L 3,583e-61* Temporal Mid R 0,0215

Temporal Pole Sup L 1,460e-11* Pallidum R 6,180e-61* Frontal Mid L 0,0226

Temporal Pole Mid R 3,435e-11* ParaHippocampal L 1,174e-60* Rolandic Oper L 0,0515

Frontal Inf Tri L 3,671e-11* Temporal Sup L 1,638e-60* Lingual R 0,0934

ParaHippocampal R 1,094e-10* Parietal Inf L 4,867e-55* Temporal Pole Mid R 0,0959

Parietal Inf L 1,197e-10* Frontal Inf Orb R 9,744e-54* Angular L 0,1096

Heschl R 1,417e-09* Heschl R 2,998e-53* Parietal Inf L 0,1774

SupraMarginal L 2,645e-09* Angular L 6,762e-53* Rolandic Oper R 0,1922

Temporal Sup R 3,781e-09* Pallidum L 1,503e-47* Heschl R 0,2095

Temporal Inf L 7,903e-09* Occipital Inf R 6,197e-47* Occipital Inf R 0,2366

Hippocampus R 1,428e-08* Angular R 2,879e-44* Frontal Inf Tri R 0,2367

SupraMarginal R 1,443e-07* SupraMarginal R 2,602e-42* Cuneus R 0,2503

Frontal Inf Tri R 3,893e-07* Postcentral R 3,336e-37* Frontal Inf Tri L 0,3585

Postcentral L 3,482e-06* Parietal Sup R 2,097e-36* Parietal Inf R 0,5429

Temporal Pole Mid L 1,434e-05* SupraMarginal L 7,921e-35* Pallidum R 0,5851

Angular L 1,575e-04* Heschl L 1,281e-25* Thalamus R 0,6176

Angular R 4,713e-04* Parietal Inf R 8,347e-20* Angular R 0,6980

In this table brain nodes are ordered for each condition by p-values – from smallest
to largest –, based on the PILI differences for the synchronization protocol between
LSD and PCB by perturbing each specific node at a time. This table represents a
continuation of Table 4.1, where here the regions 21 up to 90 are shown ordered by
the size of their p-value. The asterisk indicates statistically significant differences
after Bonferroni correction.
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Table C.2: Node level PILI differences – noise protocol.

Rest Music Rest after Music

Brain region p-value Brain region p-value Brain region p-value

Frontal Sup Orb R 1,141e-07* Occipital Mid L 1,990e-23* Rectus R 5,074e-05*

Rolandic Oper R 9,382e-07* Cuneus R 6,621e-21* Frontal Mid Orb L 5,564e-05*

Frontal Sup Medial R 1,848e-06* Frontal Mid R 4,533e-20* Frontal Sup Medial L 7,032e-05*

Frontal Sup Orb L 3,051e-06* Olfactory L 1,285e-19* Rolandic Oper R 1,689e-04*

Temporal Sup L 5,841e-06* Caudate L 4,971e-19* SupraMarginal L 4,202e-04*

Olfactory L 7,000e-06* Supp Motor Area R 1,789e-18* Insula L 8,278e-04

Hippocampus L 7,357e-06* Rolandic Oper L 3,440e-18* Cingulum Mid L 9,256e-04

Cingulum Ant L 8,290e-06* Thalamus L 1,130e-17* Cingulum Ant R 1,247e-03

Calcarine L 1,262e-05* Frontal Med Orb R 2,398e-17* Caudate R 1,430e-03

Amygdala L 1,366e-05* Temporal Mid R 2,416e-17* Cuneus R 1,743e-03

Frontal Med Orb L 1,407e-05* Parietal Inf L 4,327e-17* Cingulum Post L 2,128e-03

Putamen R 2,635e-05* Insula L 5,802e-17* Occipital Mid L 3,455e-03

Occipital Sup R 2,879e-05* Hippocampus L 1,533e-16* Precuneus R 4,819e-03

Temporal Pole Mid L 4,325e-05* Frontal Sup Medial L 2,896e-16* Occipital Sup R 6,104e-03

Frontal Mid R 4,408e-05* Precuneus L 9,739e-16* Lingual L 8,390e-03

Paracentral Lobule R 5,383e-05* Calcarine L 1,874e-15* Thalamus L 0,0111

Pallidum R 5,800e-05* Frontal Sup Orb L 1,924e-15* Frontal Inf Orb R 0,0126

Rectus L 6,627e-05* Putamen R 4,060e-15* Heschl R 0,0186

Rolandic Oper L 7,135e-05* Frontal Sup R 4,388e-15* Angular L 0,0193

Thalamus R 7,235e-05* Frontal Inf Orb L 4,485e-15* Heschl L 0,0214

Olfactory R 7,921e-05* Putamen L 7,363e-15* Frontal Inf Tri R 0,0227

Angular L 1,104e-04* Rectus R 9,119e-15* Frontal Sup Orb L 0,0315

Occipital Inf R 1,137e-04* Cingulum Post R 1,035e-14* Paracentral Lobule L 0,0337

Cingulum Post R 1,247e-04* Rectus L 1,202e-14* Fusiform L 0,0386

Temporal Mid L 1,423e-04* Frontal Inf Orb R 1,951e-14* Occipital Sup L 0,0412

Frontal Mid Orb R 1,430e-04* Frontal Mid Orb R 2,588e-14* Temporal Pole Mid L 0,0423

Parietal Sup R 2,659e-04* Angular L 2,855e-14* Frontal Med Orb L 0,0428

Caudate L 4,006e-04* Frontal Med Orb L 3,198e-14* Calcarine R 0,0519

Supp Motor Area L 4,308e-04* Precentral R 5,219e-14* Cingulum Mid R 0,0526

Hippocampus R 4,723e-04* SupraMarginal L 6,477e-14* ParaHippocampal R 0,0636

Occipital Mid L 8,332e-04 Supp Motor Area L 1,201e-13* Rolandic Oper L 0,0669

Fusiform L 9,387e-04 Frontal Sup L 2,409e-13* ParaHippocampal L 0,0725

Angular R 1,579e-03 Cuneus L 3,049e-13* Frontal Med Orb R 0,0776

Precentral L 1,717e-03 Rolandic Oper R 3,572e-13* Supp Motor Area L 0,0792

Cingulum Mid R 1,753e-03 Temporal Inf R 3,599e-13* Frontal Sup R 0,0931

Parietal Inf L 1,970e-03 Occipital Sup L 3,785e-13* Hippocampus R 0,0948

Occipital Mid R 2,118e-03 ParaHippocampal L 4,792e-13* Temporal Sup L 0,0959

Temporal Pole Mid R 2,368e-03 Postcentral R 5,278e-13* Pallidum R 0,0961

Frontal Inf Tri L 2,398e-03 Temporal Pole Mid R 6,556e-13* Frontal Mid L 0,1017

Insula R 2,512e-03 Temporal Mid L 1,641e-12* Frontal Inf Oper R 0,1051

Frontal Mid Orb L 2,759e-03 Fusiform L 2,278e-12* Angular R 0,1130

Temporal Pole Sup R 2,871e-03 Occipital Sup R 2,754e-12* Amygdala R 0,1200

ParaHippocampal R 2,879e-03 Insula R 2,920e-12* Olfactory R 0,1363

Calcarine R 3,475e-03 Pallidum R 5,956e-12* Precentral R 0,1395

Paracentral Lobule L 3,537e-03 Occipital Inf L 6,387e-12* Temporal Sup R 0,1486

Cuneus R 3,759e-03 Precuneus R 7,048e-12* Frontal Mid Orb R 0,1623

Temporal Pole Sup L 3,898e-03 Paracentral Lobule L 9,117e-12* Paracentral Lobule R 0,1725

Frontal Inf Tri R 4,392e-03 Cingulum Post L 9,351e-12* Amygdala L 0,1805

Temporal Mid R 4,403e-03 Olfactory R 1,481e-11* Temporal Mid R 0,1867

Pallidum L 4,490e-03 Parietal Sup L 3,028e-11* Cingulum Post R 0,1931

table continues on next page
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Rest Music Rest after Music

Brain region p-value Brain region p-value Brain region p-value

Frontal Sup Medial L 4,537e-03 Fusiform R 3,032e-11* Lingual R 0,2009

Cingulum Ant R 4,735e-03 Postcentral L 3,455e-11* Occipital Mid R 0,2144

Parietal Inf R 5,090e-03 Frontal Sup Medial R 9,003e-11* Frontal Sup L 0,2219

Heschl R 6,402e-03 Occipital Mid R 1,357e-10* Caudate L 0,2519

Insula L 6,468e-03 Temporal Pole Sup R 3,478e-10* Putamen R 0,2609

Thalamus L 7,711e-03 Temporal Sup R 4,732e-10* Temporal Pole Sup L 0,2859

Frontal Inf Oper R 7,739e-03 Angular R 6,500e-10* Temporal Inf R 0,3542

Heschl L 7,753e-03 Frontal Inf Oper R 8,633e-10* Frontal Sup Medial R 0,3673

Temporal Inf L 8,001e-03 Caudate R 1,084e-09* Temporal Inf L 0,3710

Fusiform R 0,0142 Cingulum Ant L 1,371e-09* Parietal Inf R 0,3952

SupraMarginal L 0,0156 Cingulum Mid R 1,447e-09* Occipital Inf R 0,4173

Precuneus L 0,0218 Pallidum L 1,467e-09* Frontal Inf Tri L 0,4246

Caudate R 0,0233 Parietal Inf R 1,760e-09* Temporal Pole Mid R 0,4391

Temporal Inf R 0,0238 Frontal Sup Orb R 1,841e-09* Olfactory L 0,4414

Postcentral R 0,0291 Frontal Inf Oper L 3,730e-09* Thalamus R 0,4476

Parietal Sup L 0,0311 Frontal Mid Orb L 4,092e-09* Parietal Inf L 0,4802

SupraMarginal R 0,0320 ParaHippocampal R 7,536e-09* Temporal Mid L 0,4876

Cingulum Post L 0,0349 Temporal Inf L 7,702e-09* Rectus L 0,5142

ParaHippocampal L 0,0352 Lingual L 9,415e-09* Precuneus L 0,5507

Precentral R 0,0395 Frontal Inf Tri L 9,772e-09* Supp Motor Area R 0,5602

Postcentral L 0,0430 Precentral L 1,240e-08* Postcentral R 0,5875

Frontal Sup R 0,0449 Calcarine R 1,720e-08* Occipital Inf L 0,5922

Cuneus L 0,0468 Frontal Mid L 1,953e-08* Cuneus L 0,6004

Cingulum Mid L 0,0524 Hippocampus R 3,322e-08* Hippocampus L 0,6549

Supp Motor Area R 0,0557 Heschl L 4,125e-08* Cingulum Ant L 0,6577

Amygdala R 0,0673 Thalamus R 5,118e-08* Fusiform R 0,6867

Lingual L 0,0713 Occipital Inf R 8,976e-08* Parietal Sup L 0,7053

Precuneus R 0,0937 Temporal Sup L 9,158e-08* Calcarine L 0,7337

Lingual R 0,0959 Frontal Inf Tri R 1,399e-07* Frontal Mid R 0,7376

Rectus R 0,0986 SupraMarginal R 2,082e-07* Frontal Inf Orb L 0,7534

Frontal Med Orb R 0,1183 Temporal Pole Sup L 2,298e-07* Parietal Sup R 0,7690

Frontal Inf Oper L 0,1258 Parietal Sup R 2,418e-07* Precentral L 0,7990

Occipital Sup L 0,1570 Amygdala L 2,843e-07* Postcentral L 0,8191

Frontal Inf Orb L 0,2958 Paracentral Lobule R 3,901e-07* Frontal Sup Orb R 0,8227

Occipital Inf L 0,3441 Amygdala R 5,595e-07* Pallidum L 0,8611

Frontal Inf Orb R 0,3918 Heschl R 2,493e-06* SupraMarginal R 0,8670

Temporal Sup R 0,5114 Lingual R 3,960e-06* Insula R 0,8711

Frontal Sup L 0,5557 Cingulum Ant R 8,993e-06* Temporal Pole Sup R 0,8868

Frontal Mid L 0,5865 Temporal Pole Mid L 1,538e-05* Frontal Inf Oper L 0,9952

Putamen L 0,6693 Cingulum Mid L 4,389e-03 Putamen L 0,9969

In this table brain nodes are ordered for each condition by p-values – from smallest
to largest –, based on the PILI differences for the noise protocol between LSD and
PCB by perturbing each specific node at a time. All 90 brain regions are shown
in order by the size of their p-value. The asterisk indicates statistically significant
differences after Bonferroni correction.



Bibliography

At the end of each reference the pages of its appearance in the text are indicated.

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore. A resilient, low-
frequency, small-world human brain functional network with highly connected associ-
ation cortical hubs. The Journal of neuroscience : the official journal of the Society
for Neuroscience, 26(1):63–72, 2006. 40, 92

H. Aerts, W. Fias, K. Caeyenberghs, and D. Marinazzo. Brain networks under attack:
robustness properties and the impact of lesions. Brain, 139(12):3063–3083, 2016. 82

M. T. Alkire and J. Miller. General anesthesia and the neural correlates of consciousness.
Progress in Brain Research, 150:229–244, 2005. 1, 12

M. T. Alkire, R. J. Haier, S. J. Barker, N. K. Shah, J. C. Wu, and Y. J. Kao. Cere-
bral metabolism during propofol anesthesia in humans studied with positron emission
tomography. Anesthesiology, 82(2):393–403, 1995. 12

M. T. Alkire, A. G. Hudetz, and G. Tononi. Consciousness and Anesthesia. Science, 322
(5903):876–880, 2008. 12, 61, 67

E. A. Allen, E. Damaraju, S. M. Plis, E. B. Erhardt, T. Eichele, and V. D. Calhoun.
Tracking whole-brain connectivity dynamics in the resting state. Cerebral Cortex, 24
(3):663–676, 2014. 58

P. J. Allen, G. Polizzi, K. Krakow, D. R. Fish, and L. Lemieux. Identification of EEG
events in the MR scanner: The problem of pulse artifact and a method for its subtrac-
tion. NeuroImage, 8(3):229–239, 1998. 37

F. Amzica and M. Steriade. Electrophysiological correlates of sleep delta waves. Elec-
troencephalography and Clinical Neurophysiology, 107(2):69–83, 1998. 62

A. Arieli, A. Sterkin, A. Grinvald, and A. Aertsen. Dynamics of ongoing activity: Ex-
planation of the large variability in evoked cortical responses. Science, 273(5283):
1868–1871, 1996. 1

S. Atasoy, I. Donnelly, and J. Pearson. Human brain networks function in connectome-
specific harmonic waves. Nature Communications, 7:10340, 2016. 97

S. Atasoy, G. Deco, M. L. Kringelbach, and J. Pearson. Harmonic Brain Modes: A Uni-

137



138 bibliography

fying Framework for Linking Space and Time in Brain Dynamics. The Neuroscientist,
page 107385841772803, 2017a. 115

S. Atasoy, L. Roseman, M. Kaelen, M. L. Kringelbach, G. Deco, and R. L. Carhart-Harris.
Connectome-harmonic decomposition of human brain activity reveals dynamical reper-
toire re-organization under LSD. Scientific Reports, 7(1):17661, 2017b. 2, 90, 108, 111,
119, 122

D. Attwell and C. Iadecola. The neural basis of functional brain imaging signals. Trends
in Neurosciences, 25(12):621–625, 2002. 3, 6

S. Baillet and L. Garnero. A Bayesian approach to introducing anatomo-functional priors
in the EEG/MEG inverse problem. IEEE Transactions on Biomedical Engineering, 44
(5):374–385, 1997. 3

A. T. Barker, R. Jalinous, and I. L. Freeston. Non-invasive magnetic stimulation of human
motor cortex. The Lancet, 325(8437):1106–1107, 1985. 28

A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani. The architecture of
complex weighted networks. Proceedings of the National Academy of Sciences of the
United States of America, 101(11):3747–3752, 2003. 46

P. Barttfeld, L. Uhrig, J. D. Sitt, M. Sigman, B. Jarraya, and S. Dehaene. Signature
of consciousness in the dynamics of resting-state brain activity. Proceedings of the
National Academy of Sciences, 112(3):887–892, 2015. 1, 12, 13, 35

P. J. Basser, J. Mattiello, and D. LeBihan. MR diffusion tensor spectroscopy and imaging.
Biophysical Journal, 66(1):259–267, 1994. 21

D. S. Bassett, E. Bullmore, B. A. Verchinski, V. S. Mattay, D. R. Weinberger, and
A. Meyer-Lindenberg. Hierarchical Organization of Human Cortical Networks in Health
and Schizophrenia. Journal of Neuroscience, 28(37):9239–9248, 2008. 111, 119

C. F. Beckmann and S. M. Smith. Probabilistic Independent Component Analysis for
Functional Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 23
(2):137–152, 2004. 72

C. F. Beckmann, M. DeLuca, J. T. Devlin, and S. M. Smith. Investigations into resting-
state connectivity using independent component analysis. Philosophical Transactions
of the Royal Society B: Biological Sciences, 360(1457):1001–1013, 2005. 5

M. R. Bennett. The prefrontal-limbic network in depression: Modulation by hypothala-
mus, basal ganglia and midbrain. Progress in Neurobiology, 93(4):468–487, 2011. 110,
119

R. G. Bettinardi, N. Tort-Colet, M. Ruiz-Mejias, M. V. Sanchez-Vives, and G. Deco.
Gradual emergence of spontaneous correlated brain activity during fading of general
anesthesia in rats: Evidences from fMRI and local field potentials. NeuroImage, 114:
185–198, 2015. 5

R. F. Betzel, S. Gu, J. D. Medaglia, F. Pasqualetti, and D. S. Bassett. Optimally con-
trolling the human connectome: The role of network topology. Scientific Reports, 6(1):
30770, 2016. 85

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde. Functional connectivity in the
motor cortex of resting human brain using echo-planar MRI. Magnetic resonance in
medicine : official journal of the Society of Magnetic Resonance in Medicine / Society
of Magnetic Resonance in Medicine, 34(4):537–41, 1995. 1, 2, 3, 34, 40, 66, 92

R. G. Bittar, S. C. Burn, P. G. Bain, S. L. Owen, C. Joint, D. Shlugman, and T. Z.
Aziz. Deep brain stimulation for movement disorders and pain. Journal of Clinical



bibliography 139

Neuroscience, 12(4):457–463, 2005. 28

M. Boly. Measuring the fading consciousness in the human brain. Current Opinion in
Neurology, 24(4):394–400, 2011. 30

M. Boly, C. Phillips, L. Tshibanda, A. Vanhaudenhuyse, M. Schabus, T. T. Dang-Vu,
G. Moonen, R. Hustinx, P. Maquet, and S. Laureys. Intrinsic brain activity in altered
states of consciousness: How conscious is the default mode of brain function? Annals
of the New York Academy of Sciences, 1129:119–129, 2008. 9, 34, 113

M. Boly, V. Perlbarg, G. Marrelec, M. Schabus, S. Laureys, J. Doyon, M. Pélégrini-Issac,
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R. G. dos Santos, F. L. Osório, J. A. S. Crippa, and J. E. Hallak. Classical hallucino-
gens and neuroimaging: A systematic review of human studies: Hallucinogens and
neuroimaging. Neuroscience and Biobehavioral Reviews, 71:715–728, 2016. 14

G. Doucet, M. Naveau, L. Petit, N. Delcroix, L. Zago, F. Crivello, G. Jobard, N. Tzourio-
Mazoyer, B. Mazoyer, E. Mellet, and M. Joliot. Brain activity at rest: a multiscale
hierarchical functional organization. Journal of Neurophysiology, 105(6):2753–2763,
2011. 119

S. K. Esser, S. Hill, and G. Tononi. Breakdown of Effective Connectivity During Slow
Wave Sleep: Investigating the Mechanism Underlying a Cortical Gate Using Large-
Scale Modeling. Journal of Neurophysiology, 102(4):2096–2111, 2009. 1

D. Fernández-Espejo, A. Soddu, D. Cruse, E. M. Palacios, C. Junque, A. Vanhauden-
huyse, E. Rivas, V. Newcombe, D. K. Menon, J. D. Pickard, S. Laureys, and A. M.
Owen. A role for the default mode network in the bases of disorders of consciousness.
Annals of Neurology, 72(3):335–343, 2012. 5, 13

F. Ferrarelli, M. Massimini, S. Sarasso, A. Casali, B. A. Riedner, G. Angelini, G. Tononi,
and R. A. Pearce. Breakdown in cortical effective connectivity during midazolam-
induced loss of consciousness. Proceedings of the National Academy of Sciences, 107
(6):2681–2686, 2010. 10, 28, 29, 61, 67, 68, 83, 108, 113, 115, 116, 117

P. Fillard, M. Descoteaux, A. Goh, S. Gouttard, B. Jeurissen, J. Malcolm, A. Ramirez-
Manzanares, M. Reisert, K. Sakaie, F. Tensaouti, T. Yo, J. F. Mangin, and C. Poupon.
Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phan-
tom. NeuroImage, 56(1):220–234, 2011. 21

P. Fiset, T. Daloze, G. Plourde, P. Meuret, V. Bonhomme, N. Hajj-ali, S. B. Backman,
and A. C. Evans. Brain Mechanisms of Propofol-Induced Loss of Consciousness in
Humans: a Positron Emission Tomographic Study. The Journal of Neuroscience, 19
(13):5506–5513, 1999. 12



144 bibliography

M. D. Fox and M. E. Raichle. Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nature reviews. Neuroscience, 8(9):700–11,
2007. 2, 34

M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle.
The human brain is intrinsically organized into dynamic, anticorrelated functional
networks. Proceedings of the National Academy of Sciences, 102(27):9673–9678, 2005.
2, 3, 4, 5, 113

M. D. Fox, R. L. Buckner, H. Liu, M. M. Chakravarty, A. M. Lozano, and A. Pascual-
Leone. Resting-state networks link invasive and noninvasive brain stimulation across
diverse psychiatric and neurological diseases. Proceedings of the National Academy of
Sciences, 111(41):E4367–E4375, 2014. 67

P. Fransson. Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation
of the resting-state default mode of brain function hypothesis. Human Brain Mapping,
26(1):15–29, 2005. 5, 34

F. Freyer, J. A. Roberts, R. Becker, P. A. Robinson, P. Ritter, and M. Breakspear.
Biophysical Mechanisms of Multistability in Resting-State Cortical Rhythms. Journal
of Neuroscience, 31(17):6353–6361, 2011. 24, 25

F. Freyer, J. A. Roberts, P. Ritter, and M. Breakspear. A Canonical Model of Multista-
bility and Scale-Invariance in Biological Systems. PLoS Computational Biology, 8(8):
e1002634, 2012. 24, 25

K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. J. Frackowiak. Functional Connectivity:
The Principal-Component Analysis of Large (PET) Data Sets. Journal of Cerebral
Blood Flow & Metabolism, 13(1):5–14, 1993. 4

K. J. Friston, P. Fletcher, O. Josephs, A. Holmes, M. D. Rugg, and R. Turner. Event-
related fMRI: Characterizing differential responses. NeuroImage, 7(1):30–40, 1998. 2

K. J. Friston, L. Harrison, and W. Penny. Dynamic causal modelling. NeuroImage, 19
(4):1273–1302, 2003. 61

A. Ghosh, Y. Rho, A. R. McIntosh, R. Kötter, and V. K. Jirsa. Cortical network dy-
namics with time delays reveals functional connectivity in the resting brain. Cognitive
Neurodynamics, 2(2):115–120, 2008. 21

M. F. Glasser, T. S. Coalson, E. C. Robinson, C. D. Hacker, J. Harwell, E. Yacoub,
K. Ugurbil, J. Andersson, C. F. Beckmann, M. Jenkinson, S. M. Smith, and D. C.
Van Essen. A multi-modal parcellation of human cerebral cortex. Nature, 536(7615):
171–178, 2016. 4

E. Glerean, J. Salmi, J. M. Lahnakoski, I. P. Jääskeläinen, and M. Sams. Functional
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