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Salvador Botello Rionda



Abstract

The Discrete Element Method has been used to simulate fracture dynam-

ics beacuse its inherent capacity to reproduce multi-body interaction, but

in the case of elasticity mechanics the microparameters of the numerical

model, required to replicate the properties of the material, are difficult to

calibrate. On the other hand, damage models based on finite element

strategies can easily reproduce the properties of the media but they can

not simulate the dynamics of multiple fractures.

We propose a numerical approach, the Discrete Volume Method, to

simulate fracture of brittle materials without the disadvantages mentioned,

by combining the benefits of variational formulations and the numerical

convenience of discrete element method to capture the dynamics of cracks.

The Discrete Volume Method does not have microparameters, since the

displacements are computed using the material properties and the frac-

ture mechanism is controlled by an auxiliary damage field.

Within this thesis we discuss a numerical strategy to solve the elasticity

problem upon unstructured and non conforming meshes, allowing all kinds

of flat-faced elements (polygons in 2D and polyhedra in 3D). The core of

the formulation relies on two numerical procedures the Control Volume

Function Approximation (CVFA), and the polynomial interpolation in the

neighborhood of the control volumes, which is used to solve the surface

integrals resulting from applying the divergence theorem. By comparing

the estimated stress against the analytical stress field of the well known

test of an infinite plate with a hole, we show that this conservative approach

is robust and accurate. A similar strategy is used to get the damage field

solution.



In order to coupling both fields, displacement and damage, we use a

finite increment arrangement for reducing the resdidual of elastic equation

within each time step.

We develop a numerical formulation for time discretization based on

the analytical solution of the differential equation resulting from assuming

a continuous variation of internal forces of the system between time steps.

Finally, we show the effectiveness of the methodology by performing

numerical experiments and comparing the solutions with published re-

sults.

2



Acknowledgements

The present investigation was sponsored by a CONACYT scolarship from

the Mexican government and the TCAiNMaND project, an IRSES Marie

Curie initiative under the European Union 7th Framework Programme.

In addition, the author want to express his gratitude to friends and men-

tors at CIMNE for all his support and shared wisdom, to friends at CIMAT

for being always available for discussing the topics of this thesis and for

his insightful commments and illuminating explanations about mathemat-

ical concepts, to Dr. Arturo Hernández for his support in promoting and

divulging our discoveries in several conferences, and to Dr. Rafael Herrera

for his priceless comments about numerical procedures and observations

about the splines used here.

And last but not least, I want to thank to my beloved wife, Jimena,

for all his support, tremendous patience and unconditional love since the

beginning of this project, and to my Champion for teaching me every day

how valuable is life. If angels exist, I already have a pair in my life.



Contents

1 Introduction 4

1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Mathematical formulation 11

2.1 Continuum mechanics . . . . . . . . . . . . . . . . . . . . . 11

2.2 Fracture mechanics . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Formulation of the equations of motion . . . . . . . . . . . . 16

2.4 Volumes definition . . . . . . . . . . . . . . . . . . . . . . . 18

3 First equation of motion 23

3.1 Discretization of domain into control volumes . . . . . . . . 23

3.2 Control volumes integration . . . . . . . . . . . . . . . . . . 25

3.3 Calculating face integrals . . . . . . . . . . . . . . . . . . . 28

3.4 Simplex-wise polynomial approximation . . . . . . . . . . . 30

3.5 Pair-wise polynomial approximation . . . . . . . . . . . . . 36

3.6 Homeostatic spline . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Assembling volume’s equation . . . . . . . . . . . . . . . . 43

3.8 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1



4 Second equation of motion 47

4.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Assembling system of equations . . . . . . . . . . . . . . . 50

5 Time discretization 53

5.1 Time variation . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Analytical solution . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Numerical scheme . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Harmonic oscillator sensibility . . . . . . . . . . . . . 58

5.3.2 Trigonometric shape function . . . . . . . . . . . . . 66

5.3.3 Dynamic stress analysis . . . . . . . . . . . . . . . . 68

5.3.4 Time step calculation . . . . . . . . . . . . . . . . . 69

6 Coupled system 70

6.1 Residual minimization . . . . . . . . . . . . . . . . . . . . . 70

6.2 Discrete Fracture . . . . . . . . . . . . . . . . . . . . . . . . 72

7 Results 73

7.1 Plate with a hole . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Stress wave in a bar . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Perfored strip under tension . . . . . . . . . . . . . . . . . . 78

7.4 Three point bending bar . . . . . . . . . . . . . . . . . . . . 84

7.5 Brazilian test . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.6 Four point notched bar . . . . . . . . . . . . . . . . . . . . . 89

7.7 Three point bending bar with asymmetric perforations . . . 90

7.8 Notched plate under shear . . . . . . . . . . . . . . . . . . 93

7.9 Dynamic shear loading . . . . . . . . . . . . . . . . . . . . . 95

7.10 Dynamic crack branching . . . . . . . . . . . . . . . . . . . 97

8 Conclusions 100

2



Appendix A Analytical solution for time 104

Appendix B Polynomial shape functions for time 106

Bibliography 116

3



Chapter 1

Introduction

1.1 Problem definition

One of the main aims in engineering is creating tools, structures and sys-

tems to enhance the quality of life in our society. In the course of the

creation process, the design stage is critical for the final outcome. During

this stage the engineer have to predict the prototype response when inter-

acting with the physical world. Many of the observed phenomena in the

physical world, such as solid mechanics, fluid dynamics, heat diffusion,

and others, can be described with Partial Differential Equations (PDEs) by

assuming time and space as a continuum.

Computational Continuum Mechanics (CCM) is the area dedicated to

develop numerical methods and heuristics to solve these PDEs. Most of

the methods can be classified into these two families: weighted resid-

ual and conservative methods. The Galerkin formulations are popular

and widely used weighted residual methods, such as the Finite Element

Method (FEM), which is a well established technique in Computational

Solid Mechanics (CSM). Alternatively, the Finite Volume Method (FV) and

the Control Volume Function Approximation (CVFA) are common approaches
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of conservative methods. The main difference between both families is that

weighted residuals methods do not conserve quantities locally, but globally

instead, resulting in linear systems with commendable numerical proper-

ties (symmetrical and well-conditioned matrices, for example). Neverthe-

less, due to its conservative nature, the second group is more attractive

for fluid structure interaction ([1, 2]) and multiphysics simulations ([3, 4]),

where several PDE-solvers must be coupled. For that reason, in recent

years FV has been subject of interest for solving CSM problems.

Most of the CSM non-linear strategies depend on the accuracy of the

estimated stress field for the elasticity problem, such as those for plasticity

and damage (see [5, 6]). Hereafter we refer as elasticity-solver to the

numerical computation that calculates the displacement and stress fields

for a given domain and boundary conditions.

In industrial design it is critical to predict the cracks on materials in order

to prevent a major failure on the whole system, especially in automotive,

aeronautic and civil structures, where human lives can be lost. The three

most important features that should be predicted with accuracy are the

crack’s morphology, tip’s nucleation and evolution of the existing tips.

There are two main approaches to predict these cracks’ features, the

variational formulation which assumes a continuum where the crack is ap-

proximated by means of a function, and the multi-body system where the

cracks emerges naturally by the separation of the rigid bodies. The first

approach estimates the internal mechanics of materials with high accu-

racy, and the second approach is more suitable to capture the dynamics

of systems where the initial continuum is broken apart into several subdo-

mains.

The main objective of this thesis is to describe a numerical method

to predict cracks by combining the accuracy and efficency of variational

formulations and the ability to capture the dynamics of multibody systems.
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1.2 State of the art

The prediction and analysis of brittle fracture is an intense research area

with applicability to a wide range of industrial problems, such as the fail-

ure mechanism of structures, the fracking process, the detonations impact

upon structures and the rock cutting. Moreover, the prevention of cracks is

a main requirement in structural designs.

In his influential papers, Oñate et al [7, 8], propose a FV format for

structural mechanics based on triangular meshes, discussing the cell ver-

tex scheme, the cell centred finite volume scheme and its corresponding

mixed formulations, showing that the cell centred strategy produces the

same symmetrical global stiffness matrix that FEM using linear triangular

elements. Analogously, Bailey et al [9, 10], develop a similar approach,

but using quadrilateral elements to produce cell-centred volumes. Even

though, the shapes of the volumes in both formulations are completely

defined by the FEM-like mesh (triangular or quadrilateral) and it is not pos-

sible to handle arbitrary polygonal shapes, as we might expect when the

mesh elements are produced by cracks.

Slone et al [11] extends the investigation of [7] by developing a dy-

namic solver based on an implicit Newmark scheme for the temporal dis-

cretization, with the motivation of coupling an elasticity-solver with his

multi-physics modelling software framework, for later application to fluid

structure interaction.

Another remarkable algorithm is the proposed by Demirdzic et al [12,

13, 14, 15, 16] The numerical procedure consists in decoupling the strain

term into the displacement Jacobian and its transpose in a cell-centred

scheme. The Jacobian is implicitly estimated by approximating the normal

component of each face as the finite difference with respect to the adja-

cent nodes, while the Jacobian transpose is an explicit average of Taylor
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approximations around the same adjacent nodes. This decoupling pro-

duces a smaller memory footprint than FEM because the stiffness matrix

is the same for all the components. The solution is found by solving one

component each iteration in a coordinate descent minimization. This line

of work has shaped most of the state of the art techniques in FV for cou-

pling elasticity-solvers to Computational Fluid Dynamics (CFD) via finite

volume practices (usually associated to CFD), such as the schemes pro-

posed by [17, 18, 19]. However, this segregated algorithm may lead to

slow convergence rates when processing non-linear formulations, for ex-

ample, when it is required to remove the positive principal components

of the stress tensor in phase-field damage formulations [20]. In addition, if

some non-linear strategy requires multiple iterations of the linear elasticity-

solver, such as finite increments in damage models, the nested iterations

will increase the processing requirements for simple problems. To circum-

vent this drawback Cardiff et al [21] presents a fully block coupled direct

solution procedure, which does not require multiple iterations, at expense

of decomposing the displacement Jacobian of any arbitrary face into a)

the Jacobian of the displacement normal component, b) the Jacobian of

the displacement tangential component, c) the tangential derivative of the

displacement normal component and d) the tangential derivative of the

displacement tangential component. This decomposition complicates the

treatment of the stress tensor in the iterative non-linear solvers mentioned

before for plasticity and damage.

A generalized finite volume framework for elasticity problems on rect-

angular domains is proposed by Cavalcante et al [22]. They use higher

order displacement approximations at the expense of fixed axis-aligned

grids for discretization.

Nordbotten [23] proposes a generalization of the multi-point flux ap-

proximation (MPFA), which he names multi-point stress approximation (MPSA).
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The MPSA assembles unique linear expressions for the face average stress

with more than two points in order to capture the tangential derivatives.

The stress field calculated with this procedure is piece-wise constant.

In this work, we propose an elasticity-solver based on CVFA techniques

(see [24, 25]), using piece-wise polynomial interpolators for solving the

surface integrals on the volumes boundaries. The polynomials degree can

be increased without incrementing the system degrees of freedom, which

make this method more suitable for non-linear models and dynamic com-

putations. Furthermore, this algorithm can handle polygonal/polyhedral,

unstructured and non conforming meshes, and does not require the de-

composition of the stress tensor.

There are remarkable methodologies to solve the non-linear behaviour

of brittle fracture using FEM, such as the damage models proposed in

[26, 27, 28, 29, 30, 31], the phase-field approaches to estimate the fracture

surface described in [20, 32, 33] and the models of Extended FEM (XFEM)

explained in [34, 35, 36]. However, these methods can not easily handle

large displacements of the resulting sub-bodies after the fracture, such

as the fragments blown up by a detonation. The Element Deletion Method

could deal with these large displacements (see [37, 38]), but none of these

techniques can manage the collision between multiples bodies and the

self-collision of boundaries.

The Discrete Element Method (DEM) has been used to solve prob-

lems involving granular material with success (as presented in [39, 40,

41]), since it can handle discontinuities in the domain without special con-

siderations. DEM defines the interaction mechanism of multiple rigid-

spheres (disks in 2D), such interaction is characterized by a set of micro-

parameters which pretend to emulate the material properties. In order to

approximate a continuum behaviour, the discrete elements are linked with

cohesive bonds to its adjacent neighbours in the initial discretization. The
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fracture emerges when the cohesive bonds are broken systematically, this

occurs if the force applied to them is superior to some threshold (which is

a micro-parameter), a complete review of DEM is in [42, 43, 44, 45, 46].

There are two major challenges when we are working with the con-

tinuum using DEM. The first challenge is the approximation of the mate-

rial properties with the microparameters, there are techniques to calculate

these from a given material, as the proposed in [42], but none of these

proposals proofs that the resulting behaviour of the body corresponds to

the material properties. The second challenge is the computation of the

system, due to the huge quantity of discrete elements (billions for some

engineering problems) and the tiny time steps to maintain the numerical

stability (a large time step could produce overlapping discrete elements

and the wrong evolution of the displacements).

To handle these challenges, Oñate [45] proposes a DEM/FEM formu-

lation with an underlying DEM discretization which is enabled when the

finite elements are completely damaged, but this approach is expensive

almost as much as the simple DEM. Zárate [47] proposes a FEM/DEM

coupling scheme for fast computing simulations, but it requires the same

microparameters than DEM. In the literature exists similar schemes to cou-

ple atomistic and continuum models [48, 49, 50, 51, 52], but all of them

need microparameters to fix the interface between the discrete and the

continuum model, and require small enough time steps to make the com-

putation slow.

The Discrete Volume Method (DVM) aims to reduce the computational

effort to perform a simulation of brittle fracture without the need of micropa-

rameters. The strategy is to solve the elasticity problem using the Control

Volume Function Approximation method (CVFA), introduced in [53, 24, 25],

on a coarse mesh and utilize an auxiliary damage field to refine the mesh

in the damaged zones, separating the control volumes adjacent to com-
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pletely damaged faces during the fracture process. The control volumes

are named discrete volumes because them can be isolated from the do-

main.

DVM exploits the accuracy and robustness of CVFA and the ability to

create cracks and handle multiple collisions of DEM.
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Chapter 2

Mathematical formulation

2.1 Continuum mechanics

We consider an arbitrary body, Ω ∈ Rdim, with boundary ∂Ω. The displace-

ment of a point x ∈ Ω at time t ∈ [0, T ] is denoted by u(x, t) ∈ Rdim. We

assume small deformations and deformation gradients, and the infinitesi-

mal strain tensor, denoted ε(x, t) ∈ Rdim×dim, is given by

ε(x, t) = ∇su =
1

2

(
∇u+ [∇u]T

)
. (2.1)

Since we assume isotropic linear elasticity, the elastic energy density is

defined

ψe(ε) =
1

2
λ tr(ε)2 + µ tr(εTε), (2.2)

where λ and µ are the Lamé parameters characterizing the material. These

parameters are related with Young’s modulus, E, and Poisson’s ratio, ν, by

the following equivalences

µ =
E

2(1 + ν)
, (2.3)

and

λ =
νE

(1 + ν)(1− λν)
(2.4)
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where λν = ν for plane stress analysis, and λν = 2ν for plane strain and

3D cases.

The stress components are given by the partial derivative of the elastic

energy density with respect to the corresponding strain component

σij =
∂ψe
∂εij

, (2.5)

to simplify the notation, we use the fourth order tensor, C, to map the strain

field to the stress field

Cijkl = λ δijδkl + µ (δikδjl + δilδjk), (2.6)

where δij is the Kronecker delta. This tensor is symmetric, Cijkl = Cklij

(major symmetry), Cijkl = Cijlk (minor symmetry), and positive definite.

The equation (2.5) is equivalent to

σ = C : ε, (2.7)

where C : ε = Cijklεkl using the summation convention over repeated

indices. Furthermore, since the strain tensor is symmetric, we can simplify

the tensorial product to

σ = 2µ ε+ λ tr(ε)I, (2.8)

where I is the identity matrix, defined Iij = δij in tensorial notation.

To model the loss of stiffness and the rupture of the material we use

the damage field, denoted d(x, t) ∈ [0, 1], which goes to one in the failure

zones and it is equal to zero in the rest of the domain, as illustrated in

the Figure 2.1. We redefine the elastic energy density, ψe, to consider the

damage field effects

ψd(ε,d) = (1− d)2ψe(ε
+) + ψe(ε

−), (2.9)
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Ω

ΓN

ΓD

Γ

x1 x2

x3

Ω

ΓN

ΓD

d(x, t)

x1 x2

x3
d = 0

d = 1

Figure 2.1: The left side shows the body with an internal fracture, denoted Γ, under boundary conditions. The
right side shows the damage field approximation of the fracture surface.

where ψe(ε+) is the energy contribution due to tension, calculated with the

positive part of the principal strains, denoted ε+, and ψe(ε−) is the energy

contribution due to compression, calculated with the negative part of the

principal strains, denoted ε−. To simplify the notation we use ψ+
e = ψe(ε

+)

and ψ−e = ψe(ε
−). The principal strains are calculated through a spectral

decomposition of the strain tensor

PΛPT ← ε, (2.10)

where Λ is the diagonal matrix containing the principal strains, denoted λi,

and P is conformed by their orthonormal eigenvectors. The positive and

negative contributions are defined by

ε+ = PΛ+PT ,

ε− = PΛ−PT ,

(2.11)

(2.12)

where

Λ+ = diag(〈λ1〉, 〈λ2〉, 〈λ3〉),

Λ− = Λ−Λ+,

(2.13)

(2.14)

with 〈λ〉 = max(λi, 0). The equation (2.14) implies

ε− = ε− ε+. (2.15)
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Observe that if there is not damage, d = 0, the energy density of the

equation (2.9) is equivalent to the elastic energy density of the equation

(2.2). The energy contribution due to tension is obtained from

ψ+
e =

1

2
λ 〈tr(ε)〉2 + µ tr

([
ε+
]2)

, (2.16)

using the equation (2.15), the contribution due to compression is given by

ψ−e =
1

2
λ (tr(ε)− 〈tr(ε)〉)2 + µ tr

([
ε− ε+

]2) (2.17)

The stress of equation (2.5) is now calculated as

σij = (1− d)2∂ψ
+
e

∂εij
+
∂ψ−e
∂εij

, (2.18)

developing the derivatives, the stress is expressed as

σ = (1− d)2
(
λ 〈tr(ε)〉I + 2µ ε+

)︸ ︷︷ ︸
σ+(Stress due to tension)

+
(
λ (tr(ε)− 〈tr(ε)〉) I + 2µ

(
ε− ε+

))︸ ︷︷ ︸
σ−(Stress due to compression)

,

(2.19)

and rearranging the terms we obtain

σ = 2µ ε+ λ tr(ε)I︸ ︷︷ ︸
σe(Linear elastic stress)

+
(
d2 − 2d

)
σ+. (2.20)

From here, we are going to use the symbol σe to refer the linear elastic

stress.

Observe that for d = 0 the equation (2.20) is equal to (2.8), however for

d = 1 we have only the compression contribution.

2.2 Fracture mechanics

According to Griffith’s theory of brittle fracture (see [20]), the energy re-

quired to create a unit area of fracture surface, Γ, is equal to the critical
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fracture energy density, denoted G, also known as critical energy release

rate. The potential energy of the body, ΨP , is given by the sum of the

elastic energy and the fracture energy

ΨP (u,Γ) =

∫
Ω

ψd(∇u)dV +

∫
Γ

GdS. (2.21)

Since we do not know the fracture surface, we use a crack surface density

function, γ(d), to estimate the contribution of such surface in terms of the

damage

Γ(d) =

∫
Ω

γ(d)dV. (2.22)

The damage field decays exponentially when x goes away from the crack

surface (see the work of Miehe [32, 33]), this behaviour is given by the

following differential equation

d− h2∇2d = 0, (2.23)

where h is a length scale parameter to control the smooth approximation

of the crack. We take (2.23) as the Euler equation of the general form of

the variational calculus problem

d(x) = arg min
d
{Γ(d)} , (2.24)

to obtain

γ(d) =
d2

2h
+
h

2
(∇d · ∇d). (2.25)

By substituting (2.25) into (2.22) we approximate the fracture energy with-

out a priori knowledge of the fracture surface, Γ, with an integral over the

entire domain, Ω, ∫
Γ

GdS ≈
∫

Ω

G
(
d2

2h
+
h

2
∇d · ∇d

)
dV. (2.26)
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2.3 Formulation of the equations of motion

Replacing (2.26) into (2.21) we get the potential energy using only integrals

over the domain Ω,

ΨP (u,d,∇d) =

∫
Ω

ψd(∇u)dV +

∫
Ω

G
(
d2

2h
+
h

2
∇d · ∇d

)
dV. (2.27)

The kinetic energy of the body is given by

ΨK(u̇) =
1

2

∫
Ω

ρ (u̇ · u̇) dV, (2.28)

where ρ(x, t) ∈ R is the density and u̇(x, t) ∈ Rdim is the velocity. Observe

that the kinetic energy is unaffected by the damage field, resulting in a

mass conservative scheme. The potential and kinetic energies defines the

Lagrangian of the discrete fracture problem as

L(u, u̇,d,∇d) = ΨK(u̇)−ΨP (u,d,∇d). (2.29)

Expanding the terms we have

L =

∫
Ω

[
ρ

2
(u̇ · u̇)− ψd(∇u)− G

(
d2

2h
+
h

2
∇d · ∇d

)]
dV,

=

∫
Ω

[
ρ

2
(u̇ · u̇)− (1− d)2ψ+

e − ψ−e − G
(
d2

2h
+
h

2
∇d · ∇d

)]
dV. (2.30)

According to the principle of least action (see [33]), the displacement field

is obtained from the following minimization

u = arg min
u

{∫ T

0

L(u, u̇,d,∇d)dt

}
, (2.31)

and the damage field is given in a similar calculation

d = arg min
d

{∫
Ω

L(u, u̇,d,∇d)dV

}
. (2.32)
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Using the Euler-Lagrange equations to solve the minimization problems

we get the strong form equations of motion


ρü−∇ · σ = 0,

2(1− d)ψ+
e −
G
h
d+ Gh∇2d = 0.

(2.33a)

(2.33b)

These equations of motion should be solved to found the displacement

and damage fields.

The cracking process is irreversible, Γ(x, t) ⊆ Γ(x, t+∆t), this condition

is enforced introducing a strain history field, H, in the strong form equa-

tions of motion, which satisfies the Kuhn-Tucker conditions for loading and

unloading 
H − ψ+

e ≥ 0,

Ḣ ≥ 0,(
H − ψ+

e

)
Ḣ = 0.

(2.34a)

(2.34b)

(2.34c)

In this work the strain history field is defined as the maximum elastic en-

ergy density due to tension from t = 0 to current time

H(x, t) = max
τ

{
ψ+
e (x, τ)

}
, τ ∈ [0, t], (2.35)

where τ is the dummy time variable.

Replacing the elastic energy density due to tension, ψ+
e , by the strain

history field, H, in (2.33b) we get the system to be solved

(S)


∇ · σ = ρü,(

1 +
2hH
G

)
d− h2∇2d =

2hH
G .

(2.36a)

(2.36b)

The displacement field satisfies the time-dependent Neumann conditions

given by bN upon the boundary ΓN and Dirichlet conditions given by uD
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upon the boundary ΓD, where ∂Ω = ΓN ∪ ΓD. The damage gradient must

be zero along the external boundary, ∂Ω. These conditions could be im-

posed by means of

(S:BC)


σn = bN(x, t), x ∈ ΓN , t ∈ [0, T ],

u = uD(x, t), x ∈ ΓD, t ∈ [0, T ],

∇d · n = 0, x ∈ ∂Ω, t ∈ [0, T ].

(2.37a)

(2.37b)

(2.37c)

The initial state of the system is characterized by

(S:IC)


u(x, 0) = u0(x), x ∈ Ω,

u̇(x, 0) = u̇0(x), x ∈ Ω,

H(x, 0) = H0(x), x ∈ Ω.

(2.38a)

(2.38b)

(2.38c)

The strain history field, H, could be used to model initial fracture surfaces

(see appendix A of [20]).

2.4 Volumes definition

For a given set of centroids, denoted xi, the discrete volumes are spheres

(disks in 2D) with radii ri truncated by planes orthogonal to the line con-

necting the centroids xi and xi at the following point

qij = xi +
1

2

(
1 +

r2
i − r2

j

||xi − xj||2

)
(xi − xj), (2.39)

the point qij is in the middle of xi and xj if ri is equal to rj. Formally, the

discrete volumes of the partition Ph are defined by

Vi =
{

x ∈ Ω
∣∣∣ ||x− xi|| ≤ ri, (x− qij) · (xi − xj) ≤ 0, ∀i 6= j

}
.

(2.40)
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Vi

xi

ri

xj rj

qij

Figure 2.2: The discrete volumes, Vi, are defined by its radii ri and the planes orthogonal to the lines connecting
the centroids xi and xj at the point qij , for all i 6= j.

The Figure 2.2 helps to visualize the discrete volume defined by the equa-

tion (2.40). The left side of the Figure 2.3 illustrates the domain of the

discrete volume Vi with respect to the remaining volumes Vj, and the right

side shows the discrete volumes forming a continuum in the domain, Ω.

The mass of the volumes is time-invariant and its center of mass is

assumed to be the centroid. To enforce these assumptions, we associate

a mass, denoted mi, an initial density, ρoi , and an initial volume, V o
i , to the

discrete volumes, such quantities are calculated as

mi =

∫
V oi

ρdV, ρop =
mi

V o
i

. (2.41)

Then, the density associated to the discrete volumes at any time, denoted

ρi, is given by

ρp = (ρoi )
V o
p

Vp
. (2.42)

The Figure 2.4 shows the density of Vi calculated from (2.42) for three

cases.

The integrals over the faces of the discrete volumes requires the nor-

mal of their surface, nij, but only the shared faces have a constant normal,
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V1

V2

V3

V4

Ω

Figure 2.3: The left side shows four discrete volumes colliding, the elastic response between two volumes is
proportional to the size of the face formed, the domain of the volume Vi (let i = 1) is bounded by the remaining
volumes Vj (let j = 2, 3, 4). The right side illustrates the partition, Ph, of the domain, Ω, with discrete volumes
(forming a continuum).

Vi

ρi = ρoi

Vi

ρi =
5

4
ρoi

Vi

ρi = 2ρoi

Figure 2.4: The density is updated depending on the current volume of the sphere (disk in 2D) in order to
conserve the mass.
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the integrals on the curved faces are considered with a Neumann condi-

tion equal to zero, since such faces are not interacting with other discrete

volumes, ∮
eij

σ · nijdS = 0 if eij is curved. (2.43)

We want to remark that the elastic energy is transferred from one vol-

ume to its neighbours through the shared faces and the size of such faces

has a non-linear behaviour with respect to the distance between its adja-

cent centroids. Most of the methodologies dealing with discrete bodies,

such as the Discrete Element Method, assumes that this behaviour is lin-

ear. The Figure 2.5 shows the surface area of the face shared by two

discrete volumes with the same radius as a function of the distance be-

tween their centroids.
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Figure 2.5: The curves shows the surface area of the face shared by two discrete volumes with the same radius
as a function of their distance, also referred as penetration.
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Chapter 3

First equation of motion

On this chapter we go into the details of the numerical procedure by dis-

cussing the discretization with CVFA, the control volumes integration, the

subfaces integrals, the simplex-wise polynomial approximation, the pair-

wise polynomial approximation, the homeostatic splines used within the

shape functions, the linear system assembling, how to impose boundary

conditions, and two special cases of the formulation.

For the sake of legibility, in some parts of the text we unfold the matrices

only for the bidimensional case, but the very same procedures must be

followed for the 3D case.

3.1 Discretization of domain into control vol-

umes

The domain Ω is discretized into N control volumes, denoted Vi, using

the Control Volume Function Approximation (CVFA) proposed by Li et al
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Ph

Vi

xj
∂Vi

eij

nij

bN
Vj xi

Figure 3.1: The partition Ph is the discretization of the domain Ω into N control volumes. The boundary of the
control volumes, ∂Vi, is conformed by Ni flat faces, denoted eij . The unit vector nij is normal to the face eij .
The faces of the volumes adjacent to the boundary ΓN are integrated using the condition bN .

[24, 25]. The partition Ph of Ω is defined by

Ph =
N⋃
i=1

Vi, with Vi ∩ Vj = ∅, i 6= j, (3.1)

where the boundary of each control volume, ∂Vi, is composed by Ni flat

faces, denoted eij,

∂Vi =

Ni⋃
j=1

eij, with eij ∩ eik = ∅, j 6= k. (3.2)

The Figure 3.1 illustrates the partition Ph of Ω into N control volumes de-

fined in the equations (3.1) and (3.2). The Figure 3.2 shows a three di-

mensional control volume.

Every control volume Vi must have a calculation point

xi ∈ Vi ∪ ∂Vi, (3.3)

which is used to estimate the displacement field. Such a point is the base

location to calculate the stiffness of the volume. In the volumes adjacent
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nij
eij

∂Vi

Vi

xi

Figure 3.2: The boundary ∂Vi of the three dimensional control volume Vi is subdivided into Ni flat faces,
denoted eij . The unit vector nij is normal to the face eij .

to the boundary ΓD, it is convenient to establish the calculation point over

the corresponding boundary face,

xi ∈ ∂Vi ∩ ΓD, (3.4)

in order to set the Dirichlet condition directly on the point.

3.2 Control volumes integration

In this chapter we will focus our attention on the spatial discretization and

numerical treatment of the stress term in first equation of motion(2.36a),

for simplicity assume ü = 0, later we will remove this assumption.

We begin by integrating the stress divergence over the control volume∫
Vi

∇ · σ dV = 0, (3.5)

using the divergence theorem we transform the volume integral into a sur-

face integral over the volume boundary∫
∂Vi

σn dS = 0. (3.6)
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The evaluation of the surface integrals is based on the approximation of

the displacement field inside the neighborhood of the volume, denoted Bi,

ui(x) =
∑
q∈Bi

ϕqxq, (3.7)

making use of a group of piece-wise polynomial interpolators, denoted ϕq.

We are going to discuss these interpolators later in this section.

For that reason, the displacement field is decoupled from the stress

tensor by using the strain (2.1) and stress (2.8) definitions. Taking advan-

tage of the stress tensor symmetry σ, we rewrite the stress normal to the

boundary as

σn =

[
σ[11] σ[12]

σ[12] σ[22]

][
n[1]

n[2]

]
=

[
n[1] n[2]

n[2] n[1]

]
σ[11]

σ[22]

σ[12]

 = T~σ, (3.8)

where T is the face orientation matrix and ~σ is the engineering stress

vector. Developing the stress definition (2.8) component-wise we can de-

compose it into the constitutive matrix, denoted D, and the engineering

strain vector, denoted ~ε, as follows

~σ =


σ[11]

σ[22]

σ[12]

 =


2µ ε[11] + λ

(
ε[11] + ε[22]

)
2µ ε[22] + λ

(
ε[11] + ε[22]

)
2µ ε[12]

 (3.9)

=


(2µ+ λ) λ

λ (2µ+ λ)

µ



ε[11]

ε[22]

2ε[12]

 = D~ε, (3.10)

then the components of the strain vector are retrieved from the equation

(2.1), and it is decomposed into the matrix differential operator S and the
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displacement function u.

~ε =


ε[11]

ε[22]

2ε[12]

 =



∂u[1]

∂x[1]

∂u[2]

∂x[2]

∂u[1]

∂x[2]

+
∂u[2]

∂x[1]

 =



∂

∂x[1]

∂

∂x[2]

∂

∂x[2]

∂

∂x[1]


[
u[1]

u[2]

]
= Su, (3.11)

Summarizing the equations (3.8), (3.10) and (3.11) we have

σn = T~σ = TD~ε = TDSu, (3.12)

where TDS is the stiffness of the volume boundary.

Once the displacement field is decoupled, we rewrite the equation (3.6)

as ∫
∂Vi

TDSu dS = 0. (3.13)

Using the fact that the control volume boundary is divided into flat faces, as

in equation (3.2), we split the integral (3.13) into the sum of the flat faces

integrals
Ni∑
j=1

∫
eij

TDSu dS = 0. (3.14)

Notice that the face orientation T along the flat face, denoted Tij, is con-

stant. Furthermore, if the control volumes are considered to be made of

a unique material and the flat faces to be formed by pairs of adjacent vol-

umes, then the constitutive matrix D along the flat face, denoted Dij, is

also considered constant. The matrix Dij is estimated from the harmonic

average of the Lamé parameters assigned to the adjacent volumes, where

λi and µi are the properties of the volume Vi,

µij =
2µiµj
µi + µj

and λij =
2λiλj
λi + λj

, (3.15)
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With Tij and Dij we simplify the equation (3.14) as

Ni∑
j=1

TijDijHij = 0, (3.16)

where Hij is the strain integral along the flat face eij,

Hij =

∫
eij

Su dS. (3.17)

The accuracy of the method depends on the correct evaluation of this in-

tegral.

3.3 Calculating face integrals

The surface integrals Hij along the flat faces eij are calculated using an

auxiliary piece-wise polynomial approximation of the displacement field.

This approximation is based on the simplices (triangles in 2D or tetrahedra

in 3D) resulting from the Delaunay triangulation of the calculation points xi

from the neighborhood of Vi. The Delaunay triangulation is the best trian-

gulation for numerical interpolation, since it maximizes the minimum angle

of the simplices, which means that its quality is maximized as well. We

define the neighborhood Bi of volume Vi as the minimum set of calcula-

tion points xj such that the simplices intersecting Vi does not change if we

add another calculation point to the set. Observe that the neighborhood

Bi does not always coincide with the set of calculation points in volumes

adjacent to Vi, as in most of the FV formulations. Once the neighborhood

Bi is triangulated, we ignore the simplices with angles smaller than 10

degrees, and the simplices formed outside the domain, which commonly

appear in concavities of the boundary ∂Ω. The local set of simplices result-

ing from the neighborhood of Vi is denoted Pα. The Figure 3.3 illustrates
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Vi Vi

(a) (b)

Vk Vk

Vj Vj

Vb

Vc

Vb

Vc

Va Va

Vd Vd

Figure 3.3: (a) The dotted line illustrates the triangulation of the calculation points of adjacent volumes to Vi,
used by most of the FV methods. (b) The dotted line shows the simplices forming the piece-wise approximation
used to solve the integrals Hij of the control volume Vi.

the difference between (a) the simplices resulting from the triangulation of

the calculation points in adjacent volumes and (b) those resulting from the

triangulation of the proposed neighborhood Bi.
The face eij is subdivided into Nij subfaces, denoted eijk,

eij =

Nij⋃
k=1

eijk, with eijk ∩ eijl = ∅, l 6= k, (3.18)

these subfaces result from the intersection between Pα and the control

volume Vi. The Figure 3.3.b illustrates six key points of this approach, 1)

the simplices are used to create a polynomial interpolation of u(x) over

the boundary of the control volume, 2) most of the faces are intersected

by several simplices, such faces must be divided into subfaces to be inte-

grated, 3) some few faces are inside a single simplex, as illustrated in the

face formed by Vi and Vk, 4) there are volumes that require information of

non-adjacent volumes to calculate its face integrals, such as Vi requires

Vk, 5) the dependency between volumes is not always symmetric, which

means that if Vi requires Vk does not implies that Vk requires Vi, and 6)
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non conforming meshes are supported, as shown in the faces formed by

Va, Vb, Vc, Vd and Vj.

The integral (3.17) is now rewritten in terms of the subfaces

Hij =

Nij∑
k=1

∫
eijk

Su dS, (3.19)

Each subface eijk is bounded by a simplex, where the displacement uijk,

and it derivatives, (Su)ijk, are a polynomial interpolation. Hence the inte-

grals in equation (3.19) are solved exactly by using the Gauss-Legendre

quadrature with the required number of integration points, denoted Ng, de-

pending on the polynomial degree,∫
eijk

Su dS =

Ng∑
g=1

wg(Su)ijk|xg . (3.20)

where wg is the corresponding quadrature weight and (Su)ijk|xg is the

strain evaluation of the Gauss point with the proper change of interval,

denoted xg. The Figure 3.4 shows the change of interval required for a 2D

face. A 3D face (a polygon) must be subdivided to be integrated with a

triangular quadrature.

Most of the cases, the displacement uijk is interpolated inside the

simplices, but in some geometrical locations these can not be created, in

consequence, the displacement uijk is interpolated pair-wise using the

volumes adjacent to the subface eijk. We discuss both strategies in the

following subsections.

3.4 Simplex-wise polynomial approximation

In the general case, the simplices are formed by (dim + 1) points. The

points forming the simplex that is bounding the subface eijk are denoted

xq, and its displacements uq.
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Vi

xg

(a)

1-1 0

(b)

Integration point

over the face
Polynomial

Figure 3.4: (a) Blue shaded volume Vi is being integrated. The integral over the subface eijk is calculated using
the polynomial approximation of shaded simplex. The integration point must be mapped to (b) Normalized space
[−1, 1] in order to use the Gauss- Legendre quadrature.

The shape functions used for the polynomial interpolation are defined

into the normalized space. A point in such space is denoted ξ, its dth com-

ponent is denoted ξ[d], and the qth point forming the simplex is expressed

ξq. The nodes of the normalized simplex are given by the origin, 0, and

the standard basis vectors,

ξq =

 eq, for q ∈ [1,dim],

0, if q = dim + 1
(3.21)

where eq is the qth standard basis vector. The Figures 3.5 and 3.6 illus-

trates the original and the normalized simplices with the corresponding

node numeration for 2D and 3D respectively.

The shape functions, denoted ϕq, are used to interpolate the displace-

ment field inside the normalized simplex. Such functions are non-negative

and are given by

ϕq(ξ) =


Pc
(
ξ[q]

)
, if q ∈ [1,dim],

1−
dim∑
d=1

Pc
(
ξ[d]

)
, for q = dim + 1,

(3.22a)

(3.22b)
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Figure 3.5: (a) The simplex formed by the points x1, x2 and x3 in the original space contains an interior point
xg that is mapped to (b) ξg into the normalized 2D-simplex formed by the points ξ1, ξ2 and ξ3.

x[1]

x[2]

x[3]

ξ[1]

ξ[3]
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x3

x1

x2

(a)
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ξ4
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ξ1

ξ2
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ξ[2]

1
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1
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Figure 3.6: (a) The 3D-simplex formed by the points x1, x2, x3 and x4 in the original space contains an interior
point xg that is mapped to (b) ξg into the normalized 3D-simplex formed by the points ξ1, ξ2, ξ3 and ξ4.
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where Pc(·) is the homeostatic spline, which is the simplest polynomial

defined in the interval [0, 1] that have c derivatives equal to zero in the

endpoints of the interval. We will discuss this spline later.

The set of shape functions is a partition of unity, which means that the

sum of the functions in the set is equal to one into the interpolated domain

dim+1∑
q=1

ϕq(ξ) = 1 for any ξ inside the simplex, (3.23)

furthermore, these functions are equal to one in its corresponding node,

which implies that

ϕq(ξq) = 1 for any ξq forming the simplex, (3.24)

ϕq(ξp) = 0 for any ξp 6= ξq forming the simplex, (3.25)

The gradients of the shape functions with respect to the normalized space

are denoted ∇ξϕq. The norm of the sum of such gradients is zero∣∣∣∣∣
∣∣∣∣∣
dim+1∑
q=1

∇ξϕq (ξ)

∣∣∣∣∣
∣∣∣∣∣ = 0 for any ξ inside the simplex, (3.26)

which means that there are not numerical artifacts into the strain field.

Any point inside the simplex can be formulated as a function of a point

in the normalized space, p (ξ), by using the shape functions and the points

forming the simplex

p (ξ) =
dim+1∑
q=1

ϕq (ξ) xq, (3.27)

In order to calculate the normalized point, denoted ξg, associated to the

integration point xg = p
(
ξg
)
, we use the shape functions definitions to
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rewrite the equation (3.27) in matrix form

p (ξ) =

[
x3[1]

x3[2]

]
+

(x1[1] − x3[1]

) (
x2[1] − x3[1]

)
(
x1[2] − x3[2]

) (
x2[2] − x3[2]

)
[Pc (ξ[1]

)
Pc
(
ξ[2]

)]
︸ ︷︷ ︸

2D case (triangle)

(3.28)

= x(dim+1) + J∆ Pc (ξ) , (3.29)

where Pc (ξ) is the vector resulting from evaluating the spline for ξ component-

wise, and J∆ is the distortion matrix given by the concatenation of the

following column vector differences

J∆ =
[
(x1 − x(dim+1)), ..., (xdim − x(dim+1))

]
(3.30)

Now, from equation (3.29) we retrieve the point xg as

xg = p
(
ξg
)

= x(dim+1) + J∆ Pc
(
ξg
)
, (3.31)

and solving for ξg we obtain

ξg = Qc

(
(J∆ )−1 (xg − x(dim+1)

))
, (3.32)

whereQc is the inverse function of Pc applied component-wise to the prod-

uct of the matrix-vector operation.

Similar to the approximation in equation (3.27), within the simplex en-

closing the subface eijk, the displacement field evaluated at xg is defined

as,

uijk|xg =
dim+1∑
q=1

ϕq
(
ξg
)
uq (3.33)

Hence, when calculating the quadrature of equation (3.20), the strain eval-
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uated at the integration point is given by

(Su)ijk |xg =
dim+1∑
q=1

Sϕq(ξg) uq, (3.34)

=



∂ϕ1

∂x[1]

∂ϕ1

∂x[2]

∂ϕ1

∂x[2]

∂ϕ1

∂x[1]

∂ϕ2

∂x[1]

∂ϕ2

∂x[2]

∂ϕ2

∂x[2]

∂ϕ2

∂x[1]

∂ϕ3

∂x[1]

∂ϕ3

∂x[2]

∂ϕ3

∂x[2]

∂ϕ3

∂x[1]


|xg



u1[1]

u1[2]

u2[1]

u2[2]

u3[1]

u3[2]


= Bijk|xg ~uijk, (3.35)

where Bijk|xg captures the deformation at xg, and ~uijk is the vector with the

concatenated displacement components of the points forming the simplex.

In order to calculate the deformation matrix Bijk, we require the deriva-

tives of the shape functions with respect to x, denoted ∇ϕq. These deriva-

tives are calculated by solving the linear systems resulting from the chain

rule

∇ξϕq =


∂ϕq
∂ξ[1]

∂ϕq
∂ξ[2]

 =


∂x[1]

∂ξ[1]

∂x[2]

∂ξ[1]

∂x[1]

∂ξ[2]

∂x[2]

∂ξ[2]



∂ϕq
∂x[1]

∂ϕq
∂x[2]

 = (∇ξp)T ∇ϕq, (3.36)

where ∇ξp is the geometric jacobian evaluated at ξ. This jacobian relates

both spaces, captures the distortion of the simplex, and is derivated from

equation (3.27),

∇ξp =
dim+1∑
q=1

xq (∇ξϕq)T , (3.37)

The gradients of the shape functions with respect to ξ inside the sum are

obtained straightforward once we have the spline first derivative P ′c. Notice
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(a) (b)

Boundary

Subfaces not covered Complete faces outside simplices

Figure 3.7: (a) When the calculation points of volumes contiguous to the boundary are in the interior of such
volumes, there will arise subfaces next to the boundary that can not be covered by any simplex. (b) Portions of
the mesh formed by a queue of aligned volumes do not allow the formation of simplices through that queue and
there will be whole faces not covered by any simplex.

that the geometric jacobian is equivalent to the distortion matrix J∆ if and

only if the homeostatic spline is Pc(z) = z.

3.5 Pair-wise polynomial approximation

Since we are not making any assumption about the volumes distribution

through the mesh, neither about the internal location of its calculation

points, then we have to deal with portions of the mesh that are no covered

by any simplex. The Figure 3.7 illustrates the two most common cases.

The first case takes place in meshes where the calculation points of vol-

umes contiguous to the boundary are in the interior of such volumes, pro-

ducing subfaces not intersected by any simplex, and the second case oc-

curs when elongated sections of the domain are discretized with a queue

of aligned volumes, where each volume has only two neighbors on oppo-

site faces and no simplex can be formed.

In such cases, the displacement field within the subface eijk is a pair-

wise polynomial approximation between the adjacent volumes, xi and xj,
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regardless the dimension

uijk(xg) = (1− Pc (zg))︸ ︷︷ ︸
ϕi

ui + Pc (zg)︸ ︷︷ ︸
ϕj

uj, (3.38)

where ϕi and ϕj are the shape functions, and zg is the normalized pro-

jection of the integration point xg into the vector which goes from xi to xj,

denoted x~ij = (xj − xi) ,

zg =
(xg − xi)

T x~ij
||x~ij||2

. (3.39)

When calculating the quadrature of equation (3.20), the pairwise strain is

given by

(Su)ijk |xg = Sϕi(ξg) ui + Sϕj(ξg) uj, (3.40)

=



∂ϕi
∂x[1]

∂ϕi
∂x[2]

∂ϕi
∂x[2]

∂ϕi
∂x[1]

∂ϕj
∂x[1]

∂ϕj
∂x[2]

∂ϕj
∂x[2]

∂ϕj
∂x[1]


|xg


ui[1]

ui[2]

uj[1]

uj[2]

 (3.41)

= Bijk|xg ~uijk, (3.42)

In the general case, the gradient is not constant along the face eij, since

its normal is not necessary aligned with x~ij, as illustrated in Figure 3.8.

This pairwise approximation must be used only when necessary be-

cause it can not capture the deformation orthogonal to x~ij.

3.6 Homeostatic spline

The homeostatic spline is a function of a single variable defined from z = 0

to z = 1, denoted Pc(z), and curved by the parameter c, which indicates
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Figure 3.8: The gradient of the pairwise approximation is not constant along the face eij , since its normal is not
necessary aligned with x~ij . The integration point is projected into x~ij to evaluate the deformation matrix.

the level of smoothness. This spline is the simplest polynomial with c

derivatives equal to zero at the endpoints z = 0 and z = 1. The polynomial

degree is given by 2c + 1, and such a polynomial requires Ng = c + 1

integration points to calculate the exact integral in equation (3.20) using

the Gauss-Legendre quadrature.

When designing this spline, we wanted to gain accuracy by building a

piece-wise bell-shaped interpolation function around the calculation points,

inspired on the infinitely smooth kernels used in other numerical tech-

niques. Therefore, we force the derivatives of the polynomial to be zero

over such points in order to homogenize the function. For that reason, we

use the term homeostatic spline when referring to this spline.

To fulfill the smoothness requisites commented before, we solved a

linear system for calculating the 2c + 2 coefficients of the polynomial. The

equations of this system were obtained by forcing the c derivatives to be

zero at the endpoints. Once we solved the coefficients for the first twenty

polynomials, from c = 0 to c = 19, we found out that the first half of such

coefficients are null, and the entire polynomial can be calculated directly

as

Pc(z) =
1

bc

1+c∑
k=1

(−1)k bk z(k+c), (3.43)
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Smoothness Homeostatic spline

c = 0 P0(z) = z

c = 1 P1(z) = 3z2 − 2z3

c = 2 P2(z) = 10z3 − 15z4 + 6z5

c = 3 P3(z) = 35z4 − 84z5 + 70z6 − 20z7

Table 3.1: Coefficients for the first few levels of smoothness of homeostatic spline

where bk is the kth not null coefficient

bk =
1

k + c

(
Ck∏
l=1

(1 + c)

l
− 1

)
, (3.44)

Ck is the number of factors needed to calculate bk

Ck = (c/2)−
∣∣1 + (c/2)− k

∣∣, (3.45)

and bc is accumulation of the coefficients for normalizing the spline

bc =
1+c∑
k=1

(−1)kbk, (3.46)

The first derivative is simply calculated as

P ′c(z) =
1

bc

1+c∑
k=1

(−1)k bk (k + c) z(k+c−1) (3.47)

Table 3.1 shows the polynomials resulting from low values of c and Figure

3.9 depicts (a) the evolution of the spline as we increase the smoothness

parameter from c = 0 to c = 6, and (b) the evolution of it first derivative.

Smoother splines produces higher order polynomials which increases the

accuracy of the stress field approximation. This feature is specially impor-

tant when solving non-linear problems sensibles to the stress field.
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Figure 3.9: (a) The evolution of the homeostatic spline from c = 0 to c = 6 illustrates the smoothness require-
ments at the endpoints of each spline and its (b) first derivatives.

Since the derivatives of the homeostatic spline (3.43) are zero at the

endpoints of the interval [0, 1], the inverse function is not defined in that

points. However, we estimate a pseudo-inverse within this interval, Qc ≈
P−1
c , by finding the coefficients of a polynomial of the same degree, 2c+ 1,

such that the endpoints coincide with the spline and the first derivative at

the midpoint is equivalent to the inverse of the spline first derivative, that is

Qc(0) = Pc(0) = 0, Qc(1) = Pc(1) = 1, and Q′c(0.5) =
1

P ′c(0.5)
(3.48)

The higher derivatives in the midpoint are forced to be zero. Once we

calculated the coefficients for the first twenty polynomials, from c = 0 to

c = 19, we found out that the pseudo-inverse can be approximated directly

from the following formulae

Q(z) = a1 z + (a1 − 1)(2c+ 1)
2c∑
k=1

(−1)k ak z
(k+1) (3.49)

where a1 is the coefficient for z, and ak is the factor that distinguish higher

order coefficients. Such terms are calculated as

a1 =

(
c

2
√

2
+ 1

)2

, and ak = 2(k−1)

k−1∏
l=1

(
2c− l
2 + l

)
, (3.50)
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Figure 3.10: Curves of the pseudo-inverseQc for the first seven levels of smoothness. The slope at the midpoint
exposes the null higher derivatives requirement when increasing the polynomial order.

respectively. The Figure 3.10 exhibits the curves for the first seven levels

of smoothness. The null higher derivatives requirement is noticeable at

the midpoint.

The Figure 3.11 shows the shape functions for the 2D case. The top

displays the last node function and the bottom the first node function, the

function of the second node is equivalent to that of the first one. The

columns separate the first three levels of smoothness. Top and bottom

functions coincides at the edges in order to create a continuous field, but

only the bottom functions decay uniformly from the node to the opposite

edge. The shape functions with c = 0 are the only case where all the

shape functions are indistinguishable, these are planes.

The Figure 3.12 shows the magnitude of the gradient with respect to

the normalized space. With the same tabular configuration of Figure 3.11,

the columns separate the first three levels of smoothness, the top displays

the last node gradient and the bottom the first node gradient, the gradient

of the second node is equivalent to that of the first one. Only the gradi-

ent magnitude at the bottom has a uniform variation from the node to the

opposite face, and the value of the node does not contribute to the value
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Figure 3.11: For the bidimensional case, the top displays the last node function and the bottom the first node
function, the function of the second node is equivalent to that of the first one. The columns separate the first
three levels of smoothness.

of such a face. On the contrary, in the top can be observed that the value

of the node contributes to the gradient at the opposite face, which means

that using c > 0 the continuity on the stress field is only guaranteed at the

calculation points, but not in the simplices edges.
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Figure 3.12: For the bidimensional case, the top displays the last node gradient magnitudes and the bottom the
first node gradient magnitudes, the gradient magnitudes of the second node is equivalent to that of the first one.
The columns separate the first three levels of smoothness.

3.7 Assembling volume’s equation

By using the simplex-wise (3.35) or the pair-wise (3.42) approximation, the

strain face integral (3.19) is reformulated as

Hij =

Nij∑
k=1

Ng∑
g=1

wg Bijk|xg ~uijk, (3.51)

then, the volume equilibrium equation (3.16) is

Ni∑
j=1

TijDij

Nij∑
k=1

Ng∑
g=1

wg Bijk|xg ~uijk = 0, (3.52)
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reordering the terms we obtain
Ni∑
j=1

Nij∑
k=1

Ng∑
g=1

wg Kijk|xg ~uijk = 0, (3.53)

where the matrix

Kijk|xg = TijDijBijk|xg , (3.54)

is the stiffness contribution at the integration point xg, within the subface

eijk when integrating the ith volume. Observe that the stiffness matrix Kijk

is rectangular and the resulting global stiffness matrix is asymmetric.

3.8 Boundary conditions

The Neumann boundary conditions are imposed over the volume faces eij
intersecting the boundary, by replacing the corresponding term in the sum

of equation (3.14) with the integral of the function provided in (2.37a),∫
eij

TDSu dS =

∫
eij

bN(x) dS (3.55)

The Dirichlet conditions are imposed over the volumes calculation points

by fixing the displacement as it is evaluated in the function given in (2.37b),

ui = uD(xi), (3.56)

Since the Dirichlet conditions are imposed directly on the calculation points,

these points must be located along the face eij which intersects the bound-

ary with the condition ΓD.

3.9 Special cases

By making some considerations, we identify two special cases where the

calculations can be simplified, in order to increase the performance of the
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Figure 3.13: (a) The initial mesh is equivalent to the Voronoi diagram and the Voronoi centres correspond to the
calculation points xi. (b) The initial mesh is generated from a FEM-like triangular mesh. The calculation points
xi are defined to be the nodes of the triangular mesh, and the volume faces are created by joining the centroids
of the triangles with the midpoint of the segments.

total computation, at the expense of losing control over the volumes shape.

These cases are 1) the Voronoi mesh assumption and 2) the FV-FEM

correlation.

In the first case, we assume that the initial mesh is equivalent to the

Voronoi diagram and that the Voronoi centres correspond to the calcula-

tion points xi. Hence, the subdivision of the neighborhood Bi is already

given by the Delaunay triangulation which is dual to the Voronoi mesh, as

illustrated in the Figure 3.13.a. Moreover, the integrals of subfaces eijk us-

ing pair-wise approximations can be exactly integrated with the midpoint

rule, since the faces are orthogonal to the vector joining the calculation

points x~ij, and the derivatives along the subface are constants.

In the second case, the initial mesh is generated from a FEM-like tri-

angular mesh and the approximations are assumed to be linear. In such

a case, the calculation points xi are defined to be the nodes of the tri-

angular mesh, and the volume faces are created by joining the centroids

of the triangles with the midpoint of the segments, as presented in Fig-
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ure 3.13.b. This particular version is equivalent to the cell-centred finite

volume scheme introduced by Oñate et al [7], who proved that the global

linear system produced by this FV scheme is identical to that produced by

FEM if the same mesh is used.
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Chapter 4

Second equation of motion

In this chapter we will focus on the numerical treatment of the second

equation of motion (2.36b), this equation describes the damage mechan-

ics within the physical system by considering the potential energy pro-

duced by tensile stress.

As discussed in the mathematical formulation, the damage field is a

smooth approximation of the fracture surface, a benefit of this approach

is that fracture morphology is completely defined by the solution of this

equation and we do not have to track the crack propagation with auxiliary

checking procedures neither to check for new crack nucleations. However,

it is important to be aware about the effects over the stress field produced

by the scale length parameter h which controls the smoothness of damage

field solution. We observe that a length parameter proportional to the aver-

age size of control volumes, denoted ∆x, produces accurate results, these

mesh size is taken as

∆x =

(
1

N

N∑
i=1

Vi

) 1
dim

(4.1)

Figure 4.1 illustrates the graphical meaning of scale length parameter .

For assembling the system of equations We will follow a similar path to
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Figure 4.1: a) Damage field above control volumes shows how the crack arises along volumes boundaries. b)
Scale length parameter h controls the smoothness of the damage field.

that used in the first equation of motion by using the same partition Ph and

interpolators, simple-wise and pair-wise approximations also apply for the

damage field.

4.1 Discretization

We start by integrating the strong form equation of motion (2.36b) over the

control volumes of the partition Ph,∫
Vi

(
1 +

2h

G H
)
d dV −

∫
Vi

h2∇2d dV =

∫
Vi

2h

G H dV, (4.2)

using the divergence theorem on the second integral we get∫
Vi

(
1 +

2h

G H
)
d dV − h2

∫
∂Vi

∇d · n dS =

∫
Vi

2h

G H dV (4.3)

Since G is a material property, we assume that it is constant along the

control volume, and dividing the first integral in two terms we obtain∫
Vi

d dV +
2h

G

∫
Vi

Hd dV − h2

∫
∂Vi

∇d · n dS =
2h

G

∫
Vi

H dV (4.4)
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Figure 4.2: The control volume Vi is partitioned into pyramids Vijk, which turns to be triangles in 2D. Pyramids
bases correspond to the subfaces eijk resulting from the intersection with the local Delaunay triangulation, and
all of them share the calculation point xi as its apex.

In order to solve volume integrals involving the strain history field, we use

the following partition of the control volume

Vi =

Ni⋃
j=1

Nij⋃
k=1

Vijk, with no subvolume intersections, (4.5)

where Vijk are the pyramids (triangles in 2D) which base corresponds to

the subfaces eijk and its apex is the calculation point xi as illustrated in

figure 4.2.

The surface integral is solved along subfaces eijk defined in (3.18), and

the remaining volume integrals are solved using partition (4.5),

∫
Vi

d dV +

Ni∑
j=1

Nij∑
k=1

(
2h

G

∫
Vijk

Hd dV − h2

∫
eijk

∇d · n dS

)

=

Ni∑
j=1

Nij∑
k=1

2h

G

∫
Vijk

H dV (4.6)
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The damage field is estimated using the same shape functions, (3.22a)

and (3.22b), that we use for the displacement field,

dijk|xg =
dim+1∑
q=1

ϕq
(
ξg
)
dq,

=
(
~ϕ|ξg

)T
~dijk,

(4.7)

(4.8)

where ξg is the point corresponding to xg in the normalized space, ~ϕ|ξg is

the vector containing the shape functions evaluated at ξg, and ~dijk is the

vector containing the estimation of the damage field at the nodes forming

the simplex. The gradient of the damage field is given by

∇dijk|xg =
dim+1∑
q=1

∇ϕq
(
ξg
)
dq, (4.9)

where ∇ϕq is calculated from the chain rule in (3.36). Now the equation is

fully discretized, the next step is to solve the integrals.

4.2 Assembling system of equations

The first integral in equation (4.6) is approximated using the midpoint rule,∫
Vi

d dV = Vi di (4.10)

where di is the damage estimated at calculation point xi. Due to the simple

nature of polygonal subvolumes Vijk, we can always reduce them to sim-

plices in order to use the Gauss-Legendre quadrature to solve the volume
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integrals, in 2D is straightforward,∫
Vijk

Hd dV =

Np∑
p=1

wp
(
Hijk|xp

) (
dijk|xp

)
,

=

Np∑
p=1

wp
(
Hijk|xp

) (
~ϕ|ξp

)T
~dijk,

∫
Vijk

H dV =

Np∑
p=1

wpHijk|xp ,

(4.11)

(4.12)

(4.13)

where Np is the number of points in the quadrature, and Hijk|xp is the

strain history field evaluated with the strain information of the simplex cor-

responding to subface eijk. Last but not least, we solve the surface inte-

gral that unfolds the damage gradient defined in (4.9), using again Gauss-

Legendre quadrature∫
eijk

∇d · n dS =

Ng∑
g=1

wg nijk · ∇d|xg ,

=

Ng∑
g=1

wg nijk ·

(
dim+1∑
q=1

∇ϕq
(
ξg
)
dq

)
,

=

Ng∑
g=1

wg
[
n[1] n[2]

]
ijk


∂ϕ1

∂x[1]

∂ϕ2

∂x[1]

∂ϕ3

∂x[1]

∂ϕ1

∂x[2]

∂ϕ2

∂x[2]

∂ϕ3

∂x[2]


|xg︸ ︷︷ ︸

Zijk|xg


d1

d2

d3

 ,

=

Ng∑
g=1

wg (nijk)
T Zijk|xg ~dijk

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

where Zijk|xg is the matrix containing the derivatives of the shape functions

evaluated at xg. For simplicity, the matrix notation in previous equation
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shows only values for 2D case.

Substituting, equations (4.10), (4.12), (4.13) and (4.17) into (4.6) we

get

Vi di +

Ni∑
j=1

Nij∑
k=1

(
2h

G

Np∑
p=1

wp
(
Hijk|xp

) (
~ϕ|ξp

)T
− h2

Ng∑
g=1

wg (nijk)
T Zijk|xg

)
~dijk

=

Ni∑
j=1

Nij∑
k=1

2h

G

Np∑
p=1

wp Hijk|xp

(4.19)

The damage of the jth face produced by excesive loads is captured by

vector

~Dijk =

(
2h

G

Np∑
p=1

wp
(
Hijk|xp

)
~ϕ|ξp − h

2

Ng∑
g=1

wg
(
Zijk|xg

)T
nijk

)
, (4.20)

on the other hand, the potential energy to create new crack surfaces is

captured by

Wi =
2h

G

Ni∑
j=1

Nij∑
k=1

Np∑
p=1

wp Hijk|xp (4.21)

Now we can rewrite the damage equation (4.19) for the ith control volume

as follows

Vi di +

Ni∑
j=1

Nij∑
k=1

(
~Dijk

)T
~dijk = Wi (4.22)

Since damage is not a physical quantity, there is no damage flow be-

tween the system and the exterior, for that reason all the Neumann con-

ditions are null, and Dirichlet conditions can be numerically set, but in our

formulation these are defined in the initial strain history field H.
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Chapter 5

Time discretization

In this chapter we will remove the assumption done in equation 3.5 about

null acceleration, ü = 0, and we will discuss in detail the discretization of

time derivatives.

A common approach to approximate these derivatives in dynamic stress

analysis is a staggered scheme by means of Finite Differences (FD), such

as in [11], [34] and [52]. The simplicity of FD makes easy the incorporation

of spatial non-linear phenomena, for instance fracture and damage, never-

theless FD does not consider the stress state within its approximation and

we are forced to use tiny time steps to diminish spurious stress waves that

produce undesired artifical internal forces.

In this work we build a customized numerical scheme considering the

time variation of internal forces in order to get an approximation capable

of performing bigger and more accurate time steps.
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5.1 Time variation

In order to analyze the dynamic component of elasticity equation (2.36a)

we define the stress state of control volume i as a function of time,

Si(t) = ∇ · σi, (5.1)

with the intention of considering internal forces in the approximation,

Si(t) = ρüi (5.2)

Equation (5.2) is an ordinary differential equation that can be solved an-

alytically for a time step t ∈ [0,∆t] with the following Dirichlet conditions

ui(0) = u0
i ,

ui(∆t) = ui,

(5.3a)

(5.3b)

We assume that temporal variation of the internal forces is given by

Si(t) =

(
1− P

(
t

∆t

))
S0
i + P

(
t

∆t

)
Si, t ∈ [0,∆t], (5.4)

where S0
i is the stress state calculated at t = 0, Si is the stress state which

will be estimated at time t = ∆t, and P(·) is the shape function modelling

time variation between concecutive stress states. This shape function has

only two constraints P(0) = 0 and P(1) = 1, for that reason we use ∆t as

a normalizer in equation (5.4). In the discussion of this chapter we utilize

“stress state” and “internal forces” as synonyms to refer the same term in

equation (5.1).

Figure 5.1 illustrates the variation of the stress state in terms of the

shape function P that is used as interpolator between the value at two

contiguous time steps.
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Figure 5.1: The time variation of the stress state is defined by the shape function P that interpolates the stress
states of two contiguous time steps. During this work we found that continuous functions like the shown here
produces more accurate approximations in the stress field than the numerical schemes that does not consider
this variation.
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5.2 Analytical solution

Using the asumption in (5.4), we get the analytical solution of the equation

(5.2) for the interval t ∈ [0,∆t] by means of the Laplace transform (see

appendix A for details),

ui(t) = u0
i + t u̇0

i +
1

2ρ
t2 S0

i +
1

ρ
CP (t)

(
Si − S0

i

)
, (5.5)

where u̇0
i is the velocity at time t = 0, and CP(t) is the convolution between

the spline P(t/∆t) and the function t, as defined in appendix A.

By setting the second boundary condition, ui(∆t) = ui, into the analyt-

ical solution (5.5), we can find the velocity required to fulfill both Dirichlet

conditions

u̇0
i =

(
ui − u0

i

∆t

)
− 1

2ρ
∆t S0

i −
1

ρ ∆t
C∆t
P
(
Si − S0

i

)
, (5.6)

where C∆t
P is the convolution evaluated at ∆t. Thus, we replace equation

(5.6) into (5.5) to get the analytical solution in terms of the known Dirichlet

conditions

ui(t) = u0
i + t

((
ui − u0

i

∆t

)
− 1

2ρ
∆t S0

i −
1

ρ ∆t
C∆t
P
(
Si − S0

i

))
+

t2
1

2ρ
S0
i + CP (t)

1

ρ

(
Si − S0

i

)
, (5.7)

now we can obtain the analytical time derivative (velocity),

u̇i(t) =

(
ui − u0

i

∆t

)
− 1

2ρ
∆t S0

i −
1

ρ ∆t
C∆t
P
(
Si − S0

i

)
+

t
1

ρ
S0
i +

1

ρ
ĊP (t)

(
Si − S0

i

)
(5.8)

where ĊP is the time derivative of CP . Since the analytical solution (5.5)

requires the initial conditions (displacement and velocity), we calculate
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the initial velocity by using equation (5.8) for a previous time interval t ∈
[−∆h, 0],

u̇0
i =

(
u0
i − u00

i

∆h

)
− ∆h

ρ

(
1

2
S0
i − S00

i

)
+

1

ρ

(
Ċ∆h
P −

1

∆h
C∆h
P

)(
S0
i − S00

i

)
,

(5.9)

where u00
i = ui(−∆h) and S00

i = Si(−∆h). Finally, we replace equation

(5.9) into (5.5) in order to get an analytical solution for t ∈ [0,∆t] as a

function of two history system states,

ui(t) = u0
i + t

(
u0
i − u00

i

∆h

)
− t ∆h

ρ

(
1

2
S0
i − S00

i

)
+

t
1

ρ

(
Ċ∆h
P −

1

∆h
C∆h
P

)(
S0
i − S00

i

)
+

t2
1

2ρ
S0
i + CP (t)

1

ρ

(
Si − S0

i

)
, (5.10)

evaluating such an equation at t = ∆t, denoted ui = ui(∆t), and re-

arranging the terms we get a numerical approximation dependent of the

convolution of choosen spline,

ρ

(
ui −

(
1 +

∆t

∆h

)
u0
i +

∆t

∆h
u00
i

)
= C∆t

P Si +(
1

2
(∆t2 −∆t∆h) + ∆t

(
Ċ∆h
P −

1

∆h
C∆h
P

)
− C∆t

P

)
S0
i +(

∆t∆h−∆t

(
Ċ∆h
P −

1

∆h
C∆h
P

))
S00
i , (5.11)

observe that even in the simplest case this approximation is more accurate

than simple central finite differences applied directly on equation (5.2), be-

cause it takes into account variable time steps and the time variation of the

system internal forces.
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5.3 Numerical scheme

The analytical solution (5.11) of the ordinary differential equation (5.2) can

be used to generate a family of numerical approximations, these approxi-

mations has a similar structure but distinct coefficients that depend on the

shape function P used for time variation of stress state. In this work we ex-

plore distinct families of functions in order to get a continuous stress state

in contiguous time steps.

5.3.1 Harmonic oscillator sensibility

In order to select a good shape function for stress time variation we used

the harmonic oscillator to measure the sensibility of the numerical scheme

to distinct shape functions. The harmonic oscilator differential equation is

−ku = mü, (5.12)

where k is the stiffness of the system, m is the mass of the body and u

is the one-dimensional displacement. The analytical solution of equation

(5.12) is

u(t) = A cos(ωt+ γ), (5.13)

where A is the oscillation amplitude, ω the oscillation frequency and γ the

phase, such constants are calculated in terms of material properties

A =

√
u0 +

m

k
u̇0,

ω =

√
k

m

γ = −arctan
(√

m

k

u̇0

uo

)
,

(5.14)

(5.15)

(5.16)
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with u0 and u̇0 as initial displacement and initial velocity respectively. In our

numerical tests, the one dimensional stress state, denoted s, is assumed

to be

s(t) = −k u(t) (5.17)

For simplicity, in this sensibility analysis we used a constant time step

∆h = ∆t.

Central Finite Differences

By using a central finite differences scheme, equation (5.12) can be rewrit-

ten as

−ku =
m

∆t2
(
u− 2u0 + u00

)
, (5.18)

and the solution for next time step is calculated from

u =
m

k∆t2
(
2u0 − u00

) (
1 +

m

k∆t2

)−1

=

(
k∆t2

m
+ 1

)−1 (
2u0 − u00

)
(5.19)

(5.20)

To measure the relative error with respect to analytical solution, we used

(5.20) to compute the solution in the interval t ∈ [0, 7]. To make evident

the numerical drawbacks of FD we utilized a big enough ∆t = 0.1. In Fig-

ure 5.2 we show the experiment results in four plots, the first one shows

the displacement against time with a solid line for analytical solution and

a dashed line for the numerical one, in this plot is clear that the system is

loosing energy through time, no matter how small is ∆t the system will al-

ways loose energy proportionally to the time step. The second plot shows

the phase space (solid line is analytical solution), which is velocity against

displacement, in this plot we see the closing spiral when displacement and

velocity decreases. The third plot shows the total energy in the system to
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emphasize that it is loosing energy, while total energy of analytical solution

(solid line) remains constant. The fourth plot shows the cumulative relative

error for distinct ∆t, such an error remains almost consant for ∆t > 0.06

since the numerical system looses all its energy in the first few time steps.

In this plot we compute the comulative error as

Error(T ) =

 T∫
0

(Un − Ua)2

Ua
dt

1/2

, (5.21)

where T indicates the simulation duration, Ua(t) is the analytical total en-

ergy and Un(t) is the numerical total energy.

Linear spline

If we choose a linear shape function, P(t) = t, in order to set a constant

variation of the internal forces in the interval [0,∆t], the convolution and its

time derivative are given by

CP(t) =
t3

6∆t
and ĊP(t) =

t2

2∆t
, (5.22)

respectively, and the resulting numerical scheme (5.11) is

1

6

(
∆t

∆h

)
Si +

(
1

3

(
∆t

∆h
+

∆h

∆t

)
− 1

2

)
S0
i +

(
1− 1

3

∆h

∆t

)
S00
i =

ρ

∆t∆h

(
ui −

(
1 +

∆t

∆h

)
u0
i +

∆t

∆h
u00
i

)
, (5.23)

by applying the assumption of constant time steps, we reduce previous

equation to

1

6
Si +

1

6
S0
i +

4

6
S00
i =

ρ

∆t2
(
ui − 2u0

i + u00
i

)
, (5.24)

then we use this numerical approximation to solve the harmonic oscillator

and we get

1

6
(−k u) +

1

6
(−k u0) +

4

6
(−k u00) =

m

∆t2
(
u− 2u0 + u00

)
, (5.25)
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Figure 5.2: Dashed lines show numerical results, while solid lines are for analytical solution. Top-left plot is the
direct solution, the curve of displacement vs time. Top-right plot is the phase space, velocity vs displacement,
the closing spiral tell us that numerical system is loosing energy. Bottom-left plot is the total energy in the
system, the analytical solution is constant and the numerical energy decreases to zero. Bottom-right plot is the
cumulative relative error for distinct values of ∆t.
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and the numerical solution is given by

u =
(
2u0 − u00

)(
1 +

k∆t2

6m

)−1

−
(
u0 + 4 u00

)(
1 +

6m

k∆t2

)−1

, (5.26)

for displacement and

u̇ =

(
u− u0

∆t

)
− k∆t

6m

(
2u+ u0

)
, (5.27)

for velocity.

In our experiments we used the same ∆t = 0.1 than with Finite Differ-

ences. Figure 5.3 shows the experimental results in four plots, analytical

solution is the solid line and numerical results are depicted with a dashed

line. In the first plot we show the direct numerical solution, displacement

vs time, and we see how the system gains energy through time, reducing

time step alleviates the problem but it does not solve it, since the artificial

energy increasing is proportional to the time step. The second plot shows

the phase space, which is velocity against displacement, here we observe

how the artificial generated energy creates an opening spiral producing

greater waves as the simulation moves in time. The third plot reflects how

the total energy in the system grows with respect to time. The fourth plot

shows the cumulative relative error (5.21) in the interval t ∈ [0, 7] with re-

spect to ∆t. From here we noticed that for ∆t < 0.05 this scheme is slightly

better than Finite Differences, and for ∆t > 0.05 both schemes are useless

in long term simulations, at least that we use a numerical mechanism to

rebalance the energy (dampers for instance).

Numerical equilibrium

Using the general scheme in (5.11) and considering constant time steps,

∆h = ∆t, we define a numerical approximation for harmonic oscillator in
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Figure 5.3: Dashed lines show numerical results, while solid lines are for analytical solution. Top-left plot is the
direct solution, the curve of displacement vs time. Top-right plot is the phase space, velocity vs displacement,
the opening spiral indicates that artifical energy is being generated. Bottom-left plot is the total energy in the
system, the analytical solution is constant and the numerical energy increases as simulation moves on time.
Bottom-right plot is the cumulative relative error for distinct values of ∆t.
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terms of the convolution and its derivative

−m
k

(
u− 2u0 + u00

)
= C∆t

P u+
(

∆tĊ∆t
P − 2 C∆t

P

)
u0 +

(
∆t2 −∆tĊ∆t

P + C∆t
P

)
u00,

(5.28)
then the solution for displacement is

u =

(
2u0 − u00

k
m
C∆t
P + 1

)
+

(
2 C∆t
P −∆tĊ∆t

P
C∆t
P + m

k

)
u0 +

(
∆tĊ∆t

P − C∆t
P −∆t2

C∆t
P + m

k

)
u00

(5.29)

and the velocity is given by

u̇ =

(
u− u0

∆t

)
−
(
k∆t

2m

)
u0 +

k

m

(
C∆t
P
∆t
− Ċ∆t

P

) (
u− u0

)
(5.30)

In equation (5.29), observe that by choosing P = 2 , we get a convolution

of C(t) = t2 and a convolution derivative of Ċ(t) = 2t, which produces the

very same numerical scheme that finite differences in (5.20).

Notice that no matter which shape function we choose, the convolution

evaluated at ∆t always have the form of C∆t
P = β∆t2 and its derivative

the form of ˙C∆t
P = α∆t, where α and β are variations of ∆t and ∆t2 re-

spectively. From this fact we will use α as an optimization variable for

minimizing the error, and we set β = 1 for simplificate the formula (since β

is not involved in the minimization). Now we simplify equation (5.29) as

u =

(
2u0 − u00

k∆t2

m
+ 1

)
+

(
2− α

1 + m
k∆t2

)(
u0 − u00

)
(5.31)

With previous equation and using the same ∆t = 0.1 that we use in previ-

ous numerical tests, we calculate α as

α = arg min
α
{Error(7, α)} (5.32)
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Figure 5.4: The plot shows the cumulative relative error of equation (5.21) as a function of the optimization
variable α. It is clear that the minimum is in α = 1. The error curve is asymptotic to zero in the left and
converges to some constant to the right.

where Error() is the function defined in (5.21). Figure 5.4 shows the Error

as a function of α, in this plot is evident that the optimal value is α = 1.

Since α is the proportion of ∆t in convolution derivative, ˙C∆t
P = α∆t, from

this experiment we found out that

if Ċ∆t
P < ∆t the scheme increases energy

if Ċ∆t
P = ∆t the energy is stable

if Ċ∆t
P > ∆t the scheme decreases energy

(5.33)

(5.34)

(5.35)

Examples of energy state of conditions (5.33) and (5.35) can be observed

in Figures 5.2 and 5.3 respectively.

In our experiments we notice that the variation of β has a little impact
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on the results, but values of β ≤ 1 produce smaller oscillations of total

energy than β > 1. For that reason, we constrain our search of shape

functions P to those functions that produce Ċ∆t
P = ∆t and C∆t

P < ∆t2.

Figure 5.5 shows experimental results with same ∆t = 0.1 of the nu-

merical scheme resulting from taking α = 1 and β = 2/5 (value of β = 2/5

is arbitrary chosen only for plotting purposes), which implies that C∆t
P =

∆t2(2/5) and Ċ∆t
P = ∆t. The results are displayed in the same format that

previous experiments of harmonic oscillator, the analytical solution is the

solid line, the numerical solution is the dashed line, and we have 4 plots

to show the curves of displacement vs time, the phase space (velocity vs

displacement), the total energy and the error when moving ∆t. In this plots

we can appreciate the stability of the system, which have little oscillations

of the total energy.

5.3.2 Trigonometric shape function

In order to build our numerical time discretization, we propose this trigono-

metric shape function shown in Figure 5.1

P(t) =
1

2
(1− cos(π t)) (5.36)

The appendix B discuss another proposals based on polynomials that pro-

duces accurate results, nevertheless this trigonometric function introduces

less artificial energy that impact results in long term simulations.

The convolution corresponding to (5.36) is

CP(t) =
∆t2

2π2

(
cos

(
π t

∆t

)
− 1

)
+

1

2
t2, (5.37)

and its derivative is

ĊP(t) = t− ∆t

2π
sin

(
π t

∆t

)
, (5.38)
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Figure 5.5: Experimental results of the numerical scheme resulting of setting Ċ∆t
P = ∆t. Dashed lines show

numerical results and solid lines are for analytical solution. Top-left plot is the direct solution, the curve of
displacement vs time. Top-right plot is the phase space, velocity vs displacement. Bottom-left plot is the total
energy in the system, the analytical solution is constant and the numerical energy has little oscillations around
such constant. Bottom-right plot is the cumulative relative error for distinct values of ∆t.
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although when we evaluate at CP(∆t) and ĊP(∆t) we obtain

C∆t
P =

(
π2 − 2

2 π2

)
∆t2 and Ċ∆t

P = ∆t (5.39)

as expected by previous discussion in this section. Notice that plots in

Figure 5.5 were produced with β = 2/5, and for this shape function we

have

β =
π2 − 2

2π2
≈ 2

5
(5.40)

that produces almost identical plots.

5.3.3 Dynamic stress analysis

Considering discretized stress equation (3.53) into this numerical scheme,

we have that

Si =

Ni∑
j=1

Nij∑
k=1

Ng∑
g=1

wg Kijk|xg ~uijk, (5.41)

replacing (5.36) into such stress equation we get our final numerical sys-

tem for the first equation of motion (2.36a)

ui −
(
π2

2
− 1

)
∆t2

ρ π2

Ni∑
j=1

Nij∑
k=1

Ng∑
g=1

wg Kijk|xg ~uijk =

(
1 +

∆t

∆h

)
u0
i −

∆t

∆h
u00
i +

∆t∆h

ρ π2

((
π2 − 2

2

)
S00
i +

(
∆t

∆h
+ 1

)
S0
i

)
, (5.42)

If we choose a constant time step, ∆h = ∆t, we can simplify the equation

to

ui −
(
π2 − 2

) ∆t2

2ρ π2

Ni∑
j=1

Nij∑
k=1

Ng∑
g=1

wg Kijk|xg ~uijk =

2 u0
i − u00

i +
∆t2

2ρ π2

((
π2 − 2

)
S00
i + 4 S0

i

)
, (5.43)
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The results shown in this work use the trigonometric time variation with

fixed length time steps, although our software supports automatic (vari-

able) time steps.

5.3.4 Time step calculation

Numerically speaking, the time step ∆t is bounded by the maximum prop-

agation speed of stress waves, denoted vσ ∈ R, which means that ∆t

should be small enough to capture the stress state. Using the solution of

the one dimensional wave equation, vσ can be estimated as

v2
σ =

E

ρ
, (5.44)

where E and ρ are material properties. This equation implies that in order

to reproduce stress waves numerically, the following relation should be

satisfied

∆t = Co ∆x

√
ρ

E
(5.45)

where Co is the Courant number and ∆x is the average area of control

volumes. In this work we use Courant numbers Co ∈ (0.05, 0.5) proposed

by [17] for stress analysis. At the beginning of simulation we use Co ≈
0.3, but when damage field starts producing failures (interfering with stress

analysis), we use a smaller Courant number Co ≈ 0.05 to produce more

accurate results and better conditioned sytems of equations.
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Chapter 6

Coupled system

In this chapter we will discuss in detail how the discretized versions of

both equations of motion, (5.42) and (4.22), are coupled in a segregated

approach. We will take first equation of motion as a cornerstone of the

numerical scheme, since displacements and internal forces are first class

fields in the physical system, while the damage field is an auxiliary ab-

straction to approximate fracture surface.

6.1 Residual minimization

Due to the fact that a single time step can release enough energy to cre-

ate wide crack surfaces, the numerical structure can become unstable. In

order to make small changes in stress field to produce numerically man-

ageable systems we dose internal forces in equation (5.42) into Nk finite

increments,

fk =
1

Nk

((
1 +

∆t

∆h

)
u0
i −

∆t

∆h
u00
i + kπ

∆h

∆t
S00
i +

∆t2

ρ π2

(
∆h

∆t
+ 1

)
S0
i

)
(6.1)

70



where coefficient kπ is given by

kπ =

(
π2

2
− 1

)
∆t2

ρ π2
, (6.2)

thus displacement and damage fields at time t+∆t are calculated by com-

puting Nk finite increments. Each finite increment k ∈ [1, Nk] is solved by

minimizing residual

Rki = uki − kπ
Ni∑
j=1

Nij∑
k=1

Ng∑
g=1

wg Kijk|xg ~u
k
ijk − k fk, (6.3)

The displacement corresponding to finite increment k, referred as uki , is

the accumulation of n displacement increments in residual minimization,

denoted ∆u[n]. Residual is minimized using Newton-Raphson iteration

[41], starting with

R
k[0]
i = −k fk (6.4)

Such numerical scheme is composed by the linear systems in equations

(5.42) and (4.22),

nth iteration



∆u
[n]
i − kπ

Ni∑
j=1

Nij∑
k=1

Ng∑
g=1

wg K
[n]
ijk|xg ∆~u

[n]
ijk = R

k[n−1]
i ,

uki =
n∑
r=1

∆u
[r]
i

Vi d
[n]
i +

Ni∑
j=1

Nij∑
k=1

(
~D

[n]
ijk

)T
~d

[n]

ijk = W
[n]
i

(6.5)

(6.6)

(6.7)

where superindex ()[n] indicates the iteration within the residual minimiza-

tion for solving finite increment k. Finally, minimization finish when residual

converges. We have two criteria for detecting convergence, the first one

consist in checking if residual norm is small enough

||Rk|| < ε, with ε << 1, (6.8)
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and the second criterion consist in checking that the derivative of the norm

of the residual with respect to the iterations is approximately zero

d||Rk||
dn

≈ 0 if convergence is reached, (6.9)

which means that solution is not changing any more in concecutive itera-

tions. In order to estimate this derivative we calculate a linear regression

of ||Rk|| (with respect to n) of the fifty previous iterations, and we take the

slope coefficient as the derivative.

6.2 Discrete Fracture

The fracture between the ith control volume and the volume adjacent to its

jth face is produced when such face satisfies∫
eij

d(x)dS =

∫
eij

dS, x ∈ eij, (6.10)

The condition is reached when the damage field is enable along all the

face, this means that we consider a fracture when the face is completely

damaged. Thus the control volumes could be separated from their adja-

cent control volumes due to this fracture mechanism, and for that reason,

the title of the thesis is the Discrete Volume Method.

The discrete volumes are integrated with the CVFA method, consider-

ing discrete faces as continuum faces completely damaged, d = 1, when

calculating the damaged strain equation (3.17). All the faces which not ap-

pear in the initial discretization are treated as discrete faces, this allows the

collision of separated bodies and the self-collision of the body boundaries.

New discrete faces arise from the fracture process.
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Chapter 7

Results

In this chapter we will discuss the following numerical experiments: plate

with a hole to compare elasticity solver against analytical solution, stress

wave in a bar to compare dynamic solver against published results, per-

fored strip under tension for fracture due to direct tension, three point bend-

ing bar test to compare our solver with lab experiments, brazilian test to

analyze fracture due to indirect tensile strain, compressive test to verify

cracking patterns against those produced with similar numerical methods,

four point notched bar test for analyzing fracture mode II, Three point bend-

ing bar with asymmetric perforations test to evaluate sensibility of crack

morphology, notched plate under shear to contrast our results with those

of other authors, dynamic shear loading, and dynamic crack branching to

demonstrate multicrack generation.

For each test we review the material properties, the geometrical de-

scription of the body, the configuration of boundary conditions, the nu-

merical parameters and other considerations. We also provide figures to

portray the specification of each experiment.

We use LU decomposition to solve both systems of equations (elasticity

and damage), the displacement field requires memory to store a vector per
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discrete volume, whereas that damage field only requres a floating point

number (double precision) per node. The discrete volumes are numbered

using a nested dissection technique [54] before assembling the systems in

order to reduce the fill-in in LU decomposition. In our experiments, initial

meshes were generated with a central Voronoi-cells procedure.

7.1 Plate with a hole

In order to test the numerical performance of the proposed method for

solving the first equation of motion, we use the well known analytical ex-

periment of an infinite plate with a circular hole in the origin (see [55]). In

such a experiment, the plate is stretched along the horizontal axis with a

uniform tension of f[1] = 10 kPa from each side, as is shown in Figure

7.1. The material is characterized by the Poisson’s ratio, ν = 0.3, and

Young modulus, E = 10 MPa. Plane stress is assumed with thickness

equivalent to the unity. The dimensions of the computational domain are

a = 0.5m and b = 2m. The analytical solution is given by the following

formulae

σ[11] = f[1]

[
1− a2

r2

(
3

2
cos(2θ) + cos(4θ)

)
+

3a4

2r4
cos(4θ)

]
, (7.1)

σ[22] = f[1]

[
−a

2

r2

(
1

2
cos(2θ)− cos(4θ)

)
− 3a4

2r4
cos(4θ)

]
, (7.2)

σ[12] = f[1]

[
−a

2

r2

(
1

2
sin(2θ) + sin(4θ)

)
+

3a4

2r4
sin(4θ)

]
, (7.3)

where the polar coordinates,

r =
√

x2
[1] + x2

[2], and θ = tan−1

(
x[2]

x[1]

)
, (7.4)

are used within the calculus. The Figure 7.2 exhibits (a) the discretization

of the computational domain into 2411 polygonal volumes used to com-

pare the numerical results (using smoothness c = 0) against the analytical
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E = 10 MPa

ν = 0.3

f[1] = 1× 104 Pa−f[1] f[1]

r

θ

x[1]

Plane stress

x[2]

a

b

(a) (b)

b

a

thickness = 1

Figure 7.1: (a) Infinite plate with a hole being stretched along the horizontal axis with a force of f[1] = 10 kPa

from each side. (b) Computational domain, a = 0.5m and b = 2m, with axysymmetrical assumptions used to
test the numerical method. The polar coordinates, r and θ, for calculating the analytical stress field.

stress field. This mesh is not equivalent to the Voronoi diagram. (b) Level

sets of σ[11] between 0 to 30 kPa, with steps of 1 kPa. (c) Level sets of

σ[22] between −10 and 6 kPa, with steps of 0.8 kPa. (d) Level sets of σ[12]

between −10 and 2 kPa, with steps of 0.6 kPa.

The Dirichlet conditions are imposed on the bottom and left side of the

computational domain as is shown in the Figure 7.2.b. Next in order, the

analytic stress of equations (7.1), (7.2) and (7.3) is imposed as Neumann

condition over the top and right side of the computational domain.

The Figure 7.3.a presents the averaged error as a function of mesh

size, denoted ∆x, as we might expect, the error is proportional to the

mesh refinement. For a mesh of 628 volumes, the Figure 7.3.b shows

the percentage of the error with respect to the error of c = 0, for different

smoothing levels, c = 0 correspond the linear interpolator. Observe that

the error of the stress field does not decreases significantly in the first three

levels of smoothness, this is because we do not increase the degrees of

freedom of the linear system (is the same mesh), although we built a better
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Analytical Numerical
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Figure 7.2: (a) Polygonal mesh used for comparison of numerical results. (b) Level sets of σ[11] between 0 to
30 kPa. (c) Level sets of σ[22] between −10 and 6 kPa. (d) Level sets of σ[12] between −10 and 2 kPa.
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Figure 7.3: (a) The averaged error decreasing as a function of mesh size, denoted ∆x. (b) Using a mesh of
628 volumes, percentage of error for different smoothing levels with respect to the error of c = 0, which is the
linear interpolator, error increases after c = 2.

field description, which can be useful when solving non-linear formulations.

The increasing error after c = 2 is produced by floating point truncation,

since c > 2 implies computing integrals for polynomials of 7th order or

higher.

7.2 Stress wave in a bar

This experiment consists in analyzing the pattern of a stress wave in a long

bar to assess performance of time discretization developed in this work.

We assume plane stress with a thickness of 1 m, and we choose a

smoothness c = 1. The material properties are those of steel, elas-

ticity modulus E = 200 GPa, Poisson’s ratio ν = 0.3 and density ρ =

7854 kg/m3. The size of the bar is 10 m long and 1 m wide. The initial

displacement and velocity at the interior of the bar are null. Figure 7.4

illustrates the geometrical distribution and numerical parameters.

The bar is fixed from right side and is pushed δ = 1 mm from left side

at time t = 0, this produces a propagation of the stress wave at speed of
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10 m

E = 200GPa

ν = 0.3

ρ = 7854 kg/m3 Plane stress

δ = 1 mm

thickness = 1

Figure 7.4: Large bar used for propagating a stress wave, with a size of 10 m long and 1 m wide. We assume
Plane stress with a thickness of 1, and properties of steel are used. The bar is fixed to right side and is pushed
δ = 1 mm from left side at the beginning.

sound through the bar, that for steel is

Sound speed in steel =

√
E

ρ
= 5.0462 km/s (7.5)

when the stress wave arrives to the fixed side, it is reflected in reverse di-

rection, at this moment perpendicular waves resulting from Poisson’s effect

start interfering with our frontal wave. Figure 7.5 shows the bubble formed

by stress wave after time t = 1.92 ms, when frontal wave is reflected, as

predicted by [17]. This bubble is the contour of Cσ = 0.95, where

Cσ =
1− exp

(
−σ[11]

)
1 + exp

(
−σ[11]

) (7.6)

is an auxiliary field used for rescaling the horizontal stress component to

filter smaller and negative stress waves.

7.3 Perfored strip under tension

This test involves a perfored strip under tension, the stress field induces

a fracture around the perforation because its tensions are greater there

than in the rest of the domain. The goal of this experiment is producing a
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t = 2.18 ms

t = 2.28 ms

t = 2.38 ms

t = 2.48 ms

t = 2.58 ms

Ph

Figure 7.5: Stress wave produced by initial imposed displacement. The top shows partition Ph of bar into
discrete volumes. Then a sequence of images from top to bottom illustrates the moment when the wave is
being reflected, the contour of the bubble is produced by Cσ = 0.95, which is an auxiliary field to rescale
horizontal component of stress tensor, this rescaling is performed to filter negative and small waves.
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pure mode I failure. The strip is a perfect square of 40 cm each side and

perforation has a radius of 1 cm. We assume plane stress with thikness =

1 m, and perform a quasi-static analysis with 100 finite increments, using a

smoothness c = 1. Taking advantage of the symmetry we analyze only the

right half of the body by imposing symmetry conditions. In the experiment,

the strip is pulled apart vertically with an equivalent displacement from top

and bottom δ = 0.1 mm. The material properties are Young modulus E =

30 GPa, Poisson’s ratio ν = 0.2 and energy release rate G = 100 J/m2.

In order to compare our results to those published by [26], we discretize

the strip in two distinct meshes with average size of ∆x = 2.5 mm (12277

volumes) and ∆x = 5 mm (3281 volumes). Figure 7.6 depicts a) the

geometrical specifications and material properties, and b) the portion used

for numerical analysis, where symmetry conditions were imposed.

The numerical experiment is performed in meshes exposed in Figure

7.7. Fracture location coincides in both meshes, such fracture corresponds

to an horizontal line in the middle of the strip. Curves shown in Figure 7.7

are similar to those published by [26]. The area under curve obtained with

mesh size ∆x = 5 mm is equal to 8.93 J , whereas that theoretical energy

released by fracture is

Energy due to crack = Crack length ×G× thickness

= 9 cm× 100 J/m2 × 1 m = 9 J (7.7)

Area under curve obtained with mesh size ∆x = 2.5 mm is almost theo-

retical value 9 J . Figure 7.8 depicts damage field for three distincts dis-

placements in both meshes, with a fracture arising next to the perforation.
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δ = 0.1 mm
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Plane stress

E = 30 GPa

ν = 0.2

G = 100 J/m2

thickness = 1 m

Figure 7.6: a) Geometry of the strip, a perfect square of 40 cm × 40 cm with a hole in the middle with radius
1 cm. Assumption of plane strain is considered. b) Due to symmetry only the right half analyzed numerically,
the figure shows the corresponding boundary conditions.
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Figure 7.7: a) Vertical reaction vs Total vertical displacement, area under the curve is close to theoretical 9 J

required to generate the crack. Solid line indicates results of mesh size ∆x = 5 mm and dashed line indicates
results of mesh ∆x = 2.5 mm. b) Right side depicts mesh size ∆x = 5 mm, and lef side shows a reflected
version of mesh size ∆x = 2.5 mm.
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δ ∆x = 5 mm ∆x = 2.5 mm

100 µm

27 µm

20 µm

Deformed x50

Figure 7.8: First column illustrates damage field and discretization for mesh ∆x = 5 mm with x50 deformation
factor, and second column shows same damage field but in discretization of mesh ∆x = 2.5 mm
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10
05

450 mm
50 Plane strain

E = 20 GPa

ν = 0.2

G = 113 J/m2

δ = 1 mm

Figure 7.9: Three point bending bar. Geometrical specification, material properties, numerical parameters and
boundary conditions.

7.4 Three point bending bar

In this example we have a bar with size of 45 cm long and 10 cm wide,

a vertical notch from center to bottom. The material has elasticity mod-

ulus E = 20 GPa, Poisson’s modulus ν = 0.2 and energy release rate

G = 113 J/m2. The bar is vertically displaced, δ = 1mm, from top to bot-

tom. Figure 7.9 depicts geometrical specification, material properties, nu-

merical parameters and boundary conditions. We assume plane strain in

a quasi-static analysis using 100 finite increments and smoothness c = 1.

The goal of this test is comparing experimental results published by [56]

with our numerical approximation. We use a domain partition of 5297 dis-

crete volumes with an average size ∆x = 2.9 mm. Figure 7.10 shows such

partition in the top, and below it depicts b) the damage field calculated and

c) the displacement with a deformation factor of x35. Figure 7.11 shows

curve of reaction (load) agains displacement, gray area corresponds to

experimental results obtained by [56] and dashed line with black dots is

related to our numerical results.
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Deformed x35

b) c)

a)

Figure 7.10: Three point bending bar. a) Partition used in numerical analysis with average size ∆x = 2.9 mm

(5297 discrete volumes). b) Damage field and c) Deformation scaled with a factor of x35.

7.5 Brazilian test

The brazilian tensile strength (BTS) test was designed to assess strength

of brittle materials [57]. This experiment consists in compressing a disk

to generate, by Poisson’s effect, indirect tensions to produce a vertical

fracture. The disk has a radius of 10 cm and is fixed to the bottom from

a plain side (circular chord) of 2 cm and is pushed from top to bottom

using another plain side in the top of 2 cm. The material has elasticity

modulus E = 21 GPa, Poisson’s ratio ν = 0.2, and energy release rate

G = 1 mJ/m2. We assume plane stress with thickness of 10 cm in a quasi-

static analysis using 100 finite increments and smoothness c = 1. Within

this experiment (see [57]), vertical stress is given by

σ[22] =
2p

π × diameter× thickness
=

p

100π
(7.8)
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Figure 7.11: Three point bending bar. Reaction (load) vs displacement, gray area corresponds to experimental
results, whereas that dashed line and black dots are related to numerical analysis.
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ν = 0.2

G = 1 mJ/m2

Plane stress
thickness = 10

Figure 7.12: Brazilian test. Geometry is described by a disk with radius and thickness of 10 cm, assuming plane
stress. Material properties and boundary conditions for quasi-static analysis are displayed.

where p is the applied load. Figure 7.12 shows geometrical specification,

material properties and boundary conditions. We analyze three distinct

discretization, first one has an average size ∆x = 4 mm (1926 discrete

volumes), the second one has ∆x = 2.8 mm (3896 discrete volumes), and

the third has ∆x = 2 mm (7553 discrete volumes). Figure 7.13 illustrates

damage field obtained for three discretizations and meshes are deformed

with a factor of x5000 (last one x1000). The result of finest mesh produces

the theoretical vertical fracture. All three numerical calculations fail close

to predicted by formula (7.8), which is at 314.16N .
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Figure 7.13
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7.6 Four point notched bar

This test is intended to produce a mode II failure and it is selected be-

cause its geometry has two initial crack tips at the end of the notches,

where stress field has its highest values. The experiment consists in bar

with size of 134 cm long and 30.6 cm wide with two vertical notches in the

middle, onte from top and one from bottom. The bar is fixed to two boxes

of 4 cm × 4 cm that work as main support, the first one is close to the

bottom-right corner, and the second is close to the top-left corner. The bar

is pushed from top to bottom by displacing δ = 0.1 mm a small box next

to the right of the centered upper notch, whereas that a second displaced

box (same δ) is pushing from bottom to top next to the left of the centered

lower-notch. The material properties are elasticity modulus E = 30GPa,

Poisson’s ratio ν = 0.2, and energy release rate G = 100J/m2. Figure

7.14 depicts geometrical specification, position of notches and supports,

material properties, and boundary conditions.

Plane strain is assumed in a quasi-static analysis using 100 finite in-

crements and smoothness c = 1. We perform two separate analysis in

distinct meshes, the first one has an average size ∆x = 12 mm (2849

discrete volumes) and the second one has ∆x = 7.5 mm (7255 discrete

volumes). Figure 7.15 illustrates damage field obtained with our numerical

approach, and its corresponding displacement deformated with a factor

x100. The differences between both discretizations can be appreciated in

this Figure. In contrast with most solutions obtained with damage models

based on Finite Element Method, we get asymmetrical crack morphology

induced by discrete volumes shape.

In Figure 7.16 we can observe vertical reaction against vertical dis-

placement for both numerical experiments, and the curve obtained by

Cervera et al [28] using a FEM damage model with triangular elements
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Figure 7.14: Four point bending bar. Geometry specification, material properties, numerical parameters and
boundary conditions.

and average size ∆x = 5 mm (5909 FEM nodes). This graph exposes

how coarse discretizations increase brittleness in material, which is an ex-

pected behaviour in formulations where continuum is dislocated toproduce

new crack surfaces. In this experiment we observe that discrete volumes

shapes interfere with damage field computation, which is a numerical ar-

tifact since our mathematical formulation assumes a continuum, however

this effect occurs in non-continuum fractures and in continuum but not ho-

mogenous materials, which are more likely to fail in regions with lower

density for example.

7.7 Three point bending bar with asymmetric

perforations

The three point bending bar with asymmetric perforations is the classi-

cal example of fracture mechanics in brittle materials, this experiment was
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Deformed x100

Deformed x100

Figure 7.15: At top is shown discretization, damage field and displacement computed with mesh size ∆x =

12 mm (2849 discrete volumes) with a deformation factor x100. At bottom we can appreciate discretization,
damage field and displacement using a mesh size ∆x = 7.5 mm (7255 discrete volumes).
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Figure 7.16: Four point bending bar test. Reaction vs displacement curves, solid line corresponds to published
results, dashed line shows results for mesh size ∆x = 8 mm, and dotted line depicts results for mesh size
∆x = 12 mm.
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proposed by [58]. This test consists in a bar with size of 20 in long and 8 in

wide, it has three perforations in left half with 0.5 in radius, these perfora-

tions are horizontally aligned and have a vertical separation of 2 in. The

bar has a vertical notch 1 in long in the bottom-left quadrant. Such a bar

is fixed from one point close to the bottom-left corner, vertical displace-

ment is forbidden in a point close to the bottom-right corner, and a vertical

displacement δ. Plane stress is assumed, thickness = 1, in a quasi-static

analysis using 100 finite increments and smoothness c = 1. The mate-

rial properties are those of PMMA, Polymethyl-methacrylate (also known

as acrylic glass or plexiglas). We choose the average Poisson’s ratio

ν = 0.375 and according to [58] Young modulus is E = 474 × 103 psi,

which corresponds to E = 3.27 GPa. For numerical experiments, material

properties must be transformed from units based on meters to units based

on inches, or when defining the geometry and boundary conditions inches

must be transformed to meters. Figure 7.17 depicts geometrical specifica-

tions, material properties and boundary conditions. Figure 7.18 illustrates

damage field obtained. Figure 7.19 shows experimental results obtained

by Bittencourt et al [58]. We can observe that crack trajectory is similar to

that obtained numerically in this calculation.

7.8 Notched plate under shear

This test is intended to demonstrate rupture by shear displacement, it con-

sists in plate with an horizontal notch from left side to the center. The plate

is fixed from bottom and is displaced δ = 1.5 × 10−2 mm from top to the

right. The material properties are Young modulus E = 210 GPa, Poisson’s

ratio ν = 0.3 and energy release rate G = 2.7kJ/m2. Numerical analysis

is performed assuming plane strain and using 100 finite increments and

smoothness c = 1. Figure 7.20 illustrates a) the geometrical specification,
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Figure 7.17: Three point bending bar with asymmetric perforations. Geometrical specification, material proper-
ties and boundary conditions.

Figure 7.18: Three point bending bar with asymmetric perforations. Damage field obtained.
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Figure 7.19: Experimental results obtained by Bittencourt et al [58].

material properties and boundary conditions, whereas that b) shows the

damage field obtained with displacements scaled 1000.

7.9 Dynamic shear loading

This test consists in a bar with size of 20 cm height and 10 cm width, it has

to horizontal notches symmetrical to the horizontal line that splits geometry

in two halves, these notches goes from left side to central vertical line.

Material properties are Young’s modulus E = 190 GPa, Poisson’s ratio 0.3,

density ρ = 8000 kg/m3 and energy release rate G = 22.13 kJ/m3. We

simulate a projectile impacting the left side in between the notches at a

velocity of

vc =

{
t
t0

v0 t < t0

v0 t ≥ t0
(7.9)

where v0 = 16.5 m/s and t0 = µs. Since the geometry and boundary

conditions are vertically symmetric, we take the superior half to perform

our numerical analysis, by assuming plane strain and using 100 finite in-

crements and smoothness c = 1. Figure 7.21 illustrates the geometrical
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Figure 7.20: Notched plate under shear, a) the geometrical specification, material properties and boundary
conditions, and b) damage field obtained with displacements scaled 1000.

96



7.
5

cm

5 cm 10
cm

10 cm

20
cm

7.
5

cm

5 cm

10 cm

a) b)

vc

vc

Plane strain

E = 190 GPa

ν = 0.3

G = 22.13 kJ/m2

ρ = 8000 kg/m3

Figure 7.21: a) Dynamic shear loading test simulates a bar being impacted by a projectile from left side in
between two notches. b) Assuming symmetrical conditions we analyze the superior half of the geometry.

specifications, material properties, initial conditions and other considera-

tions for numerical analysis. Figure 7.22 depicts damage field obtained.

7.10 Dynamic crack branching

This experiment was proposed by [33] to generate a dynamic crack branch-

ing. It consists of a bar with size of 10 cm long and 4 cm wide. A horizontal

notch is inserted from left side to center to produce an initial crack. Ma-

terial properties are Young’s modulus E = 32 GPa, Poisson’s ratio 0.2,

density ρ = 2450 kg/m3 and energy release rate G = 3 J/m3. The bar is

being pulled apart from top and bottom with a pressure of σ = 1 MPa.

The right side can not be displaced horizontally but it can over the vertical,
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Figure 7.22: Damage field obtained in dynamic shear loading test.

the middle point of this side is completely fixed. For numerical analysis we

assume plane strain using 100 finite increments and smoothness c = 1.

Although the geometry and boundary conditions are vertically symmetric,

we perform the analysis over the whole domain. Figure 7.23 shows nu-

merical and geometrical specification, material properties and boundary

conditions. Figure 7.24 depicts damage field obtained.

98



4
cm

2
cm 5 cm

10 cm

σ = 1 MPa

σ = 1 MPa

Plane strain

E = 32 GPa

ν = 0.2

G = 3 J/m2

ρ = 2450 kg/m3

Figure 7.23: Geometrical specification, numerical parameters, material properties and boundary conditions for
dynamic crack branching experiment.

Figure 7.24: Damage field obtained int dynamic crack branching experiment. Displacements are scaled up a
factor of 1000
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Chapter 8

Conclusions

In this work we proposed a numerical technique for simulating the me-

chanics of brittle fracture by using an alternative definition of the elastic

potential energy that involves a damage field to decrease energy due to

tensile strain over the fractured surface. Such damage field is a smooth

approximation of the crack morphology, with a value of one to describe

fractured surfaces and zero for the rest of the elastic body. In the mathe-

matical formulation the total potential energy is determined by the contri-

bution of the elastic potential energy and the potential energy of the body

to nucleate new cracks. The elastic potential energy is charaterized by

the sum of the elastic energy due to compression plus the elastic energy

due to tension, the second term is scaled by a quadratic expression of the

damage field, nullifying it when damage is equal to one. The potential en-

ergy to generate new cracks is related with the length of the existing cracks

and the energy release rate, a material property. A bigger crack increases

the potential energy to propagate it. The equations of motion are obtained

from the solution of the variational problem for minimizing the Lagrangian

of our system, that is, finding the optimal displacement and damage fields

for reducing the difference between the potential and the kinetic energy of
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the body.

The solution of the system is calculated by applying finite increments,

with an inner loop within each time step until reaching equilibrium of elas-

ticity equation. That is solving elasticity equation and using the computed

displacement field to solve the damage equation, in the next iteration we

use damage field estimation to solve again elasticity equation, repeating

the process until the residual norm is zero in first equation of motion.

In order to solve the partial differential equations we employ a nu-

merical technique to discretize the body using unstructured and non con-

forming meshes formed by elements of any arbitrary polygonal/polyhedral

shape. The elastic solver is based on a finite volume formulation that, us-

ing the divergence theorem, represent the volume integral of the stress

divergence in terms of the surface integral of the stress over the volume

boundary. Since the stress term is calculated directly on the boundary of

the control volumes, this strategy can be used in our fracture formulation

where volumes are treated as indivisible components and the rupture oc-

curs across the volumes boundaries. The damage solver follows a similar

approach, but considering volume integrals of damage field apart of the

surface integral resulting of applying divergence theorem to damage diffu-

sive term. Control volume boundary is divided into flat faces for consider-

ing the normal unit vector as a constant. Conforming and non-conforming

meshes are processed without distinction. Both fields, displacement and

damage, are a piece-wise polynomial approximation surrounding the vol-

umes, built on the top of the simplices resulting from the Delaunay trian-

gulation of the volume neighborhood. A pair-wise polynomial interpolation

is used for neighborhoods where the simplices are exceedinlgy distorted

or it can not be formed.

On the other hand, time discretization is based on the analytical so-

lution, obtained by means of Laplace transform, of the ordinary differen-
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tial equation resulting from assuming a continuous variation in time of the

stress state.

In spatial discretization, we introduced the homeostatic splines and its

pseudo-inverses for higher order polynomial interpolations without the ne-

cessity of increasing the discretization points, but adding a computational

cost for numerical integration. The rate of increasing computational cost

is greater than the rate of decreasing numerical error when choosing high

degree homeostatic splines. This situation makes computationally expen-

sive smoothness of solution at nodes.

In time discretization, we propose a trigonometric shape function to

describe time variation of stress state, which produces an energy-stable

numerical scheme and tolerates bigger time steps than methods based on

simply finite differences. Leaving aside the stability of the method, choos-

ing big time steps will increase the number of iterations of the finite incre-

ments strategy performed in every time step. In the results presented here

we use a Courant number of 0.05 as a reasonable trade-off.

Finally we present numerical experiments for the well known plate with

a hole to compare our elasticity solver against analytical solution, stress

wave in a bar to compare our dynamic solver against published results,

perfored strip under tension for checking fracture due to direct tension,

three point bending bar test to compare our solver with lab experiments

of fracture due to tensile strain, brazilian test to analyze fracture due to

indirect tensile strain comparing our results against published by other au-

thors, a compressive test to verify cracking patterns against those pro-

duced with similar numerical methods, four point notched bar test for an-

alyzing fracture mode II, three point bending bar with asymmetric perfo-

rations to evaluate sensibility of crack morphology, notched plate under

shear to contrast our results with those of other authors, dynamic shear

loading, and dynamic crack branching to demonstrate multicrack genera-
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tion.

In future work, we would like to analize numerical results of 3D tests,

to explore adaptable meshes in order refine elements if damage is likely

to occur, and to investigate the response of the system to shock wave im-

pacts, such as those produced by detonations. Furthermore, it is possible

to track position and stress state of each discrete volume and we would

like to develop a contact interface for interacting with classical Discrete El-

ement formulations. We also would like to develop a similar mathematical

formulation for topology optimization problems, by redefining the elastic

potential energy in terms of a solidification field that predicts the optimal

shape of an elastic body to the given boundary conditions.
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Appendix A

Analytical solution for time

In order to get an accurate approximation of the temporal derivative in the

interval t ∈ [0,∆t], we replace the stress state function of time Si(t) : R→
Rdim into the differential equation (5.2),(

1− P
(
t

∆t

))
S0
i + P

(
t

∆t

)
Si = ρüi, (A.1)

stress function is defined in equation (5.4). Reordering terms we have

S0
i + P

(
t

∆t

) (
Si − S0

i

)
= ρüi, (A.2)

with initial conditions

ui(0) = u0
i and u̇i(0) = u̇0

i (A.3)

In order to solve (A.2) by means of Laplace Transform

Fi(s) = L {ui(t)} =

∞∫
0

ui(t) e
−stdt, Fi(s) : R→ Rdim, (A.4)

we change from time domain in equation (A.2) to frequency domain(
1

s

)
S0
i + LP(s)

(
Si − S0

i

)
= ρ

(
s2 Fi(s)− s u0

i − u̇0
i

)
, (A.5)
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where s is the frequency variable, LP is the Laplace transform of P(t/∆t),

LP(s) = L

{
P
(
t

∆t

)}
, LP(s) : R→ R, (A.6)

and the Laplace transform of acceleration term includes initial conditions

(A.3)

L {üi} =
(
s2Fi(s)− s u0

i − u̇0
i

)
(A.7)

We can rewrite equation (A.5) as

Fi(s) =

(
1

s

)
u0
i +

(
1

s2

)
u̇0
i +

(
2

s3

)(
1

2ρ

)
S0
i +

(
1

s2

)
LP(s)

(
1

ρ

)(
Si − S0

i

)
(A.8)

and applying the inverse Laplace transform, ui(t) = L −1{Fi(s)}, we ob-

tain

ui(t) = u0
i + t u̇0

i +
1

2ρ
t2 S0

i +

(
1

ρ

)
CP(t)

(
Si − S0

i

)
, (A.9)

where CP(t) is a convolution. Such convolution is defined as

CP(t) =

(
P
(
t

∆t

)
∗ t
)

(t) =

t∫
0

P
( τ

∆t

)
(t− τ)dτ, (A.10)

and it derivative is

ĊP(t) =

(
P
(
t

∆t

)
∗ 1

)
(t) =

t∫
0

P
( τ

∆t

)
dτ, (A.11)

where τ is the integration variable. Developing previous definitions we get

CP(t) = t ĊP(t)− t2

2
P
(
t

∆t

)
+
t3

6
Ṗc
(
t

∆t

)
+O

(
t4 P̈c

(
t

∆t

) )
= t ĊP(t) +

∞∑
n=0

(−1)(n+1)

(n+ 2)!
t(n+2) dn

dtn
P
(
t

∆t

)
,

(A.12)

(A.13)

Finally, analytical solution of (A.2) is equation (A.9) and it is completely

dependent of the shape function P . This solution is used for building an

accurate numerical squeme for discretizing time.
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Appendix B

Polynomial shape functions for
time

The analytical solution (5.11) of equation (5.2) is used to generate numer-

ical schemes for time discretization, these approximations has a similar

structure but distinct coefficients that depend on the shape function P
used for time variation of stress state. In this appendix we propose two

families of polynomial functions in order to get a continuous stress state

in contiguous time steps, such polynomial functions meet the condition of

Ċ∆t
P = ∆t for producing stable schemes in terms of total energy.

The first polynomial family is defined by

P(t) =

(
p∑
i=0

(1 + 2 i)

)(
tp − t(p+1)

)
+ t(p+1), (B.1)

where p+ 1 is the polynomial order. The first three functions generated by

this equation are shown in Table B.1 and Figure B.1 depicts the curves.
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p Shape function Convolution

1 P(t) = 4t− 3t2 CP(t) = (8∆t t3 − 3t4)/(12∆t2)

2 P(t) = 9t2 − 8t3 CP(t) = (3∆t t4 − 8t5)/(20∆t3)

3 P(t) = 16t3 − 15t4 CP(t) = (8∆t t5 − 5t6)/(10∆t4)

Table B.1: First few polynomials generated with equation (B.1) and its respective convolutions CP (t).

t

4t− 3t2

9t2 − 8t3

16t3 − 15t4

Figure B.1: Curves for first few polynomials generated with equation (B.1)
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p Shape function Convolution

1 P(t) = 5t− 6t2 + 2t3 CP(t) = (3t5 − 15∆t t4 + 25∆t2t3)/(30∆t3)

2 P(t) = 12t2 − 16t3 + 5t4 CP(t) = (5t6 − 24∆t t5 + 30∆t2t4)/(30∆t4)

Table B.2: First few polynomials generated with equation (B.2) and its respective convolutions CP (t).

5t− 6t2 + 2t3

12t2 − 16t3 + 5t4

t

Figure B.2: Curves for first few polynomials generated with equation (B.2)

The second polynomial family is given by

P(t) =

(
1 +

p∑
i=1

(3 i+ 1)

)
tp −

(
p∑
i=1

2(2 i+ 1)

)
t(p+1) +

(
p∑
i=1

(i+ 1)

)
t(p+2),

(B.2)

where p + 2 is the polynomial order. The first few functions generated by

this equation are shown in Table B.2 and Figure B.2 depicts the curves.
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Politécnica de Catalunya.
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