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Abstract

The increasing ubiquitousness of digital information in our daily lives has positioned
video as a favored information vehicle, and given rise to an astonishing generation of
social media and surveillance footage. This raises a series of technological demands
for automatic video understanding and management, which together with the com-
promising attentional limitations of human operators, have motivated the research
community to guide its steps towards a better attainment of such capabilities. As
a result, current trends on cognitive vision promise to recognize complex events and
self-adapt to different environments, while managing and integrating several types of
knowledge. Future directions suggest to reinforce the multi-modal fusion of informa-
tion sources and the communication with end-users.

In this thesis we tackle the problem of recognizing and describing meaningful
events in video sequences from different domains, and communicating the resulting
knowledge to end-users by means of advanced interfaces for human—computer inter-
action. This problem is addressed by designing the high-level modules of a cognitive
vision framework exploiting ontological knowledge. Ontologies allow us to define the
relevant concepts in a domain and the relationships among them; we prove that the
use of ontologies to organize, centralize, link, and reuse different types of knowledge
is a key factor in the materialization of our objectives.

The proposed framework contributes to: (i) automatically learn the characteristics
of different scenarios in a domain; (ii) reason about uncertain, incomplete, or vague
information from visual —camera’s— or linguistic —end-user’s— inputs; (iii) derive plau-
sible interpretations of complex events from basic spatiotemporal developments; (iv)
facilitate natural interfaces that adapt to the needs of end-users, and allow them to
communicate efficiently with the system at different levels of interaction; and finally,
(v) find mechanisms to guide modeling processes, maintain and extend the resulting
models, and to exploit multimodal resources synergically to enhance the former tasks.

We describe a holistic methodology to achieve these goals. First, the use of prior
taxonomical knowledge is proved useful to guide MAP-MRF inference processes in
the automatic identification of semantic regions, with independence of a particu-
lar scenario. Towards the recognition of complex video events, we combine fuzzy
metric-temporal reasoning with SGTs, thus assessing high-level interpretations from
spatiotemporal data. Here, ontological resources like T-Boxes, onomasticons, or fac-
tual databases become useful to derive video indexing and retrieval capabilities, and
also to forward highlighted content to smart user interfaces. There, we explore the
application of ontologies to discourse analysis and cognitive linguistic principles, or

iii
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scene augmentation techniques towards advanced communication by means of natu-
ral language dialogs and synthetic visualizations. Ontologies become fundamental to
coordinate, adapt, and reuse the different modules in the system.

The suitability of our ontological framework is demonstrated by a series of applica-
tions that especially benefit the field of smart video surveillance, viz. automatic gen-
eration of linguistic reports about the content of video sequences in multiple natural
languages; content-based filtering and summarization of these reports; dialogue-based
interfaces to query and browse video contents; automatic learning of semantic regions
in a scenario; and tools to evaluate the performance of components and models in the
system, via simulation and augmented reality.

Resum

La gran importancia i omnipresencia de la informacié digital ha posicionat el video
com a vehicle preferent per a transmetre informacié, i ha donat lloc a un espectacular
creixement en la generacié de multimedia a les xarxes socials i de material de video
vigilancia. Aquesta situacié exigeix tot un seguit de necessitats tecnologiques que
han motivat moltes iniciatives de recerca per la millora en la comprensié automatica
del contingut en seqiiencies de video. Com a resposta, la recerca en sistemes de visio
cognitiva estudia sistemes capacos de reconeixer esdeveniments complexos i adaptar-se
a diferents tipus d’entorn, tot i fent servir coneixement de diversa naturalesa.

En aquesta tesi ens proposem reconeixer i descriure el contingut de diferents situa-
cions observades en seqiiencies de video de diferents dominis, i comunicar la infor-
macié resultant a usuaris externs per mitja d’interficies d’interaccié home-maquina
avancades. Aquest problema s’aborda mitjancant el disseny dels moduls d’alt nivell
d’un sistema de visié cognitiva que empra models ontologics. Concretament, ens pro-
posem: (i) fer que el sistema s’adapti a diferents escenaris d’'un domini, i n’aprengui
automaticament les caracteristiques; (ii) que raoni sobre informacié incerta, incom-
pleta o imprecisa, tant de tipus visual (cameres) com de tipus lingiiistic (usuaris); (iii)
que generi interpretacions sensates d’esdeveniments complexes a partir de 'analisi de
dades espai-temps més basiques; (iv) que disposi d’interficies de comunicacié natural
que puguin solventar les necessitats dels usuaris; i finalment, (v) trobar mecanismes
que ens facilitin el disseny, manteniment i extensié dels models implicats, i formes de
combinar sinergicament les tasques descrites.

Per tal d’avaluar de forma intel-ligent continguts de video és necessari adoptar
tecniques avancades de manipulacié de la informacié. La nostra aproximacié opta
per seguir els principis dels sistemes de visié cognitiva. Per a fer-ho, utilitzem pro-
cessos d’aprenentatge basats en inferencia MAP-MRF per a 'identificacié de regions
semantiques en diferents escenaris; raonadors de logica difusa i arbres de grafs de
situacié (SGTs) per a interpretar automaticament el contingut de videos; processos
de parsing basats en representacié del discurs i semantica cognitiva per a implementar
moduls de comunicacié lingiiistica; i tecniques de sintesi o augmentacié d’escenes per
a simulacié i representacié. Adicionalment, demostrem que 1'is d’ontologies per a
organitzar, centralitzar, connectar i reutilitzar coneixement és un factor clau a ’hora
de materialitzar els nostres objectius.



Els avantatges del sistema descrit es demostren amb un conjunt d’aplicacions que
beneficien principalment el camp de la video vigilancia, com ara: generacié automatica
de descripcions en diverses llengiies sobre el contingut de seqiiencies de video; filtrat
i resum d’aquests texts d’acord amb els seus continguts; interficies de dialeg amb
P'usuari que i permetin fer consultes i navegar pels continguts dels videos; aprenen-
tatge automatic de les regions semantiques presents a un escenari; i eines per a avaluar
el funcionament de diferents components i models del sistema, fent servir tecniques
de simulacié de comportaments i realitat augmentada.
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multisentential passages, paragraphs, discourses, or texts [61]. 91-93, 95, 99
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formalisms are extended by a temporal and a fuzzy component. The first one
permits to represent, and reason about, propositions qualified in terms of time;
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Chapter 1

Introduction

“In 2007, for the first time ever, more information was generated in one
year than had been produced in the entire previous five thousand years
—the period since the invention of writing.”

Me the media: rise of the conversation society (2009),
by J. Bloem, M. van Doorn, and S. Duivestein

The revolution of information experienced by the world in the last century, espe-
cially emphasized by the household use of computers after the 1970s, has led to what
is known today as the society of knowledge. Digital technologies have converted post-
modern society into an entity in which networked communication and information
management have become crucial for social, political, and economic practices. The
major expansion in this sense has been rendered by the global effect of the Internet:
since its birth, it has grown into a medium that is uniquely capable of integrating
modes of communication and forms of content.

In this context, the assessment of interactive and broadcasting services has spread
and generalized in the last decade —e.g., residential access to the Internet, video-on-
demand technologies—, posing video as the privileged information vehicle of our time,
and promising a wide variety of applications that aim at its efficient exploitation. To-
day, the automated analysis of video resources is not tomorrow’s duty anymore. The
world produces a massive amount of digital video files every passing minute, particu-
larly in the fields of multimedia and surveillance, which open windows of opportunity
for smart systems as vast archives of recordings constantly grow.

Automatic content-based video indexing has been requested for digital multime-
dia databases for the last two decades [39]. This task consists of extracting high-level
descriptors that help us to automatically annotate the semantic content in video se-
quences; the generation of reasonable semantic indexes makes it possible to create
powerful engines to search and retrieve video content, which finds immediate appli-
cations in many areas: from the efficient access to digital libraries to the preservation
and maintenance of digital heritage. Other usages in the multimedia domain would
also include virtual commentators, which could describe, analyze, and summarize the
development of sport events, for instance.
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More recently, the same requirements have applied also to the field of video surveil-
lance. Human operators have attentional limitations that discourage their involve-
ment in a series of tasks that could compromise security or safety. In addition,
surveillance systems have strong storage and computer power requirements, deal with
continuous 24 /7 monitoring, and manage a type of content that is susceptible to be
highly compressed. Furthermore, the number of security cameras increases exponen-
tially worldwide on a daily basis, producing huge amounts of video recordings that
may require further supervision. The conjunction of these facts establishes a need
to automatize the visual recognition of events and content-based forensic analysis on
video footage.

We find a wide range of applications coming from the surveillance domain that
point to real-life, daily problems: for example, a smart monitoring of elder or disabled
people makes it possible to recognize alarming situations, and speed up reactions to-
wards early assistance; road traffic surveillance can be useful to send alerts of conges-
tion or automatically detect accidents or abnormal occurrences; similar usage can be
directed to urban planning, optimization of resources for transportation allocations,
or detection of abnormality in crowded locations —airports, lobbies, etc.—.

Such a vast spectrum of social, cultural, commercial, and technological demands
have repeatedly motivated the research community to direct their steps towards a
better attainment of video understanding capabilities.

Collaborative efforts on video event understanding

A notable amount of EU research projects have been recently devoted to the un-
supervised analysis of video contents, in order to automatically extract events and
behaviors of interest, and interpret them in selected contexts. These projects mea-
sure the pulse of the research in this field, demonstrate previous success on particular
initiatives, and propose a series of interesting applications to such techniques. And,
last but not least, they motivate the continuation of this line of work. Some of them
are briefly described next, and shown in Figs 1.1 and 1.2.

s ADVISOR ' (IST-11287, 2000-2002). It addresses the development of man-
agement systems for networks of metro operators. It uses CCTV for computer-
assisted automatic incident detection, content based annotation of video record-
ings, behavior pattern analysis of crowds and individuals, and ergonomic human
computer interfaces.

= ICONS ? (DTI/EPSRC LINK, 2001-2003). Its aim is to advance towards (i)
zero motion detection, detection of medium- to long-term visual changes in
a scene —e.g., deployment of a parcel bomb, theft of a precious item—, and
(ii) behavior recognition —characterize and detect undesirable behavior in video
data, such as thefts or violence— only from the appearance of pixels.

» AVITRACK ? (AST-CT-502818, 2004-2006). It develops a framework for auto-

Ihttp://www-sop.inria.fr/orion/advisor/
?http://www.dcs.qmul.ac.uk/research/vision/projects/icons/
Shttp://www.avitrack.net/
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Figure 1.1: Snapshots of the referred projects. (a) AVITRACK, (b) ADVI-
SOR, (¢) BEWARE, (d) VIDI-Video, (¢) CARETAKER, (f) ICONS, (g) ETISEO,
(h) HERMES.
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matically supervision of commercial aircraft servicing operations from the arrival
to the departure on an airport’s apron. A prototype for scene understanding
and simulation of the apron’s activity was going to be implemented during the
project on Toulouse airport.

» ETISEO * (Techno-Vision, 2005-2007). It seeks to work out a new struc-
ture contributing to an increase in the evaluation of video scene understand-
ing. ETISEO focuses on the treatment and interpretation of videos involving
pedestrians and (or) vehicles, indoors or outdoors, obtained from fixed cameras.

» CARETAKER ® (IST-027231, 2006-2008). This project aims at studying, de-
veloping and assessing multimedia knowledge-based content analysis, knowledge
extraction components, and metadata management sub-systems in the context
of automated situation awareness, diagnosis and decision support.

s SHARE © (IST-027694, 2006-2008). It offers an information and communica-
tion system to support emergency teams during large-scale rescue operations
and disaster management, by exploiting multimodal data —audio, video, texts,
graphics, location—. It incorporates domain dependent ontology modules, and
allows for video/voice analysis, indexing /retrieval, and multimodal dialogues.

» HERMES " (IST-027110, 2006-2009). Extraction of descriptions of people’s
behavior from videos in restricted discourse domains, such as inter-city roads,
train stations, or lobbies. The project studies human movements and behaviors
at several scales —agent, body, face—, and the final communication of meaningful
contents to end-users.

s BEWARE ® (EP/E028594/1, 2007-2010). The project aims to analyze and
combine data from alarm panels and systems, fence detectors, security cameras,
public sources and even police files, to unravel patterns and signal anomalies,
e.g., by making comparisons with historical data. BEWARE is self-learning and
suggests improvements to optimize security.

s VIDI-Video © (IST-045547, 2007-2010). Implementation of an audio-visual se-
mantic search engine to enhance access to video, by developing a 1000 element
thesaurus to index video content. Several applications have been suggested in
surveillance, conferencing, event reconstruction, diaries, and cultural heritage
documentaries.

s SAMURAI '° (IST-217899, 2008-2011). It develops an intelligent surveillance
system for monitoring of critical public infrastructure sites. It is to fuse data
from networked heterogeneous sensors rather than using CCTV alone; to de-
velop real-adaptative behavior profiling and abnormality detection, instead of

4http://wwu-sop.inria.fr/orion/etiseo/
Shttp://www.ist-caretaker.org/
6http://www.ist-share.org/

P g
"http://www.hermes-project.eu/
8http://www.dcs.qmul.ac.uk/sgg/beware/

P q gg
9http://wuw.vidi-video.it/
Ohttp://www.samurai-eu.org/
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Figure 1.2: Some of the most recent projects in the field. (a) SHARE, (b) SCOVIS,
(¢) SAMURAL, (d) ViCoMo.

using predefined hard rules; and to take command input from human opera-
tors and mobile sensory input from patrols, for hybrid context-aware behavior
recognition.

s SCOVIS ' (IST-216465, 2007-2013). It aims at automatic behavior detection
and visual learning of procedures, in manufacturing and public infrastructures.
Its synergistic approach based on complex camera networks also achieves model
adaptation and camera network coordination. User’s interaction improves be-
havior detection and guides the modeling process, through high-level feedback
mechanisms.

» ViCoMo 2 (ITEA2-08009, 2009-2012). This project concerns advanced video-
interpretation algorithms on video data that are typically acquired with multiple
cameras. It is focusing on the construction of realistic context models to improve
the decision making of complex vision systems and to produce a faithful and
meaningful behavior.

As it can be seen, many efforts have been taken in the last decade, and are still
increasing nowadays, in order to tackle the problem of video interpretation and intel-

Uhttp://www.scovis.eu/
2http://www.vicomo.org/
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1.2

ligent video content management. It is clear from this selection that current trends
on the field suggest a tendency to focus on the multi-modal fusion of different sources
of information, and on more powerful communication with end-users. From the large
amount of projects existing in the field we derive another conclusion: such a task is
not trivial at all, and requires research efforts from many different areas to be joint
into collaborative approaches, which success where individual efforts fail.

In this thesis we tackle the problem of recognizing and describing meaningful
events in video sequences, and communicating the resulting knowledge to end-users
by means of advanced user interfaces. This will be done particularly for the field of
video surveillance, although many of the results that will be presented —e.g., query
understanding based on natural language, automatic indexing of video events— can be
also applied to multimedia applications. The series of challenges coming from these
applications will be addressed by designing the high-level modules of a cognitive vision
framework exploiting ontological knowledge.

Past, present, and future of video surveillance

The field of video surveillance has experienced a remarkable evolution in the last
decades, which can help us think of the future characteristics that would be desirable
for it. In the traditional video surveillance scheme, the primary goal of the camera
system was to present to human operators more and more visual information about
monitored environments, see Fig. 1.3(a). First-generation systems were completely
passive, thus having this information entirely processed by human operators. Never-
theless, a saturation effect appears as the information availability increases, causing
a decrease in the level of attention of the operator, who is ultimately in charge of
deciding about the surveilled situations.

The following generation of video surveillance systems used digital computing and
communications technologies to change the design of the original architecture, cus-
tomizing it according to the requirements of the end-users. A series of technical
advantages allowed them to better satisfy the demands from industry, i.e., higher-
resolution cameras, longer retention of recorded video ~-DVRs replaced VCRs, video
encoding standards appeared—, reduction of costs and size, remote monitoring capa-
bilities provided by network cameras, or more built-in intelligence, among others [98].

The continued increase of machine intelligence has derived into a new generation
of smart surveillance systems lately. Recent trends on computer vision and artifi-
cial intelligence have deepened into the study of cognitive vision systems, which use
visual information to facilitate a series of tasks on sensing, understanding, reaction,
and communication, see Fig. 1.3(b). Such systems enable traditional surveillance
applications to greatly enhance their functionalities by incorporating methods for:

= Recognition and categorization of objects, structures, and events;
» Learning and adaptation to different environments;
= Representation, memorization, and fusion of various types of knowledge;

= Automatic control and attention.

14
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bidirectional communication scheme offered by cognitive

’

)
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(
vision systems (

tecture

b), which highlight relevant footage contents. By incorporating on-

tological and interactive capabilities to this framework (c), the system performs like
a semantic filter also to the end-users, governing the interactions with them in order

to adapt to their interests and maximize the efficiency of the communication.

As a consequence, the relation of the system with the world and the end-users is
enriched by a series of sensors and actuators —e.g., distributions of static and active

thus establishing a bidirectional communication

)

enhanced user interfaces—
flow, and closing loops at a sensing and semantic level. The resulting systems pro-

vide a series of novel applications with respect to traditional systems, like automated

video commentary and annotation

)

cameras

or image-based search engines. In the last years,
or CogViSys '* have investigated these and other

potential applications of cognitive vision systems, especially concerning video surveil-

lance.

3

13

European projects like CogVis

Recently, a paradigm has been specifically proposed for the design of cognitive

stems aiming to analyze human developments recorded in image sequences.

vision sy

Bhttp://www.comp.leeds.ac.uk/vision/cogvis/
Mhttp://cogvisys.iaks.uni-karlsruhe.de/
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1.3

This is known as Human Sequence Evaluation (HSE) [43]. An HSE system is built
upon a linear multilevel architecture, in which each module tackles a specific abstrac-
tion level. Two consecutive modules hold a bidirectional communication scheme, in
order to (i) generate higher-level descriptions based on lower-level analysis —bottom-up
inference—, and (ii) support low-level processing with high-level guidance —top-down
reactions—. HSE follows as well the aforementioned characteristics of cognitive vision
systems.

Nonetheless, although cognitive vision systems conduct a large number of tasks
and success in a wide range of applications, in most cases the resulting prototypes are
tailored to specific needs or restricted to definite domains. Hence, current research
aims to increase aspects like extensibility, personalization, adaptability, interactivity,
and multi-purpose of these systems. In particular, it is becoming of especial impor-
tance to stress the paper of communication with end-users in the global picture, both
for the fields of surveillance and multimedia: end-users should be allowed to automa-
tize a series of tasks requiring content-mining, and should be presented the analyzed
information in a suitable and efficient manner, see Fig. 1.3(c).

As a result of these considerations, the list of objectives to be tackled and solved
by a cognitive vision system has elaborated on the original approach, which aimed at
the single —although still ambitious today— task of transducing images to semantics.
Nowadays, the user itself has become a piece of the puzzle, and therefore has to be
considered a part of the problem.

Mind the gaps

The search and extraction of meaningful information from video sequences is dom-
inated by 5 major challenges, all of them defined by gaps [116]. These gaps are
disagreements between the real data and that one expected, intended, or retrieved
by any computer-based process involved in the information flow conducted between
the acquisition of data from the real world, and until its final presentation to the
end-users. The 5 gaps are presented next, see Fig 1.4(a).

Sensory gap The gap between an object in the world and the information in an
image recording of that scene. All these recordings will be different due to
variations in viewpoint, lighting, and other circumstantial conditions.

Semantic gap The lack of coincidence between the information that one can extract
from the sensory data and the interpretation that same data has for a user in a
given situation. It can be understood as the difference between a visual concept
and its linguistic representation.

Model gap The impossibility to theoretically account the amount of notions in the
world, due to the limited capacity to learn them.

Query/context gap The gap between the specific need for information of an end-
user and the possible retrieval solutions manageable by the system.

Interface gap The limited scope of information that a system interface offers, com-
pared to the amount of data actually intended to transmit.
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Figure 1.4: (a) The five gaps that need to be bridged for the successful analysis,
extraction, search, retrieval, and presentation of video content. (b) In some cases, a
collaborative and integrative use of different knowledge sources allows us to achieve
or enrich the accomplishment of these tasks. Arrows stand for reusing ontological
knowledge to enhance analyses in other areas.
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Although each of these challenges becomes certainly difficult to overcome by its
own, a proper centralization of information sources and the wise reutilization of knowl-
edge derived from them facilitates the overwhelming task of bridging each of these
gaps. There exist multiple examples of how the multiple resources of the system can
be redirected to solve problems in a different domain, let us consider three of them:

s From semantic to sensory gap: tracking errors or occlusions at a visual level
can be identified by high-level modules that imply semantics oriented to that
end. This way, the system can be aware of where and when a target is occluded,
and predict its reapparition.

» From sensory to interface gap: the reports or responses in user interfaces can
become more expressive by adding selected, semantically relevant key-frames
from the sensed data.

» From interface to query gap: in case of syntactic ambiguities in a query —e.g.,
“zoom in on any person in the group that is running”—, end-users can be asked
about their real interests via a dialogue interface: “Did you mean ‘the group
that is running’, or ‘the person that is running’ ?”.

Given the varied nature of types of knowledge involved in our intended system,
an ontological framework becomes a sensible choice of design: such a framework
integrates different sources of information by means of temporal and multi-modal
fusion —horizontal integration—, using bottom-up or top-down approaches —vertical
integration—, and incorporating prior hierarchical knowledge by means of an extensi-
ble ontology.

We propose the use of ontologies to help us integrate, centralize, and relate the
different knowledge representations —visual, semantic, linguistic, etc.— implied by the
different modules of the cognitive system. By doing so, the relevant knowledge or
capabilities in a specific area can be used to enhance the performance of the system
in other distinct areas, as represented in Fig. 1.4(b). Ontologies will enable us to
formalize, account, and redirect the semantic assets of the system in a given situation,
and exploit them to empower the aforementioned capabilities, especially targeting the
possibilities of interaction with end-users.

Thesis scope and contributions

This thesis describes a complete framework for the high-level modules of an artificial
cognitive vision system; particularly, this framework is devoted to ontologically-based
cognitive video surveillance. The work done through the different chapters pursues
three major lines of contribution:

= High-level interpretation of complex human and vehicle behaviors, in real
scenes of different domains.

s Establishment of natural and effective channels of advanced interaction with
end-users, regarding the communication of video contents.
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» Development of an ontological framework to guide the top-down modeling of
the expert databases. This framework centralizes the multiple types of knowl-
edge involved by the system —visual, conceptual, linguistic—, and facilitates their
integration into a large number of applications.

In addition, next table presents a summarized account of the specific tasks achieved
by the ontological cognitive surveillance framework presented in this thesis, and the
chapters in which these contributions appear:

LocaTiON  CONTRIBUTIONS

Chapter 3 — Semantic region learning

— Ontology-based top-down modeling for video understanding,
Chapter 4  — Interpretation/indexing of video events and behaviors,
— Content filtering and episodical segmentation of videos

— Generation of multilingual NL descriptions of videos,

— Summarization / selection of contents,

— Recognition of NL linguistic input / query retrieval,
Chapter 5  — Supervised linguistic rule learning,

— Authoring tools,

— Model-based simulation,

— Component performance evaluation

This thesis is organized following the distribution of modules shown in Fig 1.5.
Next chapter reviews recent literature on the recognition of semantic events and be-
haviors in video sequences, especially considering work related to cognitive vision
systems, ontologies, and advanced user interfacing for surveillance applications. The
accounting of semantic properties for the locations where the events occur varies for
every new scene; for this reason, Chapter 3 proposes a methodology to automati-
cally learn meaningful semantic regions in scenarios of a given domain. Chapter 4
suggests the reader a methodology to build the different semantic models described,
including the ontology, and explains how to apply them to achieve efficient reason-
ing and understanding of tracked visual information. Chapter 5 describes the three
modules used by the system to provide capabilities of advanced interaction and com-
munication with end-users: generation of textual descriptions, understanding of user
queries, and generation or augmentation of synthetically animated scenes. Finally,
Chapter 6 briefly reviews the topics discussed in the different sections of this thesis,
and, as a conclusion, establishes future lines of work that could eventually fix the
current issues of the presented framework.

Resum

La societat actual s’ha vist enormement influenciada per les tecnologies digitals en
els darrers anys. Avui en dia, I'ingent produccié de seqiiencies de video de tipus molt
divers (grabacions de vigilancia, produccié audiovisual, multimedia de caire social)
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exigeix millores tecnologiques per a ’exploracié automatica, categoritzacio, indexacié
i cerca de videos en quant al seu contingut semantic. La gran quantitat de projectes
europeus dedicats a perseverar en aquest objectiu esdevé una clara senyal de la posicié
d’importancia que aquest camp ocupa dins les noves tecnologies de la informacié.

Els sistemes de video vigilancia sén un exemple molt clar de com s’ha anat produint
una clara evoluci6 en relacié a I’analisi de continguts de video. Als primers sistemes,
tota la feina recau sobre operaris humans, que inspeccionen visualment la totalitat del
metratge. Els nous avengos en deteccié i seguiment visual permeten la incorporacié de
tecniques més sofisticades que guien ’atencié de 1'usuari final, facilitant-li la identifi-
caci6é d’activitats concretes. Avui en dia, la implantacié de sistemes visuals cognitius
possibilita tasques de reconeixement d’objectes i situacions, control automatic i apre-
nentatge continu. Quan es parla del segiient pas de l’evolucid, sembla que s’esta
d’acord en enfortir la relacié amb els usuaris, per mitja d’interficies intel-ligents que
filtrin les necessitats especifiques dels usuaris de forma eficient i natural.

Per tal d’aconseguir aquesta fita, s’ha de superar tot un seguit d’incompatibilitats
tradicionalment presents en sistemes d’aquestes caracteristiques: les representacions
visuals obtingudes contenen informacié poc precisa de la realitat; les interpretacions
que fa un sistema sobre una situacio s’allunyen de les que faria una persona; no ens és
possible modelar tot allo que ens pot interessar reconeixer; el sistema pot no entendre
correctament les necessitats especifiques d’'un usuari; i les dades proporcionades pel
sistema sempre es veuran limitades per la interficie, essent una reduccié drastica de
tot el coneixement involucrat en la resolucié de la tasca.

Per tal de reduir progressivament totes aquestes dificultats, aquesta tesi proposa
I'arquitectura d’alt nivell d’'un sistema de visié cognitiva artificial. Es para especial
atencio en el disseny de recursos ontologics, que permeten una millor organitzacio i
centralitzacié d’informacio6 de diferent naturalesa. D’altra banda, un altre aspecte clau
és el disseny de moduls per a establir comunicacié d’alt nivell amb 'usuari, permetent
aix{ aplicacions tals com interficies de dialeg i consulta en multiples llengiies, simulacié
i avaluacié de components, o seleccid i resum automatic de continguts, entre altres.
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Chapter 2

Related work

“No reference is truly direct — every reference depends on some kind of
coding scheme. It’s just a question of how implicit it is.”

Gédel, Escher, Bach: An eternal golden braid (1979), by D.R. Hofstadter

The field of video understanding has been tackled by the research commu-
nity for many years now, deriving a large amount of techniques for event
recognition based on both statistical and model-based approaches. This
chapter reviews part of this work: we examine the most common termi-
nologies for the organization of events, trajectory-based methods for ac-
tivity recognition and semantic region learning, frequent probabilistic and
symbolic tools used for video event recognition, and extensions for user
interaction dealing with natural language and virtual environments.

There is an impressive collection of literary works dedicated to the understanding
of content in video sequences, and its further communication to end-users. Efforts to
survey this area of research have been unceasing for the last fifteen years [2, 26, 55,
101, 125, 74]. In order to introduce the field, in Section 2.1 we initially consider some
basic ideas regarding the organization and representation of knowledge, and especially,
the semantic classification of video events traditionally used for video understanding.

From there, the selection of references compiled in this chapter follows the distri-
bution of chapters of the thesis: Section 2.2 reviews research on automatic learning of
semantic regions from video surveillance sequences. After that, Section 2.3 presents a
representative selection of works on the prolific field of event/activity/behavior recog-
nition in video sequences, summarizing the many approaches and techniques that
have been used in this field for the last decade, and justifying our decision to use
symbolic models. Section 2.4 considers the work done on advanced user interaction,
especially focusing on Natural Language (NL) interfaces and virtual or augmented
reality. Finally, Section 2.5 reviews the general use of ontologies to interrelate vi-
sual, semantic, and linguistic knowledge, and how ontological knowledge can benefit
applications aiming for advanced means of user interaction.
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2.1

Knowledge representation: statistical vs model-based

As described in [68], two main types of approaches for knowledge acquisition and
representation have been identified in the literature: implicit, accomplished by ma-
chine learning methods, and explicit, using model-based approaches. The former have
proved to be robust for discovering complex dependencies between low-level image
data and perceptually higher level concepts, and can also handle high dimensionality
issues. On the other hand, model-based reasoning approaches use prior knowledge in
form of explicitly defined facts, models, and rules, thus providing coherent semantics
for a specific context.

The model-based reasoning approach uses predefined semantic models to antici-
pate events or behaviors that come associated to certain locations in the scenario, e.g.
waiting in a bus stop or sitting on a table. For this reason, this approach is found
especially useful for (i) applications aiming to very specific or regulated contexts, and
(ii) those requiring to deal with a precise set of unlikely but possible situations. This
is the case for the fields of surveillance and sports, for example.

Table 2.1 summarizes the main characteristics of these two approaches, statistical
learning and model-based reasoning. The main features listed for each approach have
been classified as advantages (/ ) or disadvantages (X) for a rapid exploration.

Semantic organization and terminologies

Words like behavior, activity, action, scenario, gesture, primitive or event are often
used in the literature to designate the same idea, although with slight variations.
Occurrences in a video sequence are categorized by each author according to their
complexity, but usually from different perspectives, which leads to controversy and
ambiguity in their use. Next, we compile a small list of semantic hierarchies that are
often cited in literature, and establish the meaning of the terms that we will be using
during the following chapters.

Table 2.2 gives examples to the terminologies discussed next. In the first place,
Nagel [93] organizes occurrences semantically into change, event, verb, episode and
history, sorted increasingly by semantic complexity and temporal scope. An episode
is a collection of sequential verbs, and a history often involves goals. Bobick [20]
differentiates among movement, activity —when the movement follows a cyclic pattern,
such as walking—, and action —for more complex events like entering a location—.
Hongeng and Nevatia’s terminology [52] builds upon simple/complex events, which
are additionally classified as happening one at a time (single thread) or many at the
same time (multiple thread). In the case of Park and Aggarwal [103], the complexity
is given by the scope of membership, dividing events into pose, gesture, action, and
interaction. Gonzalez [14] considers sequences of actions as activities, and proposes
behaviors as the interpretation of activities in given contexts. Most researchers use
minimal variations over any of the previous organizations, e.g., Brémond [24] adapts
the hierarchical event categories in [52].

The terminology used in this thesis is based on that proposed by Gonzalez [14] and
rethought in terms of ontological organization. As it will be explored in Chapter 4, the
first conceptual level represents basic spatiotemporal information —walk, run, bend—
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Statistical learning

v/ Models are learned algorithmi-
cally in an automatic fashion.
The role of the experts is reduced
to provide consisting samples for
training, and in some cases su-
pervise the process.

v/ Models are also easily updated,
by just providing additional or
new training samples.

X The correctness of the models re-
lies on how representative are the
training samples of the targeted
domain. An accurate selection of
training material may be neces-
sary.

X Rare or uncommon events are
hardly learned by observation,
given the huge casuistry of pos-
sible developments (e.g., identi-
fying wviolence, thefts). A com-
mon limitation in these cases is
to detect only abnormal occur-
rences, i.e. those that fall out of
the learned statistics.

X Aiming the models towards spe-
cific applications may require
very precise training, which in
some cases is more expensive
and less robust than modeling by
hand.

Table 2.1

v

v

Model-based reasoning

The domain of interest is pre-
cisely defined, and becomes fully
controllable.

As a consequence, those rules
and configurations found rele-
vant by experts are usually less
susceptible to fail.

Certain complex semantics that
are difficult to learn may be easy
to model. For instance, it is
not straightforward to learn that
a stranger accessing a computer
represents a security risk, but it
is easy to model such improbable
—but assumed— occurrence.

Models have to be manually de-
fined by experts, in contrast to
those automatically learned by
statistical approaches.

Content to include has to be
carefully evaluated and formally
described.

It is desirable for knowledge
bases to be still suitable for fu-
ture applications, but this may
not be the case for model-based
reasoning. Relevant data may
lack persistence, e.g., typewrit-
ers can be manually modeled and
progressively fall into disuse in
regular contexts.

A COMPARISON BETWEEN CHARACTERISTICS OF THE TWO MAIN APPROACHES FOR
KNOWLEDGE ACQUISITION AND REPRESENTATION: STATISTICAL LEARNING (IMPLICIT) AND
MODEL-BASED REASONING (EXPLICIT).
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Nagel (1988)

| CHANGE EVENT VERB EPISODE HISTORY |
(Motion) Moving Driving Overtaking Eziting a
slowly by a road another car gas station

Bobick (1997)
MOVEMENT AcCTIVITY ACTION |

(Motion) Walking Entering a location

Hongeng and Nevatia (2001)

| SIMPLE EVENT COMPLEX EVENT |
approach converse (approach a
a person person + stay around)

Park and Aggarwal (2003)
POSE (GESTURE AcTION INTERACTION |

(Motion) Moving arm Shaking hands Greeting someone

Gonzalez (2004)

| MOVEMENT AcTION AcTIVITY BEHAVIOR |
(Motion) Walking, Approaching, Stealing
bending chasing an object

Our proposal

| PosE STATUS CONTEXTUALIZATION INTERPRETATION |
(Motion) Bending Picking up something, Stealing
somewhere an object
Table 2.2

MOST COMMON EVENT TERMINOLOGIES, AND OUR PROPOSAL.

. A second level contextualizes different observed entities, establishing links among
them in order to validate schemes of multi-part events —leave something somewhere,
enter a location, meet someone somewhere—. Finally, the situation of these events in
specific temporal/semantic contexts will permit us to suggest high-level interpreta-
tions of behaviors.
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2.2

Learning semantic regions

Detecting high-level events and behaviors in dynamic scenes requires to interpret
“semantically meaningful object actions” [33], which in the concrete case of urban
video surveillance restricts to monitoring and evaluating human and traffic activities
in wide or far-field outdoor scenarios. Under such conditions, current state-of-the-art
approaches infer activity descriptions mainly based on observed or expected motion
within regions of semantic relevance. Therefore, our task demands an explicit de-
scription of locations in the scenario of interest, in terms of a series of semantic
characteristics that can be found or anticipated in these zones.

In the literature, semantic regions can be either provided beforehand [95, 43, 40, 84]
or automatically computed from static or dynamic features of the scene [92, 132
140]. In the latter case, techniques for the automatic learning of semantic regions are
commonly based on observed trajectories [131, 85] rather than on the appearance of
pixels, given that appearances are usually view-variant, scene-dependant, and require
considerable computational effort, thus being inconvenient for surveillance.

On the other hand, trajectories, understood as the series of positions of an object
over time, from entering to exiting a scene, are considered by most authors as the most
useful information to embed the behavior of moving objects [141]. Extensive work
has been done on behavior understanding based on trajectory analysis: early results
on motion-based behavior analysis were reported in [60], where spatial distributions
of trajectories were modeled by training two competitive neural networks using vector
quantization. Most often, trajectory clustering has been accomplished via mixtures
of Gaussians: in [120], Stauffer and Grimson develop a tracking system that detects
unusual events regarding their size or direction. The system was tested on roads
and pedestrian paths. Hu et al. [56] described a generic framework to automatically
learn event rules based on the analysis of trajectory series: trajectory segments were
first clustered into primitive “events” (trajectory patterns), and then, a grammar
induction algorithm produced a set of event rules. Makris and Ellis [85] considered
spatial extensions of trajectories to construct path models, which were updated when
new trajectories were matched. A similar approach is used in [90]. More recently,
Basharat et al. [16] modeled a probability density function at every pixel location by
means of GMM, considering not only spatial coordinates but also object sizes.

Other techniques have also been used to cluster trajectories and detect abnor-
mality, especially Markov models. Porikli [105] used HMM to achieve event detec-
tion based on the unsupervised clustering of variable length trajectories, in a high-
dimensional feature space. Piciarelli and Foresti [104] presented an online modeling
algorithm to obtain a hierarchy of typical paths. Hu et al. [57] obtained motion pat-
terns by spatially and temporally clustering trajectories using fuzzy K-means. Yao
et al. [138] applied Markov models to learn contextual motion, in order to improve
the results of low-level tracking and to detect abnormality. A detailed comparison
of recent distance metrics and trajectory clustering techniques is available in [92],
and Table 2.3 compiles the basic characteristics of the works discussed in the field of
trajectory clustering and further activity interpretation.

Once a proper trajectory representation is chosen, most works focus on assigning
semantic properties to the regions in which agent motion has been detected. Wang et

27



TRAJECTORY-BASED ACTIVITY RECOGNITION

Main techniques Examples of recognized events Reference to publication
GMM Typical paths, anomaly Stauffer /Grimson [120], 2000
Self-organizing ANN  Typical paths, anomaly Hu et al. [56], 2004
GMM Typical paths, anomaly, enter, exit, inactive McKenna/Charif [90], 2004
HMM Anomaly Porikli [105], 2004
GMM Typical paths, enter, exit, stop Makris/Ellis [85], 2005
Fuzzy K-means Typical paths, anomaly, Hu et al. [57], 2006
On-line clustering Typical paths, anomaly, Piciarelli/Foresti [104], 2006
GMM Car anomaly (size, direction, speed) Basharat et al. [16], 2008
Markov models Car moving off-road, car collision, traffic rule Yao et al. [138], 2008
violation
Table 2.3
REPRESENTATIVE SAMPLE OF PUBLICATIONS ON TRAJECTORY-BASED ACTIVITY
RECOGNITION.

al. [132] proposed a method to automatically learn far-field semantic scene models by
analyzing distributions of positions and directions of tracked objects on their trajecto-
ries, thus recognizing roads, walking paths, and sources/sinks. Li et al. [78] modeled
activity correlation and abnormality by first segmenting the scene into event-based
regions, modeled as a Mixture of Gaussians with features like aspect ratio and mean
optic flow. Although the number of regions is learned automatically, their descrip-
tion is numerical. Similarly, the semantic region modeling in [131] is accomplished by
clustering trajectories into different activities. Observed positions and directions are
quantized, and the semantic regions are found as intersections of paths having similar
observations. The analysis does not include temporal considerations.

Other works on region labeling tackle the detection of entry and exit zones. Makris
et al.[35] used EM and GMM to cluster typical entry/exit areas and usual stopping
zones. In [1410], a combination of GMM and graph cuts are used to learn characteristic
paths and entry/exit points for abnormality detection. Gryn et al. [46] used hand-
crafted direction maps to detect patterns such as using a particular door, or making
an illegal left turn at an intersection. These direction maps were regularly spaced
vector fields representing the direction of motion at locations of interest, and are
scene specific, detecting motion in a particular image plane location.

All the aforementioned approaches build models able to segment vehicle or pedes-
trian paths, waiting zones, and entry/exit points. Nevertheless, they all disregard the
inherent semantics that come associated to specific places and regions —e.g., chairs,
crosswalks, bus stops—, which are not exploited by bottom-up analyses. Bottom-
up techniques typically employ clustering to model the spatial distribution of single
trajectories, thus making it possible to find common paths and detect abnormal oc-
currences; but their potential for behavior recognition is far from that of top-down,
model-based approaches, which do exploit the region semantics, manually encoded by
experts.
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PIXEL-WISE SCENE SEGMENTATION

Main techniques

Ezamples of recognized objects or locations

Reference to publication

MRF + PS
LCRF

Randomized forests

HoF + K-means + MRF

Semantic textons
Version space + ontolo-
gies

P™ potentials

HoG + CRF

Cows vs. horses

Car, face, building, sky, tree, grass

Road, building, sidewalk, pedestrian, fence,
bicyclist

Train platforms/railways, bus stops, park

benches
Building, tree, sheep, bicycle, road, boat

doors,
sign

balconies, stairs, canopies, railing,

Sky, building, tree, grass, bird

building, car, road, sky, fence, pedestrian, cy-

Kumar et al. [70], 2004
Winn/Shotton [135], 2006
Brostow et al. [25], 2008

Dee et al. [30], 2008

Shotton et al. [114], 2008
Hartz et al. [51], 2009

Kohli et al. [65], 2009
Sturgess et al. [121], 2009

clist

Table 2.4
REPRESENTATIVE SAMPLE OF PUBLICATIONS ON PIXEL-WISE SEMANTIC SEGMENTATION.
MOST WORKS IN THIS FIELD ARE BASED ON APPEARANCE, FEW USE DYNAMIC
INFORMATION: WE ONLY FOUND THE LAST FOUR IN THIS LIST.

In order to exploit semantics inherent to locations, several authors have considered
the problem of adding semantic characteristics to locations in a scenario. Towards ro-
bust pixel-wise segmentation and recognition of semantic regions, efficient techniques
have been developed, such as MRF [69] and its variants, like DRF [70] or LCRF [135],
or alternatives like TextonBoost[115] or Semantic Textons [114]. Improved techniques
have been proposed, such as robust higher order potentials by Kohli et al. [65]. How-
ever, whilst there is a large literature aiming to semantically label multiple regions
in images, it is difficult to find works that address this problem in videos, and using
only dynamic information.

Dynamic data is incorporated by the following authors. Brostow et al. [25] com-
plemented appearance-based features with their motion and structure cues to improve
object recognition. Dee et al. [30] worked on unsupervised learning of semantically
meaningful spatial regions —e.g., train platforms, bus stops— in videos, only from mo-
tion patterns. These patterns were quantized within the cells of a scene grid. Hartz
et al. [51] investigated automatic learning of complex scenes with structured objects
like doors, balconies, stairs, or canopies using ontological constraints, for images and
using only appearance. Sturgess et al. [121] presented a framework for pixel-wise
object segmentation of road scenes, combining both motion and appearance features.
They partitioned monocular image sequences taken from a car into regions like build-
ing, car, road, sky, fence, etc. using CRFs. Table 2.4 summarizes a representative
selection of publications in this field.

Our proposal contributes to the field of urban surveillance by building, automat-
ically and in a fully unsupervised manner, semantic scene models uniquely based on
dynamic information from trajectories. The resulting models are richer than sim-
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2.3

ple source—path—sink ones. In this paper we show a novel technique that, having
learned the spatiotemporal patterns of moving objects, infers the semantic meaning
of background regions, such as pedestrian crossings, sidewalks, roads or parking areas;
this process is guided by a taxonomy to incorporate the semantic properties to be
reported. In our case, the categorization of regions from their statistical models is
posed as a labeling task and formulated as a MAP-MRF inference problem, defined
by irregular sites and discrete labels [79)].

Modeling high-level events

Algorithms for detection and tracking have been greatly improved during the last
years, and although there are still many issues to cope with —e.g., appearance vari-
ability, long-term occlusions, high-dimensional motion, crowded scenes—, robust solu-
tions have been already provided that capture the motion properties of the objects
in dynamic and complex environments [107, 108]. But to understand scenes involv-
ing humans, to interpret “what is happening in the scene”, we need more abstract
and meaningful schemes than purely physical laws. To understand long image se-
quences showing semantic developments, we require another abstraction scheme: the
event [103]. An event is regarded as a conceptual description summarizing the con-
tents of a development, and that description is closely related to real world knowledge.

The recognition of events in video sequences has been extensively tackled by the
research community, ranging from simple actions like walking or running [97] to com-
plex, long-term, multi-agent events [75]. The recognition of complex events and be-
haviors is becoming more and more a hot topic of the literature in this field. Three
main approaches are generally followed towards the recognition of non-basic events:
pattern recognition methods, state models, and semantic models.

First of all, the modeling formalisms used include many diverse techniques for
pattern recognition and classification, such as neural networks and self-organizing
maps [143], K-nearest neighbors (kNN) [88], boosting[1 18], support vector machines
(SVN) [97], or probabilistic or stochastic context-free grammars (CFG) [64, 91]. In
addition, the statistical modeling of Markov processes is tackled using state models,
such as hidden Markov Models (HMM) [100, 136], Bayesian networks (BN) [52],
or dynamic Bayesian networks (DBN) [3] have been often used when pursuing the
recognition of actions and activities. All these have been successfully applied to the
domain of event recognition, as it can be seen in Table 2.5.

Nevertheless, the high complexity found in the domain of video sequences stresses
the need to employ richer —in the sense of more explicit— semantic models. This need
comes emphasized by the fact that the interpretation of activities depends strongly
on the locations where events occur —e.g., traffic scenes, airports, banks, or border
controls in the case of surveillance—, which can be efficiently exploited by means of
conceptual models. Therefore, it is reasonable to make use of domain knowledge in
order to deal with uncertainty and evaluate context-specific behaviors. Thus, a series
of tools based on symbolic approaches have been proposed to define the domain of
events appearing in selected environments, e.g. those based on conceptual graphs or
conditional networks.
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Figure 2.1: Probabilistic techniques for event recognition. (a) Events in a Blackjack
play modeled via SCFG [91]. (b) Coupled HMM to detect interaction events between
individual humans. [100]. (c) State diagram of a DBN to recognize meeting events [3].

Starting from the early use of Finite State Automatons [58, 52] and similar im-
proved symbolic graphs [33], researchers have increased the expressivity of the models,
so that they can manifest precise spatial, temporal, and logical constraints. Such con-
straints have ended up complementing each other in multivariate analyses, e.g., by
means of temporal constraint satisfaction solvers applied over symbolic networks [130].
More recently, Nagel and Gerber [95] proposed a framework that combines Situation
Graph Trees (SGTs) with Fuzzy Metric Temporal horn Logic (FMTL) reasoning, in
order to generate descriptions of observed occurrences in traffic scenarios. Extensions
of Petri Nets have also been a common approach to model multi-agent interactions,
and used as well for human activity detection [4]. Some other recent approaches have
employed symbolic networks combined with rule-based temporal constraints, e.g. for
activity monitoring applications [10]. Fig. 2.2 shows examples of these symbolic struc-
tures used for the automatic recognition of events.

All these symbolic models, which work with predefined behaviors, show good
performances at behavior recognition, provide explanations of the decisions taken, and
allow uncertainty to be incorporated to the analysis, thus making it more robust to
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Figure 2.2: Model-based techniques for event recognition. Petri Net modeling a
security check at the entrance of a building [74]. Graphical representation of a multi-
thread event stealing [52]. SGT specializing a sit_giving way situation [94].

noisy or incomplete observations. The reasoning and interpretation modules conceived
in this thesis follow the work done by Nagel, and its posterior adaptation to human
behaviors accomplished by Gonzalez’s HSE [13]. They integrate fuzzy logic inference
engines with SGT to model the semantics of different events. We choose SGTs over
other symbolic approaches due to the efficacious mechanisms of specialization and
prediction they incorporate, which help modeling the universe of situations in a clear,
flexible, and controllable manner. SGTs and fuzzy metric-temporal logic, unlike Petri
nets, are adapted to model and evaluate human behaviors on specific contexts, which
we provide by means of ontologies.

The cited symbolic approaches allow semantic representations of the events de-
tected, which facilitate implementing user-computer interfaces. Nonetheless, none of
them carries out a thorough evaluation of the correctness or suitability of the selec-
tion of events, mainly due to the limited amount of semantics found in the video
sequences. Other works have proposed lists of semantic events for the surveillance
domain directly proposed by specific groups [128], or based on the system capabili-
ties to generate them [111, 38]. We propose instead to base the models on evidence
provided by human participants.

Recent, relevant work dealing with concept selection is presented in [68], which
comprises approaches included in two acknowledged EU projects, aceMedia and MESH,
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VIDEO EVENT RECOGNITION

Main topic

Examples of recognized events

Reference to publication

BN + FSM
Stochastic CFG

kNN

Symbolic
networks

Multi-layered
FSM

Conditional
MRF

Boosting

DBN
DML-HMM

Transition graph

Symbolic
networks

FSM + SVM
DBN

Petri nets

SGT

Stochastic CFG
SGT

pLSA + SVM
Self-organizing
maps

Petri nets

SVM

Converse, steal, approach, take object

Player added card, dealer removed chip,
player bets chip

Run, skip, march, hop, side-walk

Attack, robber enters, cashier at safe

Walking, parking, theft

Bend pick side, dancing, jump forward, side
walk

Talk on phone, scratch,
yawn, put eyeglasses

take medication,

Put down, press button, pick up

Can taken, browsing and paying,
cargo lift, truck comes

moving

Corner kick, golf swing, excited speech

Arrive, manipulate container,

stop

enter area,

Crouch, wave, pick up, reach

Crack egg2, pour milk,
pickup vanilla

stir, flip bread?2,

Customer / bank employee interaction, bank
robbery attempt, bank robbery success, access
safe

Wait, cross, leave, sit down, walk among
chairs

Money found in tray, remove money, take re-
ceipt, pick up scanner

Change lange, turn, catch up, follow, lose a
lead on

Walking, boxing, hand clapping, camel-spin,
sit-spin

Washing dishes, toileting, preparing a snack,
doing laundry, lawnwork

Enter, long security check

Shot on goal, placed kick, throw in, goal kick,
protest, airplane flying, running

Hongeng/Nevatia [52], 2001
Moore/Essa [91], 2002

Masoud et al. [88], 2003
Vu et al. [130], 2003

Mahajan et al. [33], 2004
Sminchisescu et al. [117], 2006
Smith et al. [118], 2005

Vincze et al. [129], 2006
Xiang/Gong [136], 2006

Xiong et al. [137], 2006
Fusier et al. [10], 2007

Ikizler /Forsyth [58], 2007
Laxton et al. [75], 2007

Albanese et al. [1], 2008

Gonzalez et al. [13], 2008
[64], 2008

Nagel/Gerber [95], 2008
Niebles et al. [97], 2008
Zheng et al. [143], 2008

Lavee et al. [74], 2009
Bertini et al. [15], 2010

Table 2.5

REPRESENTATIVE SAMPLE OF PUBLICATIONS FOCUSED ON THE RECOGNITION OF
ACTIVITIES, EVENTS, AND BEHAVIORS.
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both dealing with semantic video retrieval. Diverse suggestions are given regarding
the type and frequency of desirable concepts to include in semantic models. Some
of their main results have been used to justify the organization of knowledge in our
approach. Our contribution to the field of concept selection for model building is
presented in Section 4: we propose a pipeline that not only exploits the semantics of
textual descriptions from human participants, but additionally guides experts while
defining and integrating rule elements in behavioral models.

The ontological cognitive vision system presented in this thesis builds on both
purposive and reactive data flows, which incorporate techniques from several vision
and reasoning levels. Most authors agree that mechanisms for the evaluation, gath-
ering, integration and active selection of these techniques are fundamental to attain
robust interpretation of dynamic information [129, 45]. These needs for coordination
of contextual knowledge suggests to single out specific stages for semantic manipu-
lation. Although many advanced surveillance systems have adopted semantic-based
approaches to face high-level issues related to abstraction and reasoning, the use of
ontologies at high levels of such systems is only now beginning to be adopted. Fol-
lowing these premises, the structure of the proposed system is based on a modular
architecture, which allows both top-down and bottom-up flows of information, and
has been designed to integrate ontological resources for cooperation with the reasoning
stage.

Interacting with end-users

A prediction for the future that is widely accepted today is that the computing tech-
niques as we know them will move progressively to the background, while special
attention will be drawn on the human user. [101]. What this prediction suggests is
that next generation of computing to come will be especially focusing natural means
of interaction with end-users, using interfaces that are based on human models and
pursue human-oriented communication. In this context, the use of natural language
and virtual and interactive environments is vital to achieve that goal.

Next we list a brief selection of works pursuing an advanced interaction with
end-users in fields related to video understanding, video surveillance, multimedia,
and their derived applications. They include systems for automatic generation of
textual information, dialogue systems, augmented reality, or virtual storytelling for
simulation, for instance.

Natural language extensions

The automatic analysis and description of temporal events was already tackled by
Marburger et al. [86], who proposed a NL dialogue system in German to retrieve
information about traffic scenes. Other early publications like [54] describe work on
discourse generation using discourse structure relations, especially regarding auto-
mated planning and generation of text containing multiple sentences. More recent
methods for describing human activities from video images have been reported by
Kojima et al. [66]; [30] discusses a general framework for semantic interpretation
of vehicle and pedestrian behaviors in visual traffic surveillance scenes; and a series
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of automatic visual surveillance systems for traffic applications have been studied in
[5] and [27], among others. These approaches present one or more specific limita-
tions such as textual generation in a single language, surveillance for vehicular traffic
applications only, restrictions for uncertain data, or very rigid environments.

There have also been intense discussions about how to interrelate the semantic
information extracted from video sequences. The aceMedia integrated project intends
to unify multimedia representations by applying ontology-based discourse structure
and analysis to multimedia resources [67]. The EU Project ActIPret uses semantic-
driven techniques to automatically describe and record activities of people handling
tools in NL, by exploiting contextual information towards symbolic interpretation
of spatiotemporal data [129]. Its reasoning engine focuses on the coordination of
visual processes to obtain generic primitives from contextual control. The intelligent
multimedia storytelling system CONFUCIUS interprets NL inputs and automatically
generates 3D animation and speech [31]. Several methods for categorizing eventive
verbs are discussed, and the notion of visual valency is introduced as a semantic
modeling tool.

In [103], Park and Aggarwal discuss a method to represent two-person interactions
at a semantic level, also involving user-friendly NL descriptions. Human interactions
are represented in terms of cause-effect (event) semantics between syntactical agent—
motion—target triplets. The final mapping into verb phrases is based on simultaneous
and sequential recognitions of predefined interactions. Concerning the semantic map-
pings of NL sentences, it is also interesting to mention Project FrameNet [11] and
its successor, WordNet [34], which has built a lexical resource for several specific lan-
guages such as English, Spanish, German, or Korean, aiming to list the acceptable
semantic and syntactic valences of each word in each of its contexts. The automatic
exploitation of this repository for applications involving visual data has been done
before, for instance in Hoogs et al. [53], who tackled the translation of visual infor-
mation into words using WordNet. The resulting words are used to generate scene
descriptions, by searching through the semantic relationships in this repository.

Virtual environments

The synthetic generation of virtual environments is also significant in the field of user
interaction, providing tools for visual communication or simulation, for instance. Fol-
lowing [82], some of the most clear future challenges in creating realistic and believable
Virtual Humans consist of generating on-the-fly flexible motion and providing them
with complex behaviors inside their environments, as well as making them interactive
with other agents. Interaction between real and virtual agents has been little consid-
ered previously [11, 13]. Gelenbe et al. [11] proposed an augmented reality system
combining computer vision with behavior-based agents. Behavior is modeled using a
hierarchy of three behavior modules, but without considering the particular features of
human motion and behavior. Zhang et al. [139] presented a method to merge virtual
objects into video sequences recorded with a freely moving camera. The method is
consistent regarding illumination and shadows, but it does not tackle occlusions with
real moving agents. The use of computer vision techniques in augmented reality has
also been recently confronted by Douze et al. [32], where moving targets are tracked
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from image sequences and merged into other real or virtual environments. However,
the method does not consider behavioral virtual agents in the resulting sequence.

Some research has also been done on combining approaches from augmented reality
and virtual storytelling technologies. Balcisoy et al. [12, 13] present augmented reality
frameworks in which external users restrict virtual agents to perform a given script,
converting them in directors of the scene. Papagiannakis et al. [102] mixes the two
approaches to present virtual actors that introduce visitors of ancient locations into
the world of fresco paintings, by providing these actors with dramaturgical behaviors.
Lee et al. [77] describe a Responsive Multimedia System for virtual storytelling, in
which external users interact with the system by means of tangible, haptic and vision-
based interfaces.

Ontologies to enhance video understanding

It has been repeatedly stated how ontologies can be used effectively for relating seman-
tic descriptors to image or video content, or at least use them to represent and fuse
structured prior information from different sources towards that end [123]. Several
classical methods from artificial intelligence to represent or match ontological knowl-
edge —e.g., Description Logics (DL), frame-based representations, semantic networks—
are becoming popular again since the start of the Semantic Web initiative [68, 9].
Nevertheless, the challenge today is how to apply these approaches to highly ambigu-
ous or uncertain information, like that coming from language and vision, respectively.
For this reason, the incorporation of ontologies into cognitive vision systems has also
awaken the interests of many researchers in the field [84, 119]. The use of DL to
model uncertainty has been long discussed; an overview of the research in this field is
presented in Baader et al. [8].

In the case of video surveillance, ontologies have been used to assist to the recog-
nition of video events. Several authors have engaged initiatives to standardize tax-
onomies of video events, e.g., [96] proposed a formal language to describe event on-
tologies, VERL, and a markup language, VEML, to annotate instances of ontological
events. The use of this language is exemplified in videos from the security and meeting
domains. Ma and McKevitt [31] present an ontology of eventive verbs for multimodal
storytelling system including visual and linguistic concepts.

Regarding the field of multimedia, the automatic processing of multimedia content
has been enhanced by the apparition of new multimedia standards, such as MPEG-
7, which provide basic functionalities in order to manipulate and transmit objects
and metadata, and measure similarity in images or video based on visual criteria.
However, most of the semantic content of video data is out of the scope of these
standards. In these cases, ontologies are often used to extend standardized multimedia
annotation by means of concept hierarchies [124, 59], and also to provide meaningful
query languages —e.g., RDQL or SWRL- as tools to build, annotate, integrate, and
learn ontological information. An overview of such languages is presented in [142].

There have been efforts towards the generation of textual representations and
summaries from ontologies [22, 133]. In fact, these approaches are general-purpose
ontology verbalizers, agnostic of the class types and their properties, which result in
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outputs that are in general too verbose and redundant. Our contribution adapts the
textual descriptions and summaries to the type of content described, regarding its
organization into the modeled domain ontology.

Ontology-based approaches are also suitable for designing processes to query, re-
port, or mine data from distributed and heterogeneous sources. These capabilities
derive a series of tasks that are usually requested in the domain of multimedia se-
mantics, such as automatic video annotation to enable query-based video retrieval.
Bertini et al. [17] have recently presented an ontology-based framework for semantic
video annotation based on the learning of spatio-temporal rules. First Order Induc-
tive Learner (FOIL) is adapted to learn rule patterns that have been then validated
on some TRECVID video events. Similarly, other approaches emphasize the use of
ontologies to enable forensic applications in video surveillance [120].

The understanding of linguistic events has also been approached with ontologies.
For instance, Cimiano et al. [28] presented an ontology-driven approach that, based
on Discourse Representation Theory from linguistics, computes conceptual relations
between events extracted form a text and a referring expression representing some
other event, a state or an entity. Recent large-scale endeavors like the Virtual Hu-
man Project [19] propose a complete architecture for virtual humans, including NL
capabilities for generation and understanding, speech recognition and text-to-speech
synthesis, task reasoning, behavior blending, and virtual environment generation. An
ontological design was chosen for flexibility and extensibility, and to deal with the
many multimodal representations of knowledge considered. This work stresses the
importance of ontologies especially when relating language and concepts.

Resum

En P'actualitat podem trobar un gran nombre de publicacions en materia d’analisi de
contingut semantic en seqiiencies de video, sobretot pel que fa a aplicacions destinades
als camps de la video vigilancia i el processament multimedia. En general, els metodes
d’analisi computacional es poden classificar en dos grans grups, segons es basin en
models predefinits o bé recorrin a tecniques probabilistiques. En aquest capitol es
recull breument part de la feina investigadora més rellevant en els dos casos per
l'objectiu descrit. Tot i aixo, el contingut d’aquesta tesi es basa majoritariament
en 1'is de models semantics predefinits, que malgrat requerir la construccié previa
dels models per part d’experts, possibilita descripcions semantiques més complexes
i expressives i fa que l'entorn sigui molt més controlable. Aix0 ens resulta de gran
ajuda especialment en el cas de la video vigilancia.

L’extensa recerca existent en el camp s’ha dedicat a solucionar tot un seguit de
problemes de caire divers, com ara el reconeixement d’activitats de variada com-
plexitat, el context semantic de les zones observades a partir de caracteristiques de
moviment (necessari per a optimitzar 'anterior tasca), o els mecanismes de comuni-
caci6 efectiva amb usuaris finals, per mitja de tecniques com el llenguatge natural o
la realitat virtual o augmentada. En el cas del reconeixement de regions semantiques
d’interes, generalment es realitza un pas de clusteritzacié (K-means, GMM, xarxes
neuronals) i un pas posterior de segmentacié, generalment basat en teécniques de
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Markov (MRF, CRF) o arbres randomitzats de caracteristiques d’imatge.

Quant a 'avaluacié d’activitat humana, durant la darrera decada s’ha aplicat una
llista practicament interminable de tecniques de tot tipus: cadenes de Markov, xarxes
bayesianes, parsing probabilistic, boosting, xarxes neuronals, xarxes de Petri, SVM,
arbres de situacio. . . Per al nostre conjunt d’aplicacions, generalment de domini tancat
i restringit, la nostra preferéncia passa per fer servir models simbolics.

Un altre aspecte important té a veure amb 'organitzacié de la informacid, que ha
de facilitar el manteniment i I'extensibilitat dels models, especialment en el cas de
sistemes multi modals com el nostre. En aquestes circumstancies, I'tis d’ontologies
resulta adequat per a una correcta centralitzacié i reutilitzacié de la informacio
disponible, tal i com s’ha demostrat repetidament amb la incorporacié d’interficies
lingiifstiques 1 moduls d’explotacié semantica per a sistemes cognitius artificials de
visi6.

38



Chapter 3

Taxonomy-based dynamic semantic
region learning

“A place for everything, and everything in its place.”
Thrift (1875), by Samuel Smiles

Systems for advanced activity recognition depend strongly on the particular
configuration of a scenario. In such systems, the locations where interest-
ing motion events occur are located and attributed with semantic properties
by human experts. This chapter explores the automation of this process,
i.e., segmenting and labeling semantic regions in scenarios from a given
domain —urban surveillance— using only common knowledge to guide the
analysis of image sequences. Hence, both the sensory and the semantic
gap intervene in this chapter —i.e., interpreting the semantics of a region
from limited observations of motion—, along with the model gap, which
limits a priori knowledge to the domain of urban traffic.

As stated in [30], the ability to reason about what we see in video streams is
influenced by our ability to break down spatial structures into semantically meaningful
regions. Such regions are characterized by their appearance, e.g., the line markings of
a crosswalk allow us to identify it, visually. Nevertheless, we can also identify regions
functionally, i.e., according to the behavior observed on them. This is clearly the case
for crosswalks, see Fig. 3.1 (a—j).

Urbanism nowadays is packed with examples of how the observed behaviors mo-
tivate the functionality of a region, especially speaking of paths. For instance, the
paths designed in Dartmouth University campus were placed according to the grounds
left bare by their walking students in winter. In addition, those well-worn paths that
develop when people depart from formal routes and create their own, unofficial, more
straight paths, were called by Gaston Bachelard chemins du désir or pathways of
desire, see Fig 3.1 (i).

In this chapter, we propose to exploit observed behaviors performed by pedestrians
and vehicles in urban scenarios, in order to recognize and label meaningful regions
in them. An automatic modeling of semantic regions in the scenario is beneficial
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3.1

Figure 3.1: (a-j) Different instances of crosswalks in urban scenarios around the
world. Although their appearance varies significantly (a—g) or they are not clearly
visible (h—j), their functionality stays the same: cars should stop when pedestrians
cross. (i) Pathways of desire in Detroit.

for posterior reasoning systems, which facilitate knowledge-based interpretations of
complex occurrences in a situated context.

Background labeling by compatibility

The semantic learning of a background model consists of partitioning an arbitrary
scenario of the domain into a lattice of regions, and have each region learn a spa-
tiotemporal model. Each model should be estimated based on trajectory properties,
and finally assigned an explicit label that categorizes it. Here, we tackle the problem
of semantic region learning as one of multiclass semantic segmentation. Towards this
end, efficient techniques have been developed, such as MRF [69] and its variants, like
DRF [70], or LCRF [135], or alternatives like Semantic Textons [114]. In our case,
the categorization of regions from their statistical models will be posed as a labeling
task and formulated as a MAP-MRF inference problem, defined by irregular sites and
discrete labels [79].
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L Street Void (V)

/Road (R) Sidewa&
Waiting zone Crosswalk (C) Waiting zone
cars (Wc) pedestrians (Wp)

Parking lot (P)

Figure 3.2: Taxonomy of location categories for urban surveillance.

Sites and labels

The lattice of irregular regions to be labeled is usually defined either by perceptual
groups —out of a segmentation process—, or by clusters of recognized features within
the scene [79]. Instead, we aim to define lattices that capture the condition of far-field
projectivity, which is characteristic of scenarios in our domain. To do so, we compute
the scene to ground-plane homography [50], so that each lattice is a set of regions R
obtained as the projection of a rectangular grid from ground-plane to scene.

In addition to the sites, a set £ of seven discrete labels defines generic, common,
and relevant locations in urban surveillance. Labels are organized taxonomically as
shown in Fig. 3.2. A void label (V') is made available for those cases in which none
of the labels applies, as in [35].

Inference

Having defined the set of sites and labels, we next describe the process of assigning
a label [ € L to each region » € R. The disparity of labels is assumed to be piece-
wise smooth in the lattice of regions. A series of observation vectors o = {z,y,a}
constitutes the evidence from the trajectories, where (z,y) is the estimated position
of the agents in the image plane —the lower middle point of their bounding box—,
and a is a binary parameter stating whether the agent is a vehicle or a pedestrian.
The derivation of the site labels {l} is formulated as a MAP-MRF inference in terms
of a pairwise Markov network, whose graph configuration is factored into the joint
probability

P} Aoh) = o TT 6000 TT rslinsls), (3.1)

r€ER {r,s}eN

where Z is a normalization factor. The data compatibility function ¢, (l,,0,) is inter-
preted as the likelihood of choosing label [ for region r given the vectors o observed
in r. This function is learned by trajectory analysis, as later explained in Section 3.2.

On the other hand, smoothness constraints are encoded into ¥, (I, ls), so-called
internal binding, which models how neighboring regions affect to each other regarding
their classes. In this term, the set N contains all pairs of interacting regions, in our
case adjacent 8—connected regions in the projected grids. In our work, ¥, 4(-) is a
prior set of constraints directly taken from topological assumptions. These are derived
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3.2
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"8 = 1) —

s 8 3
Code and label from £ o > 7 o
C  Crosswalk fl=1 + + +/- ]
S Sidewalk 2= + - - -]
R Road =0 - + - -]
W, Ped. waiting zone f‘=[ + - + - ]
W, Veh. waiting zone f°=[ - + + - ]
P Parking =0 4/ + +/- + ]
V' Void =1 - - _ -]
Table 3.1

DESCRIPTION OF LABELS AS PROTOTYPICAL VECTORS OF THE TRINARY FEATURES
pedestrian, vehicle, stop, AND parking.

from a defined hierarchy of labels depicting domain knowledge, as later explained in
Section 3.3.

Once the compatibility functions ¢, (-) and ¥, s(-) are defined, a max-product belief
propagation (BP) algorithm [35] derives an approximate MAP labeling for Eq. (3.1).

Data compatibility

We define the function ¢,.(I,, 0,) as the likelihood of region 7 to be labeled as I, having
observed a series of vectors o, in the region, and according to a motion-based model
that encodes prior domain knowledge.

Challenges arisen by semantic scene —similarly, by document analysis or medical
imaging— deal with classes that are overlapping and not mutually exclusive. Hence,
we characterize scenario regions following the prototype theory, in which class labels
are defined in terms of conjunctions of required (+), forbidden (), and irrelevant
(+/-) features [29]. In our case, labels are modeled using 4 features: target is (i) a
pedestrian or (i) a wvehicle, (iii) has stopped, and (iv) has parked, i.e., has stopped
longer than a predefined time value, see Table 3.1. A series of prototypical feature
vectors {f1... fI£1} results from this step.

Next step consists of online smoothing and sampling data retrieved from tracking.
To do so, each new complete trajectory is fitted by iteratively increasing a sequence
of connected cubic b-splines (Fig. 3.3b): an adjustment step divides a spline into con-
nected sub-splines more fitted to the trajectory, and a termination step validates a
subsequence when its maximum distance to the trajectory is below a 10% of the total
length. Once the recursion is done, the global sequence of splines is sampled to gener-
ate a set of time-equidistant control points (Fig 3.3c), each one having an observation
o = (x,y,a). The position (z,y) is estimated by a multi-target tracker [107], and
the target type (a) is identified using a scene-invariant discriminative approach [23].
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(b)

(d)

Figure 3.3: Region modeling by trajectory analysis: (a) original image,
(b) smoothed trajectories, (c) sampled control points, (d) initial labeling.

When a new control point is generated, its enclosing region updates an histogram of
the 4 features described. The two last ones are derived from consecutive observations:
a stop property is asserted when a position is repeated, whereas a parking is told to
happen when a target is stopped for more than 2 minutes. Finally, an online averaged
vector of observed features f, is obtained for each region.

The data compatibility of the observations in region r with label [ € L is a softmax
function of the Hamming distance between the averaged vector of features observed,
fo, and the vector defined for that label, f:

exp(—dg (fo, f1))
Zmeﬁ exp(—du (fo, ™)) )

¢r(lr7 Or) = (32)

The data compatibilities learned are used to initially provide a rough scene model.
This initial labeling omits the inference phase, and simply assigns to each region the
label with a highest value of ¢, (), see Fig. 3.3d. Due to the limited coverage of the
scene by the control points, there is a massive presence of Void labels, in red.
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3.4

street
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DN s

Figure 3.4: Topological constraints equivalent to the taxonomy of labels in Fig. 3.2.

Smoothness

The smoothness term v, (I, ls) specifies inter-region compatibilities, stating how the
system privileges or disfavors label [, at expenses of [, when r and s are adjacent.
In other words, it conditions a priori the apparition of neighborhoods formed by a
certain combination of classes. The goal here is to specify compatibilities that discard
unlikely labelings, smooth poorly sampled ones, and preserve detailed information
that be scarce but consistent.

In our case, advantage is taken on the hierarchical organization of £ to constrain
discontinuities between labels. L fixes topological constraints of set inclusion, as
seen in Fig. 3.4: it establishes relations of particularization; e.g., a parking lot is a
concrete segment of road, and also constrains the adjacency between different regions.
Consequently, compatibilities are fully specified by

1 1=l
Yrs(lrls) = S o Adj(ly, L) (3.3)
B otherwise

where 1 > a > S > 0, and Adj(l,,ls) states that [, and I; are adjacent in the
topological map, i.e., direct links in the taxonomy. For example, P-R, C—R, or C-S
are adjacent pairs, but W.—P or R—S are not. This model tends to firstly maintain the
identity of the sampled labels, secondly favor dilation and erosion between adjacent
regions, and ultimately allow relabeling for region smoothness.

Geodesic interpolation

Having defined compatibilities for observed evidence and sought smoothness, the
application of an efficient BP algorithm [35] approximates an optimal labeling via
MAP-MRF inference. Nonetheless, certain issues make it difficult to obtain accu-
rate segmentations. A stage is proposed before the inference step to overcome these
difficulties.

In cases of very poor sampling, e.g., when estimating models of parking lots, the
regions obtained by MAP-MRF inference with the smoothness prior are often still
disconnected or not representative. To solve this problem, a preprocessing stage is
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3.5

(a) (b) ()

Figure 3.5: Top: non-smoothed marginal probabilities viewed (a) as a discrete
mesh and (b) as intensity maps, and (c) initial label assignment (best viewed in
color). Bottom: effects of the interpolation.

used to reinforce spatial coherence by geodesic interpolating lines; the idea is to create
linear ridges that connect high-valued and isolated samples in each label’s marginal
probability map (Fig. 3.5a), in order to emphasize the presence of connected structures
in them (Fig. 3.5b). As a result, the subsequent MAP-MRF process is reinforced with
these structures and guides more sensible inferences for an eventual labeling, as shown
in Fig. 3.5c.

Evaluation

The presented framework has been evaluated in 5 urban datasets, obtained both from
private and public (web) cameras, and having diverse characteristics. The Hermes
dataset ! presents an interurban crosswalk scenario with more pedestrians than ve-
hicles; Ozford centre > shows an intersection highly populated by both target types;
Devil’s Lake 3 presents moderate agitation but challenges with an intense projectivity;
Kingston—1 contains a partially seen bus stop close to a crosswalk, and Kingston—2
shows a minor street with perpendicular parking lots used for long periods of time.
These two last scenarios are extracted from the Kingston dataset [19]. Night sequences
have been omitted.

Evaluation is carried out using 25 ground truth images, i.e., 5 participants per sce-
nario, consisting of pixel-level maps segmented in the 7 categories shown in Fig 3.2.
Participants were asked to visually identify the semantic regions by observing recorded

lhttp://www.hermes-project.eu/
2http://webcam.oii.ox.ac.uk/
Shttp://www.opentopia.com/showcam.php?camid=4182
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footage, and partition them accordingly. In order to evaluate discriminant capability,
and given that manual region labeling of the scenarios is prone to vary across humans,
the system will perform well if segmentation errors compare to inter-observer variabil-
ity. This criterion is commonly used for validation in biometrics [72]. To accomplish
this, each ground truth image has been divided into the cells of its corresponding
grid, and a modal filter has been applied over each cell, assigning the most repeated
pixel label to that region. Finally, each label assignment has been evaluated against
the other ground truths and averaged, for each ground truth and scenario. Fig. 3.6a
shows the results of this inter-observer evaluation, which constitute a baseline of the
desired system’s performance.

The performance of our method has also been compared against a median filter.
To do so, we have computed 3 different accuracy scores over the 5 datasets, evaluating
both techniques against the ground truth assignments. In the evaluation tests, the
maximum number of iterations for both the MAP-MRF and the median filter has
been limited to 15. The values of a and § for the MAP-MRF are 0.80 and 0.60
respectively, in all the experiments.

The matricial configuration of the lattice reduces computational effort in both
region modeling and label inference. Observations update the region models online
as trajectories are complete. Regarding the final inference over regions learned, for a
grid size of 75 x 75 geodesic interpolation takes at most 3 seconds to complete, and the
BP algorithm with maximum iterations takes approximately 90 seconds in a Pentium
IT 3GHz machine with 2Gb RAM.

We analyze the consistency of the results by testing over a wide range of grid size
values, which is the main parameter intervening in the sampling process: given that
each control point sampled from a trajectory affects uniquely its enclosing region,
the number of cells tesselating the scenario is indicative of the area of influence of
tracked objects during region modeling. The dimensions of the projected grid in our
experiments range from 40 x 40 to 150 x 150. Lower cell resolutions do not capture
the details of the scenario, thus not being suitable to model semantic regions.

Additionally, the tracked trajectories used as observations incorporate an amount
of tracking errors. Each error consists of one or more of the following cases: mis-
classification of agents, lost tracks, and false detections. Table 3.2 gives numerical
information on the agents involved in each scenario and the number and type of er-
roneous observations. The system has been evaluated with and without the presence
of errors, in order to test robustness.

Quality scores

The performance of each scenario has been evaluated in terms of accuracy. Three
scores have been considered: overall accuracy (OA), segmentation accuracy (SA),
and weighted segmentation accuracy (WSA). The two former scores are defined by
_ TP+TN _ TP
OA = TpTFPiTNTFN SA = TprFPIEN
being TP, TN, FP, FN true positives, true negatives, false positives and false neg-
atives, respectively. OA is traditional accuracy, typically overfavored in multiclass
contexts given the high value of TN as the number of classes increments. For this
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Correct Erroneous
Scenario (total tracks) | (a) (b) | Total | (¢) (d) (e) | Total
Hermes (161) 103 26 129 | 13 10 9 32
Oxford centre (180) 87 62 1491 20 8 3 31
Devil’s Lake (179) 49 98 147 | 17 10 5 32
Kingston-1 (161) 8 53| 138| 12 9 2| 23
Kingston—2 (87) 35 33 68 7 4 8 19
Table 3.2

NUMBER OF CORRECTLY TRACKED (A) PEDESTRIANS AND (B) VEHICLES IN EACH
SCENARIO, AND AMOUNT OF OBSERVATION ERRORS DUE TO: (C) AGENT
MISCLASSIFICATION, (D) LOST OR MISSED TRACKS, AND (E) FALSE DETECTIONS.

reason, S'A has been increasingly used to evaluate multiclass segmentations, as in the
PASCAL-VOC challenge *. Additionally, WSA is defined by

WSA = rprrbrrne

in which an assignment is now considered positive if the inferred label either equals
the real one, or is its direct generalization; and negative otherwise, thus modifying the
account of errors. For instance, an actual parking is here positively labeled as road,
and a pedestrian waiting zone is correctly labeled as sidewalk. Note that this score does
not necessarily benefit our approach, since our smoothness constraints do not award
class generalization. The goal of this metric is to penalize wrong particularizations.
Ground truth evaluation in Fig. 3.6a shows that W.SA finds consistency in different
ground truth realizations —unlike S A—, while penalizing differences more than OA.

Median filter

Median filters are the most used nonlinear filters to remove impulsive or isolated noise
from an image. Their main characteristic is the preservation of sharp edges, which
makes them more robust than traditional linear filters and a simple and cheap solution
to achieve effective non-linear smoothing. They are commonly used for applications
of denoising, image restoration, and interpolation of missing samples, all of which are
applicable in our context.

We have compared the performances obtained by a median filter and by the pro-
posed inference framework, to evaluate the contributions of taxonomy-based con-
straints to the smoothing task. The filter is applied for each marginal probability
map P(f, =1),l =1...|L], maintaining the MRF neighborhood defined. A median-
filtered labeling is performed by assigning the most probable label to each region, once
the process has converged or exceeded the maximum number of iterations allowed.

“http://pascallin.ecs.soton.ac.uk/challenges/V0OC/
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3.6

Results

Fig. 3.6b shows quantitative scores for OA, SA, and W SA in the 5 scenarios, for grid
sizes ranging from 40 x 40 to 150 x 150. Each plot draws the results of 4 approaches,
applied to the 5 series of ground truth available. These approaches correspond to:
(i) assigning labels using only observed evidence from trajectories, i.e., neglecting
smoothness priors (Initial); (ii) using a median filter over the initial models (Median);
(iii) applying MAP-MRF inference to the initial models (MRF); and (iv) applying
geodesic interpolation to region models before MAP-MRF inference (GI-MRF').

Occasional plot oscillations are mainly due to the non-linear operation of sampling
ground truth images into lattices of a concrete size. Moreover, given that the region
modeling is based on point samples, augmenting the cell resolution progressively low-
ers the quality of the initial models, as well as the accuracy on posterior labelings.
Nonetheless, it is shown that interpolation grants a performance almost invariant to
the grid size used. This is emphasized in case of poor sampling, e.g, parking lots.

Table 3.3 shows numerical results for a grid of 75 x 75 cells, with and without
considering noisy trajectories. As seen in this table, OA is excessively favored due to
the high number of true negatives produced in a multiclass context, thus suggesting
SA and WS A as more convenient to compare the different techniques. Particularly,
WS A should be interpreted as the precaution to avoid wrong particularizations. With
these metrics, experiments using geodesic interpolation and smoothness constraints
practically always achieve the maximum score, whereas a median filter fails dramat-
ically as the grid resolution augments, or in case of ill-convergence; e.g., it fails to
preserve parking regions in Kingston—2. Additionally, it is seen that even by incor-
porating erroneous trajectories to the datasets, letting them be about a 20% of the
total, the accuracy values remain stable.

Fig 3.7 depicts qualitative step results of the labeling process for a grid size of
75 x 75. For visualization purposes, results are shown within a ROI. The depicted
results represent the activity of the tracked objects, rather than the visual appearance
of the scenario. Instead, appearance is commonly used to guide manual labelings. We
also identify an edge-effect of Void regions, given that control points near the edges
often lack of precedent or consecutive samples to update their regions. This happens
especially for vehicles, due to their higher speed and poorer sampling. Finally, cases
of intense projectivity —e.g., Devil’s Lake—, make it more difficult for the models to
emphasize the presence of connected regions, thus provoking generalized smoothing.

Discussion

We have shown an effective motion-based method for automatic semantic segmen-
tation and labeling in urban scenarios. Our approach enhances state-of-the-art on
background labeling by using prior taxonomical knowledge to guide consistent in-
ferences during labeling. In addition, it is invariant to viewpoint and of reduced
computational cost, for it does not require to compute costly image descriptors.
Initial region models are learned from trajectory features, and updated as new
trajectories are available. Smoothness is taken into account using a MAP-MRF in-
ference, whose parameters are conditioned by prior taxonomical knowledge on the
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Overall accuracy Segmentation accuracy | Weighted segmentation

(OA) (SA) accuracy (WSA)

= = =

3 3 Sl = = £ |z £ =

s 8 2 2 £ % 2 2 £ 2 O

s =2 =2 U s =2 =2 0 s =2 =2 U
- Hermes 0.98 0.96 0.97 0.98 | 0.40 0.40 0.45 0.64 | 0.50 0.44 0.51 0.77
é Oxford Centre | 0.98 0.97 0.98 0.98 | 0.46 0.52 0.58 0.61 | 0.65 0.66 0.75 0.93
é Devil’s Lake 0.98 0.99 0.99 0.99 | 0.37 0.39 0.39 0.44 | 0.49 0.46 0.52 0.78
S Kingston-1 0.98 0.97 0.98 0.99 | 0.43 0.37 0.50 0.66 | 0.46 0.44 0.59 0.76
S Kingston—2 1.00 0.84 1.00 0.98 | 0.27 0.24 0.28 0.56 | 0.36 0.24 0.35 0.69
Average 0.98 0.94 0.98 0.98 | 0.39 0.38 0.44 0.58 | 0.49 0.45 0.54 0.78
! Hermes 0.98 0.97 0.97 098 | 0.40 0.40 0.45 0.53 | 0.51 0.45 0.52 0.78
8% Oxford Centre | 0.98 0.97 0.98 0.98 | 0.46 0.53 0.56 0.57 | 0.66 0.68 0.76 0.94
gs Devil’s Lake 0.98 0.99 0.99 0.99 | 0.37 0.39 040 0.43 | 0.50 0.47 0.53 0.78
{OSE Kingston-1 0.97 0.98 0.98 0.98 | 0.43 0.40 0.50 0.65 | 0.46 0.50 0.60 0.76
= Kingston—2 1.00 0.84 0.99 0.98 | 0.28 0.24 0.34 0.55 | 0.38 0.26 0.40 0.76
© Average 0.98 0.95 0.98 0.98 | 0.39 0.39 0.46 0.55 | 0.50 0.47 0.56 0.80

Table 3.3

QUANTITATIVE OA, SA, AND WSA SCORES FOR A GRID SIZE OF 75X 75, WITHOUT AND
WITH THE PRESENCE OF ERRONEOUS TRAJECTORIES.

domain. The framework is scenario-independent: it has been applied to 5 datasets
showing different conditions of projectivity, region content and configuration, and
agent activity. We have shown step results at every stage of the process, to capture
the particular contributions of each proposed task. The method has been compared
to a median filter, showing its better performance on the 3 scores tested.

Further steps include extending the system to indoor scenarios. Such environ-
ments incorporate more complex semantics on agent behaviors, and present challeng-
ing tracking difficulties like occlusions or clutter, which could be solved as well with
the use of domain knowledge.

Resum

En aquest capitol s’ha descrit un metode basat en ’analisi de trajectories que permet
realitzar tasques de segmentacié i etiquetatge de les regions semantiques de I’escenari,
de forma automatica, per a escenaris de videovigilancia de tipus urba. La nostra pro-
posta millora l'estat de I'art actual en etiquetatge de fons d’escena basat en moviment,
pel fet que fonamenta les analisis en coneixement taxonomic a priori, que guia el procés
d’etiquetatge per tal de realitzar inferencies consistents. Addicionalment, el metode
és invariant en quant al punt de vista i té un cost computacional reduit, per la qual
cosa no requereix 1'is de descriptors d’imatge computacionalment costosos.

El metode descrit es duu a terme fonamentalment en dues parts: primerament,
les regions inicials del model semantic s’aprenen a partir de caracteristiques de cada
trajectoria observada, i es van actualitzant automaticament a mida que es reconeix
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una nova trajectoria. En segon lloc, el model inicial, forca sorollds, es suavitza fent
servir tecniques d’inferencia MAP-MRF, els parametres de la qual estan condicionats
per coneixement taxonomic a priori del domini en qiiestio.

La proposta és independent de I’escenari. S’ha aplicat a 5 bases de dades, cadas-
cuna d’elles amb diferents caracteristiques de projectivitat, tipus de regions contin-
gudes, configuracié estructural d’aquestes regions, i activitats d’agents observades
per les cameres. Les dades de tots els conjunts sén reals, la meitat de cameres web
publiques.

S’ha demostrat el bon funcionament del sistema per als conjunts de dades pro-
porcionats. S’han recollit els resultats parcials per a cada etapa del procés, per tal
d’entendre les contribucions particulars de cada tasca proposada. Hem comparat el
nostre metode amb tecniques tradicionals com ara el filtre de mediana, i demostrat
el bon funcionament de la nostra proposta en els tres sistemes d’avaluacié provats.

Les segiients passes que hem considerat inclouen principalment el pas de I’avaluacio
de la tecnica de dominis diferents exteriors urbans a altres de diferents, com ara
escenes interiors. Aquests nou domini incorpora tipus de semantica més complexes
pel que fa al comportament dels agents respecte el seu entorn, i presenta serioses
dificultats quant al seguiment automatic dels agents, com ara oclusions i clutter, que
podrien solucionar-se fent un bon tus del coneixement de domini a priori.
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Figure 3.6: (a) Evaluation of the inter-observer variability in ground truth segmen-
tations. (b) Statistical scores for the 5 considered scenarios. In both cases, grid sizes
range from 40 x 40 to 150 x 150. More details in the text.
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constraints, (e) ground truth example. Best viewed in color.



Chapter 4

Ontologies for behavior modeling
and interpretation

“Once you've seen the signs about the barn, it becomes impossible to see
the barn. (...) We’re not here to capture an image, we’re here to
maintain one.”

White Noise (1985), by Don DeLillo

The aim of this stage is twofold. First, it should reason about collected
visual evidence, and provide a holistic interpretation of the facts according
to prior models; we will discuss how to build and apply these models.
Secondly, it should articulate the semantic knowledge for rapid exploitation
at any level of the system, i.e., from cameras to end-users; thus, we will
also argue about the centralizing role of this semantic stage. The gaps
involved in this chapter are mainly the semantic and model gap.

The field of video understanding has received much interest in recent years. In
general, it aims to translate video sequences into high-level semantic concepts. This
field typically requires a step of event modeling, which becomes central to understand
video content in many applications like smart surveillance, advanced user interfacing,
or semantic video indexing. However, the interpretation of visual evidence for video
understanding is not trivial: as described in the introduction of this thesis, we find
an inherent ambiguity between a sequence of images and its possible interpretations,
the semantic gap [116] described in the introduction.

In order to bridge the semantic gap, it has been proved useful to rely on semantic
models, which aim to detail the essential lower-level attributes of the high-level terms
of interest, and restrict their applications. Among all semantic models, ontologies
become especially useful, for they provide explicit structure —hierarchy, dependencies—
to a set of chosen concepts, integrate them into a single repository, and enable the
derivation of implicit knowledge through automated inference. Event modeling finally
has to provide the formal description of ontologies and other types of semantic models,
thus enabling further recognition of spatiotemporal events.

53



4.1

As pointed out in [74], the main general question in event modeling is “How can the
events of interest be represented and recognized?”. Nevertheless, another important
question arises prior to this one when facing a domain of interest, which sometimes is
not given enough attention: “Which semantic concepts should be chosen, in order to
build the different interpretative models?” As an answer to this question, techniques
for concept selection are applied to facilitate the first step on the building of semantic
models.

Top-down modeling for event recognition

Whereas the selection of semantic concepts in event modeling is often implicit and
unstructured, we suggest a guided approach based on the usage of terms within NL
discourses. Our top-down method consists of having experts gather NL textual evi-
dence from human participants, and use the implicated semantics to define ontolog-
ical resources for multiple applications based on video content interpretation. The
advantage of this approach is to adjust completely to the aim of the application, con-
sidering a minimal set of relevant concepts that are statistically consistent with the
usual descriptions. However, we have the drawback of dealing with linguistic defini-
tions, usually vague or imprecise, that could be difficult to match with the inference
capabilities of the system.

The general architecture of the proposal is presented in Fig. 4.1. We divide the
system in 3 distinguished levels devoted to visual, conceptual, and user interfacing
tasks, and the presented process is as well divided in 2 steps: an initial top-down
modeling of the knowledge bases guided by an expert, and a subsequent automatic,
bottom-up inference by the system using the resulting event models.

The top-down modeling process depicted in Fig. 4.1 works as follows: first, based
on several training videos, we gather event descriptions reported by a large number of
non-expert users and assess the variability of these reports. The descriptions are then
used to build the semantic models in a strict top-down fashion, unlike the majority
of current approaches for video indexing and understanding. Top-down approaches
enable an a priori selection of relevant features, which is an advantage with respect
to the generic models used in bottom-up approaches, given that we define proce-
dures that are goal-directed [37]. Our integrative architecture incorporates a large
component of domain-knowledge that is managed by dedicated modules, a common
characteristic of expert systems.

As a result of the top-down modeling process, a series of semantic models and
knowledge bases are obtained at different stages of the system. The next step,
bottom-up inference, automatically produces high-level interpretations of occurrences
for generic image sequences in the domain. Eventually, it also facilitates different
forms of user-interaction: natural language texts, query-based retrieval of informa-
tion, and generation of virtual sequences.

Next sections detail how to accomplish the top-down modeling of events. The first
part of this chapter describes the top-down modeling employed to address the task of
knowledge management. The resulting models are later used for inferential reasoning
and video understanding. The different steps include:
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Figure 4.1: General overview. (a) First, knowledge bases are built top-down, based
on end-user event descriptions. (b) Once domain knowledge is modeled, any video in
the domain can be automatically indexed for retrieval, in a bottom-up fashion.

1. building a domain ontology from NL questionnaires of event description run on

several subjects,

2. contextualizing targeted events with concrete models that decompose them into

simple facts, and

3. link these facts to spatiotemporal data available from tracking.

The target events to be detected in surveilled footage are typically closed and
sdetermined by the purposed application. Nevertheless, assessing interpretations of-
ten becomes uncertain when dealing with complex events, leading to engineered solu-
tions that may differ from end-user’s perceptions. In order to deal with this, we have
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4.2

()

Figure 4.2: Snapshots of outdoor (a)(b) and indoor (c) video surveilled scenarios
used for the ground-truth annotation of semantic evidence.

run questionnaires to identify which events are relevant to end-users in our restricted
domain, in order to model them in a top-down fashion.

The ground-truth annotation of events has been extracted this way from psy-
chophysical experiments of manual video annotation. Three scenes from indoor and
outdoor scenarios have been recorded, showing different kind of interactions among
people, objects, and vehicles, see Fig. 4.2. They show some complex events like steal-
ing objects, crossing roads, waiting to cross, or getting almost run over by cars. A
population of 60 English speakers were requested to visualize the videos®. 40 of the
subjects were told to annotate at least 20 notable occurrences happening in each
training sequence, the other 20 did the same for the two test sequences used for ex-
perimental results. Similar annotations were manually gathered together by experts,
e.g. ‘talk’ — ‘have a conversation’ — ‘discuss’ — ‘talk to someone’. Table 4.1 gives the
frequency of common annotations for outdoor and indoor training videos. For events
occurring more than once in the same video, the maximum frequency was considered.

Ontological modeling

The main motivation for the use of ontologies is to capture the knowledge involved in a
certain domain of interest, by specifying some conventions about the content implied
by this domain. Ontologies are especially used in environments requiring to share,
reuse, or interchange specific knowledge among entities involved in different levels of
manipulation of the information.

There exist many approaches for the ontological categorization of visually per-
ceived events. An extensive review is done in [81], from which we remark Case
Grammar, Lexical Conceptual Structures, Thematic Proto-Roles, WordNet, Aspec-
tual Classes, and Verb Classes, which focus on the use of eventive verbs as main
representative elements for classifying types of occurrences. As an extension, our ap-
proach relates each situation from an ontology with a set of required entities, which
are classified depending on the thematic role they develop. The main advantage of this
approach is an independency of the particularities of verbs from a concrete natural
language, thus facilitating addition of multiple languages.

1The subjects were recruited from 5 different countries and from different age intervals: 18-25
(12%), 25-35 (66%), and over 35 (22%). They also came from different backgrounds: technical
studies (27%), sciences (40%), humanities (30%), or none of the previous (3%).
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Annotations for Annotations for

Use | Outdoor Scenarios Use | Indoor Scenarios
100% | leave object 100% | pick up / retrieve object
100% | wait/try to cross 96% | leave a location

90% | walk in a location 96% | use vending machine

86% | cross the road 96% | sit down at a table

84% | run off/away 92% | talk to someone

84% | yield someone 90% | appear in a location

80% | chase after someone 88% | leave object on the floor

70% | pick up an object 85% | stand up

63% | join someone at a location 81% | shake hands with someone

60% | appear in a location 69% | kick/hit vending machine

50% | steal object from someone 62% | carry an object

47% | do not allow someone to cross 58% | go/walk to a location

44% | danger of runover 50% | abandon/forget an object

(a) (b)
Table 4.1

MOST COMMON ANNOTATIONS FOR (A) OUTDOOR AND (B) INDOOR SCENARIOS, SORTED BY

THE PERCENTAGE OF PEOPLE USING THEM WHILE DESCRIBING THE EVENTS.

The design of the ontology for the described cognitive vision system has been
done putting especial effort on the definition of the knowledge base. DL allows us
to structure the domain of interest by means of concepts, designing sets of objects,
and roles, denoting binary relations between concept instances [8]. Specifically, our
domain of interest is represented by a knowledge base K = (T, .A), which contains

two different types of knowledge:

e A TBox 7 storing intensional knowledge, i.e. a set of concept definitions which

classify the terminological information of the considered domain. In practice,
we split the terminology into several TBoxes (i.e. taxonomies), according to the
semantic nature of the participants for each set. Some of the main important
sets are Event-TBox (see Table 4.2), Entity-TBox, and Descriptor-TBox (see
Table 4.3).

An ABox A storing assertional knowledge, i.e. factual information concerning
the world state and the set of individuals which can be found in it. This ex-
tensional knowledge will be first instantiated by reasoning and inference stages
dealing with First-Order Logic, and then introduced into the relational database
by means of concept assertions, e.g. pedestrian(Agent1) and role assertions,
e.g. enter (Agent2, Crosswalk)

The ontology language we use has been restricted to the SHZF family (a.k.a.

DL-Lite), which offers concept satisfiability and ABox consistency to be log-space
computable, thus allowing the relational database to handle in practice large amounts
of data [1].
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An ontology of events has been created out of the results provided. Each anno-
tation incorporates, explicitly or implicitly, the semantic context required to model
an event, by means of a series of concepts that have been structured in 3 categories:
events, entities, and constraints. The FEwvent concepts identify the occurrence de-
scribed, and are organized from simple to complex as (i) spatiotemporal inferences
from tracking, (ii) interactions among entities, and (iii) interpretations of complex
events in specific contexts. Entily concepts determine the nature of the participants
in the event, which can be agents, objects, or locations. Finally, Constraint concepts
account for the roles that entities are required to satisfy within an event, i.e., the
list of agents, patients, locations, or objects needed. All these concepts are classified
in taxonomies and together conform the terminological part of the ontology, the so-
called TBox T [47]. Table 4.5 reports how the annotated events are used to build the
TBox of the ontology: the entities required by each event are identified, and related
to the particular event by means of constraints, which give additional information on
the type of relationship held with each of the entities.

Apart from 7T, the ontology also incorporates an ABox A storing concept in-
stances, i.e., factual information regarding the world state and the individuals ex-
isting on it [47]. Once the abstract events, constraints, and entities are satisfied for
a certain world state, these concepts are instantiated into the factual database as
Facts, Constraint instances, and Entity instances, respectively. For example, for the
theft event in Table 4.7, the ontology requires a thief, isAgent(Pedestrian), a victim,
has_agent_interaction(Pedestrian), and a stolen item, has_object_interaction(Object),
in this case fulfilled by instances ped?2, pedl, and obj1, respectively.

In the end, the domain of interest is formally represented by a knowledge base I =
(T, A), the factual database, which includes both the concepts and their instances.
Fig. 4.11 gives a concise view of the factual database implemented: the abstract
concepts are Events, Entities, and Constraints that state which entities are needed for
which events. On the other hand, instances for these 3 types of concepts are stored
in the 3 other tables: FEntity instances list appearing entities, Facts are detected
occurrences of events, and Constraint instances link ones to the others.

Talmy organizes conceptual material in a cognitive manner by analyzing what
he considers most crucial parameters in conception: space and time, motion and
location, causation and force interaction, and attention and viewpoint [122]. For him,
semantic understanding involves the combination of these domains into an integrated
whole. Our classification of situations (i.e. the Event-TBox, the central element in
our ontology) agrees with these structuring domains: We organize semantics in a
linear fashion, ranging from structural knowledge in vision processes (quantitative
pose vectors) to uncertain, intentional knowledge based on attentional factors (high-
level interpretations). It is structured as follows, see Table 4.4:

e At the lowest level we consider spatiotemporal data retrieved from motion track-
ing. Here we include positions, orientations, or static configurations —poses, fa-
cial meshes— at given time-steps. No class is created for them, since semantics is
only present in form of structural information by means of quantitative values.

e The Status class contains metric-temporal knowledge, based on the information
provided by the considered trackers: body, agent, and face. Its elements rep-
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owI:'I"hing

Event/Situation

Behaviorlnterpretation

TAXONOMY CONTAINING SOME CONCEPTS FROM THE EVENT-TBOX.

— bAbandonedObj

— bDangerOfRunover
— bTheft

— bWaitForSomebody
— bWaitToCross
—bYield

—bChase
—bEscape

Status ContextualizedEvent
/ —‘ Grouplnteraction ‘
Action ‘ ‘ Activity ‘ ‘ Expression ‘ — ceGrouped
— ceMeet
— sBend ActivityPedestrian — sAngry — ceSplit
—s sHeadTurn — sMove — sCurious —‘ Objectinteraction ‘
— sHit — sStand — sDisgusted ]
sKick L. sTurn — sFrightened — ceLeaveObj
sPunch ActivityVehicle — sHappy — cePickUpObyj
sShove | . sAccelerate — slmpatient — ceBelong
— sRun . sBrake — sNormal _‘ Agentinteraction ‘
— sSitDown - sSteer — sSad
— sSquat L. sStop — sSurprised — ceGoAfter
—e sStandUp — ceFight
— sWalk — ceWaitWith
—‘ LocationInteraction ‘
— ceAppear
— ceCross
— ceEnter
— ceExit
— ceGo
— ceOnLocation
Table 4.2

L .bSearchFor
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owI:T’\ing
Entity
Agent Object Location
MovableObject GenericLocation
i PickableObject — Source
Vehicle ‘ S ioObiect I— Destination
NonStandardVehicle cenarlotbjec L~ Locus
I:AnimaIVehicle . ParticularLocation
EmergencyVehicle Pedestrian — PedestrianCrosswalk

Ambulance
FireEngine
PoliceCar

StandardVehicle
Bicycle
Bus
Motorbike
RegularCar
Tramway
Truck
Van

Crowd
PedestrianGroup
SinglePedestrian

Face

Limbs

Torso

— Road

—* Sidewalk

" WaitingArea

" Table

" VendingMachine

Table 4.3

owI:Tlhing

Descriptor

\

SpatialDescriptor

QuantityDescriptor

TemporalDescriptor

DistanceDescriptor
|, Far

| Near

L NoDistance
OrientationDescriptor
— Backwards

— Forward

— Left

— Right

— Towards

AmountDescriptor
— High

— Low

— Normal

I— VeryHigh

— VeryLow

'— Zero
ComparativeDescriptor
— Equal

— Less

— More

— MuchMore

— MuchLess

After
Before
While
Now
First
Last
Always
Never

TAXONOMIES SHOWING HIGHLIGHTED CONCEPTS FROM THE ENTITY-TBOX (LEFT) AND THE DESCRIPTOR-TBOX (RIGHT).




HIGH-LEVEL PREDICATES (Ontology)

& 11l. Behavior interpretation
e.g. theft, chase, abandon
&— II. Contextualized event

e.g. pick up, meet, leave bag

e I. Status

e.g. walk, run, stop

{ r,v, e } K &— Spatio-temporal facts

e.g. position (r), velocity (v), orien-
tation (6), derived predicates

LOW-LEVEL PREDICATES (Fuzzy models)

Table 4.4
A KNOWLEDGE-BASED CLASSIFICATION OF HUMAN BEHAVIORS IN URBAN CONTEXTS.
HIGH-LEVEL EVENTS ARE CONJUNCTIONS AND SEQUENCES OF LOWER-LEVEL EVENTS. THIS
TERMINOLOGY STRUCTURES THE EVENT-TBOX AND GUIDES INTERPRETATION.

resent dynamic interpretations of the spatial configurations and trajectories of
the agents. Some examples include to detect that a pedestrian is turning left,
or that a car is accelerating.

e The ContextualizedEvent class involves semantics at a higher level, now con-
sidering interactions among semantic entities. This knowledge emerges after
contextualizing different sources of information, e.g. ‘sit down’—‘bus stop’, or
‘wave hand’—‘open mouth’; that allows for anticipation of events and reasoning
of causation.

e Finally, the BehaviorInterpretation class specifies event interpretations with the
greatest level of uncertainty and the larger number of assumptions. Intentional
and attentional factors are considered, here the detection of remarkable behav-
iors in urban outdoor scenarios for surveillance purposes.

This classification of knowledge will guide the process of interpretation. It can be
seen that this proposal takes into account all levels of extraction of visual information
which have been thought for the cognitive vision system —i.e. agent, body, face, and
relation with other detected objects, agents, and events—, and also suggests a proper
way of managing the different stages of knowledge. This categorization considers the
relevance of the retrieved information, some hierarchical degrees of perspective, and
also the level of subjectiveness required for a scene interpretation, as will be explained
in the following sections.

As stated in [99], changes in the topology and distribution of the ontological
knowledge do not hold special significance. What is much more crucial is to focus
on coverage, i.e., to find a suitable grain size of semantic representations to fulfil a
concrete application. The main idea is to model high-level, more subjective behaviors
in a way such as they are not wrongly extended to general situations, while not
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4.3

USER ANNOTATION EVENT ENTITIES CONSTRAINTS
= . Pedestrian is_agent
S  wail to cross bWaitToCross . g . . .
= Location hasLocationInteractionWith
+~ 0
= Vehicle is_agent
d bD 0fR .
© anger of runover SNEETTLIUNOVEL  bodestrian hasPatientInteractionWith
. Agent is_agent
l locat Exit .
cave a tocation cenxd Location hasLocationInteractionWith
5 . . Pedestrian is_agent
g k bject PickUpObj
< puck up objec COFLCTPER) PickableObject hasObjectInteractionWith
=
2 Pedestrian is_agent
—g meet with someone ceMeet Pedestrian hasPatientInteractionWith
< Location hasLocationInteractionWith
— - 0
o . PickableObject isObject
S  abandon/forget object bAbandoned0Obj .
"g /f g J J Location hasLocationInteractionWith
- Pedestrian is_agent
steal object from someone  bTheft PickableObject hasObjectInteractionWith
Pedestrian hasPatientInteractionWith
Table 4.5

LIST OF EXAMPLES ON HOW USER ANNOTATIONS ARE USED TO INTERRELATE CONCEPTS
FROM THE TBox 7.

requiring excessively detailed information for deductions. That is why the described
approach has been designed to work at different levels of representation regarding
the generality of situations, and the reason for the general architecture to have been
conceived in terms of collaborative modules.

Contextual modeling

At this point, the ontology already states which elements are required by each event,
but we still need to model the domain-specific context in which an event occurs. As
stated before, events are situated in their context by means of SGTs.

An independent stage is implemented to achieve effective modeling of behaviors
and complex situations. The concurrence of hundreds of conceptual predicates makes
necessary to think of a separate module to deal with new semantic properties at
a higher level: some guidelines are needed to establish relations of cause, effect,
precedence, grouping, interaction, and in general any reasoning performed with time-
constrained information at multiple levels of analysis. Thus, this part of the modeling
deals with the contextualization and interpretation of events.

Conceptual predicates are widely used in model-based approaches in order to
instantiate and infer pieces of knowledge, in systematic procedures [95, 76, 17]. In
our case, conceptual predicates enable flexible reasoning from the motion data, and
the inclusion of this information into the ontology. On the other hand, if we had to
incorporate all the pieces of information needed to recognize events as those shown, it
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would result in a combinatorial explosion of instances in the ontology. For example,
it could be instantiated that a person is far from a table, far from a door, close
to a machine, moving slow. . . taking into account the assertions of all entities and all
possible relationships. To minimize this problem, we distinguish between two different
types of predicates: low-level and high-level.

We use low-level predicates to state the most basic spatiotemporal properties, di-
rectly defined by fuzzy motion models; for example, the distance between two tracked
objects is described as far, medium, or close using the predicate has_distance(Entity,
Descriptor). Similarly, low-level predicates like has_speed or similar direction
are modeled as well. A fuzzy metric-temporal reasoner is specifically used to reason
about these low-level facts, and extract higher-level information.

On the other hand, we define a high-level predicate for each event included in the
Event-TBox, e.g.,

bAbandoned0bj — bAbandonedObj (PickableObject, Location)
bTheft — DbTheft (Pedestrian, PickableObject, Pedestrian)

Each one of these predicates maintains semantic relationships among a set of entities
—and possibly, descriptors—, and these relations are explicitly expressed and stored in
the ontology. Since the amount of high-level predicates is much less than the number
of low-level ones, the computational load is efficiently shared. Then, though, another
question arises: “How can we express semantic concepts in terms of tracking output?”

The tool chosen to articulate high-level predicates in terms of low-level ones is
the SGT, see [0, 43]. An SGT is a hierarchical classification tool used to describe
behavior of agents in terms of situations they can be in. These trees contain a-
priori knowledge about the admissible sequences of occurrences in a defined domain.
Basing on deterministic models built upon elements of the ontology, they explicitly
represent and combine the specialization, temporal, and semantic relationships of the
conceptual facts which have been asserted.

The semantic knowledge related to any agent at a given point of time is contained
in a situation scheme, which constitutes the basic component of a SGT, see Fig. 4.3. A
situation scheme can be seen as a semantic function that evaluates an input consisting
of the conjunction of a set of conditions —the so-called state predicates—, and generates
logic outputs at a higher level —the action predicates— once all the conditions are
asserted. Here, the action predicate is a note method which generates a semantic
annotation in a language-oriented form, containing fields related to thematic roles
such as Agent, Object or Location, which refer to participants of the Entities-TBox in
the ontology.

On the other hand, the temporal dimension of the situation analysis problem is
also tackled by the SGT. As seen in Fig. 4.4, the situation schemes are distributed
along the tree-like structure by means of three possible directional connections, the
particularization, prediction, and self-prediction edges. Particularization edges allow
to instantiate more specific situations once the conditions of a general situation have
been accomplished. On the other hand, prediction edges inform about the following
admissible states within a situation graph from a given state, including the mainte-
nance of the current state by means of self-prediction edges. Thus, the conjunction
of these edges allow defining a map of admissible paths through the set of considered
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| 1D | High-level predicate | Temporal decomposition
. . ceSplit (Agent,0Object)
[] | ceLeaveObj(Object, Agent) to : A th_speegd(Obje(;]t, 2670)
to: ceLeaveObj(Object, Agent)
[] | bAbandonedObj (Object,Agent) b has_distance(Agent, Object, far)
'" A has_speed(Object, zero)
to: DbAbandonedObj(0Object, Agent)
. . ) ceGrouped (Agent, Object)
[ cePickUpObj (Agent, Object) f1: A has_speed(Object, V)
A is_not(V, zero)
~ has_speed (Pedestrian,V)
[] | sStand (Pedestrian) fo* Aisnot (V, zero)
t; : has_speed (Pedestrian, zero)
[l | sRun (Pedestrian) to: has_speed(Pedestrian, high)
to: ceSplit(Pedestrian,Object)
[] | bTheft (Agent,Object,Agent) t;1: object_alone(Object)
ty - agent near_obj(Pedestrianl,Pedestrian2)
" A Pedestrianl <> Pedestrian2
Table 4.6

To MODEL SGTS, HIGH-LEVEL EVENTS ARE DECOMPOSED INTO CONJUNCTIONS OF
SIMPLER EVENTS THAT ARE TEMPORALLY CHAINED. OBTAINED DECOMPOSITIONS ARE
THEN MERGED INTO A SINGLE TREE OF SITUATIONS FOR EACH AGENT TYPE.

q

SITUATION_ID

similar_direction(Agent,Agent2)
has_speed(Agent, high)
has_speed(Agent2, high)

Instantiated predicates

.

note (bChase(Agent, Agent2))

Inferred predicate

Figure 4.3: Situation scheme from a SGT. When a set of low-level predicates —the
conditions— are instantiated, a high-level predicate is generated.

situations. A part of a basic SGT is shown in Fig. 4.10, which illustrates a model to
identify situations such as an abandoned object or a theft.

As previously shown in Fig. 4.7, the behavioral model encoded into a SGT is
traversed and converted into logical predicates, for automatic exploitation of its situ-
ation schemes. Once the asserted spatiotemporal results are logically classified by the
SGT, the most specialized application-oriented predicates are generated as a result.
These resulting high-level predicates are indexed with the temporal interval in which
they have been the persistent output of the situational analysis stage. As a result,
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Situation scheme

NO_ACTION_PREDICATES
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AgentStopped 5 AgentMoving
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has_speed (Agent, high) 2 is_turning (Agent, Direction)
note( moving_fast (Agent)) note( turning (Agent, Direction))

Figure 4.4: Naive example of a SGT, depicting its components. Specialization
edges particularize a general situation scheme with one of the situations within its
child situation graph, if more information is available. Prediction edges indicate the
situations available from the current state for the following time-step; in particular,
self-prediction edges hold a persistent state.

the whole sequence is split in time-intervals defined by these semantic tags. These
intervals are individually cohesive regarding their content.

By describing situations as a conjunction of low-level conditions, and interrelating
those situations among them using prediction and specialization edges, the contextu-
alization stage described in the taxonomy of situations is accomplished. On the other
hand, since the high-level action predicates are modeled depending on the application,
a particular attentional factor is established over the universe of occurrences, which
can be understood as the interpretation of a line of behaviors, for a concrete domain
and towards a specific goal.

The results obtained from the behavioral level, i.e. the annotations generated
by the situational analysis of an agent, are actually outputs of a process for content
detection. From this point of view, an SGT would contain the classified collection of all
possible domain-related semantic tags to be assigned to a video sequence. In addition,
the temporal segmentation of video is also achieved: since each high-level predicate
is associated with the temporal interval during which it has been generated, a video
sequence can be split into the time-intervals which hold a permanent semantic tag.
Some experimental results regarding situational analysis are presented in Section 4.7.

An SGT defines the universe of possible situations in which an agent can partici-
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4.4

pate. Each situation scheme evaluates a set of conditions in form of atomic predicates
and reacts when all of them are asserted. In our case, reactions are note commands
that produce the linguistic-oriented event indexes seen and facilitate NL-based re-
trieval [95]. Fig. 4.5(a) and (b) show parts of SGTs that exemplify their basic mecha-
nisms to contextualize: situations are hierarchically nested from general to specific by
means of specialization edges forming a tree, and sequentially connected by unidirec-
tional prediction edges producing graphs within the tree. Self-prediction edges hold
a current situation until any continuing situation applies. This scheme recurrently
decomposes the evaluation of complex facts into series of low-level facts, which need
to be asserted sequentially.

Carrying on the top-down modeling of semantic events, we build SGTs to define a
priori the situations agents can be in. To do so, complex actions are decomposed in a
combination of simpler events that are sequentially connected in time. Table 4.6 de-
tails the decomposition of the situations left_object, abandoned_object, pick_up,
stopped, and running. It can be observed that many elements in the various de-
compositions are common, and thus can be merged in a single SGT. Simpler events
are recursively decomposed until reaching to a combination of mere spatiotemporal
descriptions. Decompositions of events like the ones shown in Table 4.6 generate the
SGTs shown in Fig. 4.5(a) and (b). More complex events are also possible: for exam-
ple, by combining actions like leave object, get close, pick up, and run, a theft event
can be modeled, as shown in Fig. 4.5(c). Extra events are sometimes included into
the ontology for better definition of a particular context, e.g. for the event belongs_to.

The role of SGTs in the overall scheme is twofold: on the one hand, they help
understanding the full picture of a scene by assessing high-level interpretations from
concrete pieces of information. And on the other hand, SGTs make it possible to dis-
trust or simply neglect certain frames when the position of a target suddenly changes
to a far distant location, e.g. if the tracker freezes for a while. These and similar
situations make them a suitable tool to partially bridge both semantic and sensory
gaps in our domain.

The current implementation of the SGT only asserts those predicates with highest
confidence values, which unfits the system to handle multiple valid hypotheses at the
same time, but in exchange avoids a combinatorial explosion of solutions. Only one
event annotation is produced by the SGT per frame and tracked agent, which allows
us to associate each predicate with an interval of validity, and build a history of events
related to each detected object. When an alarm is missed at the vision level, an SGT
instantiates the most specific of the events in the graph given the state conditions
available. The more levels we define in the hierarchy, the more robust the system is
in front of lacking information, but the computational cost increases.

Spatiotemporal modeling

The last conceptual task involves describing the multiple atomic events used in the
SGTs in terms of low-level information provided by the motion trackers. To do so,
a set of basic spatiotemporal rules are defined for the domain, focusing on general
rather than particular contexts.
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The acquisition of visual information produces an extensive amount of geomet-
ric data, considering that computer vision algorithms are applied continuously over
the recordings. Such a large collection of results turns out to be increasingly dif-
ficult to handle. Thus, a process of abstraction is needed in order to extract and
manage the relevant knowledge derived from the tracking processes. The question
arises how these spatiotemporal developments should be represented in terms of sig-
nificance, also allowing further semantic interpretations. Several requirements have
to be accomplished towards this end [43]:

1. Generally, the detected scene developments are only valid for a certain time
interval: the produced statements must be updated and time-delimited.

2. There is an intrinsic uncertainty derived from the estimation of quantities in
image sequences (i.e. the sensory gap), due to the stochastic properties of the
input signal, artifacts during the acquisition processes, undetected events from
the scene, or false detections.

3. An abstraction step is necessary to obtain a formal representation of the visual
information retrieved from the scene.

4. This representation has to allow different domains of human knowledge, e.g.
analysis of human or vehicular agents, posture recognition, or expression anal-
ysis, for an eventual semantic interpretation.

FMTL has been conceived as a suitable mechanism to solve each of the aforemen-
tioned demands [112]. Tt is a rule-based inference engine in which conventional logic
formalisms are extended by a temporal and a fuzzy component. This last one enables
to cope with uncertain or partial information, by allowing variables to have degrees of
truth or falsehood. The temporal component permits to represent and reason about
propositions qualified in terms of time. These propositions are represented by means
of conceptual predicates, whose validity is evaluated at each time-step.

All sources of knowledge are translated into this logic predicate formalism for
the subsequent reasoning and inference stages. One of these sources is given by the
motion trackers in form of agent status vectors, which are converted into has_status
conceptual predicates [10]:

t ! has_status(agent,x,y,0,v) (4.1)

These predicates hold information for a global identification (instance id) of the agent
(agent), his spatial location in a ground-plane representation of the scenario (z,y),
and his instantaneous orientation () and velocity (v). A has_status predicate is gener-
ated at each time-step for each detected agent. In addition, certain atomic predicates
are generated for identifying the category of the agent, e.g. pedestrian(Agent) or
vehicle(Agent). The resulting categories are selected from primitives found in the
Entity-TBox. Similarly, the segmented regions from the scenario are also converted
into logic descriptors holding spatial characteristics, and semantic categories from the

68



o[Em - .
-, e 8 void

waiting line road

. Wwaiting area|
sidewalk waiting.area crosswalk

waiting line

waiting area sidewalk

void

(a)

Figure 4.6: A conceptual modeling of the tackled scenario, either (a) automatically
learned or (b) manually defined, is useful to derive high-level inferences.

Location-TBox are assigned to them:

point (14, 5, p42)
line (p42, p43, 142)
segment (131, 142, lseg_31)
crosswalk segment (lseg 31) (4.2)

As detected entities are automatically classified by the motion trackers, also as-
signing concepts from the Location-TBox to regions of the scenario can be well ac-
complished in an automatic manner, as seen already in Chapter 3: each instance
holds series of semantic properties, being these elements from the ABox, which can
relate the instance to a particular concept after a classification process. Therefore,
only methods for the obtention of semantic features are required, which can be based
upon the analysis of trajectories.

The identification of semantic regions in a scenario provides conceptual scene mod-
els that make it possible to derive richer inferences of the observed visual data. Such
models can be defined either manually or automatically, see Fig. 4.6. Automatic
modeling captures the practical boundaries and limits of each semantic region, and
requires none or few supervision, but may contain errors. Manual modeling, on the
other hand, allows experts to describe regions with richer expressions, focused to ap-
plications of interest —e.g., linguistic descriptions—, and in a completely controllable
manner, thus avoiding wrong or noisy interpretations like those sometimes produced
by unsupervised procedures.

The abstraction process is thus applied over the information obtained both from
the scenario and from the agents, i.e. the categorized segments from the considered
location and the agent status vectors generated. Quantitative values are converted
into qualitative descriptions in form of conceptual predicates, by adding fuzzy seman-
tic parameters from the Descriptor-TBox such as close, far, high, small, left, or right.
The addition of fuzzy degrees allows to deal with the uncertainty associated to visual
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acquisition processes, also stating the goodness of the conceptualization. Fig. 4.9 gives
an example for the evaluation of a has_speed predicate from an asserted has_status
fact. The conversion from quantitative to qualitative knowledge is accomplished by
incorporating domain-related models to the reasoning system [95]. Hence, new infer-
ences can be performed over an instantaneous collection of conceptual facts, enabling
the derivation of logical conclusions from the assumed evidence. Higher-level infer-
ences progressively incorporate more contextual information, i.e. relations with other
detected entities in the scenario. This spatiotemporal universe of basic conceptual re-
lations supplies the dynamic interpretations which are necessary for detecting events
within the scene, as described in the taxonomy.

We refer to those predicates expressing uniquely spatiotemporal developments as
low-level predicates. More specifically, low-level predicates facilitate a schematic rep-
resentation of knowledge that is time-indexed and incorporates uncertainty. Hence, all
those concepts in the Event-TBox which can be inferred only using these constraints
are enclosed under this category. Low-level predicates are not only atomic: they can
be generated as a result of temporal-geometric considerations. Next example shows an
FMTL inference rule for the low-level predicate similar direction(Agent,Agent2):

always(similar_direction(Agent, Agent2):-
has_status(Agent,_,_,_,0r1,_),
has_status(Agent2,_,_,_,0r2,_),
Dif1 is Or1l - 0Or2,
Dif2 is 0r2 - Or1l,
maximum(Dif1, Dif2, MaxDif),
MaxDif < 30 ).

Hence, the FMTL reasoner engine converts geometric information into qualitative
knowledge that is time-indexed and incorporates uncertainty. Note that FMTL rules
are defined generally for the domain, and not dependent on particular scenes: only
the semantic zones must be modeled for a new scenario. This way, the models are
extensible and tracking information is easily conceptualized and forwarded to the
upper levels discussed.

Fuzzy motion models are the last step of the top-down modeling process. Next
section tackles the inverse approach, in which motion data from is analyzed in a
bottom-up fashion, thus enabling a series of interesting applications.

Bottom-up event interpretation

Once the models have been designed top-down, the system performs bottom-up event
inference on new image sequences. This process aims to automatically formulate
interpretations of the new events observed, in form of semantic predicates. The inter-
pretation relies on the designed models to guide the conversion from visual to semantic
information.

The complete bottom-up process is represented schematically in Fig. 4.7. Video
footage is firstly processed by motion trackers, which simultaneously track multiple
targets in unconstrained and dynamic open-world scenarios. In our experiments, the
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detection of targets follows a statistical background-subtraction approach based on
color and intensity cues [43]. Subsequently, the object trackers provide instantaneous
target states over time, including quantitative data (e.g. velocity, size) and qualitative
information (e.g. occlusions, groupings, splits, target births and deaths). Enhanced
details and additional information can be found in [109]. As a result of this stage, a
series of quantitative predicates are generated for each frame, such as

has_status(agent\_3, 2.52, 2.00, 160.44, 1.09)
has_status(agent\_2, 7.48, 6.12, 210.42, 0.78)

where the different values represent the (z,y) position, the degree of orientation, and
the velocity that have been determined by the tracking procedures, respectively.

Secondly, a scene model is provided in order to conceptualize the spatial regions
of the scenario, by putting the spatial information from motion trackers into context.
This way, the spatial ground-plane coordinates (z,y) of each detected agent are as-
signed to regions having a priori semantic features, such as crosswalks or sidewalks for
outdoor sequences, or tables or vending machines for indoor sequences, see Fig. 4.8.
From this second stage, predicates of the form in_crosswalk segment (Agent_1) or
in_front_of (Agent_2,vending machine_segment) are produced.

The third step of the process involves applying generic motion models for extended
reasoning. Particularly, we are interested in the conceptualization of numerical spa-
tiotemporal data from tracking, such as measures of velocity and orientation for the
detected agents. To this end, these quantitative values are mapped to fuzzy con-
straints, see Fig. 4.9, so that we also preserve the uncertainty associated to the mea-
sures. New low-level predicates are generated as a result, e.g., has_speed(Agent_1,
low) or has_distance(Agent 2, table 2, close). Each of these predicates comes
weighted by a degree of validity, which states the confidence on the fact according to
the models. These primary facts are instantiated for each time frame in the F-Limette
reasoning engine, enabling further inference of knowledge.

As described in the previous section, fuzzy models are not only used to con-
vert from quantitative to qualitative values, but they also facilitate direct inferences
coming from low-level predicates. For instance, accelerate(Agent_1, value) is es-
timated by these models using 3 consecutive values of position over time. Similarly,
we can deduce whether an agent remains in the same position for a long time, or
whether it follows the same direction of another agent, as also exemplified in the
previous section.

In order to detect events of higher semantics, more complex patterns need to be
identified. SGTs are incorporated at this point, identifying sequential patterns of
asserted conditions and generating interpretations —in form of high-level predicates—
as a result. The application of SGT's is done by means of a traversal, which evaluates
the instantaneous database of FMTL facts at each frame, and tries to ascertain the
conditions of the graph from a starting situation scheme. When all conditions are
asserted in a situation scheme, a reaction (high-level) predicate is generated and added
to the database; subsequently, a predicted, self-predicted, or specialized situation is
tested in order to progress within the situation analysis. Reaction predicates are,
in our case, note actions that state the contained predicate as an interpretation for
that time step. If a condition is not accomplished, the process starts from zero.
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Figure 4.7: Scheme of the interpreter module. This module (i) conceptualizes
new motion data, (ii) infers new facts from this data using prior models, and (iii)
contextualizes the facts to interpret situations.

Consequently, a series of high-level interpretations relate and describe at a high-level
the relations among entities, objects, and locations over time. For example, Fig 4.10
shows a situation graph that evaluates whether an object has been left, abandoned,
or stolen by someone.

An important advantage of our proposal is that the high-level predicates that we
use as interpretations of events are actually instantiating ontological relationships.
Each generated predicate is mapped to an event from the Event-TBox, which is
defined by a series of constraints with entities. These events, constraints, and entities
from the TBox are instantiated by facts, constraint instances, and entity instances
from the A-Box, respectively, as shown in Fig. 4.11. This way, the tracked entities in
a scene are identified as participants of the events, and it is possible for us to easily
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Figure 4.9: Conversion from quantitative to qualitative values. (a) Input
has_status predicates contain tracking data, which is associated to conceptual de-
scriptions. (b) FMTL includes fuzzy mechanisms accepting more than one single
interpretation, since it confers degrees of validity to values on uncertain ranges.

store a structured registry of their developments over time. Moreover, given that the
information is stored in an ontology, this information can be derived to new forms
of implicit knowledge through automated inference, thus obtaining a more complete
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Figure 4.10: This situation graph detects that an object has been left by the
pedestrian who owns it. The set of conditions are FMTL predicates, the reaction
predicate is a note command which generates a high-level semantic tag.

registry of occurrences.
Such a structured database is especially useful to let external users interact with
the system. We have identified two direct applications to this framework:

1. Automatic recognition and indexing of video events. Users have at their disposal
a series of semantic annotations over time, which can be filtered by nature, and
which partition the video sequence in connected meaningful episodes.

2. Content-based video retrieval. Having a registry of developments is useful for
users who want to retrieve past information, or search for registered occurrences.

These two applications will be enhanced in the next chapter of this thesis, by providing
Natural Language interfaces to ease the communication with external users.

Application 1: Event annotation

Figs. 4.12 and 4.13 show current experimental results for the annotation of events,
in which a collection of high-level predicates have been successfully generated for
sequences recorded in outdoor and indoor surveilled scenarios, respectively.” The
collection of high-level predicates describe interactions among the involved entities,
viz. agents, objects, and locations, and also interpretations of behaviors in the case
of complex occurrences. Some captures showing the results after tracking processes
have been provided, too, for illustration purposes. The number of frame appears in
front of each produced annotation, and also in the upper-right corner of each capture.
Detections of new agents within the scene have been marked in blue, annotations for
activating predefined alerts have been emphasized in red.

2The sequences presented are part of the dataset recorded for the HERMES Project (IST 027110,
http://www.hermes-project.eu), which has been made available to the scientific community.
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The outdoor scene was recorded with 4 static cameras and 1 active camera. The
video sequence contains 1611 frames (107 seconds) of 720x576 pixels, in which pedes-
trians, pickable objects, and vehicular traffic are involved and interrelated in a pedes-
trian crossing scenario. A total of 3 persons, 2 bags, and 2 cars appear on it. The
events detected within the scene range from simple agents entering and leaving the
scenario to interpretations of behaviors, such as objects being abandoned in the scene,
a danger of runover between a vehicle and two pedestrians, or a chasing scene between
two pedestrians.

The indoor scene was also recorded with 4 static cameras and 1 active camera. The
scene contains 2005 frames (134 seconds) of 1392x 1040 pixels, in which 3 pedestrians
and 2 objects are shown interrelating among them and with the elements of a cafeteria,
e.g. a vending machine, chairs, and tables. The events instantiated in this case include
again agents appearing and leaving, changes of position among the different regions
of the scenario, sit-down and stand-up actions, and behavior interpretations such as
abandoned objects (in this case this is deduced once the owner leaves the surveilled
area), the interaction with a vending machine, and violent behaviors such as kicking
or punching elements of the scenario.

The proposed approach for situation analysis is capable of carrying and managing
confidence levels, obtained at the conceptual stage in form of degrees of validity for the
FMTL predicates. Nevertheless, the current implementation relies on the assertion
of those predicates associated with the highest confidence values, in order to avoid a
combinatorial explosion of solutions. As a consequence, only one high-level predicates
is produced by the SGT at each frame, which permits to associate each predicate with
an interval of validity.

Part of the evaluation has been accomplished by means of NL input queries over
the two presented scenes. At this regard, a list of 110 possibly interesting NL questions
or commands to formulate have been proposed by a group of 30 persons from different
sources in 5 countries. The current capabilities have been restricted to those user
inputs representable by the set of goal queries described in the previous section.
Complex input queries such as those related to pragmatic content, e.g. “Why has
the second person come back?” or “How is the last pedestrian crossing the road?”,
cannot be answered by the system at present and will be tackled in further steps.

Other evaluation results for the current implementation have highlighted that an
increment of complexity especially affects two tasks in the high-level architecture: the
evaluation of FMTL predicates by the inference engine and the access to the ontology.
An increment of length for the recorded sequences results in an exponential growing of
the instantiated elements in the conceptual database, and as a consequence a higher
increment in the computational time for the SGT traversal. These results encourage
the use of heuristic methods to solve these difficulties.

When an alarm is missed from the Vision levels, the hierarchical structure of the
SGT simply does not instantiate a situation, since one of its required state conditions
is not accomplished. If the rest of information does not allow to reach a certain level
of specialization for a situation, then its parent situation will be asserted. Otherwise,
a general situation will be asserted due to the lack of information. Thus, the more
exhaustively we define the hierarchy of a SGT, the more robust will be the system in
front of missing information, but the more expensive it will be the cost in terms of
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been automatically generated for the fragment of recording comprised between frames 450
and 1301.



82

00 . parecet [Agent1)
F00 - appaar (Ageni], sntranca )
#10 . on_iocelion (Agenl’], caleiea|

T - whoq (gt Y}
T - uning vending machica [Ageni1)

T e ¢ Mgty Al |
S5 - o (Agenis, tatilad)
B2 - obyee [Cgeent)

80T - bnuwew_objic] (Agenis, Dbyct)

T Ol . uirade’ [AQESLT)
T PR (AT, ST

1445 - n_ikration {Agert], caltanal
1458 - sbyoct [Otyacs|

"|r.1-m.| :-l-ul
EIAT -l e rlrmaca
1337 « shanisned_ode (OB, Al BRI o ol [Agent | Cabeiaral

1368 - ptand oy [Agortt, tablad)
BT . e (gl Lkl

E4ET - ¥ {Agert, andrarcad)
L5 - dal (At ] SRR

4501 - abandonsd_ojsct |Cajec Agent)

21T . \ocmsan {Ageni, vandnghiscien] |

258 - i‘.’m’llﬁﬂ’;‘ Pt
ETT - o _lecardion | Agesni 1, Lablea
A3 - will_ dowam [Agel, Indila

1073 - e AN iy
VEET  gn_iier: { At wraingiacsena
TE8 -k |Agerild, vendingllechins |

TH2 « on._/incaskon [Agantl, Lables)
BED - nd_down [Ageni], inbled]

1727

1713 - gk hgentl. DEgect]
1803 . dud (Bgerdd el 1)

AT - iy’ [Agpstd, arsirmed | |
ek - DGO | Agemii, afeiena

Figure 4.13: Set of semantic annotations produced for the indoor scene, which have been
automatically generated for the fragment of recording comprised between frames 150 and
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computation.

A similar consideration has to be done regarding false alarms: the SGT will in-
stantiate a wrong situation only when the false information agrees with the sequence
of admissible states defined in the tree by means of the prediction edges. This way,
the robustness of the situational analysis is given by the SGT based on both the tem-
poral and specialization criteria. The generation of incorrect information depends of
both the sensory gap (bad information provided by the vision acquisition systems)
and the semantic gap (incorrectness or incompleteness of the models at high level).

These experimental results for the situational analysis have been obtained us-
ing the F-Limette® inference engine for fuzzy metric-temporal horn logic and the
SGTEditor* graphical editor for SGTs. On the other hand, the implementation of
the ontology and the query system have been developed using the Protégé® ontology
editor and the Jena® Semantic Web Framework.

For evaluation purposes, we have compared the automatic annotations given by
the system with those given by a significant amount of population. Different image
sequences from the same domain have been used to train the system and to test its
performance.

The ground truth annotation of events was accomplished using 3 different image
sequences, 2 outdoor and 1 indoor. The first outdoor sequence (2250 frames@25fps,
640x 480 pixels) shows the entrance of a public building, where pedestrians come in
and out and interact with some cars and motorbikes on their way. The second outdoor
sequence (600 frames@15fps, 1256x860 pixels) is a crosswalk scenario, in which 4
pedestrians enter a crosswalk in different manners, in the presence of vehicular traffic.
The indoor training video (1575 frames@15fps, 1256x860 pixels) contains specific
events like leaving bags, greeting a person, taking objects from someone else, sitting
down, or kicking a vending machine.

Two scenes from the same domain were recorded for tests, one in a traffic scenario
and the other one in a cafeteria, see Fig. 4.8. These test scenes share similar events
than the ones found in the test sequences, in completely different scenarios. The
outdoor scene contains 1611 frames@15fps of 720x576 pixels, in which pedestrians,
pickable objects, and vehicular traffic interact in a pedestrian crossing. The indoor
scene contains 2005 frames@15fps of 1392x 1040 pixels, in which people and objects
interact among them and with the elements of a cafeteria, viz. a vending machine,
chairs, and tables. Both sequences show complex events like abandoned objects,
thefts, chases, or vandalism. These sequences have been automatically analyzed and
indexed by the proposed system.”

The asserted events for every detected target have been stored in a SQL relational
database to enable data retrieval. Every asserted event points to a temporal interval
of validity in the sequence, and relates the involved target to its contextual blanket.
The collection of video annotations describe interactions among the involved entities,
and also interactions and interpretations of complex occurrences.

3http://cogvisys.iaks.uni-karlsruhe.de/Vid-Text /f_limette/index.html

4http://cogvisys.iaks.uni-karlsruhe.de/Vid-Text /sgt_editor /index.html

Shttp://protege.stanford.edu/

Shttp://jena.sourceforge.net/

"The sequences used in these experiments can be found at http://iselab.cvc.uab.es/ tools-and-
resources.
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4.7

Entity type (7)) Instance (A) Event type (7) Indexed fact (A)

Pedestrian ped2 Spatiotemporal walk (ped2, fast)

Vehicle vehl Interaction appear (ped2, sidewalk)

Location sidewalk Interaction pick_up (ped2, objl1)

Object obj1 Interpretation  theft (ped2, pedl, obj1)

Descriptor fast Interpretation  danger_of-runover (vehl, ped2)
Table 4.7

POSSIBLE INSTANCES OF ENTITIES (LEFT) USED IN EVENT INDEXES (RIGHT). FOR A theft
TO BE INDEXED, ped2, pedl, AND objl MUST ACCOMPLISH A CERTAIN SEMANTIC CONTEXT.

Application 2: Content-based video retrieval

Regarding content-based video retrieval, we tested how many and which kind of
queries provided by a set of volunteers were understood and correctly answered by
the system. The details about NL components present in this experiment have been
purposely omitted in this section, since at this point we are interested in the system’s
management of semantics. Next section describes thoroughly the modules used to
enable the conversion from semantic predicates to linguistic expressions.

Examples of content-based video retrieval are presented in Table 4.8, which retrieve
episodes of sequences containing certain events or entities. More complex queries are
possible, e.g. querying for chases after thefts, objects owned by different persons, or
scenes in which a number of agents were seen at a certain location. As for the NL
queries, acceptable propositions also restrict to the domain imposed by the ontology.
This way, users were enabled to ask for any modeled event involving any of the entities,
which is related to any semantic zone in the scenario, and happens at any point or
interval of time. These are some examples of the most repeated types of user queries
that have been accepted by the NL module:

e Show me pedestrians meeting between frames 300 and 1200.

o How many people has picked up bags?

e Have you seen any pedestrian running by the road after a theft?
o List all vehicles before frame 600.

Similar concepts are automatically linked using the metrics over WordNet, such as
pedestrians—people. In the experiments, subjects usually restricted to simpler queries.
The difficult queries were usually too generic or stepped out of the domain, with
sentences such as “How is this person dressing?” or “Does it rain?”, in which case the
concepts found could not be linked to the factual database. Out of the total number of
queries asked that belonged to the domain, a 91% of them led to proper understanding
by the system. Most of the non-understood questions were those starting with why
or how, types that usually result less objective to answer.

These results have been compared to the validation data set provided by a second
group of subjects. Fig. 4.14 shows the number of events agreed by a certain percentage
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Interval Event Arguments

1186-1202  pick_up is_agent(Agent5)
has_object_interaction_with(Object2)

1186-1276  carry_object is_agent(Agent5)
has_object_interaction_with(Object2)

1211-1219  run is_agent(Agent5)
has_location_interaction_with(Road)

Entity ID: Agent5

Interval:  1200-1250

Sequence: Outdoor-1 1220-1240  theft is_agent(Agent5)
has_patient_interaction_with(Agent1)
has_object_interaction_with(Object2)
has_property (Malicious)

1241-1275  chase is_agent(Agentl)
has_patient_interaction(Agent5)

Interval Event Arguments
501-601  carry_object is_agent(Agent2)
has_object_interaction(Object1)
Entity ID: Objectl 602-1236  leave_object is_agent(Agent2)
Interval:  550-1250 has_object_interaction(Object1)
Sequence: Indoor-2 has_location_interaction(Hall)

1237-1712  abandoned_object  is_patient(Agent2)
has_object_interaction(Object1)
has_property (Malicious)

Table 4.8
EXAMPLES OF RETRIEVAL OF EPISODIC EVENTS WHEN QUERYING FOR A GIVEN ENTITY.

of the population (event agreement), and the events out of that set correctly identi-
fied by the system (agreed event recognition, or simply, event recognition). Fig. 4.15
presents the percentage of events correctly recognized. As we can see, for sets of
events agreed by above 50% of the population, the system recognizes all of them in
the outdoor scenario and 85% of them in the indoor one. On the other hand, if we
consider the set of events identified by more than 90% of the subjects, a recognition
rate of more than 90% is achieved in both scenarios.

Some examples of non-recognized annotations are ignore_object, be_upset, be_hesitant,
talk, realize_about_someone, or shake_hands, among others, which mostly happened in
indoor sequences. All undetected events were shared by less than 20% of the popula-
tion, given the subjectivity of the interpretation, except for talk and shake_hands. In
these two cases, the semantic framework facilitates retrieving non-modeled events by
searching for similar concepts, e.g. meet or interact.

The reason of the different performance between indoor and outdoor scenes is
that although indoor image sequences permit a reduced viewpoint and incorporate
less events, the events detected show a higher semantics, such as body gestures, facial
expressions, and subtler interactions between agents, which require more knowledge
than that one obtained solely from trajectory data.
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Figure 4.14: Correctly indexed events. Left graphic: horizontal axis shows the
percentage of people agreeing with a set of events; vertical axis reports the total of
events in this set, and the number out from them that were recognized. Right table:
numeric details.
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Figure 4.15: Percentage of retrieval. Failures in indoor sequences are mainly due
to unhandled recognition of expressions and gestures by the vision algorithms. High-
lighted minima correspond to be_upset, shake_hands, and talk (left to right).
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4.8

Extension to Fuzzy Constraint Satisfaction

An excessive determinism could be argued as a critical issue of our interpretation
module. A large variety of probabilistic detectors and classifiers contribute to the
current state-of-the-art on action recognition, and it would be sensible to benefit
from such robust outputs. However, categorizing them into true/false predicates
would discard valuable statistical information. The best strategy would be to preserve
both a logical and a quantitative form, and use them conveniently. Recent trends on
fuzzy logic and DL can help us to preserve uncertainty in the logical inferences, while
additionally incorporating the task into our ontological framework. Our most recent
steps on event recognition follow this direction.

Several techniques allow us to infer mid-level concepts using motion cues. The
problem of abandoned objects, for example, is usually solved using background sub-
straction or blob dynamics —e.g., a blob splits into two, and one of them remains
still until being absorbed by the background [43]-. In addition, trajectories through
regions of interest suggest particular behaviors given an adequate scene prior. For
instance, if we model a paying event as a person interacting with an automatic
cashier before walking back to a car, we need to assert (i) that the blob moving to-
wards the cashier is a person, and that (ii) it is actually paying. For complex atomic
actions like these, more sophisticated techniques based on statistical learning are re-
quired [113, 31, 73]. We propose to define fuzzy rules that incorporate multiple sources
of uncertainty, and reason about them in order to assign confidences to each defined
event. A fuzzy reasoner based on DL, fuzzyDL [21], has been used as a framework to
define a knowledge base of spatiotemporal occurrences, and eventually perform the

reasoning.

A suitable formalization of our problem is posed in terms of a Fuzzy Constraint
Satisfaction (FCS) problem [110]. It is formally defined as follows: let us consider a
set of fuzzy variables V. = {V4,...,V,,} over domains D; ..., D,,, respectively. For

instance, we define crisp domains in which membership functions assign a so-called
Degree of Satisfaction DoS € [0,1]. Let us also consider a set of constraints C' =
{C4,...,Cy,}, each one ranging over a subset of V. The goal is to find an assignment
of values (di,...,dn) € D1 X -+ X D,, such that C1,...,C, are satisfied, or in other
words, to obtain a variable assignment that is optimal with respect to the DoS of V'
and C. To find the optimal assignment, a joint DoS of each variable V; is defined as

1 1
w+1\|CF+Cf |

DoS(V;) == S eHIC] | +wpi(l) (4.3)

cGCi+

where w is the weight for that particular variable, C’;r is the DoS of a variable as-
signment for each fully instantiated constraint, and C; is the overestimated DoS for
each partially instantiated constraint.

The meet event

For simplicity, we have chosen to model a meet event between two individuals, since
(i) it is intrinsically fuzzy, i.e., it is easier to explain using vague terms rather than
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strict formulae, and (ii) it is interesting enough to have been extensively tackled by
the research community [96, 3, 103, 100]. Nonetheless, the work described can be
extrapolated to different scenarios, such as outdoor surveillance in parking lots or toll
barriers in highways. In these cases, for instance, actions that could be interesting
to identify may include collisions or scratching between cars in a parking lot, or
proper /improper payments via cashier after parking a car.

To detect a meet event we require tools for trajectory analysis, action recognition,
and a definition of some space-time constraints. In [14], we find a new method for clas-
sification of human actions that relies on an appropriate quantization process, dealing
with the ambiguity of the traditional codebook model. The analysis of trajectories
is granted by means of a simple blob detector from the OpenCV library®. Finally, a
simple fuzzy rule measures quantitatively the confidence on two persons meeting, by
inferring the concepts closeness and previous_closeness upon the metric distances
between two subjects at the current moment and 15 frames before. For this example
we have considered 3 membership functions: far, medium, and close. The estimated
metric distance d is normalized into a range [0, 1] using the mapping d= exp(—Ad),
where we assume medium distance as d = 3m (A = % In 2). Finally, the following rule
has been modeled in order to detect a meet occurrence:

Jprevious_closeness(medium) A Icloseness(close) = meet(meeting)  (4.4)

where the existential operator is defined as the conjunction of a relation and an unary
concept as follows: IR(C1) = sup,car R (z,y) & Cf (y). The quantitative estimation
of a meeting comes as the defuzzification of the meet concept using the largest of its
interpretation maxima. Fig. 4.16 shows an example of defuzzification of the concept
meet, extracted from the sequence used for evaluation.

Implementation and results

A short video sequence of 235 frames has been recorded, in which two pedestrians
approach to each other at a normal pace, one of them suddenly does a gesture towards
the second one and runs away, and the second one chases after him. The sequence
has been tracked, and the generated spatiotemporal data has been reasoned using the
described framework.

Fig 4.17 depicts the obtained results. The top row shows 6 snapshots taken at
different frames of the sequence, and below there is a ground-plane reconstruction of
the instantaneous position of each target. The tracker has lost target 1, renaming it
as target 4; in addition, an extra blob —the head of pedestrian 2— has been wrongly
detected as an additional target 3. The bottom row depicts the numerical (defuzzified)
confidence on a fuzzy meeting, where green zones stand for intervals with asserted
meet predicates.

The modeled rules interpret correctly the dynamic interactions between blobs 1
and 2 —first approaching, second move—, although this setup is very sensitive to the
errors of the tracker. In case of lack of precision, the blobs would be ill-projected to
the ground plane, and projectivity would amplify the initial errors. Nonetheless, the

8http://sourceforge.net/projects/opencvlibrary/
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Figure 4.16: Detection of a meeting. The estimated distances are fuzzy-

conceptualized, and the reasoner defuzzifies a meet value using Eq. 4.4.

Frame 51

Frame 100 Frame 155 Frame 188 Frame 210 Frame 230

Defuzzified meet (Pedestrianl, Pedestrian2) event, with markers for the 6 frames

Figure 4.17: Preliminary results assessing the confidence on a 2-person meet event
(bottom row). Middle row shows last rectified ground-plane positions observed.

utility of this framework is promising. The use of better detectors and trackers would
probably facilitate the modeling of more complex events.
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4.9

Discussion

State-of-the-art on smart video analysis is heading to the automatic exploitation of
semantic context, in order to extract event patterns that permit us a better com-
prehension of image sequences. Nevertheless, few works assess the suitability and
coverage of the selection of semantic events to model, and most of them are restricted
to very specific scenarios, thus questioning the generalization capability of the meth-
ods used. In addition, these events should also be suited for end-user interfacing of
video contents, something difficult to achieve by only using bottom-up procedures.

Our methodology contributes to these three challenges. First, it copes with the
ambiguous and sometimes incorrect interpretations done by experts while building
conceptual models. The ontology and the rest of the knowledge bases are modeled in
a top-down manner from users’ textual evidence, constituting a separate identifiable
part of the design. The technique chooses the most suited event concepts from differ-
ent scenarios, merging them into single models —ontology, SGT—, and thus enabling
generalization to different scenarios in the domain. Finally, since the ontology has
been built from linguistic corpora, it provides straightforward connection to NL inter-
faces like those shown for video description and retrieval, allowing end-users to access
meaningful video content flexibly by means of NL descriptions and dialogue-based
instructions.

The Event-TBox provides the space of validity of possible semantic video indexes
in a domain. The ontological constraints applied to the terminologies fix the valid-
ity of situations to detect; this way, mechanisms for prediction based on restrained
behavioral models can be developed. High-level predicates have been chosen as the
central semantic elements of the cognitive vision system, for them being highly ex-
pressive, language-independent, and suitable for a neutral framework between vision
and linguistics. The most basic events are defined by generic, domain-independent
human motion models.

An SGT acts as an actual content classifier, which semantically characterizes
the temporal intervals of video sequences: the resulting predicates can be iden-
tified as high-level semantic indexes, which facilitate further applications such as
search /retrieval /browsing engines. The modular dimension of this framework pro-
vides multimodality: arbitrary modules providing new types of data can be directly
incorporated, and as long as this data is made available in form of conceptual facts,
it easily integrates into the situation analysis. In addition, the presented approach
directly benefits from the automatic learning of semantic regions described in the
previous chapter.

To consolidate the interpretation process, next steps should enhance SGT's in order
to let them hold multiple hypotheses as probable interpretations during the traversals.
Future work should also be directed to study extensions of the proposed framework to
the challenging domain of movie and media analysis. To this end, current behavioral
models need to be enhanced by modules that enable the system to recognize body
postures and facial expressions, taking advantage of the high resolution typically found
in video data from these domains. The behavior of crowds and large groups of agents
has not been analyzed yet, and will as well be included as future work.
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Resum

L’estat de I'art de ’analisi intel-ligent de video s’esta dirigint cap a ’explotacié au-
tomatica de context semantic, de cara a extreure patrons d’activitat que ens permetin
arribar a comprendre millor les seqiiencies d’imatges. Tot i aix0, no hi ha massa re-
cerca que proposi formes adequades de seleccié de conceptes per a modelar activitats,
ila majoria es restringeix a escenaris particulars; per tant, es qiiestiona la capacitat de
generalitzacié dels metodes resultants. A més, seria desitjable que el modelat d’events
pogués beneficiar directament les interficies avancades d’usuari per a l'exploraci6 de
continguts de video, cosa que resulta dificil emprant només inferéncia ascendent.

La proposta té tres contribucions principals. Primerament, es suggereix una sis-
tematica per al modelat conceptual que permet evitar interpretacions incorrectes o
ambigiies per part d’experts. L’ontologia i altres bases de coneixement es modelen
descendentment en base a I’evidencia textual proporcionada pels usuaris. D’aquesta
forma, la tecnica escull els events més adequats per a diversos escenaris, combinant-los
en models tnics com els SGT i 'ontologia, i aixi permetent generalitzar el reconeix-
ement d’activitat al domini d’interes. Finalment, donat que 'ontologia es basa en
entrenament lingiiistic, es pot connectar directament amb interficies de llenguatge
natural com les emprades per a cerques i descripcions lingiiistiques de video, deixant
a l'abast dels usuaris ’accés a continguts semantics mitjancant dialegs.

La taxonomia d’events restringeix l’espai de validesa dels indexs semantics en
el domini. Les restriccions ontologiques imposades als events fixen un seguit de
condicions perque una situacié es detecti; aixi es poden aconseguir mecanismes de
prediccié basats en models tancats. S’han escollit els predicats d’alt nivell com ele-
ments semantics central del sistema cognitiu, donat que sén altament expressius, in-
dependents de la llengua, i adequats com a nivell neutral entre la visié i la lingiiistica.
D’altra banda, els events basics es defineixen per models humans generics i indepen-
dents del domini.

Els arbres de grafs de situacions (SGT) sén de fet classificadors de contingut
que caracteritzen semanticament els intervals temporals dins una seqiiencia de video.
Les interpretacions generades actuen com a indexs semantics d’alt nivell, faciliten
aplicacions de cerca, consulta i navegaciéo de video basat en contingut. El fet que
el sistema sigui modular facilita la multimodalitat, donat que s’hi poden incorporar
arbitrariament moduls que proporcionin diferents tipus de dades. Sempre que aquestes
vinguin en forma de predicats logics es poden incloure directament als SGT. A més, els
resultats d’aprenentatge automatic de regions presentats al capitol anterior es poden
utilitzar directament per ’analisi d’alt nivell descrit aqui.

Finalment, hi ha tot un seguit de tasques que cal millorar o incorporar en el
futur. Per exemple, els SGT haurien de permetre raonar amb multiples hipotesis
concurrentment, cosa que no es permet actualment. També s’ha d’estudiar quines
dificultats comportaria passar de la video vigilancia a I’analisi i indexacié automatica
de pe-icules i continguts multimedia generics. Per fer-ho, caldria incorporar 'analisi de
postures i expressions facials, donat que en els nous dominis la resolucio és tipicament
molt més alta i aquestes tasques serien possibles. Per tltim, encara en el camp de la
video vigilancia, el sistema hauria de saber analitzar el comportament de multituds,
que presenta una serie de problemes dificils de resoldre.
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Chapter 5

Ontology-based human-computer
interaction

“And what is the use of a book”, thought Alice,
“without pictures or conversations?”

Alice in Wonderland (1865), by Lewis Carrol

The ability to communicate is innate in a natural cognitive system. There
exist several ways to reach this goal artificially, although Natural Language
is usually taken as a primary choice, being a flexible, unconstrained, and
economical tool that is also intrinsic to end-users. This chapter discusses
the implementation of linguistic modules to close the communication loop
between the system and external users. Additional tasks like the generation
of virtual scenes are also implemented and combined, in order to increase
the benefits of high-level interfaces for human-machine interaction. This
chapter exploits ontological knowledge and user interfaces to narrow many
of the gaps —interface, query, model, semantic—.

A fundamental objective of cognitive systems is to achieve effective human-machine
interaction. This is useful to enhance the human capability and productivity across
a large collection of endeavors related to a definite domain. Some alternatives are
available to grant human-machine communication, such as Natural Language and
Computer Graphics. In our case, for example, we may think of three particularly
interesting types of interaction:

» Generating textual accounts about observed occurrences.
» Understanding textual queries and commands from external users.
= Displaying synthetic videos with virtual elements representing the real scene.

The first task is accomplished by a process of Natural Language text Generation
(NLG), and the second by Natural Language text Understanding (NLU). These two
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5.1

first tasks are intrinsically relevant for our goal, for they grant linguistic communica-
tion, i.e., the easiest and fastest way for non-expert users to reach out to the system.
The third one is attractive as well, for it provides end-users with a simplified repre-
sentation of the observations, while holding their content. Moreover, this task is also
interesting for designers and maintainers: first, it becomes a cheap way to evaluate
tracking systems over fully controlled environments, e.g., making scenes complex by
gradually incorporating behavioral virtual agents. Secondly, it efficiently compresses
hours of video material into a light list of semantic predicates, which virtually recreate
the developments anywhere.

This chapter explores ways in which these three contributions can be incorporated
to the framework described so far. Next section analyzes some preliminary ideas
about NL, especially stating the differences between NLG and NLU tasks. After it,
Section 5.3 presents our starting point for embedding linguistic capabilities to the
system, the so-called Discourse Representation Theory (DRT). Based on this idea, an
initial NLG module is detailed. In Section 5.3, the original module is enhanced to
deal with multilingual capabilities and to confer language-independent extensibility.
Section 5.4 proposes a NLU module that couples with the ontological resources of
the system, thus closing the communication loop. In addition, a module for the
generation of synthetic scenes is detailed in Section 5.5. Finally, some experimental
results validate the suggested applications.

Introductory remarks on NL

As introduced above, NL becomes fundamental when discussing the communication
with end-users. A natural linguistic communication involves two main capacities: to
put words to our thoughts, and to identify thoughts from the words we perceive, and
these are the goals that we transfer to the system by means of NLG and NLU. Both
tasks are subfields of Natural Language Processing, which in turn can be seen as a
subfield of both computer science and cognitive science [106]. NLG focuses on com-
puter systems that automatically produce understandable texts in a natural human
language, and NLU studies computer systems that understand these languages. Both
are concerned with computational models of language and its use. In general terms,
the two processes have the same end points, but opposite directions. One would think
then, by looking at the general picture, that there would be many shared processes
or resources that could be reused between them.

Nevertheless, the internal operations of these processes hold several differences in
character. NLG has been often considered as a process of choice —i.e., which is the
best way to deliver the information—, whereas, NLU has been best characterized as one
of hypothesis management —i.e., which response by the system is the user requesting—.
In NLG, we have several means available, and must choose the most suitable one to
achieve some desired end. In NLU, we must select the most appropriate interpretation
out of a multiple set of them, given some input.

Therefore, the strategy adopted to build a NL interface is different for each task,
see Fig. 5.1. In NLG we control the set of situations that need to be expressed, and
define one correct form of expressing that information in a clear and natural way, for
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Figure 5.1: Although NLG and NLU seem to be close related, they involve different
problems which require independent strategies.

each language considered. On the other hand, the NLU process provides us with an
open number of possible user queries that need to be interpreted; hence, we need to
restrict to a set of intentions that we assume a user can show. Following these ideas,
the best option is to consider NLG from a closed, deterministic viewpoint and NLU
from an open one, since the first one has to do with aforeknown situational models,
whereas the second one deals with the unexpected.

From a general perspective, some general guidelines have been considered for a
sensible implementation of NLG into our cognitive vision system:

0 We must describe situations contained in the implemented behavioral models.
In our case, the situations are those defined in a domain ontology and resulting
from the behavioral analysis accomplished by SGTs.

O According to the cognitive situatedness/embeddedness property, the behaviors
of an agent in a given environment are constrained [134]. Consequently, the
system’s outputs have been restricted to interpretations of situations uniquely
for the defined domain. These interpretations will be expressed linguistically by
native speakers of each language, for consistency.

O Such linguistic utterances are built and adapted into the system using rule-based
parsing techniques and functional grammars (detailed in Appendix B), which
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5.2

have been conceived specifically to facilitate multilinguism, extensibility, and
effective ontological coupling.

O The final linguistic models are enhanced according to the Prototype Theory
from cognitive linguistics, in which the linguistic elements are categorized using
sets of semantic features [71]. As explained further on in the text, this approach
entails a series of advantages, e.g., the lack of rigidness to formalize linguistic
properties, or the interoperability of linguistic knowledge at different stages.

Likewise, we state a series of guidelines for NLU:

O All valid' requests that apply to predefined goals in the domain should be de-
tected. Such requests are traditionally classified into questions (queries), com-
mands, and information updates.

[0 The ontological resources described in the previous chapter are used here to
restrict the semantic domain of validity of the possible requests.

O NLU aims to actually understand the intention of a user, so that the system
can act according to the hypothetical intention.

O It is valuable to use a probabilistic approach for NLU, given the huge number of
possible inputs to express an intention, which in practice cannot be completely
controlled. Therefore, the definition of some type of semantic metric is required
to assess the most probable interpretation of a request.

Next section describes an implementation for the NLG task, based on a series of
recent contributions by different authors related to the field. Subsequently, this first
design is enhanced in Section 5.3 to incorporate more functionalities and to link with
the existing ontological resources. The enhanced NLG module (ONT-NLG) serves as
a basis to derive modules for NLU and generation of synthetic scenes, which eventually
cover a wide range of applications targeted to user interaction.

DRT-based Natural Language Generation (DRS-NLG)

The information to be expressed by the NLG module about a scene is contained in
the series of high-level facts stored into the factual database. The main goal for this
module consists of selecting a unique form of expressing that knowledge in a clear and
natural way, for each of the languages considered. This module is then built from a
deterministic point of view, since it deals with aforeknown linguistic realizations.

Reiter and Dale [106] presented a roadmap of the main tasks to be solved regarding
NLG. Its proposed model of architecture includes three modules:

m A Document Planner, which produces a specification of the text’s content and
structure, i.e. what has to be communicated, by using both domain knowledge
and practical information to be embedded into text.

IThe validity of an input comes determined both by its linguistic correctness and by its belonging
to the domain of interest.
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» A Microplanner, in charge of filling the missing details regarding the concrete
implementation document structure, i.e. how the information has to be com-
municated: distribution, referring expressions, level of detail, voice, etc.

m A Surface Realizer, which converts the abstract specification given by the previ-
ous stages into a real text, possibly embedded within some medium. It involves
traversing the nodal text specification until the final presentation form.

Our approach is based on this generalization, keeping in mind that the document
planning —what to communicate— is accomplished by the conceptual stages studied
previously. In addition to these generic steps, we demand multilingual capabilities
and a situation-oriented planning of content, i.e., we want to communicate dangerous
or rare events differently than normal developments.

The preliminary implementation follows on work done by Gerber and Nagel [42].
They use Discourse Representation Theory as an abstract framework to identify sys-
tematic connections between meaning and linguistic forms. The system consists of
three components, all of which need to be adapted when a new language is incorpo-
rated, see Fig. 5.2.

High-level predicates from the reasoning stage are eventually converted into surface
text, this is, a sequence of words, punctuation symbols, and mark-up annotations to
be presented to the user. In order to design the different tasks in the pipe, a set of
lemmata has to be first extracted from linguistic corpora on the purposed domain,
for each language tackled.

Three tasks are considered: first, lexicalization generates words from predicates
with the help of a lexicon, and assigns them a thematic role according to their in-
tended function. Later, these unsorted pieces of knowledge are parsed through a list
of DRS construction and transformation rules, which provide structure by progres-
sively reducing free units into constituents of the global sentence. Finally, once a
syntax exists, a final step for morphological parsing is applied to make the sentence
grammatically and orthographically correct.

A more detailed scheme for the entire process of generation is shown in Fig. 5.3.
The sentence “He is waiting with another pedestrian” has been generated step by
step from logical predicates, for the English language. The three submodules used
for NLG (left) are decomposed into specific tasks (center), each one showing its step
contribution. The type of information resulting from each task is noted at the right
side.

Representation of the discourse

The implementation of semantics for NLG is based on Discourse Representation The-
ory [63, 61]. This theory aims to provide an abstract framework to systematically
represent linguistic information contained in NL sentences, in predicate logic formal-
ism. Semantic relationships are stated by means of DRS. Here, the inverse process is
implemented, consisting of the retrieval of NL text from logic predicates, by defining
a set of DRS construction and transformation rules for each language.

DRSs are semantic containers which relate referenced conceptual information to
linguistic constructions. A DRS consists of a universe of referents and a set of con-
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need modification when adding a new language. Notice that here, REG is accom-
plished as part of DRS rules.

ditions, which can express characteristics of these referents, relations between them,
or even more complex conditions including other DRSs in their definition. These
structures contain linguistic data from units that may be larger than single sentences,
since one of the ubiquitous characteristics of the DRSs is their semantic cohesiveness
for an entire discourse.

When a contextual basis is explicitly provided, the maintenance of the meaning
for a discourse, including its cross-references, relations and cohesion can be granted.
A particularly interesting and comprehensible example of discourse cohesion is the
case of anaphoric pronominalization, which allows the generation of some referring
expressions; for instance, we typically discard “The pedestrian waits to cross. The
pedestrian crosses”, in favor of “The pedestrian waits to cross. S/he crosses”. This
phenomenon is part of the Referring Expression Generation (REG) problem, i.e., how
to refer to an entity depending on the way it has appeared in the discourse up to the
moment.

94
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Pedestrian (agent2)
PickableObject (object1)

Figure 5.3: Step generation of the sentence “He is waiting with another pedestrian”
from logical predicates and for the English language.

DRSs point out the cross-references existing among the semantic constituents of
a predicate. The classification of linguistically perceived reality into thematic roles
(e.g. agent, object, location) is commonly used in contemporary linguistic related
applications as a possibility for the representation of semantics, and justifies the use
of computational linguistics to describe content extracted by vision processes. In
the current implementation, these constituents can be classified as agents, objects,
locations, and events/situations. Previously mentioned information about an agent
is used to decide upon referenced expressions or full descriptions.

Fig. 5.4 illustrates the way in which a DRS undertakes semantic representation
and contextualization. Here, two predicates are validated, which correspond to the
observed events kick vending machine and stare at someone. The first predicate
instantiates a DRS, which serves as context for the following asserted facts. Once
a new predicate is validated, it instantiates another DRS which merges with that
context, thus providing a new context for subsequent facts. The temporal order of
the events is stated by including them within time variables (e; C ¢1), placing these
variables in the past ({1 < n), and marking precedence (e; < es3).

DRSs also facilitate the subsequent tasks for sentence generation. The syntactical
features of a sentence are provided by the construction rules, which establish the posi-
tion for the elements of the discourse within a sentence in a particular language. The
question of how to address temporal references also arises at the semantic level [62].
There exists certain flexibility for the selection of tenses. This table summarizes a
sensible alternative based on the nature of the event:
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Figure 5.4: A pattern DRS allows us to convert a stream of conceptual predicates
into a string of textual symbols. The numbers of these step results are linked to
Fig. 5.2.

EVENT TYPE TENSE EXAMPLE

Action Present simple stops, turns

Activity Present continuous is running, is accelerating
Contextualized event Present simple meets with, leaves
Behavior interpretation Uncertain form seems to have happened

A discourse referent n is required for the utterance time of discourse, so that the
rest of temporal references can be positioned with respect to it, see Fig. 5.4. Due to
the specific goals considered for this system, simple and short sentences are used for
effective communication.
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SPANISH MASCULINE NOUN coche (Object) {
car(Object)
}
SPANISH REGULAR VERB adelantar (Agent) {
PREP a (DAT: Object) {
ATTRIBUTE starting (Object) {
movefromto (Event,Agent, Object2),
avoidobstacle(Event2,Agent,Object),

car (Agent)
}
}
}
SPANISH ADVERB ahora (Object) {
starting(Object)
}
Table 5.1

LEXICALIZATION RULES PROVIDE LINGUISTIC FORM (LEMMATA) TO GIVEN PREDICATES OR

CONFIGURATIONS OF THEM.

Lexicalization

Lexicalization is understood as the process of choosing words and syntactic structures
to communicate the information in a document plan [106]. In our case, this informa-
tion is the collection of temporal interpretations in form of logical predicates inferred
by the system. Concretely, we have to map a cloud of predicates, now contextualized
as DRSs, into words that explain the contents to communicate.

DRS and lexicalization rules are not applied independently, but require of a par-
ticular cycle of interaction to accomplish different tasks, like REG. The cycle is per-
formed as follows:

1.

DRS construction rules provide an initial structure, by detecting available se-
mantic units.

Lexicalization maps the captured semantic units into words.

DRS transformation rules affect these words according to their context —e.g,
contractions, flexions, REG—.

Lexicalization finally substitutes original words by contextualized ones, e.g.,
pronouns in the case of REG: A pedestrian meets a pedestrian— A pedestrian
meets another one.

This particular cycle becomes particularly difficult to implement for some lan-
guages and certain tasks, as it is the case for REG. DRS rules are specific for each
language, thus representing a considerable effort in terms of formalization of linguistic
phenomena.
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ENG

«o verb « ”
1. (%go™) [ particip. } —— (“gone”) [verd]

ENG

« 7 b «, 2
2. (“meet”) [ pal;gcip. } ——— (“met”) [verd]
verb ENG “
3. (@) [ particip. } —— (a+ “ed”) [verd]
determ. CAT/SPA prep-
4. (“a”) [prep] + (“el”) [ masc.” | ———— (v} | 9o
sing. ITA sing.
CAT
5. (“de”) [prep.] + (vowel + o) ————— (“d””) [prep.] + (vowel + «)
ITA
determ. CAT «pl
6. (@) | “4in + (vowel + By ———— (“I"”) [determ.] + (vowel + 3)
g.
ITA
Table 5.2

SIMPLE MORPHOLOGICAL RULES IN CATALAN, ENGLISH, ITALIAN, AND SPANISH. MORE
DETAILS IN THE TEXT.

Morphology and surface realization

The surface realization task aims to apply morphological disambiguation at two levels:
for each word individually, and for each word considering its neighboring context.
The first step applies grammatical attributions like gender or number, stated by the
semantic relations previously established by DRSs among the lemmata of discourse.
After that, a second set of rules searches for predefined configurations of words that
affect the final surface form, due to phenomena like contractions —e.g., a + el — al,
in Catalan and Spanish— or order variation. This additional step is indispensable for
many languages.

Table 5.2 shows rules included in the grammar for morphological parsing. Rules 1
and 2, in English, reduce the participle tag of a verb for two exceptions, and generate
the word form. Rule 3 produces the participle for verbs in a general case. The other
rules, for Catalan and Italian, deal with prosodic manipulation: rule 4 covers the con-
tractions of preposition plus determinant, and rules 5 and 6 are for apostrophication,
when the following word after certain words starts with a vowel. The syntax of the
parser is detailed in Appendix B.
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5.3

Ontology-based Natural Language Generation (ONT-
NLG)

This section proposes an improvement over the described module for NLG, targeting
(i) the easiness of extensibility and flexibility regarding new languages to be imple-
mented, and (ii) the connection of this module to existing ontological resources.

One goal consists of separating technical and linguistic knowledge. This way,
native speakers without expert background can add languages by modifying exter-
nal grammars, without altering the core. In addition, users are allowed to adjust
characterizations for each language, metalinguistically. Our motivation for the use
of a situated, feature-based approach —Prototype Theory from cognitive linguistics—
instead of a formal, universal theory —Discourse Representation Theory— is that no
linguistic rule can be applied universally without having to consider a great amount of
exceptions, for one language or another. The following quote expresses this thought:

Consider for example the proceedings that we call ‘games’. I mean board
games, card games, ball games, Olympic games, and so on. What is com-
mon to them all? Don’t say, ”There must be something common, or they
would not be called ‘games’ ” - but look and see whether there is anything
common to all. For if you look at them you will not see something com-
mon to all, but similarities, relationships, and a whole series of them at
that. To repeat: don’t think, but look! Look for example at board games,
with their multifarious relationships. Now pass to card games; here you
find many correspondences with the first group, but many common features
drop out, and others appear. When we pass next to ball games, much that
is common is retained, but much is lost. Are they all ‘amusing’? Compare
chess with noughts and crosses. Or is there always winning and losing,
or competition between players? Think of patience. In ball games there
is winning and losing; but when a child throws his ball at the wall and
catches it again, this feature has disappeared. Look at the parts played by
skill and luck; and at the difference between skill in chess and skill in ten-
nis. Think now of games like ring-a-ring-a-roses; here is the element of
amusement, but how many other characteristic features have disappeared!
And we can go through the many, many other groups of games in the same
way; can see how similarities crop up and disappear. And the result of this
examination is: we see a complicated network of similarities overlapping
and criss-crossing: sometimes overall similarities, sometimes similarities
of detail.

Philosophical Investigations 66, 1953
LupwIiG¢ WITTGENSTEIN (LATER)

In the new scenario we are creating, the properties of a language that are common
to another one can then be directly profited, whereas no artificial generalizations will
be assumed.

The new layout of the NLG module is presented in 5.5. Linguistic knowledge has
been separated from the core processing, so that it can be maintained independently.
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Figure 5.5: The ONT-NLG module enhances previous one. Darker boxes stand
for elements that need modifications when incorporating a new language. It is un-
clear whether REG functions are language-independent; they are for the languages
implemented so far.

The process has also been linked to ontological resources, providing a series of inte-
gration benefits that will be exploited for additional applications. For instance, this
connection couples NLG with the NLU process described in the next section.

Task 1: Assignment of dependency trees

The first task converts an incoming high-level predicate into a tree structure, which
gives a unique semantic interpretation to it, and produces a structure for the final
surface sentence. Predicate types are linked beforehand to tree templates, whose
shapes come predefined by the ontological constraints held by the event; e.g., is_agent
determines the agent (subject of active sentence) for wait_with, see Fig. 5.6. This
template-based approach is equivalent to the previous use of DRS template rules.
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object from the first pedestrian.”

Orthography and formatting )
Morphological “this last pedestrian seems to have stolen the second !
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Figure 5.6: Step generation of a sentence describing a theft, for the English lan-
guage. This figure extends Fig. 5.5.

Each predicate is linked to an element of the Event T-Box, and its inner fields are
as well linked to elements of the Entity and Descriptor T-Boxes. The defined structure
reproduces the way in which a situation appears linguistically in the provided corpus.
Trees are built by hierarchically using parenthesis to define the conforming nodes.
For instance, a parent-child structure is expressed as (parent (child)), and a sibling
structure would be (nodel) (node2). Each node contains a word structure —read
Appendix B for details— to achieve word aggregation. The inner fields of the predicates
will simply be forwarded to the lexicalization process, where an appropriate linguistic
structure is assigned to each entity.

An ontological approach offers the possibility to choose how to communicate the
information, regarding its nature. For instance, it may be desirable to express doubt
for uncertain or improbable events, or express continuity for activities that are still
on course or under development. A series of predefined linguistic patterns are auto-
matically conferred to the semantic trees by means of tags, depending on the events
represented. These rules apply unless a different pattern is chosen for the specific
event. Table 5.4 details generally chosen tags for the verbal realizations of the En-
glish implementation.

Task 2: Lexicalization and REG

The new lexicalization task also maps semantic elements into linguistic resources that
communicate their contents. In this case, units are either words or subtrees, see
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A\ - [-- - - -1
laccelerate (Agent$0) | (NP{S}:@Agent$0) (VP:<accelerate>—vN3SR) | ;
| appear (Agent$0) | (NP{S}:@Agent$0) (VP:<appear>—vN3SR) l;
| appear (Agent$0,Location$0) |

(NP{S}:0Agent$0) (VP: <appear>—vN3SR(PP:<from>(NP:@Location$0))) |;
|back_up(Pedestrian$0)

(NP{S}:@Pedestrian$0) (VP:<back>—vN3SE(PP:<up>—p)) l;
\\---mm [-=——mm - -1

Table 5.3
ASSIGNMENT OF ABSTRACT SEMANTIC/SYNTACTIC TREE STRUCTURES TO INPUT
HIGH-LEVEL PREDICATES. TWO PREDICATES SHARING THE SAME NAME BUT DIFFERING IN
THEIR NUMBER OF FIELDS GENERATE TWO DIFFERENT STRUCTURES.

TYPE OF EVENT VERBAL PATTERN EXAMPLE

This pedestrian seems to be

Int tati N3SVEU . .
nterpretation v chasing after the third one.
Contextualization vN3SR §/he has left an object
to the ground.
Activity vN3SC The vehicle is accelerating.
. The pedestrian walks
Act N3SR .
cron v by the upper sidewalk.
Table 5.4
VERBAL TAGS ONTOLOGICALLY ASSIGNED TO EACH EVENT TYPE, FOR LINGUISTIC
REALIZATION

Fig. 5.7. Whereas the assignment of trees organized elements from the Event T-Box
syntactically, lexicalization takes care of ontological elements from the Entity and
Descriptor T-Boxes.

The new task involves additional steps. First, particularizations must be ap-
plied when available, e.g., replacing a general predicate appear(agent, location) by
appear(pedestrian, upper_right_side), following taxonomical knowledge. Subsequently,
lexical realizations are given to a conceptual entities, such as upper_right being
expanded as “upper right side”, see Fig. 5.7.

The idea of onomasticon becomes of great importance regarding REG [37]. REG
is known as the task of deciding which expressions should be used to refer to entities,
so that the user can easily identify that entity in a given context, see Table 5.5.
Traditionally, an onomasticon is a simple repository linking the entities instantiated
along the analysis to the possible names one can use to refer to them. In our case,
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CAT (NP:pas (NP:zebra))
crosswalk ENG (NP:crosswalk)
ITA (NP:strisce (AdjP:pedonali))
SPA (NP:paso (PP:de (NP:cebra)))

[ sidewalk segmen CAT (NP:vorera)(AdjP:inferior)

W watting zone lower sidewalk | ENG (AdiP:lower)(NP:part)(PP:of (NPsidewalk))
. Crosswalk segment - ITA (NP:parte (AdjP:bassa) (PP:di (NP:marciapiede)))
. Road segment SPA (NP:acera)(AdjP:inferior)

Figure 5.7: Lexicalization of a priori locations. A linguistic structure is given to
each semantic region of the scenario, for each language.

Propositions

4 )

wait_at (e, e;)
head_to (e,, ;)
meet (e,, &)

e;: Pedestrian
e,: Pedestrian

e;: VendingMachine
G J

Discourse without REG Discourse considering REG
“ Pedestrian is waiting at vending machine. “ A pedestrian is waiting at the vending machine.
Pedestrian heads to vending machine. Another pedestrian heads to this location.
Pedestrian meets pedestrian. " He meets the first pedestrian.”
Table 5.5

THE REG TASK AVOIDS POSSIBLE AMBIGUITIES WHEN IDENTIFYING ENTITIES IN A
GENERATED DISCOURSE.

an onomasticon is extended by tracking instances along the discourse, allowing the
system to answer questions like: has it ever been instantiated?, more than once?,
are there other instances of the same concept?, was it the central entity in the last
sentence generated?, or was the last instance definite?

The proper combination of these REG cases allows the ONT-NLG module to
choose the most appropriate referring expression, like an [entity/, a new [entity], the
[entity], this last [entity], the second [entity]. For example, if we have seen a car in the
scene previously, and a new agent of type car appears, we use “a new car”; otherwise,
if none of the vehicles or other agents seen was specifically a car, we use simply “a
car”, thus highlighting the class instead of the actual instantiation.

REG situations have been abstracted with independence of the language, to ac-
count the different linguistic references useful for our application. It is possible that
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REG needs being revisited when a new language is implemented, since they may
have distinct lexicalization needs from the ones implemented at the moment. So
far, though, the generic REG models have covered needs of reference for the current
languages implemented. Next, a formal definition of this problem and the proposed
solution is presented; Appendix B contains extended technical details for the parsing
REG rules implemented.

We define the instantiation operator as follows:

Let

C be a given context, and
E={ytm be a set of entities.
AC = {(i 2%)y}prxn,, be the set of instances of &€ in C,

The n-th instantiation of the m-th entity y,, in context C is formalized as (i 25)ym,
where 2€ € Ay, €&, Vn=1,2...N, Ym=1,2... M.

Now we will study the REG casuistry.
Let

AC = {(i 2%)ym}n,, be the subset of instances of y,, in C, and

AC|p, be the subset of A¢ which have been instantiated
at Py, where Py, is the k-th generated proposition
and k=1,2.. K.

Finally, let A,B,...,F be test functions over the instance (4 xﬁ)ym, defined as:

A:n>1 The instance is a subsequent reference [106].
B: n==N, The instance has been the last instantiated one.
C: (i 2%, )ym — Def  Last appearance of the entity was definite.”
D: |ACp, |>1 Last proposition contained more than one instance.
E: | A p. |=1 Last proposition contains only one instance of y,y,.
F: | A%, | >1, There were several instances of ¥,

| AC | =1 but only one left.
G: N, Number of apparitions of the instance.

Depending of the different values resulting from the application of the test func-
tions over the instance (i 2€ )y, a set of possible REG situations have been defined,
see Table 5.6. Each and every one of these situations is associated to a certain REG
tag, which has to be defined in the categories file. At the moment, these rules solve
the linguistic needs which were tackled for this implementation of the NL text gener-
ator. Nevertheless, this is not a finished solution for the problem: the necessary test
functions should be better analyzed, in order to be consistent with the universality
of the REG situations for each language, and the list of these situations should be
extended as required.

2_Def is the result of having classified the instance in question as definite.
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5.4

REG FEATURE Tac | A B C D E F G |EXAMPLE
REG.Undefinite s | X 1 |a
REG.NewUndefinite s | X >1 | a new
REG.Definite ® v X X the

v X 1 | the
REG.AppearedLast 8 ‘ v v X ‘ s/he
REG.AppearedLastMultiple 82 ‘ v /7 ‘ this last
REG.Nth o4 v v X n | the n-th

v X 1 | the n-th
REG.Remaining 0 ‘ v ‘ the remaining
REG.AlreadyReferred o | - - = = = — |

Table 5.6
TABLE OF REG FEATURES ACCORDING TO THE INFORMATION PROVIDED BY THE
ONOMASTICON

Task 3: Morphology and surface realization

Finally, the morphological and surface realization process involves mapping the spec-
ification of a text into a surface text form, i.e. a sequence of words, punctuation
symbols, and mark-up annotations to be presented to the end-user [106]. In prac-
tice, it consists of applying parsing techniques to modify either independent words
(verb inflections or conjugations, plurals) or words depending of their surrounding
context (contractions, vowel adjacency, prosodic effects). In the example of Fig. 5.9,
the third person of the verb has been conjugated; similarly, this step also updates
tenses (“leave” — “has left”) and changes words in context (“a agent” —“an agent”).
As a result of the morphological process, a rich semantic/syntactic tree structure with
referred expressions and morphological forms is generated. The linearization of the
tree nodes and a final addition of orthographical and formatting information provides
a final surface form for the end-user.

Natural Language Understanding (ONT-NLU)

The NLU module has to choose the most appropriate interpretation out of a set of
possible ones, given a textual input in NL. In our case, the ontology specifies the
domain of validity undertaken by the universe of possible user queries, and makes it
possible to reduce them to a handleable space of situations. In addition, to avoid
excessive ambiguity when resolving the meaning of the inputs, this module accepts
uniquely single (not compound) sentences from the end-users.
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Figure 5.8: Scheme of the NLU module. Sentences written by the user are individ-
ually converted into conceptual predicates.

The general operations conducted by the NLU module are shown in Fig. 5.8. First,
each sentence of the user is processed by a stemming algorithm, and its contents are
linked to concepts from the global ontology. After that, the specific context of the
sentence is found by relating all referring expressions to their corresponding entity
instances, with the help of the so-called onomasticon. Finally, the interpreted sentence
is analyzed at a syntactic/semantic level, and its contents are assigned to the most
suitable action predicate in order to generate virtual agents in the scene. These three
steps are explained in detail next.

106



Stemming

The first step of the NLU module consists of mapping the surface form of a natural
language sentence into a more simplified and structured form, by removing those
elements that are not significant for a semantic evaluation and maintaining only word
stems in canonical forms, i.e. as lemmata. This process is accomplished by means of
a traditional rule-based parsing technique.

The transformation of the sentence into a structure of annotated lemmata is again
done at two levels: individually and by context. Individual word tagging extracts lin-
guistic characteristics for a word and annotates them as a chain of grammatical tags,
used to disambiguate the sentence. In addition, stop-words (e.g., determinants) are
removed from the sentence. At a contextual level, parsing is carried out by addi-
tionally considering the neighborhood of a particular word; this case is fundamental
to detect collocations or expressions referring to a unique ontological concept, e.g.,
“vending machine”. Some examples of tagging rules are shown next.

| [<com_>] <up> | Juv O@Appear [
|  <him> |  {P}JwrN3s @Entity I
| <towards> | Jup I
| | |

)

<lower> <left> <side> <lowleft>Jwn QLowerLeftSide

In the examples, “—” denotes the start of a chain of grammatical tags, and “@”
denotes a link to the ontology. The first line detects the two words of any non-past
form of “come up” and links them to the default expression in the ontology, i.e.,
Appear, also marking it as a word (w) and verb (v). The second example tags the 3rd
person singular pronoun (rN3S) “him” as an ontological entity, also classifying it as
a patient (P). The third example tags a preposition as such (p). Finally, the fourth
line merges the expression of a predefined location of the scenario into a single noun
(n).

A basic goal of this process is to link each lemma to a concept from the ontology, so
that the possible interpretations of the input sentence are reduced to those admissible
by the defined models. While tackling this problem, an NLU module has to deal with
unknown terms or expressions, for which no conceptual knowledge is made explicit
within the system. In order to augment the recognition rate of words in the domain,
and to additionally avoid scaling the linguistic models to cover them all, the reliance
on very generic databases (e.g., common-knowledge or linguistic repositories) opens
possibilities of learning or adaptation. In our case, further lexical disambiguation is
accomplished relying on the WordNet lexical database [34].

WordNet is a linguistic database that groups the words of a language into sets of
concepts called synsets, which manifest the semantic proximity of these words. Such
synsets are in turn related to each other by parentive relationships of hypernymy and
hyponymy?, and contain other valuable information such as use cases and definitions
of meaning. Currently, English WordNet includes approximately 155.000 words and

3An hyponym is a term that presents all the semantic characteristics of a more general term —an
hypernym to the first term—.
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l “Who has robbed anything for the last time?” Query in NL

‘ Lemmatization, stop-words, WordNet disambiguation )
Stemming “who steal something last” d(rob, steal)=0.0 Stemmed sentence
\_ Morphological tagging )
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<steal>—|!/va Tagged word sequence
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uery retrieva AND S.name ="bTheft”
AND C.name ="has_object_interaction_with”
ORDER BY F.time DESC LIMIT 1
\_ Query to Factual database ) v

* 1010:1024! bTheft (Pedestrian4, Pedestrian3, PickableObject2)  High-level predicates

Figure 5.9: Step results for the NLU process in a case of query retrieval. The con-
cepts linked to words are either Facts or Entity Instances from the factual database,
as seen in Fig. 4.11.

117.000 synsets, structured into 4 lexical categories —mouns, verbs, adjectives, and
adverbs—.

In order to measure the semantic distance of an unknown word to terms known
by the system, the unknown word is compared to the list of taxonomical concepts
that share the same lexical category. A distance value is retrieved using semantic
metrics based on relationships such as synonymy and hypernymy. New candidates
are evaluated to determine the ontological nature of an unknown word; as a result,
the word is linked to a number of domain concepts that can explain it.

Referring Expression Understanding

An onomasticon is a repository that keeps track of the different linguistic expressions
that correspond to the same entity in a discourse. In our case, an extended onomasti-
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Discourse

“ A pedestrian is waiting at the vending machine.
Another pedestrian heads to this location.
He meets the first pedestrian.”

/ N\

Propositions without REU Propositions considering REU
4 . ) 4 ) )
wait_at (e;, e,) wait_at (e;, e,)
head_to (e;, e,) head_to (e;, e,)
meet (es, ) meet (e;, e;)
e;: Pedestrian e;: Pedestrian
e,: VendingMachine e,: VendingMachine
e;. Pedestrian e;. Pedestrian
e,: Location - J
es: Agent
es: Pedestrian
- J
Table 5.7

THE REU TASK KEEPS TRACK OF ENTITIES IN A DISCOURSE, LINKING PROPOSITIONS TO
THEIR IMPLIED ENTITY INSTANCES. OMITTING THIS TASK LEADS TO SEMANTIC AMBIGUITY.

con is additionally aware of how the instantiation of entities has been done: whether
a certain entity has ever been instantiated, whether this has been done in the last sen-
tence, or how many instances of each entity does the discourse have at any moment,
for example. This module is of great importance to accomplish the REU, a task to
decide which entities in the discourse are referred by which textual expressions; we
aim to identify them according to previous information available. Table 5.7 shows the
importance of the REU task in the understanding of natural language.

The identification of entities by referring expressions is carried out by managing
a set of test functions over the existing instances, which evaluate cases like: (1) the
instance has been referred at least once, (2) it has been the last instantiation, (3) the
last appearance of the same entity was definite, (4) the last proposition contained
more than one instance, (5) the last proposition contains only one instance of the
same entity, or (6) the instance has appeared more than once during the discourse.
Depending on the answers to these questions, end-users refer to one or another en-
tity using expressions like “a person” (—1,-6), “a new person” (—1,6), “the person”
(1,m2,76 or 2,-3,—4), “s/he” (2, 3,74), or “this last person” (2,4,5).

Assignment of adjacency trees

Following the idea of hypothesis management, the NLU module links textual sentences
to their most accurate interpretations in the domain, in form of predicates related to
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scene concepts and instances. Once a proper formatting has been applied, an input
sentence is analyzed through a sequence of 3 processes [37]: first, a morphological
parser tags words with linguistic features depending on the context of apparition,
and a syntactic/semantic parser builds a dependency tree out of the tagged sentence.
Secondly, the resulting tree with ontological references is assigned to the most related
query predicate from a collection of patterns. Finally, the obtained predicate is used
to query the factual database of indexed occurrences. The process is detailed next.

The semantic part of the analysis already starts with the word tagging process: the
lexical models attach domain concepts to words that potentially refer to them. Hence,
there are two issues to solve, since (i) a word can be linked to several concepts, e.g.,
word “turn left” (concept OrientationDescriptor) and “left entrance” (Location); and
(ii) each concept may also have many words attached to it, as for the words “person”,
“pedestrian”, or “walker” and the concept Pedestrian. Parsing rules solve the first
ambiguity. Regarding the second issue, a robust system must be able to understand
not modeled words, i.e., to sensibly link unknown words to a domain concepts. To
this end, we rely on the WordNet lexical database [34] to retrieve lists of closely
related words, using semantic metrics based on synonymy and hypernymy. New word
candidates are evaluated to determine the nature of the unknown word. As a result,
the word is linked to a number of concepts that can explain it.

Next, a dependency tree is built with the help of syntactical rules, which first
identify the heads of phrase classes and then recursively nest words and phrases
hierarchically. The resulting tree is then compared to a collection of tree patterns by
computing a semantically-extended Tree Edit Distance (TED) [18], see Fig. 5.10. In
order to compute the TED, the concepts at the leaves of the pattern trees are aligned
to those from the test tree, and the TED evaluates the coincidence of each concept:
it penalizes strongly the absences, penalizes the generalizations proportionally to the
number of levels to the test concept, and does not penalize at all when the test
concept matches or particularizes the pattern one. For example, the concept Car
augments the distance with pattern tree 2 having Pedestrian at the corresponding
leaf, but specializes the general concept Vehicle in the same position of pattern 3
with distance zero.

The pattern tree with lowest distance to the test tree is decided as the most valid
interpretation, and the fields of its associated predicate are particularized with specific
information from the sentence. These predicates, called goal predicates, have been re-
stricted to the 4 different types shown next, towards a practical implementation. The
main elements to retrieve from NL sentences are especially situations (.9), and also
agents (A), objects (0), locations (L), and time expressions (t), which can be refined
by ontological descriptors.

QUERY TYPE NL EXAMPLE EQUIVALENT GOAL PREDICATE

Assert Has anybody run after a robbery? Assert{A=Agent,S=Run,t=After(Theft) }
Count How many robberies have happened?  Count{S=Theft}

Query When has an agent run by the road?  Query{A=Pedestrian,S=Run,L=Road}
List Which vehicles have been observed? List{A=Vehicle,t=Before(Theft)}

A final step adapts each goal predicate pattern to the relational language used for
the factual database, in this case SQL. The retrieval process returns the entries that
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T-BOX

v
Go > {Walk, Drive...}
Entity O {Vehicle, Pedestrian... }

VelDescriptor 2 { Slow... }

Location >{RightSide...}
e ———

COSTS

Cost (add) =0.5
Cost (delete) =0.0
Cost (replace with child) =0.0
Cost (replace with others) = 1.0

PATTERN 1

e

<car>[Vehicle]

(__ TESTSENTENCE ) J

drive (Vehicle$0,
Location$0,
VelDescriptor$0)

PATTERN 2

D

<right>[RightSide]

Predicate =?

[ |
|
I Apply Pattern 1

drive (Vehicle = Car1,
Location = RightSide,
VelDescriptor = Slow)

walk ( Pedestrian$0,
Entity$0,
VelDescriptor$0)

PATTERN 3

D)

drive ( Vehicle$0,

Location$0)

\_:/

Figure 5.10: The test sentence is compared to a collection of pattern trees, each
one associated to an abstract predicate. The predicate of that pattern with a lowest

TED is specialized with information from the sentence.
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5.5

satisfy the NL query of the end-user, along with the interval of the video sequence
corresponding to the event index. Some examples of NL-based retrieval are presented
in the next section, along with the rest of the experimental results.

Synthetic generation and augmentation of scenes (SA)

It is desirable for modeling formalisms to not only represent and recognize model
instances, but also facilitate their synthetic generation. This section demonstrates
that the presented framework can be adapted to synthesize image sequences with
behavioral content. Our field of work suggests three potential applications of interest:

= Generating synthetic image sequences that represent temporal occurrences ex-
pressed by logical predicates.

= Augmenting real scenes with virtual agents, whose behavior is linguistically
defined by end-users.

= Synthesizing complex environments to evaluate aspects like the tracking system
(e.g., crowded scenes) or the behavioral models (e.g., detecting inconsistencies).

The first task, synthetic scene generation, enables the system to recreate virtual
scenes representing the detected events and behaviors. In addition, it becomes a very
visual and unequivocal way to evaluate the understanding of the scene by the system,
compared to our own. Virtual scenes that are equivalent to real ones —in terms of
contents— implicate an immense compression of the information, which is reduced
to a list of temporally-valid predicates. The second problem, scene augmentation,
is solved by combining virtual scenes with real recordings. In our case, we aim to
generate virtual agents that accomplish goals and react to real occurrences of the
scene, in order to have sophisticated means of simulating and evaluating modeled
behaviors of our framework. Both tasks can be applied to performance evaluation.

Fig 5.11 shows the outline of the Scene Augmentation (SA) module, which makes
it possible for the system to generate synthetic behavioral agents that react to real
developments. The SA module also produces fully synthetic sequences by omitting
real data and using conceptual models for the scenario, thus accomplishing the first
(simpler) objective. In addition, a proper use of the NLU module allows end-users to
describe, using NL, the behaviors of agents for scene synthesis or augmentation.

The main characteristics of the suggested approach for scene augmentation are:
(i) end-users describe the behavior of virtual agents in form of NL textual commands,
and (ii) virtual agents react in real-time to real occurrences within the scene.

In order to accomplish these objectives, several steps are progressively followed.
In the first place, real world occurrences must be interpreted, for which we use the
SGT-based interpretation framework described in the previous chapter. On the other
hand, virtual agents are given a series of goals in form of NL descriptions of events,
and converted into predicates by means of the NLU module presented in Section 5.4.
Hence, high-level predicates for interpretations and goals are inputs to the SA module,
whose components are described next.
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Figure 5.11: The SA module augments real sequences with virtual elements, lin-
guistically described by end-users. Fig. 5.13 gives examples of predicates found at
the three highlighted positions of the diagram.

Path planning and trajectory generation

End-users write textual commands for event generation that are interpreted by the
NLU module, producing goals for the virtual agents in form of high-level predi-
cates. These goals are of the form cross_street(Agentl), leave(Agentl, left),
follow(Agent2, Agentl), talk(Agent2, Agentl), thus referring to existing ele-
ments in the scene. The primary step for a virtual agent is to move towards the
destination entailed by its given goal, e.g., the opposite sidewalk, the left side of the
scene, or the location of Agent2. However, while moving to accomplish its goal, this
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agent may have to react to other agents, virtual or real, and also to the semantic
properties of the environment.

The family of predicates go_to compute the minimum path —in terms of a sequence
of contiguous scenario segments— to go from the agent’s current position to the loca-
tion implied by the goal predicate. If no further restrictions are imposed, the shortest
and straightest path is taken. Nevertheless, semantic restrictions come associated by
the behavioral models, e.g., pedestrians should cross roads only by pedestrian cross-
ings, and if there are no vehicles coming. Or for example, pedestrians will take the
less crowded of two alternative paths.

The SGT formalism also allows us to model and apply the behavioral restrictions
for virtual agents. This time, goal predicates are decomposed into a series of partial
objectives involving connected paths. Consider the following decomposition:

cross_street — go_to_closest_waiting_line
reduce_speed
go_to_the other waiting_line
leave_scene

Each partial objective is formalized as a situation scheme in Fig. 5.12 (a), where
a crowd of agents appearing randomly from a sidewalk side are told to cross to the
other side. This implementation of the behavior makes them approach to the closest
crosswalk, reduce speed, reach to the other side and leave by the closest sidewalk exit.

Basic intermediate objectives are changes of location ~go_to(Agent, Position) -,
changes of action —change _to_performing(Agent,Action)—, and changes of velocity.
A position can be fixed or related to another agent, and the current agent’s ac-
tion defines its instantaneous posture, as seen farther ahead. Intermediate objectives
are accomplished by a time-step generation of trajectories, in form of instantaneous
has_status predicates:

t ! has_status (agent, x¢, yi, O, v, actiong, pi) (5.1)

where (z¢,y:) are computed from the previous location (z:—1,y:—1) using generic
motion models; action can be either stand, walk, or run, depending on the velocity;
and p € [0,1] is a frame-incremented parameter that cyclically covers the possible
postures within an action, as commented in subsequent sections.

Reactive behaviors

SGTs are able to decompose goals into intermediate objectives, but they also pro-
vide virtual agents with capabilities to react against external stimuli, making them
autonomous in restricted environments. The SA module recomputes trajectories de-
rived from intermediate objectives every frame, to determine the best way to achieve
them. The reason for this is that certain situations —e.g., a sudden obstacle on the
way— force agents to adapt to the environment and follow alternative plans.

To this end, a priori trajectories are also adapted by SGTs. In the example of
Fig. 5.13, the current position of the virtual agent is analyzed by an SGT to determine
possible obstacles on the way, and in that case affects the original trajectory for the
next step. As a result, a detour in the trajectory is generated in real-time.
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Figure 5.12: (a) SGT for the cross_street behavior, used to test interactions with the
environment. (b) Simulation of a crowd of virtual agents performing the cross_street
behavior.

Animation and composition

Once the spatio-temporal status of the agent has been determined, it has to be ren-
dered in a virtual or augmented scene. In the first place, the rendered appearance
of an agent varies according to the step of its action, see Fig. 5.14. Each animated
action has an aSpace learned [14], whose parameter p determines the posture to be
shown at every frame. The aSpaces used for scene augmentation are mainly stand,
walk, and run.

The final step is the composition of an augmented image sequence, containing
both real and virtual agents processed at time ¢. In order to give consistence and
realism, the occlusions among scene elements need to be handled. For each pair of
agents (A1, A2) in the scene having positions r; and rq, respectively, we compute
their distances to the position of the camera r¢ as di = Ti7¢, do = Tar¢o. Agents
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Figure 5.13: SGTs modify dynamically the trajectory of virtual agents, according to
the behavioral models defined. These predicates are found at the different positions
of the SA module, as depicted in Fig. 5.13.

are sequentially superimposed over the background, sorted by their distance to the
camera —larger first—.

Fig. 5.15 shows a real and a virtual agent having distances d; and da to the camera,
respectively. Since dy < ds, the real agent occludes the other one. In case of pure
scene synthesis, only the relative positions among virtual agents are considered, and
a virtual model of the scenario is used as background.

Applications of ONT-NLG

Two main applications have been developed using the ONT-NLG module: the auto-
matic description of video events in multiple languages, and the automatic summa-
rization of such reports based on selectable content. Ontologies play an important
role in both of them, regarding language extensibility and adaptability, and content
management and centralization.

Automatic multilingual reporting

The incorporation of new languages into the ONT-NLG comes facilitated by the sys-
tematic ontological design that we have described. We have identified the problems
of the original DRS-NLG, inspired by the Angus2 system, problems that happened
especially at the REG and morphological levels. The ONT-NLG presented imple-
ments Catalan, Basque, English, Italian, Spanish, and Turkish languages so far, i.e.,
languages from the Indo-European family (Germanic and Romance), from the Turkic-
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Figure 5.15: (a) To compose an augmented scene, the agents are added sequentially
according to their distance to the camera. (b) Result of the composition.

(b)

Altaic families (Turkish), and even language isolates like Basque, which is the last
remaining pre-Indo-European language in Western Europe, not linkable to any of its
neighbors in the continent?. The previous implementation of DRS-NLG was addi-

4Larry Trask, The History of Basque. Routledge, 1997. ISBN 0-415-13116-2.
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tionally tested on Czech, German, and Japanese, resulting in a significative range of
languages. Although it cannot be assured that NLG can be assumed in any possi-
ble language with our current system, this does demonstrate the consistency of the
system for multilingual generation.

This section presents automatic reports for 3 different video surveillance sequences:
ZEBRA, HERMES-Outdoor, and HERMES-Indoor, in Tables 5.8, 5.9, and 5.10, re-
spectively. For a better understanding, the English results have been included in
every case. The average measured time for generating a single sentence has been 3
milliseconds, using a Pentium D at 3.20GHz with 2GB RAM.

Languages like Basque naturally take into account the presence of contextual
objects in the sentence to construct it; for instance, in Basque we find a difference
between “A person has left by an exit”— “Pertsona hau sarreratik atera da” and “A
person has forgotten an object”— “Pertsona honek objektua ahaztu du”, where hau
and honek are used according to the nature of the contextual linguistic units. Similar
phenomena can be found for some of the other languages. The use of mechanisms in
natural languages to explicitly distinguish the type of event—entity relations reinforces
the validity of our choice of terminological organization of knowledge, in cognitive
terms.

The synthetic results presented have been compared to the corpus produced by
the 30 English native speakers already described in Chapter 4, see Table 5.16. Less
than one third of the subjects are members of a computer science department, and
none of them has NL processing background. Subjects were told to describe both
sequences in a natural and linguistically correct manner, using the expressions they
considered most suitable. The quantitative evaluation carried out in the previous
chapter compared statistically the synthetic annotations to the most common user
descriptions. However, a qualitative evaluation is required to examine the naturality
and expressivity of the results.

A qualitative evaluation allows us to detect differences between the set of facts
detected by the subjects and the one generated by the system. On the other hand,
we also want to learn the mechanisms of reference used, and which kind of words,
expressions, and connectors are being most employed. These have been compared
to our choices. When considering the list of facts to compare to the inputs, facts
having closely related meanings have been gathered together, e.g., “notice”—“realize”,
or ‘‘run after”’—“chase”—“chase after”.

”_«

= A requirement for economy is deduced: when one states “A man walks down
the sidewalk”, there is no need to include “A man appears”. Also, there is no
need to state that a person is “bending” when picking up an object; it is obvious
when the object is known to be on the ground.

m The greater difference regarding expressiveness happens when the subjects de-
duce the intentions of the agents by the context, using common sense. For
instance, “He waves his hands in amazement that the car didn’t stop” or “He
seemed somewhat hesitant”. Sometimes, the following situations in the scene are
anticipated, like “A person is walking to the zebra crossing to meet someone”.
These constructions are very useful to conduct the discourse.
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CATALAN ENGLISH

203 !'Lo vianant surt per la part inferior dreta. 203 I The pedestrian shows up from the lower
252!Va per la vorera inferior. right side.

401! S'espera per creuar. 252! S/he walks on the lower sidewalk.

436! S'esta esperant amb un altre vianant. 401! S/he waits to cross.

506 ! Creua pel pas zebra. 436! S/he is waiting with another pedestrian.
616! Va per la vorera superior. 506 ! S/he enters the crosswalk.

749! Se'n va per la part superior dreta. 616! S/he walks on the upper sidewalk.

749!5S/he leaves by the upper right side.

ENGLISH SPANISH
523 :The pedestrian shows up from the lower 523 : El peatdn aparece por la parte inferior
left side. izquierda.
572 :S/he walks on the lower sidewalk. 572 : Camina por la acera inferior.
596 :S/he crosses the road carelessly. 596 : Cruza sin cuidado por la calzada.
681 : S/he walks on the upper sidewalk. 681 : Camina por la acera superior.
711 :S/he leaves by the upper left side. 711 : Se va por la parte superior izquierda.
Table 5.8

CATALAN, SPANISH, AND ENGLISH NL. REPORTS GENERATED FOR SOME OF THE
PEDESTRIANS APPEARING IN ZEBRA.
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ENGLISH

TURKISH

470! A pedestrian appears by the upper left side.

492 1 The pedestrian is walking by the upper sidewalk.

583! S/he has turned right in the upper part of the crosswalk.

591!S/he has stopped in the same place.

615 !S/he has left an object.

630! A new pedestrian appears by the upper right side.

642 | The pedestrian is walking by the upper sidewalk.

656 | The first pedestrian is walking by the same place.

687 | The object seems to have been abandoned in the upper
part of the crosswalk.

692 ! The first pedestrian has met the second one there.

799 | The second pedestrian enters the crosswalk.

806 ! A vehicle appears by the left.

810 ! The first pedestrian enters the crosswalk.

822! It seems that a danger of runover between this pedes-
trian and the vehicle occurred.

825 I This last pedestrian has stopped.

828! The vehicle is braking up.

828! It seems that a danger of runover between the second
pedestrian and the vehicle occurred.

838! This last pedestrian has backed up.

842!S/he has stopped.

8521 The vehicle is accelerating.

862! A new vehicle appears by the left.

872 1 The first vehicle has exited by the right.

891 ! The remaining vehicle gives way to the first pedestrian.

891 I This last vehicle gives way to the second pedestrian.

896 ! This last pedestrian enters the crosswalk.

906 ! The first pedestrian enters the same place.

939 I The vehicle is accelerating.

1000 ! The second pedestrian has stopped in the lower part of
the crosswalk.

1006 ! The first pedestrian has stopped in the same place.

1018 ! The vehicle has exited by the right.

1033 A new pedestrian appears by the upper right side.

1049 | The pedestrian is walking by the upper sidewalk.

1054 ! The second pedestrian has left a new object in the
crosswalk.

1078 ! The third pedestrian has turned left in the upper part of
the crosswalk.

1093 ! S/he enters the crosswalk.

1168! S/he has turned right.

1186 ! S/he picks up the second object.

1211 ! This last pedestrian is running by the road.

1220! It seems that this pedestrian has stolen the second
object to the first pedestrian.

1241 ! The second pedestrian seems to be chasing after the
third one.

470! Bir yaya sol Ust tarafta belirir.

492 ! Yaya kaldirimin yukari tarafinda yurtr.

583 ! Yaya gecidinin Ust tarafindan saga doner.

591! Orada durur.

615 ! Yere bir cisim birakir.

630 ! Baska bir yaya sag ust tarafta belirir.

642 ! Yaya kaldinmin yukari tarafinda yurdr.

656 ! Birinci yaya orada ytirdr.

687 ! Yaya gecidinin st tarafinda cisim yere birakilir.

692 ! Bu son yaya orada ikinci yaya ile bulusur.

799 ! ikinci yaya yaya gecidine girer.

806 ! Bir arag sol tarafta belirir.

810! Birinci yaya yaya gegidine girer.

822! Bu yaya ve arag arasinda bir ezilme tehlikesi yasanir.

825! Bu son yaya durur.

828! Arag bozulur.

828! ikinci yaya ve bu arag arasinda bir ezilme tehlikesi
yasanir.

838! Bu son yaya geri gekilir.

842! Durur.

852! Arag ivmelenir.

862 ! Baska bir arag sol tarafta belirir.

872 ! Birinci arag sag taraftan terk eder.

891! Arag birinci yayaya yol verir.

891 ! Bu son arag ikinci yayaya yol verir.

896 ! Bu son yaya yaya gecidine girer.

906 ! Birinci yaya ayni yere girer.

939! Arag ivmelenir.

1000 ! ikinci yaya yaya gegidinin (st tarafinda durur.

1006 ! Birinci yaya orada durur.

1018 Arag sag taraftan terk eder.

1033 ! Baska bir yaya sag Ust tarafta belirir.

1049 ! Yaya kaldirnmin yukari tarafinda yurtr.

1054 ! ikinci yaya yaya gecidine baska bir cisim birakr.

1078 ! Uglincii yaya yaya gecidinin (st tarafindan sola déner.

1093 ! Yaya gegidine girer.

1168 ! Saga doner.

1186 ! ikinci cismi yerden alir.

1211 ! Bu son yaya yolda kosar.

1220 ! Bu yaya birinci yayadan ikinci cismi calar.

1241 ! ikinci yaya iigiincii yayay kovalar.

1276 ! Ugiincii yaya sol Ust taraftan terk eder.

1276 ! The third pedestrian has exited by the upper left side. 120

Table 5.9
ENGLISH AND TURKISH NI REPORTS GENERATED FOR HERMES-Qutdoor.



BASQUE

200! Pertsona lehen sarreratik agertu da.

270 ! Makina saltzailearen aurrean gelditu da.

289 ! Erabili egin du.

425 ! Bigarren mahaian eseri da.

501 ! Pertsona berria bigarren sarreratik agertu da.

581 ! Bigarren mahaian eseri da.

602 ! Objektua utzi du.

716! Pertsona berria lehen sarreratik agertu da.

882! Bigarren mahaian eseri da.

1073 ! Bigarren pertsona zutitu egin da.

1137 ! Makina saltzailea ostikoz jo duela dirudi.

1237 ! Lehen sarreratik atera da.

1237 ! Pertsona honek kafetegian lehen objektua ahaztu
duela dirudi.

1395 ! Lehen pertsona zutitu egin da.

1424 ! Hirugarren pertsona zutitu egin da.

1487 ! Bigarren sarreratik atera da.

1501 ! Lehen pertsona leku beretik atera da.

1501 ! Pertsona honek bigarren mahaian objektu berria
ahaztu duela dirudi.

1655 ! Pertsona berria lehen sarreratik agertu da.

1726 ! Lehen objektua jaso du.

1803 ! Azken pertsona hau lehen sarreratik atera da.

ENGLISH

200! A person appears by the first entrance.

270! S/he stops in front of the vending machine.

289!S/he uses it.

425! S/he sits down at the second table.

501! A new person appears by the second entrance.

581 !S/he sits down at the second table.

602! S/he leaves an object.

716! A new person appears by the first entrance.

882! S/he sits down at the second table.

1073 ! The second person stands up.

1137 ! S/he seems to kick the vending machine.

1237 ! S/he leaves by the first entrance.

1237 !t seems that this person has abandoned an object.

1395 ! The first person stands up.

1424 1The third person stands up, too.

1487 ! S/he leaves by the second entrance.

1501 ! The first person leaves by the same place, too.

1501 ! It seems that this person has abandoned a new
object.

1655 ! A new person appears by the first entrance.

1726 ! S/he picks up the first object.

1803 ! S/he leaves by the first entrance.

Table 5.10
BASQUE AND ENGLISH NL REPORTS GENERATED FOR HERMUES-Indoor.



Sex (population) Facts shared by above 50%

of population
women [ 5°.0% Generates | :00'
Men — 50,0% Notgenerated | 0%
0,0% 100,0% % 100%
Age (population) Facts shared by above average
of population
1825 . 12%
e —— | Generated NG 3%
>3 N 22% Notgenerated N 22%
0% 100% 0% 100%
Background (population) References to colour
Technical 7
sy ef vo [
Sciences NN 30,0%
Humanities I 30,0%
: g Y 335
e S o N >
0,0% 100,0% 0,0% 100,0%

Figure 5.16: Statistics about the NL generation experiment, for English and the out-
door sequence. The population consisted of 30 subjects from different backgrounds.
The left column contains information about the population, the right column shows
quantitative results about the evaluation and comparison with the facts used.

= One of the main tasks lacking in the described generation system is the aggre-
gation of simple sentences into more complex and expressive ones, using mech-
anisms such as coordination or subordination. This has the main advantage
of emphasizing certain elements of the discourse. For instance, “After crossing
the street they stop, one of them puts his bag on the ground, and while they are
talking, another guy comes and snatches the bag” prioritizes the object left over
the crossing and the theft over the talk.

n The use of certain adverbs, adjectives, and other complementary words has been
seen as helpful towards a richer discourse: “nearly hit by an oncoming vehicle”,
“jumps back in surprise”, “move back slightly”, “they only crossed the street
half-way”, among others.

In addition, it is also interesting to notice that just about one quarter of the population
has included color references to support their descriptions. Most of these (above 70%
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5.7

of them) use a single reference, for the “white car”, which is the only agent with a
very distinctive color.

Content-based summarization

Content-based summarization is a direct application of an ontologically founded NLG.
Since each concept to be described has been instantiated by the ontology, the genera-
tion module can easily filter certain conceptual information (events, entities, locations,
etc.) to be converted into linguistical terms. As a result, the final text shows only
the specified content, avoiding unrelated information.

Table 5.11 contains 4 texts in English describing the HERMES-Outdoor scene. The
long text on the left is a maximally detailed generation, incorporating all Status, Con-
textualization, and Interpretation events. On the right side we find three summaries:
in the upper one, Status have been discarded. The middle one additionally discards
Conteztualization, and the lower one includes only sentences implying a specific ob-
ject. Similarly, reports can be restricted to concrete agents or locations.

Applications of ONT-NLU

In the case of the ONT-NLU module, ontological resources become a fundamental
channel to conduct the input of end-users to actions or responses that can be managed
by the system. As the capabilities of the system increase, a centralized repository
of structured knowledge facilitates this task. Two applications are shown for this
module: the retrieval of video contents by means of NL queries, and a small adaptation
to perform visual storytelling, with the help of the SA module.

NL query retrieval

This section evaluates the capability of the system to retrieve video content from NL
queries. The objective is to correctly map any potentially valid linguistic utterance
into the limited domain of the application, and also decide when this is not possible,
making the query invalid for that domain.

One of the critical issues of this application is the handling of unknown words
or expressions by the system. Several existing Java APIs have been considered to
facilitate the exploitation of the WordNet repository, viz JAWS®, JWNLS, and RiTa’.
This last one has been chosen for the intuitive and resourceful list of functions that
presents, in addition to its more accurate results when computing semantic distances.
Algorithm 5.7 details how the NLU module determines the closest concept to an
input word, and how new rules are incorporated to the system. In practice, the
system proposes the new rules to the user before incorporating them.

The behavior of the system in front of unknown terms is shown in Table 5.13. A
Pentium 4 at 2.4 GHz and 1 GB RAM has been used to accomplish these tests. The

Shttp://lyle.smu.edu/~tspell/jaws/index.html
Shttp://sourceforge.net/projects/jwordnet/
"http://www.rednoise.org/rita/wordnet/
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(a) ORIGINAL

(b) SUMMARY #1

470! A pedestrian appears by the upper left side.

492 ! The pedestrian is walking by the upper sidewalk.

583 !S/he has turned right in the upper part of the
crosswalk.

591 !S/he has stopped in the same place.

615! S/he has left an object.

630! A new pedestrian appears by the upper right side.

642 ! The pedestrian is walking by the upper sidewalk.

656 ! The first pedestrian is walking by the same place.

687 | The object seems to have been abandoned in the
upper part of the crosswalk.

692 ! The first pedestrian has met the second one there.

799 ! The second pedestrian enters the crosswalk.

806 ! A vehicle appears by the left.

810! The first pedestrian enters the crosswalk.

822! It seems that a danger of runover between this pedes-
trian and the vehicle occurred.

825 ! This last pedestrian has stopped.

828! The vehicle is braking up.

828! It seems that a danger of runover between the second
pedestrian and the vehicle occurred.

838! This last pedestrian has backed up.

842! S/he has stopped.

852 ! The vehicle is accelerating.

862! A new vehicle appears by the left.

872 ! The first vehicle has exited by the right.

891 ! The remaining vehicle gives way to the first pedestrian.

891 I This last vehicle gives way to the second pedestrian.

896 ! This last pedestrian enters the crosswalk.

906 ! The first pedestrian enters the same place.

939 I The vehicle is accelerating.

1000 ! The second pedestrian has stopped in the lower part
of the crosswalk.

1006 ! The first pedestrian has stopped in the same place.

1018 ! The vehicle has exited by the right.

1033 ! A new pedestrian appears by the upper right side.

1049 ! The pedestrian is walking by the upper sidewalk.

1054 ! The second pedestrian has left a new object in the
crosswalk.

1078 ! The third pedestrian has turned left in the upper part
of the crosswalk.

1093 ! S/he enters the crosswalk.

1168 ! S/he has turned right.

1186 ! S/he picks up the second object.

1211 ! This last pedestrian is running by the road.

1220! It seems that this pedestrian has stolen the second
object to the first pedestrian.

12411 The second pedestrian seems to be chasing after the
third one.

1276 ! The third pedestrian has exited by the upper left side.

470! A pedestrian appears by the upper left side.

615! S/he has left an object.

630! A new pedestrian appears by the upper right side.

687 | The object seems to have been abandoned in the
upper part of the crosswalk.

692 ! The first pedestrian has met the second one there.

799 ! The second pedestrian enters the crosswalk.

806 ! A vehicle appears by the left.

810! The first pedestrian enters the crosswalk.

822! It seems that a danger of runover between this pedes-
trian and the vehicle occurred.

828! It seems that a danger of runover between the second
pedestrian and the vehicle occurred.

862! A new vehicle appears by the left.

872 ! The first vehicle has exited by the right.

891 I The remaining vehicle gives way to the first pedestrian.

891 ! This vehicle gives way to the second pedestrian.

896 ! This last pedestrian enters the crosswalk.

906 ! The first pedestrian enters the same place.

1018 ! The vehicle has exited by the right.

1033 ! A new pedestrian appears by the upper right side.

1054 ! The second pedestrian has left a new object in the
crosswalk.

1093 ! S/he enters the crosswalk.

1186 ! S/he picks up the second object.

1220 It seems that this pedestrian has stolen the second
object to the first pedestrian.

1241 ! The second pedestrian seems to be chasing after the
third one.

1276 ! The third pedestrian has exited by the upper left side.

(c) SUMMARY #2

687 ! An object seems to have been abandoned in the upper
part of the crosswalk.

822! It seems that a danger of runover between a new
pedestrian and a new vehicle occurred.

828!t seems that a danger of runover between a new
pedestrian and this vehicle occurred.

1220! It seems that a new pedestrian stole a new object to
the first pedestrian.

1241 ! The second pedestrian seems to be chasing after the

third one.
(d) SUMMARY #3
1054 ! The second pedestrian left the second object in the
crosswalk.

1186 ! The third pedestrian picked up the second object.
1220! It seems that the third pedestrian stole the second

object to the first pedestrian.

Table 5.11
REPORT OF THE HERMES-OUTDOOR SCENE IN ENGLISH, (a) CONSIDERING NO
SUMMARIZATION, (b) DISCARDING VERY BASIC EVENTS, (¢) SHOWING ONLY DOMAIN
INTERPRETATIONS, AND (d) INFORMING ABOUT A PARTICULAR SCENE ELEMENT.

124




Require: th € (0,1)
Ensure: d «+ min (semantic_distance (w,c)) and d € [0,1]
if not exists_lemmatization_rule (w) then
Candidates < 0
for c C 7 do
if type(w) = type(c) then
d = semantic_distance (w,c)
if d < th then
Candidates < Candidates U < c¢,d >
end if
end if
end for
if |Candidates| = 0 then
print ¢‘Invalid or unrecognizable term’’
return false;
else if |Candidates| > 1 then
sort_increasing (Candidates, d)
< ¢,d >« first_element (Candidates)
create_new_rule (w,c,d)
return <c,d>
end if
else
< ¢,d >4 parse_lemmatization_rules (w)
return <c,d >

end if
Table 5.12
RETRIEVE CLOSEST CONCEPT ¢ C T TO A POSSIBLY UNKNOWN WORD w
USER QUERY UNKNOWN WORD SEMANTIC DISTANCE

Have you seen

any risk of runover? risk Danger=0.0

Has there been any crime crime Theft=0.18

in the scene?

Show me pedestrians Sidewalk=0.0, Way=0.17,

meeting in the pavement pavement Crosswalk=0.22, Face=0.29,
Road=0.29

How many jeeps are there Ambulance=0.08, Car=0.08,

in the scene? jeeps Bus=0.08, Truck=0.17,

Motorbike=0.17, Van=0.17

How many people have
picked up a backpack?

Bag=0.11, Can=0.22,

backpack Bicycle=0.22, Car=0.22

Chase=0.0, Escape=0.13,
Walk=0.2, Run=0.2,
Has any pursuit happened . Zoom=0.2, Kick=0.22,
after a theft? pursuit Turn= 0.22, Squat=0.22,
Action=0.25, Situation=0.25,
Behavior=0.25, Activity=0.25

Table 5.13
QUERIES INCLUDING UNKNOWN WORDS, AND PROPOSED CONCEPTS SORTED BY RELEVANCE.
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Figure 5.17: User interface for query retrieval. When performing a query (1), the
system responds with a schematic textual answer (2), but also with a visual list of
key-frames, one for each result (3). By clicking one of them, the user reproduces the
video interval showing the solicited content (/).

threshold distance to consider a concept has been fixed to th = 0.20. The average
time required to solve a query has been of 1884 4+ 795 ms.

Once the sentence is linked to concepts, the semantic distance of a sentence to
predefined goal predicates is measured using the described Tree Edit Distance algo-
rithm. Table 5.14 presents a list of representative queries and the system responses.
These sentences have been extracted from a total amount of 110 NL queries provided
by English speakers.

Finally, Fig. 5.17 shows the user interface created to facilitate query retrieval. This
front-end allows users to retrieve schematic textual answers, but also to browse video
responses showing the intervals where the queried contents have been observed. In
addition, Fig. 5.18 depicts the rule-creation process when a concept is linked to an
unknown word. The user inspects the proposed addition and can adjust the linguistic
properties of the new word.

Virtual Storytelling

The objective of a Virtual Storytelling application is to automatically generate syn-
thetic image sequences that visually explain the contents of a linguistic plot. It intends
to bring high-level modeling closer to end-users, by means of a flexible solution that
helps them to produce complex sequences automatically. This facilitates tasks of
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User query / Goal predicate / System response

Has there been any danger of runover?
Assert{S=DangerOfRunQver}

Yes

Can you tell me whether anybody has been

running by the road between frames 500 and 15007

Assert{A=Pedestrian, S=Run, L=Road, T=(500,1500)}
Yes

| When has a vehicle accelerated? |

Query{T=7, A=Vehicle, S=VAccelerate}

Agent3 [852], Agent4 [939]
When has the fifth agent run by the road? |
Query{T=7, A=Agent5, S=Run, L=Road}

Agent5 [1211]
| How many pedestrians have entered the crosswalk? |
Count{A=?7, A=Pedestrian, S=Enter, L=Crosswalk}

What has happened in the scene after the theft? |
Query{S=?7, T=After(Theft)}
Chase [1241], Exit [1276]
What has happened in the scene after the theft? |
Query{S=?7, T=After(Theft)}
Chase [1241], Exit [1276]
| What has agent2 done between frames 400 and 1100%
Query{S=7?, A=agent2, T=(400,1100)}
Appear [630], Walk [642], Meet [692],
Enter [799], DangerOfRunover [828],
PBackUp [838], PStop [842], GiveWay [891],
Enter [896], PStop [1000], LeaveObject [1054]
Who has left any object to the ground? |
Query{A=?7, S=LeaveObject}
Agent1l [615], Objectl [615],
Agent2 [1054], Object2 [1054]
Where has agent5 gone? |
Query{L=7, A=agent5}
road [1211], upper_sidewalk [1049],
crosswalk [1093], upper_crosswalk [1078]
List vehicles in the scene between frames 300 and 1300 |
List{A=7, A=Vehicle, t=(300,1300)}
Agent3 [806], Agent4d [862]

Table 5.14
SAMPLES OF USER QUERIES. EACH QUERY INSTANTIATES A GOAL PREDICATE, WHICH IN
TURN IS TRANSFORMED INTO A SQL QUERY TO RETRIEVE A SCHEMATIC RESULT.
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Figure 5.18: When an unknown word is lexically disambiguated using WordNet,
the NLU module proposes the addition of a tagging rule to the user. The selectable
linguistic features vary automatically for each language.

scene augmentation and simulation of agent behaviors to users of the system, and
these tasks in turn enable further applications like the comparison or evaluation of
tracking systems, as discussed in the next section.

Virtual storytelling requires both from the ONT-NLU and the SA modules, in or-
der to first understand linguistic content provided by the user, and then convert this
content into a visual representation of developments. The linguistic understanding
of plot lines is accomplished exactly in the same way explained for query retrieval,
although the goal predicates in this case are the same ones used for video reporting.
Examples of this conversion are shown next.

Natural language plot Obtained predicates
A pedestrian comes by the upper left side. appear (Pedestrianl,UpperLeftSide)
Another pedestrian appears at the lower right side. appear (Pedestrian2,LowerRightSide)
The first pedestrian tries to leave by the lower left side. leave(Pedestrianl,LowerLeftSide)
A wvehicle goes slowly by the right. drive(Vehiclel,RightSide, Slow)
The second pedestrian rushes towards pedestrian 1. walk (Pedestrian2,Pedestrianl,Fast)
Pedestrian 1 stops in the middle of the lower sidewalk. stop(Pedestrianl,LowerSidewalk)
A new car enters by the left part. appear (Vehicle2,LeftSide)
Pedestrian #2 leaves by the upper right side. leave (Pedestrian2,UpperRightSide)

Each produced predicate instantiates a high-level event, which must be converted
into a list of explicit spatiotemporal actions accomplished by the virtual agents. This
is done by decomposing a high-level event into a temporal sequence of lower-level
objectives. For instance, we may want to define a pedestrian situation “P1 meets
P27 as the sequence (i) “PI reaches P27, and (ii) “PI and P2 face each other”, or
translated into FMTL predicates:

meet(P1, P2) F go(P1, P2) = faceTowards(P1, P2)V faceTowards(P2, P1) (5.2)
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5.8

(1) NATURAL LANGUAGE PLOT (2) EQUIVALENT HIGH-LEVEL PREDICATES

A person is standing at the upper left side. A pedestrian (Agent1)
second person appears by the lower left side. He stand (Agent1, UpperLeftSide)
meets with the first person. pedestrian (Agent2)

appear (Agent2, LowerLeftSide)
meet (Agent2, Agent1)

(3) AUGMENTED SCENE

Figure 5.19: Example of augmented scene generated from a NL textual plot. Details
regarding scene augmentation are explained in following sections.

Such decompositions are modeled using SGT's, in which reaction predicates now adjust
dynamically the behavior of virtual agents, instead of being note predicates. The
generated scenes can either be completely virtual or actual augmentations of already
recorded sequences. In the latter case, virtual agents can react to real occurrences,
as shown in Fig. 5.19. In this example, the behavioral models encoded in SGTs
establish that if the path of a pedestrian ends at the other side of the road, it must
be recomputed to go through the crosswalk, and only if the crossing is granted. The
concrete implementation of these tasks corresponds to the SA module, and is explained
in the following sections.

Applications of SA

Ontologies are not determinant in the case of the SA module. Nevertheless, applica-
tions like the described virtual storytelling appear from its collaborative association
with the previous modules. Moreover, the addition of this module to the system en-
hances a multimodal interaction with end-users, by also incorporating visual languages
to the communication. Three applications are considered in this section: reporting
video occurrences by reconstructing them in virtual scenes; augmenting original im-
age sequences for simulation or to test behavioral models; and application of these
tasks to the evaluation of tracking systems.

Visual reporting with synthetic scenes

A completely virtual scene can be recreated from real developments observed by the
system. There are several ways to achieve this, depending on the practical purpose we
have, and each method entails different benefits. The implementations described here
focus two main applications: (i) visual reporting/compression/summarization and (ii)
virtual real-time monitoring.

In the first place, for applications of visual reporting, we base on the semantic
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Figure 5.20: Virtual generations of the HERMES-Outdoor and ETSE-Outdoor
scenes. The scene is reconstructed (a) using the list of automatically generated
semantic annotations, and (b) in real-time, using instantaneous information from the
trackers.

annotations obtained from the behavioral analysis detailed in Chapter 4. Only those
occurrences that are relevant to the domain are considered, and the rest of visual
contents are avoided. Hence, the original video sequence —8.0 Mb for 846 frames of
640x480 with high MPEG-4 compression— is converted into a list of semantic pred-
icates —2.2 kB in plain text— that can recreate the same scene virtually, with the
support of few conceptual and visual models, see Fig. 5.20(a). The main drawback
in this case is the imprecision of some recreated developments, given that high-level
occurrences and behaviors (such as theft, chase) are generated using predefined spa-
tiotemporal models of action development.

On the other hand, applications of real-time monitoring and reporting do not
require predefined action models, but only a rough conceptualization of the scenario.
The scenario must be rich enough to let end-users understand the developments in
the scene, but still limited, to avoid unnecessary delays in the processing. Fig. 5.20(b)
shows an example of real-time reporting, in which the trajectories detected by the
trackers are stored and used by a virtual character to recreate the scene. Additionally,
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(a) (b)

Figure 5.21: The actions performed by the policeman instantiate two possible predi-
cates: (a) police_orders_stop(Police) or (b) police_orders_pass(Police), giving
right-of-way to pedestrians and vehicles, respectively.

the numerical positions over time can be as well mapped into the corresponding
semantic zones before representing the data. This would allow a major compression
in expenses of a lower fidelity of the recreation.

In both cases, the end-user has control over the final visualization, in terms of
camera view and graphical models. Camera view control is especially beneficial for
multi-camera tracking frameworks, since a proper integration of views permits end-
users to overcome occlusions and have perspectives suitable to each situation.

Simulation of behaviors for autonomous agents

In this section we test the feasibility of SGTs to model synthetic behavior for virtual
autonomous agents, i.e., making them reactive to (or affected by) real developments
in the video sequence. In addition, this experiment considers not only tracking infor-
mation at agent level, but also action recognition at body level. Hence, it also shows
the flexibility to include other sources of knowledge into our behavioral framework.

In the POLICE sequence, a real agent acts as a policeman, giving traffic in-
structions to virtual agents. The policeman is tracked over time and his gestural
instructions are recognized using Motion History Images [20]. This technique relates
the intensity of a pixel to the temporal history of motion at that point, turning an
image sequence into a monochrome image, where pixels with recent variations be-
come brighter. Action recognition is achieved by matching the resulting images with
action templates learned for different viewpoints, and generating the predicate that
corresponds to the classification, see Fig. 5.21.

The predicate police orders_stop (Policeman) indicates that right-of-way is
given to pedestrians, and vehicles must stop. On the other hand, police_orders_pass
(Policeman) makes pedestrians wait. Such action states are instantaneously analyzed
by SGTs for both agent types, having virtual agents react to the real policeman’s
action following the schemes in Fig. 5.22(a) and (b). Virtual pedestrians compute a
path from their initial random position to the closest waiting line of the sidewalk, and
from there through the crosswalk and out of the scene. Depending on the policeman’s
action, pedestrians stop or not in front of the road. Similar rules apply for a virtual
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Figure 5.22: SGTs to constrain the behaviors of (a) virtual vehicles and (b) virtual



[T
ol
g7

=

Figure 5.23: Scene augmentation of the POLICE sequence, by means of reactive
virtual pedestrians and vehicles.

vehicle: if it has not passed the policeman by the road, and if the proper order is
given, the vehicle stops in front of the crosswalk; otherwise it drives normally.

Fig. 5.23 shows sample frames obtained after simulating 20 virtual agents —10
vehicles and 10 humans— in the Police sequence. Notice that virtual agents move
according to the gestures of the real policeman, and that all silhouettes are consistently
maintained in the augmented sequence.

The number of virtual agents incorporated into augmented sequences affects the
frame-rate of the rendering process, given the addition effort to recompute paths
during the SGT traversal. We have tested the scalability of the generation of virtual
agents and its consequences for a real-time performance. The experiment tests how
fast the agents are generated, depending on the number of instances and the quality
of the rendering, see Fig. 5.24. The code has been developed under C++ using the
OpenGL library, and runs on a Pentium D 3.21 GHz, 2GB RAM. The sequences
have been augmented from mid-resolution image sequences of 696 x 520 pixels. The
maximum frame rate —25 fps— is achieved in most cases, and decreases as the number
of agents increase.

Evaluation of trackers

This application focus on the evaluation of tracking systems specialized in open-world
image sequences. State-of-the-art multi-object tracking still deals with challenges such
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Figure 5.24: Evaluation of the rendering frame-rate by increasing the number of
simultaneous agents.

as long occlusions, grouping disambiguation, or camouflage, which drive the attention
of the researchers towards tools for performance evaluation and comparison. Although
a high number of criteria are available to this end, a consistent evaluation of the
trackers always involves to test the algorithms thoroughly over a sufficient number of
sequences showing different conditions. Instead of tackling the effort-consuming task
of recording new, slightly modified sequences, sometimes involving crowds of actors,
it would be useful to have methods to gradually increase the difficulty of a given video
sequence.

A common strategy to evaluate tracking performance is to compare the tracking
results with their corresponding GT labeling. In our case, the evaluation is based on
the account of basic events detectable by tracking, e.g., appearing, leaving, entering
predefined semantic zones, or being occluded. The GT labeling is accomplished by
manual annotation of these events, and is considered the ideal output of the trackers.

The original HERMES-Outdoor sequence has been augmented by simulating 30
new virtual agents. 15 pedestrians cross the road by the crosswalk, 10 more walk by
the sidewalk, and 5 cars drive by the road in both senses. The resulting sequence
has been analyzed by two trackers, a modular and hierarchically-organized tracker
that switches between appearance-based and motion-based modes [108] and a real-
time tracker based on segmentation by exploiting a static background [107]. A GT
labeling has also been obtained manually.

The results of the evaluation are shown in Table 5.15. Due to camouflage, the
number of occlusions vary substantially, although the zone-events are correctly rec-
ognized in general, with exception of few false positives. Fig 5.25 compares 2 frames
showing the results of the two trackers, for the original sequence and for an aug-
mented one. Augmentation allows us to increase the complexity of a scene in terms
of involved agents. The performance of the trackers regarding the recognition of basic
events can be accomplished by comparing them to a GT labeling of events.
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5.9

EVENTS GT LABELING HIERARCHICAL TRACKER REAL-TIME TRACKER

Enter scene 36 36 40

Exit scene 35 35 38

Start occlusion 17 21 17

End occlusion 17 21 15

Enter crosswalk 20 19 20

Exit crosswalk 20 19 20
Table 5.15

EVALUATION OF EVENT RECOGNITION FOR BOTH TRACKERS ON THE AUGMENTED

SEQUENCE.

Figure 5.25: Scene augmentation can increase the complexity of a scene gradually,
by successively adding virtual agents. Here, a hierarchical tracker (a) and a real-time
tracker (b) are tested on an original sequence (top row) and its augmented equivalent
(bottom row).

Discussion

This chapter has explored a series of modules enabling the communication of contents
between system and end-users. Such interaction is accomplished by means of linguistic
and visual interaction, and ontologically enhanced with the three modules described:
ONT-NLG, ONT-NLU, and SA.

Regarding the ONT-NLG module, the ontology facilitates the structured incorpo-
ration of non-trivial knowledge to the system, such as multilingual resources for an
algorithmic reporting of video contents, while allowing common processes to remain
unchanged. Language extensions are easily implemented. Moreover, an ontology
derives content-based summarization capabilities naturally. Further work should en-
hance the naturality of the produced texts, by incorporating tasks for sentence aggre-
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gation and introducing complementary words and expressions to increase expressivity.

The ONT-NLU module has proven to achieve effectively an inverse task, the algo-
rithmic schematization of NL texts into typified predicates. Advanced interfaces for
video search and browsing can be easily designed once the goal predicates are made
available. Nevertheless, input queries are potentially infinite, suggesting a stronger
need of recognition for the structure of the sentences. Adapting the current procedure
to statistical mechanisms would be useful to add robustness to this process, something
that was not necessary for generation.

Finally, scene augmentation has been demonstrated to derive applications that en-
hance user interaction substantially. Visual languages complement the natural ones,
by offering synthetic reconstructions of observed events, or augmenting original se-
quences with static or dynamic elements that are controlled by the end-users. These
mechanisms can be used for a variety of applications, namely simulation, evaluation
of behavioral models, or comparison of tracking systems, among others.

The main limitations of this framework come from the restrictive domain of work.
The linguistic models need to be extended as new situations are being detected, since
the content to be communicated is provided entirely by the ontology. The chosen
deterministic approach limits the variety of sentences being produced and understood,
but ensures that the results will be linguistically correct, since they obey constructions
proposed by native speakers. The conceptual terms on the domain can be increased
or restructured by simply modifying the ontology.

Resum

Aquest capitol ha detallat tota una serie de moduls pensats per a proveir comunicacié
entre el sistema i l'usuari final. La interaccid s’acompleix mitjancant recursos de
tipus visual i lingiiistic, i es veu millorada ontologicament pels tres moduls descrits:
ONT-NLG, ONT-NLU i SA.

Quant al modul ONT-NLG, l'ontologia permet la incorporacié estructurada de
coneixement no trivial al sistema, com ara recursos en multiples llengiies per a la
transcripcié textual algoritmica de continguts de video, tot i assegurant-se que els
processos comuns no es canviin. Les extensions lingiiistiques s’han pogut implementar
facilment. A més, I'ontologia incorpora naturalment la capacitat de proveir I'usuari
amb resums automatics. Futures millores en aquest modul s’haurien de dirigir a millo-
rar la naturalitat dels textes generats, incorporant processos d’agregacio de frases sim-
ples en compostes i en paragrafs, i introduint paraules i expressions complementaries
que enriqueixin l'expressivitat de les descripcions.

El modul ONT-NLU ha demostrat ser eficient en el desenvolupament de la tasca
oposada, I’esquematitzacioé conceptual d’entrades de text natural fins a convertir-lo en
predicats tipus. Aquest modul permet la creacié de potents motors de cerca en bases
de dades de video, i I’exploracié per continguts d’aquestes. No obstant, I'univers de
consultes potencials és infinit, cosa que ens suggereix una necessitat més gran de fer
el procés robust, quelcom que no era necessari per acomplir les funcions de generacio.

Finalment, la generacié d’escenes sintétiques és 1til per a oferir un ample ventall
d’aplicacions que milloren la capacitat d’interaccié amb 'usuari de forma substancial.
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Els llenguatges visuals complementen la comunicacié purament lingiiistica amb ele-
ments estatics i dinamics que soén facilment controlables pels usuaris finals. Aquests
mecanismes es poden fer servir per a una varietat molt diversa d’aplicacions, des de
simulacié fins a avaluacié de models comportamentals, passant per ’analisi compara-
tiu de sistemes de seguiment visual.

Les principals limitacions d’aquest marc de treball venen donades pel domini re-
stringit fet servir per les aplicacions. Quan s’amplia el nombre de situacions a de-
tectar, els models lingiiistics han d’estendre’s perque el contingut a comunicar-se es
basa principalment en els conceptes definits a ’ontologia. L’aproximacié determin-
ista escollida limita la varietat de frases que poden ésser generades, pero assegura la
correccié del text generat, donat que aquest es basa completament en construccions
proposades per parlants nadius de la llengua. Els conceptes considerats al domini
poden incrementar-se amb una simple modificacié de I'ontologia.
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Chapter 6

Concluding remarks

“One is what one is, partly at least.”

Molloy (1951), by Samuel Beckett

As a conclusion to this thesis, this section revisits the main modules and
contributions presented. We analyze how our ontological framework has al-
lowed us to redirect the resources of the system to narrow gaps in different
areas. The main opportunities and weaknesses of the proposed framework
will be discussed, and improvements will be suggested to the problems de-
tected, for each of the divisions of the ontological cognitive vision system.

We now revisit the main contributions for each of the main tackled fields: auto-
matic learning, reasoning and interpretion of events and behaviors, and modules for
advanced interaction. According to the distribution of gaps presented in the intro-
duction, next table schematizes the use of a specific knowledge to solve the problems
described in each chapter.

Identifier  Specific source of knowledge Used in
0 Visual representation Chapters 3, 4
1l Semantic / linguistic representation Chapters 4, 5
O Theoretical models Chapters 3, 4, 5
1l User query understanding Chapters 4, 5
0 Communication with end-user Chapter 5

Automatic learning

Two main tasks have been proposed for the semantic learning, namely (i) automatic
labeling of semantic scenario regions, and (ii) semi-supervised incorporation of lin-
guistic rules for NLU. The first task permits us to locate and categorize specifically
a series of meaningful regions in outdoor traffic scenarios, with independence of the
particular scene, and uniquely based on trajectory data and a minimal amount of
ontological knowledge. The results are directly applicable to model-based reasoning
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tools like SGT, Petri Nets or symbolic networks, enabling them to produce richer
interpretations about occurrences in a location. The second task helps end-users to
progressively enrich the linguistic resources of the system, thus improving communi-
cation.

Contribution Knowledge implied  Gap to bridge

Automatic labeling of semantic HN Semantic
scenario regions

Supervised incorporation of lexi- oo Model
cal concepts by exploiting generic
knowledge bases (WordNet)

The results of scene categorization are promising and interesting, but still not
robust enough to be directly utilized for scene interpretation in every case. Right
now, the technique is used in a specific domain and only exploiting motion data.
By also incorporating context identification and object recognition techniques based
on appearance, our method could be enhanced and extended to more complex do-
mains —e.g., indoor scenarios, sports, social media—. Regarding NLU, new statistical
techniques —e.g., those based on information theory or probabilistic parsing— could
greatly improve the current performance and flexibility of the algorithms. Another
promising alternative to extend the results in this field is the use of structural SVMs,
which translate the accuracy of binary classifiers to environments with taxonomical
organization of classes.

Reasoning and behavioral modules

One of the most important contributions of this thesis is the detailed proposal of a
consistent ontological framework for cognitive surveillance. In this framework, a series
of ontological resources articulate and enhance the multiple semantic processes taking
place at many stages of the system. An ontology assumes the knowledge contained
in the different models of the expert system —conceptual, behavioral, linguistic—, inte-
grates them into an abstract semantic layer, and offers improved capabilities regarding
their usability, interrelation, maintenance, and scalability.

We have also proposed a methodology for concept selection and top-down building
and structuring of semantic models. New steps on this direction require us to inves-
tigate whether this process can be automatized with affordable risk, in which case we
could reuse, merge, and grow semantic models from different domains. This task has
been found to be very complex, although recent work has accomplished advances in
the matter.
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Contribution Knowledge implied ~ Gap to bridge

Ontological framework to guide g Model
the organization and centraliza-

tion of knowledge, and facilitate

the maintenance and extensibility

of the implied models

Detection and interpretation of se- 0od Semantic
mantically meaningful events from
image sequences

Automatic indexing / annotation g Semantic
of video events. Content-based
episodical segmentation

Use of high-level inferences to cor- g Visual
rect missing or corrupted sensory
data

The reasoning and interpretation modules discussed have been proven efficient to
handle tasks of semantic annotation, video indexing, and content-based episodical
segmentation. Nevertheless, if we take a deeper look at the current state of the rea-
soning system, we notice that the weight of the decisions on complex event recognition
relies fundamentally on the semantic models -FMTL motion rules, SGTs—. Hence,
the performance of the system is tied to the correctness of expert modeling. Although
this fact provides the traditional benefits of top-down modeling paradigm that we al-
ready demonstrated, it still suggests to develop further methods that could better
—i.e., more flexibly— exploit the probabilistic data retrieved from visual detectors and
trackers.

One of the solutions at this regard consists of enhancing the SGT framework to
take better advantage of the reasoning engine, e.g., by incorporating features such
as degrees of validity or multi-hypothesis inference, which are currently not used in
the situational analysis. Another possible alternative has already been suggested in
Section 4.8 by means of Fuzzy Constraint Satisfaction techniques, which allow us to
combine the robustness of expert systems with the flexibility and potential of current
probabilistic visual detectors. This last alternative offers as an additional benefit a
direct coupling with ontological resources. In any case, fuzzy techniques seem to be
able to join the potentials of visual analysis and rule-based reasoning into suitable
integrated solutions.

Advanced user interaction

Three different modules have been entirely designed from scratch, enabling natural
and flexible interfaces to let end-users interact with the system. Natural language has
been employed by two linguistic modules as a powerful tool that facilitates applica-
tions of multilingual/personalized reporting, summarization, content-based query re-
trieval, or storytelling for simulation. Regarding these modules for linguistic support,
a natural evolution would consist of moving the communication channel from written
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texts to spoken dialogs, by means of Speech Recognition (SR) and Text-To-Speech
(TTS) tasks. These would be attached to the current ONT-NLU and ONT-NLG
modules, respectively. Both additions can build upon the already available linguis-
tic models. An SR process, in addition, can use the restrictedness of the domain of
concepts and their semantic interrelation in order to improve recognition.

Contribution Knowledge implied  Gap to bridge

Automatic generation of reports HN Interface
(NL texts, synthetic animation) of
relevant events in video sequences

Summarization or compression of HIN Interface
video information

Multilingualism and personaliza- U Interface

tion

Content-based NL query retrieval 1l Query

Camera control and update of HIN Sensory, Seman-
database knowledge tic

Simulation of behaviors via visual aoo Semantic
storytelling

Tracking performance evaluation HN Sensory

The generation and augmentation of virtual scenes has also contributed to enhance
the interaction between end-users and the system. Concretely, we have proposed ap-
plications of visual reporting, simulation, compression, and performance evaluation,
which complement linguistic interaction. Other effective types of user interfacing have
received strong attention from the research community during the last years, such as
virtual reality, haptic technologies —also applicable to virtual reality through tech-
niques like acoustic radiation—, eye-tracking monitoring, mobile or portable devices,
or multimodal interfaces combining diverse channels of interaction. Depending on
the usage given to the system, the investigation of some of the techniques can suggest
new trends in the accomplishment of effective and natural user interaction.

Final remarks

In this thesis we have provided a detailed framework of collaborative modules for
advanced video surveillance and video understanding, based on the paradigm of HSE.
A series of ontological resources have allowed us to interrelate and centralize the
different types of semantic knowledge involved in the processes of generation and
analysis. Furthermore, the use of ontologies enable the system to learn and organize
video contents, and share them with end-users by means of advanced interfaces of
communication. As a result, the ontological resources have become fundamental to
narrow distinct gaps —sensory, semantic, model, query, interface— present in many of
the tasks demanded to a cognitive vision system.
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Resum

Aquesta tesi ha descrit en detall els moduls d’alt nivell d’'un sistema cognitiu artificial
de visié, destinat a tasques de comprensié semantica de seqiiencies de video, i basat
en el paradigma HSE. Una serie de recursos ontologics i moduls col-laboratius ens han
permes interrelacionar i centralitzar els diferents tipus d’informacié semantica involu-
crats en els processos de generacié i analisi descrits. A més a més, I'is d’ontologies
ha possibilitat que el sistema extregui i organitzi de forma eficient els continguts
semantics d’un video, i els comparteixi amb els usuaris finals per mitja d’interficies
de comunicacié avancadades. Com a resultat, els recursos ontologics acompleixen un
paper fonamental a I’hora de superar les diferents bretxes que separen el sistema del
mon real i de 'usuari, els anomenats gaps: sensorial, semantic, de modelat, de con-
sulta i d’interficie. Aquests gaps sén presents a moltes de les tasques requerides a un
sistema cognitiu artificial.

Durant els diferents capitols s’han detallat tot un seguit d’aplicacions que perme-
ten acompliment de d’aquestes tasques. Al capitol 3 s’ha descrit un metode per a
classificar automaticament les diferent regions semantiques que conformen 1’escenari
que s’esta gravant, tal com vorera, carretera, pas de vianants, zones d’espera, etcetera.
Aquest metode permet obtenir un model conceptual de ’escenari sense haver-lo de
definir a ma, cosa que beneficia el posterior modul de reconeixement de comportament
i la seva generalitzaci6 a qualsevol escenari del domini.

El capitol 4 ha descrit els diferents moduls implicats en la tasca d’interpretacié
de comportaments observats en seqiiencies de video, a partir de la informacié quan-
titativa extreta per aplicacions de seguiment visual. S’ha fet servir logica difusa i
arbres de grafs de situacié per a conceptualitzar les dades, inferir nova informacio i
interpretar-la d’acord als models d’un domini. L’is d’ontologies permet organitzar el
coneixement d’acord amb la seva naturalesa semantica, i fer possible futures aplica-
cions de recuperacié de videos en base al seu contingut.

Finalment, el capitol 5 descriu tres moduls que possibiliten interficies avangades
de comunicacié amb l'usuari, per mitja de la generacié i comprensié de frases simples
en llenguatge natural i de la generacié i augmentacié d’entorns virtuals. La central-
itzacié de coneixement per mitja de 'ontologia permet reaprofitar alguns dels recur-
sos obtinguts pel sistema (informacié visual, models semantics, consultes o respostes
d’usuari) per solucionar problemes d’altres arees, aconseguint aplicacions interessants
de descripcié de videos en muiltiples llengiies, cercadors i navegadors basats en llen-
guatge natural, resum automatic de video, o simulacié i avaluacié de models i tasques
a partir de realitat augmentada.
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Appendix A

Most frequently described events

Next we present the most frequent events detected and described by the users, see
Tables A.1 and A.2. The events are sorted according to the agreement of the users
to described, i.e., from most agreed —1.00 agreement means that everybody used
it— to least agreed —0.00 would mean that nobody used that event—. The entity
instances appearing in each fact are described in a schematic way: Ped=Pedestrian,
Veh=Vehicle, Obj=0ODbject. Shadowed facts are currently being used for automatic
generation. We have used line separators to separate those events used above average,
and below 10% (0.10 agreement).
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Agreement

Fact

1.00  Pedl leaves objectl

1.00  Pedsl,2 cross / try to cross / walk to other side / want to cross
0.90 = Pedl walks

0.86  Ped2 leaves Obj2

0.83  Ped3 runs / runs off / runs away

0.83  Pedsl,2 enter crosswalk / cross / go across / go on crossing
0.83  Veh2 gives way / stops / wait for them to cross

0.80  Ped2 chases / chases after / runs after Ped3

0.70  Ped3 picks up / grabs / snatches Obj2

0.63  Pedsl,2 meet / stand close

0.60  Ped3 appears / enters

0.50 = Ped3 crosses

0.50  Ped3 steals / thief

0.50  Peds2 walks / comes

0.46  Ped3 walk / approaches /comes

0.46  Vehl passes without stopping / not allowing them to cross
0.46 ~ Veh2 appears / comes

0.43  Pedsl,2 back up and stop / pull back

0.43  Pedsl,2 talk / chat / have a conversation (upper crosswalk)
0.40  Pedl stops / reaches crosswalk (pedl)

0.40 = Ped2 appears

0.40 Pedsl,2 stop / stand (lower crosswalk)

0.40  Vehl appears / comes

0.36  Pedsl,2 notice/realize/see Ped3

0.36  Vehl almost hit / knock down / run over Pedsl,2

0.33 Ped2,3 run

0.33  Pedsl,2 shake hands (upper)

0.26  Pedl holds briefcase / ...with a bag

0.26 Pedsl,2 greet each other

0.26  Pedsl,2 talk/converse/chat (lower crosswalk)

0.23  Pedl appears

0.20 Pedl,2 keep on talking / while they talk (while crossing)
0.20  Pedsl,2 stop at Vehl

0.20  Veh2 arrives / approaches at the crossing pass

0.16  objectl abandoned / forgotten

0.13 Ped2 waves / attracts attention of Pedl

0.13  Pedsl,2 shake hands (lower crosswalk)

0.13  Pedsl,2 still talking / keep on chatting (lower crosswalk)
0.13  Peds2,3 leave

0.13 ~ Vehl accelerates / goes on

Table A.1

LIST OF EVENTS MOST FREQUENTLY DESCRIBED BY USERS (1/2). SHADOWED ONES ARE

CURRENTLY IMPLEMENTED.
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Agreement

Fact

0.13  Vehl reaches / runs towards / approaches
0.13  Veh2 exits / passes by

0.10  danger of run over / about to run over
0.10  Pedl eventually follows the chase

0.10 Pedl stays watching

0.10 Pedl,2 start talking (lower crosswalk)
0.10  Ped3 does not notice / ignores Objl

0.10 Ped3 walks away from them

0.10 shout at the driver

0.10  Veh2 accelerate /drives on

0.07 Ped1 says hello to Ped2

0.07 Pedl spins around confused / looks on bewildered / seems hesitant
0.07 Pedl walks away

0.07 Ped2 reaches / arrives to Pedl

0.07 Ped2 tries to recover/reclaims his bag
0.07  Pedsl,2 complain against / protest to car driver / raise-wave hands
0.07 Pedsl,2 do not notice Ped3

0.07 Pedsl,2 do not pay attention when crossing
0.07 Pedsl,2 reach to the other side

0.07 Pedsl,2 say goodbye to each other

0.07 Pedsl,2 wait to let Veh2 pass

0.07 = Vehl leaves

0.03 brief exchange between Pedsl,2

0.03 Pedl checks road

0.03 Pedl motions Ped2 to cross

0.03 Pedl motions Ped2 to cross

0.03 Pedl,2 have a brief exchange

0.03 Pedl,2 out of range of vehicles

0.03 Ped2 tells Pedl about Ped3

0.03 Ped3 bends down

0.03 Ped3 ducks

0.03 Ped3 notices Obj2

0.03 Ped3 stops near Obj2

0.03 Peds 1,2 seem to be friends

0.03 Pedsl,2 are angry at Vehl

0.03 Pedsl,2 are surprised

0.03 Pedsl,2 communicate

0.03 Pedsl,2 let the car continue its way

0.03 Pedsl,2 wait for car to pass

0.03  Vehl brakes up

Table A.2

LIST OF EVENTS MOST FREQUENTLY DESCRIBED BY USERS (2/2). SHADOWED ONES ARE

CURRENTLY IMPLEMENTED.
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B.1

Appendix B

Technical details on NL modules

This appendix aims to shed light on more technical and concrete issues which may
be helpful when working with the Natural Language (NL) text generator program, in
order to incorporate a new language to the already implemented ones. This part will
try both to (i) structure the steps to follow and (ii) to tackle some technical issues,
especially concerning the definition of parsing rules.

The architecture of the linguistic modules (Natural Language text Generation
(NLG) and Natural Language text Understanding (NLU)) comes defined by two main
parts: the grammars, i.e., sets of rules for forming strings in a specific natural lan-
guage, and the parsers, i.e., computer processes that analyzes these rules made of
sequences of tokens —typically, words—, to determine its grammatical structure with
respect to the formal grammars. Both components are described next.

Grammars and metalinguistic information

The definition of formal grammars for the different natural languages requires a prior
step, which is accounting the different linguistic categories and properties of a given
language, which may not be the same for another one. This metalinguistic information
is declared in the so-called categories file.

Metalinguistic information

The categories file lists information which is strictly related to an individual lan-
guage, and characterizes it from a general point of view, for further use by the parsers.
Here we can define the specific codes which will be used for each linguistic feature
that we want to include in the NLG. We will associate a word in a language with a
set of these linguistic features, e.g. he — pronoun, masculine, singular, third person.
The list of available features will be generally different from one language to another.
Each of these features will have a tag assigned to them in the categories file. Most
of them will be employed by the different grammars to refer to a linguistic category,
property, or ad-hoc identifier from the target language; at this extent, we may say
that some metalinguistic information will be expressed here.
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GENERAL.Word (w) N
POS.Preposition (p) X
POS.Verb (v) X
GENDER.Masculine (M) X
NUMBER.Singular (8) X
NUMBER.Plural ® X
REG.Definite (0) N
REG.First (61) N
OTHER.Not @D) N
Table B.1

SOME EXAMPLES FROM A POSSIBLE categories FILE.

The syntax of each entry in this file should be the following:
GROUP.Feature (tag) Exclusivity

We can see some examples in Table B.1. Each GROUP includes features which refer
to the same linguistic information, such as POS, GENDER, NUMBER, TENSE, etc. Referring
Expression Generation (REG) group should always be included, for the onomasticon
to know which tags to use when labeling the reference of an entity, since these tags
will be necessary in the morphological rules.

As introduced before, a tag is used as a specific code to refer to a particular
linguistic feature. The syntax for a tag is always the same: A unicode character
optionally followed by a string of numbers. The character is case-sensitive and the
length of the numeric string is undefined. There should be no repeated tags in this
file (a repetition will be automatically detected by the program and logged in the
error console). There exist generic tags like w, to refer to a word, and !, to express
the negation of a tag, i.e. the lack of a certain linguistic feature. These tags will be
maintained for a new language.

e.g. Tags REG.Definite and REG.First in the example are different and
thus discriminated, since the first is represented by o and the second by
d1. To state that a word has not the REG feature Definite, in the rules
we will use the string of two tags !0.

The exclusivity code informs about the possibility of finding several features
from the same group in a single word. An X’ means that the feature is exclusive, and
thus only one of the exclusive features from this group should be found in a single
word. An "N’ means that the feature is non-exclusive and can always be added to the
set of tags for the word. This was designed for validation purposes, but has not been
completely implemented yet.
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e.g. In the given examples we find features which are exclusive, such as
Singular. This means that a word holding this feature cannot have an-
other exclusive one from the same group, such as Plural. These specifica-
tions may vary from one language to another. The non-exclusive features
may be assigned to a word independently from other already included fea-
tures, like in the case of !.

Additionally, special groups can also be included in these files. These are just
collections of tags or lists of characters which can be identified as clusters for certain
purposes. We can define special groups as needed by using this syntax:

=spname set0OfFeatures

where spname is the name given to the special group, setOfFeatures is a string
formed by directly appending the different characters or tags.

e.g. In English the article ‘a’ becomes ‘an’ in front of a vowel. Similar
phenomena occur in Spanish and Catalan, too, but in these cases we must
consider the character 'h’ in addition to the vowels. Thus, we can define
these special groups for English and Spanish:

vowel aeiou // for English

vowel aeiouh // for Spanish
We may also want to know whether the following word is part of the verbal
phrase or not, or whether it is a non-personal conjugation of a verb (i.e.
gerund, participle, infinitive). Defining special groups may help to solve
the problem.

The categories file will also be in charge of containing another kind of knowledge
which is inherent to the language: this is the orthographical information. Currently,
this information has not been required, since the group of languages added by now
share the same kind of orthographical characteristics, such as the punctuation charac-
ter for end of sentence or the form in which words are separated. Incoming languages
like Arabic will demand a better definition of the orthographical aspects within this
file.

Grammars

In this section we discuss the different sets of linguistic rules that are required by
the parsers of the generator to perform the conversion from logical predicates to NL
text. First, we introduce the formalism that needs to be used to define the sets of
rules. After that, we detail the particularities of each of the three grammars, viz
semantic/syntactic, lexical, and morphological.

Representation formalism in Grammars: Word structure

The NL interface uses particular structures to represent a set of linguistic features
from words in the target language. These structures contain information about the
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natural basic elements of a sentence, which will be appearing through the processes
as individual containers of information. They are present in the grammars used for
every type of analysis described in the outline, i.e. semantic/syntactical, lexical, and
morphological, until the final surface form as the output of the generation system.
These so-called Word structures are the elemental components of rules at each of
these stages.

The described generation system was thought to be partially based on the Proto-
type Theory from Cognitive Linguistics. This theory stands upon the idea of using
graded categorizations for the characterization of individuals, which are defined as
collections of existent or nonexistent features. Using this approach, we ensure that:

(i) The model will be extensible. Individuals (in our case, words) which have been
already defined with a set of features can be given new properties, without modifying
their behaviors. This is most convenient in our case, since we deal with multiple
languages.

e.g. Imagine that you first declare the article ‘a’ in English. We might say
that it is a determinant (d), undefinite (U) unlike ‘the’, and that it is sin-
gular (S) to distinguish it from ‘some’, so we can apply the following tags:
-dUS. If we add the Spanish language to the system, we then need to dis-
tinguish this word between the two genders that it may take, Masculin (M)
or Feminin (F). We then have (un)—~dUM S and (una)—dUFS. And if we
additionally include the German language, we must include also the Neu-
trum gender (N), so that the tags would be {ein)—dUMS, {(eine)~dUF'S,
and (ein)~dUNS. Still, the first English word ‘a’ could be identified as
(a)—dS.

(ii) Different types of analysis may overlap. Sometimes it becomes impossible to
perform a complete analysis assuming complete independence among the syntactic /
lexical / morphological stages. Combining information from different levels of analysis
can disambiguate certain situations.

e.g. Imagine that we must refer in English to an already mentioned entity
in form of a noun phrase (NP), which is third person (N3), masculine
(M), and singular (S), and that we must use a pronoun (r) for the REG
expression. How to know whether we must use ‘he’ or ‘him’? It is not
enough to have the morphological characterization, but we also require the
semantic valency for the entity in the sentence (the information which
can be given by a syntactic/semantic structure). It is not the same to say
NP{S}:-rN3MS — (he) or NP{DO} : -rN3MS — (him), first case
for subject (S) and second for direct object (DO).

(iii) Finally, the taxonomical organization which is indirectly included in the Proto-
type Theory helps to perform tasks for instantiation of individuals from an ontological
point of view. This means that we can refer to subgroups of individuals assuming a
certain granularity, just by combining different kinds of features from different feature
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<> any word-form
W any word
NP:—r any pronoun (defined as r) acting as a noun phrase (NP)
NP{DO}:—w | any direct object (defined as D0O) acting as a noun phrase (NP)
<pre_> any word starting with ‘pre’
“=groupv any word starting with a member from a predefined
group (e.g. vowels)
be<_>—vN3S | any temporal form of the root verb (v) ‘to be’
which is conjugated in 3rd person (N3) singular (S)

Table B.2

EXAMPLES OF PARSING FORMULAE TARGETING DIFFERENT GROUPS OF WORDS

groups. We can refer to a specific individual or to a group of individuals accomplish-
ing a selectable amount of characteristics, e.g. those words being in participle form,
those being nouns, or those ones which are followed by a word starting with a vowel.

We define a word by several fields, following this syntax:

Cat{SynFunc}:root(word-form)—tags

e Cat contains the syntactical category of the word: noun phrase, appositive,
determinant. . .

e SynFunc contains the syntactical function (a.k.a. syntactical valency), such as
subject, direct object, indirect object. ..

e root contains the lemma of a word. It has been mainly used for verbs, in order
to express the root form, which can be very useful when dealing with irregular

forms.

e word-form contains the word-form' of a word.

e tags contains those tags which especially refer to morphological and REG fea-
tures of the word.

Nevertheless, it is generally optional to use these fields. Only the tag ‘—w’ will be
always assumed as default for a word. The other fields can be referred when necessary,
using some basic grammatical conventions which enable a certain flexibility to refer
specific types of words. Some examples are shown in Table B.2.

LA word-form is a specific production of a lexeme that contains morphological features, such as
gender, number, tense, etc.
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B.2

Syntax of the parsers

Next descriptions give examples of typical processes that have been required repeat-
edly during the implementation of the different languages. These examples explain
with detail the definition of some specific rules so that they can be correctly recognized
by the parsers.

Reference to any word

We can refer to “any word” by just using the expression —w. This can be used, for
instance, to know whether a word is the first or last in the sentence, or to apply a
rule to any word following a given expression.

| —w | <azul>~j |;
e.g. (verde)—j ( hombre)-n ( de) — {(azul)—j (azul)—j ( azul)—j

Verde, hombre, de — Azul, azul, azul (SPA)

Retrieving the n-th element from the input part of a rule

We can use the expression $n, where n is a number, to refer to the word in the n-th
position of the input test sequence of words from the rule.

| AdjP:—w NP:—S6 | Det:<a>—dS $0 $1 |;
e.g. {(green)—j{ car)-nN3S6 — (a)—dS (green)—j( car)-nN3So

They saw green car — They saw a green car (ENG)

We must note that (i) the tag w is always assumed for a word, and (ii) when a REG
expression is evaluated, the tag —o (AlreadyReferred) replaces all REG tags.

Defining contexts

When we want to be aware of the surrounding context of a word or sequence of words,
but we do not want to manipulate such a context, it is useful to define which are the
edges of our ‘operable region’. This can be defined by using ‘ [’ and ‘]1’. The words
outside these brackets will never be modified by a rule with a defined context.

| [ PP:<de>—p ] <una>—d | PP:<d’>-p |;
e.g. [(de)—p] (una)-~dN3FS — (d')—p

Fent-ho tot de una — Fent-ho tot d’una (CAT)
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B.3

Detecting beginning or ending of words
The symbol ~ is used to detect beginnings or endings. This method is useful for
accomplishing contractions of words, e.g. when using apostrophes in some languages.

| [ PP:<de>—p ] “=vowel | PP:<d’>—p |;

Another possibility is to use the symbol ¢_’ inside the word-form field. This
symbol represents any string of characters. Then, (_a) represents a word-form ending
with ‘a’, (a_) stands for a word-form starting with ‘a’, and (_) encloses any word-form.

e.g. [(de)—p (lay—p] ( al-)~dN3FS — (dell’)—p

De la altra strada — Dell’altra strada (ITA)

Note: Words united by apostrophes are currently considered separate words and con-
tracted after morphological processing, i.e. during the implementation of orthography
and surface form generation. There, d’ wuna is converted into d’'una.

Periphrasis

When an individual grammatical concept needs to be expressed in more than one
word, we can delay the expansion of the unique concept until the morphological
processing. The periphrasis can be incorporated to the syntactic/semantic structure
as one word using ‘~’ as separator, and then including a morphological expansion
rule like this:

{| PP:<pac”a>—p | PP:<pac>—p PP:<a>-p |; (CAT)}

It is not recommended to do this process if more natural linguistics solutions are
possible. This method is applicable especially for prepositional periphrasis, which
contain no further linguistic interpretation individually. It should not be applied to
verbal periphrasis, for instance, since this last kind often incorporates well-defined
semantic separability.

Steps to implement a new language

These guidelines intend to assist the implementation of a new language for generation,
by indicating which steps to follow in order to include a new language into the NL
text generator at its current version. To facilitate the task, two examples for each
necessary file to be created have been attached in the appendix.?

First of all, some general tips will be useful throughout the whole process:

2Note: in the files shown at the appendix, the Tag symbol for the word structure appears as ~
instead of —.

155



e Choose the most similar language implemented (if any), in order to define the

new linguistic categories and grammars from existing ones. Much time can be
saved by reusing information from a close language already defined.

e Be careful with the files containing rules to be parsed, especially regarding the

apparition of blank lines. Only the last line from these files is blank, and there
must be a final blank line.

Next, the main stages to cover for the implementation of the new language are
enumerated:

1.

Choose a 3-character identifier for the new language to implement. Add this
identifier and the name of the language in the file describing the current lan-
guages in the system: /NLInterface/common/languages.txt, following the
pattern of this file.

Obtain the linguistic corpus which is necessary for describing a defined set of
situations in the domain of interest. Only native users can provide this informa-
tion. A short, simple and natural sentence has to be expressed for each logical
predicate that the system can generate.

Define the set of linguistic characteristics regarding metalinguistic information
at the categories file, placed at /NLInterface/common/categories XXX.txt,
where XXX is the 3-character identifier for the language to implement. This
includes the following steps:

(a) Note the different linguistic features in the corpus which somehow dis-
criminate words one from the other, and also note the roots (lemmata) of all
instances found in the text.

(b) Define the different categorical groups in the categories file, especially
the PoS and REG groups. For these, one has to be aware of the different
morphological categories and mechanisms of referring expression and anaphora
appearing in the corpus, at least from a pragmatic point of view.

(¢) Maybe some special groups will have to be included here. Usually these
are incorporated when adding morphological rules. In general, the categories
file will have to be modified as needed as the implementation goes on at other
stages.

Relate the entities and events defined in the correspondent T-Boxes (prior on-
tological knowledge) with the proper lemma or lemmata in the provided corpus.
This means to link the different agents, locations, objects, etc. taken into ac-
count to the words or expressions found in the text. Once found, implement
them in the file containing rules for lexicalization:
/NLInterface/rules/lexicon XXX.txt.

Divide the provided corpus into single sentences (multiple sentence aggrega-
tion is not available yet). A generic syntactic/semantic structure has to be
deduced from the natural way in which each situation or idea has been ex-
pressed; each of these structures has to be linked with a particular predicate in
the /NLInterface/rules/semantics XXX.txt file.
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6. Now a first test of the program can be run. To do so, we create a blank file which
will contain the morphological files (/NLInterface/rules/ morphology XXX.txt),
although there is no need to fill it at the moment. A first glance at the results,
with no morphological assumptions, will help to be aware of the morphological
phenomena required, and will assist the design process for these rules.

7. Implement the capability of referring to previous expressions by means of anaphoras,
by using the proper tags for the available REG mechanisms defined in Section 5.
If the desired mechanism for REG is not present at the current system, it should
be implemented in the onomasticon class, found at /NLInterface/common/general
/Onomasticon.java. The REG tags are found mainly in the morphologi-
cal rules and lexical rules files, although they can also appear at the seman-
tic/syntactic rules file.

Referring Expression Generation

In practice, we use the codified REG tags to tell the NL text generator which REG
situation to choose. These tags are mainly used to build rules for lexicalization and
morphology. The generator receives a word with one or more REG tags, applies the
REG operations, and replaces all REG tags by an AlreadyReferred one (tag —o in
the examples), to state that the expression has been referred already. This is a control
feature only, this is why it has no test functions assigned.

The REG tags are linked with REG situations in the categories file. Names of the
tags can be changed freely, but not the descriptions of the situations, since they are
given by the onomasticon. The only problem appears when needing a REG situation
which has not been defined in the onomasticon: they will need to be coded in the
proper file, as will be explained in Section B.3. On the other hand, if all REG cases for
a new language have been identified previously for other languages, then no additional
code needs to be added, but only the suitable descriptors for that REG case have to
be used.

In the lexicalization process, we consider REG transformations within the direct
lexicalization rules. When describing lexicalization, it has been said that direct map-
pings can only be used over agent/object entities or instances from the other classes,
such as locations or directions. This is because REG expressions should apply fully
over agent and object entities, whereas they usually do not apply in the same man-
ner regarding predefined locations or directions in the scenario, i.e. circumstantial
aspects. Generally there exist many ways of refer to the first-type classes, e.g. a
pedestrian, a new pedestrian, the last pedestrian, the first one, another pedestrian,
s/he. ..but references to location, time, or direction are not that rich. For instance,
it is weird to use “When I arrived home I headed to a kitchen” if the context of the
discourse suggests that there is only one instance of the location kitchen.

In order to refer to circumstantial aspects in this implementation, we have the
possibility of either using the full specific name with a regular rule, or choosing a
referring expression to avoid repetition of terms. In this last case, we should add
rules replacing an instance by its class, e.g. (Location) or (Direction) instead of
(crosswalk) or (left) respectively. Notice that in this case, we are incorporating the
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\\-mm oo | ~mm oo e P |

| (NP:<Direction>) | (AdjP:<same>) (NP:<direction>—0) | ; (ENG)
| (PP{CCPoS}:<Location>) | (PP:<in>—p(Det:<questa>—dFS) (NP:<posizione>—jFS))|; (ITA)
| (PP{CCZON}:<Location>) | (PP:<en>—p(Det:<aquesta>—dFS) (NP:<zona>—jFS)) | ; (CAT)
AN\ | == - - ittt |

Table B.3

LEXICALIZATION RULES INVOLVING REG FOR REPEATED ENTITIES WHICH ARE NEITHER
AGENTS NOR OBJECTS.

| NP:—d | Det:<the>—d $0 l;
| NP:—-nS&2 | Det:<this>—dMS AdjP:<last>—jMS $0 |;
| NP:—nSd | Det:<a>—d AdjP:<new>—j $0 l;
| NPS:—-nSé6 | NP:<s/he>—rN3So l;
| NPDO:-nS& | NP:<him/her>—-rN3So |3
| |
| |
| |

|

NP:—-nSb8 Det:<this>—dMS $0 |3
NP:—061 Det:<the>—d AdjP:<first>—dS $0 |;
NP:—62 Det:<the>—d AdjP:<second>—dS $0 |;

Table B.4
EXAMPLES SHOWING MORPHOLOGICAL RULES THAT INVOLVE REG TASKS.

REG directly by means of these lexicalization rules.

In the morphological rules file, some REG rules have to be added to convert each
instance containing REG tags into its expanded referring expression. Some examples
extracted from the English morphological rules file are shown in Table B.4. The
correspondence between REG tags and features is the one that has been shown on
Table 5.6.

Morphological parsing

The surface realization process involves mapping the specification of a text and its
constituents into a surface text form, i.e. a sequence of words, punctuation sym-
bols, and mark-up annotations to be presented to the final user [106]. The NL text
generator carries out most of this process by means of morphological parsing.

This stage probably involves the most complex grammar of the three described,
but only in terms of available operations and amount of rules. The only requisites
to create morphological rules are to have in mind the morphological phenomena to
consider and to know the possible syntax combinations accepted by the parser, most
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of which have been already used in the previous sections. The morphological parser,
however, allows for much flexible input and output rule syntax.

Some examples of morphological phenomena that we may need to encode are,
for instance, the formation of a verb participle from its root, e.g. adding —ed or
—d for regular English verbs and directly encoding the irregular ones; taking into
account those words which can be affected by their neighbors, e.g. English article
a converts into an in front of words starting with a vowel; and other phenomena
involving contraction, change of gender or number, etc.

From the different examples described, we consider two sequential types of morpho-
logical phenomena, see Table B.5:

e First, the ones affecting single words, especially towards the generation of word-
forms from the lemmata included at the lexicalization stage.

e Secondly, the ones affecting interaction of words, such as contractions or mod-
ification of word ordering. In this second type of rule, single word-forms are
converted into a sequence of prosodic words®.

The rules have to be built in a hierarchical way, so the first applicable rule is
directly applied. The morphological parser has the particularity of being applied in
a reiterated fashion: once a rule has been applied, the parser will search again for
applicable rules from the first position (this does not apply to the previous parsers).
The reason for this is that exists the possibility for a word or sequence of words to
change some of its properties after the application of a rule, and hence it is possible for
previously non-applicable rules to become suitable for the new morphological form.

For a more complete and extensive reference about the implemented parsers,
see [306]. This document was created to propose some improvements upon the mor-
phological stage of the Angus2 NL generator using parsing techniques, and has been
the base of the currently used parsers.

At the end of the morphological process, a rich semantic/syntactic structure with
referred expressions and morphological forms will be available. These structures are
the ones plotted in the NL interface in form of syntactical trees. Once this structure
is available, it is only necessary to perform a linearization process and to include
orthographical and formatting information in order to provide the final surface form
to the user.

3A prosodic word or phonological word is the product of the interaction between words, usually
from different parts of the speech, that combine together forming a sole unit, which is not a mor-
phological “compound word” in the generally used sense of that term[39]. For example, in the Latin
sentence “Senatus Populusque Romanus” (The Senate and the Roman People), the word Populusque
is formed by the noun-phrase Populus and the conjunctive suffix —que. The resulting phonological
word does not coincide with a single morphological word-form.
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A\mm oo | == m e |

| VP:<go>-vL | VP:<gone>—v | ; (ENG)
| VP:<meet>-vL | VP:<met>—v | ; (ENG)
| VP:<_>—vL | VP:<_ed>—wv |'; (ENG)
\N\--—mm |-m=—mmm - |
| PP:<a>—p Det:<el>—dMS | PP:<al>-pdMS  |; (CAT/SPA)
| PP:<per>—p Det:<el>—dMS | PP:<pel>—pdMS  |;(CAT)
| [ Det:<_>-dS ] ~“=vowel | Det:<1’>—d | ; (CAT)
| [ PP:<de>—p ] “=vowel | PP:<d’>-p |'; (CAT)
| [ Det:<quest_>—dS ] “=vowel | Det:<quest’>—dS |;(ITA)
\N\--mm |-==—mmm - |
Table B.5

EXAMPLES OF SOME SIMPLE MORPHOLOGICAL RULES IN CATALAN7 ENGLISH, AND ITALIAN.
THE UPPER ONES, IN ENGLISH, ALLOW TO OBTAIN THE PARTICIPLE (TAG —‘L) OF A VERB
(ﬁv). THE THIRD RULE IS GENERAL, THE TWO FIRST ARE EXAMPLES OF EXCEPTIONS AND
SHALL APPEAR FIRST. IN THE SECOND SET OF RULES, THE CATALAN AND ITALIAN ONES,

PROSODIC MANIPULATION IS ALLOWED. THE TWO FIRST EXAMPLES OF THIS SECOND SET

ENABLE CONTRACTIONS OF CERTAIN PREPOSITIONS AND DETERMINERS; THE THREE LAST

EXAMPLES SHOW THE SITUATION IN WHICH CERTAIN WORDS APPEARING IN FRONT OF A

WORD STARTING BY VOWEL EXPERIMENT APOSTROPHICATION.
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