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Abstract

Over the last few years, i-vectors have been the state-of-the-art technique in speaker

and language recognition. Recent advances in Deep Learning (DL) technology have

improved the quality of i-vectors but the DL techniques in use are computationally

expensive and need speaker or/and phonetic labels for the background data, which

are not easily accessible in practice. On the other hand, the lack of speaker-labeled

background data makes a big performance gap, in speaker recognition, between two

well-known cosine and Probabilistic Linear Discriminant Analysis (PLDA) i-vector

scoring techniques. It has recently been a challenge how to fill this gap without

speaker labels, which are expensive in practice. Although some unsupervised clus-

tering techniques are proposed to estimate the speaker labels, they cannot accurately

estimate the labels.

This thesis tries to solve the problems above by using the DL technology in

different ways, without any need of speaker or phonetic labels. In order to fill the

performance gap between cosine and PLDA scoring given unlabeled background data,

we have proposed an impostor selection algorithm and a universal model adaptation

process in a hybrid system based on Deep Belief Networks (DBNs) and Deep Neural

Networks (DNNs) to discriminatively model each target speaker. In order to have

more insight into the behavior of DL techniques in both single and multi-session

speaker enrollment tasks, some experiments have been carried out in both scenarios.

Experiments on the National Institute of Standard and Technology (NIST) 2014

i-vector challenge show that 46% of this performance gap, in terms of minDCF, is

filled by the proposed DL-based system. Furthermore, the score combination of the

proposed DL-based system and PLDA with estimated labels covers 79% of this gap.

In the second line of the research, we have developed an efficient alternative vec-

tor representation of speech by keeping the computational cost as low as possible and
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avoiding phonetic labels, which are not always accessible. The proposed vectors will

be based on both Gaussian Mixture Models (GMMs) and Restricted Boltzmann Ma-

chines (RBMs) and will be referred to as GMM-RBM vectors. The role of RBM is to

learn the total speaker and session variability among background GMM supervectors.

This RBM, which will be referred to as Universal RBM (URBM), will then be used

to transform unseen supervectors to the proposed low dimensional vectors. The use

of different activation functions for training the URBM and different transformation

functions for extracting the proposed vectors are investigated. At the end, a variant

of Rectified Linear Unit (ReLU) which is referred to as Variable ReLU (VReLU) is

proposed. Experiments on the core test condition 5 of the NIST Speaker Recognition

Evaluation (SRE) 2010 show that comparable results with conventional i-vectors are

achieved with a clearly lower computational load in the vector extraction process.

Finally, for the Language Identification (LID) application, we have proposed a

DNN architecture to model effectively the i-vector space of four languages, English,

Spanish, German, and Finnish, in the car environment. Both raw i-vectors and

session variability compensated i-vectors are evaluated as input vectors to DNN. The

performance of the proposed DNN architecture is compared with both conventional

GMM-UBM and i-vector/Linear Discriminant Analysis (LDA) systems considering

the effect of duration of signals. It is shown that the signals with duration between

2 and 3 sec meet the accuracy and speed requirements of this application, in which

the proposed DNN architecture outperforms GMM-UBM and i-vector/LDA systems

by 37% and 28%, respectively.



Resumen

En los últimos años, los i-vectores han sido la técnica de referencia en el reconocimiento

de hablantes y de idioma. Los últimos avances en la tecnoloǵıa de Aprendizaje Pro-

fundo (Deep Learning. DL) han mejorado la calidad de los i-vectores, pero las

técnicas DL en uso son computacionalmente costosas y necesitan datos etiquetados

para cada hablante y/o unidad fonética, los cuales no son fácilmente accesibles en

la práctica. La falta de datos etiquetados provoca una gran diferencia de los re-

sultados en el reconocimiento de hablante con i-vectors entre las dos técnicas de

evaluación más utilizados: distancia coseno y Análisis Lineal Discriminante Prob-

abiĺıstico (PLDA). Por el momento, sigue siendo un reto cómo reducir esta brecha

sin disponer de las etiquetas de los hablantes, que son costosas de obtener. Aunque

se han propuesto algunas técnicas de agrupamiento sin supervisión para estimar las

etiquetas de los hablantes, no pueden estimar las etiquetas con precisión.

Esta tesis trata de resolver los problemas mencionados usando la tecnoloǵıa DL de

diferentes maneras, sin necesidad de etiquetas de hablante o fonéticas. Con el fin de

reducir la diferencia de resultasos entre distancia coseno y PLDA a partir de datos no

etiquetados, hemos propuesto un algoritmo selección de impostores y la adaptación

a un modelo universal en un sistema h́ıbrido basado en Deep Belief Networks (DBN)

y Deep Neural Networks (DNN) para modelar a cada hablante objetivo de forma

discriminativa. Con el fin de tener más información sobre el comportamiento de

las técnicas DL en las tareas de identificación de hablante en una única sesión y en

varias sesiones, se han llevado a cabo algunos experimentos en ambos escenarios. Los

experimentos utilizando los datos del National Institute of Standard and Technology

(NIST) 2014 i-vector Challenge muestran que el 46% de esta diferencia de resultados,

en términos de minDCF, se reduce con el sistema propuesto basado en DL. Además,

la combinación de evaluaciones del sistema propuesto basado en DL y PLDA con
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etiquetas estimadas reduce el 79% de esta diferencia.

En la segunda ĺınea de la investigación, hemos desarrollado una representación

vectorial alternativa eficiente de la voz manteniendo el coste computacional lo más

bajo posible y evitando las etiquetas fonéticas, Los vectores propuestos se basan

tanto en el Modelo de Mezcla de Gaussianas (GMM) y en las Máquinas Boltzmann

Restringidas (RBM), a los que se hacer referencia como vectores GMM-RBM. El

papel de la RBM es aprender la variabilidad total del hablante y de la sesión entre

los supervectores del GMM genérico. Este RBM, al que se hará referencia como

RBM Universal (URBM), se utilizará para transformar supervectores ocultos en los

vectores propuestos, de menor dimensión. Además, se esttuida el uso de diferentes

funciones de activación para el entrenamiento de la URBM y diferentes funciones

de transformación para extraer los vectores propuestos. Finalmente, se propone una

variante de la Unidad Lineal Rectificada (ReLU) a la que se hace referencia como

Variable ReLU (VReLU). Los experimentos sobre los datos de la condición 5 del

test de la NIST Speaker Recognition Evaluation (SRE) 2010 muestran que se han

conseguido resultados comparables con los i-vectores convencionales, con una carga

computacional claramente inferior en el proceso de extracción de vectores.

Por último, para la aplicación de Identificación de Idioma (LID), hemos propuesto

una arquitectura DNN para modelar eficazmente en el entorno del coche el espacio

i-vector de cuatro idiomas: inglés, español, alemán y finlandés. Tanto los i-vectores

originales como los i-vectores propuestos son evaluados como vectores de entrada

a DNN. El rendimiento de la arquitectura DNN propuesta se compara con los sis-

temas convencionales GMM-UBM y i-vector/Análisis Discriminante Lineal (LDA)

considerando el efecto de la duración de las señales. Se muestra que en caso de

señales con una duración entre 2 y 3 se obtienen resultados satisfactorios en cuanto

a precisión y resultados, superando a los sistemas GMM-UBM y i-vector/LDA en un

37% y 28%, respectivamente.



Acknowledgements

First of all, I would like to thank Prof. Javier Hernando for his excellent supervision.

This thesis work would not have been accomplished without his valuable guidance,

encouragement, and support. I learned, from whom, not only how to do research

correctly and fulfill scientific contributions, but also many precious life lessons. I

will never forget our conference trips to Joensuu, Las Palmas de Gran Canaria, and

San Francisco along with the thesis discussions. I feel very grateful and fortunate

for being able to spent this time under his tutorship.

I am grateful then to my ex-supervisor, from my former university in Tehran,

Prof. M.H. Savoji who interested me in Speech Technology and stood at the begin-

ning of this adventure.

I would like to thank Martin Zelenak and Jordi Luque for their great supports

at the beginning of this work, and to Diego Lendoiro and Carlos Nistal for providing

the excellent technical support. I am very grateful to Climent Nadeu, Antonio Bona-

fonte, and Asuncion Moreno for their helpful advice and collaborations during these

years. I would like to thank all other colleagues from the TALP research center,

specifically Anna Raboshchuk, Pooyan Safari, Martin Wolf, Rupayan Chakraborty,

Abraham Woubie, Miquel India, Enric Monte, and Adrian Rodriguez-Fonollosa, for

the enjoyable research environment, and the colleagues from other research groups in

my office D5-120, Jaime Gallego, Marc Maceira, Marc Torrellas, Pau Bellot, David

Varas, Jordi Pont, Carles Ventura, Guillem Palou, as well as all others who I might

have forgotten to mention. I would like to give special thanks to Jaime Gallego and

Lucia Maio who were always supporting me in difficult situations along this experi-

ence. Thanks also to all other friends being beside me during these years, specifically

Javad Zolfaghari, Vahid Joroughi, and Parastoo Nasr.



vi Acknowledgements

I finally want to express my deep gratitude to my parents Nasrin and Mehdi,

my sister Elnaz, and my brother Amir for their continuous encouragement, love, and

support.



Contents

List of figures xi

List of tables xiii

1. Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. State of the Art 9

2.1 Speaker and Language Recognition . . . . . . . . . . . . . . . . . . . 9

2.1.1 Speech Characterization . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 GMM-UBM Approach . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Supervector and i-Vector . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 i-Vector Backends . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Deep Belief Networks . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Deep Learning in Speaker Recognition . . . . . . . . . . . . . 27

2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3. Deep Learning Backend for i-Vector Speaker Verification 35

3.1 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Balanced Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Impostor Selection and Clustering . . . . . . . . . . . . . . . 39

3.2.2 Target Replication or Combination . . . . . . . . . . . . . . . 42

3.3 Universal DBN and Adaptation . . . . . . . . . . . . . . . . . . . . . 43

3.4 Experiments on NIST SRE 2006 . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Baseline and Database . . . . . . . . . . . . . . . . . . . . . . 45



viii CONTENTS

3.4.2 Single Session Experiments . . . . . . . . . . . . . . . . . . . 46

3.4.3 Multi-Session Experiments . . . . . . . . . . . . . . . . . . . . 49

3.5 Experiments on NIST 2014 i-Vector Challenge . . . . . . . . . . . . . 52

3.5.1 Baseline and Database . . . . . . . . . . . . . . . . . . . . . . 52

3.5.2 Multi-Session Experiments . . . . . . . . . . . . . . . . . . . . 53

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4. RBMs for Vector Representation of Speech 59

4.1 Proposed GMM-RBM Vectors . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 GMM Supervector Preparation . . . . . . . . . . . . . . . . . 62

4.1.2 Universal RBM . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.3 Variable ReLU for URBM Training . . . . . . . . . . . . . . . 65

4.1.4 GMM-RBM Vector Extraction . . . . . . . . . . . . . . . . . 67

4.1.5 Computational Load Compared to i-Vector . . . . . . . . . . 67

4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 Baseline and Database . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5. Deep Learning Backend for i-Vector Language Identification 75

5.1 Proposed DNN Architecture . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Database and Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Setup and Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6. Conclusions and Future Work 87

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Future Research Lines . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Publications 91

Bibliography 93



List of Acronyms

ASR Automatic Speech Recognition

CD Contrastive Divergence

CDF Cumulative Distribution Function

CMN Cepstral Mean Normalization

CMVN Cepstral Mean and Variance Normalization

CNN Convolutional Neural Network

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DCF Detection Cost Function

DCT Discrete Cosine Transform

DET Detection Error Tradeoff

DL Deep Learning

DNN Deep Neural Network

EER Equal Error Rate

EM Expectation-Maximization

FAR False Acceptance Rate

FBE Filter Bank Energy

FF Frequency Filtering

FRR False Rejection Rate

GMM Gaussian Mixture Model

HMM Hidden Markov Model

JFA Joint Factor Analysis

LDA Linear Discriminant Analysis

LFCC Linear Frequency Cepstral Coefficient

LID Language Identification

LPC Linear Predictive Coefficient



x List of Acronyms

LPR Log Posterior Ratio

LSTM Long Short-Term Memory

MAP Maximum a Posteriori

MFCC Mel-Frequency Cepstral Coefficient

minDCF minimum DCF

NAP Nuisance Attribute Projection

NIST National Institute of Standard and Technology

PCA Principal Component Analysis

PDF Probability Density Function

PLDA Probabilistic Linear Discriminant Analysis

PLP Perceptual Linear Predictive

RBM Restricted Boltzmann Machine

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SDC Shifted Delta Cepstrum

SRE Speaker Recognition Evaluation

SVM Support Vector Machine

UBM Universal Background Model

UDBN Universal DBN

URBM Universal RBM

VAD Voice Activity Detection

VReLU Variable ReLU

WCCN Within-Class Covariance Normalization



List of figures

2.1 Block diagram of a basic speaker verification system. . . . . . . . . . 10

2.2 FF coefficient computation with the filter z − z−1. . . . . . . . . . . 13

2.3 SDC computation at frame t for (z, d, p, k) = (7, 1, 3, 7). . . . . . . . 14

2.4 Block-diagram of a typical i-vector/PLDA speaker verification system. 21

2.5 DNN, DBN, and DBN training/DNN pre-training. . . . . . . . . . . 23

2.6 RBM and RBM training. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 DNN for acoustic modeling and bottleneck feature extraction. . . . . 28

2.8 DNN for speaker embedding extraction. . . . . . . . . . . . . . . . . 30

2.9 Definitions of FAR, FRR, and EER. . . . . . . . . . . . . . . . . . . 32

2.10 An example of DET curve with definition of EER. . . . . . . . . . . 33

3.1 Proposed deep learning architecture for training of each speaker model. 37

3.2 Block-diagram of the proposed DL-based backend for i-vectors. . . . 38

3.3 Steps of the proposed impostor selection algorithm. . . . . . . . . . . 40

3.4 Balanced training for DNNs in multi-session speaker verification task. 43

3.5 Comparison of the adapted connection weights. . . . . . . . . . . . . 44

3.6 Parameter setting of the proposed impostor selection algorithm. . . . 47

3.7 DET curves on NIST SRE 2006, single-session task. . . . . . . . . . 50

3.8 DET curves on NIST SRE 2006, multi-session task. . . . . . . . . . . 51

3.9 DET curves on progress set of NIST 2014 i-vector challenge. . . . . . 55

3.10 DET curves on evaluation set of NIST 2014 i-vector challenge. . . . . 55

4.1 Block-diagram of the proposed GMM-RBM vector framework. . . . . 61

4.2 Histograms of the first hidden unit values. . . . . . . . . . . . . . . . 63

4.3 Histograms of the posterior probabilities of the first hidden unit of

URBM and normalized URBM. . . . . . . . . . . . . . . . . . . . . . 64

4.4 Comparison of ReLU and proposed VReLU. . . . . . . . . . . . . . . 66

4.5 Training of URBM given background GMM supervectors. . . . . . . 66



xii LIST OF FIGURES

4.6 Computational cost for i-vector and GMM-RBM vector extraction. . 68

4.7 Posterior distribustions of GMM-RBM vectors - sigmoid activation

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Posterior distribustions of GMM-RBM vectors - ReLU and VReLU

activation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Proposed DNN architecture for i-vector language identification. . . . 78

5.2 Histogram of signal duration. . . . . . . . . . . . . . . . . . . . . . . 80

5.3 DET curves - test utterances of all durations. . . . . . . . . . . . . . 84

5.4 DET curves - test utterances shorter than 2 sec. . . . . . . . . . . . . 84

5.5 DET curves - test utterances between 2 and 3 sec. . . . . . . . . . . 85

5.6 DET curves - test utterances longer than 3 sec. . . . . . . . . . . . . 85



List of tables

3.1 The effect of each proposed idea on the performance of the DNN

systems - NIST SRE 2006, single-session task. . . . . . . . . . . . . . 48

3.2 The effect of each proposed idea on the performance of the DNN

systems - NIST SRE 2006, 8-session enrollment task. . . . . . . . . . 51

3.3 Performance comparison of the proposed DNN system with other base-

line systems on NIST 2014 i-vector challenge. . . . . . . . . . . . . . 54

4.1 The effect of feature warping and whitening of input GMM supervec-

tors in the proposed GMM-RBM framework. . . . . . . . . . . . . . 70

4.2 The effect of the hidden unit types during the training of URBM. . 72

4.3 Performance comparison of proposed GMM-RBM vectors and conven-

tional i-vectors - NIST SRE 2010. . . . . . . . . . . . . . . . . . . . . 73

5.1 Number of utterances and total signal duration for train, test and

development sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Comparison of LID systems for short signals recorded in car. . . . . 82

5.3 Comparison of the proposed DNN architecture with some other archi-

tectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83





Chapter 1

Introduction

S peaker recognition is the process of automatically identifying who is speaking,

i.e., speaker identification, or verifying the speaker identities being claimed

by individuals, i.e., speaker verification. All the recognition process is only based on

the speech signals captured from the speakers. In other word, it is supposed that

everyone has a unique voice which could be used as an identity rather than or in

addition to other identities like fingerprint, face, iris, etc. In some applications, it

is more convenient to use the voice as an identity, e.g., access to the bank accounts

through the mobile apps when the luminance of the environment is not suitable for

using face or iris. Similarly, language recognition refers to an automatic process

through which the language spoken in a speech signal is determined or verified.

Several technologies are shared between speaker and language recognition. Hence,

the proposed ideas in one application can be also used in another. This thesis focuses

mainly on speaker verification and partially on language identification.

Historically, both applications have faced many challenges over the time. On

the other hand, demands for having higher accuracy, faster recognition, and more

robustness against changing the environment have led to non-stop investigations as

in other applications. In the following, the motivations and the objectives of the

thesis are first described and then the outline of the following chapters is briefly

given.



2 Introduction

1.1 Motivation

The success use of Deep Learning (DL) in a large variety of signal processing appli-

cations, particularly in speech processing (e.g., Mohamed, Yu, & Deng, 2010; Dahl,

Yu, Deng, & Acero, 2012; Mohamed, Dahl, & Hinton, 2012; Hinton et al., 2012;

Senior, Sak, & Shafran, 2015), has inspired the community to make use of DL tech-

niques in speaker recognition as well. Both generative approaches, like Restricted

Boltzmann Machine (RBM) and Deep Belief Network (DBN), and discriminative

ones, like Deep Neural Network (DNN), have been used for this purpose. A possible

use of DL techniques in speaker recognition is to combine them with the state-of-

the-art i-vector (Dehak, Kenny, Dehak, Dumouchel, & Ouellet, 2011)—a compact

representation of characteristics of a speech signal which is widely used in both

text-independent speaker and language recognition tasks. Two kinds of combina-

tion have been considered. DL techniques have been used in the i-vector extraction

process (Lei, Scheffer, Ferre, & Mclaren, 2014; Kenny, Gupta, Stafylakis, Ouellet, &

Alam, 2014; Mclaren, Lei, & Ferre, 2015; Richardson, Reynolds, & Dehak, 2015a; Liu

et al., 2015) or applied on i-vectors as a backend (Stafylakis, Kenny, Senoussaoui, &

Dumouchel, 2012b; Senoussaoui, Dehak, Kenny, Dehak, & Dumouchel, 2012; Stafy-

lakis, Kenny, Senoussaoui, & Dumouchel, 2012a; Novoselov, Pekhovsky, Kudashev,

Mendelev, & Prudnikov, 2015; Pekhovsky, Novoselov, Sholokhov, & Kudashev, 2016;

Villalba, Brümmer, & Dehak, 2017).

DL technology has been used in the i-vector extraction algorithm in two ways.

First, a DNN has been used for acoustic modeling rather than the typical Gaussian

Mixture Model (GMM) (Lei et al., 2014; Kenny et al., 2014; W. M. Campbell, 2014;

Richardson et al., 2015a; Garcia-Romero, Zhang, McCree, & Povey, 2014; Liu et al.,

2015). Second, conventional spectral features have been replaced or appended by

the so-called DNN bottleneck features and then a DNN or a GMM has been used as

an acoustic model (Mclaren et al., 2015; Richardson et al., 2015a; Liu et al., 2015).

It has been shown that the best results are obtained when spectral features are

appended by bottleneck features and a GMM is used as an acoustic model (Mclaren

et al., 2015; Richardson et al., 2015a; Lozano-Diez et al., 2016). However, the main

problem is that the use of DNN as either an acoustic model or bottleneck feature

extractor increases highly the computational cost of the i-vector extraction process.

Moreover, in both cases phonetic labels are required for DNN training, which are
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not always accessible.

Besides, after i-vector computation, DL techniques can be used for different pur-

poses. For example, different combinations of RBMs have been proposed in (Stafylakis

et al., 2012b; Senoussaoui et al., 2012) to classify i-vectors and in (Stafylakis et

al., 2012a) to learn speaker and channel factor subspaces. RBMs in (Novoselov,

Pekhovsky, Simonchik, & Shulipa, 2014) and DNNs in (Isik, Erdogan, & Sarikaya,

2015) have been used to increase the discrimination power of i-vectors. A nonlinear

Probabilistic Linear Discriminant Analysis (PLDA) is simulated in (Villalba et al.,

2017) using a tied variational autoencoder architecture. In (Novoselov et al., 2015;

Pekhovsky et al., 2016), a combination of RBM, autoencoder, and PLDA is proposed

for speaker and channel variability compensation, which shows some improvements

compared to using only PLDA. All of these techniques have been proposed somehow

as an alternative backend to the powerful PLDA (Prince & Elder, 2007; Kenny, 2010).

Nevertheless, as for PLDA, a large amount of speaker labeled background data is

required. Usually, a large number of different speakers with several speech utterances

each are necessary for these techniques to work efficiently. Access to the speaker la-

beled data is costly and in some cases almost impossible. One of the recent challenges

in speaker recognition, which was organized by the National Institute of Standard

and Technology (NIST), has been how to achieve a comparable performance with

PLDA when no labeled background data is available (NIST, 2014). Although some

unsupervised automatic labeling techniques have been proposed (Khoury, El Shafey,

Ferras, & Marcel, 2014; Novoselov, Pekhovsky, & Simonchik, 2014), they cannot

appropriately estimate the true labels and also they assume that there are several

samples from a same speaker in the background data which could not be true in

reality.

Another possible use of DL is to represent the speaker characteristics of a speech

signal with a single low dimensional vector using a DL architecture, rather than the

traditional i-vector algorithm. These vectors are often referred to as speaker em-

beddings which could be computed by supervised or unsupervised techniques. The

DL architectures in the supervised techniques are usually trained given the speaker-

labeled background data. Typically, the inputs of the neural networks are a sequence

of feature vectors and the outputs are speaker classes. Different architectures, ac-

tivation functions, and training procedures have been proposed (e.g., Variani, Lei,

McDermott, Lopez Moreno, & Gonzalez-Dominguez, 2014; Liu et al., 2015; Wang,
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Qian, & Yu, 2017; Bhattacharya, Alam, & Kenny, 2017; Snyder, Garcia-Romero,

Povey, & Khudanpur, 2017). The experimental results have shown that, in most

cases, the bigger improvements are obtained on the shorter signals compared to

traditional i-vectors (Bhattacharya et al., 2017; Snyder et al., 2017), which implies

that DL technology can model better the speaker characteristics of a short-duration

speech signal than the traditional signal processing techniques. However, the need of

speaker labels for training the network is one of the disadvantages of these techniques.

Moreover, speaker embeddings extracted from hidden layer outputs are not so com-

patible with PLDA backend as the posterior distribution of hidden layer outputs are

usually not truly Gaussian. On the other hand, only a few works have used unsuper-

vised techniques for extraction of speaker embeddings (e.g., Vasilakakis, Cumani, &

Laface, 2013). The background data in these techniques is free of any kind of labels,

which can be considered one of the advantages of these techniques. Although some

success has been shown for supervised speaker embeddings, mainly for very short

utterances, still no significant improvement is reported for unsupervised speaker em-

beddings.

As in speaker recognition, DL architectures have been used in the i-vector extrac-

tion process for language recognition as well (e.g., Song, Hong, et al., 2015; Richard-

son, Reynolds, & Dehak, 2015b) with the cost of increasing the computational time

which is important for real-time applications. Moreover, DL has been applied after

i-vector computation for classification (Matějka et al., 2012; Matejka et al., 2014;

Ferrer, Lei, McLaren, & Scheffer, 2016b). However, DNNs with only one hidden

layer are mainly used, keeping this question open how well other DL architectures

will perform for this purpose. There have been also some efforts to discriminate dif-

ferent languages by using DL directly on the feature vectors (e.g., Lopez-Moreno et

al., 2014; Gonzalez-Dominguez, Lopez-Moreno, Sak, Gonzalez-Rodriguez, & Moreno,

2014). Processing the feature vectors with DL leads usually to higher accuracy but

with much more computational cost in both training and test.

1.2 Objectives

As discussed in the previous section, the main question will be how one can take ad-

vantage of the recent advances in DL while decreasing the cost of labeled background

data. In this thesis, two major objectives are followed in speaker recognition and one
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in language recognition to answer the aforementioned question. For language recog-

nition, we will deal with an extra challenge which is working with short utterances

spoken in the car environment. The more concrete aims are given as follows.

I. To make use of deep architectures for backend i-vector classification in order

to fill the performance gap between the cosine (unlabeled-based) and PLDA

(labeled-based) scoring baseline systems given unlabeled background data. We

take advantage of unsupervised learning of DBNs to train a global model re-

ferred to as Universal DBN (UDBN) and DNN supervised learning to model

each target speaker discriminatively. To provide a balanced training, an impos-

tor selection algorithm and to cope with few training data, a UDBN-adaptation

process is proposed. We explore particularly hybrid deep architectures with

different number of layers for both single and multi-session speaker enrollment

tasks. The preliminary experiments are performed on NIST Speaker Recog-

nition Evaluation (SRE) 2006 (NIST, 2006) to show the effect of each con-

tribution. Taking advantage of the conclusions obtained on the preliminary

experiments, another set of experiments are carried out on the newer and more

challenging database NIST 2014 i-vector challenge (NIST, 2014). Experimental

results performed on this challenge show that the proposed DL-based system

fills 46% of the performance gap between cosine and oracle PLDA scoring

systems in terms of minimum DCF (minDCF) which is similar to the PLDA

scoring results obtained with unsupervised estimated labels. The score combi-

nation of the proposed DL-based system and PLDA with estimated labels fills

79% of this gap.

II. To develop an efficient framework for vector representation of speech by keeping

the computational cost as low as possible and avoiding speaker and phonetic

labels. In order to achieve this goal, a global RBM referred to as Universal RBM

(URBM) is trained given background GMM supervectors. The URBM tries to

learn the total session and speaker variability among background supervectors.

It will then be used to transform unseen supervectors to lower dimensional

vectors which will be referred to as GMM-RBM vectors. We investigate the

effect of the type of the activation function for training the URBM and the type

of the transformation function for GMM-RBM vector extraction. At the end, a

variation of Rectified Linear Unit (ReLU), which will be referred to as Variable

ReLU (VReLU), is proposed for training the URBM, and then a linear function
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is used for transformation in the vector extraction stage. The core condition

of NIST SRE 2006 (NIST, 2006) is used for the development and the core

condition 5 of NIST SRE 2010 (NIST, 2010) with much bigger background

data is used for the test and evaluation. The experiments on the evaluation set

shows that the proposed GMM-RBM vectors achieve comparable performance

with conventional i-vectors while a clearly lower computational cost is required

for vector extraction. The conclusion is valid with both cosine and PLDA

scoring. Moreover, the combination of GMM-RBM vectors and i-vectors at

the score level improves the performance more.

III. To make use of deep architectures for backend i-vector classification for Lan-

guage Identification (LID) in intelligent vehicles. In this scenario, LID systems

are evaluated using words or short sentences recorded in cars in four languages.

As the use of DNNs in the i-vector extraction process is computationally ex-

pensive for both acoustic modeling and bottleneck feature extraction, we will

use the conventional i-vectors in this task in which the computational time is

important. Instead, we will explore the use of DNNs only for i-vector language

classification. As opposed to (Matějka et al., 2012; Matejka et al., 2014; Ferrer

et al., 2016b) in which neural networks with only one hidden layer are used

for this purpose, we will explore DNNs with different architectures. Addition-

ally, both raw i-vectors and channel-compensated i-vectors are considered as

inputs to DNNs. In order to have the highest accuracy with the minimum

response time of the system, signals with different durations from less than

2 sec to higher than 3 sec with the average duration of 3.8 sec are analyzed.

The performances of the proposed DNN architectures are compared with both

frame-based GMM-Universal Background Model (UBM) and i-vector baseline

systems.
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1.3 Outline

The thesis is organized as follows.

Chapter 2 reviews briefly both speaker and language recognition tasks as well as

the main techniques, from feature extraction to classification, used in the state-of-

the-art. It describes also the DL techniques which have been used in this thesis and

summarizes some recent developments in the state-of-the-art techniques using DL.

Chapter 3 describes our proposed algorithms and techniques regarding to the first

objective mentioned in the previous section. It contains the proposed DNN adapta-

tion technique, impostor selection algorithms, and the general process for creating

the discriminative target speaker models based on hybrid DBN-DNNs. Experimental

results are given on both NIST SRE 2006 and NIST 2014 i-vector challenge datasets.

Chapter 4 reports on our proposed technique for vector representation of speech

waveform using RBMs for speaker recognition. The use of different activation func-

tions for training the URBM and different transformation functions for extracting

the proposed vectors are investigated. The effective VReLU is also proposed in this

chapter. Evaluation experiments are performed on the core test condition 5 of NIST

SRE 2010.

Chapter 5 describes our proposed DNN architecture to model effectively the i-

vector space of short utterances spoken in four languages: English, Spanish, German,

and Finnish. Both raw i-vectors and session variability compensated i-vectors are

evaluated as input vectors to DNNs. The performance of the proposed DNN archi-

tecture is compared with both conventional GMM-UBM and i-vector/LDA systems

considering the effect of the duration of signals.

Finally, Chapter 6 concludes the thesis and gives some hints for the future work.





Chapter 2

State of the Art

T his section gives first a brief overview on the state-of-the-art techniques in

both speaker and language recognition from frontend to backend, including

speech characterization, acoustic modeling, session compensation and scoring tech-

niques. Afterwards, it will describe the deep learning techniques which have been

used in this work. Then some recent developments in the state-of-the-art techniques

using Deep Learning (DL) are summarized.

2.1 Speaker and Language Recognition

The history of speaker recognition, recognizing who is speaking, dates back around

four decades. It uses the speech acoustic features that have been found to differ

between individuals. These acoustic patterns reflect both anatomy (e.g., size and

shape of the throat and mouth) and learned behavioral patterns (e.g., voice pitch

and speaking style). Two main branches can be considered for speaker recognition,

namely speaker identification and speaker verification. Speaker identification can be

described as a multi-class classification problem. Given a test utterance, it is to be

identified which is the speaker of that utterance, among a set of enrolled speakers.

The assumption of whether the test speaker belongs to the enrollment set gives places

to two different identification problems, closed-set and open-set, the latter being more

difficult as a threshold should be defined as well. In speaker verification, on the other

hand, an unknown speaker claims an identity, and the system is to verify if the claim
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Figure 2.1: Block diagram of a basic speaker verification system.

is true. Speaker recognition can be categorized into two main tasks, namely text-

dependent and text-independent. The text-dependent speaker verification requires

the speaker saying exactly a given text, password, or sequence of numbers, whereas

the text-independent speaker verification is based on free speech. In principle, the

text-dependent task is more accurate and needs less amount of training and testing

data compared to the text-independent one. However, the text-independent speaker

verification is more convenient for users as they can speak freely. Moreover, in some

applications only the text-independent task is applicable. As this thesis investigates

over the text-independent speaker verification, only this specific task will be followed

from now on.

As it is shown in Fig 2.1, speaker verification involves two main phases: the

training phase in which the target speakers are enrolled and the testing phase in

which a decision about the identity of the speaker is taken. From training point of

view, speaker models can be classified into generative and discriminative. Genera-

tive models such as Gaussian Mixture Model (GMM) (D. Reynolds & Rose, 1995)

estimate the feature distribution within each speaker. Discriminative models such

as Support Vector Machine (SVM) (W. Campbell, Campbell, Reynolds, Singer, &

Torres-Carrasquillo, 2006) and Deep Neural Network (DNN) , in contrast, model the

boundary between speakers.

Language recognition, on the other hand, is mainly applicable for Language Iden-

tification (LID). As in speaker recognition, each target language is first modeled.

Then an utterance with unknown language is compared with all target languages

and the one with highest score is selected. If the task is an open-set identification,

a threshold should also be defined for detecting unknown languages. A wide range
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of approaches has been proposed for modeling the characteristics of languages. The

two most effective ones are: the acoustic-phonetic approach and the phonotactic ap-

proach (Ambikairajah, Li, Wang, Yin, & Sethu, 2011; Li, Ma, & Lee, 2013). The

acoustic-phonetic approach is motivated by the observation that languages differ at a

very fundamental level in terms of phones and frequencies of these phones occurring

(i.e., the phonetic differences between languages). More importantly, it is assumed

that the phonetic characteristics could be captured by some form of spectral-based

features. Then the distribution of each language in the feature space is modeled. The

phonotactic approach is motivated by the belief that a spoken language can be char-

acterized by its lexical-phonological constraints. Hence, the lexical-phonological rules

of each language are taken into account in the phonotactic level to connect phonemes

and to form words. From a system development point of view, the acoustic-phonetic

approach requires only the speech utterances and the language labels, while the

phonotactic approach requires the phonetic transcription of speech, which could be

expensive to obtain. Moreover, the acoustic-phonetic approaches are generally much

faster in the test phase, which is important in real-time applications. In this thesis,

we have only focused on the acoustic-phonetic approach because of its less complex-

ity in both train and test phases and also because it has many techniques in common

with the speaker recognition task, which is the first part of the thesis.

2.1.1 Speech Characterization

In almost any kind of pattern recognition system, one of the basic steps is the extrac-

tion of features from the raw data. In the context of speaker recognition, features

obtained from the speech signal attempt to reflect the discriminative speaker infor-

mation. A standard in the field is to use short-term acoustic features derived from

the speech spectrum. The spectrum of the speech is closely related to the phys-

iology of the human vocal tract, an important discriminating factor. By far, the

most popular one is the Mel-Frequency Cepstral Coefficient (MFCC) (Furui, 2004),

which has showed to perform well in speech processing tasks. Apart from MFCCs,

other features like Linear Predictive Coefficient (LPC), Linear Frequency Cepstral

Coefficient (LFCC), Perceptual Linear Predictive (PLP) coefficients, and frequency

filtered filter-bank energies or in short Frequency Filtering (FF) coefficients (Nadeu,

Hernando, & Gorricho, 1995; Nadeu, Macho, & Hernando, 2001) are used as well. In

speaker recognition, the first and the second order time derivatives called delta and



12 State of the Art

delta-delta coefficients are usually obtained to assist the recognition. However, delta-

delta coefficients are shown not to be such effective in speaker recognition (Fauve,

Matrouf, Scheffer, Bonastre, & Mason, 2007). The delta energy is also commonly

added to the feature vectors.

For language recognition, however, only the short-term spectral features are not

enough to represent the characteristics of a language. Therefore, a longer duration

of speech is usually taken into consideration. Shifted Delta Cepstrum (SDC) coeffi-

cients (Torres-carrasquillo, Singer, Kohler, & Deller, 2002), which capture the speech

dynamics over a wider range of speech frames than the first and second order MFCC

derivatives, are commonly used.

It is worth noting that for both speaker and language recognition applications,

only the speech parts of the signals are useful for discrimination. Hence, the non-

speech frames like silence, noise, and music should be removed before modeling.

Usually, energy-based Voice Activity Detection (VAD) algorithms are used either in

the signal level or after feature extraction. In order to have a more robust recognition

system against the environment variation, speech features are usually normalized

afterwards.

In this section, the most popular feature type, i.e., MFCC, is first explained, and

then FF and SDC features which are used, respectively, for speaker and language

recognition experiments in this thesis will be described. Then a short description on

feature normalization will be given at the end.

Mel Frequency Cepstral Coefficients

MFCCs are short-term representations of a sound spectrum. The sampled speech

waveform is assumed to be almost stationary over short time intervals of 20 to 30

msec. The MFCC feature extraction procedure involves a sliding analysis window

along the speech signal. For each window placement, the speech is pre-emphasized

and the power spectrum is computed. A filter bank of triangular weighting filters

is then used to compute the average energy around the center frequency of each

triangle. Filters are distributed on a Mel scale, which approximates the behavior

of the human auditory system. Finally, MFCCs are defined as the Discrete Cosine

Transform (DCT) of the logarithms of the the filter bank energies. More details can
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Figure 2.2: FF coefficient computation with the filter z − z−1. S(k) is a sequence of filter bank

energies and F (k) are the resulting FF coefficients (after (Nadeu et al., 2001)).

be found in literature (Kinnunen & Li, 2010; Hansen & Hasan, 2015).

Frequency Filtering Coefficients

FF coefficients (Nadeu et al., 1995, 2001) are computed in the same fashion as in

MFCC but replacing the final DCT of the logarithmic Filter Bank Energys (FBEs)

by the following filter,

H(z) = z − z−1 (2.1)

In summary, as it is shown in Fig. 2.2, every FBE coefficient is replaced by the

difference between two adjacent FBE coefficients. At the end, the first and the last

resulting coefficients are discarded. More details can be found in (Nadeu et al.,

2001). These features are not only computationally simpler than MFCCs, they are

uncorrelated, they have frequency meaning, and they have shown a performance

equal to or better than MFCCs in both speech (Nadeu et al., 2001) and speaker

recognition (Hernando & Nadeu, 1997; Luque Serrano, 2012).

Shifted Delta Cepstrum Coefficients

MFCC features are typically computed for each short frame of speech. Usually,

the first and the second order derivative vectors are added to take into account the
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Figure 2.3: SDC computation at frame t for (z, d, p, k) = (7, 1, 3, 7) (after (Li et al., 2013)).

short-term speech dynamics as well. As it was mentioned before, the consideration

of speech dynamics over a wider range of speech frames could be useful for language

recognition. Hence, SDC coefficients have been proposed (Torres-carrasquillo et al.,

2002). SDC features are defined by four parameters {z, d, p, k}, where z is the number

of static cepstral coefficients computed at each frame, d represents the time delay

and advance for the delta computation, k is the number of delta-cepstral blocks

whose delta-cepstral coefficients are stacked to form the final feature vector, and p

is the time shift between consecutive blocks. Figure 2.3 shows an example of SDC

computation for parameters {7, 1, 3, 7} (Li et al., 2013). More details can be found

in (Torres-carrasquillo et al., 2002; Ambikairajah et al., 2011; Li et al., 2013).

Feature Normalization

Feature normalization strategies are employed in both speaker and language recog-

nition systems to compensate for the effects of environmental mismatch. Typically,

the mean of the cepstral coefficients is removed in order to avoid nonlinear effects

due to the session variability. Optionally, the variance of the cepstral coefficients

can be also normalized to unit over a sliding window or over the whole utterance.

Sometimes, the shape of the cepstral coefficient distribution is also taken into consid-

eration. Among the several techniques, which have been proposed for this purpose,

Cepstral Mean Normalization (CMN), Cepstral Mean and Variance Normalization
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(CMVN), and feature warping are more commonly in use (Hansen & Hasan, 2015).

In this thesis, we have mainly used feature warping (Pelecanos & Sridharan, 2001).

Feature warping attempts to map the distribution of each individual feature to

a Gaussian distribution over a time interval based on the Cumulative Distribution

Function (CDF). The method assumes that the components of the feature vector are

independent and are processed individually as a separate stream. CDF matching is

performed over a sliding window of size N and only the central frame of the window

is warped. The features in a given window are sorted in ascending order. If the given

component value x in the central frame has the rank r (1 ≤ r ≤ N), the warped

value x̂ should satisfy (Pelecanos & Sridharan, 2001; Xiang, Chaudhari, Navrátil,

Ramaswamy, & Gopinath, 2002),

(r − 1/2)/N =

∫ x̂

−∞
f(z)dz (2.2)

where the left side is the approximated CDF value of x, the right side is the CDF

value of x̂, and f(z) is the Probability Density Function (PDF) of a standard normal

distribution (Pelecanos & Sridharan, 2001; Xiang et al., 2002).

2.1.2 GMM-UBM Approach

A GMM is a weighted sum of M Gaussian densities as given by,

p(x|λ) =

M∑
i=1

wig(x|µi,Σi) (2.3)

where x is a D-dimensional feature vector, i is the index of the ith Gaussian mixture,

g(x|µi,Σi) are Gaussian mixtures defined as,

g(x|µi,Σi) =
1

(2π)D/2 |Σi|1/2
exp

{
−1

2
(x− µi)

′Σ−1i (x− µi)

}
, (2.4)

and wi, µi and Σi are the weight, the mean vector, and the covariance matrix of the

ith Gaussian density, respectively. A GMM is actually defined by these three sets of

parameters as λ = {wi,µi,Σi}Mi=1. The sum of the Gaussian mixture weights equals

to 1. The components of the feature vectors are supposed to be decorrelated and,

therefore, the covariance matrices Σi are usually considered diagonal. The GMM

parameters are estimated using the Expectation-Maximization (EM) algorithm as

in (D. Reynolds & Rose, 1995).
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As the amount of the enrollment data for each speaker is usually few, it is not so

efficient to train a GMM for each speaker from scratch. Therefore, a global GMM,

which is referred to as Universal Background Model (UBM), is first trained using a

large number of utterances, and then the UBM is adapted to a few amount of data

of each speaker (D. A. Reynolds, Quatieri, & Dunn, 2000). UBM is also known as a

speaker and language independent model since it is usually trained with hundreds of

hours of speech data spoken by thousands of speakers in different languages. How-

ever, UBM can be sometimes gender dependent for more efficiency. The adaptation

is typically performed using the Maximum a Posteriori (MAP) estimation which in-

cludes two steps. First, the sufficient statistics, which are known as Baum-Welch

statistics, are calculated given the new feature vectors u = {x1,x2, ...,xT } and the

UBM as follows,

Ni(u) =
T∑
t=1

Pr(i|xt, λubm) (2.5)

Fi(u) =
T∑
t=1

Pr(i|xt, λubm)xt (2.6)

where Ni(u) and Fi(u) are the zeroth and the first order statistics, respectively, and

Pr(i|xt, λubm) is the a posteriori probability for the Gaussian mixture i calculated

as follows,

Pr(i|xt, λubm) =
wig(xt|µubm

i ,Σubm
i )∑M

k=1wig(xt|µubm
k ,Σubm

k )
(2.7)

Second, the adapted parameters are obtained by the combination of the new

statistics for speaker a and the UBM parameters. Usually, only the mean vectors

are adapted as follows,

µa
i = αi

[
Fi(u)

Ni(u)

]
+ (1− αi)µ

ubm
i (2.8)

where µa
i are the adapted mean vectors for speaker a and αi are defined as,

αi =
Ni(u)

Ni(u) + r
(2.9)

where r is a fixed relevance factor. Equation 2.9 implies that when Ni →∞, αi → 1

and when Ni → 0, αi → 0, i.e., the adapted model relies more on the UBM than

the new statistics for those Gaussian mixtures where few data is available and vice

versa. At the end, the scores are defined in a log likelihood ratio form as follows,

Λ(u) = log p(u|λa)− log p(u|λubm) (2.10)

where log p(u|λ) = 1
T

∑T
t=1 log p(xt|λ) and p(xt|λ) is obtained as in Eq. 2.3.
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2.1.3 Supervector and i-Vector

The computation of the decision score as in Eq. 2.10 is costly since it should be

computed per each frame and every time twice, once against the adapted model and

another time against the UBM. Hence, it would be more convenient and computa-

tionally efficient if each sequence of feature vectors is converted to a fixed length

vector and the decision score is computed only once. GMM supervectors are one of

these kind of fixed length vectors which are obtained by stacking the D-dimensional

mean vectors of the M -mixture adapted GMM (W. Campbell, Sturim, & Reynolds,

2006). For the speaker a, a GMM supervector is represented as,

sa = (µa
1,µ

a
2, ...,µ

a
M )t (2.11)

where t refers to a transpose operation.

It is possible to compare two supervectors based on their distance, but it is com-

monly more efficient to classify them by SVMs (W. Campbell, Sturim, & Reynolds,

2006; Dehak & Chollet, 2006; K. Lee, You, Li, Kinnunen, & Zhu, 2008). This leads to

a hybrid classifier in which the generative GMM-UBM is used to create supervectors

as feature vectors for the discriminative SVM.

As the train and test speech utterances are usually spoken in different sessions,

e.g., the use of different microphones or different channels for transferring the speech

signal, some session variability compensation techniques are required, in addition to

the compensation techniques in the feature domain as described in section 2.1.1, for

having a higher recognition accuracy and a more robust system. Two commonly

in use session compensation techniques in the supervector domain are the Nuisance

Attribute Projection (NAP) (W. Campbell, Sturim, Reynolds, & Solomonoff, 2006;

Solomonoff, Campbell, & Boardman, 2005) and Within-Class Covariance Normal-

ization (WCCN)(Hatch, Kajarekar, & Stolcke, 2006).

Another successful technique is the Joint Factor Analysis (JFA) (Kenny, 2006)

which models the supervectors as a linear combination of the speaker and channel

components. However, as in SVM based techniques, the session variability com-

pensation is carried out in the supervector domain which is very high dimensional.

Therefore, a big memory space is required for the training of the compensation ma-

trices and it is computationally expensive. It is proposed in (Dehak, Kenny, et al.,

2011) to first reduce the dimension of the supervectors throw an effective factor anal-
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ysis technique and then to perform session compensation in the lower dimensional

space. It is supposed that the supervector sa can be modeled as follows (Dehak,

Kenny, et al., 2011),

sa = subm + Tν (2.12)

where subm is the speaker- and session-independent mean supervector, typically from

the UBM, T is the total variability matrix, and ν is a vector of latent variables. The

posterior distribution of ν is conditioned on the Baum-Welch statistics of the given

speech utterance. The mean of this posterior distribution is referred to as i-vector ω

and computed as follows,

ω =
(
I + T tΣ−1N (u)T

)−1
T tΣ−1F̃(u) (2.13)

where N (u) is a diagonal matrix containing the zeroth order Baum-Welch statistics,

F̃(u) is a supervector of the centralized first order statistics, and Σ is a diagonal co-

variance matrix initialized by Σubm and updated during the factor analysis training.

The T matrix is trained using the EM algorithm given the Baum-Welch statistics

from the background speech utterances. More details can be found in (Dehak, Kenny,

et al., 2011).

2.1.4 i-Vector Backends

The preliminary scoring technique for i-vectors is cosine (Dehak, Dehak, glass, Reynolds,

& Kenny, 2010; Dehak, Kenny, et al., 2011),

score(cosine) (ω1,ω2) =
ωt
1ω2

‖ω1‖ × ‖ω2‖
(2.14)

where ω1 and ω2 are the target and the test i-vectors and ‖ω‖ denotes the norm of

the i-vector ω computed as
√
ω2
1, ω

2
2, ..., ω

2
n. If the speaker labels for the background

speech utterances are not available, the cosine scoring gives as such a reasonable

accuracy. However, given the speaker labels it is more effective if a session variabil-

ity compensation technique is applied before scoring. Linear Discriminant Analysis

(LDA), WCCN, or a combination of them is usually used (Dehak, Kenny, et al.,

2011). It should be noted that speaker labels are costly and are not always accessi-

ble. Probabilistic Linear Discriminant Analysis (PLDA) (Prince & Elder, 2007) is a

more effective technique when speaker labels are available for the background data.

These three commonly in use techniques are described briefly as follows.
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Linear Discriminant Analysis

In LDA, the feature vectore, i-vectors in this case, are transformed usually to a

lower dimensinal feature space in which the classification task become easier. LDA

finds the orthogonal directions in the current feature space which are more effective

in discriminating the classes (Hansen & Hasan, 2015). Given the background i-

vectors and the corresponding class labels, e.g., speaker or language labels, LDA

tries to maximize the between-class covariance matrix while minimizing the within-

class covariance matrix defined as follows,

Sb =
1

S

S∑
s=1

(ω̄s − ω̄) (ω̄s − ω̄)t (2.15)

Sw =
1

S

S∑
s=1

1

ns

ns∑
i=1

(ωs,i − ω̄s) (ωs,i − ω̄s)
t (2.16)

where ωs,i is the ith i-vector of speaker s, ns is the total number of i-vectors belonging

to speaker s, S is the total number of speakers in the background set of i-vectors,

and ω̄s and ω̄ are the speaker-dependent and speaker-independent mean i-vectors,

obtained on each class and on the whole background data, respectively,

Within-Class Covariance Normalization

WCCN is a normalization technique which was mainly used for improving the ro-

bustness of SVM based speaker recognition (Hatch et al., 2006; Hatch & Stolcke,

2006). The within-class covariance matrix Sw is first calculated as in eq. 2.16. Then

the projection WCCN matrix is computed using the Cholesky factorization of S−1w

such that,

S−1w = AWCCNA
t
WCCN (2.17)

ω̂ = At
WCCNω (2.18)

where ω̂ is the projected form of i-vector ω.

It is worth noting that unlike LDA, the WCCN projection conserves the direction

and the dimension of the feature space (Hansen & Hasan, 2015).
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Probabilistic Linear Discriminant Analysis

In PLDA, scoring is performed along with the session variability compensation. It

assumes that each i-vector can be decomposed as,

ω = m+ Φζ + ε (2.19)

wherem is a global offset, the columns of Φ are eigenvoices, ζ is a latent vector having

a standard normal prior, and the residual vector ε is normally distributed with zero

mean and the full covariance matrix Σ. The model parameters are estimated from

a large collection of speaker-labeled background data using the EM algorithm as

in (Prince & Elder, 2007).

Given the two i-vectors ω1 and ω2 involved in a trial for a speaker verification

task, there could be two hypotheses Hs and Hd indicating that two i-vectors ω1 and

ω2 belong to the same or different speakers, respectively. The verification score can

now be computed as the log-likelihood ratio of these two hypotheses as,

score(plda)(ω1,ω2) = log
p(ω1,ω2|Hs)

p(ω1|Hd)p(ω2|Hd)
(2.20)

Supposing that the i-vectors are generated from a Gaussian distribution and the

global offset, i.e.,m, is removed, the log-likelihood ratio is computed in a closed-form

solution resulting in,

score(plda)(ω1,ω2) = ωt
1Qω1 + ωt

2Qω2 + 2ωt
1Pω2 (2.21)

where P and Q are square matrices represented in terms of within and between

covarience matrices as,

Q = Σ−1b −
(
Σb −ΣwΣ−1b Σw

)−1
, (2.22)

P = Σ−1b Σw

(
Σb −ΣwΣ−1b Σw

)−1 (2.23)

where Σw = ΦΦt and Σb = ΦΦt + Σ. To speed up the scoring process, the above

formulas are usually summarized to be calculated in the PLDA lower dimensional

space. More details can be found in (Garcia-Romero & Espy-Wilson, 2011). As

proposed in (Kudashev, Novoselov, Pekhovsky, Simonchik, & Lavrentyeva, 2016),

for simplicity, the LDA within and between covariance matrices can also be used in

eqs. 2.22 and 2.23.
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Figure 2.4: Block-diagram of a typical i-vector/PLDA speaker verification system.

It is shown (Garcia-Romero & Espy-Wilson, 2011) that the length normaliza-

tion (ω ← ω
‖ω‖) helps the Gaussianity of i-vectors which leads to a comparable

performance to a more complicated PLDA, which is referred to as heavy-tailed

PLDA (Kenny, 2010; Matějka et al., 2011). As proposed in (Greenberg et al., 2014),

in an i-vector baseline system, i-vectors are first globally whitened as,

ω′ = Hω (2.24)

H = V (D + ε)−1/2 V t (2.25)

where H is the whitening matrix, V is the matrix of eigenvectors obtained on the

covariance matrix of the background i-vectors, D is the diagonal matrix of the cor-

responding eigenvalues, and ε is a very small constant regularization factor. After

whitening, i-vectors are length-normalized. If the target speaker enrollment has been

a single-session task, i.e., one utterance available per each target speaker, test and tar-

get i-vectors are compared directly using either cosine or PLDA scoring. Otherwise,

the available i-vectors per each target speaker are first averaged and a single i-vector

is obtained. In case of cosine scoring, averaged target i-vectors are length-normalized

again before scoring but in case of PLDA, the experiments have shown that length-

normalization of the averaged target i-vectors will worsen the results (Greenberg et

al., 2014). Moreover, it is observed (Greenberg et al., 2014) that for PLDA training,

excluding those background i-vectors obtained on utterances with speech duration

shorter than 30 msec will improve the results. The block-diagram of Fig. 2.4 sum-

marizes a typical state-of-the-art system for speaker verification.
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2.2 Deep Learning

DL refers to a branch of machine learning techniques which attempts to learn high

level features from data. Since 2006 (Hinton & Salakhutdinov, 2006; Hinton, Osin-

dero, & Teh, 2006), DL has become a new area of research in many applications

of machine learning and signal processing. From training point of view, DL tech-

niques can be divided in three main groups, supervised, unsupervised, and a hybrid

of supervised and unsupervised (Deng & Yu, 2014). Supervised techniques need

labeled data for training, e.g., phonetic, speaker, or language labels in speech pro-

cessing, and they are usually intended to directly provide discriminative power for

pattern classification purposes, often by characterizing the posterior distributions of

classes conditioned on the input data. Labeled data is not easily accessible and, in

most cases, is usually expensive which can be considered as a disadvantage of these

techniques. DNN, Convolutional Neural Network (CNN), Recurrent Neural Network

(RNN), and Long Short-Term Memory (LSTM) are some well-known techniques in

this group (Deng & Yu, 2014). In contrary, unsupervised techniques take advantage

of a large amount of unlabeled data, which are usually easily accessible, to capture

high-order correlations in observed data. Restricted Boltzmann Machine (RBM),

autoencoder, Deep Belief Network (DBN), and Deep Boltzmann Machine (DBM)

are some examples in this group (Deng & Yu, 2014). Hybrid techniques are typically

more effective since they take advantage of both labeled and unlabeled data, which

are usually a few and a large amount in practice, respectively. A DBN-DNN is a

well-known architecture of this type (Deng & Yu, 2014).

Various DL architectures have been used in speech processing (e.g., Hinton et al.,

2012; Z.-H. Ling, Deng, & Yu, 2013; X.-L. Zhang & Wu, 2013; Senior et al., 2015;

Sainath et al., 2015; Nugraha, Liutkus, & Vincent, 2016; Sainath et al., 2017). DNN,

DBN, and RBM are three main architectures we have used in this thesis.

2.2.1 Deep Neural Networks

DNNs are feed-forward neural networks with multiple hidden layers between input

and output layers (Fig. 2.5a). The hidden unit values in each hidden layer are

computed as follows,

hlj = f(blj +
∑
i

hl−1i wl
ij) (2.26)
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Figure 2.5: (a) DNN, (b) DBN, and (c) DBN training/DNN pre-training.

where hlj and blj are, respectively, the posterior probability and the bias term of the

jth hidden unit in the lth hidden layer, wl
ij is the connection weight between jth

hidden unit in layer l and ith hidden unit in layer l − 1, and f(.) is an activation

function. Note that layers l = 0 and l = L + 1 are visible (i.e., input) and output

layers, where L is the number of hidden layers in the network.

Two commonly in use hidden units are sigmoid and Rectified Linear Unit (ReLU).

The names come from the type of the activation function used,

sigmoid : f(x) = (1 + exp (−x))−1 (2.27)

ReLU : f(x) =

x x > 0

0 x ≤ 0.
(2.28)

DNNs are trained using a discriminative back-propagation algorithm given the

class labels of the input vectors. The training algorithm tries to minimize a loss func-

tion between the class labels ` = (`1, `2, ..., `K) and the outputs o = (o1, o2, ..., oK).

For a classification purpose, the cross-entropy is often used as the loss function,

H(`,o|v, θ) = −
K∑
k=1

`klog(ok) (2.29)

where v is the input vector and θ is the DNN parameters. The softmax is commonly

used as the activation function at the output layer for classification (Z. Ling et al.,
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2015),

p(ok|v) =

exp(bL+1
k +

∑
i
hLi w

L+1
ik )

K∑
j=1

exp(bL+1
j +

∑
i
hLi w

L+1
ij )

. (2.30)

where p(ok|v) denotes the probability that class k is the correct class. The number

of the output units will be equivalent to the number of the classes. The label of each

class is defined as a binary vector, with the same length as the output layer, in which

all the components are zero except the component corresponding to that class. As

the Eq. 2.30 implies, the softmax function guarantees that each output unit will have

a probability between 0 and 1 and the sum of the output probabilities is 1.

In traditional neural networks, the parameters are initialized with small random

numbers and the sigmoid or hyperbolic tangent (tanh) functions are usually used

for activation. However, the classification accuracy of the network decreases by

increasing the number of hidden layers. The problem is that both sigmoid and tanh

functions suffer from the gradient vanishing, i.e., the gradient decreases when the

absolute value of the input of these functions increases. In this way, the parameters

of the lower layers will only slightly change. This leads to a performance degradation.

Two main solutions have been proposed for the gradient vanishing problem, either

the use of better initialization techniques (Larochelle, Bengio, Louradour, & Lamblin,

2009; Dumitru, Manzagol, Bengio, Bengio, & Vincent, 2009; Erhan et al., 2010;

Yu, Deng, Seide, & Li, 2016) or employing the activation functions which do not

suffer from gradient vanishing, e.g., Rectified Linear (ReL) (Nair & Hinton, 2010;

Zeiler et al., 2013; Maas, Hannun, & Ng, 2013). The first solution is chosen in this

thesis. One of the efficient techniques for initialization is to initialize DNNs with

DBN parameters, which is referred to as unsupervised pre-training and the final

network is often called a hybrid DBN-DNN (Dahl et al., 2012; Deng & Yu, 2014).

It has been empirically shown that this pre-training stage can set the weights of the

network closer to an optimum solution than the random initialization (Larochelle et

al., 2009; Dumitru et al., 2009; Erhan et al., 2010).

2.2.2 Deep Belief Networks

DBNs are generative models with multiple hidden layers of stochastic units above

a visible layer, which represents a data vector (Fig. 2.5b). The top two layers are
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undirected and the other layers have top-down directed connections to generate the

data. The main advantage of DBN is that it does not need labels for training and

it is trained totally unsupervised. Hence, as it was mentioned in section 2.2.1, the

combination of DBNs and DNNs could make a powerful model which benefits from

both the large number of unlabeled data, which are usually accessible easily, and the

fewer number of labeled data, which are usually costly to provide. In addition to the

pre-training of DNNs, DBNs have been used for many other applications as well, e.g.,

non-linear dimensionality reduction (Hinton & Salakhutdinov, 2006; Salakhutdinov

& Hinton, 2009), generating images (Susskind, Hinton, Movellan, & Anderson, 2008),

and feature learning from images (F. J. Huang, Boureau, LeCun, et al., 2007), video

sequences (Sutskever & Hinton, 2007) and audio signals (H. Lee, Largman, Pham,

& Ng, 2009).

There is an efficient greedy layer wised algorithm to train DBN parameters (Hinton

et al., 2006). In this case, DBN is divided in two-layer sub-networks and each one is

treated as an RBM (Fig. 2.5c). When the first RBM, which is built on visible units,

is trained, its parameters are frozen and the outputs are given to the RBM above as

input vectors. This process is repeated until the top two layers are reached.

It is worth noting that the term DBN has previously been used in the literature

for both unsupervised DBN, as it was explained in this section, and supervised

hybrid DBN-DNN, as it was explained in section 2.2.1 (e.g., Mohamed, Dahl, &

Hinton, 2009; Nair & Hinton, 2009; Mohamed et al., 2012; X.-L. Zhang & Wu,

2013). Nowadays, DBN just refers to the unsupervised network of Fig. 2.5b based

on the definition given in (Deng & Yu, 2014).

RBMs are generative models constructed from two undirected layers of stochastic

hidden and visible units (Fig. 2.6a). RBM training is based on a maximum likelihood

criterion using the stochastic gradient descent algorithm (Hinton et al., 2006; Dahl et

al., 2012). The gradient is estimated by an approximated version of the Contrastive

Divergence (CD) algorithm which is called CD1 (Hinton et al., 2006; Hinton, 2012).

Fig. 2.6b shows how an RBM is trained using CD1. The connection weights W

are randomly initialized and the visible and hidden bias terms (a and b, respectively)

are set to zero. Given the input vectors v, the posterior probability of the hidden

vector h is calculated and binarized based on random thresholds. Afterwards, input

vectors are reconstructed given the binary values of the hidden layer. Then the
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Figure 2.6: (a) RBM and (b) RBM training.

reconstructed inputs vr are used to recalculate the posterior probabilities of hidden

units. These three steps, marked in Fig. 2.6b, provide enough statistics to update the

parameters of the network. From an algorithmic point of view, training an RBM with

CD1 where the input data is real-valued Gaussian distributed can be summarized as

follows,

• Initialize Network Parameters (W , b,a)

• CD1 Steps

1. h = σ (b+Wv) (2.31)

2. vr = a+W th′ (2.32)

3. hr = σ (b+Wvr) (2.33)

• Update Network Parameters

1. ∆W = η ×
(
vht − vrht

r

)t (2.34)

2. ∆a = η × (v − vr) (2.35)

3. ∆b = η × (h− hr) (2.36)

where hr is the reconstructed version of h, h′ is a binary vector randomly sampled

from h, η is the learning rate, and σ(.) is the sigmoid function as in eq. 2.27.

Additionally, a momentum factor is used to smooth out the updates, and the

weight decay regularization is used to penalize large weights. More theoretical and

practical details can be found in (Hinton & Salakhutdinov, 2006; Hinton et al., 2006;

Hinton, 2012).

In the training phase of all these three networks (DNN, DBN, and RBM), it is

possible to update the parameters after processing each training example, but it is

often more efficient to divide the whole input data (batch) into smaller size batches
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(minibatch) and to update the parameters by averaging the gradients over each

minibatch. The parameter updating procedure is repeated when the whole available

input data is processed. Each iteration is called an epoch.

2.2.3 Deep Learning in Speaker Recognition

Even though steps have been taken long ago to apply neural networks in speaker

recognition (e.g., Oglesby & Mason, 1988, 1990; Rudasi & Zahorian, 1991; Farrell,

Mammone, & Assaleh, 1994), recent advances in computing hardware, new DL ar-

chitectures and training methods, and access to large amount of training data has

inspired the research community to make use of DL technology again as in a large va-

riety of other signal processing applications (e.g., Mohamed et al., 2012; Z.-H. Ling

et al., 2013; X.-L. Zhang & Wu, 2013; Nair & Hinton, 2009; G. Huang, Lee, &

Learned-Miller, 2012). DL techniques can be used in the frontend or/and backend

of a speaker recognition system. The whole end-to-end recognition process can even

be performed by a DL architecture.

Deep Learning Frontends

A possible use of DL in the frontend of a speaker recognition system is in the state-

of-the-art i-vector algorithm (Dehak, Kenny, et al., 2011). The traditional i-vector

approach consists in three main stages: Baum-Welch statistics collection, i-vector ex-

traction, and PLDA backend. Recently, it is shown that if the Baum-Welch statistics

are computed with respect to a DNN rather than a GMM or if bottleneck features

are used in addition to conventional spectral features, a substantial improvement can

be achieved (Lei et al., 2014; Kenny et al., 2014; Richardson et al., 2015a).

A variant of architectures have been used for acoustic modeling, bottleneck fea-

ture extraction, or both of them at the same time. Figure 2.7 shows a typical DNN

architecture used for both Baum-Welch statistics computation and bottleneck feature

extraction. The network is preliminary trained for acoustic modeling in Automatic

Speech Recognition (ASR). The hidden layer before the last hidden layer is usually

much smaller than the other hidden layers and considered as the bottleneck layer.

The hidden unit values of this layer, given the input vectors, are referred to as bot-

tleneck features. These features are usually highly correlated and, therefore, they



28 State of the Art

Inputs:
ASR feature vectors

Outputs:
Posterior probabilities
of HMM hidden states

Bottleneck Layer

Other Hidden Layers

Figure 2.7: A typical DNN architecture used for acoustic modeling and bottleneck feature extrac-

tion in DNN based i-vector approach.

need some decorrelating, typically using Principal Component Analysis (PCA), be-

fore usage. The output layer represents the acoustic classes, which are typically the

states of the Hidden Markov Model (HMM) in ASR. The input layer takes usually a

concatenation of successive ASR feature vectors. ASR feature vectors are usually the

log filter bank energies without any delta or delta delta coefficients. The activation

function for the output layer is softmax, for the bottleneck layer is usually linear, and

for the other hidden layers can be sigmoid, rectified linear, or other similar functions

like tanh.

Given the DNN acoustic model, the zeroth and the first order Baum-Welch statis-

tics are computed as follows,

Nk(u) =
∑
t

p(ok|xt) (2.37)

Fk(u) =
∑
t

p(ok|xt)x̂t (2.38)

where p(ok|xt) is the posterior probability of kth output unit given the ASR feature

vector xt, and x̂t is the speaker feature vector which can differ from xt. Given the

Baum-Welch statistics, the T matrix training and the i-vector extraction process will

be the same as with GMM acoustic model. However, despite the GMM model, the

non-speech frames have also been used in the training of the DNN acoustic model.

Therefore, there will be two possible options for DNN statistics computation. The

first option is to use an external VAD, discard non-speech frames, and use only the

DNN output units corresponding to the speech states in HMM. The second option

is not to use any external VAD, compute the statistics for all frames, and, like in
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the first option, to discard the output probabilities which correspond to non-speech

states. The second option can be interpreted as a kind of a soft VAD rather than the

hard VAD in the first option (Kudashev et al., 2016). It has been shown that the

second option leads usually to a better performance in terms of the accuracy (Ferrer,

Lei, McLaren, & Scheffer, 2014, 2016a). It is worth noting that for both options,

the zeroth order statistics should be normalized by the sum over the output units

corresponding to speech states.

Although the i-vector extraction using DNN acoustic models or bottleneck fea-

tures leads to a higher accuracy in general, there are also some disadvantages. First

of all, the use of DNN itself increases the computational cost of the statistics to

a great extent. Moreover, the number of the output units is usually much higher

than the number of Gaussian mixtures in the GMM. This means that the dimen-

sions of supervectors will be much higher than the dimensions of GMM supervectors

leading to higher computational cost in both T matrix training and i-vector extrac-

tion. Additionally, the language dependency of DNN acoustic models, the use of two

different feature vectors for the computation of the zeroth and the first order statis-

tics (e.q., 2.37 and 2.38), and the need of the phonetic labels for training the DNN

acoustic model are other shortcomings of DNN based i-vector extraction approaches.

Another possible use of DL in the frontend is to represent the speaker character-

istics of a speech signal with a single low dimensional vector using a DL architecture,

rather than the traditional i-vector algorithm. These vectors are often referred to

as speaker embeddings. Typically, the inputs of the neural network are a sequence

of feature vectors and the outputs are speaker classes (Fig. 2.8). First, a deep ar-

chitecture is trained using background feature vectors. Then the feature vectors of

a given utterance are forward-propagated and the mean of the posterior probabili-

ties of a particular hidden layer (Variani et al., 2014) or a PCA dimension reduced

version of them (Liu et al., 2015), or a PCA dimension reduced version of the mean

vectors (Vasilakakis et al., 2013) are considered as a new compact representation.

Different architectures, activation functions, and training procedures have been pro-

posed (e.g., Variani et al., 2014; Wang et al., 2017; Bhattacharya et al., 2017; Snyder

et al., 2017). The experimental results have shown that, in most cases, the big-

ger improvements are obtained on the shorter signals compared to the traditional

i-vectors (Bhattacharya et al., 2017; Snyder et al., 2017), which implies that DL

technology can model better the speaker characteristics of a short-duration speech
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Figure 2.8: A typical DNN architecture used for speaker embedding extraction.

signal than the traditional signal processing techniques. This is important for real-

time applications where the decision should be made in very few seconds, provided

that the computational cost is still reasonable. However, the need of speaker labels

for training the network is one of the disadvantages of these techniques. Moreover,

speaker embeddings extracted from hidden layer outputs are not so compatible with

PLDA backend because the posterior distribution of hidden layer outputs are usually

not truly Gaussian.

Deep Learning Backends

One of the most effective backend techniques for i-vectors is PLDA (Prince & Elder,

2007; Kenny, 2010), which performs the scoring along with the session variability

compensation. Usually, a large number of different speakers with several speech

samples each are necessary for PLDA to work efficiently. Access to the speaker

labeled data is costly and in some cases almost impossible. Moreover, the amount

of the performance gain, in terms of accuracy, for short utterances is not as much

as that for long utterances. These facts motivated the research community to look

for DL based alternative backends. Several techniques have been proposed. Most

of these approaches use the speaker labels of the background data for training, as

in PLDA, and mostly with no significant gain compared to PLDA. For example,

different combinations of RBMs have been proposed in (Stafylakis et al., 2012b;

Senoussaoui et al., 2012) to classify i-vectors and in (Stafylakis et al., 2012a) to learn

speaker and channel factor subspaces in a PLDA simulation. RBMs in (Novoselov,

Pekhovsky, Simonchik, & Shulipa, 2014) and DNNs in (Isik et al., 2015) are used
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to increase the discrimination power of i-vectors given speaker-labeled background

data. A nonlinear PLDA is simulated in (Villalba et al., 2017) using a tied variational

autoencoder architecture. In (Novoselov et al., 2015; Pekhovsky et al., 2016), a

combination of RBM, autoencoder, and PLDA is proposed for speaker and channel

variability compensation, which shows some improvements compared to using only

PLDA.

One of the recent challenges in speaker recognition, which was organized by the

National Institute of Standard and Technology (NIST), has been how to achieve

a comparable performance with PLDA when no labeled background data is avail-

able (NIST, 2014). Although some unsupervised automatic labeling techniques have

been proposed (Khoury et al., 2014; Novoselov, Pekhovsky, & Simonchik, 2014), they

cannot appropriately estimate the true labels and also they assume that there are

several samples from a same speaker in the background data which could not be true

in reality.

Deep Learning End-to-Ends

It would be interesting to train an end-to-end recognition system which is capable of

doing multiple stages of signal processing with a unified DL architecture. In other

words, the neural network will be responsible for the whole process from the feature

extraction to the final similarity scores. However, working directly on the audio

signals in the time domain is still computationally too expensive and, therefore,

the current end-to-end DL systems take mainly the handcrafted feature vectors, e.g.,

MFCCs, as inputs. Recently, there have been several attempts to build an end-to-end

speaker recognition system using DL. Nevertheless, most of these works have targeted

text-dependent speaker recognition (e.g., Heigold, Moreno, Bengio, & Shazeer, 2016;

S.-X. Zhang, Chen, Zhao, Li, & Gong, 2016; Miguel, Llombart, Ortega, & Lleida,

2017; Heo, Jung, Yang, Yoon, & Yu, 2017). In (Heigold et al., 2016), an LSTM was

trained to distinguish same-speaker and different-speaker utterance pairs. Similar to

(Heigold et al., 2016), another system for text-independent speaker verification was

proposed in (Snyder et al., 2016), which is capable to handle variable length input

through a temporal pooling layer. This new architecture composed of a feed-forward

DNN which takes speech segment as input and maps it to a speaker embedding

using a loss function inspired by PLDA. In that work, the frame-level features were
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Figure 2.9: An example of the true and false score distributions and the definitions of false

acceptance rate (FAR) and false rejection rate (FRR).

grouped into two categories, features of different utterances from the same speaker

and features from different utterances of different speakers. Two speaker embeddings

are built, each of which corresponding to one of these groups. If these two embeddings

are from the same speaker then the loss function should be minimized and if they

are from different speakers the loss should be maximized.

2.3 Evaluation Metrics

In the test phase of every speaker verification task, the system gives a real number

score per each trial, showing the probability that the claimed speaker is true. Given a

reference key, i.e., the true or false label for each trial, there will be two distributions

of scores as shown in Fig. 2.9. One score distribution is for those trials which the tar-

get and test utterances are from the same speaker, i.e., true scores, and another one

is for those trials which target and test speech signals are not from the same speaker,

i.e., false scores. Given these two score distributions, there are three commonly in

use metrics for speaker verification evaluation, namely Equal Error Rate (EER), the

minimum DCF (minDCF), and the Detection Error Tradeoff (DET) curve. All of

these metrics are obtained based on two main errors: False Acceptance Rate (FAR)

and False Rejection Rate (FRR), called also false alarm and miss rates, respectively.

FAR is the relative number of non-target trials accepted incorrectly and FRR is the

relative number of target trials rejected incorrectly.
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Figure 2.10: An example of DET curve with definition of EER.

As it is shown in Fig. 2.9, these two errors are dependent on the threshold based

on which the decision is made. There is a threshold for which FAR and FRR become

equal. These equal FAR and FRR are referred to as EER and it is shown typically

in percentage. Detection Cost Function (DCF) is a weighted sum of FAR and FRR

in terms of the decision threshold t,

DCF (t) = α1FRR(t) + α2FAR(t) (2.39)

where the weights α1 and α2 are defined based on the application and the type of the

evaluation. As we do not like to accept a non-target speaker incorrectly, usually the

weight α2 is much higher than α1 is speaker recognition evaluations. The minimum

value of DCF (t) is referred to as minDCF and is used as one of the main metrics in

speaker recognition. As it is shown in Fig. 2.9, there is always a trade-off between

FRR and FAR. By increasing the threshold t, FRR increases and, correspondingly,

FAR decreases. A DET curve (Fig. 2.10) is a plot of FRR versus FAR over all the

operating thresholds. The closer plot to the origin shows a better performance of

the system.

Usually, every two years the NIST organizes some Speaker Recognition Evalu-

ation (SRE) to address the most recent challenges in speaker recognition. In this

thesis, the NIST SRE 2004-2010 and the NIST 2014 i-vector challenge databases

have been used.





Chapter 3

Deep Learning Backend for

i-Vector Speaker Verification

T he recent compact representation of speech utterances known as i-vector

(Dehak, Kenny, et al., 2011) has become the state-of-the-art in the text-

independent speaker recognition. There are two common scoring techniques to de-

cide if two i-vectors belong to a same speaker namely cosine and Probabilistic Linear

Discriminant Analysis (PLDA) (Prince & Elder, 2007; Kenny, 2010). PLDA scor-

ing leads to a superior performance but with the cost of need to speaker-labeled

background data. Moreover, it needs several samples for each background speaker

spoken in different session conditions to work efficiently. One of the recent challenges

in speaker recognition, which was organized by the National Institute of Standard

and Technology (NIST), has been how to fill the performance gap between these two

common scoring techniques when no labeled background data is available (NIST,

2014). Although there are some unsupervised automatic labeling techniques like

those proposed in (Khoury et al., 2014; Novoselov, Pekhovsky, & Simonchik, 2014),

they cannot appropriately estimate the true labels and also they assume that there

are several samples from a same speaker in the background data which could not be

true in reality. PLDA with estimated labels performs reasonably well (Khoury et al.,

2014; Novoselov, Pekhovsky, & Simonchik, 2014), but the results are still far from

that of PLDA with actual labels (Greenberg et al., 2014).

On the other hand, the success use of Deep Learning (DL) in speech processing,
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specifically in speech recognition (e.g., Mohamed et al., 2010; Dahl et al., 2012;

Mohamed et al., 2012; Hinton et al., 2012; Senior et al., 2015), has inspired the com-

munity to make use of DL techniques in speaker recognition as well. Both generative

approaches, like Restricted Boltzmann Machines (RBMs) and Deep Belief Networks

(DBNs), and discriminative ones, like Deep Neural Networks (DNNs), have been

used for this purpose. A possible use of DL techniques in speaker recognition is to

combine them with the state-of-the-art i-vector approach. Two kinds of combina-

tion have been considered. DL techniques have been used in the i-vector extraction

process (Lei et al., 2014; Kenny et al., 2014; Mclaren et al., 2015; Richardson et al.,

2015a; Liu et al., 2015) or applied on i-vectors as a backend (Stafylakis et al., 2012b;

Senoussaoui et al., 2012; Stafylakis et al., 2012a; Novoselov et al., 2015; Pekhovsky

et al., 2016; Villalba et al., 2017).

In this Chapter, we make use of deep architectures for backend i-vector classifica-

tion in order to fill the performance gap between the two cosine (unlabeled-based) and

PLDA (labeled-based) scoring baseline systems given unlabeled background data. In

order to reach this goal, we take advantage of unsupervised learning of DBNs to train

a global model referred to as Universal DBN (UDBN) and DNN supervised learning

to model each target speaker discriminatively. To provide a balanced training, an

impostor selection algorithm and to cope with few training data, a UDBN-adaptation

process is proposed.

The preliminary experiments are performed on NIST Speaker Recognition Eval-

uation (SRE) 2006 (NIST, 2006) to show the effect of each contribution. Taking

advantage of the conclusions obtained on the preliminary experiments, another set

of experiments are carried out on the new and more challenging database NIST 2014

i-vector challenge (NIST, 2014). The advantage of this database is that the i-vectors

for the background, train, and test sets are provided by NIST and, therefore, the

baseline systems will have the same performance for everyone to compare new pro-

posed systems with. Three baseline classification techniques are considered: cosine,

PLDA with estimated labels, and PLDA with actual labels, which is called also

Oracle PLDA system in this thesis. Experimental results performed on NIST 2014

i-vector challenge show that the proposed DL-based system fills 46% of the perfor-

mance gap between cosine and Oracle PLDA scoring systems in terms of minimum

DCF (minDCF) which is similar to the PLDA scoring results obtained with unsu-

pervised estimated labels. The score combination of the proposed DL-based system
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Figure 3.1: Proposed deep learning architecture for training of each speaker model.

and PLDA with estimated labels fills 79% of this gap.

The rest of the Chapter is organized as follows. Section 3.1 presents the proposed

DL-based backend for i-vector classification. Section 3.2 describes the proposed

impostor selection algorithms in order to have a balanced training. Section 3.3 shows

how we will cope with the few amount of data for the training of each target model.

Sections 3.4 and 3.5 discuss the experimental results obtained on NIST SRE 2006

and NIST 2014 i-vector challenge, respectively. Section 3.6 concludes the chapter.

3.1 Proposed Architecture

In this Chapter, DL technology is used as a backend in which a two-class hybrid DBN-

DNN is trained for each target speaker to increase the discrimination between target

i-vector/s and the i-vectors of other speakers (non-targets/impostors) (Fig. 3.1).

Proposed networks are initialized with speaker-specific parameters adapted from a

global model, which is referred to as Universal Deep Belief Network (UDBN). Then

the cross-entropy between the class labels and the outputs is minimized using the

back-propagation algorithm.

DNNs usually need a large number of input samples to be trained efficiently. As a

general rule, deeper networks require more input data. In speaker recognition, target

speakers can be enrolled with only one sample (single session task) or multiple sam-

ples (multi-session task). In both cases, the number of target samples is very limited.

A network trained with such limited data is highly probable to be overfitted. On the

other hand, the number of target and impostor samples will be highly unbalanced,



38 Deep Learning Backend for i-Vector Speaker Verification

 

Clustering
Minibatch 
Balance

DBN 
Adaptation

Impostor 
Selection

Background
i-vectors

DBN

UDBN & DBN Adaptation

Balanced Training

Target/Impostor
Labels

DNN

ReplicationTarget 
i-vector/s

Universal 
DBN

Discriminative
Target Model

Unknown
i-vector

Resemblance
Measurement

Train

Test

Decision

Figure 3.2: Block-diagram of the proposed DL-based backend on i-vectors for target speaker

modeling.

i.e., one or some few target samples against thousands of impostor samples. Learning

from such unbalanced data will result in biased DNNs towards the majority class. In

other words, DNNs will have a much higher prediction accuracy over the majority

class.

Fig. 3.2 shows the block diagram of the proposed approach to discriminatively

model target speakers. Two main contributions are proposed in this Chapter to tackle

the above problems. The balanced training block attempts to decrease the number

of impostor samples and, on the contrary, to increase the number of target ones in

a reasonable and effective way. The most informative impostor samples for target

speakers are first selected by the proposed impostor selection algorithm. Afterwards,

the selected impostors are clustered and the cluster centroids are considered as final

impostor samples for each target speaker model. Impostor centroids and target

samples are then divided equally into minibatches to provide balanced impostor and

target data in each minibatch.

On the other hand, the DBN adaptation block is proposed to compensate the

lack of input data. As DBN training does not need any labeled data, the whole

background i-vectors are used to build a global model, which is referred to as UDBN.
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The parameters of the UDBN are then adapted to the balanced data obtained for

each target speaker. At the end, given the target/impostor labels, the adapted DBN

and the balanced data, a DNN is discriminatively trained for each target speaker.

These two contributions are described in more details in the following sections.

3.2 Balanced Training

As speaker models in the proposed method will be finally discriminative, they need

both positive and negative data as inputs. Nevertheless, the problem is that the

amount of positive and negative data are highly unbalanced in this case, which leads

to biasing towards the majority class. Some of the straightforward ways to deal

with unbalanced data problem are explored in (He & Garcia, 2009; Thai-Nghe,

Gantner, & Schmidt-Thieme, 2010; Khoshgoftaar, Van Hulse, & Napolitano, 2010)

(López, Fernández, Garćıa, Palade, & Herrera, 2013; Barua, Islam, Yao, & Murase,

2014). A commonly used method is data sampling. The data of the majority class

is undersampled and, on the contrary, the data of the minority class is oversampled.

The effectiveness of these techniques is highly dependent on the data structure.

In the proposed approach shown in Fig. 3.2, the amount of impostors is decreased

in two steps, namely selection and clustering. On the other hand, the amount of

target samples is increased by either replication or combination. After that, balanced

target and impostor samples are distributed equally among minibatches.

3.2.1 Impostor Selection and Clustering

The objective is to decrease the large number of negative samples in a reasonable

way. Our proposal has two main steps. First, only those impostor i-vectors which are

more informative for the training dataset are selected. Informative impostor means,

in this case, the impostor which is not only representative to a given target but also

is statistically close to other targets in the dataset. For a real application, it makes

sense to select those impostors who are globally close to all enrolled speakers. When

the target speakers are changed, the selected impostors can be re-selected according

to the new target dataset. Second, as the number of selected impostor samples is still

high in comparison to the number of target ones, they are clustered by the k-means
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Figure 3.3: Steps of the proposed impostor selection algorithm.

algorithm using the cosine distance criterion. The centroids of the clusters are then

used as the final negative samples.

The selection method is inspired from a data-driven background data selection

technique proposed in (McLaren, Vogt, Baker, & Sridharan, 2010). In that technique

given all available impostor supervectors, a Support Vector Machine (SVM) classifier

is trained for each target speaker. The number of times each impostor is selected

as a support vector, in all training SVM models, is called impostor support vector

frequency (McLaren et al., 2010). Impostor examples with higher frequencies are

then selected as the refined impostor dataset. However, SVM training for each

target speaker would be computationally costly. Moreover, as our final discriminative

models will be DNNs, it would not be worth to employ this technique as such.

Instead, we have proposed to use cosine similarity as an efficient and a fast criterion

for comparing i-vectors. We compare each target i-vector with all impostor i-vectors

in the background dataset. Those N impostors which are close to each target i-vector

are treated like support vectors in (McLaren et al., 2010). Then the κ impostors with

the highest frequencies are selected as the most informative impostors.

The N and κ selected impostors are referred to as local and global selected

impostors in this work. We will show in section 3.5 that the pooling of the global

and local selected impostors, for each target model before clustering, will improve

the results depending on the background data. However, the computational cost will

be higher as the k-means algorithm should be performed individually for each target
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Algorithm 1: Proposed target database-dependent impostor selection algo-

rithm.
Input: Target i-vectors νi, 1 ≤ i ≤ I and Background i-vectors ωm,

1 ≤ m ≤M
Output: Selected impostor i-vectors

1 Initialization: Set impostor frequencies fm ← 0 for each ωm

2 for each target i-vector νi do

3 for each background i-vector ωm do

4 Compute scorei,m = cosine (νi,ωm)

5 end

6 Select the N background i-vectors with the highest scores

7 For the selected i-vectors fm ← fm + 1

8 end

9 Sort background i-vectors in descending order based on their fm
10 Select the first κ i-vectors as the final impostors

model while it is performed only once when only the global selected impostors are

used. The parameters N and κ are determined experimentally. The whole algorithm

is shown in Fig. 3.3 and can be summarized as in Algorithm 1 in which cosine (νi,ωm)

is the cosine score between target i-vector νi and the background i-vector ωm and

M and I are the number of background and target i-vectors, respectively. Note that

in case of multi-session target enrollment, the average of the available i-vectors per

each target speaker will be considered in the algorithm above.

We have also proposed a similar algorithm in which the selection process is only

dependent on the background data. A randomly selected subset from the background

data is used in the Algorithm 1 rather than the target training database. In order

to make the process statistically more reliable, the whole process is repeated several

times and the impostor frequencies are accumulated over all iterations. We have

shown that this algorithm performs similar to Algorithm 1, which uses the training

target set in the selection process, when the background database is large enough.

The full algorithm can be summarized as in Algorithm 2 in which I is an arbitrary

size for B1, typically chosen as the same size as the target dataset in Algorithm 1,

and tmax is the number of iterations.
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Algorithm 2: Proposed target database-independent impostor selection algo-

rithm.
Input: Background i-vectors ωm, 1 ≤ m ≤M
Output: Selected impostor i-vectors

1 Initialization: Set impostor frequencies fm ← 0 for each ωm and t← 1

2 while t ≤ tmax do

3 Divide randomly the background i-vector dataset B = {ωm} into
B1 = {νi, 1 ≤ i ≤ I} and B2 = {χj , 1 ≤ j ≤M− I}, where
B1 ∪B2 = B and B1 ∩B2 = φ

4 for each νi ∈ B1 do

5 for each χj ∈ B2 do

6 Compute scorei,j = cosine (νi,χj)

7 end

8 Select the N i-vectors ∈ B2 with the highest scores

9 For the selected i-vectors fm ← fm + 1

10 end

11 t← t+ 1

12 end

13 Sort background i-vectors ∈ B in descending order based on their fm
14 Select the first κ i-vectors as the final impostors

3.2.2 Target Replication or Combination

In order to balance positive and negative samples, the number of target samples

is increased as many as the number of impostor cluster centroids obtained in sec-

tion 3.2.1. In the single session enrollment task, the i-vector of each target speaker

is simply replicated as many as the number of cluster centroids. Replicated target

i-vectors will not act exactly the same as each other in the pre-training process of

DNNs due to the sampling noise created in RBM training (Hinton, 2012). More-

over, in both adaptation and supervised learning stages the replicated versions make

the target and impostor classes having the same weights when the network param-

eters are being updated. In multi-session task, the available i-vectors of each target

speaker can be combined, i.e., the average of every n i-vectors is considered as a new

target i-vector.
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Figure 3.4: Balanced training for DNNs in multi-session speaker verification task. In each mini-

batch the same target i-vectors but different impostors are shown to DNNs.

Once the number of positive and negative samples are balanced, they are dis-

tributed equally among minibatches. In other words, each minibatch contains the

same number of impostors and targets. If target samples in the multi-session task

are not combined, the same target samples but different impostor ones are shown to

the network in each minibatch (Fig. 3.4). The optimum numbers of impostor clusters

and minibatches will be determined experimentally in sections 3.4 and 3.5.

3.3 Universal DBN and Adaptation

Unlike DNNs, which need labeled data for training, DBNs do not necessarily need

such labeled data as inputs. Hence, they can be used for unsupervised training of

a global model referred to as UDBN. UDBN is trained by feeding background i-

vectors from different speakers. The training procedure is carried out layer by layer

using RBMs as described in section 2.2.2. As the input i-vectors are real-valued, a

Gaussian-Bernoulli RBM (GRBM) (Hinton, 2012; Dahl et al., 2012) is used to train

the connection weights between the visible and the first hidden layer units. The rest

of the connection weights are trained with Bernoulli-Bernoulli RBMs.

It is shown that pre-training techniques can initialize DNNs better than sim-

ply random numbers (Larochelle et al., 2009; Dumitru et al., 2009; Erhan et al.,

2010). However, when a few input samples are available, just pre-training may not

be enough to achieve a good model. In this case, we have proposed to adapt UDBN

parameters to the balanced data obtained for each target speaker. Adaptation is

carried out by training a DBN which is initialized by the parameters of the UDBN
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Figure 3.5: Comparison of the adapted connection weights between the visible and the first hidden

units for two different speakers.

given the balanced data of each target speaker. Adapted DBNs are then used as

an initialization for the final DNN target models. In order to avoid overfitting, only

a few iterations will be considered for adaptation. It is supposed that UDBN can

learn both speaker and channel variabilities from the background data. Therefore,

UDBN will provide a more meaningful initial point for DBNs than a simple random

initialization. The study in (Dumitru et al., 2009) has shown that pre-training is

robust with respect to the random initialization seed. The use of UDBN parameters

makes target models almost independent from the random seeds.

In order to facilitate the training of the networks specifically where more than

one hidden layer is used, we normalize the UDBN parameters before adaptation.

Normalization is carried out by simply scaling down the maximum absolute value of

connection weights to 0.01. In this way, connection weights will have a dynamic range

similar to that typically used for random initialization. Additionally, bias terms are

multiplied by 0.01 to be closer to zero. This is because the bias terms are usually set

to zero when the connection weights are randomly initialized. In this way, the same

learning rates and the number of epochs tuned for random initialized DNNs can also

be used for adapted DNNs in the supervised learning stage.

Fig. 3.5 shows the comparison of the adapted UDBN connection weights, between
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the input layer and the first hidden layer, for two different speakers. As it can be seen

in this figure, speaker-specific initial points are set by the adaptation process for each

DNN target model. Once the adaptation process is completed, a DNN is initialized

with the adapted DBN parameters for each target speaker. Given target/impostor

labels, the minibatch stochastic gradient descent back-propagation is then carried

out for fine-tuning. The softmax and the logistic sigmoid will be the activation

functions of the top label layer and the other hidden layers, respectively.

We have proposed to compute the output scores in Log Posterior Ratio (LPR)

forms as,

Λ(target|ω) = logP (target|ω)− logP (non-target|ω) (3.1)

where P (target|ω) and P (non-target|ω) are, respectively, the posterior probability

of the target and non-target classes given the test i-vector ω. LPR computation

helps to Gaussianize the true and false score distributions which can be useful for

score fusion.

In addition, to make the fine-tuning process more efficient a momentum factor

is used to smooth out the updates, and the weight decay regularization is used to

penalize large weights.

3.4 Experiments on NIST SRE 2006

NIST SRE 2006 (NIST, 2006) is used to show the effect of each proposed contribution

shown in Fig. 3.2 for both single and multi-session speaker verification tasks. In

these experiments, we have built the whole system from scratch including Voice

Activity Detection (VAD) and feature and i-vector extraction. Taking advantage

of the conclusions of this section, the NIST 2014 i-vector challenge dataset (NIST,

2014) is used in section 3.5 to compare the performance of the proposed system with

the most recent state-of-the-art baseline systems.

3.4.1 Baseline and Database

Two sets of experiments are performed is this section. The whole core test condi-

tion of SRE 2006 is used as a single session task and 8 conversation side training

condition is used as the multi-session task. In both cases, training and test signals
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have approximately two-minute total speech duration. There are 816 target models

and 51,068 trials in the single session and 699 target models and 31,080 trials in the

multi-session task. Speech signals with the two-minute approximate duration from

NIST SRE 2004 and 2005 are used as the background data containing 6063 speech

signals from 1070 distinct speakers. It is worth noting that in case of NIST 2005

only the speech signals of those speakers who do not appear in NIST SRE 2006 are

used.

Frequency Filtering (FF) features (Nadeu et al., 2001) are used in these exper-

iments. FFs, like Mel-Frequency Cepstral Coefficients (MFCCs), are decorrelated

version of log Filter Bank Energies (FBE) (Nadeu et al., 2001). It has been shown

that FF features achieve a performance equal to or better than MFCCs (Nadeu

et al., 2001). Features are extracted every 10 msec using a 30 msec Hamming

window. The number of static FF features is 16 and along with delta FF and

delta log energy, 33-dimensional feature vectors are built. Before feature extraction,

speech signals are subject to an energy-based silence removal process. The gender-

independent Universal Background Model (UBM) is represented as a diagonal co-

variance, 512-component Gaussian Mixture Model (GMM). All the i-vectors are 400-

dimensional. The i-vector extraction process is carried out using ALIZE open source

software (Larcher et al., 2013) with the minimum divergence algorithm (Kenny, Ouel-

let, Dehak, Gupta, & Dumouchel, 2008). Since the minimum divergence training al-

gorithm is used for these experiments, i-vectors are already zero-mean unit-variance

Normal-distributed and, therefore, no post-processing is carried out. UBM, T ma-

trix, and PLDA parameters are trained using the same background data. PLDA

baseline systems are gender-independent with a 250-dimensional speaker space. For

PLDA experiments, i-vectors are length normalized. The performance is evaluated

using Detection Error Tradeoff (DET) curves, the Equal Error Rate (EER), and the

minDCF with α1 = 0.1 and α2 = 0.99 (eq. 2.39) defined as in (NIST, 2006).

3.4.2 Single Session Experiments

For DNN experiments, the size of hidden layers is set to 512. DNNs with up to three

hidden layers are explored in all experiments. We do not go further than three layers

because of few amount of data and increasing the computational complexity without

more significant gain. The number of minibatches and the number of impostor
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Figure 3.6: Parameter setting of the proposed impostor selection algorithm for one hidden layer

DNNs. N and κ are, respectively, the number of local and global nearest impostor i-vectors to

target i-vectors.

centroids are set experimentally to 3 and 12, respectively. Each minibatch will include

four impostor centroids and four replicated target samples.

As a DNN baseline system, we train a DNN for each target speaker using the

whole impostor background data and random initialization. In this case, the whole

background i-vectors are clustered using the k-means algorithm and the centroids

are considered as impostor samples. In this work, we use the uniform distribu-

tion U (0, 0.01) for random initialization as the experimental results showed that it

achieves slightly better performance than the normal distribution N (0, 0.01) used in

the prior work. We tune the parameters of the networks and keep them fixed in all

other experiments. DNN-1L, DNN-2L, and DNN-3L are trained with the learning

rates of 0.001, 0.005, and 0.08 and with the number of epochs of 30, 100, and 500,

respectively. DNN-3L stands for a three hidden layer DNN. Momentum and weight

decay are set, respectively, to 0.9 and 0.0012 for all DNNs.

Background i-vectors are extracted from the same speech signals used for train-

ing UBM and T matrix. The two parameters N and κ, the number of local and

global selected impostors in the proposed impostor selection algorithm, need to be

determined experimentally. For SRE 2006 experiments, we have used the first pro-

posed impostor selection algorithm in which the target training data set is employed

(Algorithm 1). Fig. 3.6 illustrates the variability of EER in terms of these two param-

eters for one hidden layer DNNs. The similar behavior can be observed for minDCF

curves. DNN examples shown in this figure are initialized randomly. Based on this
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Table 3.1: The effect of each proposed idea of Fig. 3.2 on the performance of the DNN systems.

Results are obtained on the core test condition of NIST SRE 2006. The cosine and PLDA Baseline

systems achieve (EER=7.18%, minDCF=324) and (EER=4.78%, minDCF=253), respectively.

Impostor
Selection

Adaptation

EER (%) minDCF (×104)

# Hidden Layers # Hidden Layers

1 2 3 1 2 3

– – 8.55 7.76 7.59 381 353 351
– 8.06 7.12 7.09 360 327 326

– 7.43 7.47 7.45 339 343 339
6.81 6.97 6.99 315 317 313

Fusion with cosine 6.83 6.88 6.64 308 309 299
Fusion with PLDA 4.98 5.03 4.76 253 248 230

figure, for DNN-1L we set N and κ to 10 and 2000, respectively. Similar curves are

plotted for other networks and N is set to 10 for all of them and κ is set to 300 and

500 for DNN-2L and DNN-3L, respectively.

Experimental results showed that the main improvement due to the adaptation

process comes from the adaptation of the connection weights between the input

layer and the first hidden layer for all DNNs. The adaptation of the other layers has

no significant impact on the performance. In order to decrease the probability of

overfitting during the adaptation, a separate network is adapted to each minibatch

and then the parameters of the obtained networks are averaged. For DNN-1L and

DNN-2L we adapted all layers and for DNN-3L only the first two layers. The learning

rate of adaptation is set to 0.001 and 0.0001 for the first and the second layers,

respectively. The number of epochs for the first layer is set to 10, 20, and 15 for

DNN-1L, DNN-2L, and DNN-3L, respectively. The number of epochs for the second

layer is set, respectively, to 15 and 20 for DNN-2L and DNN-3L.

Table 3.1 summarizes the effect of each proposed contribution. In the first row

of the table, DNNs are initialized randomly and the impostor cluster centroids are

obtained on the whole background data. As it can be seen in this row, adding

more hidden layers to the network improves the performance. However, they still

work worse than the baseline system in which i-vectors are classified using cosine

distance. EER and minDCF for the baseline system are 7.18% and 0.0324, respec-

tively. Impostor selection improves the performance to a great extent for all the

networks. We have tried global, local, and the pooling of global and local selected
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impostors before k-means clustering and the best performance was obtained by us-

ing only global selected impostors. The biggest improvement due to the adaptation

process is observed in DNNs with one hidden layer. The best results are obtained

using both impostor selection and adaptation techniques which show an 8-20% and

10-17% relative improvements in terms of EER and minDCF, respectively, compared

to the baseline DNNs. The biggest relative improvements are achieved on DNN-1L.

The last two rows of the table show the fusion of DNN systems with the cosine and

PLDA (EER=4.78%, minDCF=0.0253) baseline systems. Scores of each system are

first mean and variance normalized and then simply summed. The fusion of the co-

sine baseline and DNN systems improves the results and DNN-3L achieves the best

results corresponding to an 8% relative improvement for both EER and minDCF in

comparison to the cosine scoring baseline system. Nevertheless, only DNN-3L scores

can improve the PLDA results specifically for minDCF by 9% relative improvement.

We have also combined the scores of DNNs with different number of hidden layers,

but no gain is observed.

The DET curve in Fig. 3.7 compares the best systems in all operating points. As

it is shown in this figure, DNNs with one hidden layer achieve better results than

the baseline and the combination of 3-layer DNNs with the baseline works the best

in all operating points.

3.4.3 Multi-Session Experiments

The same configuration used for the single session task is also applied for the multi-

session one. The number of minibatches is set to 3. In each minibatch, all 8 target

i-vectors accompanying with 8 impostor cluster centroids are shown to the network.

Therefore, the size of each minibatch and the total number of impostor clusters

will be 16 and 24, respectively. As the combination of the i-vectors of each target

speaker did not help the training of the networks, we replicated the target i-vectors

in every minibatch as it was shown in Fig. 3.4. We train the networks with the same

parameters tuned for the single session experiments.

Results are summarized in Table 3.2. Around 12% relative improvements are

achieved in all DNNs employing impostor selection technique proposed in this work.

With the same parameters obtained for the single session task, we re-selected the

impostors for the new multi-session data set. The adaptation process improves the
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Figure 3.7: Comparison of the performance of the proposed DNN based systems with the baseline

system (i-vector + cosine). DET curves are obtained on the core test condition of NIST SRE 2006.

performance up to 8%. As in the single session task, adaptation is more effective for

one-hidden-layer DNNs. For all the networks, only the parameters of the first hidden

layer are adapted because no more improvement was observed adapting the other

layers. Adaptation is carried out by the learning rate of 0.001 for all DNNs and the

number of epochs of 10, 10, and 25 for DNNs with one to three layers, respectively.

The best results are obtained with DNN-3L when the two proposed techniques are

combined. It shows more than 20% relative improvements of EER and minDCF in

comparison to the baseline three-layer DNNs.

The proposed three-hidden-layer DNNs show a performance between the cosine

(EER=4.2%, minDCF=0.0191) and PLDA (EER=2.27%, minDCF=0.0105) base-

line systems, with more than 17% and 10% relative improvements in terms of EER

and minDCF, respectively, compared to the cosine scoring. Fusion with the cosine

baseline system improves the results in all cases, but no improvement is observed

by combination with PLDA scores. Fusion is effective mostly on the minDCF which

increase the improvement from 10% to 15%.

Fig. 3.8 compares the DET curves of the best results obtained in table 3.2. As it

can be seen in this figure, DNN-3L outperforms clearly the baseline and the DNN-
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Table 3.2: The effect of each proposed idea of Fig. 3.2 on the performance of the proposed DNN

systems. Results are obtained on NIST SRE 2006, 8-session enrollment task. The cosine and

PLDA Baseline systems achieve (EER=4.2%, minDCF=191) and (EER=2.27%, minDCF=105),

respectively.

Impostor
Selection

Adaptation

EER (%) minDCF (×104)

# Hidden Layers # Hidden Layers

1 2 3 1 2 3

– – 4.58 4.58 4.38 208 213 217
– 4.02 4.07 3.86 183 201 194

– 4.24 4.30 4.20 202 207 202
3.68 3.83 3.50 170 189 172

Fusion with cosine 3.61 3.77 3.45 161 169 162
Fusion with PLDA 2.46 2.62 2.36 111 121 112
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Figure 3.8: Comparison of the performance of the proposed DNN based systems with the baseline

system (i-vector + cosine). DET curves are obtained on the 8-session enrollment task of NIST SRE

2006.

1L in all operating points. However, fusion with the baseline system improves the

performance only for the operating points with lower false alarm probabilities.
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3.5 Experiments on NIST 2014 i-Vector Challenge

The full database provided in the NIST 2014 speaker recognition i-vector chal-

lenge (NIST, 2014) is used for the experiments in this section. Rather than speech

signals, i-vectors are given directly by NIST in this challenge to train, test, and de-

velop the speaker recognition systems. This enables system comparison more readily

with consistency in the front-end and in the amount and type of the background

data (NIST, 2014). For this challenge, speaker recognition systems are evaluated

in two phases: when the speaker labels of the background data are not known and

when they are known to the systems. The cosine and PLDA scoring techniques are

used by NIST as the baseline systems when unlabeled and labeled background data

are available, respectively. The goal of this evaluation is to see how other techniques

can fill the performance gap between these two baseline systems when no labeled

background data is available.

3.5.1 Baseline and Database

Conventional telephone speech recordings from NIST SRE 2004 to 2012 are used to

compute i-vectors for this challenge (Greenberg et al., 2014). Unlike NIST SRE 2006

experiments, in which the duration of speech signals for each i-vector was approx-

imately 2 minutes, in this challenge i-vectors are extracted from speech utterances

of varying duration with a mean of 39.6 seconds. Three sets of 600-dimensional i-

vectors are provided: development, train, and test consisting of 36,572, 6530, and

9634 i-vectors, respectively. The number of target speaker models is 1306 and for

each of them five i-vectors are available. Each target model will be scored against all

the test i-vectors and, therefore, the total number of trials will be 12,582,004. Trials

are divided by NIST into two randomly selected subsets: a progress subset (40%),

and an evaluation subset (60%). The performance is evaluated using a minDCF with

α1 = 1 and α2 = 100 (eq. 2.39) recommended by NIST in (NIST, 2014).

Three baseline systems are considered in this work for evaluation: cosine, PLDA

with actual labels, and PLDA with estimated labels. In all of them, i-vectors are

whitened and length normalized prior to evaluation and the average of the i-vectors

per each target speaker is used as a single target model. For the cosine baseline sys-

tem, the averaged target i-vectors are length normalized again while for the PLDA
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baseline systems it is shown that re-normalization affects the performance (Greenberg

et al., 2014). Both PLDA systems are gender-independent with a 400-dimensional

speaker space. In order to have the best PLDA with actual labels, those background

i-vectors extracted from speech signals shorter than 30 seconds are discarded before

PLDA training (Greenberg et al., 2014). For the PLDA with estimated labels, a two

stage unsupervised clustering technique is used to estimate the speaker labels of the

background data. The first stage of the clustering algorithm is similar to the Mean

Shift based algorithm proposed in (Senoussaoui, Kenny, Stafylakis, & Dumouchel,

2014) and used successfully in NIST 2014 i-vector challenge (Novoselov, Pekhovsky,

& Simonchik, 2014). In the second stage, the closer clusters obtained in the first

stage are combined. In both stages, i-vectors are joined based on the cosine similar-

ity considering a threshold which is set to 0.29 in our experiments as in (Novoselov,

Pekhovsky, & Simonchik, 2014). At the end, only clusters contained no less than

4 and no more than 50 i-vectors are selected. As in (Novoselov, Pekhovsky, & Si-

monchik, 2014), those i-vectors with less than 20 seconds of speech are discarded

before PLDA training in this case. It is possible to train a PLDA with the esti-

mated labels and repeat the two stage unsupervised clustering algorithm with the

PLDA similarity, but it would be time consuming, and no significant gain will be

observed in practice. The experimental results for this baseline system show a com-

parable performance to those reported in (Novoselov, Pekhovsky, & Simonchik, 2014)

and (Khoury et al., 2014).

3.5.2 Multi-Session Experiments

The same architecture of SRE 2006 multi-session experiments with some modification

is used for these experiments. The size of hidden layers is set to 400. Each minibatch

consists of 5 impostor centroids and 5 target samples. The total number of impostor

centroids is 15 for each target model. Since DNN-1L and DNN-3L worked better

than DNN-2L in SRE 2006 experiments, we only implement these two networks for

NIST 2014 i-vector challenge. DNN-1L and DNN-3L are trained with the learning

rates of 0.002 and 0.07 and with the number of epochs of 30 and 300, respectively.

Momentum and weight decay are set, respectively, to 0.9 and 0.001 for all DNNs.

For UDBN training, the learning rate and the number of epochs are set to 0.02 and

200 for GRBM, and to 0.06 and 120 for the rest of RBMs, respectively. Momentum,

weight decay, and the minibatch size are set, respectively, to 0.9, 0.0002, and 100 for
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Table 3.3: Performance comparison of the proposed DNN system with other baseline systems on

NIST 2014 i-vector challenge.

Unlabeled Background Data
Progress Set Evaluation Set

EER (%) minDCF EER (%) minDCF

[1] cosine 4.78 0.386 4.46 0.378
[2] PLDA (Estimated Labels) 3.85 0.300 3.46 0.284
[3] Proposed DNN-1L 5.13 0.327 4.61 0.320
[4] Proposed DNN-3L 4.55 0.305 4.11 0.300
Fusion [2] & [4] 2.99 0.260 2.70 0.243

Labeled Background Data

[5] PLDA (Actual Labels) 2.23 0.226 2.01 0.207
Fusion [2] & [5] 2.04 0.220 1.85 0.204
Fusion [4] & [5] 2.13 0.221 2.00 0.196
Fusion [2] & [4] & [5] 1.88 0.204 1.74 0.190

all RBMs. For DNN-3L we adapted only the first two layers. The learning rate and

the number of epochs of adaptation are set, respectively, to 0.001 and 10 for the first

layer and to 0.0001 and 20 for the second layer.

As the background dataset is big enough for these experiments, we have used

the impostor selection algorithm which is only dependent on the background data

(Algorithm 2, section 3.2.1). The results will be slightly better if we use the training

data set in the selection algorithm, but the system may not be robust enough to

unseen data. As in SRE 2006 experiments, we have tried global, local, and the

pooling of global and local selected impostors before k-means clustering and the best

performance was obtained by pooling. For global impostor selection, κ and N are

set to 4,500 and 100 for both DNN-1L and DNN-3L, respectively. The algorithm

is iterated 20 times. Afterwards, the global selected impostors are pooled with 500

local impostors for each target speaker before k-means clustering.

Table 3.3 compares the performance of the proposed DNN systems with other

baseline systems in terms of minDCF and EER and Figs. 3.9 and 3.10 compares

them in all operating points in terms of DET curves. Circles in the figures show

the operating points corresponding to minDCFs. It is worth noting that in the

NIST 2014 i-vector challenge the performance of the systems were evaluated only

in terms of minDCF. However, we have also included EERs in the table for better

comparison. As it can be seen in the table, the proposed DNN-3L performs better
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Figure 3.9: Comparison of the performance of the proposed DNN-3L system with other baseline

systems on the progress set of NIST 2014 i-vector challenge.
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Figure 3.10: Comparison of the performance of the proposed DNN-3L system with other baseline

systems on the evaluation set of NIST 2014 i-vector challenge.
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than DNN-1L, as it was concluded from SRE 2006 experiments. The proposed DNN-

3L system achieves comparable performance to PLDA with estimated labels in terms

of minDCF (with 21% relative improvement compared to cosine scoring), but lower

performance in terms of EERs. In other words, as it is shown in Figs. 3.9 and 3.10,

the proposed DNN-3L system performs closer to PLDA with actual labels than to

cosine for lower False Alarm (FA) probabilities. The proposed DNN and PLDA with

actual labels achieve the same performance for FA probability around 0.01, and for

lower than 0.01 the proposed DNN system outperform the PLDA with actual labels.

For higher security purposes, it is more important in speaker recognition to have

better performance in lower FA probabilities.

The interesting point is that the combination of the DNN-3L and PLDA with

estimated labels in the score level improves the results to a great extent in all operat-

ing points. The resulting relative improvement compared to cosine baseline system

is 36% in terms of minDCF on the evaluation set. This improvement with no use

of background labels is considerable compared to 45% relative improvement which

can be obtained by PLDA with actual labels. The score fusion is carried out using

BOSARIS toolkit (Brummer & Villiers, 2011). The combination weights are trained

on the progress trial set and used for the evaluation set.

As it can be seen in Table 3.3 in both cases of DNN-3L and PLDA with esti-

mated labels, the combination with PLDA improves the results. This improvement

is higher in terms of EER for PLDA with estimated labels and in terms of minDCF

for DNN-3L systems. Nevertheless, the combination of all three systems achieves the

best performance, corresponding to 8% relative improvement, in terms of minDCF,

compared to the PLDA with actual labels.

3.6 Conclusion

A hybrid architecture based on DBN and DNN has been proposed in this work to

discriminatively model each target speaker for i-vector speaker verification. The main

objective has been to fill the performance gap between the cosine and the Oracle

PLDA scoring systems when no labeled background data is available. Two main

contributions have been proposed to make DNNs more efficient in this particular task.

Firstly, the most informative impostor i-vectors have been selected and clustered to
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provide a balanced training. Secondly, each DNN has been initialized with the

speaker specific parameters adapted from a global model, which has been referred to

as UDBN. In order to have more insight into the behavior of these techniques in both

single and multi-session speaker enrollment tasks, the experiments have been carried

out in both scenarios. Experiments were performed on NIST SRE 2006, mainly for

development, and on NIST 2014 i-vector challenge, mainly for evaluation. It was

shown that the proposed hybrid system fills approximately 46% of the performance

gap between the cosine and the Oracle PLDA scoring systems in terms of minDCF.

Although the proposed system still does not outperform the baseline PLDA with

estimated labels, their score fusion is highly effective and covers 79% of this gap.

The reason that the proposed system still does not outperform the baseline PLDA

system could be that it does not explicitly compensate the session variability as it is

carried out in PLDA. Thus, it is expected that adding some explicit session modeling

to the proposed hybrid model could improve the performance, but it has been beyond

the scope of this thesis.





Chapter 4

RBMs for Vector Representation

of Speech

O ver the last few years, i-vectors have shown a great performance not only

in speaker recognition but also in other applications (e.g., Xia & Liu, 2012;

Bahari, McLaren, Van Hamme, & Van Leeuwen, 2012). Motivated by the success use

of Deep Learning (DL) in other speech processing applications, DL techniques have

also been used in the i-vector extraction process in two ways. First, a Deep Neural

Network (DNN) has been used for acoustic modeling rather than the typical Gaussian

Mixture Models (GMMs) (Lei et al., 2014; Kenny et al., 2014; W. M. Campbell, 2014;

Richardson et al., 2015a; Garcia-Romero et al., 2014; Liu et al., 2015). Second,

conventional spectral features have been replaced or appended by the so-called DNN

bottleneck features and then a DNN or a GMM has been used as an acoustic model

(Mclaren et al., 2015; Richardson et al., 2015a; Liu et al., 2015). The main problem

is that the traditional i-vector extraction itself is computationally expensive for real-

time applications and the use of DNN as either an acoustic model or bottleneck

feature extractor increases highly the computational cost. Moreover, in both cases

phonetic labels are required for DNN training, which are not always accessible.

The aim of this chapter is to develop an efficient alternative vector representation

of speech by keeping the computational cost as low as possible and avoiding phonetic

labels, which are not always accessible. The proposed vectors will be based on

both GMM and Restricted Boltzmann Machine (RBM) and will be referred to as
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GMM-RBM vectors. The role of RBM is to learn the total speaker and session

variability among background GMM supervectors. This RBM, which will be referred

to as Universal RBM (URBM), will then be used to transform unseen supervectors

to the proposed low dimensional vectors. The use of different activation functions

for training the URBM and different transformation functions for extracting the

proposed vectors are investigated. At the end, a variant of Rectified Linear Unit

(ReLU) which is referred to as Variable ReLU (VReLU) is proposed.

The core condition of NIST SRE 2006 (NIST, 2006) is used for the development

and the core condition 5 of NIST SRE 2010 (NIST, 2010) with much bigger back-

ground data is used for the test and evaluation. The experiments on the evaluation

set shows that the proposed GMM-RBM vectors achieve comparable performance

with traditional i-vectors while much lower computational cost is required for vec-

tor extraction. The conclusion is valid with both cosine and Probabilistic Linear

Discriminant Analysis (PLDA) scoring. Moreover, the combination of GMM-RBM

vectors and i-vectors at the score level improves the performance more.

The rest of the chapter is organized as follows. Section 4.1 describes the proposed

GMM-RBM vectors. Section 4.2 investigate the effect of activation and transforma-

tion functions used, respectively, for URBM training and GMM-RBM vector ex-

traction and discusses the database, baseline systems, and the experimental results.

Section 4.3 concludes the chapter.

4.1 Proposed GMM-RBM Vectors

Recently, the advances in DL have improved the quality of i-vectors, but the DL

techniques in use are computationally expensive and need phonetic labels for the

background data. We propose in this section an alternative vector-based represen-

tation for speakers in a less computationally expensive manner with no use of any

phonetic or speaker labels.

RBMs are good potentials for this purpose because they have good representa-

tional powers and they are unsupervised and computationally low cost. In this work,

it is assumed that the inputs of RBM, i.e., visible units, are GMM supervectors and

the outputs, i.e., hidden units, are the low dimensional vectors we are looking for.

The RBM is trained given the background GMM supervectors and will be referred to
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Figure 4.1: Block-diagram of the proposed GMM-RBM vector framework. W and b are the

parameters of the Universal RBM (URBM), m is the global mean, and H is the whitening matrix

obtained on the background GMM-RBM vectors.

as URBM. The role of the URBM is to learn the total session and speaker variability

among the background supervectors. Different types of units and activation func-

tions can be used for training the URBM which will be mentioned in section 4.1.2

and evaluated in section 4.2 for this application. After training the URBM, the

visible-hidden connection weight matrix is used to transform unseen GMM super-

vectors to lower dimensional vectors which will be referred to as GMM-RBM vectors

in this work.

Fig. 4.1 shows the block-diagram of the proposed framework. The whole process

can be divided in three main stages detailed in the following sections. First, GMM

supervectors are built from the warped spectral features given the Universal Back-

ground Model (UBM), and then are normalized using the UBM parameters. Second,

the background GMM supervectors are used to train the URBM and then it can

optionally be normalized to provide an appropriate transformation matrix from the

supervectors to the proposed low dimensional vectors. Third, given the unseen GMM
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supervectors and the parameters of the URBM, GMM-RBM vectors are extracted.

4.1.1 GMM Supervector Preparation

As it is shown in Block A of Fig. 4.1, input speech signals are first characterized

by spectral feature vectors. Afterwards, feature warping is applied to map the dis-

tribution of each individual feature to a Gaussian distribution over a time interval

(see section 2.1.1). It will be shown in the experimental result section that feature

warping has a high impact on the performance of the proposed GMM-RBM vectors.

Warped features are then modeled by a GMM adapted from the UBM. The mean

vectors of each adapted GMM are stacked to build a supervector (see section 2.1.3).

In order to increase the discrimination power, supervectors are model-normalized

using the mean supervector and diagonal covariance matrix of the UBM (subm and

Σubm),

s′ = Σ
−1/2
ubm (s− subm) (4.1)

Model normalization helps also having zero mean and unit variance for supervec-

tors which is a prior assumption for the training of an RBM with real-valued inputs

as it will be described in the next section.

4.1.2 Universal RBM

Normalized supervectors obtained on the background data are used to train the

URBM (Block B of Fig. 4.1). The role of the URBM is to learn all session and

speaker variability among background supervectors. The URBM parameters will

then be used to transform unseen supervectors to lower dimensional GMM-RBM

vectors. Different visible and hidden units, and activation functions can be used for

training an RBM (Hinton, 2012). Since the inputs in this application are real-valued

supervectors, the visible units will be Gaussian. However, sigmoid and ReLU can

be used in the hidden layer during the training of the URBM. As it is mentioned

in (Hinton, 2012) and proved by our experiments, training an RBM with both linear

hidden and visible units is highly unstable. Therefore, pure linear hidden units are

discarded in this work. Given the URBM parameters, any reasonable transformation

function could be used to transform unseen supervectors. In this section, the problem
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Figure 4.2: Histograms of the first hidden unit values before (bottom) and after (left) transfor-

mation with sigmoid and log sigmoid functions. URBM is trained with sigmoid hidden units.

of the use of the traditional sigmoid function for both activation and transformation

is first addressed and a potential solution is proposed. Then in the next section a

variant of ReLU, which will be referred to as VReLU, is proposed for this application.

It will be shown in section 4.2 that the proposed VReLU does not suffer from the

problems of sigmoid and ReLU.

Figure 4.2 shows the histograms of the posterior probabilities of the first hidden

unit of the URBM before and after nonlinear transformations. The URBM is trained

with traditional sigmoid activation function. The typical sigmoid function and the

log sigmoid function are employed for the transformation. Other hidden units show

also similar behaviors. As it can be seen in this figure, the posterior probability

distribution of hidden units after sigmoid transformation will be compressed around

zero and far from a Gaussian distribution which is ideal for the proposed GMM-

RBM vectors. This fact degrades the performance significantly. The behavior is

better in case of log sigmoid function since the most part of the distribution is

transformed with linear part of the function, but still there is the same problem for
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Figure 4.3: The histograms of the posterior probabilities of the first hidden unit of URBM and

normalized URBM (with two different pairs of α and β) before nonlinear transformation. The

histograms are obtained on the background dataset used for development.

values around zero after transformation. Although the whitening transformation on

posterior probabilities afterwards corrects the distributions to some extent, still the

performance will be low specifically for sigmoid transformation.

A potential solution can be changing the mean and variance of the posterior prob-

ability distributions, before transformation, somehow they fall in the active nonlinear

parts of the transformation functions. This can be easily performed through URBM

parameter normalization which we have proposed as follows,

Ŵ = α
W

max
i,j
|wij |

(4.2)

b̂i = β +
(
bi − b̄

)
(4.3)

where W is the visible-hidden connection weights, b is the vector of hidden bias

terms, α and β are two parameters to control, respectively, the variance and the mean

of the posterior probability distributions of hidden units before nonlinear transfor-

mation, wij is the (i, j) element ofW , and bi and b̄ are the ith element and the mean

value of b, respectively.

Fig. 4.3 shows how changing α and β can move the distribution of the posterior

probabilities of hidden units to a desired interval. We will show in Section 4.2 that

this movement will improve the quality of the GMM-RBM vectors when the URBM

is trained with sigmoid hidden units.
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4.1.3 Variable ReLU for URBM Training

Another alternative unit is ReLU. ReLU is a kind of linear unit for which the negative

values are zeroed out. If the URBM is trained with ReLU and the inputs are trans-

formed with linear function after training, none of the above problems will occur.

However, as we will show in section 4.2, the problem will be that the distribution

of posterior probabilities of hidden units will be asymmetric around the mean value,

which is not appropriate for PLDA scoring. Therefore, we have proposed in this work

a variant of ReLU, which is referred to as VReLU. In VReLU, the unit values less

than the threshold τ are zeroed out, rather than the fixed threshold zero in ReLU.

Threshold τ is randomly selected from a normal distribution N(0, 1) for each hidden

unit and for each input sample in each training iteration. In fact, VReLU is defined

as follows,

f(x) =

x x > τ

0 x ≤ τ
, τ ∈ N(0, 1) (4.4)

Figure 4.4 compares ReLU and VReLU with both positive and negative values of

τ . It will be shown in section 4.2 that VReLU solves the asymmetric problem of the

posterior probability distributions to a great extent and, therefore, it works better

than ReLU when PLDA scoring is used.

The full training algorithm for RBM with sigmoid hidden units was given in

section 2.2.2. In the following, we only explain the RBM training algorithm with

the proposed VReLU. Figure 4.5 shows the training steps based on the CD1 al-

gorithm (Hinton et al., 2006; Hinton, 2012). The connection weights W are first

randomly initialized from N(0, 0.01) and the visible and hidden bias terms (a and

b, respectively) are set to zero. Given the normalized supervectors s′, the poste-

rior probability of the lower dimensional hidden vector h is calculated using eq. 4.4.

Afterwards, supervectors are reconstructed given the hidden unit values. Then the

reconstructed supervectors s′r are used to recalculate the posterior probabilities of

hidden units. These three steps, marked in Fig. 4.5, provide enough information to

update the parameters of the network.

The training process is summarized as follows,

• Initialize Network Parameters (W , b,a)
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Figure 4.4: Comparison of ReLU and proposed VReLU. In each epoch, per each hidden unit and

per each input sample, τ is randomly selected from a normal distribution with zero mean and unit

variance. (b) and (c) show the two examples of VReLU when τ is positive and negative, respectively.

Figure 4.5: Training of the Universal RBM (URBM) given background GMM supervectors.

• CD1 Steps

1. h = f (b+Ws′) (4.5)

2. s′r = a+W th (4.6)

3. hr = f (b+Ws′r) (4.7)

• Update Network Parameters

1. ∆W = η ×
(
s′ht − s′rht

r

)t (4.8)

2. ∆a = η × (s′ − s′r) (4.9)

3. ∆b = η × (h− hr) (4.10)

where η is the learning rate and f(.) is the VReLU function calculated as in eq. 4.4.

Additionally, a momentum factor is used to smooth out the updates, and the

weight decay regularization is used to penalize large weights. The parameters are

updated after processing each minibatch and the updating procedure is repeated

when all the minibatches are processed.
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4.1.4 GMM-RBM Vector Extraction

Given the GMM supervectors from Block A and the URBM parameters from Block

B of Fig. 4.1, the GMM-RBM vectors are extracted in Block C as follows,

ωr = WΣ
−1/2
ubm (s− subm) (4.11)

As a linear transformation function is used, the hidden unit bias terms b can

be easily discarded and only the visible-hidden connection weights W are used for

transformation. If we reformulate eq. 4.11 based on zeroth and first order Baum-

Welch statistics (see section 2.1.2, eqs. 2.5 and 2.6), we will have,

ωr = WΣ
−1/2
ubm N

−1(u)F̃(u) (4.12)

where the relevance factor in map adaptation can also be added to N (u).

Like in case of i-vectors, resulting GMM-RBM vectors are mean normalized and

whitened using the mean vector m and the whitening matrix H obtained on the

background data as in eq. 2.25.

4.1.5 Computational Load Compared to i-Vector

The comparison of equations 2.13 and 4.12 implies clearly that GMM-RBM vector

extraction needs much less computational load. We compare the computational load

in terms of the number of product operations required for extracting an i-vector and a

GMM-RBM vector with the same size based on equations 2.13 and 4.12. Considering

the computational cost for multiplication of two matrices n×m and m× k of order

O(nmk) and for a matrix inversion of size n × n of order O(n3), and this fact that

N (u) is diagonal andWΣ
−1/2
ubm in eq. 4.12 or T tΣ−1 in eq. 2.13 are computed offline,

the minimum computational load of i-vector and GMM-RBM vector extraction will

be O(n3 + (2n2 + 2n)m) and O((n+ 1)m), respectively, in which n is the dimension

of i-vector/GMM-RBM vector and m is the size of supervector.

Figure 4.6 compares the minimum computational load for extracting an i-vector

and a GMM-RBM vector for different values of n and m. The figure implies that

the number of the product operations required for extracting a GMM-RBM vector

is about 10−6 − 10−8 compared to an i-vector which requires about 10−8 − 10−11
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Figure 4.6: Comparison of the number of product operations required for extracting an i-vector

and a GMM-RBM vector in terms of (a) the size of i-vector/GMM-RBM vector n and (b) the size

of supervector m.

operations. The computational load is of higher importance for online applications

in which the frequency of vector extraction is high.

4.2 Experimental Results

The details of the database, the setup of the baseline and the proposed approaches,

and the experimental results are given in this section. Baseline systems will be based

on conventional i-vectors which are scored using either cosine or PLDA techniques.

Proposed GMM-RBM vectors are build according to the block-diagrams of Fig. 4.1.

The effect of feature warping, URBM normalization, the type of the activation and

transformation functions, as well as the score combination for both cosine and PLDA

techniques are shown in this section.
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4.2.1 Baseline and Database

Two sets of database are used for the experiments. For development, the core test

condition of the NIST 2006 SRE evaluation (NIST, 2006) is used. It includes 816 tar-

get models and 51,068 trials. In both the training and testing phases, the duration of

speech in signals is approximately two minutes. The background data includes 6,063

speech files collected from NIST 2004 and 2005 SRE corpora. The same background

data is used to train UBM, URBM, PLDA, T and whitening matrices.

For evaluation, the NIST 2010 SRE (NIST, 2010), core test-common condition

5, is used. It contains 2354 target speaker models and 30,373 trials involving normal

vocal effort conversational telephone speech in training and test. The background

data is collected form NIST SRE 2004-2008 and includes 37,600 speech utterances

from which 18,140 signals are labeled for PLDA training.

Frequency Filtering (FF) features (Nadeu et al., 2001) (see section 2.1.1) are

used in the experiments. Features are extracted every 10 msec using a 30 msec

Hamming window. The number of static FF features is 16 and along with delta

FF and delta log energy, 33-dimensional feature vectors are built. Before feature

extraction, speech signals are subject to an energy-based silence removal process.

After feature extraction, a 3-second sliding window is used for feature warping.

ALIZE open source software (Larcher et al., 2013) is used to build the i-vector

baseline systems in which cosine and PLDA scoring techniques are employed. The

dimension of i-vectors is 400 and PLDA size for development data is 250 and for

evaluation 400. A gender-independent UBM is represented as a diagonal-covariance

512-component GMM.

In the proposed GMM-RBM vector framework, GMMs are adapted from the

UBM by a relevance factor of 16. Only mean vectors are adapted. The dimension

of supervectors is, therefore, 512 × 33 = 16,896. Two URBMs with the hidden layer

sizes of 400 and 8000 are trained to create GMM-RBM vectors. The bigger one

is trained only with sigmoid activation function and is used just for comparing the

results with those reported in our prior work. URBMs with hidden layer size of 400

are trained with sigmoid, ReLU, and the proposed VReLU. The learning rate, the

number of epochs, the minibatch size, the weight decay, and the momentum for the

URBM, trained with VReLU, are set to 0.0014, 40, 50, 2×10−3, and 0.9, respectively.
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Table 4.1: The effect of feature warping and whitening of input GMM supervectors in the proposed

GMM-RBM framework. The numbers in the parentheses indicate the dimensions of GMM-RBM

vectors. Results are obtained on the development database with cosine scoring.

Raw Features Warped Features

Input to RBM Output of RBM EER minDCF EER minDCF

Whitened Supervectors GMM-RBM Vector (8000) 7.58 0.0346 6.90 0.0331
Raw Supervectors GMM-RBM Vector (8000) 7.92 0.0379 6.89 0.0323
Raw Supervectors GMM-RBM Vector (400) 10.45 0.0475 8.08 0.0383

Performance is evaluated using EER and minDCF calculated with α1 = 0.1, α2 =

0.99 (eq. 2.39) for the development experiments (NIST, 2006) and α1 = 0.001, α2 =

0.999 for the evaluation experiments (NIST, 2010).

4.2.2 Results

In addition to feature warping, it is also possible to normalize the supervectors

through whitening before feeding them to the network. The results reported in

Table 4.1 imply that when no feature warping is used, whitening in the supervector

level helps. However, if feature vectors are warped, the whitening of supervectors is

not effective anymore. Moreover, it is time and memory consuming. The best results

are obtained when only feature warping is used.

Figure 4.7 shows the histograms of the first component of the GMM-RBM vectors

obtained with a URBM, which is trained with sigmoid activation function. However,

sigmoid, log sigmoid, and linear transformation functions are used for vector extrac-

tion. The histograms of other components show similar behaviors. For sigmoid and

log sigmoid transformations, the histograms are presented for both URBM and nor-

malized URBM parameters. The normalization parameters α and β in Eqs. 4.2 and

4.3 are set to 0.05 and -0.5, respectively. This is to move approximately the posterior

distributions into the interval -2 and 2 (Fig. 4.3) corresponding to the active nonlin-

ear parts of the sigmoid and log sigmoid transformation functions. For both sigmoid

and log sigmoid, URBM normalization helps having more Gaussian-like histograms.

As it will be shown later, this will increase the performance of GMM-RBM vectors

when URBM is trained with sigmoid hidden units.

Figure 4.8 shows the same histograms for GMM-RBM vectors for which URBM
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Figure 4.7: Comparison of the histograms of the first component of the background GMM-RBM

vectors obtained with sigmoid activation function and transformation functions of (a) sigmoid, (b)

log sigmoid, and (c) linear.
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Figure 4.8: Comparison of the histograms of the first component of the background GMM-

RBM vectors obtained with (a) ReLU and (b) the proposed VReLU activation functions and linear

transformation function.
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Table 4.2: The effect of the hidden unit types during the training of URBM and the transformation

function for GMM-RBM vector extraction. Results are obtained on the development database

with vectors of dimension 400. VReLU refers to the proposed Variable ReLU.

cosine PLDA

Hidden Units Transformation EER (%) minDCF EER (%) minDCF

sigmoid

sigmoid 13.55 0.0570 11.05 0.0517
sigmoid (Normalized URBM) 8.67 0.0407 6.08 0.0338
log sigmoid 8.08 0.0383 6.51 0.0316
log sigmoid (Normalized URBM) 7.85 0.0366 6.28 0.0317
linear 8.24 0.0382 5.86 0.0317

ReLU linear 7.82 0.0372 5.58 0.0305
VReLU linear 7.82 0.0373 5.52 0.0297

is trained with ReLU and VReLU and linear transformation is used in both cases.

The figure implies that the histograms are asymmetric in case of ReLU which is due

to the training process in which the hidden units are encouraged having positive

values. On the other hand, the random threshold τ proposed in VReLU makes it

possible having both positive and negative hidden values during the training process.

This improves the histograms as shown in Fig. 4.8.

Table 4.2 compares the performance of GMM-RBM vectors extracted by different

URBMs and transformation functions. The comparison is based on both cosine and

PLDA scoring. As it was expected, the worse results are for sigmoid hidden units

and transformation function. The URBM normalization improves significantly the

performance of these vectors. The use of log sigmoid itself performs better than

sigmoid as discussed for Figs. 4.2 and 4.7. URBM normalization improves also the

performance in this case but the amount of improvement is not as much as for sigmoid

transformation. If the URBM is trained with sigmoid hidden units and then the

parameters are used for linear transformation of input supervectors, the performance

will be worse than log sigmoid with cosine scoring but better with PLDA scoring.

The use of ReLU for training the URBM and linear function for transformation,

keeps the performance as good as log sigmoid with cosine scoring and improves

the PLDA results obtained with sigmoid URBM and linear transformation. URBM

trained with VReLU improves the PLDA results slightly more. We will show later

that VReLU works better than ReLU on unseen evaluation set with both cosine and

PLDA scoring.
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Table 4.3: Performance comparison of proposed GMM-RBM vectors and conventional i-vectors

on the evaluation set core test condition-common 5 of NIST SRE 2010. GMM-RBM vectors and

i-vectors are of a same size of 400.

cosine PLDA

EER (%) minDCF EER (%) minDCF

[1] i-Vector 6.270 0.05450 4.096 0.04993
[2] GMM-RBM Vector (Trained with ReLU) 6.638 0.06228 4.517 0.05085
[3] GMM-RBM Vector (Trained with VReLU) 6.497 0.06099 3.907 0.05184

Fusion [1] & [3] 5.791 0.05238 3.814 0.04673

Table 4.3 compares the performance of GMM-RBM vectors, which are obtained

with URBMs trained with ReLU and VReLU, with traditional i-vectors on the eval-

uation set. The use of proposed VReLU shows better performance than the use of

ReLU in both cosine and PLDA scoring. This fact implies that the variable thresh-

old τ in VReLU has increased the generalization power of URBM in addition to the

correction of the histograms. As in this table, the performance of the best GMM-

RBM vectors is comparable to that of i-vectors for both cosine and PLDA scoring.

This is a significant achievement since the computational load of GMM-RBM vector

extraction is much less than the traditional i-vector extraction as discussed in sec-

tion 4.1.5. At the end, the best results are achieved with score fusion of i-vectors and

GMM-RBM vectors which shows about 7-7.5% and 4-6.5% relative improvements in

terms of EER and minDCF, respectively, compared to i-vectors. For score fusion,

BOSARIS toolkit (Brummer & Villiers, 2011) is used. The fusion weights are trained

on the development set.

4.3 Conclusion

We have presented in this work a new vector representation of speech for text-

independent speaker recognition. GMM supervectors have been transformed by

the proposed Universal RBM (URBM) to lower dimensional vectors, referred to as

GMM-RBM vectors. The role of URBM has been to learn the total speaker and ses-

sion variability among background GMM supervectors. The use of different hidden

units for the training of URBM and different transformation functions for the vector

extraction are investigated. A variant of Linear Rectified Units (ReLU), which is
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referred to as variable ReLU (VReLU), is proposed. The variable threshold defined

in these units corrects the histograms of GMM-RBM vectors and leads to higher

generalization power of URBM. The experimental results on the core test-common

condition 5 of NIST 2010 SRE show that the performance of GMM-RBM vectors

is comparable with that of traditional i-vectors with both cosine and PLDA scoring

but with much less computational load. Moreover, the best results are obtained by

score fusion of GMM-RBM vectors and i-vectors.



Chapter 5

Deep Learning Backend for

i-Vector Language Identification

L anguage Identification (LID) is the automatic process of identifying a lan-

guage spoken in a speech utterance. LID systems use typically one of these

two levels of information: acoustic-phonetic or phonotactic (Li et al., 2013; Am-

bikairajah et al., 2011). The acoustic-phonetic level statistically represents the char-

acteristic phonemes of each language by a set of acoustic parameters, while the

lexical-phonological rules of each language are taken into account in the phonotactic

level to connect phonemes and form words.

Recent successful techniques in both acoustic-phonetic and phonotactic levels

are typically based on i-vectors (Ferrer et al., 2016b; McCree & Garcia-Romero,

2015). As it was mentioned in the previous chapters, an i-vector is a compact

representation of characteristics of a speech signal, which has been originally de-

veloped for speaker recognition (Dehak, Kenny, et al., 2011) and has also shown

promising performance for LID (e.g., Dehak, Torres-Carrasquillo, Reynolds, & De-

hak, 2011; González Mart́inez, Plchot, Burget, Glembek, & Matějka, 2011). Some

post-processing techniques are usually required to compensate undesired session vari-

ability in the i-vector space. Linear Discriminant Analysis (LDA), Within-Class

Covariance Normalization (WCCN), and Probabilistic Linear Discriminant Analysis

(PLDA) (see section 2.1.4) are the most commonly used techniques in speaker recog-

nition (Dehak, Kenny, et al., 2011; Prince & Elder, 2007; Kenny, 2010). However,
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some of these techniques may not be such effective for LID due to the limited number

of language classes (González Mart́inez et al., 2011; Singer et al., 2011).

Like in speaker recognition, Deep Neural Networks (DNNs) have been used in the

i-vector extraction process (e.g., Song, Hong, et al., 2015; Richardson et al., 2015b)

or applied after i-vector computation as classifiers (Matějka et al., 2012; Matejka et

al., 2014; Ferrer et al., 2016b). In (Matejka et al., 2014; Song, Cui, et al., 2015; Fer,

Matejka, Grezl, Plchot, & Cemocky, 2015; Song, Hong, et al., 2015), DNN bottleneck

features are used in the conventional i-vector extraction process, and in (Richardson

et al., 2015b; Ferrer et al., 2016b), in addition to bottleneck features, DNNs are

employed for acoustic modeling to extract Baum-Welch statistics. The highest gains

are reported when DNN bottleneck features are used with conventional Universal

Background Model (UBM) for i-vector extraction (Richardson et al., 2015b; Ferrer

et al., 2016b).

In this chapter, we will focus on the application of the LID technology in in-

telligent vehicles. In this scenario, LID systems are evaluated using words or short

sentences recorded in cars in four languages: English, Spanish, German, and Finnish.

As the use of DNNs in the i-vector extraction process is computationally expensive

for both acoustic modeling and bottleneck feature extraction, we will use the con-

ventional i-vectors in this scenario, in which the computational time is important.

Instead, we will explore the use of DNNs only for i-vector language classification.

As opposed to (Matějka et al., 2012; Matejka et al., 2014; Ferrer et al., 2016b) in

which neural networks with only one hidden layer are used for this purpose, we

will explore DNNs with different architectures. Additionally, both raw i-vectors and

channel-compensated i-vectors are considered as inputs to DNNs. In order to have

the highest accuracy with the minimum response time of the system, signals with

different duration from less than 2 sec to higher than 3 sec with the average duration

of 3.8 sec are analyzed. The performances of the proposed DNN architectures are

compared with both frame-based GMM-UBM and i-vector baseline systems.

The rest of the chapter is organized as follows. Section 5.1 describes the proposed

DNN backend architecture for language i-vector classification. Section 5.2 explains

the database and the scenario used for this particular task. Section 5.3 reports on

the setup and details of the training of the proposed DNNs as well as the baseline

systems used in this work. Section 5.4 discusses the experimental results. Section 5.5
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concludes the chapter.

5.1 Proposed DNN Architecture

The successful use of DNNs for discriminating between target and impostor i-vectors

in speaker verification (Chapter 3), motivated us to make use of DNNs for the LID

multi-classification task as well. As few i-vectors are available for each target class

in speaker recognition and, therefore, the amount of target and impostor i-vectors

are highly unbalanced, DNNs need some tricks for training to be efficient. In this

application, however, we do not have this problem.

Figure 5.1 shows the architecture of DNNs we have proposed in this work. The

inputs are i-vectors and the outputs are the language class posteriors. The softmax

and sigmoid are used as the activation functions of the internal and the output

layers, respectively. In order to Gaussianize the output posterior distributions, we

have proposed to compute the output scores in Log Posterior Ratio (LPR) forms as,

Λ(Ci|ω) = logP (Ci|ω)− log
∑
j 6=i

P (Cj |ω) (5.1)

where P (Ci|ω) is the posterior probability of ith language class Ci given the test

i-vector ω. As the sum of the output posterior probabilities equals to 1 in softmax,

eq. 5.1 can be re-written as,

Λ(Ci|ω) = logP (Ci|ω)− log (1− P (Ci|ω)) (5.2)

The Gaussian distribution of the output scores is important for being compatible

with other LID systems for score fusion.

As the response time of the LID system is important in the car, the computational

complexity of the classifier should also be taken into account. Therefore, we have

proposed to choose the size of the first hidden layer as the lowest power of 2 greater

than the input layer size. From the second hidden layer towards the output, the size

of each layer will be half of the previous layer. For example, the configuration of a

3-hidden-layer DNN will be as 400-512-256-128-4, where 400 is the size of the input

i-vectors and 4 is the number of language classes. It will be shown in section 5.4

that, in this way, we can decrease the computational complexity to a great extent

while keeping the classification accuracy.
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Figure 5.1: Proposed DNN architecture used for i-vector language identification (L denotes the

number of hidden layers and m = dlognx
2 e).

As opposed to the speaker recognition (Chapter 3) where the pre-training step

was helpful, neither Restricted Boltzmann Machine (RBM) nor discriminative pre-

training have been effective for this task. This is not only for the the proposed

architecture (Fig. 5.1), but also for other DNNs with hidden layers of the same size

in our experiments. Therefore, no pre-training will be employed in this application.

Two forms of i-vectors are considered as inputs to DNNs, raw i-vectors and

session-compensated i-vectors. LDA and WCCN are two commonly used techniques

for session variability compensation among i-vectors. Although LDA performs better

than WCCN for the LID application when cosine scoring is used, we will use only

WCCN session-compensated i-vectors as the inputs to DNNs. This is because the

number of the language classes is very few in this application and, therefore, the max-

imum number of meaningful eigenvectors will be also few (number of classes minus

one). We implemented different DNN architectures with LDA-projected i-vectors as

inputs but no gain was observed. The use of raw i-vectors is advantageous as no

language-labeled background data is required.

5.2 Database and Scenario

The application is focused on the LID technology in vehicles where the response time

of the system is crucial for user acceptance. Four languages have been chosen for

the experiments: English, Finnish, German, and Spanish. The database has been

recorded within the scope of the EU project SpeechDat-Car (LE4-8334) (Moreno et
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al., 2000). The database comprises utterances from 300 speakers recorded in 600

different sessions. Half of the speakers have been male and half female. They are

equally distributed in three groups of ages between 18 and 65 years old and for each

language, the speakers are chosen from five dialectal regions.

Four high quality audio channels have been recorded simultaneously. For this

work, the close-talk microphone is selected and the sampling frequency is 16 kHz .

Several recording conditions were defined: car stopped by motor running, car in

town traffic, car moving at a low speed with rough road conditions, and car moving

at a high speed with good road conditions. For the experiments, the signals were

taken from all these conditions with windows closed, roof window closed and radio

off.

For each language, three sets of speakers were defined by selecting randomly

from gender, age group and recording conditions: 150 speakers in the training set,

75 speakers in the development set and 75 speakers in the test set.

Three kinds of data have been selected: spontaneous sentences spoken as answers

to specific questions, phonetically rich sentences which are read sentences from a

phonetically balanced corpus, and phonetically rich words which are a set of words

used to enrich the phonetic balance of the corpus.

Table 5.1 shows the number of utterances and the total signal duration in hours

for each set. The training and development data are around 11 hours for Finnish and

German and 6 hours for English and Spanish. Figure 5.2 shows the histograms of

the duration of the utterances. It can be observed that there is a maximum around

the first second, corresponding to the phonetically rich words. There is another

maximum in the third second, related to phonetically rich sentences. Finally, the

tail of the histogram is due to the longer spontaneous utterances.

5.3 Setup and Baseline

Speech signals are pre-emphasized with ρ = 0.97. Mel-Frequency Cepstral Coefficient

(MFCC) features are extracted every 10 msec using a 25 msec Hamming window.

Each feature vector consists of 8 MFCC coefficients obtained from a Mel filter bank

of 24 filters. Before feature extraction, speech signals are subject to an energy-based
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Table 5.1: Number of utterances and total signal duration for train, test and development sets.

Language Train Development Test

German
6,954

(7h18m)
3,491

(3h43m)
3,490

(3h44m)

Spanish
4,755

(3h58m)
2,302

(1h56m)
2,188

(1h46m)

English
4,781

(3h57m)
2,393

(1h58m)
2,324

(1h53m)

Finnish
4,884

(7h18m)
2,489

(3h44m)
2,416

(3h32m)

Total
21,374

(22h32m)
10,675

(11h22m)
10,418

(10h55m)
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Figure 5.2: Histogram of signal duration.

silence removal process. Shifted Delta Cepstrum (SDC) coefficients are then created

by a 8-1-3-5 configuration, spanning a duration of roughly 170 msec.

The size of i-vectors is set to 400 and T matrix is trained with 20 iterations

using the same development dataset we have used for training UBM. The gender-

independent UBM is represented as a diagonal covariance, 512-component GMM.

The i-vector extraction process is carried out using the ALIZE open source soft-

ware (Larcher et al., 2013) with the minimum divergence training algorithm. Since

the speech signals are short in this application, both frame-based GMM-UBM and

i-vector systems are used as the baselines in this work. The i-vector baseline sys-

tem is the same as that proposed in (NIST, 2015). All the language i-vectors are

centered and whitened. Afterwards, for each language, the average of the training

i-vectors is considered as the average-language i-vector. Then the cosine distance

between the average-language i-vector and test i-vectors is computed as final scores.

If a language-labeled background dataset is available, as in this application, LDA or
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WCCN can be also used for session variability compensation before scoring. As the

number of the language classes is 4 in this application, the rank of LDA is set to 3.

For DNN experiments, the proposed architecture in section 5.1 is implemented

with both raw and WCCN session-compensated input i-vectors. In both cases no

normalization is applied on i-vectors prior to feeding to DNNs. The Proposed DNN

architectures are trained with the learning rates of 0.07 and 0.04 and the number

of epochs of 500 and 200 for raw and WCCN compensated i-vectors, respectively.

Momentum and weight decay are set, respectively, to 0.9 and 0.001 for all DNNs.

LID systems are evaluated based on the total language identification error rate

(LER) defined as,

LER =
1

N

N∑
i=1

Pmiss(Li) (5.3)

where Pmiss(Li) is the probability that an utterance spoken with the target language

Li is misclassified, and N is the total number of languages.

5.4 Experimental Results

Table 5.2 summarizes the results for all the techniques in four categories based on

the test signal durations: less than 2 sec, between 2 and 3 sec, more than 3 sec,

and all durations. The first two categories are more interesting because the decision

should be made fast in this application. The DNN results are reported based on

the proposed architecture of Fig. 5.1 with 3 hidden layers (400-512-256-128-4). The

network is trained with training signals of all durations. As it can be seen in this

table, among i-vector baseline systems, i-vector + LDA outperforms the two others

with a big difference in all categories. Both i-vector+DNN systems show superior

performance compared to i-vector + LDA baseline system. However, except for

the test signals with longer duration than 3 sec, DNNs with raw i-vectors perform

better than with WCCN session-compensated i-vectors. This is an advantage where

no language-labeled background data is available, e.g., (NIST, 2015). The frame-

based GMM-UBM baseline system works better than other systems only for test

signals shorter than 2 sec. However, the accuracy is still high in comparison to other

categories.

Furthermore, Table 5.2 implies that the shortest test signals for which all the
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Table 5.2: Comparison of LID systems for short signals recorded in car. Performance values are

reported based on LER (%).

Duration of Test Signals (in sec) t < 2 2 6 t < 3 t > 3 All
Number of Samples 2,472 2,355 5,591 10,418

[1] GMM-UBM 9.98 4.56 4.70 6.02

[2] i-Vector + Cosine 17.28 6.58 5.00 8.09
[3] i-Vector + WCCN + Cosine 14.50 5.03 3.42 6.31
[4] i-Vector + LDA + Cosine 12.41 3.96 2.32 5.03

[5] i-Vector + WCCN + DNN 12.06 3.30 2.30 4.60
[6] i-Vector + DNN 11.01 2.87 2.58 4.54

Fusion [6] & [4] 11.63 3.41 1.95 4.48
Fusion [6] & [1] 10.20 3.04 2.49 4.41
Fusion [6] & [4] & [1] 11.12 3.37 1.96 4.39

techniques achieve adequate performance are between 2 and 3 sec. For these test

signals, the proposed DNN architecture with raw input i-vectors achieves 37% and

27% relative improvements compared to GMM-UBM and i-vector + LDA baseline

systems, respectively. In fact, the combination of i-vectors and the proposed DNN

architecture meets the goal of this application, that is high accuracy and fast deci-

sion. For test signals longer than 3 sec, i-vector+WCCN+DNN system works the

best and for signals with any duration, the i-vector+DNN system outperforms all

other individual systems with 25% and 10% relative improvements comparing to

GMM-UBM and i-vector+LDA baseline systems, respectively. Finally, the combina-

tion of the LID systems in the score level shows that a 16% relative improvement can

be achieved for the signals with longer duration than 3 sec when the i-vector + LDA

baseline and the i-vector + DNN systems are fused. Additionally, a slightly improve-

ment is observed for the test signals with all durations when the i-vector + DNN

system is combined with both GMM-UBM and i-vector + LDA baseline systems.

For score fusion, the scores of different systems are simply summed.

Based on the results reported on Table 5.2, we can recommend the follow-

ing LID systems for test signals of different durations: GMM-UBM for shorter

than 2 sec, i-vector + DNN for longer than 2 sec and shorter than 3 sec, fusion

of i-vector + LDA and i-Vector + DNN for longer than 3 sec, and fusion of i-

vector + LDA, i-vector + DNN, and GMM-UBM for all durations.

Table 5.3 compares the performance and the size of the proposed DNN architec-
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Table 5.3: Comparison of the proposed DNN architecture with some other architectures.

DNN Architecture # Parameters
Duration of Test Signals

t < 2 2 6 t < 3 t > 3 All

400-512-4 202k 11.74 3.51 2.63 4.79
400-512-512-4 458k 11.47 2.96 2.39 4.57
400-512-512-512-4 714k 11.11 3.42 2.62 4.74

400-512-256-4 329k 11.28 3.31 2.51 4.69
400-512-256-128-4 361k 11.01 2.87 2.58 4.54

ture with some other DNN architectures. As it can be seen, the proposed architecture

with 3 hidden layers achieves the best accuracy in the first two categories. Among

these DNN architectures, the 2-hidden-layer DNN with hidden layer size of 512 works

slightly better than the proposed architecture for signals longer than 3 sec, but with

the cost of bigger size and, consequently, higher computational complexity.

Figure 5.3 compares the proposed i-vector + DNN system with the i-vector + LDA

baseline system in terms of Detection Error Tradeoff (DET) curves for test signals of

all durations. DET curves are obtained for each language versus all other languages.

In other words, each language is considered as the target class and all other languages

as the non-target one. Each DET curve shows how well the target and non-target

languages are distinguished by the LID system. As it can be seen in this figure, the

proposed i-vector + DNN system outperforms the i-vector + LDA baseline system

for all languages in all operating points, resulting in a 7-38% relative improvements

in terms of Equal Error Rate (EER). The same conclusion can be observed for other

test durations in Figs. 5.4, 5.5, and 5.6. In all of these figures, DNN system shows

much higher accuracy than the baseline i-vector/LDA system for the Finnish lan-

guage compared to other languages. This is while the number of training utterances

has been the same or even less compared to other languages (Table 5.1). One reason

for higher accuracy for Finnish could be this fact that DNN can extract and model

higher order statistics underlying in Finnish i-vectors.

5.5 Conclusion

A DNN architecture has been proposed in this chapter as a backend for i-vector Lan-

guage Identification (LID) of short utterances recorded in cars. The computational
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Figure 5.3: DET curve comparison of the proposed DNN system with the i-vector/LDA baseline

system for test utterances of all durations.
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Figure 5.4: DET curve comparison of the proposed DNN system with the i-vector/LDA baseline

system for test utterances shorter than 2 sec.
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Figure 5.5: DET curve comparison of the proposed DNN system with the i-vector/LDA baseline

system for test utterances between 2 and 3 sec.
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Figure 5.6: DET curve comparison of the proposed DNN system with the i-vector/LDA baseline

system for test utterances longer than 3 sec.



86 Deep Learning Backend for i-Vector Language Identification

complexity and the response time of the LID system have been taken into account for

this application. In order to have the highest accuracy with the minimum response

time of the system, signals with different durations from less than 2 sec to higher

than 3 sec with the average duration of 3.8 sec have been analyzed. Each hidden

layer in the proposed DNN architecture has the number of units half of the previous

hidden layer, which is closer to the input. This way, the size and computational com-

plexity of the network is decreased to a great extent while the accuracy is preserved.

It has been shown that for test signals with durations between 2 and 3 sec the pro-

posed DNN architecture with raw i-vectors as inputs outperforms GMM-UBM and

i-vector/LDA baseline systems by 37% and 28%, respectively.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main contributions of this thesis have been presented in three main works. In the

first one, a hybrid architecture based on Deep Belief Network (DBN) and Deep Neu-

ral Network (DNN) has been proposed to discriminatively model each target speaker

for i-vector speaker verification. The main objective has been to fill the performance

gap between the cosine and the oracle Probabilistic Linear Discriminant Analysis

(PLDA), estimated with actual labels, scoring systems when no labeled background

data is available. Two main contributions have been proposed to make DNN more

efficient in this particular task. Firstly, the most informative impostor i-vectors have

been selected and clustered to provide a balanced training. Secondly, each DNN has

been initialized with the speaker specific parameters adapted from a global model,

which has been referred to as Universal DBN (UDBN). In order to have more insight

into the behavior of these techniques in both single and multi-session speaker enroll-

ment tasks, the experiments have been carried out in both scenarios. Experiments

were performed on National Institute of Standard and Technology (NIST) Speaker

Recognition Evaluation (SRE) 2006, mainly for development, and on NIST 2014

i-vector challenge, mainly for evaluation. It was shown that the proposed hybrid

system fills approximately 46% of the performance gap between the cosine and the

oracle PLDA scoring systems in terms of minimum DCF (minDCF). Although the

proposed system still does not outperform the baseline PLDA with estimated labels,

their score fusion is highly effective and covers 79% of this gap.
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In the second work, we have presented a new vector representation of speech

for text-independent speaker recognition. Gaussian Mixture Model (GMM) super-

vectors have been transformed by a Universal RBM (URBM) to lower dimensional

vectors, referred to as GMM-RBM vectors. The role of URBM has been to learn the

total speaker and session variability among background GMM supervectors. The

use of different hidden units for training of URBM and different transformation

functions for vector extraction are investigated. A variant of Rectified Linear Unit

(ReLU), which is referred to as Variable ReLU (VReLU), is proposed. The variable

threshold defined in these units corrects the histograms of GMM-RBM vectors and

leads to higher generalization power of URBM. The experimental results on the core

test-common condition 5 of NIST 2010 SRE show that the performance of GMM-

RBM vectors is comparable with that of traditional i-vectors with both cosine and

PLDA scoring but with much less computational load. Moreover, the best results

are obtained by score fusion of GMM-RBM vectors and i-vectors.

In the third work, a DNN architecture has been proposed for i-vector Language

Identification (LID) of short utterances recorded in cars. The computational com-

plexity and the response time of the LID system is important in this application.

In order to have the highest accuracy with the minimum response time of the sys-

tem, signals with different duration from less than 2 sec to higher than 3 sec with

the average duration of 3.8 sec have been analyzed. It has been shown that for

test signals with duration between 2 and 3 sec the proposed DNN architecture with

raw i-vectors as inputs outperforms GMM-UBM and i-vector/Linear Discriminant

Analysis (LDA) baseline systems by 37% and 28%, respectively.

6.2 Future Research Lines

The main goal in this thesis has been taking advantage of Deep Learning (DL)

technology in speaker and language recognition while no speaker or phonetic label is

used. Phonetic and speaker labels are expensive and usually are not easily accessible.

However, an unlimited research line will opene given labeled background data. Hence,

the future work could follow two main lines: unsupervised and supervised (given

labeled background data) DL techniques for speaker and language recognition.

The main advantage of unsupervised techniques is that no labeled background

data is required. Therefore, a large amount of unlabeled data could be used for the
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development of the recognition systems. Unlabeled data are usually easily accessible

with relatively low cost. All three works presented in Chapters 3, 4, and 5 could be

considered in this category and improved in future works. For instance, in Chapter 3,

different DNN architectures, like that one proposed for LID in Chapter 5, different

adaptation techniques, more effective activation functions, like VReLU proposed

in Chapter 4, or more effective impostor selection algorithms could be used. In

Chapter 4, other alternative unsupervised networks like auto-encoders or DBN could

be tried out. Feature vectors can be used directly as inputs to the network, or the

speaker adaptation can be carried out through the network rather than through

an external GMM Maximum a Posteriori (MAP) adaptation. In Chapter 5, other

DL architectures, activation functions, or different inputs like supervectors or feature

vectors could be employed. Moreover, the GMM-RBM vectors proposed in Chapter 4

could also be used for LID.

As discussed in the previous section, it has been supposed that phonetic or

speaker labels are not available in this thesis. However, given labeled background

data, a wide range of DL techniques could be used. Speaker labels are mainly used

for speaker and session variability compensation and phonetic labels for training a

more accurate acoustic model. One of the reasons that the proposed system in Chap-

ter 3 still does not outperform the baseline PLDA system (with estimated labels)

could be that it does not explicitly compensate the session variability as it is carried

out in PLDA. Thus, it is expected that adding some explicit session modeling to the

proposed hybrid model could improve the performance. Some possibilities could be

the use of speaker classes as the output of the networks. The training process would

be more computationally expensive but high probably more effective. Other option

could be to compensate the undesired i-vector variability using signal processing

techniques like Within-Class Covariance Normalization (WCCN), LDA, or PLDA

before giving them to the network. Regarding to the vector representation of speech

framework, given the speaker labels, a global DNN or hybrid DBN-DNN could be

trained on the background data, rather than only an unsupervised Restricted Boltz-

mann Machine (RBM). Then the output of each hidden layer should be analyzed and

the hidden layer showing more speaker discrimination power could be used for vector

representation of speech with a similar framework of Chapter 4. Similar techniques

can be used for LID as well.
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Matějka, P., Plchot, O., Soufar, M., Glembek, O., D’haro Enŕıquez, L. F., Veselý, K.,
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