

Bimanual robot skills:
MP encoding, dimensionality reduction

and reinforcement learning

Adrià Colomé Figueras

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l
UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX
(h t t p : / / w w w . t d x . c a t /) ha estat autoritzada pels titulars dels drets de propietat intel·lectual
únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza
la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc
aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra
o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació
de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom
de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the i n s t i t u t i o n a l r e p o s i t o r y UPCommons
(http://upcommons.upc.edu/tesis) and the cooperative repository TDX (http://www.tdx.cat/?locale-
attribute=en) has been authorized by the titular of the intellectual property rights only for private
uses placed in investigation and teaching activities. Reproduction with lucrative aims is not
authorized neither its spreading nor availability from a site foreign to the UPCommons service.
Introducing its content in a window or frame foreign to the UPCommons service is not authorized
(framing). These rights affect to the presentation summary of the thesis as well as to its contents.
In the using or citation of parts of the thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Doctoral Programme

AUTOMATIC CONTROL, ROBOTICS AND COMPUTER VISION

Ph.D. Thesis

BIMANUAL ROBOT SKILLS:
MP ENCODING, DIMENSIONALITY REDUCTION

AND REINFORCEMENT LEARNING

Adrià Colomé Figueras

Advisor:
Carme Torras

Barcelona, May 2017

Bimanual robot skills: MP encoding, dimensionality reduction and rein-
forcement learning

A thesis submitted to the Universitat Politècnica de Catalunya
to obtain the degree of Doctor of Philosophy

Doctoral programme:
Automatic Control, Robotics and Computer Vision

This thesis was completed at:
Institut de Robòtica i Informàtica Industrial, CSIC-UPC

Thesis advisor:
Carme Torras

c© 2017 Adrià Colomé Figueras

To Ivet

BIMANUAL ROBOT SKILLS:
MP ENCODING, DIMENSIONALITY REDUCTION

AND REINFORCEMENT LEARNING

Adrià Colomé Figueras

Abstract

In our culture, robots have been in novels and cinema for a long time, but it has been
specially in the last two decades when the improvements in hardware - better computational
power and components - and advances in Artificial Intelligence (AI), have allowed robots to
start sharing spaces with humans. Such situations require, aside from ethical considerations,
robots to be able to move with both compliance and precision, and learn at different levels, such
as perception, planning, and motion, being the latter the focus of this work.

The first issue addressed in this thesis is inverse kinematics for redundant robot manipu-
lators, i.e: positioning the robot joints so as to reach a certain end-effector pose. We opt for
iterative solutions based on the inversion of the kinematic Jacobian of a robot, and propose
to filter and limit the gains in the spectral domain, while also unifying such approach with
a continuous, multipriority scheme. Such inverse kinematics method is then used to derive
manipulability in the whole workspace of an antropomorphic arm, and the coordination of two
arms is subsequently optimized by finding their best relative positioning.

Having solved the kinematic issues, a robot learning within a human environment needs to
move compliantly, with limited amount of force, in order not to harm any humans or cause any
damage, while being as precise as possible. Therefore, we developed two dynamic models for
the same redundant arm we had analysed kinematically: The first based on local models with
Gaussian projections, and the second characterizing the most problematic term of the dynamics,
namely friction. Such models allowed us to implement feed-forward controllers, where we
can actively change the weights in the compliance-precision tradeoff. Moreover, we used such
models to predict external forces acting on the robot, without the use of force sensors.

Afterwards, we noticed that bimanual robots must coordinate their components (or limbs)
and be able to adapt to new situations with ease. Over the last decade, a number of successful
applications for learning robot motion tasks have been published. However, due to the complex-
ity of a complete system including all the required elements, most of these applications involve
only simple robots with a large number of high-end technology sensors, or consist of very simple
and controlled tasks. Using our previous framework for kinematics and control, we relied on
two types of movement primitives to encapsulate robot motion. Such movement primitives are
very suitable for using reinforcement learning. In particular, we used direct policy search, which
uses the motion parametrization as the policy itself.

v

vi

In order to improve the learning speed in real robot applications, we generalized a policy
search algorithm to give some importance to samples yielding a bad result, and we paid special
attention to the dimensionality of the motion parametrization. We reduced such dimensionality
with linear methods, using the rewards obtained through motion repetition and execution. We
tested such framework in a bimanual task performed by two antropomorphic arms, such as the
folding of garments, showing how a reduced dimensionality can provide qualitative information
about robot couplings and help to speed up the learning of tasks when robot motion executions
are costly.

Keywords: Robotics, Artificial Intelligence, Reinforcement Learning, Redundant Robots,Robot
Kinematics, Robot Dynamics, Robot Motion Characterization, Dimensionality Reduction.

Resum

A la nostra cultura, els robots han estat presents en novel·les i cinema des de fa dècades, però
ha sigut especialment en les últimes dues quan les millores en hardware (millors capacitats de
còmput) i els avenços en intel·ligència artificial han permès que els robots comencin a compartir
espais amb els humans. Aquestes situacions requereixen, a banda de consideracions ètiques,
que els robots siguin capaços de moure’s tant amb suavitat com amb precisió, i d’aprendre a
diferents nivells, com són la percepció, planificació i moviment, essent l’últim el centre d’atenció
d’aquest treball.

El primer problema tractat en aquesta tesi és la cinemàtica inversa, i.e.: posicionar les
articulacions del robot de manera que l’efector final estigui en una certa posició i orientació.
Hem estudiat el camp de les solucions iteratives, basades en la inversió del Jacobià cinemàtic
d’un robot, i proposem un filtre que limita els guanys en el seu domini espectral, mentre
també unifiquem tal mètode dins un esquema multi-prioritat i continu. Aquest mètode per a
la cinemàtica inversa és usat a l’hora d’encapsular tota la informació sobre l’espai de treball
d’un braç antropomòrfic, i les capacitats de coordinació entre dos braços són optimitzades, tot
trobant la seva millor posició relativa en l’espai.

Havent resolt les dificultats cinemàtiques, un robot que aprèn en un entorn humà necessita
moure’s amb suavitat exercint unes forces limitades per tal de no causar danys, mentre es
mou amb la màxima precisió possible. Per tant, hem desenvolupat dos models dinàmics per
al mateix braç robòtic redundant que havíem analitzat des del punt de vista cinemàtic: El
primer basat en models locals amb projeccions de Gaussianes i el segon, caracteritzant el terme
més problemàtic i difícil de representar de la dinàmica, la fricció. Aquests models ens van
permetre utilitzar controladors coneguts com feed-forward, on podem canviar activament els
guanys buscant l’equilibri precisió-suavitat que més convingui. A més, hem usat aquests models
per a inferir les forces externes actuant en el robot, sense la necessitat de sensors de força.

Més endavant, ens hem adonat que els robots bimanuals han de coordinar els seus com-
ponents (braços) i ser capaços d’adaptar-se a noves situacions amb facilitat. Al llarg de l’últi-
ma dècada, diverses aplicacions per aprendre tasques motores robòtiques amb èxit han estat
publicades. No obstant, degut a la complexitat d’un sistema complet que inclogui tots els
elements necessaris, la majoria d’aquestes aplicacions consisteixen en robots més aviat simples
amb costosos sensors d’última generació, o a resoldre tasques senzilles en un entorn molt
controlat. Utilitzant el nostre treball en cinemàtica i control, ens hem basat en dos tipus
de primitives de moviment per caracteritzar la motricitat robòtica. Aquestes primitives de
moviment són molt adequades per usar aprenentatge per reforç. En particular, hem usat la
búsqueda directa de la política, un camp de l’aprenentatge per reforç que usa la parametrització
del moviment com la pròpia política.

Per tal de millorar la velocitat d’aprenentatge en aplicacions amb robots reals, hem genera-
litzat un algoritme de búsqueda directa de política per a donar importància a les mostres amb
mal resultat, i hem posat especial atenció a la reducció de dimensionalitat en la parametrització
dels moviments. Hem reduït la dimensionalitat amb mètodes lineals, utilitzant les recompenses
obtingudes a l’executar els moviments. Aquests mètodes han estat provats en tasques bimanuals
com plegar roba, usant dos braços antropomòrfics. Els resultats mostren com la reducció

vii

viii

de dimensionalitat pot aportar informació qualitativa d’una tasca, i al mateix temps ajuda a
aprendre-la més ràpid quan les execucions amb robots reals són costoses.

Acknowledgements

I would like to thank my advisor Prof. Carme Torras, who taught me how to do research and
guided me through this years. Her help has been crucial for my work.

Besides, I would also like to thank Dr. Guillem Alenyà and Dr. Sergi Foix for their help and
support in an uncountable number of occasions, specially in the Perception and Manipulation
Lab. I want to also thank all my colleagues at D19 and IRI for all the good times spent toghether
(and more to come).

My sincere thanks also to Prof. Jan Peters and all the people at the IAS Lab in Darmstadt, for
welcoming me to work with them during my stay.

I would also like to thank my parents and Raquel for their continuous support through these
years. And my daughter Ivet, whose smile brought a new meaning of happiness to me.

I wish I could also thank all those relatives that left me through the years. The void they left
will be never filled again. People go, but memories remain.

This work has been supported by the Spanish Ministry of Education, Culture and Sport via a FPU doctoral grant
AP2010-1989.

This thesis has also been partially supported by the research projects:

FP7-ICT-2009-6-269959 IntellAct: Intelligent observation and execution of Actions and manipulations (European
Project).

201350E102 MANIPlus: Manipulación robotizada de objetos deformables (CSIC Project).

2009 SGR 155 : SGR ROBÒTICA: Grup de recerca consolidat - Grup de Robòtica (Catalan government).

TIN2014-58178-R RobInstruct: Instructing robots using natural communication skills (Spanish national project).

PCIN-2015-147 I-DRESS: Assistive interactive robotic system for support in dressing (European Project).

The latest version of this thesis can be obtained at https://www.iri.upc.edu/staff/acolome.

ix

https://www.iri.upc.edu/staff/acolome

Contents

Abstract v

Resum vii

Acknowledgements ix

1 Introduction 1
1.1 Objectives . 3
1.2 Contributions . 4
1.3 Outline . 5

I Compliant Redundant Robot Control 11

2 State of the Art 13
2.1 Inverse kinematics of redundant serial robots . 14
2.2 Bimanual manipulation . 18
2.3 Compliant control and wrench estimation . 19

2.3.1 Learning robot inverse dynamics . 21
2.3.2 Fitting an analytical model . 23

2.4 Summary . 25

3 Inverse Kinematics and Relative Arm Positioning 27
3.1 Inverse kinematics of redundant robots . 27

3.1.1 CLIK algorithm issues . 27
3.1.2 First enhancement: Singular Value Filtering (SVF) 31
3.1.3 Multiple tasks . 35
3.1.4 Joint limit avoidance . 36
3.1.5 Second enhancement: pseudoinverse smoothing 39
3.1.6 Experimentation . 41
3.1.7 Discussion . 45

3.2 Bimanual arm positioning . 47
3.2.1 Workspace representation . 48
3.2.2 Bimanual workspace . 50
3.2.3 Proposed quality function . 50
3.2.4 Experimentation . 53

3.3 Summary . 54

4 Robot Compliant Control 57
4.1 External force estimation . 58

4.1.1 External wrench estimation as a disturbance observer 59
4.1.2 Experimentation . 63
4.1.3 Discussion . 66

4.2 Building a friction model . 67

xi

xii CONTENTS

4.2.1 Introduction . 68
4.2.2 Advanced model for the WAM robot . 68

4.3 Applications . 72
4.3.1 Scarf-placing experiment . 72
4.3.2 Compliant object tracking . 75

4.4 Summary . 76

II Reinforcement Learning with Movement Primitives 79

5 Preliminaries 81
5.1 Policy Search (PS) . 81

5.1.1 Robot control as a reinforcement learning problem 82
5.2 Movement Primitives (MP) . 86

5.2.1 Dynamic movement primitives . 86
5.2.2 Probabilistic movement primitives . 89

5.3 Summary . 92

6 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Expe-
riences 93
6.1 The Dual REPS Algorithm . 94

6.1.1 Clustering . 95
6.1.2 DREPS derivation . 97
6.1.3 Experiments . 103

6.2 Summary . 111

7 Reward-oriented Dimensionality Reduction with Movement Primitives 113
7.1 Dimensionaliy Reduction for ProMPs . 115

7.1.1 Representing Dimensionality Reduction for ProMP (DR-ProMP) 116
7.1.2 DR-ProMP for robot control . 118
7.1.3 Fitting DR-ProMP parameters with expectation maximization 119
7.1.4 Experiments . 124
7.1.5 Conclusions . 128

7.2 Dimensionality Reduction for DMPs . 128
7.2.1 DMP coordination . 129
7.2.2 EM approach to find the latent space projection 137
7.2.3 Experimentation . 139
7.2.4 Conclusions . 149

7.3 Summary . 150

8 Conclusions 151
8.1 Summary . 151
8.2 Future work . 153
8.3 Epilogue . 155

A List of Publications 157

CONTENTS xiii

B External Resources 159
B.1 Closed-loop inverse kinematics for redundant robots 159
B.2 Friction model applications . 159
B.3 Realtime tracking and grasping of a moving object from range video 159
B.4 Human-guided compliant control . 159
B.5 DREPS . 159
B.6 DR for DMPs . 159

C Acronyms 161

D Glossary 163

Bibliography 165

Figures

1.1 Two Barrett’s WAM robots holding a piece of cloth 5
1.2 Global thesis scheme . 6
1.3 Thesis overview . 7

2.1 Kinesthetic teaching of a robot . 19
2.2 Barrett WAM robot holding cloth garments . 21
2.3 Example data used as input . 23

3.1 Singular values inversion in Jacobian damping algorithms 30
3.2 Condition number comparison for different algorithms 33
3.3 CLIK algorithms behavior for a 4R planar manipulator trajectory (1/2) 34
3.4 CLIK algorithms behavior for a 4R planar manipulator trajectory (2/2) 42
3.5 Solution finding success ratio of different CLIK algorithms 46
3.6 End effector bounding cones . 49
3.7 IK solution density map . 49
3.8 Orientation factor for two cones . 52
3.9 Experimental Settings results . 53
3.10 Experimental Settings results . 54

4.1 Force estimation scheme . 58
4.2 Cloth grasp detection experiment results . 65
4.3 Estimated torques for a fixed load (1kg) throughout a trajectory 66
4.4 Estimated torques for a fixed load (0.5kg) throughout a trajectory 67
4.5 Feed forward control scheme with force estimation 68
4.6 Friction models comparison . 71
4.7 Scarf detection examples . 73
4.8 Learning curve for the scarf experiment . 73
4.9 Scarf around a mannequin’s neck . 74
4.10 Visual tracking scheme . 75
4.11 WAM tracking an object . 76

5.1 Gaussian basis function example . 87
5.2 Modified Gaussian basis functions . 88
5.3 Phase variable . 88
5.4 ProMP example obtained from a set of trajectories 90

6.1 K-means clustering example . 96
6.2 Reward function for clustering example . 98
6.3 K-means example clustering result . 98
6.4 Proposed clustering algorithm example result . 99
6.5 Learning curve of REPS in a multiple solution problem 104
6.6 REPS averaging between optimal solutions . 104
6.7 Learning curves of DREPS vs REPS . 105
6.8 Real robot experimental setup for the bottle task 106

xv

xvi FIGURES

6.9 Time alignment of several trajectories . 107
6.10 Learning curves of DREPS vs REPS for the bottle task 108
6.11 Example trajectories obtained for the bottle task 109
6.12 Learning curves of DREPS vs REPS with new reward function 109
6.13 Solution comparison for bottle task . 110
6.14 DREPS vs REPS in unimodal problem . 111

7.1 NAO robot in a human environment . 116
7.2 KL divergence comparison between EM and PCA 124
7.3 NAO correlation values . 125
7.4 NAO walking trajectory distribution . 126
7.5 Different learning approaches on a planar manipulator task 128
7.6 10-DoF planar arm experiment with DR-DMPs . 142
7.7 7-DoF WAM robot experiment with DR-DMPs . 143
7.8 Two robot arms . 146
7.9 14-DoF dual-arm real-robot experiment with DR-DMPs 147

Tables

3.1 Methods abbreviations . 28
3.2 Reprojection error. 33
3.3 WAM Denavit-Hartenberg parameters . 43
3.4 Joint limits unconcerned IK success for CLIK algorithms 44
3.5 Joint limits concerned IK success for CLIK algorithms 44

4.1 Friction Validation Results . 70

7.1 Methods description . 137
7.2 Methods initialization and usage . 137
7.3 Results for the 10-DoF planar arm experiment . 141
7.4 Results for the real data simulated 7-DoF WAM experiment 144
7.5 Results for the dual-arm real-robot experiment of folding clothes 149

C.1 Acronym list . 162

D.1 Relevant variables (Part I) . 163
D.2 Relevant variables (Part II) . 164

xvii

1
Introduction

Back to the early-mid XXth century, the neurophysiologist Nikolai A. Bernstein studied human

movement during manual labor. His aim was to track human movement in order to help to

improve productivity. Bernstein was one of the pioneers in the fields of human motor control

and learning, claiming that "we humans activate in a coordinated manner those muscles that we

cannot control individually" [1]. The large amount of muscles in a human body is considered

to be around 640 [2], which is a number of degrees of freedom a human brain cannot possibly

control independently. Such muscles are responsible for the diverse motions of the human

skeleton by using ligaments and tendons. Therefore, humans learn synergy patterns associated

to each task they want to perform. These patterns are then stored in the human brain and

executed when needed, and reevaluated after every execution in order to improve further. Such

is the example of a tennis player learning his swing. He will be first imitating someone else’s

swing to later improve through experience: every time the swing motion is executed, the player

is likely to explore and innovate, and the outcome of each execution is evaluated. If such

outcome was considered positive, the muscle synergy stored in the human’s brain is modified.

Otherwise, the applied changes are discarded.

In parallel, it was back in the 1920’s when writer Karel Čapek defined the term robot, coming

from the Czech term robota - forced labor- in his play Rossum’s Universal Robots. Čapek imagined

a world where humans created artificial living creatures to force them to work at factories,

but robots later rebelled against humanity causing their extinction. Since Čapek’s play, robots

became progressively more popular in science fiction magazines published in the XXth century.

In those stories, robots were often portrayed as part of our lives, as a working force or household

assistants. Moreover, the popularization of mass production, together with the automatization

of industry resulted in an increase in production capability. It is then, when in 1960’s, the

scientific community started to focus on providing robots with more intelligence and autonomy.

In an approach to emulate the human way of learning, the field of Reinforcement Learning (RL)

2 Introduction

became popular, specially in the last two decades of the XXth century, after Richard S. Sutton

and Andrew G. Barto [3] defined RL as a new science field. Since then, RL has been developing

in several subfields. Nowadays, RL is a wide field of artificial intelligence used in a large variety

of applications, from big data analysis to planning and robot motion.

Today, the industry is creating better and more accessible robots every year. These robots

require a good kinematics and dynamics knowledge [4], to be able to position themselves where

they need to, and to move in a safe manner in the case of a a human environment. However,

solving the inverse kinematics chain in order to find the proper joint positions for placing a

robot’s end-effector in a certain pose is a complex problem for redundant manipulators such as

anthropomorphic arms. Iterative algorithms are a popular choice for its generality, but at the

risk of suffering from numerical stability when close to a robot singular position. Moreover,

joint limits strongly restrict the feasible solutions and need to be taken into account. Once the

kinematic chain is solved, the control problem needs to be taken into consideration, specially in

the case of unmodelled scenarios, including interaction with humans and/or deformable objects.

It is recommended that robots have a so-called compliant controller, i.e.: a control scheme that

is able to precisely track a desired command while exerting minimal torques, in order not to

harm any object/human in the loop. Such controllers require feedback from the robotic sensors,

but in some cases, only the torque commands and joint position encoders are available.

In addition, it is also natural to expect those robots to be capable of learning and reasoning.

In particular, learning motor skills in a similar way humans do. Learning robotic skills is a

difficult problem which can be addressed in several ways. The most common approach is

Learning from Demonstration (LfD), in which the robot is shown an initial way of solving a

task, and then tries to reproduce, improve and/or adapt it to variable conditions. The learning

of tasks is usually performed in the kinematic domain by learning trajectories [5–7], but it can

also be done in the force domain [8,9]. A training data set is often used in order to fit a relation

between an input (experiment conditions) and an output (a good behavior of the robot). This

fitting, which can use different regression models such as Gaussian Mixture Models (GMM) [10],

is then adapted to the environmental conditions in order to modify the robot’s behavior [11].

However, reproducing the demonstrated behavior and adapting it to new situations does not

always solve a task optimally, thus Reinforcement Learning (RL) is also being used, where the

solution learned from a demonstration, improves through exploratory trial-and-error. RL is

capable of finding better solutions than the one demonstrated to the robot.

The latest approaches in motor skills are based on motion parametrization combined with

direct Policy Search (PS), a particular subfield of RL, where policies - the agents deciding which

actions to take or which motions to perform - are characterized as a set of parameters, that

are optimized after locally exploring variants of similar motions and evaluating them with a

1.1 Objectives 3

reward function [12]. Such PS methods suffer, though, from several complications, like a limited

amount of samples in real-robot executions, that need to be minimized for cost reasons. The

rise of complexity of those robots requires to deal with more Degrees of Freedom (DoF) and,

subsequently, more parameters in the motion representation. This large number of parameters

leads to the known curse of dimensionality, defined by Bellman in 1957 [13], i.e.: meaningful

information is lost within a large-dimensional learning space. Such dimensionality is treated

by learning algorithms by using greedy policy updates, meaning that only the known data is

considered, and exploration into the unknown is limited [12], resulting in an often suboptimal

solution of the learning process. To overcome this limitation, it is therefore necessary to apply a

similar approach to the one Bernstein defined: to create actuator synergies in order to be able

to easily control, encode, and execute robot motion tasks. This is the main focus of this work.

In this thesis, we will discuss and tackle all the problems associated to the learning of

motor tasks by complex robots - e.g., bimanual robots- in an often unstructured or unmodelable

environment, as it can be the task of folding clothes. Due to limited amount of data samples in

robotic learning scenarios, such tasks require dimensionality reduction techniques so that such

complex problems can be solved. The scope of this work is limited to serial robots, learning

tasks at the motion level. Grasping and/or planning are not focused on, as those can be built

independently.

1.1 Objectives

The ultimate objective of this thesis is to build a complete framework for a model-free,

compliant, coordinated robot motion learning scenario. Such a framework requires the

fulfillment of a series of secondary objectives, namely:

- Working on robot motion learning to apply the latest advances in Reinforcement Learning

(RL) and its subfield of policy search to learn robotic motion, also requiring a proper

motion characterization.

- Build a complete framework by developing all levels (kinematics, dynamics, motion

characterization and learning) under a unified perspective. Such levels can relate and

benefit from each other, as kinematics is required for motion characterization and dynam-

ics. Dynamics also need to be used for learning, e.g., taken into account in the reward

function.

- Using model-free alternatives from the learning perspective, since human environments

and/or cloth objects are very costly to model. While the robot’s dynamics can be modeled

4 Introduction

up to a certain error, the environment and experimental setup may not be possible to

model and, therefore, model-based reinforcement learning is out of the scope of this thesis.

- The controller should be as compliant as possible, since we assume fragile and/or de-

formable objects, as well as humans, might be in the scenario and, therefore, robot stiffness

and other safety issues need to be taken into account.

- the framework must permit coordinating the robot’s DoF and/or the arms, since their

motion should not be controlled independently, but coupled.

1.2 Contributions

This thesis has contributed to:

1. Review, evaluate and improve some of the most popular algorithms available for com-

puting the inverse kinematics of redundant manipulators. In particular, we reviewed

the most used Closed-Loop Inverse Kinematics (CLIK) algorithms in [14] and [15]. CLIK

algorithms are based on inverting the Jacobian matrix of a robot manipulator. Such matrix

inversion can be ill-conditioned, resulting in numerical instability, or generate oscillations

around a solution. To prevent these situations, we propose a new way of filtering the

Jacobian matrix in the spectral domain for its inversion, while limiting the gains and also

using a matrix inversion which is continuous wrt. the changes of the rank of the matrix to

be inverted. This results in a more robust solution, that we tested in a real robot (see video

B.1 in Appendix B). For a setup with two Whole Arm Manipulator [16] (WAM) robots (see

Fig. 1.1), we used these inverse kinematics mappings and an encapsulation of all the

possible orientation solutions for each Cartesian end-effector position, to evaluate and

optimize the combined manipulability for the relative positioning of the two arms [17],

allowing to optimize such relative positioning under user-specified restrictions.

2. We modeled the dynamics of a WAM robot with locally fitted models, and used such

models to detect external contact forces with the robot when moving, by using joint

position encoders and torque commands only [18] [19]. Such forces are then used for

contact detection or in RL algorithms to obtain more information about experiments in

model-free setups, as well as to allow for compliant manipulation [20] (see video B.3

in Appendix B). We then went on building a global friction model for the WAM robot,

allowing for a more precise dynamics model that could be used all throughout the robot’s

workspace [21] (see video B.2 in Appendix B).

1.3 Outline 5

Figure 1.1: Two Barrett’s WAM robots holding a piece of cloth.

3. We implemented and used PS algorithms, such as Relative Entropy Policy Search (REPS),

which we generalized by allowing it to reuse bad-performing experiences as a repulsor

in terms of probability distributions by forcing a difference between the bad samples’

clustered distribution and the optimized solution. We named Dual REPS (DREPS) such

generalization. Some results and real-robot videos are shown in the experimentation sec-

tion and in video B.5 in Appendix B. We also applied DREPS to human environments, using

hybrid methods for gathering data, by visual imitation or randomly-generated samples

in [22,23]. Video B.4 in Appendix B show this hybrid approach.

4. We used the preceding items to perform reward-oriented linear dimensionality reduction

in a RL framework to learn robot motion faster. We used Movement Primitives (MP), such

as Probabilistic Movement Primitives (ProMPs) or Dynamic Movement Primitives (DMPs),

to characterize motion. Then, with linear dimensionality reduction techniques on the

robot’s DoF, we obtained reduced motion characterizations for both DMPs [24–26] (see

video B.6 in Appendix B) and ProMPs [27].

The whole process of learning robot motion skills can seen as a block diagram in Fig. 1.2.

1.3 Outline

This thesis is divided in two parts, which are related as seen in Fig. 1.3.

6 Introduction

Figure 1.2: Thesis block diagram. A motion is encoded by a movement primitive, storing
the policy parameters θ. A sample trajectory is obtained from such policy and, if necessary,
translated to a joint trajectory through inverse kinematics. This joint trajectory is then tracked by
a compliant feed-forward controller, which also observes external perturbations. After trajectory
execution, a reward, including those interaction forces and other feedback such as vision or task
achievement is evaluated. Last, after a certain number of evaluated trajectories, a policy search
algorithm updates the policy parameters.

1.3 Outline 7

Figure 1.3: Thesis overview.

8 Introduction

Part I

The first part is devoted to kinematics, workspace manipulability maximization and control.

- Chapter 2 provides a brief review of the work over the last decades on Inverse Kinematics

for redundant robots, as well as on their relative positioning. Additionally, some of the

approaches to compliant robot control and external force estimation are presented.

- Chapter 3 presents an analysis of the problems that arise when using CLIK algorithms.

Then, an experimental comparison of such algorithms and two enhancements are pre-

sented to obtain a more robust inverse kinematics algorithm. Using such IK algorithm,

we propose, for redundant robots, a method for optimizing the relative positioning of two

arms, given certain constraints.

- Chapter 4 presents alternative ways to building an analytical inverse dynamics model for

a robotic arm. Such inverse dynamics models allow us to have an estimate of contact

forces acting on a robot during a trajectory. Real-robot experiments show the effectiveness

of the dynamic models built for compliant manipulation.

Part II

The second part of this thesis is focused on motion characterization and learning.

- Chapter 5 introduces direct Policy Search (PS) and the algorithms used throughout this

thesis: REPS and PI2. Additionally, it presents the most common frameworks for rep-

resenting parametrized motion: Dynamic Movement Primitives (DMPs) and Probabilistic

Movement Primitives (ProMPs).

- Chapter 6 proposes a generalization of REPS exploiting low-performance trajectory sam-

ples named Dual REPS (DREPS). This approach is applied to an illustrative 2-dimensional

task, and also to a real-robot scenario with two optimal solutions.

- Chapter 7 then presents reward-oriented Dimensionality Reduction (DR) algorithms for

performing PS with movement primitives. In particular, we apply linear DR on DMPs and

ProMPs. We then test such DR methods in simulated robotic tasks, as well as a bimanual

robot task of folding a polo shirt.

- Chapter 8 concludes the thesis, and presents future challenges this subfield of robotics.

1.3 Outline 9

Appendices

- Appendix A presents a list of the publications associated to this thesis.

- Appendix B lists a series of links to additional experimental results.

- Appendix C lists the acronyms used throughout this thesis.

- Appendix D defines the most relevant variables used.

Part I

Compliant Redundant Robot Control

2
State of the Art

The recent trend of building more human-like robots, as well as using them in uncontrolled

environments such as households, presents several challenges that increase the complexity of

task learning. It is then required to have an integrated system capable of properly handling

the kinematics and dynamics of the robot in the process of learning. Additionally, bimanual

robots need to be configured in a way their arms are able to coordinate their motion while

handling an object. In the early stages of this PhD work, we realized some key elements were not

developed enough in literature and therefore needed to be studied in depth and documented.

Such elements are:

- Robot kinematics, specially Inverse Kinematics (IK) for redundant serial robots. While

IK is a problem considered to be relatively solved, the robustness of some of the ap-

proaches proposed in literature is less than expected, due to kinematically singular robot

configurations and limited joint values for each articulation. This causes robots to crash

or have dangerous behaviors when using such kinematics algorithms without a planning

framework ensuring such safety.

- Bimanual manipulation, in particular, the relative positioning of two robotic arms. Bi-

manual manipulation and workspace characterization have been broadly studied from

several perspectives, but the literature on bimanual robot design is not as broad. Thus,

given two serial manipulators and proper inverse kinematics algorithms, a study of the

most appropriate relative positioning of two arms for a bimanual manipulation task was

needed.

- Compliant control and wrench estimation. Additionally to the kinematics aspect, we

wanted to have a safe robot behavior also capable of detecting external disturbances while

performing tasks. Therefore, a dynamic model of the available robot needs to be built and

used together with a disturbance observer in order to achieve such desired control. Such

14 State of the Art

disturbance signal becomes also helpful from the learning perspective, forming part of a

reward function.

In this chapter, we provide an overview of the key theoretical elements previous to our

work, in order to accomplish the kinematic and dynamic control, taking into account workspace

capabilities, kinematics and control.

2.1 Inverse kinematics of redundant serial robots

Robot kinematics applies geometry to the study of the movement of multi-degree of freedom

kinematic chains that form the structure of robotic systems [4]. The kinematics equations

establish the relation between the robot articulations -joints- and the end-effector pose in the

robot’s operational space.

Forward Kinematics (FK) is a function that maps the robot’s joints into a pose in the op-

erational space. In the scope of this thesis, the forward kinematics equations of a serial robot

always provide a unique solution by direct substitution of the joint values into the kinematics

equations [4].

Inverse Kinematics (IK) is the inverse mapping of the FK function and, given a robot end-

effector pose, provides a joint configuration with which the end-effector will be at the desired

pose. If the number of Degrees of Freedom (DoF) or articulations of the robot, d, is smaller than

the operational space dimension n, a robot is considered to be redundant, meaning that the

IK mapping can have infinite many solutions for a certain desired pose. Redundancy provides

robots with more flexibility, while it makes the IK computation more difficult.

Moving redundant robot arms in task space requires efficient and well-behaved Inverse

Kinematics (IK) solutions. Along several decades, a lot of effort within the Robotics community

has been devoted to obtaining fast and robust IK algorithms. Analytical methods have always

been preferred to iterative ones, because their solution is exact and usually faster to compute.

However, with the rise of redundancies in robots, analytical solutions become harder to ob-

tain [28–30] and thus again alternatives need to be explored [31] [32] in order to benefit from

the additional degrees of freedom [33]. In addition, complex tasks impose more restrictions on

IK solutions, such as in the case of medical robots [34] [35].

Although many alternatives for trying to solve the IK problem exist, such as interval meth-

ods [36], distance-based methods [37], or even neural networks [38–40] and Bézier maps

[41] [42], probably the most popular way is to use closed-loop algorithms, where a first-order

geometric Jacobian matrix J [43] [44] of the robot kinematics is computed. Such geometric

2.1 Inverse kinematics of redundant serial robots 15

Jacobian maps joint velocities q̇ into task space velocities ẋ:

ẋ = Jq̇. (2.1)

Inverting the Jacobian matrix with a certain inverse operator ?,

J?ẋ = q̇, (2.2)

and using finite differences, so that the task space error can be mapped into an update of the

joint values that is likely to reduce the task space error, we obtain:

∆q = J?e. (2.3)

In an iterative procedure, given qk, the updated joint state at step k+1 is then qk+1 = qk+∆qk,

for some computed ∆qk:

∆qk = αJ?e, (2.4)

where α is a gain, J? is an inverse of the geometric Jacobian matrix and e is the task space

positioning error.

The first attempts to close the IK loop used the Moore-Penrose pseudoinverse [45] of the

Jacobian matrix [46] to invert the differential kinematics equation of the robot.

In other works, the Jacobian transpose was used [47], which is faster to compute. As

a distinctive advantage over alternative IK methods, Closed-Loop Inverse Kinematics (CLIK)

algorithms do not require any previous knowledge or learning process with the robot, other

than its Jacobian matrix, this being the main reason for its preferred use over other options.

However, CLIK algorithms become unstable when the robot is close to a singularity, i.e., certain

robot configuration where the Jacobian matrix is ill-conditioned: the floating point error when

inverting the Jacobian becomes very large, thus amplifying the numerical error at each iteration,

and also requiring large variations in some joints in order to reduce the error in a given direction.

To solve these problems, the Jacobian matrix can be damped or filtered [48, 49], reducing

numerical error, but not always reducing large joint variations. Some attempts also use second-

order derivatives of motion, i.e., calculating the Hessian matrix of the forward kinematics [50],

although this requires much more computation time.

In a continuous time assumption, the convergence of closed-loop methods can be demon-

strated in terms of Lyapunov theory [51,52]. Nevertheless, real-time computations have a fixed

step, lower bounded by the computation capability of a processor, thus convergence cannot

always be ensured by means of Lyapunov theory. Although there exist discrete-time versions of

16 State of the Art

it [53], their application is not immediate, and some additional assumptions must be made.

There are also studies about the convergence of these methods which takes the discrete-time

system as a sequence and proves its convergence. In [54], an upper bound on the gain α that

guarantees convergence is found, but restricting the operational space to a subset where the

Jacobian is full-rank with bounded singular values, so its application is not general. Neverthe-

less, this work points out the relevance of the initial error dependency for these methods to

converge, so the closer to the goal, the better these methods perform in the initial steps. In

general, a smaller step improves convergence rate on the one hand, but slows the algorithm on

the other. But in fact, reducing the global gain is not a truly effective strategy to avoid large

gains near a singularity, as we will be also damping the gain in the directions we would like the

robot to move.

In [55] a Selective Damping (SD) of the gain on the joint variations derived from each task-

space error component is proposed, that modifies each gain depending on the corresponding

column of the Jacobian and a predefined maximum joint variation γmax. This effectively solves

the gain issue, but does not solve singularity issues, such as the loss of rank and algorithmic

singularities.

Using first-order derivative algorithms of robot motion has also the drawback that, depend-

ing on the goal position, the robot can get stuck at an algorithmic singularity, a pose where the

error e belongs to the kernel of the inverted Jacobian, or in a multiple-task algorithm, as we will

see later, the joint variation derived from a secondary task takes the opposite value of that for

the primary task, thus the total computed joint variation becomes ∆q ' 0.

The main advantage of redundancy is to be able to perform secondary tasks and/or to choose

which solution suits some criterion best. To this purpose, an optimization function can be set

to find, within the set of IK solutions, the one that performs best according to the criterion.

The most common procedure is to project a gradient of a secondary task into the kernel of

the Jacobian matrix, in order not to affect much the position error. Other algorithms like the

Augmented Jacobian or the Extended Jacobian [56], in which rows are added to the Jacobian,

have been used. Among the existing criteria for optimization, the manipulability measure [57,

58] is often used. Other criteria such as collision avoidance [4] (by setting a minimum distance

to a certain object), minimum effort kinematics [59] or structural stiffness are also used [60].

But respecting joint limits is often the main priority when exploiting the redundancies of a robot.

Definition of error

For the position and orientation error representation as an n-dimensional vector, the incom-

mensurability of position and orientation units is a limiting situation, as the Jacobian inverse

is not invariant to rescalation and translation. This was a major problem at earlier stages of

2.1 Inverse kinematics of redundant serial robots 17

hybrid control theory [61], which relied on an orthogonal complements structure that was not

invariant wrt. rescaling of the units taken . One solution to this problem was to use metrics that

converted all Jacobian components to energy units [62, 63]. However, when using a Jacobian

matrix with disparate units for IK, despite it being dependent on the units taken and the relation

between them, the convergence of CLIK algorithms is not affected. When using the orientation

error in [4], the equivalence of 2rad = 1m is often taken and provides a reasonable error ratio

between position and orientation.

Condition number

Given a system of the type ∆q = J?e, where ? denotes an inverse operator, it is very common

to have numerical or measurement errors on the robot’s task position, or uncertainty on the

kinematic parameters of the robot [64] [65]. Therefore, we need to take into account some

uncertainty δe on the position error e (difference between target and current positions). It

is fundamental to avoid amplifying this uncertainty when computing ∆q. To this purpose,

the relative error δq on ∆q coming from the uncertainty δe on e can be estimated using the

condition number of J? [66,67]:

‖δq‖
‖∆q‖

≤ κ(J)
‖δe‖
‖e‖

, (2.5)

where κ(J?) is the Condition Number (CN) of J?, computed as the ratio of its maximum and

minimum singular values:

κ(J?) =
σmax(J?)

σmin(J?)
(2.6)

Note that the dependency of the Jacobian on the units taken and the orientation-translation

equivalence chosen may affect the CN of the linear system solved to obtain ∆q. Nevertheless,

the CN will only grow to infinity when the Jacobian is not full-rank, which happens when

approaching a singularity. As singularities are invariant to rescalation, we can conclude that

the error propagation when solving the linear system for joint increments will have the same

behavior for any scale chosen for angles and distances.

Convergence and singularities

Regarding Equation (2.4), an appropiate inverse of the Jacobian matrix must be applied to make

the algorithm converge to zero error. The Jacobian Pseudoinverse (JP) algorithm is widely used,

as previously mentioned, it being a generalized inverse for non-square matrices that can be

18 State of the Art

defined as J† = JT (JJT)−1 when J is full-rank. With this inverse, the JP update rule is:

∆q = J†e, (2.7)

e being the task space positioning error.

When a robot reaches a singularity, the algorithm might get stuck in a point or the pseudoin-

verse matrix may have too large values. By computing the Singular Value Decomposition (SVD)

of J:

J = UΣV T , (2.8)

and taking the singular values of J , σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0:

J =
n∑
i=1

σiuivTi =
r∑
i=1

σiuivTi , with ui and vi being the ith columns of U and V, respectively,

and r = max{i | σi > 0}.
As U and V are orthonormal matrices, the pseudoinverse of J is:

J† = V Σ†UT =
r∑
i=1

1

σi
viuTi . (2.9)

This expression shows that when the robot gets close to a singularity (one for which σi

becomes very small), very large gains occur when computing ∆q = J†e. In addition, the CN of

the pseudoinverse is κ(J†) = σ1
σn

, which tends to infinity at a singularity, thus losing numerical

precision.

In Chapter 3, we provide a comparative overview of the different CLIK algorithms found

in literature, also regarding numerical error propagation, which is sometimes forgotten. When

analyzing these algorithms, the step gain α can be omitted, as it only affects the locality of

convergence.

2.2 Bimanual manipulation

Bimanual manipulation allows robots to perform more complex tasks than a single-limb robot.

Smith et al. [68] define bimanual manipulation as a subtype of dual-arm manipulation, where

both arms are coordinated so that they are performing the same action in the sense a single arm

can’t possibly do its part without the other arm.

While a lot of attention in literature [68] is focused on how to manipulate or plan a task, less

importance is given to the arms configuration. Usually, a humanoid-like configuration is chosen,

to make the robot more human-friendly [69], but when deciding how to use two robots in a

collaborative manner, it is therefore obvious to question if a humanoid-like configuration would

2.3 Compliant control and wrench estimation 19

be the best, for example, for folding clothes. A first step towards this aim is to analyze the robot’s

workspace. In [70], a discretized workspace is used with information about the probability

of solving the Inverse Kinematics (IK) with random orientations at each Cartesian position,

and also manipulability data, an indicator of dexterity and distance to a singularity [57], in

order to decide the grasping points for bimanual manipulation. However, this work exploits

an existing humanoid robot, which may not have been specifically designed for the task being

tackled. Zacharias et al. [71–73] plot the 3D Cartesian position workspace by initially drawing

spheres, whose color varies with the percentage of inverse kinematics solutions found for each

point. Moreover, they propose to use different shapes at each point to represent orientations,

depending on the feasible end-effector orientations at each position, but their later work also

focuses on optimizing manipulation with a given bimanual robot, rather than deciding its arms

configuration. In these terms, few studies about such relative positioning of arms have been

made to improve the kinematics capabilities of a bimanual robot.

Figure 2.1: Kinesthetic teaching of a task to a WAM robot (left) and motion reproduction with
a compliant controller (right).

2.3 Compliant control and wrench estimation

The interest in human-robot interaction is growing nowadays, thanks to the increasing avail-

ability of more compliant robots with low inertia, making them safer to move in a soft or fragile

environment, in which we could include interaction with humans. Tasks like placing a scarf on

a mannequin (see Fig. 2.1) can be taught to the robot by using Dynamic Movement Primitives

20 State of the Art

(DMP) and then reproduced with high precision. However, in compliant environments, there

is usually a tradeoff between precision and safety, since moving the robot with more precision

(commonly with a high error-compensating term) will make its motion stiff, which makes it

dangerous for a human. The robotics research community is actively working on generating

solutions to realize robotics abilities to support daily life domestic tasks [74–76], such as manip-

ulating cloth (see Fig. 2.2). For this reason, model-based controllers such as Computed Torque

Control (CTC) [77] can be used, for which we need an Inverse Dynamic Model (IDM) of the

robot, i.e., the mapping from the position, velocity and acceleration to the total torques acting

on the robot. The IDM of a robot can be computed by derivating its mechanical energy, or by

iterative methods (see [4], Chapter 7), or fitted by a regression model from real execution data,

such as Locally Weighted Projection Regression (LWPR) [78].

Robots able to safely interact with their surroundings should have structural features like

lightweight links and coupled joints actuators mechanisms [16] enabling them to perform com-

pliant motions. Besides these, their low-level control architecture should avoid excessive stiff-

ness, usually imposed by accuracy demands, as mentioned above.

Another major ingredient for the achievement of compliant robot behaviors is the need to

supervise the external forces (and torques) generated along the robot motions. External forces

may play diverse roles during the planning and execution of compliant robot motions. For

instance, in force control schemes, the external manipulator wrench fe ∈ R6 is compared to a

reference signal in order to have a desired end-effector interaction with the environment. Other

schemes such as compliant control, impedance control or hybrid control also use the external

wrench data to compute the corresponding system action [4].

For the purpose of making available the external wrench felt by a robot manipulator, expen-

sive sensors are often used. In order to avoid the use of such devices, recent works [79] [80]

present approaches for estimating the wrench or, at least, the joint torques due to an external

action during manipulation.

However, most of the current approaches are based on the availability of an accurate analyt-

ical model of the robot dynamics, which may lead to inaccuracy due to modeling errors. This

is specially true in modern robotics systems that are highly non-linear and can no longer be

accurately modeled using the rigid body dynamics. In the specific case of the Barrett WAM [16],

the analytical dynamic model becomes harder and much more complex to obtain for structural

reasons, given that several spinning drives, some of them coupled, are in different reference

frames than the joints they actuate with only one being measurable, resulting in effects such as

reflective inertias.

Moreover, in a lightweight robot, any small error in the dynamic parameters like the link

masses represents a large percentage error for the model accuracy. Interestingly, those structural

2.3 Compliant control and wrench estimation 21

Figure 2.2: 7-DoF WAM robot holding none, one and two cloth garments. A proper external
force estimation would help the robot to know how many garments have been picked after an
action.

features that allow a robot to be compliant make it harder to model and, therefore, estimation

of contact forces using state-of-the-art methods is more difficult, which conversely imposes

restrictions on the exploitation of the physical compliance capability of the robot.

Modern methods for wrench estimation are based on the use of state space observers [79]

[80]. The rationale behind this idea is that the robot is experiencing external forces that produce

changes in its state, therefore, by estimating the internal state of the system and assuming that a

certain part of the total inputs is known, an estimation of perturbations (external inputs/forces)

can be completed. As described in Section 4.1.1, such observers are based on the availability of

the analytical model of the manipulator dynamics.

2.3.1 Learning robot inverse dynamics

The dynamics of a serial robot, as described in [4], is given by:

M(q)q̈ + C(q, q̇)q̇ + G(q) + Ff (q, q̇) = uT, (2.10)

where q, q̇, q̈ ∈ Rn denote joint angles, velocities and accelerations of the robot with a number d

of Degrees of Freedom (DoF), M(q) represents the inertia matrix, and C(q, q̇),G(q) and Ff (q)

are the Coriolis and centripetal, gravity and friction forces acting on the robot. Finally, uT ∈ Rn

is the vector of total input forces to the joints. We assume that such forces may proceed from

22 State of the Art

applied torque commands uc and from certain external torque ue. Thus,

uT = uc − ue.

At the same time, the inverse model of the robot dynamics is a function mapping the robot

state to the actions that would generate it, which in the absence of external forces would be

given by

uc = g(q, q̇, q̈). (2.11)

To obtain this function g, model learning is a very active research field in robot control

[77] where methods are developed allowing the approximation of (2.11) using input/output

data. Online model learning includes methods like Locally Weighted Projection Regression

(LWPR) [78], Local Gaussian Process (LGP) [77] or Gaussian Mixture Models (GMM) [81].

These approaches allow to improve the model even when the system is in operation.

Assuming that the function g has been learned, it can be stated that, given a dynamic state

produced by both control and external torques, the inverse model would provide,

uT = uc − ue = g(q, q̇, q̈),

and as the vector uc is assumed to be known, the estimation of the external torque would be

straightforward.

However, there are a number of practical considerations when using a state observer for the

external wrench estimation. The following two are considered the most relevant for this work:

Local learning vs. global learning

In the case of a 7-DoF robot such as the WAM robot, learning a function that maps a joint

position, velocity and acceleration to a torque vector means a 21-dimensional input and a

7-dimensional output. This high dimensionality makes global learning difficult to achieve,

as it would generate a large number of kernel functions to evaluate when using the model,

and so a slow computation rate. In addition, various unmodelled friction factors such as

static/dynamic friction, motor cogging and others cause different residual friction in the same

position, depending on the trajectory followed.

Learning with and without accelerations

Measurements obtained for the WAM arm are joint positions, velocities (obtained by differenti-

ating positions), and accelerations (as a second derivative). These derivatives are very sensitive

to noise, making the simple approximation unsuitable.

2.3 Compliant control and wrench estimation 23

A very small noise in a joint position measurement results in a very large noise in acceleration

measures. Even with the use of heavy filters, such as Parks-McClellan filters [82], which

minimize error in pass-and-stop bands and are used here to damp frequencies representing high

acceleration in joints, the noise could not be completely mitigated to have a good dataset for

learning a task. In order to overcome this problem, in this work we decided to use the trajectory

given by joint position q, velocity q̇, and acceleration q̈ of the robot when learning a task and,

instead of learning the whole dynamic system, we propose to learn the function:

n(q, q̇) = uc −M(qd)q̈d = C(q, q̇)q̇ + G(q) + Ff (q, q̇),

that is, assuming that the only parameter of the robot to be known is the inertia matrix M(·),

uc −M(qd)q̈d = n(q, q̇).

This function, n(q, q̇), only depends on the joint positions and velocities which allow for a more

accurate learning. Figure 2.3 presents an example of the data used to learn this relation.

100 200 300 400 500 600 700 800 900 1000
−2

−1

0

1

2

3

4

Points

ra
d

 −
 r

a
d

/s
 −

 N
m

Learning Data for Inverse Dynamics Model

Position

Velocity

Torque

Figure 2.3: Data used for learning a trajectory, using position and velocity as inputs and torque
as output.

2.3.2 Fitting an analytical model

While the mentioned methods show acceptable performance when running a controller with an

inverse dynamic model, none of these methods takes into account the impact of high hysteresis

on the dynamics of some robots, as it occurs with the WAM robot, where for non-high speed

24 State of the Art

motion the friction is usually the second highest torque acting on the robot after gravity. In such

robot, the inertia, Coriolis and gravity terms can be analytically modeled [4], but the friction

term needs a particular model.

Building a friction model

As it has been already mentioned, in the absence of external forces, we can model/compute the

inertia, Coriolis, centripetal and gravity forces, and the controller torques are assumed to be

known, thus we can infer the values of friction as:

Ff = uc −M(q)q̈−C(q̇,q)−G(q), (2.12)

and use them to fit a friction model. To obtain the terms in (2.12) in the case of the WAM robot,

the code provided by the manufacturer already included an application to calibrate the gravity

values, while geometry, masses and inertia terms were also provided by the manufacturer and

can be used to obtain the Coriolis, centripetal and inertia terms.

Basic friction model

As mentioned, the friction torque applied to any joint of the robot when it moves at low speed

is usually the second highest torque acting on the robot after gravity. This friction has a high

hysteresis in its dynamic behavior which makes it very difficult to model. The reason to fit the

friction as an hysteresis function, rather than with a complete set of basis functions, is that we

know the qualitative behavior of the friction. Thus, using a proper fitting function will be more

efficient than using any other type of kernel in terms of precision, number of parameters, and

samples required for the fitting process.

At first, this torque was modeled as a viscous friction Ff = cq̇, where q̇ is the joint’s velocity

and c is a constant that varies depending on the joint that moves. This model was not very

precise and did not model the friction with a high degree of accuracy because some other

variables had not been considered, such as the position of the joints.

In [83], the friction is modeled with an initial model as:

F if = b1atan(sq̇i) + b2q̇i, (2.13)

where q̇i, is the ith joint velocity and b1, b2 and s are parameters obtained with least-squares

techniques.

However, this model not only is independent from position (which we observed as a fact

from data), but also has no hysteresis value (friction is zero for zero velocity). Thus we added

2.4 Summary 25

a term to model this hysteresis with a parameter z defining its amplitude and the sign of the

acceleration of the joint, leads to our basic hysteresis model:

F if = b1atan(sq̇i + zsign(q̈i)) + b2.q̇i, for i = 1..7 (2.14)

This basic model did not offer the level of accuracy required because it did not show the

linear dependence the friction could have wrt. the position of the joints as seen in Section 4.2

of this thesis.

2.4 Summary

In this chapter, we provided the existing basis for a better understanding of the work presented

in the first part of the thesis. We introduced the Closed-Loop Inverse Kinematics (CLIK) algo-

rithms in Section 2.1, defining the basic update rule and key elements to be used in Chapter

3 such as the robot Jacobian, the pseudoinverse matrix, the singular value decomposition or

the condition number. Moreover, we introduce the literature regarding bimanual workspace

analysis in Section 2.2, and Section 2.3 introduces the dynamics equation of a robot, as well as

the problematics of obtaining a reliable inverse dynamic model.

In Chapter 3, we analyze the performance of most of the existing CLIK algorithms with their

associated conditioning and convergence, and present two improvements resulting in a more

stable IK algorithm, which can then be used for converting robot Cartesian space commands

into joint space commands.

Chapter 4 proposes a stable wrench estimator when using a compliant controller. In particu-

lar, feed-forward controllers are used. Section 4.2 also presents an improvement of the dynamic

models needed for such feed-forward controllers for the specific case of the Barrett WAM robot.

3
Inverse Kinematics and Relative Arm Positioning

This chapter proposes two enhancements to the current state-of-the-art Closed-Loop Inverse

Kinematics (CLIK) algorithms in Section 3.1, to then apply them to analyse and assess the

relative positioning of two arms for cooperative manipulation in Section3.2.

3.1 Inverse kinematics of redundant robots

In tuning the Inverse Kinematics (IK) of the 7-DoF WAM manipulator to the particular require-

ments of some applications, we noticed that the existing generic KDL algorithm [84] could

sometimes fail due to joint limits. We tried other open-source IK algorithms [85], but none

performed to entire satisfaction, thus we explored other possibilities for redundant IK.

Focusing on solving the IK with feasible joint values, two enhancements upon the state-of-

the-art are proposed. The first one is a way of filtering the Jacobian matrix that ensures a given

numerical conditioning, while the second uses the advantages of the latest works on continuity

of inverse operators applied to robotics [86] with a controlled step size [55] to smoothen the

motion of the robot. All the analyzed algorithms, as well as the proposed enhancements,

have been implemented on a Barrett WAM robot and tested both in simulation and in real

experimentation.

For the methods presented, we will be using the abbreviations in Table 3.1.

3.1.1 CLIK algorithm issues

In this section, we present a comparative overview of the different state-of-the-art CLIK methods

present in literature, and the problematics of each of them regarding convergence and numerical

stability. As stated in Chapter 2, CLIK methods are based on inverting the robot’s geometric

Jacobian in order to map errors to joint changes, as in Eq. 2.4.

28 Inverse Kinematics and Relative Arm Positioning

Table 3.1: Methods abbreviations

Name Abbreviation Equation/Section
Jacobian Pseudoinverse JP (2.7)
Jacobian Transpose JT (3.1)
Selective Damping SD Section 3.1.1
Jacobian Damping JD (3.3)
Jacobian Filtering JF (3.6)
Error Damping ED (3.7)
Improved Error Damping IED (3.8)
Singular Value Filtering SVF Section 3.1.5
Jacobian Weighting JW (3.16)
Gradient Projection GP (3.17)
Joint Clamping JC (3.20)
Task Augmentation TA Section 3.1.3
Task Priority TP (3.25)
Continuous Task Priority CTP (3.26)

Jacobian transpose

To gain computation speed, the Jacobian Transpose (JT) method uses, instead of an inverse of

the matrix J, its transpose with the following control rule [87]:

∆q = JTe, (3.1)

where JT is now the transpose of the geometric Jacobian of the manipulator. This method has a

computationally very fast step, although it may require more steps than other methods, and not

being a least-squares solution can derive in chattering.

Following, other alternatives to Eq. (2.4) are described, to reduce both the gain magnitude

or large conditioning on the matrix inversion.

Selectively damped pseudoinverse (SD)

As previously seen, a small singular value in the Jacobian yields large gains in all directions.

In [55], a new way of controlling the step magnitude is defined, which consists in damping

differently the effect of each one of the components of the position error, expressed in the basis

of the singular value decomposition of J. Hence small singular values of the Jacobian, which

would turn into large gains, are damped more severely.

In [55], a unitary error in the direction of one of the eigenvectors in the task space (columns

of U) is taken, e = ui, and a bound on the joint variation associated to this error component

3.1 Inverse kinematics of redundant robots 29

is obtained, which is then used to damp the gain of the corresponding error component and,

finally, the gains over all the error components are added up. This results in a ∆q with limited

gains at each component of the task space.

Jacobian damping (JD)

To avoid the discontinuity of the JP operator which results in a large conditioning of the Jaco-

bian, meaning numerical error, the Jacobian Damping or singularity robust pseudoinverse was

proposed [88] [89] [48] [49] [60]. If we rewrite the Jacobian matrix, using its singular value

decomposition, as:

JD =

d∑
i=1

σ2
i + λ2

σi
uivTi , (3.2)

then the Jacobian Damping algorithm will use the following pseudoinverse:

J†D = J†D = JT (JJT + λ2I)−1 =

d∑
i=1

σi
σ2
i + λ2

viuTi , (3.3)

which, for some small λ (usually around 10−3), is almost the same matrix as the ordinary

pseudoinverse when σ2
i � λ2 ∀i < d, and when the smallest singular value σd is close to

zero, limσd→0
σd

σ2
d+λ2

= 0, instead of∞.

The JD algorithm avoids discontinuities in the Jacobian’s singular values, and it provides the

solution minimizing ‖J∆q−e‖+λ2‖∆q‖, which will result in a smaller norm solution. However,

a small λ value does not guarantee that ‖∆q‖ will be small and an analysis of the CN shows it

provides no guarantee of keeping the numerical error within an acceptable range.

Let g(σ) = σ
σ2+λ2

be the function used instead of a trivial inversion 1/σ when computing

the pseudoinverse of the Jacobian as in Eq. (2.9). This function g, as we see in Fig. 3.1, has a

maximum at σ = λ with a value of g(λ) = 1
2λ .

Now, considering the problem of solving e = JD∆q, we can distinguish several cases

depending on the least singular value (σd) of the geometric Jacobian:

- σd > λ, or λ2

σi
< σd < λ, ∀i 6= d. Then g(σd) > g(σi), ∀i 6= n and the condition number is:

κ(J†D) =
σd(σ

2
1 + λ2)

σ1(σ2
d + λ2)

σd→λ−→ λ2 + σ2
1

2σ1λ
∈ O

(
1

λ

)
(3.4)

- ∃i, j so that λ2

σi
< σd <

λ2

σj
. Then we have g(σi) < g(σd) < g(σj) and, as the condition

number bound will not depend on σd, it will be bounded.

30 Inverse Kinematics and Relative Arm Positioning

Figure 3.1: Inverse of a singular value for the Jacobian Damping algorithm for λ = 10−3. Note
its maximum at g(λ) = 1

2λ .

- σd < λ2

σi
, ∀i 6= d. Then g(σd) < g(σi) and we now have (for some k):

κ(J†D) =
σk(σ

2
d + λ2)

σd(σ
2
k + λ2)

σd→0−→ ∞ (3.5)

This means that, on the one hand, λ should have a high value to avoid the maximum 1/(2λ)

of the condition number at σd = λ, but on the other hand, λ must also have a very small value

to avoid entering the last case, in which the conditioning tends to infinity as σd decreases.

As it is not always necessary to damp the Jacobian, and in many cases the necessary damping

may vary, a singular region can be defined so that damping is applied only when entering it. To

this purpose, a variable damping factor, leading to Jacobian Filtering (JF) can be used as in [49]:

λ2 =

 0 if σd ≥ ε

(1− (σdε)2)λ2
max if σd < ε

(3.6)

where σd is the smallest singular value of the Jacobian matrix, ε is the width of a singular region

(in terms of singular values) in which the damping factor takes a non-zero value, and λmax is

the maximum damping factor allowed.

When using the JF algorithm, the function g becomes gF (σ) = σ
ασ2+λ2

, with α = 1− (1/ε2),

so the CN behavior does not change wrt. the JD algorithm.

Error damping (ED)

Another option for damping the pseudoinverse matrix is to use the current positioning error.

In this way, Chan and Lawrence [90] proposed an Error Damped (ED) pseudoinverse matrix

3.1 Inverse kinematics of redundant robots 31

defined as:

J†ED = JT
(
JJT + EIm

)−1
=

d∑
i=1

σi
σ2
i + E

viuTi , (3.7)

where E = 1/2eTe. Using this damping term strongly reduces the gains when far from the goal,

but if σd < E
σi

, ∀i, then κ(J†ED) ∈ O
(

1
σd

)
which can still become a large conditioning.

Equation (3.7) may have small singular values when the error is small. In such case, the

condition number would rise again. To avoid this situation, in [91], an improved version of the

error-damped pseudoinverse (IED) is proposed by adding a term ωIm = diag(ω1, ..., ωm), being

ωi ' 10−1l2 ∼ 10−3l2, with l the characteristic length of the links [91]:

J†IED = JT
(
JJT + EIm + ωIm

)−1
=

d∑
j=1

σi
σ2
i + E + ωi

viuTi . (3.8)

This last proposal (3.8) is more robust than the filtering/damping methods, but when the

goal position is singular, the inversion behaves in the same way and it may suffer conditioning

issues as all the other filtering algorithms.

3.1.2 First enhancement: Singular Value Filtering (SVF)

In order to overcome the conditioning problems of the JD, we propose to modify the Jacobian

matrix’ singular values so that it never loses rank and its condition number is bounded. To this

purpose, if we take the SVD of J :

J = UΣV T =
m∑
i=1

σiuivTi , (3.9)

then we define

Ĵ =

m∑
i=1

hν,σ0(σi)uivTi , (3.10)

where

hν,σ0(σ) =
σ3 + νσ2 + 2σ + 2σ0

σ2 + νσ + 2
(3.11)

is our proposed filtering rational function, where σ0 is the minimum value we want to impose to

the singular values of J, and ν is a shape factor, that regulates the curvature (shape) of function

hν,σ0(σ).

With Eq. (3.11) we can compute (assuming σi > σi+1 ∀i)

Ĵ† =
d∑
i=1

1

hν,σ0(σi)
viuTi , (3.12)

32 Inverse Kinematics and Relative Arm Positioning

to use it as the pseudoinverse. In this expression, it can be easily seen that hν,σ0(σ) verifies:

- hν,σ0(σ) is continuous and differentiable on the positive side of R which is where the

singular values are.

- limσ→0 hν,σ0(σ) = σ0, ∀ν , thus σ0 is the minimum value we will allow for the singular

values of the Jacobian matrix.

- hν,σ0(σ) has an asymptote of equation y = σ for σ → ∞, as limσ→∞
hν,σ0 (σ)

σ = 1 and

limσ→∞ (hν,σ0(σ)− σ) = 0, ∀ν and ∀σ0.

- hν,σ0(σ) is monotonic wrt. σ if ν and σ0 are defined verifying ν > σ0 and 2 > νσ0,

which are not very restrictive conditions. This monotonicity guarantees that the condition

number of the pseudoinverse (3.12) is always:

κ(Ĵ†) =
(σ3

1 + νσ2
1 + 2σ1 + 2σ0)(σ2

d + νσd + 2)

(σ2
1 + νσ1 + 2)(σ3

d + νσ2
d + 2σd + 2σ0)

. (3.13)

Therefore we have:

lim
σd→0

κ(Ĵ†) =
(σ3

1 + νσ2
1 + 2σ1 + 2σ0)

σ0(σ2
1 + νσ1 + 2)

=
A(σ1)

σ0
, (3.14)

which is always bounded by the inverse of the minimum value assigned to the singular

values.

To sum up, Ĵ has lower-bounded singular values and tends to J when its singular values

move away from 0. Moreover, with this filtering, the Jacobian matrix never loses rank as the

singular values are strictly positive.

Figure 3.2 displays the condition number of different methods in the case of a 4R planar

manipulator moving towards a singularity, for a damping factor of λ = 10−2, and allowing a

maximum damping factor on the filtering algorithm (variable damping factor) of λmax = 5λ.

The results, plotted in logarithmic scale, show that all previous filtering methods fail, at some

point, at keeping the CN stable, while our proposal, with σ0 = 0.005, ν = 10, presents a bounded

conditioning.

As a first test, these filtering algorithms have been applied to an example trajectory with a

4R manipulator, as recorded in Fig. 3.3, where it is clear that, while the JP and the JF have very

large gains, and the JT and the IED are easily stuck and still unable to solve the gain issue, the

SD performs smoothly, and our proposal, combining a method to avoid large condition number

(SVF) with a bound on the gains (SD) makes the robot move smoother than with the other

methods presented up to this point.

3.1 Inverse kinematics of redundant robots 33

Figure 3.2: Condition Number, in logarithmic scale, for different methods on a 4R planar robot
approaching a target singular position.

In addition, Table 3.2 shows the reprojection error on the task space for each algorithm, i.e.,

the computed difference on each eigenvector component between JP and the other alternatives.

We can see that, the larger the parameter ν is, the smaller the reprojection error, thus a rea-

sonably large number verifying σ0 < ν < 2/σ0 is recommended (a value of 10 has been used

throughout this chapter).

Table 3.2: Reprojection error.

Method J? J(J†e− J?e)

JP 1
σ 0

JT σ σ − 1

JD σ
σ2+λ2

λ2

σ2+λ2

JF σ
σ2+λ2max(1−(σ/ε)2)

λ2max(1−(1/ε)2)
σ2(1−(σ/ε)2)+λ2max

ED σ
σ2+0.5·eT e

0.5·eT e
σ2+0.5·eT e

IED σ
σ2+0.5eT e+ω

0.5·eT e+ω
σ2+0.5eT e+ω

SVF σ2+νσ+2
σ3+νσ2+2σ+2σ0

σ0
σ3+νσ2+2σ+2σ0

34 Inverse Kinematics and Relative Arm Positioning

Figure 3.3: Behavior of some CLIK algorithms (see Table 7.1 for notation) applied to a 4R planar
manipulator. The upper plots show joint trajectories, with joint limits marked with horizontal
lines. Note the different scales for the x-axis. The lower plots show the robot frame, evolving
from a light color pose at the start position to a darker one, with its end-effector’s trajectory
marked in a thiner black line.

3.1 Inverse kinematics of redundant robots 35

3.1.3 Multiple tasks

Usually, when computing the IK of a robot, it is a good idea to compute not just a solution of

the inverse kinematics, but the solution that behaves best according to a certain criterion. Even

more with redundant robots, where the number of solutions may be infinite.

Jacobian weighting (JW)

Apart from considering metrics on the task space, metrics on the joints space can also be used.

This metric (which can be variable) can be used to achieve secondary goals, prioritize the motion

of certain joints, or even block a joint. In [92], Chan and Dubey defined the ∆q that minimizes

‖∆q‖W =
√

∆qTW∆q, (3.15)

where W is an m×m diagonal matrix applying a weight to each joint depending on its relevance

(according to a specified criterion), instead of the common Euclidean norm. Taking ∆qW =

J†W∆x, then

∆q = W−1JT (JW−1JT)−1e, (3.16)

where the influence of wi = Wi,i is that, the greater the wi, the less qi will vary in the given step.

Gradient projection (GP)

Another optimization option is to create a secondary task as a gradient of a function, and project

it to the kernel of the primary task.

Given a cost function H, one can calculate its gradient ∇H, and project it onto the kernel

of the matrix J. Knowing that for any position of the manipulator, δx = Jδq. This means that

if δq ∈ ker(J), then δe = 0, so the added term would not affect the error. In practice, as the

step is not infinitely small, the linearization done by projecting the vector to the nullspace would

indeed generate some additional error.

This projection onto the kernel is accomplished by multiplying any vector v by the matrix

P = I − J†J.

Hence the GP is expressed as:

∆q = J†e + µP∇H, (3.17)

with µ a scalar indicating the magnitude of the projection, and ∇H the vector to project.

36 Inverse Kinematics and Relative Arm Positioning

Task priority (TP)

The GP idea can be generalized to Task Priority (TP) algorithms [93], where an ordered set

of tasks t1, ..., tk is specified, their errors e1, ...ek and Jacobians J1, ...Jk are computed, and

next each task error is projected onto the kernel of the Jacobian of the previous tasks. Then

∆q1 = J?1e1, where ? is an inverse operator (commonly, the pseudoinverse). For each i from 2

to the number of tasks k, one can compute

∆qi = ∆qi−1 + (Ji · PAi−1)?(ei − Ji∆qi−1), (3.18)

where PAi−1 = I − JAi
?
JAi is the kernel projection operator and JAi is an augmented Jacobian of

the first i tasks

JAi =
[

J1; . . . ; Ji

]
.

For online position-tracking problems, a variant of this method can be implemented as

explained in [94] to avoid singularity issues.

Task augmentation (TA)

Instead of projecting a secondary task onto the kernel of the robot position tracking task, in the

case of a redundant robot a secondary task can be added as a new row of the Jacobian matrix

to complete it and obtain a square matrix [95].

Completing the Jacobian matrix to a square matrix has the advantage of allowing to use its

inverse directly when it is full rank. Nevertheless, it is possible that the added rows are linearly

dependent on the geometric Jacobian rows. To overcome this problem, a general weighted

Jacobian can be used [96] in which a Gram-Schmidt orthonormalisation is performed to ensure

that the added task does not originate rank problems.

Moreover, an activation threshold may be used for the added task (e.g., when it entails

avoiding joint limits).

3.1.4 Joint limit avoidance

Joints usually have limits on their prismatic/rotational ranges, and a solution to the IK with

a joint value outside its limits is not a feasible solution. Hence one of the most important

properties of a good IK solution is that it lies inside these limits. The redundant degrees of

freedom of a robot are often used to achieve such a goal.

3.1 Inverse kinematics of redundant robots 37

Joint limits as a secondary task

A first approach to avoid joint limits may be to use gradient projection. One can use a joint-

centering function and project it to the kernel of the main task. For example, taking [97]

H = − 1

2m

m∑
i=1

(qmaxi − qmini)2

(qmaxi − qi)(qi − qmini)
, (3.19)

which tends to infinity when approaching a joint limit, and has a minimum value at the joint

range’s center.

Using the GP equation (3.17) with the gradient of the H function defined, joints are pushed

to their range center values, but joint limits are not always avoided. This is due to the fact

that the push-to-center function H is only activated on the kernel of the position reaching task.

In [98], the obtained joint variations are rescaled at each iteration to keep joints within the valid

range.

Avoiding joint limits with activation matrices

To avoid joint limits, one can also use a weighting matrix that penalizes the motion of the joints

approaching a limit [92], or even block them. This is called Joint Clamping (JC).

In [99], a factor is added when updating the joint state at step k: qk+1 = qk +H∆qk is used

instead of qk+1 = qk + ∆qk, where H is a diagonal activation matrix, with:

hi =

 0 if qi > qmaxi or qi < qmini

1 otherwise

This control law clamps any motion that violates joints’ limits, but does not push the joints

away from them. In this way, when the robot reaches a joint limit, it may loose this degree of

freedom, and go on with the others to reach the target. The algorithm follows the expression:

∆q = H(JH)†e. (3.20)

A problem that may arise when using this algorithm is that, even with an activation matrix

continuous wrt. joint activation as in [99], the pseudoinverse operator is not continuous with

respect to this activation matrix. Theorem 4.2 in [100] states that the effect of any nonzero hi
in (3.20) is the same (in the sense that there is no dependency on the value hi as long as it is not

zero). In fact, it can also be seen that damping the pseudoinverse does not solve the problem,

outside of a very small interval [101]. To resolve these issues, this previous work proposes a

continuous (wrt. activation matrix) pseudoinverse operator, defined as follows.

38 Inverse Kinematics and Relative Arm Positioning

For task-activation matrices G = diag(g1, .., gn):

J⊕G =
∑

P∈℘(N)

(∏
i∈P

gi

)(∏
i/∈P

(1− gi)

)
J†P , (3.21)

℘(N) being the power set of N = {1, .., n}, and JP = G0J , where G0 is a square diagonal matrix

with G0i = 1 if i ∈ P and 0 otherwise.

And for joint-activation matrices H = diag(h1, .., hm):

JH⊕ =
∑

Q∈℘(M)

∏
i∈Q

hi

∏
i/∈Q

(1− hi)

J†Q, (3.22)

℘(M) being now the power set of M = {1, ..,m}, JQ = JH0, where H0i = 1 if i ∈ P , and

0 otherwise. The idea behind these pseudoinverse expressions is that the transition between

activated and deactivated tasks is smooth wrt. the activation parameters hi, gi. For further

development of these inverses, see [101].

Therefore, by using:

∆q = JH⊕e, (3.23)

the continuity problem is solved. However, when blocking a joint, the robot would still lose one

degree of freedom and eventually may not reach the goal.

Joint limits as the primary task

Although one can add secondary tasks to avoid joint limits, the only way to guarantee such

avoidance is to set it as the primary task and include the positioning goal as a secondary task.

To this purpose, it is defined J1 = Hm, m being the number of joints of the manipulator, and

matrix Hm as

Hm = diag(hβ(qi)), (3.24)

where hβ is a continuous function (usually a piecewise function, as in [86]) that progressively

deactivates the joint when it reaches a specified distance β from its limits.

Then the main task error in (3.18) is defined as e1 = −λJLq, λJL being a scalar to weigh

the importance of joint limits. Typically, λJL ∈ [0.1, 0.5].

With these definitions of e1 and J1, ∆q1 is zero when the joints’ positions are far from their

limits (at a distance greater than β for each joint), and has a push-to-center value when in the

limits neighborhood. On its kernel (i.e., the joints which are not forced to move to the center

3.1 Inverse kinematics of redundant robots 39

due to their proximity to the limit), a secondary task is applied to reach the goal with J2 = J,

the Jacobian matrix of the robot, and e2 = xd − x, the positioning error.

Then the algorithm following this task-priority hierarchy is:

∆q = J1e1 + J2(Im − J†1J1)†(e2 − J2J1e1). (3.25)

Moreover, this task-priority scheme can be performed with the continuous pseudoinverse

operator [86], to get: ∆q1 = J⊕H1 e1, H being the same matrix defined in (3.24). And the

following tasks would be defined as:

∆qi = ∆qi−1 + J
P i−1
⊕ ⊕
i (ei − Ji∆qi−1), (3.26)

where P 0
⊕ = I, and P i⊕ = P i−1

⊕ − JP
i−1
⊕ ⊕Ji is the kernel projection operator. For the case

considered, (3.25) is equivalent to:

∆q = ∆q1 + J
P 1
⊕⊕

2 (e2 − J2∆q1), (3.27)

with ∆q1 = JH⊕1 e1 = H(−λjlq), as J1 = Im and e1 = −λjlq. Therefore:

∆q = H(−λjlq) + J
(Im−H)⊕
2 (e2 + λjlJ2Hq). (3.28)

3.1.5 Second enhancement: pseudoinverse smoothing

The TP scheme may present large steps and gains, resulting in an almost-chaotic behavior. To

solve these uncontrolled gains, it would be necessary to avoid large steps and condition numbers.

Paying attention to (3.25), we can reorder the terms and separate the position error-dependent

terms (e) from those that don’t depend on it:

∆q =
(
I − J(Im−H)⊕J

)
H(−λjlq) + J(Im−H)⊕e. (3.29)

We intend to apply the ideas underlying SD [55], so as to damp selectively each one of the

task space eigenvectors of the Jacobian matrix J , or its filtered version with SVF, taking care of

the dependency of the position variation J∆q with respect to the position error e.

To do so, we have to find a bound for J∆q, i.e., the position variation after each step, which

can be written using (3.29) and separating the position error-depending part (e) from the rest

as follows:

J∆q = J
(
I − J(I−H)⊕J

)
H(−λq) + JJ(I−H)⊕e. (3.30)

Now, after calculating J(I−H)⊕, we can use its SVD, keeping in mind that the result of this

40 Inverse Kinematics and Relative Arm Positioning

decomposition has to be expressed knowing J(I−H)⊕ is an inverse of J, thus

J(I−H)⊕ = V̂ Σ̂−1ÛT =
d∑
i=1

σ̂−1viuTi . (3.31)

And knowing that (uTk · e) = (uTk ·
d∑
s=1

(uTs · e)us) =
d∑
s=1

(uTs · uk)(uTs · e) in the expression

J(I−H)⊕e =
r∑
i=1

σ̂−1
i viuTi e, (3.32)

we can take, by analogy to the SD algorithm, for e = us, the joints variation ∆qs used by SD as:

J(I−H)⊕us = σ̂−1
s vs ⇒ ∆qs = σ̂−1

s Jvs (3.33)

which has an effect on the jth joint of:

∆qsj = σ̂−1
s Jjvj,s, (3.34)

where vj,s is the jth position on the sth column of matrix V , and Jj is the jth column of matrix

J.

Therefore, adding the norms for all joints we get the bound Ms as defined in [55]:

m∑
j=1

|∆qsj | ≤ σ̂−1
s

m∑
j=1

|vj,s|‖Jj‖ = Ms. (3.35)

This Ms is a bound on the position change gain in the task space generated by the error-

dependent part of the algorithm, for each component of the error, and thus with it we can set,

for each s = 1..n, the maximum joints change γmax:

γs = min(1, 1/Ms)γmax, (3.36)

to then proceed exactly as in SD:

We will first compute the joints change for each error component (m-dimensional vector):

ws = σ̂−1
s vs

(
uTs · e

)
, (3.37)

3.1 Inverse kinematics of redundant robots 41

and we will bound this variation with the γs obtained in (3.36):

∆qs =

 1 if ‖ws‖ < γs
ws
‖ws‖γs if ‖ws‖ ≥ γs

(3.38)

Now, differing from SD algorithm, we have to add the non error-dependent part of the

algorithm to the sum of each component :

∆q̂ = (I − J(I−H)⊕J)H(−λq) +
∑
s

∆qs, (3.39)

to finally bound the total joint variation by γmax:

∆q =

 1 if ‖∆q̂‖ < γmax
∆q̂
‖∆q̂‖γmax if ‖∆q̂‖ ≥ γmax

(3.40)

In this way, we ensure that ∆q is bounded, respects joint limits, and it is sufficiently well-

conditioned.

The described joint limit-concerned methods have also been compared on an example trajec-

tory in the 4R manipulator in order to check which ones respect joint limits and which do not, as

displayed in Fig. 3.4. In all cases the joint limits are sometimes surpassed, as the push-to-center

value action is done a posteriori, but the following iteration pushes this joint value back to its

feasible interval. As expected, neither JW, nor GP or TA are capable of successfully avoiding

joint limits. On the other hand, JC is uneffective because it tends to block joints, losing degrees

of freedom.

Furthermore, CTP, which continuously activates/deactivates joints, is not capable of converg-

ing nor of maintaining a smooth trajectory. Our proposal solves these problems and significantly

improves performance.

3.1.6 Experimentation

As a benchmark to test both the reviewed and proposed algorithms, all of them have been

implemented in Matlab and C++ (using a ROS library) in a 7-DoF redundant WAM robot arm

(with Denavit-Hartenberg parameters as shown in Table 3.3) and their performance has been

tested as global IK solvers. To do so, 1000 random feasible initial and target positions have been

generated, using a uniform probability distribution for all joints within their limits, and mapped

into a Cartesian position with the forward kinematics function.

Note that, for the algorithms taking into account joint limits, this sampling as such was not

adequate to assess their performance, as the arm has several assembly modes (different arm

42 Inverse Kinematics and Relative Arm Positioning

Figure 3.4: Behavior of some CLIK algorithms (see Table 7.1 for notation) applied to a 4R planar
manipulator. The robot frame evolves from a light color start position (horizontal) to a darker
ending one, with its end-effector’s trajectory plotted in black (thin line). Note the different
scales for the x-axis. In the CTP algorithms, the joints have been allowed to cross joint limits to
show how they are capable of moving back to a centered joint value.

3.1 Inverse kinematics of redundant robots 43

Table 3.3: Denavitt-Hartenberg Standard parameters for the WAM robot arm, where d3 = 0.55,
d5 = 0.3 and d7 = 0.06.

link ai αi di qi qmini qmaxi

1 0 −π/2 0 q1 -2.6 2.6
2 0 π/2 0 q2 -2.0 2.0
3 a −π/2 d3 q3 -2.8 2.8
4 -a π/2 0 q4 -0.9 3.1
5 0 −π/2 d5 q5 -4.8 1.3
6 0 π/2 0 q6 -1.6 1.6
7 0 0 d7 q7 -2.2 2.2

configurations for the same end-effector position), which added to the joint limits restriction,

could make the desired configuration sometimes impossible to reach with the same assembly

mode as the initial configuration. This fact has an impact on CLIK algorithms by sometimes

requiring very different initial and final joint configurations, leading to moving the arm in

unintiutive ways so as to have feasible solutions. In these cases, a path planner is needed,

which is out of the scope of this study.

To avoid the mentioned situations, in the experiments involving algorithms taking into

account joint limits (those in Table 3.5), we generated the samples by obtaining an initial

joint position q0 and a final one qF . If |qi0 − qiF | < A, ∀i = 1..7, for a given constant value

A, the sample was accepted. This ensures that there exists a solution of the desired position in

the same assembly mode or another assembly mode close to it. This A parameter will be used

later to check the sensitivity of the different algorithms to the initial/ending position distance,

as shown in Fig. 3.5.

The results of a Matlab simulation can be seen in Tables 3.4 and 3.5, where the columns

in Table 3.4 show the percentage of solutions found, the average computation time (tsol),

the remaining error when convergence was not achieved (enosol), and the average number of

iterations needed to find a solution (itsol). In Table 3.5 an additional column (second) shows

the percentages of solutions where joint limits were respected. As the algorithms in Table 3.4 do

not consider joint limits, we only show this information in the second Table. The performance

of the reviewed state-of-the-art methods is compared with our proposals, which are highlighted

in bold face in the Tables. Besides the filtering enhancement SVF in different combinations, we

have used the CTP algorithm in (3.28) together with the SD, as proposed in Section 3.1.5, and

we have also combined them with SVF to compare results. With these data, we can draw the

following conclusions:

44 Inverse Kinematics and Relative Arm Positioning

Table 3.4: Behavior of the studied methods not concerned with joint limits for a sample of 1000
random initial and end positions for the WAM robot arm. Notation as in Table 7.1.

Method % sol. tsol (ms) enosol itsol
JP 100.0 42.6 - 12.2
JT 40.70 504.8 0.302 148.7
SD - γmax = 0.5 98.4 154.3 0.042 43.5
JD - λ = 0.005 100.0 39.4 - 11.6
JF - λmax = 4λ 100.0 38.6 - 11.2
ED 100.0 36.9 - 10.6
IED - Ω = 0.01Im 100.0 38.7 - 11.1
SVF - nu = 10, σ0 = 0.01 100.0 37.1 - 10.7
SVF+ED 100.0 35.8 - 10.3
SVF+SD 99.7 145.2 0.041 41.1

Table 3.5: Behavior of the studied methods taking into account joint limits for a sample of
1000 random initial and end positions for the WAM robot arm. Notation as in Table 7.1 and
parameter A=1.0 rad.

Method % sol. % sol(JL) tsol (ms) enosol itsol
JW - as in [92] 100.0 45.3 37.5 - 9.6
GP - µ = 0.2 100.0 34.7 43.0 - 11.0
TA - as in [96] 100.0 84.6 147.3 - 28.3
JC - H as in [86] 73.6 53.5 73.1 0.826 18.9
TP - H as in [86] 33.6 33.6 48.9 1.005 12.0
CTP - H as in [86] 83.7 83.7 366.8 0.381 21.8
CTP+SVF 86.6 86.6 300.4 0.401 48.2
CTP+SD 97.1 97.1 660.0 0.867 26.2
CTP+SD+SVF 98.3 98.3 568.7 0.719 22.6

- Low convergence ratio of JT. This is due to chattering when activating/deactivating joints,

as commented before. The remaining algorithms not considering joint limits always con-

verge, except for SD, due to the limited number of iterations.

- Using SVF improves the speed of JP, requiring less iterations on average and, combined

with ED, performs much faster than the rest of methods. Nevertheless, we also recommend

using SD+SVF, because this guarantees the steps will always be smooth, even in the case

of a singular goal position.

3.1 Inverse kinematics of redundant robots 45

- JW, TA and GP do not respect joint limits. This is due to the fact that avoiding limits is not

treated as a priority, thus zero-error positioning prevails.

- All the algorithms not fully respecting joint limits have higher convergence ratios, since

they can cross regions with unfeasible joint values to reach the goal.

- The TP algorithm does not converge most of the times. This is due to the discontinuity

commented before, causing large gains which then block the joints.

- CTP algorithms do not always converge, but when they do, the solution respects joint

limits. This shows that using these limits as a primary task is a successful strategy. Adding

SD improves the convergence ratio, and it also reduces computation time. Overall, CTP

computation times are large, due in part to the non optimality of Matlab for its calculation.

This could be reduced by finding an approximate value of the continuous pseudoinverse.

The non-convergence cases of our CTP proposed algorithms are due to algorithmic singu-

larities. These happen when, close to a joint limit, the push-to-center value of the joint limit

avoidance task compensates the position tracking error. This is like saying that the algorithm

walks into a dead end in joint space. To avoid this convergence problem, some works in

literature try to find a better initial point through a biased random sampling over other possible

starting configurations, or it is also possible to use a path planning algorithm in order not to get

stuck.

To further test our proposals, we repeated the experiment in Table 3.5 with different values

of the parameter A defined before. Figure 3.5 shows the percentage of solutions found within

joint limits for each algorithm and each value of A. There we can see that SVF improves the

performance of the CTP algorithms, and that the combination of CTP, SD and SVF outperforms

the other algorithms in literature. In addition, we see that some algorithms without the selective

damping have worse results for very small values of A; this is because they have large gains, as

explained along this work, and they sometimes surpass the goal.

3.1.7 Discussion

In this section, the most relevant CLIK algorithms for redundant robots have been compared.

Special attention has been paid to three issues: The JP algorithm may have very large gains

along certain directions, and reducing the global gain is not the best solution. In fact, having

such large gains is similar to a random positioning in joint space, whose topology is equivalent to

an m-torus mapped into the workspace, and the high convergence rate of JP in Table 3.4 is due

to the fact that large steps are taken until the end-effector reaches a position from which the goal

is achievable. The JT algorithm does not have such problem, but in some cases presents so much

46 Inverse Kinematics and Relative Arm Positioning

Figure 3.5: Percentage of solutions found within joint limits for different sampling thresholds
A, an indicator of the distance between initial joint position and goal joint positions.

chattering that makes its computational cost grow. Since SD efficiently solves this problem, it is

recommended to use such damping in most algorithms.

Looking for good matrix conditioning, we have compared the capability of the different

algorithms to avoid amplifying the numerical error in robot positioning. The outcome has been

that most of the existing methods do not perform well near a singularity. Filtering or damping

the Jacobian matrix improves this conditioning, but with no numerical guarantees. On the other

hand, using the current error as a damping factor reduces the condition number, but when close

to the goal, the ED algorithm (or its improved version, IED) behaves similarly to filtering or

damping.

Therefore, we proposed a new filtering method based on a continuous modification of the

singular values of the Jacobian, which we named SVF. We proved theoretically and in practice

that our proposal improves the existing methods for numerically filtering or damping the Jaco-

bian pseudoinverse of a matrix. We have also shown that this does not entail a significant growth

in the computational cost. With this filtering, the Jacobian matrix can be assumed to be always

full rank, without generating much additional error on the algorithms, thus the pseudoinverse

operator would not have discontinuities due to a rank change in the Jacobian matrix. This can

be used in all control-based methods to improve their performance.

We have also presented a review of first-order approaches to achieve secondary tasks. In

particular, we have tried to devise an algorithm that efficiently avoids joint limits. Through

3.2 Bimanual arm positioning 47

experimentation, we have seen that the only way to ensure avoiding such limits is to treat them

as the main priority task by adding an activation matrix on this main task. This then results

in discontinuities of the pseudoinverse operator when activating or deactivating a joint push-

to-center value to avoid a joint limit. However, this shortcoming is solved with the continuous

pseudoinverse (CTP) which, when combined with SD and our proposed filtering (SVF), ensures

controlled steps and a full-rank behavior of the Jacobian.

As it is well-known, and it showed up in our testing with a redundant robot such as the

Barrett WAM arm, CLIK methods used as global IK solvers do not always reach the goal. This

is because of algorithmic singularities, i.e., when the main task and the secondary task com-

pensate one another and the computed joint variation becomes zero. To solve this issue, it is

recommended to add a path planner to the algorithm or a randomized initial value to iterate

upon, so as to prevent the robot getting stuck in such a situation. Despite the convenience of

a path planner to obtain smoother joint changes, our last proposal (CTP+SD+SVF) performs

well without such a planner, keeping over a 90 percent success rate with parameter A ≤ 1.5rad

in Fig. 3.5, it being the best among all the tested algorithms. Additional experimentation using

such algorithms in a trajectory-tracking experiment can be found in Appendix B.1.

Having analysed the kinematics capabilities of a robot, a continuation of such work was to

determine how well two robots could interact with each other.

3.2 Bimanual arm positioning

Bimanual manipulation of objects is receiving a lot of attention nowadays, but there is few

literature addressing the design of the arms configuration.

We investigated a way of deciding the arms relative position, depending on the task, by fully

characterizing manipulability in the workspace of the Barrett WAM arm. Using the fact that the

robot has a spherical wrist, we propose to compute its feasible orientations for each Cartesian

point and pack them in a bounding cone to obtain an easy characterization of robot feasible

poses. After having characterized the workspace for one robot arm, we can evaluate how good

each of the discretized poses relate with an identical arm in another position with a quality

function that considers orientations. In the end, we obtain a quality value for each relative

position of two arms, and we perform an optimization using genetic algorithms to obtain the

best workspace for a cooperative task.

In Section 3.2.1 we will explain how we characterize the workspace with information on

all feasible orientations and how we store these data. This is later used in Section 3.2.2 to

evaluate such relative positioning of two identical arms. Finally, in Section 3.2.4 we describe

the implementation, and we use a genetic algorithm to search for the best relative positioning

48 Inverse Kinematics and Relative Arm Positioning

of the two arms.

3.2.1 Workspace representation

For a redundant robot, it is well known that the Forward Kinematics (FK) function f is not

one-to-one, and given its non-linearity, the workspace may be hard to represent. The Inverse

Kinematics (IK), the inverse of the FK, may then be better to characterize the workspace. Note

that, for each point in the Cartesian space, more than one IK solution may exist [14]. We initially

decided to characterize the workspace numerically, as a subset of R3×SO(3), by discretizing it.

To do so, a uniform mesh is set for the Cartesian position and/or orientation, and, for each point

Pi on the mesh, the existence of a joint solution qPi such that Pi = f(qPi) is checked. This can be

done by sampling the joint space and using the FK function (forward sampling), or by sampling

the workspace and using the IK (inverse sampling). Nevertheless, while the forward sampling

results in a biased sampling of the workspace, the inverse is able to exhaustively analyze the

whole workspace, thus we recommend this option if a good IK algorithm is available (for the

case of the WAM robot, the IK can be obtained either by iterative methods [14] or analytical

methods [28,29]).

To plot the reachable positions of the workspace, and store its data, we used a similar method

as in [73]. For each point of the 3D mesh representing the workspace, M solutions of the IK

of the robot, with different orientations, are obtained. To ensure a good distribution of these

orientations, we can use the proposal in [102], where points are arranged in hexagonal patterns

to fit on the sphere, or use randomly generated quaternions. If there exists at least one solution,

the position is reachable. In addition, for each of these M IK attempts, we can extract additional

information, such as manipulability [57] at the obtained pose, percentage of orientations found

for a given 3D Cartesian point, etc.

For the feasible orientations of a robot arm in a Cartesian point, several geometrical shapes

to represent the valid orientations have been proposed in literature [73]. Among these shapes,

cones are probably the best choice, due to their simplicity and easy characterization. In fact, for

a robot with a spherical wrist (see Fig. 3.6a), the Tool Center Point (TCP) stays within a cone

whose axis is the rotation axis of the first degree of freedom of the wrist (namely, the forearm

axis).

Moreover, discarding the rotation around the TCP z-axis, we propose to collect the set of

valid forearm axes at a certain Cartesian point P ∈ R3, which will be enclosed by a cone, and

compute the Bounding Cone (BC) that contains them all with the algorithm proposed in [103].

Also, if the wrist angle has symmetric limits, its aperture can be added to the BC angle, yielding

a cone that contains all the TCP z-orientation axis that the robot can reach at the given position

(see Fig. 3.6b).

3.2 Bimanual arm positioning 49

q
1

q
2

q
3

TCP

Forearm axisTCP z-axis

Forearm axis cone

TCP z-axis cone

TCP

Wrist joint limit

Figure 3.6: Left: Spherical wrist. q2 is the wrist angle. Right: Robot scheme showing the
bounding cone of all possible forearm axes. This cone is augmented by adding the wrist joint
limit to obtain the possible TCP z-axis bounding cone.

−1

0

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

x(m)

Solutions found

y(m)

z
(m

)

0

200

400

600

800

1000

1200

1400

1600

Figure 3.7: Solutions found over the workspace of a WAM robot.

50 Inverse Kinematics and Relative Arm Positioning

With this approach, we obtain a mesh for the workspace, encoding all the information gath-

ered when computing the reachable positions such as manipulability, percentage of solutions

found, etc. plus the obtained bounding cone containing all the possible z-axis of the TCP. We

can see an IK solutions map over the workspace of a WAM robot (see Table 1 in [29] for its

dimensional parameters) in Fig. 3.7.

3.2.2 Bimanual workspace

Multiple-arm cooperative tasks provide the capability of performing tasks that would be impos-

sible or, at least, much more difficult to accomplish with only one arm. Although actuating the

arms to simultaneously move an object may be a hard task, the arms relative configuration

must be given importance, since depending on the intended use of bimanual robots, some

configurations might be better suited than others. Human arms configuration may be the best

for the tasks performed by humans along their evolution, with a large workspace in front, and a

very reduced workspace at our back, as our attention and visible space stays in front of us.

In [68], a review of bimanual manipulation is done, where the state-of-the-art in cooper-

ative tasks is analyzed. Some examples of existing bimanual robots are shown, such as the

Justin robot [72], where the arms are placed in a humanoid-like configuration with a tilt of

60 degrees, the DARPA arm robot [104], with two Barrett WAM robot arms with their bases

placed perpendicular, or the ARMAR [105] [106] robot, where both z base axes are placed in

an aligned humanoid-like configuration.

However, the humanoid configuration may not be the best one for certain tasks. In this

section, we provide hints to determine how good is a relative positioning of robot arms, in the

form of a parametrized value function to be used with a numerically characterized workspace

as that in the previous section.

3.2.3 Proposed quality function

In this chapter, we intend to characterize a common workspace between two arms. To this

purpose, given two Cartesian points P1 ∈ W1, P2 ∈ W2, we will compute several factors that

will lead to a quality function for each pair (P1, P2) defined as:.

F (P1, P2) = DF · SDF ·OF ·MF · CF,

where DF is the Distance Factor, SDF the Solutions Density Factor, OF the Orientation Factor,

MF the Manipulability Factor and CF the Conditioning Factor. Multiplication and not addition

of factors has been chosen to strongly penalize those positions with very low value on one factor.

3.2 Bimanual arm positioning 51

Then, the global quality value of a relative position of two arms is:

F = V ·
∑

P1∈W1

∑
P2∈W2

F (P1, P2), (3.41)

V being the total volume of the combined workspace. Evaluating this quality measure (3.41)

we get a mapping g : R3 × SO(3) → R, which maps a relative position plus orientation

transformation (up to 6 variables) to a real value. This mapping can be used by genetic

algorithms to search for its maximum, which would correspond to the best relative positioning.

Points to compare and distance factor

For each pair of points (P1, P2), we have to decide whether to evaluate their relation or not. In

order to decide that, we may take a characteristic length L for the object to be manipulated, and

then one possible way to evaluate that relation is by using the following Distance Factor (DF):

DF =

 1 if L− δ < ‖P2 − P1‖ < L+ δ, |a1| < α1, and |a2| < α2

0 otherwise
, (3.42)

where δ is a tolerance on the manipulated object length, and a1, a2, α1, α2 are defined with the

bounding cones in Fig. 3.8. If the segment joining P1 and P2 does not lie within both orientation

cones for P1 and P2, their relation may not be evaluated. However, the orientation restriction

can be made more permissive, depending on the kind of graspings to perform.

Solution density factor

As defined in some previous works [70, 73], the SDF is the ratio of the IK solutions found over

the attempted solutions. For each Cartesian point of the workspace, we retain the percentage

of IK solutions found, given random orientations. The SDF is then defined as the product of the

ratios for the two points compared.

Orientation factor

Imagine two arms manipulating an object of length L grasped at points P1 ∈ W1 and P2 ∈ W2.

In this situation, a grasp in which the TCP z-axis of each arm is aligned in the direction of the

other grasping point is usually preferred. This can be checked using the cones (Z1, α1), (Z2, α2)

obtained for each workspace: we can calculate the angles a1, a2 from the vector P1−P2 and the

cones axes Z1, Z2, as in Fig. 3.8.

52 Inverse Kinematics and Relative Arm Positioning

L
a1

a2a1

a2

P1

P2

z1

z2

Figure 3.8: Distance and Orientation factor variables: α1, α2 are the cones angles, and a1,a2

the angles between each cone’s axis and the line P1P2.

Then, we define the Orientation Factor (OF) for the points to compare as

OF = max

(
OFmin, 1 +

1

K
ln

(
α1 − |a1|

α1
· α2 − |a2|

α2

))
(3.43)

where K is a tuning parameter, and OFmin is the minimum value accepted for the orientation

factor.

Thus defined, this factor verifies that OFmin ≤ OF ≤ 1, ∀a1, a2, α1, α2, when satisfying the

conditions in (3.42), it having a value of 1 when both cones’ axes are parallel to the vector

P2 − P1 and pointing towards each other, and gradually reducing its value to OFmin when the

axes point away from each other.

Manipulability factor

When performing cooperative tasks, or grasping an object with multiple arms, there are ap-

proaches to obtain a combined manipulability [107, 108]. However, combined manipulability

computation for multiple arms holding an object relies on the arms poses, which are unknown

for our workspace representation, as we use the average of many IK computations with different

orientations and the redundancy of the robot gives us infinite solutions. So we take the average

manipulability of both grasping points as a good approach to evaluate how manipulable is an

object. In [70], grasping point candidates are selected based on this manipulability, so the MF

is defined as:

MF (P1, P2) = m(P1)m(P2) , with m(Pi) =
1

M

M∑
j=1

m(IK(Pi, oj)), (3.44)

m(IK(Pi, oj)) being the manipulability at the joint position obtained as an IK solution for the

robot at position Pi with orientation oj .

3.2 Bimanual arm positioning 53

Conditioning factor

In order to ensure a stable behavior for the related points, we use the Jacobian Condition

Number (CN), which is defined as κ(J) = σ1/σd, where σ1, σd are the largest and the smallest

singular values of the robot Jacobian matrix. The CN is a measure of the error amplification

induced by the Jacobian matrix. Thus, we define

CF = κ(P1) · κ(P2), (3.45)

where κ(Pi) is the average CN for the solved IK of Pi.

3.2.4 Experimentation

As a first application, we searched for optimal relative positioning of two WAM robots. To do so,

we used genetic algorithms instead of performing an exhaustive analysis in order to obtain the

results faster, using 10 generations of 20 elements each, and a probability of mutation on each

variable slightly decreasing after each generation.

We considered valid objects for grasping those of a size between 0.3m and 0.5m for the DF

and a K = 2 for the OF. We collected the best half at each generation, paired them, and created

20 new configurations for the next generation.

z1

x1

dx

z2

x2
dz

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

Results of Genetic Algorithm

dx(m)

d
z
(m

)

Figure 3.9: Left: First experimental settings. Right: Results with quality values from blue (low
value) to red (high value).

Several settings were considered for optimizing a two-dimensional relative position between

the arms. The first one is similar to that of the DARPA robot, with both z axes perpendicular.

We found (see Fig. 3.9) that, for our criterion, the best configurations are those with positive

dx and dz, while the DARPA robot has both negative offsets, which yield a lower value of the

quality function. The best solution is for dx = 0.8m, dz = 0.8m in which both arms cooperate at

a larger distance than the DARPA robot. Other experimentation such as placing both arms with

54 Inverse Kinematics and Relative Arm Positioning

z1

x1

z2

x2

dx

dz

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

Results of Genetic Algorithm

dx(m)

d
z
(m

)

Figure 3.10: Left: Second experimental settings. Right: Results with quality values from blue
(low value) to red (high value).

their z-axes parallel and facing each other (see Fig. 3.10) also leads to good positioning which

might not have been considered when building bimanual robots.

3.3 Summary

Motivated by the need of a robust and practical Inverse Kinematics (IK) algorithm for the WAM

robot arm, we reviewed the most used Closed-Loop IK (CLIK) methods for redundant robots,

analyzing their main points of concern: convergence, numerical error, singularity handling,

joint limit avoidance, and the capability of reaching secondary goals [15]. As a result of the

experimental comparison, we have proposed two enhancements. The first is a new filter for

the singular values of the Jacobian matrix that guarantees that its conditioning remains stable,

while none of the filters found in literature is successful at doing so. The second is to combine

a continuous task priority strategy with selective damping to generate smoother trajectories.

Experimentation on the WAM robot arm has shown that these two enhancements yield an IK

algorithm that improves on the reviewed state-of-the-art ones, in terms of the good compromise

it achieves between time step length, Jacobian conditioning, multiple task performance, and

computational time, thus constituting a very solid option in practice. This proposal is general

and applicable to other redundant robots.

We have also presented a novel way to store the workspace information (including ori-

entation, which is often not considered) of a robot with a spherical wrist, in a very compact

way, thanks to the efficient bounding cones representation of the end-effector z-axis. This then

allows us to evaluate the capability of a dual-arm robot to manipulate an object of a certain size,

depending on the relative position of both arms. We can compute a global quality measure for

a given relative position, in order to quantify how good a dual-arm configuration is. We used

this quality measure to obtain better relative configurations with the help of a genetic algorithm.

3.3 Summary 55

And the results in Section 3.2.4 seem to indicate that, for the tasks studied, the configuration of

current bimanual robots may not be optimal. The arm configurations of humanoid robots are

designed to accomplish a wide repertoire of tasks while obeying diverse design and operational

constraints. However, in settings with two independent robot arms, it may be simple and

advantageous to tailor their relative configuration to the specificity of each particular task, as

shown in the current work. The proposed algorithm can be further used to optimize relative

positionings with more than two parameters in order to get more general results.

In the following chapter, we move on to integrate dynamics in this kinematic framework.

4
Robot Compliant Control

Robot compliant control aims at designing controllers that can accommodate deviations. Con-

trary to a stiff control, where a robot will track the desired position commands and try to

compensate any deviation from such reference position, a compliant controller will allow de-

viations from such reference position. Such deviations are slightly compensated to try to reach

the desired command, but usually with a significantly smaller gain that allows external agents

to safely interact with robots without fear of accidents due to backlash movements, as well as

limiting the strength with which objects are manipulated [109].

Compliant control allows robots to enter in human environments, as well as interacting with

fragile and deformable objects. The idea behind compliant control is, throughout this thesis, to

build an inverse dynamic model, i.e., to model the necessary torques satisfying the dynamics

equation with position, velocity and acceleration commands, that will allow the robot to mini-

mize the gains of the error-compensating control signal while tracking the desired commands.

To do so, a prior knowledge of the dynamics of the robot is essential. However, many robots do

not provide velocity/acceleration measurements, nor torque encoders in their joints. Therefore,

those have to be obtained by position differentiation - resulting in noise amplification - or from

the motor commands sent to the robot.

This chapter is divided in four sections. Section 4.1 presents a method to estimate external

forces exerted on a manipulator during motion, avoiding the use of a sensor. This method is

used together with a computed torque control scheme that compliantly follows a trajectory. A

first iteration of the method is based on learning a task-oriented dynamics model and on a

robust disturbance state observer. Such combination leads to an efficient torque observer that

can be incorporated into any control scheme. However, locally learning the inverse dynamics of

a robot results in the need of running motions before real executions, in order to learn the local

dynamics of such motion.

To solve that issue, in Section 4.2, an analytical specific friction model for the Barrett’s WAM

58 Robot Compliant Control

robot is built, showing a better behavior in the whole working space of the robot, i.e., a global

friction model. Given that the other terms of the dynamics equation of the robot are generally

known for the WAM robot case, building such friction model allowed us to perform compliant

control while getting external forces feedback in the whole workspace.

Section 4.3 presents some applications where the presented framework is used either for

tracking an object given visual information or to use policy search reinforcement learning to

learn tasks involving deformable objects. Section 4.4 concludes the chapter with some final

remarks.

4.1 External force estimation

In this section, we propose an approach based on machine learning techniques and disturbance

state observers for the estimation of external forces/torques felt by the robot during common

motion tasks. The presented method extends the state-of-the-art on external forces estimation to

those cases where an analytical model of the robot dynamics is not available/feasible. Moreover,

we took into consideration the well-known issue that the use of accelerations is undesirable due

to the error introduced by the numerical differentiation, to elaborate a better contact force

estimator, which will be incorporated in parallel to the controller as shown in Fig. 4.1.

Figure 4.1: The proposed scheme can run in parallel to any controller.

4.1 External force estimation 59

4.1.1 External wrench estimation as a disturbance observer

This section describes how the proposed function approximation can be used to estimate the

external wrench when present. Recalling the robot dynamics equation, Eq. (2.10):

M(q)q̈ + C(q, q̇)q̇ + G(q) + Ff (q, q̇) = uT, (4.1)

it can be rewritten as
ẋ1 = x2

ẋ2 = Γ(uc,x)−M−1(x1)ue
, (4.2)

where x = [x1 x2]T , with x1 = q and x2 = q̇. Here, accelerations due to external forces

are separated from those produced by gravity, Coriolis, internal friction and torque commands,

which gather in the term:

Γ(uc,x) = M−1(x1) [uc − n(x1,x2)] (4.3)

where Γ can be evaluated with the measurements of uc and the learned function n.

In [80] a force estimator is presented, which computes a state observer with gain K and

deduces that the position error from the observer is due to an external force that can be

computed as the missing force to make the observer perfectly track the state:

∆2ë1 + ∆1ė1 + ∆0e1 = ue, (4.4)

where e1 is the position estimation error, ∆2 the inertia matrix, ∆1 various Coriolis and friction

terms, and ∆0 = −K, thus at stationary response, the external force in the robot’s operational

space is

fe = −JT
†
(x1)Ke1.

This observer does not assume a measurement of the joint velocities. However, it has the

following drawbacks:

- It needs to compute the Coriolis matrix for different input values, and also the friction

effects separately.

- It assumes a perfect model of the manipulator.

- No hints on the observer gains, K, are given.

- Eq. (4.4) is not necessarily stable as defined. This equation is analyzed in [110], where

the restrictions for its convergence are given. Nevertheless, its convergence radius depends

60 Robot Compliant Control

directly on the eigenvalues of an unknown matrix.

- A good value of the external force is only guaranteed at steady state, when ė1 ' 0 and

ë1 ' 0. Otherwise, as the term ∆1 in equation (4.4) is very hard to learn or measure for

learning purposes, the force estimation may have a large error. This results in a very slow

response to external force steps, which can be seen in [80].

Proposed observer

Keeping in mind the issues in [80], we thought to treat the external force as a disturbance of the

dynamic system, and use a disturbance observer. To this purpose, in [111] a state observer for

dynamic systems is proposed that also estimates external unmodelled disturbances. To follow

this we can rewrite equation (4.2) as:

ẋ = Ax + B(x)d + Γ∗(uc,x), (4.5)

with d = −ue, A =

 0 I

0 0

, B =

 0

M−1(x1)

, and

Γ∗(uc,x) =

 0

Γ(uc,x)

 .
And then, define a state observer (using a hat to denote estimated or learned values):

˙̂x = Ax̂ + Bd̂ + K(x− x̂) + Γ̂∗(uc, x̂), (4.6)

which can be written as: ˙̂x1

˙̂x2

 =

 0 I

0 0

 x̂1

x̂2

+

 0

M−1(x1)

 d̂ +

 K11 K12

K21 K22

 x1 − x̂1

x2 − x̂2

+

 0

Γ̂(uc,x)

 ,
Or, separating the two equations:

˙̂x1 = x̂2 +K11(x1 − x̂1) +K12(x2 − x̂2)

˙̂x2 = M−1(x1)d̂ +K21(x1 − x̂1) +K22(x2 − x̂2) + Γ̂(uc,x),

where Γ̂(uc, x̂) is the estimation of Γ(uc,x), computed as defined in Eq. (4.3), with the observed

value of x:

Γ̂(x1, x̂2) = M−1(x1)[uc − n(x1, x̂2)]. (4.7)

4.1 External force estimation 61

From now on, we will use Γ̂ = Γ̂(uc, x̂) and Γ = Γ(uc,x).

We must remark that in [111], this last term in (4.7) is assumed to be known. However,

using its learned value will not affect the error dynamics. In fact, if the state estimation error is

e = x̂−x and the disturbance estimation error ed = d̂−d, the error dynamics, subtracting (4.5)

from (4.6), is:

ė = (A−K)e + Bed + Γ̂∗ − Γ∗, (4.8)

where, if we define (following the steps in [111]):

d̂ = F1x + F2ẋ + G1x̂ + G2
˙̂x + G3Γ

∗ (4.9)

then, as F2B− I 6= 0 ∀F2, [111] proposes to take:

G1 = −(F1 + B†A)

G2 = −(F2 −B†)

G3 = −B†,

thus

d̂ = F1x + F2ẋ− (F1 + B†A)x̂− (F2 −B†) ˙̂x−B†Γ̂∗. (4.10)

From (4.5), we can isolate d as B is full column rank, using its pseudoinverse B†:

d = B†ẋ−B†Ax−B†Γ∗, (4.11)

and, with (4.10) and (4.11), knowing that, in the case of study, B†A = 0:

ed = d̂− d = (B† − F2)ė− F1e + B†(Γ̂∗ − Γ∗), (4.12)

where B†(Γ̂∗ − Γ∗) = n(q, x̂2)− n̂(q, x̂2) is the error with the learned model of the function n

defined before. This means that, as one could expect, the force estimation error will depend on:

- The model estimation error.

- The estimated joint acceleration error.

- The estimated joint velocity error.

Thus, our objective will be to have a small-as-possible estimation error for the state space, to

reduce the force estimation error ed.

Substituting (4.12) into (4.8), the Γ’s cancel out and we obtain the position estimation error

dynamics equation:

(I + BF2 −BB†)ė = (A−K−BF1)e.

62 Robot Compliant Control

Now, as we intend not to use acceleration measures in Eq. (4.11), we need F2 =
[

0 0
]
,

and with F1 =
[

0 M(x1)Σ
]
, Σ being another gain, we obtain:

 I 0

0 0

 ė =

 −K11 I −K12

−K21 −Σ−K22

 e, (4.13)

which can be operated to obtain the system:

ė1 = −K11e1 + (I −K12)e2

e2 = −(Σ + K22)−1K21e1

,

thus e2 can be substituted in the first equation to obtain e1’s dynamics, the dynamics of the

position estimation error:

ė1 = −
[
K11 + (I −K12)(Σ + K22)−1K21

]
e1, (4.14)

which converges for any values of Kij and Σ for which (4.14)’s matrix in brackets is positive

definite.

In addition, we have a dependency between e2’s dynamics and e1’s, meaning that if the posi-

tion estimation converges, so does the velocity estimation. Also, if (4.13) has an asymptotically

stable equilibrium point at e = 0, from (4.8) we have (at steady state)

ed = B†
(
Γ̂∗ − Γ∗

)
= n̂− n,

which is the error of modeling the dynamics.

Moreover, from (4.13) we have:

˙̂x1 = x̂2 + K11(x1 − x̂1) + K12(x2 − x̂2)

0 = K21(x1 − x̂1) + (Σ + K22)(x2 − x̂2)
,

which can be operated to get a linear dynamic equation for x1, x2:

˙̂x1 =
[
K11 + (I −K12)(Σ + K22)−1K21)

]
(x1 − x̂1) + x2

x̂2 = (Σ + K22)−1K21(x1 − x̂1) + x2

,

seeing x1, x2 as inputs of the observer, this results in a dynamic system on x̂1, being x̂2 an

output.

4.1 External force estimation 63

Finally, the external torque estimation (using equation (4.9) and our proposed values) is:

d̂ = M(x̂1)
(

˙̂x2 + Σ(x2 − x̂2)
)

+ n̂(x̂1, x̂2)− uc. (4.15)

This latter method is the first approach at applying [111] to a robotic manipulator, but it

should be noted that:

- The approximate value of Γ in Eq. (4.10) would turn into noise on the observer, but as it

is canceled out in (4.15), it is not supposed to affect the convergence of the state observer,

although it indeed includes error in the contact force estimation.

- Criteria on the tuning of K are given.

- We require the use of the true joint velocities, x2. This is not a problem, as these can be

measured by differentiating joint positions.

- No assumptions on the disturbance behavior or model are taken, except that n depends

only on position and acceleration variables. Here it must be pointed that most disturbance

observers in literature assume the disturbances have a Lipschitz behavior [112], or a known

model [113]. Also, no steady-state requirements are needed, although the model may

have more error.

- This estimation is independent of the control scheme used. It can be run online and

parallel to any controller, even at a different frequency. However, as we will see later, it

does become control dependent in certain situations due to unmodelled static friction and

other unlearnable effects.

As a conclusion, the estimation of the disturbance, which is the external force, can be done

with guarantees of convergence.

4.1.2 Experimentation

To test the observer proposed in Section 4.1.1, we implemented the previous equations on a

7-DoF WAM robot. As a control law, we used a computed torque control scheme [114] [77],

with uc = M(x1)ẋd
2 + n̂(xd

1 ,x
d
2) + uPD, n̂(xd

1 ,x
d
2) being the learned model using the desired

trajectory, instead of real measurement, and uPD a PD control action on the joint state that

compensates modeling error and any external force. Using it in the robot’s dynamic equation,

Eq. (2.10), we obtain:

M(x1)ẋ2 + n(x1,x2) = M(x1)ẋd
2 + n̂(xd

1 ,x
d
2) + uPD − ue,

64 Robot Compliant Control

and, isolating ue, the real disturbance value is:

ue = uPD + M(x1)
(
ẋd
2 − ẋ2

)
+ n̂(xd

1 ,x
d
2)− n(x1,x2).

However, with Eq. (4.15), we can substitute the control action uc to obtain the estimated

external perturbation:

ûe = −d̂ = uPD + M(x1)
(
Σ(x̂2 − x2) + ẋd

2 − ˙̂x2

)
+

+n̂(xd
1 ,x

d
2)− n̂(x1, x̂2),

where the real acceleration ẋ2 is not used, but the estimated ˙̂x2 and desired ẋd
2 ones are instead.

This system was discretized, and then the state observer system was run at 500Hz, while

an inverse dynamic model learned with LWPR introduced in Section 2.3.1, was used and run,

at 50Hz with a zero-order hold to attach it to the other 500Hz system. However, although

simulation showed excellent results, after implementing the algorithms in a real robot, we found

3 factors that had to be mitigated in order to have better results. They are described in the

following three subsections.

Noise

The joints position signal presented little noise, but differentiating in order to get the velocity

increased noise. Moreover, when derivating x̂2 in order to get the estimated acceleration, a

very noisy signal was obtained. In order to reduce this noise, which would directly affect the

external torque result, we added a Parks-McClellan filter [82] at the readings of the joint state

and velocity. With this filter, the estimated acceleration was less noisy than the obtained by

directly differentiating the position readings twice.

Friction

The WAM robot is driven by cables in an architecture designed to reduce friction. However, when

working with small controller gains and small velocities, the motor cogging and static friction

become very evident. Static friction causes unpredicted stationary errors when the robot stops,

and motor cogging adds a variable hysteresis on friction that makes model estimation difficult

and causes a discontinuous tracking with the lowest inertia joints. As this friction cannot be

learned, our work has focused on compensating the error they cause.

4.1 External force estimation 65

Error

The residual error, higher than expected, caused by unlearned static friction, results in a large

PD action, where it should be small. The PD action, multiplied by the error, may give fake

external torques in Eq. (4.15) if its constants are not small, i.e., large controller gains give larger

force estimation errors for the same position error. This increases the importance of developing

a friction model, as we will see in Section 4.2.

Experimental setup and results

To evaluate the behavior of the estimator, we trained a 10 seconds trajectory to a WAM robot,

hanging different loads at its end-effector. The loads were of 0, 0.5, 1, 1.5 and 2 kg. To analyze

the results, we compared the outputs of the vertical force estimated (Fz) at each trajectory, and

the results are shown in Fig. 4.2, where we see that the estimation has low error, but accumulates

slight error for large weights. This is because, as commented, a heavier load results in more error

at stationary state, which implies a larger gain of the controller, thus more uncertainty in the

estimation.

0 2 4 6 8 10 12
−5

0

5

10

15

20
External Z−Force estimated

time

E
s
ti
m

a
te

d
 f

o
rc

e
 (

N
)

0 kg

0.5 kg

1 kg

1.5 kg

2 kg

Figure 4.2: Experimental results when hanging weights from the robot’s end-effector.
Horizontal lines represent the real weight. At time=10s, the robot ended its trajectory. At
time=5s, joint 1 changes its direction with a step on the desired acceleration, thus creating a
transient in force estimation.

In Fig. 4.3 we can see the estimated torques along the trajectory, while in Fig. 4.4 we plot the

resulting wrench estimations. There we can observe unexpected peaks due to joint 1 (with the

most inertia) changing its direction. Static friction appears in that moment, causing the observed

66 Robot Compliant Control

behavior. This results in an unexpected transient estimated force, that rapidly decreases to zero

afterwards. In addition, unmodelled frictions compensate part of the weight, thus the force

estimation is slightly lower than the true weights on the end-effector.

0 5 10 15
−4

−3

−2

−1

0

1

2

3

4
External Torques

time

E
s
ti
m

a
te

d
 j
o

in
t

to
rq

u
e

s
 (

N
m

)

u1

u2

u3

u4

u5

u6

u7

Figure 4.3: Estimated external torques for a load of 1kg. Along the executed trajectory, joints
2 and 4 hold the vertical force. The transient peak on joint at time=5s is due to a step on the
desired acceleration along trajectory.

The results show that unmodelled friction reduces the precision of our external force esti-

mator. However, despite the uncertainties around unmodelled forces, the results in Fig. 4.2 and

Fig. 4.4 are accurate, showing the potential use for any robot.

4.1.3 Discussion

Estimating the external force applied to a robot without having an expensive force sensor at

its end-effector is a step forward for control and manipulation purposes. Some works have

good results in simulation, but rely on the availability of analytical models of the robot, the

possibility of having the true values of friction or Coriolis forces or they assume almost-stationary

situations, meaning the estimations are not available while the robot moves. In this section, we

have proposed an algorithm that, despite its estimation may have a small delay caused by the

filters applied and can carry errors due to unknown friction, outperforms the previous works

based on state observers, with a rigorous deduction of equations and proof of its convergence,

making no assumptions on the external torque applied, nor requiring stationary situations.

The results, in Section 4.1.2, with a 7-DoF robot capable of performing various manipulation

tasks, show that good force estimates can be obtained while the robot is still in motion. These

4.2 Building a friction model 67

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

6
External Wrench

time

E
x
te

rn
a

l
w

re
n

c
h

 (
N

 −
 N

m
)

Fx

Fy

Fz

Mx

My

Mz

Figure 4.4: Estimated external wrenches for a load of 0.5kg. Acceleration discontinuities when
changing direction or stopping cause transient behavior at time=5s and 10s.

vertical force results are being used to know how many cloth garments have been picked by a

robot. Another advantage of this proposal is that it can be implemented on any control scheme

(see Fig. 4.1).

As future work, some research to reduce the effects of uncertainties on the dynamic behavior

of the robot, which generate error, needs to be carried out. Other possible improvements are to

globalize the inverse model to the whole workspace, instead of tailoring it to trajectories, and to

optimize the robot controller in order to reduce the residual torques observed, or model friction

apart so as to gain precision.

4.2 Building a friction model

Most approaches to build an Inverse Dynamics Model (IDM) do not consider the possibility of

having hysteresis on the friction, which is the case for robots such as the Barrett WAM. For this

reason, in order to improve the available IDM, we derived an analytical model of friction in the

seven robot joints, whose parameters can be automatically tuned for each particular robot. This

permits compliantly tracking diverse trajectories in the whole workspace.

By using such friction-aware controller, Dynamic Movement Primitives (DMP, see Chapter

5) as motion characterization and visual/force feedback within the RL algorithm, experimental

results to be presented in Section 4.3 demonstrate that the robot is consistently capable of

learning such safety-critical tasks.

68 Robot Compliant Control

4.2.1 Introduction

Not properly representing this hysteresis reduces the accuracy of the IDM, which implies a

control error that requires increasing the error-compensating gain to ensure a good position

tracking, thus making the robot less compliant. For this reason, in Section 2.3.2 we proposed

an analytical formulation of the friction, which can be easily tuned with real data and then

computed online, providing good results in the whole joint space of the robot.

Once having this IDM, we built a learning framework (see Fig. 4.5), using a proper motion

characterization and a model-based External Force Estimation (EFE) as defined in the previous

section to obtain the interaction torques with the environment. Within this framework, starting

from an initial demonstration, exploration on the DMP parameters progressively improves the

robot’s performance and, using a Policy Search algorithm, better robot behaviors are learned

relying on a cost function based on vision, kinematics and dynamics.

Figure 4.5: Global scheme of the proposed framework. The DMP sends the desired
trajectory to the feed-forward controller, which uses the inverse dynamic model to track the
trajectory compliantly. The robot performs the task, which may include an interaction with the
environment, estimated by the external force estimator. The latter is used, together with the
camera feedback and the acceleration measurements, to obtain a reward/cost function, which
is used by a policy search algorithm to, after a certain number of rollouts, update the DMP.

4.2.2 Advanced model for the WAM robot

To improve the basic model some changes were made and new variables and terms were added:

- A linear term in position, which was observed through data analysis.

- A basis of Fourier functions on the joints position, divided in two layers, depending on the

sign of the velocity of each joint.

4.2 Building a friction model 69

These Fourier basis functions were added to model an oscillating curve wrt. the position

of the friction. However, the authors observed different oscillations for positive and negative

velocities, thus two sets of Fourier basis were fitted for them, and activated with the help of a

sign function, as we can see in Eq. (4.16). These Fourier terms approximate the oscillations

seen wrt. position, ignoring the noise data due to the PID controller that was used to obtain the

data.

This brought us to a friction model for each of the joints of the robot with the following

expression:

F if = b1qi + b2q̇i + b3atan(sq̇i + zsign(q̈i))

+0.5(1 + sign(q̇i))(b4f1 + b5f2 + b6f3 + b7f4 + b8f5)

+0.5(1− sign(q̇i))(b9f1 + b10f2 + b11f3 + b12f4 + b13f5),

for i = 1..7,

(4.16)

where fj =
4

π

sin((2j − 1)hqi)

2j − 1
, j = 1..5 are the sine Fourier basis functions. We neglected the

cosine functions assuming an antisymmetric behavior of the friction. qi, q̇i i q̈i are the position,

the velocity and the acceleration of the ith joint. All the constraints bk, k = 1..13, s, z i h were

obtained with least-squares techniques and vary according to each joint.

This friction model has a high degree of accuracy only when joints were moving separately

and did not take into account that some of the joints shared part of their friction due to the

coupling between their engines.

Joints 1, 4 and 7 do no present this phenomenon, but joints 2-3 and joints 5-6 do when they

move together in pairs. In order to model the friction torque of a pair of joints that share the

coupling effect when they move we had to find a new model so that the friction torque was

fitted with enough accuracy when this happened.

In this case, after several observation experiments, it could be seen that the friction torque

applied on a joint was reduced when the other joint of the pair moved at a higher velocity. This

reduced friction torque showed the same non-linear hysteresis phenomenon but with a smaller

range of values and was modeled with the same expression but with different least squares

parameters.

After modeling this reduced friction, a transition between models had to be established so

that the friction torque was fitted correctly at every timestep. Defining modAi as the friction

model of the ith joint when it moves at a higher velocity than its pair j (non reduced friction

torque), modBi as the friction model of the same ith joint when it moves at a lower velocity

than its pair j (reduced friction torque) and defining modi(t) the friction model of the ith joint

at timestep t:

70 Robot Compliant Control

modi(t) = modAi(t), if |q̇i(t)| ≥ |q̇j(t)|+ ε

modi(t) = modBi(t), if |q̇j(t)| ≥ |q̇i(t)|+ ε

modi(t) = modi(t− 1), otherwise,

for the pairs (i = 2, j = 3), (i = 3, j = 2), (i = 5, j = 6) and (i = 6, j = 5), where ε is used to

avoid chattering between the friction models of each one of the coupled joints.

After defining this transition when the coupling phenomenon appears, the dynamic friction

torques of each of the joints of the robot are modeled with enough accuracy, even if all the joints

move together at the same time.

Fitting performance

In order to compare the performance of the different models in equations (2.13), (2.14) and

(4.16), we fitted the three models with a dataset of 80 oscillation movements at different speeds,

moving joints individually at different positions and also with coupled movements.

We built another dataset to validate the models and our proposed friction model in Eq. (4.16)

showed to perform the best in all cases. In Fig. 4.6, we can see an example validation trajectory

with the data obtained from Eq. (2.12). Also, in Table 4.1, we show the error indicators used in

order to validate the advanced model against the initial and basic model with the new validation

dataset. The error indicators used were the Mean Absolute Error (MAE), the Mean Squared Error

(MSE) and the maximum sample error in the dataset. It can be clearly seen that this approach

outperforms previous ones in terms of numerical error.

Table 4.1: Friction Validation Results

Initial Model Basic model Adv. model

MAE 0.5907 0.5115 0.4277

MSE 0.7613 0.5611 0.3511

Max error 4.7281 3.6624 2.5849

Performance indicators for a set of N validation trajectories for the Barrett WAM joint 1. We
indicate the MAE, MSE and maximum error, all of them averaged over 8 validation trajectories.

4.2 Building a friction model 71

Figure 4.6: Example of the fitting of the three models for a trajectory of the first joint of the
Barrett WAM. Our proposed function outperforms the previous approaches.

72 Robot Compliant Control

Feed-forward controller

Once given a desired trajectory, provided by the DMP or a similar framework, we need a proper

controller to track it in a way that the robot is not dangerous. The default controller provided

with the WAM robot is a PID controller with large gains: uc = Kpe+Kvė+KI

∫ τ=t
τ=0 eτ . However,

as already mentioned before, a pure PID controller may not be suitable to interact with humans

or deformable objects, thus we needed to implement another controller.

In order to properly track the reference trajectories generated by the DMPs, we include a

Computed Torque Controller [77], in which we add an Inverse Dynamic Model (IDM), that

allows us to use a low-gain error-compensating term, i.e.: we reduce the stiffness of the robot

while performing the motion.

uc = uPD+uIDM where uPD = Kpep+Kvėp is a PD controller and the IDM is approximated

by

uIDM 'M(q)q̈ + C(q̇,q) + G(q) + Ff . (4.17)

Using this controller, the robot will have a much more compliant, or soft behavior, as the IDM

would just provide the necessary torque to follow the desired commands, while the PD part of

the controller takes care of error compensation. In fact, the PD torque only acts to compensate

model errors and external perturbations.

4.3 Applications

The compliant controller with external force estimation presented throughout this chapter has

been implemented and extensively used along this thesis with the Barrett WAM robots available.

Here, we show two example applications of its use.

4.3.1 Scarf-placing experiment

As an experimental setup for the scheme in Fig. 4.5, we decided to put a scarf to a boy-sized

mannequin, placed at a fixed position wrt. the robot, and use a color camera to check if the

scarf was properly placed after each rollout.

Initialization and cost function To that purpose, we initialized the DMP with 25 Gaussian kernels

per degree-of-freedom, fitting a poor-performing motion which does not achieve such a task,

and improve it over 20 epochs of 12 rollouts each. Using the CTC defined previously, which

includes the friction model in Section 4.2, we reproduced the motions and obtained the costs

by evaluating the cost function. The PI2 algorithm, with the CMA and a dual layer of Gaussians

as proposed in [25], with 8 kernels per degree-of-freedom, was then used to update the policy.

4.3 Applications 73

Figure 4.7: Two examples of the camera output, measuring the distance (in pixels) from the
marker to the hanging scarf, and the length of the part hanging on the sides up to a certain level.

Figure 4.8: Learning curve for the scarf experiment. The red continuous line shows the
exploration-free policy cost after each update, while the blue shaded area shows the mean and
standard deviation for all the exploration rollouts at each epoch. The horizontal black line
represents the cost value of 3, which is considered by the authors to be the threshold indicating
whether the task was successfully completed or not.

74 Robot Compliant Control

Figure 4.9: WAM after placing the scarf around the mannequin’s neck.

The variance for exploration was initialized with a value ΣΘ = 10I8·dof and updated with a

filtered version of the CMA algorithm in [115], keeping only the diagonal part of the matrix for

simplicity.

As a reward function to optimize, we use a timestep cost ct, t = 1..T and a final cost cT ,

which depend on the acceleration, interaction torques and visual feedback.

The total cost for a trajectory is then CT = cT +
∑T

t=1 ct, where ct is a timestep cost given by

a quadratic form of the acceleration commands sent to the robot by the DMP, and the terminal

cost ct = ccam + ctorque is the sum of the costs given by the color camera and the EFE at the end

of the rollout.

Desired acceleration: to penalize those task attempts where the policy (DMP parameters)

tells the robot to move with high acceleration, we added a penalizing term to the cost function,

consisting of a quadratic form on the acceleration at each timestep of the trajectory.

External force estimation: in order to punish those motions in which the robot tries to push

or pull the scarf and/or mannequin too much, we estimate the external torques resulting from

the interaction of the robot and the scarf, which will also include the transferred torque from

the scarf-mannequin iteration to the robot at each timestep. For simplicity, we used the average

of the absolute value of the estimated interaction torques all through the motion.

Visual feedback: at the end of each rollout, we use a color camera to check if the scarf was

properly placed by the robot. Using HSV color segmentation to distinguish the colors with the

code provided in [116], such as the mannequin color, scarf, and a mark placed on its nose.

As a descriptive element, we used the distance d from the nose of the mannequin to the color-

segmented scarf, in the vertical line from the nose. If the scarf is well-placed, this distance will be

4.3 Applications 75

close to a reference value dref . Otherwise, the scarf might be hanging too close to the nose or not

covering the neck. We defined the scarf position cost as ccam = 10 max ((d− dref)/dref , 1)α +

3Ihanging, for a given exponent α (a value of 1.2 was used throughout this chapter), and a

penalizing factor with the indicator function Ihanging, which is 1 if the scarf is not hanging on

the right side of the mannequin or it is hanging in its left side, assuming we want the scarf only

to be hanging on the mannequin’s right side (see Fig. 4.7). In this case, the reference distance

dref was 62 pixels for the color camera placed at a 1m distance from the mannequin.

This visual feedback cost is very rudimentary and was implemented only to demonstrate the

performance of the entire system. Of course it can be replaced by most elaborate task-dependent

cost measures.

Results In Fig. 4.8, we show the learning curve of the scarf-placing task, in which we can

consider that a cost below 3 represents a motion that effectively placed the scarf around the

mannequin’s neck, hanging on the right side but not on the left side (see Fig. 4.9). We observe

that, after 10 policy updates (i.e., 120 rollouts), the task has already been learned and, after that,

the policy gradually reduces its variance, despite not being refined further, mainly due to all the

uncertainties in the process of manipulating clothes. Other similar experiments have been done

and can be seen in Appendix B.2.

4.3.2 Compliant object tracking

In [20], an automated system able to track a moving object with range images obtained with

a Microsoft Kinect sensor is presented. Then, a robotic manipulator tracks such objects in real

time, using the compliant controller defined in this chapter, together with the IK algorithm

defined in Section 3.1.5 implemented in a real robot, following the scheme in Fig. 4.10. After

tracking an object for a certain period of time, the robot is allowed to grasp it, as seen in Fig.

4.11. More information on this experiment, as well as videos of the robot tracking objects can

be found on Appendix B.3.

Figure 4.10: Tracking scheme for following a moving object with a WAM robot.

76 Robot Compliant Control

Figure 4.11: WAM robot tracking and grasping an object.

4.4 Summary

In Section 4.1, an External Force Estimation based on a disturbance observer has been proposed

which, by using a previously learned dynamic model, estimates the external forces on the robot

with the kinematics data and the control commands sent to the robot. This can be useful not only

to predict interaction with the environment or detecting whether the robot is holding something,

but also to try to minimize the interaction forces between the robot and its environment so as to

reduce the stress on the manipulated objects.

In this chapter, we aimed at developing a compliant controller that ensures human safety in

physical interaction tasks involving deformable objects. To that purpose, we developed a new

friction model that is well suited for the case of the Barrett WAM robot and does not require

as many samples as other IDM fitting approaches [78]. The IDM resulting from that friction

model proved to be precise enough to compliantly but precisely track reference commands with

a Computed Torque Controller (CTC), while also detecting contact forces.

Finally, we used a combination of kinematic, dynamic and visual feedback within a cost func-

tion in order to take all possible factors into account when learning a robotic task: Accelerations

telling how smooth the desired trajectory was, estimated contact torques evaluating if there was

a too hard interaction with the mannequin, probably due to the robot hitting or wrongly pushing

it, and also a simple color-based segmentation that efficiently measured whether the robot was

successful at the performed task. The difficulties of simulating deformable objects and human

4.4 Summary 77

environment force RL algorithms to require all these elements to be successful but safe while

learning, as concluded by J. Kober in [117]. In this work, we provided an initial framework to

safely learn tasks involving deformable objects in close proximity to humans.

As already introduced, this framework permits learning in compliant environments, as we

will develop further in the second part of this thesis.

Part II

Reinforcement Learning with

Movement Primitives

5
Preliminaries

In this part of the thesis, we used the kinematic and control architectures built in Part I in order

to learn cooperative manipulation. To this endeavor, we will firstly introduce Policy Search (PS),

a subtype of Reinforcement Learning in Section 5.1. For further details on PS, [12] presents a

more exhaustive review, with a detailed description of many of the state-of-the-art PS algorithms

and the reasoning behind them. We will also introduce the concept of Movement Primitives in

Section 5.2, a motion characterization very suitable to PS.

5.1 Policy Search (PS)

In a wide variety of robotics applications, there exists a tradeoff between implementing tasks by

careful engineering, or by letting the robot learn them, either from scratch or from a demon-

strated initial approach. In engineering a task, hard-coding a robot’s behavior can yield satisfac-

tory results for repetitive applications such as some production chain industrial processes. Those

solutions are usually difficult to generalize and, thus, more engineering is required every time

an element of the task changes. For this reason, it is sometimes more desirable to implement

a self-learning algorithm so the robot is capable of learning by itself and improving over new

experiences. Consequently, robot control can be represented as a Reinforcement Learning (RL)

problem [12], where the robot is supposed to take actions in an environment so as to maximize

the expected value of a certain cumulative reward [3].

The standard RL can be defined with a Markov Decision Process (MDP), where the robot

selects an action a in a given state y, according to a policy π, which maximizes a reward function

R, provided that there is a transition probability of being in state yt+1 after applying action at

when in state yt, p(yt+1|yt,at). MDPs are built with the hypothesis that the actions and states

are finite sets. In the field of action planning, such structure can be easily defined as a sequence

of selected behaviors given descriptive state variables. However, the application of such MDP

82 Preliminaries

structures into robot control for motion learning is not as easy, due to the fact that the states y,

usually representing positions, velocities, etc. of robot’s joints or end-effector’s pose are high-

dimensional and continuous spaces. This results in an infinite set of possible states, as well as

actions. A different representation of states and actions is therefore needed.

5.1.1 Robot control as a reinforcement learning problem

For robot motion control, actions, formerly denoted a, will encode the motor commands u, and

the state variables will be denoted y, representing the robot’s joint positions, end-effector pose,

contextual variables, etc. Then, the control policy π will determine which motor command to

apply in every state y. Such policy π can be either stochastic π(u|y) or deterministic u = π(y).

The motor commands u modify the robot’s state with a transition probability p(yt+1|yt,ut),
while the concatenation of states and actions can be called a trajectory or rollout, and is

represented as τ = {y1,u1, ...,yNt ,uNt}. Additionally, we can assume the existence of a reward

function, that will be an indicator of a trajectory quality:

R(τ) = rT (yt) +
T−1∑
t=0

rt(yt,ut), (5.1)

where rt is the instantaneous reward at timestep t and rT (T being the trajectory horizon) is a

final reward. Then, RL will try to find the policy π that maximizes the expected reward:

Jπ = E [R(τ)|π] =

∫
R(τ)pπ(τ)dτ , (5.2)

where pπ(τ) is the probability of obtaining the trajectory τ under the policy π.

This framework permits formulating robot control as a RL problem. However, there are

additional difficulties in applying such representation for robot control. Formally, the biggest

one is the fact that trajectories’ states y and control actions u are usually continuous variables

in an already high-dimensional space. This results in a high difficulty for using some of the most

used RL approaches, like value function - based approaches. For these reasons, Policy Search

(PS) methods use parametrized policies πθ which operate in a parameter space θ ∈ Θ, thus the

expected return to optimize in Eq. (5.2) becomes:

Jπθ = Jθ = E [R(τ)|θ] =

∫
R(τ)pθ(τ) (5.3)

Several PS algorithms have been used in Robotics to solve Eq. (5.3) over the last decade,

and these are mainly separated as model-based or model-free PS algorithms [12]. Model-free

algorithms learn policies directly from trajectory samples, while model-based algorithms firstly

5.1 Policy Search (PS) 83

learn a model of the task, to later improve the policy. In the scope of this thesis, only model-free

approaches are used, as deformable objects such as cloth garments are difficult to model and,

therefore, model-based approaches would need too many samples for learning a model.

In general, when using PS learning algorithms, some robot trajectories τ1, τ2, ... are sampled

from the current stochastic policy π, and the rewards R1, R2, ... obtained with them are eval-

uated. After a number of samples, the trajectories and rewards are used by the PS to directly

obtain a new policy πnew, parametrized by θ. This new policy is the one maximizing certain

criterion related with the average return Jθ = E [R(τ |θ)] in Eq. (5.3). In this thesis, we represent

the stochastic policies by probability distributions over a set of parameters. A policy π(θ) is then

represented by a normal distribution with mean µω and covariance Σω, i.e., θ = {µω,Σω},
generating samples ω ∼ N (µω,Σω). Model-free PS use such stochastic policies to generate new

trajectories to be evaluated, and can be divided into three main approaches:

- Policy Gradients methods use gradient ascent to obtain a better average return Jθ [118].

Therefore, the policy update rule becomes:

θnew = θ + α∇θJθ, (5.4)

where α is a learning rate. The main contribution of such methods is then how to properly

estimate the policy gradient ∇θJθ =
∫
τ ∇θpθR(τ)dτ from samples, so that the new policy

is as good as possible. In [119], some of these methods are defined, many based on the

Likelihood-ratio trick given by the property that ∇θpθ = pθ∇θlogpθ, as well as the policy

gradient theorem, which imposes that under a non-changing policy, future actions do not

depend on past rewards. Other policy gradient approaches are based on optimal control

theory, as in the case of Policy Improvement with Path Integrals (PI2).

- Expectation Maximization methods do not need a learning rate, which can sometimes be

problematic. In contrast, EM-based PS considers the learning problem as an inference

problem [12].

- Information Theoretic approaches try to stay close to the given data when computing

the new policy. Robotic applications usually need to limit the policy variation from one

iteration to another, in order to keep a safe robot behavior. Additionally, EM approaches

usually present a too greedy behavior. Therefore, algorithms based on limiting the change

in the policy by setting a bound on the Kullback-Leibler divergence [120] between the old

and new policies have been appearing in the last decade, such as Relative Entropy Policy

Search [121].

84 Preliminaries

Now we briefly present two of the most popular PS algorithms found in literature: REPS and

PI2, which have been used in the experiments throughout this thesis.

Relative Entropy Policy Search (REPS)

Formally, REPS [121, 122] finds the policy π∗ that maximizes the expected reward for a given

task. The REPS algorithm uses Kullback-Liebler (KL) divergence [120], which is a non-symmetric

indicator of the difference between two probability distributions p, q over a random variable x:

KL(p‖q) =

∫
p(x)log

p(x)

q(x)
dx (5.5)

Given the previous policy q(θ), the new policy π(θ) is obtained by adding a KL-Divergence bound

ε between the newly obtained policy and the previous one to the optimization of the expected

reward. The bound on the KL-Divergence limits the variation on the new policy and prevents

the PS algorithm from being too greedy. Too greedy algorithms can be a wrong approach in

some robotics applications, where a drastic change in the policy may result in an unpredictable,

dangerous behavior of the robot. Such new policy π∗ is then computed as the solution of:

π∗ = argmaxπ
∫
π(θ)R(θ)dθ

s.t. ε ≥ KL(π(θ)‖q(θ))

1 =
∫
π(θ)dθ

(5.6)

where θ are the parameters, R(θ) is their associated reward, and π(θ) is a probability distribu-

tion over the parameter space.

Solving the constrained optimization problem in (5.6) provides a solution of the form [121]

π∗ ∝ q(θ)exp(−R(θ)/η), (5.7)

where η is the Lagrange multiplier of the KL bound and can be obtained by through numerical

optimization.

Given the value of η and the rewards, the exponential part in (5.7) acts as a weight dk =

exp(−Rk/η), with Rk = R(θk)
1 to be used with the samples θk in order to obtain the new

policy, usually with a Gaussian Weighted Maximum Likelihood Estimation (WMLE). However,

it has been shown [123] that the order of KL factors used in REPS - KL(π(θ)‖q(θ)) instead of

KL(q(θ)‖π(θ)) - has an averaging-between-solutions behavior. In fact, using the reverse order

would help to find a single solution faster, but there is no closed REPS solution using KL(q‖π)

instead of KL(π‖q), as is more detailed in Chapter 6.

1For numerical reasons, Rk−min(R)
max(R)−min(R)

is often used instead.

5.1 Policy Search (PS) 85

Policy Improvement with Path Integrals (PI2)

PI2 [124] takes inspiration on the optimal control theory, defining the timestep reward term as

rt = rt(yt)+ut
TΛut, ut being the control action, which includes a Gaussian noise with variance

Σε. Under the assumption that λΛ−1 = Σε for some real value λ, the Hamilton-Jacobi-Bellman

equation of the optimal control problem can be solved [124]. Additionally, if the control actions

are linearly parametrized with ω ∼ N (µω,Σω), then multiplying a certain basis functions vector

φt as is the case of movement primitives, then, given a set ofNk sample trajectories τ1...τNk with

parameters ω1...ωNk , we can rewrite the timestep reward as rkt = rt(yt) + ωTk Λωk and the new

policy can be obtained with the following steps [124]:

- step 1. GenerateNk rollouts with parameters sampled from the policy π: ωk ∼ N (µω,Σω),

k = 1..Nk

- step 2. For all Nk rollouts, compute:

Mtj ,k =
R−1φtφ

T
t

φTt R−1φt
(5.8)

And the cost for each sampled trajectory:

S(τi,k) = rNt +

Nt−1∑
j=i

rtj ,k +
1

2

Nt−1∑
j=i+1

(µω +Mtj ,kω)TR−1(µω +Mtj ,kω) (5.9)

As well as the associated timestep probabilities for each rollout and each timestep:

P (τi,k) =
e−

1
λ
S(τi,k)∫

e−
1
λ
S(τi,k)

(5.10)

- step 3. Compute timestep gradients

δωti =

Nk∑
k=1

P (τi,k)Mtj ,k(ω − µω) (5.11)

- step 4. The policy gradient is finally

δω =

Nk−1∑
i=0

(Nk − i)δωti
Nk−1∑
i=0

(Nk − i)
(5.12)

86 Preliminaries

- step 5. Update the policy

µω = µω + δω (5.13)

Such policy update does not take into account the exploration parameters, the covariance

matrix Σω. Therefore, other variants of PI2 like PI2 with Covariance Matrix Adaptation (CMA)

[115] also use the weightings in Eq. (5.10) to update the covariance matrix, as well as evolu-

tionary strategies.

These PS algorithms, when applied to robotic trajectory learning problems, require a proper

motion representation. In the following section, we will define two of the most used Movement

Primitives (MP) in literature.

5.2 Movement Primitives (MP)

In order to represent parametrized policies for applying PS algorithms in robotics, it is desirable

to have characterizations with minimal expressions and number of parameters. To that purpose,

if we have a robot trajectory τ = {y0, ...,yNt}, the easiest way of storing such trajectory would

be to store all its points and then reproduce them on a robot. However, this would result in

too many parameters in order to efficiently use PS. Spline fitting might also be considered,

but spline parameters are obtained by solving a set of equations, meaning that parameters are

related to each other, and those are not usually very intuitive. Therefore, most used approaches

to encode robot motion policies are Movement Primitives. In this chapter, we will present two of

the most popular ones: Dynamic Movement Primitives (DMPs), based on second-order dynamic

systems, and Probabilistic Movement Primitives (ProMPs), linear policies representing stochastic

trajectories. While DMPs are a motion representation as a dynamical system linear with the

parameters at an acceleration level, ProMPs are a probabilistic representation with its position

linear wrt. policy parameters. Within these models, in order to generate samples for learning,

trajectory policies will be stored with a parameter mean µω and a covariance Σω. Such Σω will

be used to generate new samples ω ∼ N (µω,Σω) that will be executed and evaluated.

5.2.1 Dynamic movement primitives

Among all MPs, the most used ones are Dynamic Movement Primitives (DMPs) [125,126], which

characterize a movement by means of a second-order dynamical system, using a position error,

a velocity term and an excitation function for obtaining the acceleration profile generating the

movement:
ÿ/τ2 = αz (βz (yg − y)− ẏ/τ) + f(x)

f(x) = ΨT
t ω,

(5.14)

5.2 Movement Primitives (MP) 87

where y is the joint position vector, yg the goal/ending joint position, τ a time constant, and

x is a transformation of time verifying ẋ = −αxx/τ . In addition, ω is the parameter vector of

size dNf , Nf being the number of Gaussian kernels used for each of the d-DoF. The parameters

ω fitting the robot behavior from an initial move are usually obtained through least-squares

minimization, and then multiplied by a Gaussian weights matrix2 Ψt = Id ⊗ g(xt), ⊗ being the

Kronecker product, and g(x) defined as3:

gi(x) =
φi (x)∑
j φj (x)

x, i = 1..Nf , (5.15)

where φi (x) = exp
(
−0.5(x− ci)2/di

)
, and ci, di represent the fixed center and width of the ith

Gaussian. Fig. 5.1 shows an example of the normalized kernels φi(x)∑
j φj(x) and Fig. 5.2 multiplied

by the phase variable x seen in Fig. 5.3, which ensures the values of f are small when t → τ

and, therefore, the state y converges to the goal yg at the end of the trajectory.

Figure 5.1: An example of Nf = 10 basis functions φi/
∑

j φj , j = 1..Nf .

With this motion representation, the robot can be kinesthetically taught a demonstration

movement, to obtain the weights and Gaussians of the motion by using least squares techniques,

with the isolated values of f from Eq. (5.14).

The DMP representation of trajectories has good scaling properties wrt. trajectory time and

2In standard DMPs, such a set of radial basis functions represented with Gaussian curves are uniformly distributed
in the time domain for each DoF of the trajectory. The weights corresponing to each of these Gaussians are then
obtained through least squares techniques. This approach has been used throughout this thesis.

3Note that other characterizations, such as gi(x) = φi(x)∑
j φj(x)

x(yg − y0), allow for a better goal rescaling [125].

88 Preliminaries

Figure 5.2: An example of Nf = 10 basis functions x · φi/
∑

j φj , j = 1..Nf .

Figure 5.3: Plot of the phase variable x wrt. time.

5.2 Movement Primitives (MP) 89

initial/ending positions, has an intuitive behavior, does not have an explicit time dependence

and is linear in the parameters, among other advantages [125]. For these reasons, DMPs are

being widely used with Policy Search (PS) RL [12, 118], where the problem of finding the

best policy (i.e.: MP parameters) becomes a case of stochastic optimization. Given an initial

trajectory demonstrated to the robot, we can obtain the DMP parameters representing it as µω.

However, PS algorithms also require an exploration magnitude for generating new samples, i.e.:

a parameter variance Σω. In PS with DMPs, such variance needs to be arbitrarily defined by the

user, or obtained through several demonstrations. Next, we present an alternative designed to

probabilistically fit a set of demonstrations.

5.2.2 Probabilistic movement primitives

Probabilistic Movement Primitives (ProMP) [127] are a general approach to learn and encode

a set of similar motion trajectories that present time-dependent variances over time as seen in

Fig. 5.4. Given a number of basis functions per DoF Nf as those in Fig. 5.1, ProMP use an

Nf × 2 time-dependent matrix Φt = [φt, φ̇t] to encode position and velocity, φt being the vector

of normalized kernel basis functions (e.g., uniformly distributed Gaussian basis function over

time), thus the position and velocity state vector yt can be represented as

yt =

 qt

q̇t

 = ΦT
t ω + εy, (5.16)

where εy ∼ N (0,Σy) is a zero-mean Gaussian noise representing fitting error and system noise

and the weights ω are also treated as random variables with a distribution

p(ω) = N (ω|µω,Σω). (5.17)

This distribution can be fitted, given a set of demonstration trajectories τk = {ykt }t=1..Nt ,

k = 1..Nk, by getting the weights ωk of each demonstration with least squares techniques.

Subsequently, the parameters of the distribution θ = {µω,Σω,Σy}, Σy being the state covari-

ance, are fitted by a maximum likelihood estimate, i.e., we compute the sample mean and the

sample covariance [128] of {ω}k=1..Nk . Then the probability of observing a trajectory τ can be

expressed as the product of all timestep probabilities p (yt;θ)

p(τ ;θ) =
∏
t

p(yt;θ) =
∏
t

∫
N (yt|ΦT

t ω,Σy)N (ω|µω,Σω)dω (5.18)

Due to the probabilistic representation, the ProMP approach can represent motion variability

90 Preliminaries

while keeping other MP properties such as rescalation and linear representation w.r.t. param-

eters. It also allows for other operations such as modulation via probabilistic conditioning and

combination by product [127]. In Fig. 5.4, we show the average and standard deviation of a

ProMP and different sample trajectories from its distribution.

Figure 5.4: ProMP fitting a set of trajectories, the mean and standard deviation for each timestep
are shown.

Contrary to the DMP characterization, ProMPs can also be conditioned to impose a viapoint

in the trajectory by using probability operations, as well as combining or blending of trajectories.

ProMP control

In order to fully exploit the ProMP, [127] characterize a stochastic controller that reproduces

the motion variance. Assuming a known discrete-time linearized dynamics of the system with a

time step dt, the robot dynamics equation becomes

yt+dt = (I + dtAt)yt + Btdtu + ctdt, (5.19)

where At, Bt, and ct are the system, input and drift terms of the first-order Taylor expansion of

the dynamical system of the robot.

By using the control signal u defined as:

u = Ktyt + κt + εu, (5.20)

with εu ∼ N (0,Σu/dt) as in [127]. Kt is a linear gain and κt a drift term. Inserting (5.20) into

5.2 Movement Primitives (MP) 91

(5.19) results in
yt+dt =

=

[(I + dtAt) + dtBtKt] yt+

Bt(u + εu)dt+ ctdt

Fyt + f + Btdtεu,

(5.21)

where F = [(I + dtAt) + dtBtKt] and f = dt (Btudt+ ct). Given the dynamics equation (5.21),

the probability of being in state yt+dt at the next time step is extracted, i.e.,

p(yt+dt) =
∫
N (yt+dt|Fyt + f ,Σsdt)N (yt|µt,Σt)dyt =

N (yt+dt|Fµt + f ,FΣtF
T + Σsdt),

(5.22)

with µt = ΨT
t µω and Σt = ΨT

t ΣωΨt. We can match the control noise matrix Σs for each

timestep by using the cross-correlation between consecutive steps of the trajectory distribution:

dtΣs = Σt+dt −CT
t ΣtCt,

with Ct = ΨT
t ΣωΨt+dt. The controller terms Kt, κt can be obtained by matching {µt+dt,Σt+dt}

from the system dynamics in Eq. (5.22) and the ProMP model,

Kt = B†
[(
ψ̇Tt Σωψ̇t −Σs/2

)
−AtΣt

]
Σ−1
t ,

and

κt = B†
[(
ψ̇Tt µω −At + BtKt

)
ψTt µω − ct

]
,

and the controller noise covariance estimation is given by

Σu = B†ΣsB
T †. (5.23)

This linearized controller tracks the ProMP as a probability distribution (see [127] for more

details). Therefore, it will present larger error-compensating gains when the timestep variability

is small and smaller gains when it is large. However, it does need a linear model of the system, as

well as a well-conditioned covariance matrix Σω, which inverse matrix is crucial to the controller

computation.

92 Preliminaries

5.3 Summary

In this chapter, we introduced the basic concepts relative to PS applied to robot motion learning,

and suitable motion characterizations used for PS. While DMPs have been widely used through-

out the last decade, alternatives like ProMPs are gaining popularity in some applications. We

introduced two PS algorithms: PI2 and REPS. While both are state-of-the-art algorithms, PI2

needs the user to set the temperature parameter λ. The choice of such parameter is crucial for

learning, and the user needs a prior knowledge of the algorithm’s behavior in order to correctly

implement it. REPS automatically finds such temperature, denoted η in Eq. (5.7), and the KL

divergence bound needed, ε, is often set to values between 0.5 and 1 with success. However,

the order chosen for the KL constraint in REPS might result in suboptimal solutions in certain

problems. In the following chapter, we generalize the REPS algorithm for a better learning

behavior in multi-modal problems and, in Chapter 7, we apply Dimensionality Reduction (DR)

techniques to both DMPs and ProMPs, with the particularity of making such DR reward-oriented.

That allows to encode data in a way we keep the maximum information of the task possible, but

also giving much more importance to the higher-reward data when encoding motion.

6
Dual REPS: A Generalization of Relative Entropy

Policy Search Exploiting Bad Experiences

Policy Search (PS) algorithms are nowadays widely used for their simplicity and effectiveness in

finding solutions for robotic problems. However, most current PS algorithms derive policies by

statistically fitting the data from the best experiments only. This means that those experiments

yielding a poor performance are usually discarded or given too little influence on the policy up-

date. In this chapter, we propose a generalization of the Relative Entropy Policy Search (REPS)

algorithm that takes bad experiences into consideration when computing a policy. The proposed

approach, named Dual REPS (DREPS) [129], following the philosophical interpretation of the

duality between good and bad, finds clusters of experimental data yielding a poor behavior and

adds them to the optimization problem as a repulsive constraint. Thus, considering there is

a duality between good and bad data samples, both are taken into account in the stochastic

search for a policy. Additionally, a cluster with the best samples may be included as an attractor

to enforce faster convergence to a single optimal solution in multi-modal problems.

REPS, which has been introduced in Section 5.1.1, uses a Kullbach Leibler (KL) divergence

term for limiting the difference between the former and the new policy in a PS update. However,

it has been shown [123] that the ordering of the KL arguments used in REPS - KL(π(θ)‖q(θ))

instead of KL(q(θ)‖π(θ)) - has an averaging-between-solutions behavior, sometimes finding non-

optimal solutions due to competition between two or more close local optima. Such KL opti-

mization generates a solution that yields a high probability where data presents a high reward,

therefore averaging between modes in Gaussian distributions. Using the reverse ordering would

help to find a single solution faster, as such approach would find a solution with low probability

values where data has low reward [123], therefore focusing on only one mode. However,

there is no closed REPS solution using KL(q‖π) instead of KL(π‖q). While the latter usage of

KL seems to be more appropriate for most RL applications, its analytic unsolvability makes its

94 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences

application impractical. Along this chapter we will show that our proposed DREPS algorithm

avoids the aforementioned averaging-between-solutions behavior, exhibiting a good ability to

escape from getting trapped in between local maxima. The results in 6.1.3 show that, while

having a very similar performance in unimodal learning cases, DREPS outperforms the standard

REPS in multimodal problems as the real-robot example presented.

In order to allow our proposed DREPS algorithm to fit in the current trends of RL, we assume

that policies are encoded as multivariate normal random distributions. Such encoding, as well

as representing the clustered samples by Gaussian distributions, allows us to solve the resulting

equations analytically and obtain a closed-form solution.

In the following section, we will detail how to build a clustered data structure for DREPS,

followed by the algorithm’s derivation, which is done similarly to REPS and other information-

theoretic Policy Search approaches [130].

6.1 The Dual REPS Algorithm

The idea behind Dual REPS (DREPS) is to use clustered badly-performing data samples as a

repulsive field and good-performing ones as an attractor within the policy search algorithm. For

this purpose, we assume that we can cluster the data from a set of experiments and encode such

information as a constraint in the optimization problem. The natural way of adding this new

constraint has been to set a minimum/maximum KL-divergence between the bad/good data

clusters and the new policy. This will act as a repulsive/attractive field from these clusters in

the policy update. This results in a dichotomic effect, limiting the search space when finding an

optimal solution, given the samples available, for the policy update. The optimization problem

presented in Eq. (6.2) differs from the REPS optimization (see Eq. 5.6) in that, while still

maximizing the gain in expected reward for the updated policy, two additional restrictions

are added. These two restrictions add a minimum required distance from the new policy to

a number of clusters of badly-performing samples, as well as a bound on the KL divergence

wrt. the best clusters of data. The first restriction (repulsive) prevents the new policy to stay

in suboptimal areas of the optimization space, instead of ignoring low-performing samples by

giving them zero importance (as happens in REPS). The second restriction then allows for a

greedier behaviour of the policy search when more than one optimum exists, helping to converge

faster when possible (see video in Appendix B.5).

In this section, we will first explain how to select and fit these data clusters, which will

be labeled bad/good data, to later present the whole mathematical derivation of the proposed

DREPS algorithm. The clusterization presented in this chapter is the result of a trial-and-error

attempt at finding a reliable way of clustering parameter data with aggregated rewards which

6.1 The Dual REPS Algorithm 95

could be used in the DREPS algorithm. While such proposed clustering has proved effective, we

note that it is just a tool to obtain the input needed for the DREPS algorithm itself. The clusters

are fitted with Gaussian distributions that are then used for the policy search update.

Throughout this section, we will use Clow as the set of low-performing data clusters, with

its cardinal represented as |Clow|, and Chigh as the set of |Chigh| high-performing data clusters.

Additionally, for simplicity of notation we will use C = Clow ∪ Chigh with cardinal c = |C|. It

is important to note that not all the samples obtained are necessarily classified in one of these

clusters, and there can also be an overlaping of clusters. This is a design decision to give more

freedom to the clustering algorithm defined in the following section.

6.1.1 Clustering

The low-performing and high-performing samples may be spread out in the parameter space.

Therefore, we have opted for grouping the samples with a bad/good reward in several clusters,

so as to represent them by Gaussians to be included in the policy update. In such clustering, we

assume the reward function is smooth almost everywhere from the mathematical perspective,

as well as a good repeatability of the reward function wrt. policy parameters.

In order to obtain such clusters, we decided to use K-means clustering, considering both the

sample vectors and the rewards generated by them. Hence, we append a transformed reward

f(rk), with rk , R(θk), to every sample θk ∼ N (µω,Σω), k = 1, ..., N , N being the number

of rollouts per policy update. Then, we use these vectors
[
θTk − µTω , f(rk)

]T as input to a K-

means clustering with a given fixed number of clusters. The usage of such f(rk) is to properly

scale the relative importance between rewards and parameters in the clustering. Otherwise,

either one or the other could have a too-large influence, as seen in Fig. 6.1. We initially tested

with the K-means clustering algorithm in MATLAB. We used the K-means clustering algorithm

in MATLAB. However, such implementation [131] initializes the cluster centers by randomly

selecting a number of points from the dataset. This resulted in a non-deterministic way of

clustering points, so the clusters are initialized using the algorithm proposed in [132] instead.

We perform two independent clustering processes on the same data, using two different

reward transformations, to obtain the low- and high-performing clusters. The reason for these

two transformations is to increase the importance of the reward dimension in the clustering

(amplifying either the low or high values), while maintaining the proportionality in the samples.

Note that, as we are clustering the data twice with the last component being different, some

clusters in Chigh might overlap with those in Clow.

96 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences

Figure 6.1: Result of applying K-means clustering to the 3-dimensional data points consisting
of two random variables and the transformed reward without the rescaling in Eq. (6.1). Left
column shows the results with too much relative importance on rewards, disregarding parameter
variability. On the contrary, the center column shows the clustering results with too small
influence of the rewards and right column shows the proposed relative weighting.

Obtaining the high-performing clusters

Given the vector of rewards r = {r1, ..., rN}, we define:

f(rk) = ρ ·
√

tr(Σω)
rk −min(r)

max(r)−min(r) + 10−9
, (6.1)

where ρ is a relative importance weight, which will keep the sample reward importance propor-

tional to the sample variability during the clustering part of DREPS. This transformation of the

reward firstly normalizes the values to [0, 1] and then scales such values to a similar magnitude to

that of the parameter variance. Otherwise, as mentioned earlier, undesired clusterization like the

one seen in Fig. 6.1 could be obtained, where data is clustered by reward value only. A value of

ρ = 10/D, D being the number of parameters, has been used throughout this chapter. Once the

data has been prepared, we run the K-means clustering algorithm and obtain a cluster label for

each sample, indicating to which cluster it has been assigned. Taking the average transformed

reward for each of the clusters, we separate them into two groups (using a 1−dimensional K-

means clustering with 2 clusters). The group with the best average rewards will be the clusters

we will consider as high-performing clusters and we will gather them in the set Chigh. We may

define a maximum number of low-performing clusters, consider only a single cluster, or let the

algorithm choose the number of high-performing clusters.

6.1 The Dual REPS Algorithm 97

Algorithm 6.1: K-means clustering for DREPS
Input:
Sample vector θk, rewards rk, ∀k = 1, ..., N
Number of dual clusters c

1: Transform the rewards to more discriminating values f(rk) with (6.1).
2: Perform standard K-means clustering with [θk, f(rk)] and obtain c clusters.
3: Compute the average transformed reward f(r)i for each cluster i = 1..c.
4: Choose the clusters with the best average transformed reward, manually or with a 2-cluster

K-means approach, and assign them to Chigh.
5: Transform the Rewards by using 1/rk instead of rk in (6.1) to obtain f(1/rk).
6: Perform standard K-means clustering with [θk, f(1/rk)] and obtain c clusters.
7: Choose the clusters with the highest average inverse reward, manually or with a 2-cluster

K-means approach, and assign them to Clow.
8: for i ∈ C do
9: Compute µi,Σi with reward-Weighted Maximum Likelihood Expectation (WMLE) using

points assigned to cluster i, using the transformed rewards as weights.
10: end for

Obtaining the low-performing clusters

The only difference with the just described clustering process is that here we use 1/max(rk, 10−9)

instead of rk in (6.1). In this way, we obtain a set of clusters Clow with low-performing data.

Next, we fit each cluster in C with a Normal distribution gi ∼ N (µi,Σi) using their associ-

ated transformed rewards as weights in an WMLE to obtain the resulting parametrizations for

each cluster i ∈ C, {µi,Σi}. Given the reward function in Fig. 6.2, Fig. 6.3 shows an example

of the classification of the sample points with K-means clustering, while Fig. 6.4 displays their

associated rewards, and the Normal distributions resulting from the WMLE using a total of 3

clusters, 2 of them being considered as having a low performance. No high-performing cluster

is used as attractor in this example. The plot shows the effectiveness of the clustering algorithm

at detecting poorly performing areas on the policy space. In Algorithm 6.1, we summarize the

process of computing the clusters given the data samples.

6.1.2 DREPS derivation

Given the information provided by the clustering in the previous section, we will use the com-

puted clusters, represented as Gaussian distributions gi ∼ N (µi,Σi), i ∈ C, as repulsive or

98 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences

Figure 6.2: Reward function used as a clustering illustrative example and in the experimental
section (see (6.16)).

Figure 6.3: Result of classification with K-means clustering of the 3-dimensional data points
consisting of two random variables and the transformed reward for the reward function in
Fig. 6.2.

6.1 The Dual REPS Algorithm 99

Figure 6.4: Result of applying Algorithm 6.1 to the data points color coded from red (low
reward) to blue (high reward). After clustering using the transformed reward as displayed in
Fig. 6.3, the two lowest-performing clusters are fitted with Gaussians using WMLE and are here
shown in black.

attractive data for the optimization problem, which now becomes:

π∗ = argmaxπ
∫
π(θ)R(θ)dθ

s.t. ε ≥ KL(π‖q)

1 =
∫
π(θ)dθ

ξ ≤ KL(π‖gi) , i ∈ Clow
KL(π‖gi) ≤ χ , i ∈ Chigh,

(6.2)

where ε is the bound on the KL-divergence for the REPS algorithm, and ξ, χ are the minimum

and maximum KL-divergence we want to have between the new policy and the precomputed

low-performing and high-performing clusters, respectively. Note that the condition ε ≤ KL(π‖q)
could be included in the Chigh restriction. However, we decided to keep it separate to make

clear that here the KL-divergence is not with respect to a cluster, but with respect to the

previous policy parameters and will always be maintained, while Chigh may be an empty set

and represents a more local influence. The solution of (6.2) can be found analytically by using

Lagrange multipliers and has the form

π(θ) ∝ q(θ)
η

η+ω−ν
∏
i

gi(θ)
ωi−νi
η+ω−ν exp

(
R(θ)

η + ω − ν

)
, (6.3)

100 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences

where η is the Lagrange multiplier of the first KL constraint in (6.2) and ν =
∑
νi, ω =

∑
ωi

are the multipliers for the other KL constraints. These variables can be found by minimizing

the dual function of the optimization problem (derived in eqs. (6.5)-(6.12)). Note that in this

chapter we will use ν and ν =
[
ν1, ..., ν|Clow|

]
. Analogously, we will be using ω and ω. Hence,

the optimal Lagrange multipliers are the ones obtained by solving:

{η∗,ν∗,ω∗} = argminη,ν,ωh(η,ν,ω), (6.4)

Given the optimization problem (6.2), we can compute the lagrangian as:

L =
∫
π(θ)R(θ)dθ + η

(
ε−

∫
π(θ)logπ(θ)

q(θ) dθ
)

+
∑
i∈Clow

νi

(∫
π(θ)log

π(θ)

gi(θ)
dθ − ξ

)
∑

i∈Chigh

ωi

(
χ−

∫
π(θ)log

π(θ)

gi(θ)
dθ

)
+ λ

(∫
π(θ)dθ − 1

) (6.5)

where η, νi,ωi, ∀i are positive. Differentiating with respect to π(θ) (and omitting θ for simplicity)

we obtain

∂L
∂π

= R−η(logπ− logq+1)+λ+
∑
i∈Clow

νi(logπ− loggi+1)−
∑

i∈Chigh

ωi(logπ− loggi+1) (6.6)

which, setting ∂L
∂π = 0 and isolating logπ becomes:

logπ =
R

η + ω − ν
+

ηlogq
η + ω − ν

+

∑
i∈Chigh ωiloggi
η + ω − ν

−
∑

i∈Clow νiloggi
η − ν

− η + ω + λ− ν
η + ω − ν

(6.7)

with ν =
∑
i∈C

νi, and setting Z = exp
(
η+ω+λ−ν
η+ω−ν

)
, we obtain

π = Z−1qη/(η+ω−ν)
∏
i∈C

g
ωi−νi/(η+ω−ν)
i exp

(
R

η + ω − ν

)
(6.8)

where, given that 1 =
∫
π(θ)dθ,

Z =

∫
θ
qη/(η+ω−ν)

∏
i∈C

g
ωi−νi/(η+ω−ν)
i exp

(
R

η + ω − ν

)
dθ. (6.9)

6.1 The Dual REPS Algorithm 101

Now, reinserting (6.8) into (6.5), we obtain a dual function for the lagrangian problem:

h(η,ν,ω) = ηε+
∑

i∈Chigh

(ωiχ)−
∑
i∈Clow

(νiξ) + λ+ η + ω − ν (6.10)

where, isolating λ+ η + ω − ν from Z in equation (6.9) and inserting it into (6.10):

h(η,ν,ω) = ηε+
∑

i∈Chigh

(ωiχ)−
∑
i∈Clow

(νiξ)

+(η + ω − ν)log
∫
θ q

η/(η+ω−ν)
∏
i∈C g

ωi−νi/(η+ω−ν)
i exp

(
R

η+ω−ν

)
.

(6.11)

We can now replace the integral over a sum of samples to obtain the dual objective function:

h(η,ν,ω) = ηε+
∑

i∈Chigh

(ωiχ)−
∑
i∈Clow

(νiξ)+

+(η + ω − ν)log

[
1
N

N∑
k=1

q
ν−ω
η+ω−ν
(k)

∏
i∈C

gi

ωi−νi
η+ω−ν
(k) exp

(
rk

η + ω − ν

)]
.

(6.12)

This dual function can be evaluated provided we can compute the probability of a given trajec-

tory for both the previous policy q and the dual policies gi. These can be computed from the

direct policy evaluation or, in cases where the outcome is a sequence of states, by multiplying

the transition probabilities for all the timesteps of a sequence. For numerical stability reasons,

we recommend to directly compute the log-probability of such normal distribution.

From the mathematical perspective, there is no guarantee that this problem will always be

convex for ν, thus in order to minimize the dual function h, we set a minimum value for νi in

the active-set optimization of the dual function, it being an indicator of the minimum influence

we want the dual policies to have. If gi are defined by fitting a normal distribution given some

clustered samples with their associated rewards (assuming rewards are negative, and closer to

zero is considered better), we can, for example, set νi = ν 1√
|Ri|

, with ν =
∑

i νi and Ri the

average reward for the i-th cluster.

Additionally, in some circumstances the solution provided by the solver might not be fully

respecting the ε bound on the KL-divergence. This comes from trying to find a probability

distribution with a min/max dissimilarity with respect to other distributions, which could then

become a set of restrictions impossible to comply with. For that reason, the KL-divergence of the

solution found was evaluated after the policy update, and in case KL(π‖q) > ε, the gradient of

the KL of the solutions found with respect to νi, χ and ξ was iteratively obtained, performing

gradient descent on these parameters until a suitable solution within the KL-divergence bound

was found. In order to perform such gradient descend, it is vital that the K-means clustering

102 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences

initialization is performed in a deterministic manner, as in [132]. Furthermore, when no

convergence is reached after a certain number of iterations, ν is set to zero for that policy

update and the optimization is performed only with attractor Gaussians.

Thus, once the Lagrange multipliers η,ν,ω have been found, one can update the policy by

using WMLE, with the weights dk for each rollout coming from the samples and the solution

form shown in (6.3):

dk = q
ν−ω
η+ω−ν
(k)

∏
i∈C

gi

ωi−νi
η+ω−ν
(k) exp

(
rk

η + ω − ν

)
. (6.13)

In Algorithm 6.2 we summarize the DREPS algorithm for clarity.

Algorithm 6.2: Dual Relative Entropy Policy Search (DREPS)
Input:
Parameters ε, ξ, χ, and rollouts per update N
Previous policy q(θ)

1: for k = 1..N do
2: Perform an experiment using θk, a sample from the policy q(θ). Compute reward rk.
3: end for
4: Perform both steps of K-means clustering as defined in Section 6.1.1 and obtain gi ∼ N (µi,Σi), for
i ∈ C

5: Compute the probabilities of each rollout for the previous policy q(θk) and the dual policies
gi(k) = gi(θk) for k = 1..N and i ∈ C.

6: Perform optimization to find η,ν,ω with the dual function in (6.4).
7: Find weights dk for each rollout k as in (6.13).
8: Perform WMLE with the obtained weights dk and parameter vectors θk to find the new policy π.

Note that, for ν = 0 and ω = 0, the effect of the clustered data would be none and the

algorithm should behave exactly as REPS. Indeed, for ν = 0 and ω = 0 the solution in (6.3)

becomes:

π(θ) ∝ q(θ)exp
(

R(θ)

η

)
, (6.14)

and the dual function to optimize is

h(η) = ηε+ ηlog

[
1

N

N∑
k=1

exp
(
rk
η

)]
, (6.15)

which are the REPS solution and the dual function, respectively. Thus, setting the influence

of the dual policies gi to zero, we can see that our proposed algorithm reduces to REPS and,

therefore, it is a generalization of REPS. An experiment with a real robot described at the end

of Section 6.1.3 experimentally confirms this theoretical remark in unimodal problems.

6.1 The Dual REPS Algorithm 103

6.1.3 Experiments

In this section, we present three experimental setups to assess the performance of our proposed

algorithm, especially in multi-modal problems: First, a 2-D example of a multi-modal reward

function, and second, a multi-modal real robotic problem. Finally, an unimodal experiment is

also shown.

Multi-modal 2D reward function

To evaluate how the proposed algorithm performs, we built an example task in which the policy

is to sample points θk, k = 1, ..., N in a 2-dimensional space and, for each sample, evaluate a

reward function rk consisting in a high reward at three given points ψ1,ψ2,ψ3 and very low

reward in between:

rk = 10‖
∑
i=1..3

(
ψi
3

)
− θk‖ − 5

∑
i=1..3

‖ψi − θk‖ (6.16)

The reward function is displayed in Fig. 6.2, where one can note that there are 3 possible

candidates for an optimal solution.

To find the optimal point on the plane, we initialize the policy with µω = 0 and Σω = I,

and 100 samples are evaluated for every policy update, reusing up to 400 previous samples.

When using REPS with a KL bound of ε = 0.5 for this optimization problem, we noticed that

the learning curve had a plateau in most cases (see Fig. 6.5), corresponding to the algorithm

averaging the rewards of two of the optimal points (see Fig. 6.6). The REPS algorithm keeps

obtaining samples near both candidates and cannot improve the policy further until significantly

more samples get closer to one of the candidates than the other, moving the policy towards one

of the solutions. As a result, the more rollouts per policy update used, the more likely REPS is

to stay longer in such plateau.

If, instead of REPS, we use our proposed approach DREPS, the effect of the repulsive Gaus-

sian in the middle allows the algorithm to quickly avoid this plateau and keep on with the

optimization. We compared the performance of a REPS algorithm (REPS), a dual REPS algo-

rithm with 3 repulsive Gaussian, and none attractive (nDREPS), and the full DREPS algorithm

with one attractive Gaussian and up to 4 repulsive ones (DREPS). In the latter case, we let the

algorithm itself decide how many repulsive clusters it would use with a 2-cluster K-means, as

explained in Section 6.1.1, i.e.: |Clow| ≤ 4, |Chigh| = 1, and parameters ξ = 5, χ = 2ε. We

performed 50 learning experiments for both REPS and DREPS, and the results are displayed in

Fig. 6.7, where we can see that nDREPS performs better than REPS, but both are outperformed

by the full DREPS. A video comparing the evolution of REPS vs. DREPS can be found in Appendix

104 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences

Figure 6.5: Learning curve of the REPS algorithm for the 2D optimization example. The
algorithm gets stuck in a plateau averaging between two solutions (see Fig. 6.6) between the
7th and 21th policy updates.

Figure 6.6: Gaussian policy resulting from applying REPS to the 2D optimization example. As
shown here, REPS averages between two solutions, and keeps doing so for several iterations, as
can be seen in the video included in Appendix B.5.

6.1 The Dual REPS Algorithm 105

Figure 6.7: The learning curves for the 2D optimization example, averaged for 50 experiments
each (mean and 2-standard deviations are plotted), show the advantage of using the DREPS
algorithm.

B.5. The scalability of the proposed approach has been assessed using the same problem in a

larger-dimensional parameter space, as also seen in the Appendix.

Real robot multi-modal problem

As a second experiment, we programmed a Barrett WAM robot so that its end-effector would

follow a straightline trajectory with fixed orientation (facing down) and fixed z component,

from a starting position towards a goal position. Two bottles were added on the way as seen

in Fig. 6.8 and, using RL, the robot had to adapt the trajectory to an S-shaped motion that

would not knock down any of the bottles. Within this problem, we learned the task using

a compliant controller as defined in Part I of this thesis in three different manners: Through

human guidance [22,23,133], with REPS [121] and with DREPS.

Regarding the reward function to optimize, an initial approach was taken with strong penal-

izing terms for knocking down the bottles and the length of the trajectory:

R = −2Nbottlesdown − 0.15Ltrajectory, (6.17)

where Nbottlesdown is the number of bottles knocked down (0, 1 or 2) and Ltrajectory is the trajec-

tory length in meters. The relative weights of these terms were set to 2 and 0.15, respectively,

giving a higher importance to task accomplishment in the reward function, as usually done in

106 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences

Figure 6.8: Experimental setup for a real robot experiment where the robot must learn to
perform an S-shaped motion between the two bottles.

literature [12].

Human guidance

In order to learn a trajectory through visual guidance, in [133] we used a Microsoft Kinect

camera that would track a person while performing a straight line movement. At a certain point

of the trajectory, the human user would raise his hand and the robot would enter the visual

imitation state. The human can then guide the robot’s end-effector in-between the bottles and

raise his hand again once such part of the trajectory is finished. The robot would then go back to

the closest point of the straight line trajectory. Then, the directional points provided at a 10Hz

rate by the camera are stored, translated from Cartesian poses to joint coordinates in a similar

manner as shown in the visual tracking application in Section 4.3.2 (see Fig. 4.10). The human

always taught the robot the same S motion, leaving always the same first bottle on the left.

After a number of reproductions, the obtained trajectories would be adapted as seen in Fig.

6.9, where the two characteristic points of each blue trajectory (human takes control, human

releases control) are shown in red. The common parts - in thick black - of the trajectories are

then adapted with a gradient descent time alignment - shown in green - and finally, the mean

trajectory shown at the bottom is obtained through a reward-weighted average of the obtained

trajectories.

REPS and DREPS

The trajectory was encoded as a Dynamic Movement Primitive (see Section 5.2.1) initialized

to a straightline with 10 Gaussians per DoF equally spaced in time, to a total of 20 parame-

6.1 The Dual REPS Algorithm 107

Figure 6.9: Time alignment of several trajectories obtained through guidance.

108 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences

ters, representing the linear multipliers of such fixed Gaussians, to characterize the x and y

components of the trajectory. The same implementation of DREPS as in the previous simulated

experiment, with identical algorithmic parameters, was used.

With this setting, DREPS outperformed REPS in convergence velocity, as we can see in

Fig. 6.10. Obviously, all the final solutions obtained with both REPS and DREPS were of the

two left-most cases of Fig. 6.11, which was to be expected given the reward function in (6.17),

but they were not the desired solutions.

Figure 6.10: Learning curves for REPS and DREPS with the reward function in (6.17). Policy
updates were calculated after every 50 rollouts.

For this reason, we added a term penalizing the fact that the robot would not cross between

the bottles. To do so, we evaluated in which side of the line drawn in Fig. 6.8 the arm was when

passing by each of the two bottles, and a term was added to the reward function penalizing

when it was on the same side. Note that this term allows for symmetric solutions as the two

right-most ones, plotted in blue, in Fig. 6.11. The new reward function would then be:

R = −2Nbottlesdown − 0.15Ltrajectory − 4Icross, (6.18)

where Icross indicates whether the robot did or did not cross between the bottles (Icross = 1 in

case the robot did not cross, and Icross = 0 in case it crossed). The relative weight of such added

term was set to 4 to have the same negative effect in the reward function as if knocking down

the two bottles.

We also performed 50 simulated experiments of 100 policy updates with 50 rollouts each

6.1 The Dual REPS Algorithm 109

x[m]
0.4 0.5 0.6

y
[m

]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x[m]
0.4 0.5 0.6

y
[m

]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x[m]
0.4 0.5 0.6

y
[m

]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x[m]
0.4 0.5 0.6

y
[m

]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x[m]
0.4 0.5 0.6

y
[m

]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

x[m]
0.4 0.5 0.6

y
[m

]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 6.11: Schematic visualization of some representative trajectories obtained for the real-
robot experiment using the reward in (6.18). The bottles (in black) have been expanded with
a safety threshold corresponding to the width of the arm’s end-effector (gray). The left-most
plots show trajectories with a low reward (< −4) due to the robot not crossing in-between
the bottles. The center plots with trajectories in magenta show solutions with a reward between
(−3,−2), while examples of quasi-optimal trajectories are shown in blue on the right-most plots,
corresponding to a reward (> −1).

Figure 6.12: Learning curves for REPS and DREPS with the reward function in (6.18). Policy
updates were calculated after every 50 rollouts.

110 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences

and the learning curves with the mean and 2-standard deviations can be seen in Fig. 6.12.

REPS obtained a satisfactory solution in 35 out of 50 experiments, while DREPS solved the

problem correctly in 47 of them. Moreover, the average reward for the unsatisfactory solutions

obtained by REPS was −4.12, while the average reward for the unsatisfactory solutions obtained

by DREPS was −2.80. This is due to the fact that REPS is more likely to prematurely converge to

one of the two left-most solutions in Fig. 6.11, while DREPS’s repulsive term pushes the solutions

away from those, which actually yield a lower reward than the magenta solutions in the middle

of Fig. 6.11.

Last, we compared some sample trajectories obtained with the human-guided learning with

those obtained with REPS and DREPS in Fig. 6.13. While the Human-guided trajectories

seem to be less smooth, they are obtained with only 20 sample trajectories, which shows how

human assistance can drastically reduce the number of real-robot samples needed in other non-

simulable experiments:

Figure 6.13: Comparison of three different ways of obtaining the solution to the bottle
avoidance problem.

Regarding the computational time of the clustering, Alg. 6.1 took an average of 0.52s in an

i5-2400S CPU at 2.50GHz, clustering 50 samples of dimension 20. Such additional computational

cost, together with the cost of Alg. 6.2, makes our approach more CPU-demanding than REPS.

However, real robot motion is more time demanding and costly than such computational time

every N robot motions. In particular, looking at Fig. 6.10, such increment on computing time

results in a better learning curve, thus requiring less real-robot experiments. A video comparing

REPS and DREPS in the bottle avoiding task can be found in Appendix B.5, together with the

execution on the real robot of the final trajectory found by DREPS.

Unimodal task example

Moreover, we tested the performance of DREPS on a unimodal reward task, namely drawing a

circle, in which the same 7-DoF WAM robot had to improve an initial motion towards a 3D circle-

6.2 Summary 111

tracking motion. We kinesthetically taught a 7-DoF WAM arm to follow a circular trajectory in

the Cartesian space with its wrist. The circle best fitting the initial trajectory, which was very

inaccurate, was computed and a cost function consisting in a point-to-point deviation from that

circle, plus an acceleration-penalizing term, was considered. We fitted the taught trajectory

with a Dynamic Movement Primitive (DMP). 12 Gaussians equally spaced in time were used for

each DoF, as the trajectory to be learned was a complex 20-second movement. This generated

a set of 84 parameters, representing the linear multipliers of such Gaussians. After applying

both REPS and DREPS algorithms, the outcome after 50 learning experiments was very similar,

which could be expected due to the uni-modality of the problem. The learning curves for both

REPS and DREPS can be seen in Fig. 6.14. As theoretically anticipated in Section 6.1.2, DREPS

displayed the same behavior as REPS in terms of learning speed and resulting trajectories.

Figure 6.14: Learning curves for REPS and DREPS for a simulated unimodal problem with real
robot data. Both algorithms show the same performance as expected for a unimodal task

6.2 Summary

In this chapter, we developed a generalization of the Policy Search (PS) algorithm known as

Relative Entropy Policy Search. Such generalization, which is equal to REPS if the clusterization

is omitted, considers the possibility of using both bad experiences to have a repulsive effect, and

best data to encourage approaching the best-performing areas. This helps to influence the so-

lution away from bad data collected during sampling/experimentation. While the performance

of REPS and DREPS is similar in purely convex problems, our algorithm shows to be effective

at preventing the loss of time in plateaus by other algorithms, as seen in the learning curve in

Fig. 6.7, without the need of using a multi-modal solution as in Hierarchical REPS [122].

112 Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences

Clusterization prior to the application of DREPS as presented in this chapter has proved

effective, but future work includes a deeper study of this topic, testing if other clustering

algorithms or approaches to obtain the attractive and repulsive clusters can yield better results.

The proposed algorithm, while showing a very similar behaviour to REPS in uni-modal

problems, is very suitable in cases where there is a multi-modal solution to the problem, but

the user only needs a single solution. Multi-modal PS approaches would need more samples

in order to fit the different possible solutions, while DREPS focuses on a single solution and

refines it faster. We have first assessed the benefits of using DREPS using a synthetic multi-

modal reward function. Then, experiments in a real robot setup have been performed, using

DMPs to parametrize robot motion [134] in a task with a multi-modal reward function, and the

results confirm the better performance of DREPS versus REPS.

In the following chapter, we tackle the improvement of PS efficiency from another perspec-

tive, namely motion encoding compactness. We will perform reward-oriented dimensionality

reduction on the parametrizations of motion that will allow for a faster learning and also a more

intuitive representation of motion through coupling of DoF.

7
Reward-oriented Dimensionality Reduction with

Movement Primitives

As mentioned in Chapter 5, Movement Primitives are nowadays widely used as movement

parametrization for learning robot trajectories, because of their linearity in the parameters,

rescaling robustness and continuity. However, when learning a movement with MPs, a very large

number of Gaussian approximations needs to be performed. Adding them up for all joints yields

too many parameters to be explored when using Reinforcement Learning (RL), thus requiring

a prohibitive number of experiments/simulations to converge to a solution with a (locally or

globally) optimal reward. In this chapter, we address the process of simultaneously learning a

MP-characterized robot motion and its underlying joint couplings through linear Dimensionality

Reduction (DR), which will provide valuable qualitative information leading to a reduced and

intuitive algebraic description of such motion.

These motor/motion behaviors are usually represented with Movement Primitives (MPs),

introduced in Chapter 5.2. A desired trajectory is represented by fitting certain parameters,

which can then be used to improve or change it. In the robotic case, such trajectories can either

be in the joint domain, or in the robot’s operational space/Cartesian space domain. In the latter,

a proper inverse kinematics algorithm to translate Cartesian trajectories to joint motions is often

needed, as discussed in Chapter 3. Those trajectories are then tracked with a proper controller,

such as the one presented in Chapter 4.

In Chapter 5, we defined two types of MP: DMPs and ProMPs. Both motion characterizations

result in linear policies wrt. the parameters. This linearity is not only very suitable for RL

algorithms, such as Policy Search (PS), but also allows for linear dimensionality reduction

techniques on the movement primitives. PS algorithms require several rollouts to find a proper

policy update. In addition, to have a good fitting of the initial movement, many parameters are

required, while we want to have few in order to reduce the dimensionality of the optimization

114 Reward-oriented Dimensionality Reduction with Movement Primitives

problem. When applying learning algorithms using MPs, several aspects must be taken into

account:

- Model availability. RL can be performed through simulation or with a real robot. The

first case is more practical when a good simulator of the robot and its environment is

available. However, in the case of manipulation of non-rigid objects or, more generally,

when accurate models are not available, reducing the number of parameters and rollouts

is critical.

- Exploration Constraints. Certain exploration values might result in dangerous motion

of the real robot, such as strong oscillations and abrupt acceleration changes. Moreover,

certain tasks may not depend on all the Degrees of Freedom (DoF) of the robot, meaning

that the RL algorithm used might be exploring motions that are irrelevant to the task, as

we will see later.

- Parameter dimensionality. Despite MPs having less parameters than other motion rep-

resentations, complex robots still require many parameters for a proper trajectory repre-

sentation. The number of parameters needed strongly depends on the trajectory length

or speed. In a 7-DoF robot following a long 20-second trajectory, the use of more than

20 Gaussian kernels per joint might be necessary, thus having at least 140 parameters

in total. A higher number of parameters will usually allow for a better fitting of the

initial motion characterization, but performing exploration for learning with such a high

dimensional space will result in a slower learning. Therefore, there is a trade-off between

better exploitation (many parameters) and efficient exploration (fewer parameters).

For these reasons, performing Dimensionality Reduction (DR) on the MPs’ DoF is an effective

way of dealing with the trade-off between exploitation and exploration in the parameter space

to obtain a compact and descriptive projection matrix which helps the RL algorithm to converge

faster to a (possibly) better solution. Additionally, Policy Search approaches in robotics usually

have few sample experiments to update their policy. This results in policy updates where there

are less samples than parameters, thus providing solutions with exploration covariance matrices

that are rank-deficient (note that a covariance matrix obtained by linear combination of samples

can’t have a higher rank than the number of samples itself). These matrices are usually then

regularized by adding a small value to the diagonal so the matrix remains invertible. This

procedure is a greedy approach, since the unknown subspace of the parameter space is given

a residual exploration value. Other approaches like Covariance Matrix Adaptation - Evolution

Strategy (CMA-ES) [135] filter the covariance through the optimization updates, progressively

fading the effect of old data in the covariance matrix, such data being replaced by the new data

7.1 Dimensionaliy Reduction for ProMPs 115

acquired. Furthermore, a known initial covariance matrix can be used to improve the sample-

based estimation, or by limiting the entropy in the covariance matrix update [136]. However,

the number of samples necessary in order to properly fit a covariance matrix is usually around 4

times its dimension [135]. Therefore, performing DR in the parameter space results in a possible

elimination of unexplored space, as much more information is needed in order to characterize

all the dimensions in such dNf - dimensional space. On the contrary, if such DR is performed

in the DoF space, the number of samples is larger than the number of DoF of the robot and,

therefore, by eliminatint one degree of freedom of the robot (or a linear combination of them),

we are removing a subspace of the parameter space in which we do have information, and it

will not affect the unexplored space, but rather a subspace of the DoF of the robot that is very

likely to have a negligible impact on the outcome of the task.

This chapter is divided into three sections. Sections 7.1 and 7.2 present linear DR frame-

works for the two types of MP presented in Chapter 5: ProMPs and DMPs, respectively. Section

7.3 presents a summary of the chapter.

7.1 Dimensionaliy Reduction for ProMPs

Humans as well as humanoid robots can use a large number of degrees of freedom to solve

very complex motor tasks. The high-dimensionality of these motor tasks adds difficulties to the

control problem and machine learning algorithms. In this section, we want to apply Dimension-

ality Reduction (DR) techniques to Probabilistic Movement Primitives (ProMPs), introduced in

Section 5.2.2. While ProMPs have been shown to have many benefits, they suffer with the high-

dimensionality of a robotic system as the number of parameters of a ProMP scales quadratically

with the dimensionality. We use probabilistic dimensionality reduction techniques, using Expec-

tation Maximization (EM) to extract the unknown synergies from a given set of demonstrations,

while maximizing the log-likelihood function with respect to such demonstrated motions, or the

reward-weighted robot exploratory executions. The ProMP representation is now estimated in

the low-dimensional space of the synergies. We show that our dimensionality reduction is more

efficient both for encoding a trajectory from data and for applying Reinforcement Learning with

Relative Entropy Policy Search (REPS), introduced in Section 5.1.1.

Dimensionality reduction over the DoF of robots is a common approach for grasping and

hand motion [137–139]. However, it has been less used for arm or leg robot skill coordination.

As the curse of dimensionality affects the performance of most RL algorithms when applied to

robots with a relatively high number of DoF, such as the NAO robot in Fig. 7.1, new approaches

to Reinforcement Learning (RL) with Dimensionality Reduction (DR) are being developed [27,

139]. Both approaches are based on Principal Component Analysis (PCA) or its probabilistic

116 Reward-oriented Dimensionality Reduction with Movement Primitives

version (PPCA). In this chapter, we directly extract the latent space with EM, without requiring

PCA. PCA is just used as initialization of the EM approach.

Figure 7.1: NAO robot interactuating with people. Picture provided by the Ave Maria
Foundation in Sitges.

Using EM instead of PCA in combination with the ProMP approach comes with an important

benefit, since the ProMP provides a time-dependent variance profile. While the variance profile

is important in many applications, it also contains relevant information for the dimensionality

reduction technique. Time points with a low variance are important for the movement and the

PCA approach is not allowed to distort these time points. However, for time points with a large

variance, a larger reproduction error of the DR technique is acceptable.

7.1.1 Representing Dimensionality Reduction for ProMP (DR-ProMP)

In Section 5.2.2, we introduced the ProMP representation for robot motion. However, such

motion representation needs to be adapted to encapsulate the linear DR proposed. For this

reason, given a robot with d DoF, we will reduce the dimensionality of its motion representation

to a latent space of dimension r, which is manually given. We can express the robot’s state

vector yt with latent space variables xt using a projection matrix Ω as:

yt '

 qt

q̇t

 = Ω2xt, (7.1)

where Ωs = Is ⊗ Ω (sd × sr), will be used throughout this chapter as the Kronecker product

of the s-dimensional identity matrix and what we define as coordination matrix Ω (d × r), a

7.1 Dimensionaliy Reduction for ProMPs 117

linear mapping from an r-dimensional latent virtual joint space into the d-dimensional robot

joint space. With this notation, we will also simplify Ω = Ω1. In Eq. (7.1), we used Ω2 to

project both position and velocity.

In order to represent the trajectory as a linear combination of some parameters ω as in

ProMPs, we can write (7.1) as

yt = Ω2xt + εfit = Ω2

(
ΦT
t ω + εx

)
+ εfit, (7.2)

with Φt = [φt, φ̇t] being the n× 2 matrix with the kernels used for the trajectory, and εfit, εx the

DR fitting error and the Gaussian noise for x, respectively.

Thus, the probability of being in the latent state xt given the weights ω = [ωT1 , ...,ω
T
r]T ,

(rn× 1) is

p(xt|ω) =

x1,t

...

xd,t

 ∣∣∣∣

ΦT
t ... 0

...

0 ... ΦT
t

ω,Σx

= N (xt|ΨT
t ω,Σx),

(7.3)

with ΨT
t = Ir ⊗ ΦT

t (2r × rn). The probability of observing yt given xt is given by Eq. (7.2),

i.e.,

p(yt|xt) = N (yt|Ω2xt,Σfit), (7.4)

Σfit being the covariance of the reprojection error. Thus, the trajectory distribution in the full

configuration space yt is now

p(yt;θ) =

∫
N (yt|Ω2Ψ

T
t ω,Σy)N (ω|µω,Σω)dω, (7.5)

where θ = {µω,Σω,Ω,Σy} is the set of parameters of the DR-ProMP representation, and Σy =

Σfit + Ω2ΣxΩ
T
2 the total system noise. We next define how Eq. (7.5) generalizes to the case of

context variables.

Given a context variable s ∈ RM , where M is the number of context variables, we can extend

the ProMP framework to contextual ProMP, p(ω|s) = N (ω|µω + Kωs,Σω), thus (7.5) becomes:

p(yt|s;θ) =

∫
N (yt|Ω2Ψ

T
t ω,Σy)N (ω|µω + Kωs,Σω)dω,

where Kω is a linear mapping between the context variables and the ProMP mean.

118 Reward-oriented Dimensionality Reduction with Movement Primitives

7.1.2 DR-ProMP for robot control

In order to fully exploit the DR-ProMP, we must also characterize a stochastic controller that

reproduces the motion variance. Assuming a known discrete-time linearized dynamics of the

system with a time step of dt, the robot’s dynamics equation is

yt+dt = (I + dtAt)yt + Btdtu + ctdt, (7.6)

where At, Bt, and ct are the system, input and drift terms of the first-order Taylor expansion of

the dynamical system of the robot. This translates to a reduced dimensionality dynamic equation

as

Ω2xt+dt = (I + dtAt)Ω2xt + Btdtu + ctdt. (7.7)

Hence,

xt+dt = Ω†2(I + dtAt)Ω2xt + Ω†2Btdtu + Ω†2ctdt, (7.8)

where † is used for the Moore-Penrose pseudoinverse. However, in Eq. (7.8), we still have

a control action defined in the full d−dimensional space. Then, we can act on the reduced

dimension r−space by using the control signal u ∈ Rd

u = Ων + εu,

where εu ∼ N (0,Σu/dt) is defined as in [127]. The latent space controller ν ∈ Rr is defined

with a linear gain Kt and drift κt
ν = Ktxt + κt. (7.9)

We will keep the controller noise in the high-dimensional space, allowing for exploration also

outside the latent space.

Thus, inserting (7.9) into (7.8) results in

xt+dt =

=

Ω†2 [(I + dtAt)Ω2 + dtBtΩKt] xt+

Ω†2Bt(Ων + εu)dt+ Ω†2ctdt

Fxt + f + Ω†2Btdtεu,

(7.10)

where F = Ω†2 [(I + dtAt)Ω2 + dtBtΩKt] and f = dtΩ†2

(
BtΩνdt+ Ω†2ct

)
. Given the dynamics

7.1 Dimensionaliy Reduction for ProMPs 119

Equation (7.10), we can extract the probability of being in state xt+dt at the next time step, i.e.,

p(xt+dt) =
∫
N (xt+dt|Fxt + f ,Σsdt)N (xt|µt,Σt)dxt =

N (xt+dt|Fµt + f ,FΣtF
T + Σsdt),

(7.11)

with µt = ΨT
t µω and Σt = ΨT

t ΣωΨt. We can match the control noise matrix Σs for each

timestep by using the cross-correlation between consecutive steps of the trajectory distribution

[127] and obtain

dtΣs = Σt+dt −CT
t ΣtCt,

with Ct = ΨT
t ΣωΨt+dt. The controller terms Kt, κt can be obtained by matching {µt+dt,Σt+dt}

from the system dynamics in Eq. (7.11) and the ProMP model. See [127] for more details of a

similar deduction,

Kt = ΩTB†
[
Ω2

(
ψ̇Tt Σωψ̇t −Σs/2

)
−AtΩ2Σt

]
Σ−1
t ,

and

κt = Ω†B†
[
Ω2

(
ψ̇Tt µω −AtΩ2 + BtΩKt

)
ψTt µω − ct

]
,

and the controller noise covariance estimation is given by

Σu = B†Ω2ΣsΩ
T
2 BT † + α2I. (7.12)

Note that, defined as in (7.12), Σu would be a d × d symmetric, semipositive definite matrix

with rank r at most, corresponding to that of the latent subspace defined by Ω. Adding the term

αI, for a small value of α will ensure we can explore the neighborhood of the latent space when

executing the ProMP.

7.1.3 Fitting DR-ProMP parameters with expectation maximization

We can estimate the set of parameters θ = {µω,Σω,Ω,Σy,Kω} in closed form using EM. ΨT
t

will now be a (r × rNf) matrix, and ykt will be a d-dimensional vector. We will use the vector

Yk to denote the concatenated position vectors of a single trajectory k,

Yk =
[
yk1

T
, ...,ykNt

T
]T
.

For our EM-algorithm, we will consider the most general case of a contextual ProMP in the

latent space x. Hence, we need to estimate the following parameters θ = {µω,Σω,Ω,Σy,Kω}.

120 Reward-oriented Dimensionality Reduction with Movement Primitives

Additionally, we want to use our model estimation algorithm for policy search algorithms that

are based on data re-weighting. These algorithms introduce a weighting dk for each trajectory.

Hence, we also have to consider such a weighting in our EM algorithm. In this section, the most

general case will be considered for obtaining the ProMP parameters.

For a context-free ProMP, Kω can be set to zero, while the weights dk can be set to 1 when

all demonstrations have the same importance.

We will maximize the weighted marginal log-likelihood
∑

k dk log p(yt|s,θ) of the data and

the latent space representation, thus we have to derive the equations with the marginalized ω

with the difficulties it entails. The following subsections explain how to obtain the log-likelihood

function and differentiate it.

Expectation step

In the expectation step, we must find the probabilities for each demonstration k with the old

parameters θold :

p(ω|Yk) =
p(Yk|ω)p(ω)

p(Yk)
∝ p(Yk|ω)p(ω), (7.13)

where, using ΩNt = INt ⊗Ω,

p(Yk|ω) = N (Yk|ΩNtΨ
Tω, INt ⊗Σy). (7.14)

Note that in the contextual case, we have omitted the conditioning on the context variables for

simplicity of the equations. Using the Bayes rule for Gaussian distributions, see Equations (39)

and (40) in [140], we obtain:

p(ω|Yk) = N (ω|µk,Σk),

where

µk = µω + Kωsk + ΣωΨΩT
NtΓ

−1(Yk −ΩNtΨ
T)(µω + Kωsk)

Σk = Σω −ΣωΨΩT
NtΓ

−1ΩNtΨ
TΣω,

and Γ is given by Γ = INt ⊗Σy + ΩNtΨ
TΣωΨΩT

Nt
.

Maximization step

Given the posterior probabilities p(ω|Yk) for each demonstration, we now maximize the weighted

expectation of the log-likelihood function, where dk is used as weight for each trajectory, i.e.,

L =

Nd∑
k=1

dkEω|YK ;θold

[
log
(
p(ω,Yk;θ)

)]

7.1 Dimensionaliy Reduction for ProMPs 121

=

Nd∑
k=1

dk

∫
ω
p(ω|Yk;θold) log

(
p(Yk|ω)p(ω)

)
dω,

where

log p(Yk|ω)p(ω) = log p(ω) +

Nt∑
t=1

log p(ykt |ω),

with p(ω) defined as in (5.17) and p(ykt |ω) = N (ykt |ΩΨTω,Σy).

Then, using the expectation identities for linear and quadratic transformations, (31) and

(33) in [140], we obtain the value of the likelihood function to maximize in the M-step:

L = −1
2

[(
Nd∑
k=1

dk

)
log |2πΣω|+Nt log |2πΣy|

]
− 1

2

Nd∑
k=1

dk(µω + Kωs− µk)Σ−1
ω (µω + Kωs− µk)

−1
2

Nd∑
k=1

dk

Nt∑
t=1

[
(ykt −ΩΨT

t µk)
TΣ−1

y (ykt −ΩΨT
t µk) + tr(ΨtΩ

TΣ−1
y ΩΨT

t Σk)
]
− 1

2

Nd∑
k=1

dktr(Σ−1
ω Σk).

Now, we can derivate L w.r.t. each of the parameters θ = {µω,Σ−1
ω ,Ω,Σ−1

y ,Kω}. Using that

∆Atr(ABATC) = CAB + CTABT , (see Section 8 in [141]), that λ = tr(λ) for scalar values,

the invariance of the trace w.r.t. cyclic permutations, the derivative of the log of a determinant,

the derivative of a product in a trace [141] and the derivative w.r.t. the transpose of a matrix,

we can obtain a closed-form solution of the parameters by setting each derivative to zero

µω =

(
Nd∑
k=1

dk

)−1 Nd∑
k=1

dk(µk −Kωs), (7.15)

Σω =

(
Nd∑
k=1

dk

)−1 Nd∑
k=1

dk
[
Σk + (µω − µk)(µω − µk)T

]
, (7.16)

Ω =

[
Nd∑
k=1

dk

Nt∑
t=1

ykt (µTkΨt)

][
Nt∑
t=1

ΨT
t

Nd∑
k=1

dk
(
Σk + µkµ

T
k

)
Ψt

]†
, (7.17)

Kω =

[
Nd∑
k=1

dk(µk − µω)sTk

][
Nd∑
k=1

dksks
T
k

]†
, (7.18)

122 Reward-oriented Dimensionality Reduction with Movement Primitives

Σy =

(
Nd∑
k=1

dk

)−1

1
Nt

Nd∑
k=1

Nt∑
t=1

dk[ΩΨT
t ΣkΨtΩ

T

+(ykt −ΩΨT
t µk)(y

k
t −ΩΨT

t µk)
T].

(7.19)

In order to update all the parameters in the M-step, we will first obtain the new mean for

the weights from Eq. (7.15), and subsequently use it to obtain its covariance with Eq. (7.16).

As the next step, we compute the new coordination matrix Ωnew with (7.17) and Kω in the case

of contextual ProMP with (7.18). Finally, we use all the newly computed parameters to obtain

the new noise covariance Σy with (7.19).

Initialization

Given a fixed value r ≤ d of the latent space dimension, a good initialization of the parameters

θ = {µω,Σω,Ω,Σy,Kω} can increase the convergence speed of the EM algorithm. To that

purpose, we will perform PCA on the trajectories Yk of the robot for all demonstrations k =

1..Nd. After obtaining an initial guess for Ω and use it in Eq. (7.2), we obtain the fitting weights

ωk for each demonstration k, which we will use to initialize µω,Σω

µω =
1

Nd

Nd∑
k=1

ωk,

Σω =
1

Nd

Nd∑
k=1

(ωk − µω −Kωs)(ωk − µω −Kωs)T .

Finally, we can initialize Σy as

Σy =
1

NdNt

Nd∑
k=1

Nt∑
t=1

(ykt − y)(ykt − y)T ,

where y is the average over all timesteps and demonstrations of the joint state vector.

In the case of a contextual ProMP, we will initialize [µω,Kω] together using weighted least

squares with the weight vector d = [d1, ..., dNd]

[µω,Kω]T =
(
Sdiag(d)ST + λI

)−1
STdiag(d)WT

d , (7.20)

where Wd = [ω1, ...,ωNd] are the weights obtained from fitting the demonstrations, λI a

regularization term, d the weights vector for each demonstration and S is a matrix containing

7.1 Dimensionaliy Reduction for ProMPs 123

all the context vectors for the demonstrations

S =

 1 ... 1

s1 ... sNd

 ,
where the 1s in the first row are added to be able to simultaneously compute µω and Kω.

Comparison of EM versus PCA

To illustrate the benefits of the EM-based algorithm presented in this section in comparison to

PCA, we created d-dimensional probabilistic trajectories, tracked with a stochastic controller.

We fitted these trajectories using both a PCA matrix projection and our EM-based approach and

used the Kullbach-Leibler divergence [120]. We computed the KL divergence between the data

distribution and the fitted models using EM and PCA. In Fig. 7.2, we can see the color plot of the

ratio ρ, defining the relative KL-divergence gain w.r.t. the PCA approach for a set of simulated

ProMP and their DR fitting. We can observe that, despite not being significantly better when the

fitting dimension is equal or almost equal to the original dimension, the KL-divergence of the

original trajectory distribution fitted with our approach is reduced by around 20% over the PCA

approach with ρ defined as

ρ =

∑Nt
t=1 KL(p(yt; data)|p(yt;θem))− KL(p(yt; data)|p(yt;θpca))∑Nt

t=1 KL(p(yt; data)|p(yt;θpca))
, (7.21)

Reinforcement Learnig with DR-ProMP

The proposed EM algorithm can be straightforwardly used for RL algorithms that are based on

data re-weighting [12]. These algorithms are used to choose the weighting dk of each data

trajectory. We will use the REPS algorithm described in Section 5.1.1 The weights dk provided

by REPS for the set of Nk trajectories are used to infer a new policy by using weighted maximum

likelihood estimation. In our case, we will use our EM algorithm for learning synergetic ProMP

to obtain a new policy. In the case of contextual variables, a contextual version of REPS can also

be found in [12].

After observing a set of a trajectories, and given their relative importance (weights) provided

by the REPS algorithm, we can use the EM estimation in Section 7.1.3 to update the parameters

of the ProMP using Equations (7.15)-(7.19). In Alg.7.1, we show the iterative procedure for

learning with the EM-REPS approach. This algorithm updates all the ProMP parameters given

the reward-based weights of the executed trajectories. If no context variables are considered, Kω

124 Reward-oriented Dimensionality Reduction with Movement Primitives

Figure 7.2: Plot of the ratio ρ defined in (7.21), showing that the EM approach reduces the
KL-divergence by around 20% w.r.t. PCA.

Algorithm 7.1: EM-REPS learning with DR-ProMP
Input:
Previous DR-ProMP parameters θold = {µω,Σω,Ω,Σy,Kω, }.
Kullback-Liebler divergence bound εkl.
Other ProMP parameters dt,Nt, Nf .
1: for k = 1...Nk do
2: Obtain the context variable sk.
3: Reproduce ProMP sampling from the trajectory distribution, store joint data Yk and evaluate

reward function Rk.
4: end for
5: Compute weights using contextual REPS: dk = reps.(R, εkl)
6: while no convergence do
7: Perform weighted EM in Section 7.1.3 to obtain new parameters θnew = {µω,ΣωΩ,Σy,Kω}.
8: end while

and s can be ignored from Equations (7.15)-(7.19), and use the non-contextual REPS in [121].

7.1.4 Experiments

We performed two experiments to evaluate the proposed approach, a first one fitting a lower-

dimensionality walking policy for the NAO robot, and a comparison of methods for RL with DMP

and REPS on a planar manipulator.

7.1 Dimensionaliy Reduction for ProMPs 125

Walking couplings of a NAO robot

We used our DR-ProMP approach to encapsulate similar walking behaviors of the robot NAO

in Fig. 7.1. The trajectories for its leg joints, which are 6-DoF for each leg, were obtained

by controlling the Zero Moment Point of the robot [142]. In Fig. 7.4, we show the observed

distribution (in red) obtained from 13 different walking experiments and its fit with the proposed

method (in blue) for a reduced dimensionality of r = 4 ≤ 12 = d. We can clearly see that 4

synergies are enough to represent the whole walking behavior. We can extract its couplings and

relations from the matrix Ω, which relates the joints according to the correlation matrix plotted

in Fig. 7.3. Note that the intuitive couplings between joints are those arising from a symmetry

of the legs position and thus, joints < 1, 7 >, < 3, 9 >, < 4, 10 >, < 5, 11 > will usually have

opposite values, while < 2, 8 >, < 6, 12 > would have the same sign. In fact, joints < 1, 7 > are

mechanically coupled, so the effective dimensionality is d = 11.

Figure 7.3: Correlation between joints provided by the coordination matrix Ω. Black color
indicates r ∼ −1 while white indicates r ∼ 1.

Planar trajectory tracking

We simulated a d = 15 DoF planar arm, with the all joints having a length of 1 m. The task was

to follow a Cartesian trajectory.

Initialization and reward function Using the same initial and desired conditions for all experi-

ments, we compared the following learning strategies:

- DMP+REPS. We obtained the weights for each demonstration with least squares, and fitted

126 Reward-oriented Dimensionality Reduction with Movement Primitives

Figure 7.4: Original walking trajectory distribution, in degrees, for each one of the 12 NAO
leg joints (red) and the fitting obtained with a reduced dimension of 4 (blue) in a normalized
time-scale. We can see that, despite the dimensionality reduction, the trajectory distribution
could be reproduced accurately.

7.1 Dimensionaliy Reduction for ProMPs 127

a distribution ω ∼ N (µω,Σω) over them, which was used for sampling and exploring with

REPS.

- ProMP+REPS.

- EM-ProMP+REPS as in Alg. 7.1 with the full dimension.

- EM-ProMP+REPS as in Alg. 7.1 with r = 8 and no perturbation (α = 0) on Ω.

- EM-ProMP+REPS as in Alg. 7.1 with r = 8 and a perturbation of α = 0.01 on Ω.

To keep the possibility of exploring outside the restricted joint subspace provided by the

projection matrix Ω, we will add a perturbation εα ∼ N (0, α2) to each element of the coordina-

tion matrix before every rollout, which will provide a similar effect to the α value given in Eq.

(7.12). We used 100 trajectory samples, and updated the policy every 20 samples once we had

the first 100. For the REPS algorithm, we took a Kullback-Leibler bound of εKL = 0.5. We used

8 Gaussian kernel functions for each DoF, up to a total of 8d or 8r for the reduced dimension

cases. We performed 100 policy updates and the reward function was given by

R =

Nt∑
t=1

−
(
eTt Det + q̈Tt Hq̈t

)
, (7.22)

where D and H are diagonal matrices. To generate samples with ProMP, the desired framework

would be to use the stochastic controller defined in Section 7.1.2. However, the controller is

computationally more expensive and can be sensitive to numerical conditioning of the covari-

ances involved for a small timestep. For these reasons, we sampled the trajectories by directly

evaluating ω ∼ N (µω,Σω).

Results and discussion

In Fig. 7.5, we display the average and standard deviation over 10 experiments for each

algorithm. The results show that, for r = d, the EM-based algorithm does not improve over the

standard REPS update. This behavior was expected as, for the full-rank case of the coordination

matrix, the parameter update mostly becomes equivalent to the standard REPS case, with the

addition of possible numerical error. However, the DR on the ProMP (black line in the plot)

slightly improves performance over the previous algorithm. This improvement becoming more

substantial when a perturbation α is added to the coordination matrix, yielding also a faster

improvement on the earlier updates, due to the reduced parameter dimensionality. For the DMP

case, we observe a more unstable behavior in the earlier steps but better average (with more

variance) on reward than with the standard ProMP approach.

128 Reward-oriented Dimensionality Reduction with Movement Primitives

Figure 7.5: Comparing different learning approaches on a 15-DoF planar manipulator simulated
task.

7.1.5 Conclusions

In Section 7.1.1, we provided a novel, EM-based approach to fit trajectory distributions with

a ProMP that computes a linear latent space for the DoF of the robot. Working in this latent

space with a small perturbation on the coordination matrix or the controller provides a faster

algorithm for RL with REPS, thanks to the drastic reduction of the parameters associated to

those eliminated DoF. Our future aim is to automatically estimate the optimal space dimension

r and improve the computational cost of evaluating the posterior of the expectation step in

Section 7.1.3. In the following section, we will apply a similar approach to another kind of MP:

Dynamic Movement Primitives (DMPs), introduced in Section 5.2.1.

7.2 Dimensionality Reduction for DMPs

In the previous section, we developed a linear Dimensionality Reduction (DR) technique for

ProMPs. Such approach can also be applied to other MPs, such as Dynamic Movement Primitives

(DMPs). DMPs are probably the most popular MPs used in robotics nowadays, as already

presented in Section 5.2.1. However, DMPs also suffer from the curse of dimensionality when

learning tasks with a high dimension of the parameter space. For this reason, the DR technique

is also very suitable in this case. In this section, we address the process of simultaneously learn-

ing a DMP-characterized robot motion and its underlying joint couplings, also through linear

Dimensionality Reduction (DR), which will provide valuable qualitative information leading to

7.2 Dimensionality Reduction for DMPs 129

a reduced and intuitive algebraic description of such motion. The results in the experimental

section show that not only can we effectively perform DR on DMPs while learning, but we can

also obtain better learning curves. We will present the alternatives to reduce the parameter

dimensionality of the DMP characterization in Section 7.2.1, focusing on the robot’s DoF and

using principal component analysis to perform DR. In Section 7.2.2, we will use EM to compute

such couplings as we applied to ProMPs. Then, experimental results with a simulated planar

robot, a single 7-DoF WAM robot, and a bimanual task performed by two WAM robots will be

discussed in Section 7.2.3, followed by conclusions and future work prospects in Section 7.2.4.

7.2.1 DMP coordination

In this section, we will describe how to efficiently obtain the joint couplings associated to each

task during the learning process, in order to both reduce the dimensionality of a problem, as well

as obtaining a linear mapping describing a task. In [143, 144], a coordination framework for

DMPs was presented, where a robot’s movement primitives were coupled through a coordination

matrix, which was learned with a RL algorithm. Kormushev et al. [145] worked in a similar

direction, using square matrices to couple d primitives represented as attractor points in the

task space domain.

We now propose to use a not necessarily square coordination matrix in order to decrease the

number of actuated DoF and thus reduce the number of parameters. Recalling Eq. (5.14):

ÿ/τ2 = αz (βz (yg − y)− ẏ/τ) + f(x)

f(x) = ΨT
t ω,

(7.23)

We can add a term Ω in the excitation term f(x):

f(xt) = ΩΨT
t ω, (7.24)

for each timestep t, Ω being a (d× r) matrix, with r ≤ d a reduced dimensionality, ΨT
t = Ir ⊗g,

similarly as in the previous section, and ω is an (rNf)-dimensional vector of motion parameters.

Note that this representation is equivalent to having r movement primitives encoding the d-

dimensional acceleration command vector f(x). Intuitively, the columns of Ω represent the

couplings between the robot’s DoF.

The DR reduction in Eq. (7.24) is preferable to a DR on the DMP parameters themselves for

numerical reasons. If such DR would be performed as f(xt) = ΨT
t Ω̂ω, then Ω̂ would be a high-

dimensional matrix but, more importantly, the number of rollouts per policy update performed

in PS algorithms would determine the maximum dimension of the explored space as a subspace

130 Reward-oriented Dimensionality Reduction with Movement Primitives

of the parameter space, leaving the rest of such parameter space with zero value or a small

regularization value at most. In other words, performing DR in the parameter space requires Nf

times more rollouts per update to provide full information than performing such DR in the joint

space.

In order to learn the coordination matrix Ω, we need an initial guess and also an algorithm

to update it and eliminate unnecessary degrees of freedom from the DMP, according to the

reward/cost obtained. Within this representation, we can assume that the probability of having

certain excitation values ft = f(xt) at a timestep given the weights ω is p(ft|ω) ∼ N (ΩΨT
t ω,Σf),

Σf being the system noise. Thus, if ω ∼ N (ω,Σω), the probability of ft is:

p(ft) = N (ΩΨT
t µω,Σf + ΩΨT

t ΣωΨtΩ
T). (7.25)

Along this Section we will firstly present the initialization of such coordination matrices, and

how they can be updated with a reward-aware procedure. Additionally, we present ways of elim-

inating robot DoF irrelevant for a certain task, and a multiple coordination matrix framework to

segment a trajectory so as to use more than one projection matrices. Finally, we consider some

numerical issues and a summary of the variants defined.

Obtaining an initial coordination matrix with PCA

In this section, we will explain how to obtain the coordination motion matrices while learning

a robotic task, and how to update them. A proper initialization for the coordination matrix Ω

is to perform a Principal Component Analysis (PCA) over the demonstrated values of f (see Eq.

(5.14)). Taking the matrix F of all timesteps ft in Eq. (7.24), of size (d×Nt), for the d degrees

of freedom and Nt timesteps as:

F =

f

(1)
de (x0)− f (1)

de ... f
(1)
de (xNt)− f

(1)
de

... ...

f
(d)
de (x0)− f (d)

de ... f
(d)
de (xNt)− f

(d)
de

 , (7.26)

fde being the average over each joint component of the DMP excitation function, for the demon-

strated motion (de subindex). Then we can perform Singular Value Decomposition (SVD),

obtaining F = UpcaΣpcaV
T
pca.

Now having set r < d as a fixed value, we can take the r eigenvectors with the highest

singular values, which will be the first r columns of Upca = [u1, ...,ur, ...,ud], with associated

7.2 Dimensionality Reduction for DMPs 131

singular values σ1 > σ2 > ... > σd and use

Ω = [u1, ...,ur] (7.27)

as coordination matrix in Eq. (7.24), having a reduced set of DoF of dimension r, which activate

the robot joints (dimension d), minimizing the error in the reprojection e = ‖F−ΩΣVT
pca‖2Frob,

with Σ the part of Σpca corresponding to the first r singular values.

Note that this dimensionality reduction does not take any reward/cost function into consider-

ation, so an alternative would be to start with a full-rank coordination matrix and progressively

reduce its dimension, according to the costs or rewards of the rollouts. In the next section,

we will explain the methodology to update such coordination matrix while also reducing its

dimensionality, if necessary.

Reward-based Coordination Matrix Update (CMU)

In order to tune the coordination matrix once initialized, we assume we have performed Nk

reproductions of motion, namely rollouts, obtaining an excitation function f
(j),k
t , for each rollout

k = 1..Nk, timestep t = 1..Nt, and DoF j = 1..d. Now having evaluated each of the trajectories

performed with a cost/reward function, we can also associate a relative weight P kt to each

rollout and timestep as it is done in policy search algorithms such as PI2 or REPS. We can then

obtain a new Nt × d matrix Fco with the excitation function on all timesteps defined as:

Fnew
co =

Nk∑
k=1

f
(1),k
1 P k1 ...

Nk∑
k=1

f
(1),k
Nt

P kNt

... ...
Nk∑
k=1

f
(d),k
1 P k1 ...

Nk∑
k=1

f
(d),k
Nt

P kNt

 , (7.28)

which is a (d×Nt) matrix containing information of the excitation functions, weighted by their

relative importance according to the rollout result. A new coordination matrix Ω can be obtained

by means of PCA. However, when changing the coordination matrix, we then need to refit

the parameters {µω,Σω} to make the trajectory representation fit the same trajectory. To this

end, given the old distribution (represented with a hat) and the one with the new coordination

matrix, the excitation functions distributions, excluding the system noise, are

f̂t ∼ N (Ω̂Ψ̂T
t µ̂ω, Ω̂Ψ̂T

t Σ̂ωΨ̂tΩ̂
T) (7.29)

ft ∼ N (ΩΨT
t µω,ΩΨT

t ΣωΨtΩ
T). (7.30)

132 Reward-oriented Dimensionality Reduction with Movement Primitives

We also represent the whole trajectories:

F =

f1

...

fNt

 ∼ N (OΨTµω,OΨTΣωΨOT
)
, (7.31)

where O = INt ⊗Ω, and

Ψ =

Ir ⊗ gT1

...

Ir ⊗ gTNt

 , (7.32)

while

F̂ =

f̂1

...

f̂Nt

 ∼ N (ÔΨ̂T µ̂ω, ÔΨ̂T Σ̂ωΨ̂ÔT
)
, (7.33)

where Ô = INt ⊗ Ω̂, and Ψ̂ is built accordingly to the value of r in case the dimension has

changed, as it will be seen later.

To minimize the loss of information when updating the distribution parameters µω and

Σω, given a new coordination matrix, we can minimize the Kullbach-Leibler (KL) divergence

between p̂ ∼ N (µ̂ω, Σ̂ω) and p ∼ N (Mµω,MΣωMT), being M = (ÔΨ̂T)†OΨT , † representing

the Moore-Penrose pseudoinverse operator. This reformulation is done so we have two prob-

ability distributions with the same dimensions and considering the non-symmetry of the KL

divergence, knowing that ft is used to approximate f̂t.

As the KL divergence for two normal distributions is known [140], we have

KL(p̂‖p) = log
|MΣωMT |
|Σ̂ω|

+ tr
(

(MΣωMT)−1Σ̂ω

)
+(Mµω− µ̂ω)T (MΣωMT)−1(Mµω− µ̂ω)−d

(7.34)

Now, derivating wrt. µω and wrt. (MΣωMT)−1, and setting the derivative to zero to obtain

the minimum, we obtain:

µω = M†µ̂ω (7.35)

Σω = M†
[
Σ̂ω + (Mµω − µ̂ω)(Mµω − µ̂ω)T

]
(MT)†. (7.36)

Minimizing the KL divergence provides the solution with the least loss of information, in

terms of probability distribution on the excitation function.

7.2 Dimensionality Reduction for DMPs 133

Algorithm 7.2: Coordination Matrix Update (CMU)
Input:
Rollout and timestep probabilities P kt , k = 1..Nk, t = 1..Nt.
Excitation function f

(j),k
i , j = 1..d.

Previous update (or initial) excitation function Fco.
Current Ω of dimension d× r.
DoF discarding threshold η.
Current DMP parameters θ = {Ω,µω,Σω}.

1: Compute Fnew
co as in Eq. (7.28)

2: Filter excitation matrix: Fnew
co = αFnew

co + (1− α)Fco
3: Subtract average as in Eq. (7.26)
4: Perform PCA and obtain Upca = [u1, ...,ur, ...,ud] (see Eqs. (7.26)(7.27))
5: if σ1/σr > η then
6: r = r − 1
7: end if
8: Ωnew = [u1, ...,ur]
9: Recompute: {µω,Σω} as in Eqs. (7.35)-(7.36)

Eliminating irrelevant degrees of freedom

In RL, the task the robot tries to learn does not always necessarily depend on all the degrees of

freedom of the robot. For example, if we want to track a Cartesian xyz position with a 7-DoF

robot, it is likely that some degrees of freedom, which mainly alter the end-effector’s orientation,

may not affect the outcome of the task. However, these DoF are still considered all through the

learning process, causing unnecessary motions which may slow down the learning process or

generate a final solution in which a part of the motion was not necessary.

For this reason, the authors claim that the main use of a coordination matrix should be to

remove those unnecessary degrees of freedom, and the coordination matrix, as built throughout

this section, can easily provide such result. Given a threshold η for the ratio of the maximum

and minimum singular values of Fnew
co defined in Eq. (7.28), we can discard the last column of

the coordination matrix if those singular values verify σ1/σr > η.

In Algorithm 7.2, we show the process of updating and reducing the coordination matrix,

where the parameter α is a filtering term, in order to keep information from previous updates.

Multiple Coordination Matrix Update (MCMU)

Using a coordination matrix to translate the robot degrees of freedom into others more relevant

to task performance may result in a too strong linearization. For this reason, multiple coordi-

nation matrices can be built in order to perform a coordination framework that uses different

134 Reward-oriented Dimensionality Reduction with Movement Primitives

mappings throughout the trajectory. In order to do so, we will use a second layer ofNs Gaussians

and build a coordination matrix Ωs for each Gaussian s = 1..Ns, so that at each timestep the

coordination matrix Ωt will be an interpolation between such constant coordination matrices

Ωs. To compute such an approximation, linear interpolation of projection matrices does not

necessarily yield robust result. For that reason, given the time t and the constant matrices Ωs,

we compute

Ωt = argmaxX

Ns∑
s=1

ϕts

[
tr(Ω†sX)− d log

(
‖X‖F
‖Ωs‖F

)]
(7.37)

being

ϕts = ϕs(xt) =
φs(xt)

Ns∑
p=1

φp(xt)

, (7.38)

where φs, s = 1..Ns are equally distributed Gaussians in the time domain, and ‖.‖F is the

Frobenius norm. A new Gaussian basis function set is used in order to independently choose

the number of coordination matrices, as the amount of Gaussian kernels for the DMPs are

usually much larger than the number needed for linearizing the trajectory in the robot’s DoF

domain. Such number Ns then can be arbitrarily set, according to the needs and variability of

the trajectory. The optimization cost is chosen for its similarity with the covariance terms of

the Kullback-Leibler divergence, and if we use the number of DoF of the robot, d, as a factor

in the equation and the matrices Ωs are all orthonormal, then the optimal solution is a linear

combination of such matrices:

Ωt =

Ns∑
s=1

ϕtsΩs. (7.39)

Note that ϕts acts as an activator for the different matrices, but it is also used to distribute

the responsibility for the acceleration commands to different coordination matrices in the newly-

computed matrix Fs
co. Then we can proceed as in the previous section, with the exception that

we will compute each Ωs independently by using the following data for fitting:

Fs
co =

Nk∑
k=1

f
(1),k
1 ϕ1

sP
k
1 ...

Nk∑
k=1

f
(1),k
Nt

ws1P
k
Nt

... ...
Nk∑
k=1

f
(d),k
1 ϕNts P k1 ...

Nk∑
k=1

f
(d),k
Nt

ϕNts P kNt

 , (7.40)

7.2 Dimensionality Reduction for DMPs 135

and use the following excitation function in Eq. (5.14):

f(x) = ΩtΨ
T
t µω,=

(
Ns∑
s=1

ϕtsΩs

)
ΨT
t µω. (7.41)

Now, changing the linear relation between the d robot degrees of freedom and the r variables

encoding them within a probability distribution (see Eq. (7.25)) requires that we update the

covariance matrix in order to keep it consistent with the different coordination matrices. In this

case, as Ω is varying, we can reproject the weights similarly as in Eqs. (7.29)-(7.36), by using:

O =

Ω1 0 0

0 ... 0

0 0 ΩNt

 , (7.42)

for the new values of r, Ωs, ∀s, compared to the previous values (now denoted with a hat). We

can then use Eqs. (7.35) and (7.36) to recalculate µω and Σω.

Numerical issues of a sum of two coordination matrices

While using several projection matrices Ωs, s = 1..Ns has the advantage of providing more

flexibility for representing variable motions and allows to reduce the dimensionality further,

some numerical aspects need to be taken into account:

Orthogonality of components and locality

When using Eq. (7.39) to define the coordination matrix, we are in fact doing a weighted

sum of them, obtaining a matrix whose j-th column is the weighted sum of the j-ths columns of

the Ns different coordination matrices. This operation would not necessarily provide a matrix

with its columns pairwise orthonormal, despite all the Ωs having that property. However, this

property is not needed other than to have an easier-to compute inverse operator. The smaller

the differences between consecutive coupling matrices, the closer to an orthonormal column-

wise matrix we will obtain at each timestep. From this fact, we conclude that the number of

coupling matrices has to be fitted to the implicit variability of the task, so as to keep consecutive

coordination matrices relatively similar.

Eigenvector matching and sign

Another issue that may arise is that, when computing the singular value decomposition, some

algorithms provide ambiguous representations in terms of the signs of the columns of the matrix

Upca in Section 7.2.1. This means that it can be the case of two coordination matrices, Ω1 and

Ω2, having similar columns with opposite signs, the resulting vector being a weighted difference

between them, which will then translate into a computed coupling matrix Ωt obtained through

136 Reward-oriented Dimensionality Reduction with Movement Primitives

Algorithm 7.3: Reordering of PCA results
Input:
Ωs,∀s = 1..Ns, computed with PCA

1: for is = 2..Ns do
2: Initialize K = 0r×r, the pair-wise dot product matrix
3: Initialize PCAROT = 0r×r, the rotation matrix
4: for i1 = 1..r, i2 = 1..r do
5: K(i1, i2) = dot(Ω1(:, i1),Ωs(:, i2))
6: end for
7: for j = 1..r do
8: vmax = max(|K(:, j)|)
9: imax = argmax(|K(:, j)|)

10: if vmax = max(|K(imax, :)|) then
11: PCAROT(imax, j) = sign(K(imax, j))
12: end if
13: end for
14: if rank(PCAROT) < r then
15: Return to line 7
16: end if
17: end for

Eq. (7.39) with a column vector that only represents noise, instead of a joint coupling.

It can also happen that consecutive coordination matrices Ω1, Ω2 have similar column

vectors but, due to similar eigenvalues coming from the singular value decomposition, their

column order becomes different.

Because of these two facts, a reordering of the coupling matrices Ωs has to be carried out,

as shown in Algorithm 7.3. In such algorithm, we use the first coordination matrix Ω1 as a

reference and, for each other s = 2..Ns, we compute the pairwise column dot product of the

reference Ω1 and Ωs. We then reorder the eigenvectors in Ωs and change their signs according

to the dot products matrices.

Variants of the DR-DMP method

To sum up the proposed dimensionality reduction methods for DMPs (DR-DMP), based on PCA

and described in this section, we list their names and initialization in Tables 7.1 and 7.2, which

show their descriptions and usages.

In Table 7.2, PCA(r) represents Principal Component Analysis (PCA) keeping the r eigen-

vectors with the largest singular values (see. Eq. (7.27)). Ns−PCA(r) is used to represent the

computation of Ns PCA approximations and coordination using equally-initialized weights in

Eq. (7.40). The CMU algorithm is defined in Algorithm 7.2, and its MCMU variant. In the

7.2 Dimensionality Reduction for DMPs 137

Table 7.1: Methods description

DR-DMP0(r) Fixed Ω of dimension (d× r)
DR-DMP0(Ns, r) Fixed multiple Ωs of dimension (d× r)
DR-DMPCMU(r) Recalculated Ω of dimension (d× r)

DR-DMPMCMU(Ns, r) Recalculated multiple Ωs of dimension (d× r)
IDR-DMPCMU Iterative DR while recalculating Ω

IDR-DMPMCMU(Ns) Iterative DR while recalculating multiple Ωs

Table 7.2: Methods initialization and usage

Method Initialization of Ω θ update
DR-DMP0(r) PCA(r) REPS
DR-DMP0(r) Ns-PCA(r) REPS
DR-DMPCMU (r) PCA(r) REPS+CMU, η =∞
DR-DMPMCMU(Ns, r) Ns-PCA(r) REPS+MCMU, η =∞
IDR-DMPCMU (r) PCA(d) REPS+CMU, η <∞
IDR-DMPMCMU(Ns, r) Ns-PCA(d) REPS+MCMU, η <∞

following section, we obtain the projection matrix Ω by means of expectation maximization, as

we did in Section 7.1 for ProMPs.

7.2.2 EM approach to find the latent space projection

Given the motion characterization in Section 7.2.1, we can also obtain the set of parameters θ =

{µω,Σω,Ω,Σf} in closed form using Expectation-Maximization (EM). Using an EM approach

will have the advantage of treating the DMPs as a probability distribution, contrary to the

deterministic approach provided by the PCA. In this section, we will detail how to obtain such

parameters, using the vector Fk to denote the concatenated acceleration commands of a single

trajectory k,

Fk =
[
fk1
T
, ..., fkNt

T
]T
.

As we want to use our model estimation algorithm for policy search algorithms that are based

on data re-weighting, we will have a weight dk for each trajectory, obtained by a PS algorithm.

Hence, we also have to consider such a weighting in our EM algorithm, which is derived similarly

as with ProMPs in Section 7.1.3. The model can be initialized with the previously detailed PCA

approach or with trivial values, such as the identity for the parameter covariance matrix Σω and

zeros for the mean µω.

The procedure is exactly equivalent to that in Section 7.1.3; we maximize the weighted

marginal log-likelihood
∑

k dk log p(yt,θ) of the data and the latent space representation, and

138 Reward-oriented Dimensionality Reduction with Movement Primitives

also derive the equations with the marginalized ω.

Expectation step

The probabilities for each demonstration k with the old parameters θ̂ are found in the expecta-

tion step:

p(ω|Fk) =
p(Fk|ω)p(ω)

p(Fk)
∝ p(Fk|ω)p(ω), (7.43)

where, using ΩNt = INt ⊗Ω,

p(Fk|ω) = N (Fk|ΩNtΨ
Tω, INt ⊗Σf). (7.44)

Using the Bayes rule for Gaussian distributions, results in:

p(ω|Fk) = N (ω|µk,Σk),

where

µk = µω + ΣωΨΩT
NtΓ

−1(Fk −ΩNtΨ
T (µω))

Σk = Σω −ΣωΨΩT
NtΓ

−1ΩNtΨ
TΣω,

and Γ is given by Γ = INt ⊗Σf + ΩNtΨ
TΣωΨΩT

Nt
.

Maximization step

Given the probabilities p(ω|Fk) for each demonstration, we now maximize the weighted expec-

tation of the log-likelihood function, where dk is used as weight for each trajectory:

L =

Nd∑
k=1

dkEω|FK ;θ̂

[
log
(
p(ω,Fk;θ)

)]

=

Nd∑
k=1

dk

∫
ω
p(ω|Fk; θ̂) log

(
p(Fk|ω)p(ω)

)
dω,

where

log p(Fk|ω)p(ω) = log p(ω) +

Nt∑
t=1

log p(fkt |ω),

with p(ω) ∼ N (µω,Σω) and p(fkt |ω) = N (fkt |ΩΨTω,Σf).

7.2 Dimensionality Reduction for DMPs 139

To obtain the likelihood function to maximize in the M-step:

L = −1
2

[(
Nd∑
k=1

dk

)
log |2πΣω|+Nt log |2πΣf |

]
− 1

2

Nd∑
k=1

dk(µω − µk)TΣ−1
ω (µω − µk)

−1
2

Nd∑
k=1

dk

Nt∑
t=1

[
(fkt −ΩΨT

t µk)
TΣ−1

f (fkt −ΩΨT
t µk) + tr(ΨtΩ

TΣ−1
f ΩΨT

t Σk)
]
− 1

2

Nd∑
k=1

dktr(Σ−1
ω Σk).

(7.45)

Now, derivating L w.r.t. each of the parameters θ = {µω,Σω,Ω,Σ
−1
f , }, and solving Eqs. (7.45)

as in Section 7.1.3, we obtain:

µω =

(
Nd∑
k=1

dk

)−1 Nd∑
k=1

dkµk, (7.46)

Σω =

(
Nd∑
k=1

dk

)−1 Nd∑
k=1

dk
[
Σk + (µω − µk)(µω − µk)T

]
, (7.47)

Ω =

[
Nd∑
k=1

dk

Nt∑
t=1

fkt (µTkΨt)

]

·

[
Nt∑
t=1

ΨT
t

Nd∑
k=1

dk
(
Σk + µkµ

T
k

)
Ψt

]†
,

(7.48)

Σf =

(
Nd∑
k=1

dk

)−1

1
Nt

Nd∑
k=1

Nt∑
t=1

dk[ΩΨT
t ΣkΨtΩ

T

+(fkt −ΩΨT
t µk)(f

k
t −ΩΨT

t µk)
T].

(7.49)

With these equations, we will first obtain the new mean for the weights from Eq. (7.46),

and subsequently use it to obtain its covariance with Eq. (7.47). Then, we compute the new

coordination matrix Ωnew with (7.48). Finally, we use all the newly computed parameters to

obtain the new noise covariance Σf with (7.49).

7.2.3 Experimentation

To assess the performance of the different algorithms presented throughout Section 7.2, we

performed three experiments. An initial one consisting of a fully-simulated 10-DoF planar robot,

a simulated experiment with 7-DoF real robot data initialization and a real-robot experiment

140 Reward-oriented Dimensionality Reduction with Movement Primitives

with two coordinated 7-DoF robots.

10-DoF planar arm experiment

As an initial learning problem for testing, we take the planar arm task used as a benchmark

in [124], where a d-dimensional planar arm robot learns to adapt an initial trajectory to go

through some via-points.

Initialization and reward function

Taking d = 10, we generated a minimum jerk trajectory from an initial position to a goal

position. As a cost function, we used the Cartesian positioning error on two via-points. The

initial motion was a min-jerk-trajectory for each of the 10 joints of the planar arm robot, with

each link of length 1m, from an initial position qj(t = 0) = 0 ∀j, to the position qj(t = 1) = 2π/d

(see Fig. 7.6a). Then, to initialize the trajectory variability, we generated several trajectories for

each joint by adding

qj(t) = qj,minjerk(t) +
2∑

a=1

Aaexp
(
−(t− ca)2/d2

a

)
,

where Aa ∼ N (0, 1
4d), and obtained trajectories from a distribution as those shown for one joint

in Fig. 7.6b. We used those trajectories to initialize ωµ and Σω

The task to learn is to modify the trajectory so as to go through Nv = 2 via points along

the trajectory. As a reward function for the experiments, we used R =
∑

t rt, where rt is the

time-step reward and is defined as:

rt = −
Nv∑
v=1

δ(t = tv)(xt − xv)
TCx(xt − xv)

−ẍTt Cuẍt,

(7.50)

which is a weighted sum of an acceleration command and a via-points error; xt,xv being the

Cartesian trajectory point and via-point coordinates for each of the 1..Nv via-points. This cost

function penalizes accelerations in the first joints, which move the whole robot. As algorithmic

parameters, we used a bound on the KL-divergence of 0.5 for REPS, and a threshold η = 50

for the ratio of the maximum and minimum singular values for dimensionality reduction in

Algorithm 1.

We used REPS for the learning experiment for a fixed dimension (initially set to a value

r = 1..10), and starting with r = 10 and letting the algorithm reduce the dimensionality

by itself. We also allowed for an exploration outside the linear subspace represented by the

coordination matrix (noise added to the d-dimensional acceleration commands in simulation)

7.2 Dimensionality Reduction for DMPs 141

following εnoise ∼ N (0, 0.1).

Results and discussion

After running the simulations, we obtained the results detailed in Table 7.3, where the mean

and its 95% confidence interval variability are shown (through 20 runs for each case). An

example of solution found can be seen in Fig. 7.6c, where the initial trajectory has been adapted

so as to go through the marked via-points. The learning curves for those variants considered of

most interest in Table 7.3 are also shown in Fig. 7.6d.

Table 7.3: Results for the 10-DoF planar arm experiment displaying (−log10(−R)), R being the
reward. DR-DMP variants for several reduced dimensions after the indicated number of updates,
using 1 or 2 coordination matrices, were tested.

Dimension 1 update 10 updates 25 updates 50 updates 100 updates 200 updates
DR-DMPCMU (10) 0.698± 0.070 1.244± 0.101 1.713± 0.102 1.897± 0.038 1.934± 0.030 1.949± 0.026

DR-DMPCMU (8) 0.724± 0.073 1.265± 0.155 1.617± 0.135 1.849± 0.079 1.905± 0.072 1.923± 0.075

DR-DMPCMU (5) 0.752± 0.117 1.304± 0.098 1.730± 0.108 1.910± 0.076 1.954± 0.063 1.968± 0.064

DR-DMPCMU (2) 0.677± 0.063 1.211± 0.093 1.786± 0.073 1.977± 0.040 1.993± 0.039 1.997± 0.037

DR-DMPCMU (1) 0.612± 0.057 1.161± 0.103 1.586± 0.071 1.860± 0.056 1.931± 0.041 1.951± 0.042

DR-DMPMCMU (2, 10) 0.738± 0.094 1.304± 0.074 1.666± 0.159 1.848± 0.117 1.893± 0.080 1.919± 0.054

DR-DMPMCMU (2, 8) 0.676± 0.123 1.270± 0.168 1.681± 0.148 1.883± 0.058 1.927± 0.038 1.939± 0.036

DR-DMPMCMU (2, 5) 0.687± 0.052 1.264± 0.113 1.684± 0.130 1.897± 0.091 1.950± 0.056 1.962± 0.054

DR-DMPMCMU (2, 2) 0.704± 0.055 1.258± 0.130 1.749± 0.162 1.976± 0.029 2.000± 0.016 2.006± 0.017

DR-DMPMCMU (2, 1) 0.579± 0.076 1.103± 0.125 1.607± 0.131 1.885± 0.107 1.959± 0.055 1.972± 0.054

IDR-DMPCMU 0.715± 0.140 1.195± 0.091 1.672± 0.121 1.952± 0.040 1.997± 0.034 2.004± 0.030

IDR-DMPMCMU (2) 0.656± 0.058 1.174± 0.158 1.683± 0.169 1.937± 0.067 2.013± 0.030 2.019± 0.028

In Table 7.3 we can see that:

- Using two coordination matrices yields better results than using one; except for the case

of a fixed dimension set to 10, where the coupling matrices would not make sense as they

would have full rank.

- Among all the fixed dimensions, the one showing the best results is r = 2, which is indeed

the dimension of the implicit task in the Cartesian space.

- The variable-dimension iterative method produces the best results.

7-DoF arm circle-drawing experiment

As a second experiment, we kinesthetically taught a real robot - a 7-DoF Barrett’s WAM robot -

to perform a 3-D circle motion in space.

Initialization and reward function

We stored the real robot data obtained through such kinesthetic teaching and a plot of the

end-effector’s trajectory together with the closest circle can be seen in Fig. 7.7a.

142 Reward-oriented Dimensionality Reduction with Movement Primitives

X-position
-2 0 2 4 6 8 10

Y
-p
o
s
it
io
n

-1

0

1

2

3

4

5

6

7

8

Initial trajectory

(a)

Time
0 0.2 0.4 0.6 0.8 1

J
o

in
t

p
o

s
it
io

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Samples from an initial trajectory distribution for one joint

(b)

X-position
-2 0 2 4 6 8 10

Y
-p

o
s
it
io

n

-1

0

1

2

3

4

5

6

7

8

Initial vs. final trajectory

(c) (d)

Figure 7.6: 10-DoF planar arm experiment. (a) Joints min-jerk trajectory in the Cartesian XY
space of a 10-DoF planar robot arm. The robot links move from the initial position (cyan color)
to the end position (yellow), while the end-effector’s trajectory is plotted in red. (b) Data
generated to initialize the DMP for a single joint. (c) Initial trajectory (magenta) vs. final
trajectory (blue) obtained with the IDR-DMP algorithm; via points plotted in black. (d) Learning
curves showing mean and 95% confidence interval.

7.2 Dimensionality Reduction for DMPs 143

(a) (b)

Figure 7.7: 7-DoF WAM robot experiment. (a) End-effector’s trajectory (blue) resulting from
a human kinesthetically teaching a WAM robot to track a circle and closest circle in the three-
dimensional Cartesian space (green), which is the ideal trajectory; in black, one of the best
solutions obtained through PS. (b) Learning curves showing mean and 95% confidence intervals
for some of the described methods.

Using again REPS as PS algorithm with εKL = 0.5, 10 simulated experiments of 250 policy

updates consisting of 20 rollouts each were performed, reusing the data of up to the previous

4 epochs. Using the same REPS parameters, we ran the learning experiment with one constant

coordination matrix Ω and different dimensions r = 1..7, namely DR-DMP0(r). We also ran the

experiment updating the coordination matrix after each updated, with a constant dimension,

DR-DMPCMU (r). Similarly, we ran the learning experiments with Ns = 3 coordination matrices:

With constant coordination matrices initialized at the first iteration, DR-DMP0
MCMU (3, r), and

updating the coordination matrices at every policy update, DR-DMPMCMU (3, r). We ran the

iterative dimensionality reduction with Ns = 1 coordination matrix, IDR-DMPCMU , and with

Ns = 3 matrices, IDR-DMPMCMU (3) and last, the EM approach EM DR-DMP(r).

As a reward function, we used:

R = −

(
Nt∑
t=1

rtcircle + α‖q̈‖2
)
, (7.51)

where rcircle is the minimum distance between the circle and each trajectory point, ‖q̈‖2 is the

squared norm of the acceleration at each trajectory point, and α = 1
5·106

is a constant so as to

keep the relative weight of both terms in a way the acceleration represents a value between 10%

144 Reward-oriented Dimensionality Reduction with Movement Primitives

Table 7.4: Results for the real data simulated 7-DoF WAM experiment. Rewards are shown for
most variants of the DR-DMP methods. See Table 7.1 for a description of the notation used.

Method 1 update 10 updates 25 updates 50 updates 100 updates 200 updates
DR-DMP0(7) −1.812± 0.076 −0.834± 0.078 −0.355± 0.071 −0.165± 0.034 −0.085± 0.024 −0.054± 0.019

DR-DMP0(6) −1.801± 0.053 −0.836± 0.058 −0.359± 0.058 −0.169± 0.040 −0.093± 0.027 −0.060± 0.021

DR-DMP0(5) −1.810± 0.047 −0.834± 0.058 −0.372± 0.048 −0.164± 0.037 −0.086± 0.028 −0.057± 0.023

DR-DMP0(4) −1.879± 0.054 −0.901± 0.043 −0.405± 0.059 −0.189± 0.037 −0.093± 0.025 −0.061± 0.021

DR-DMP0(3) −1.523± 0.057 −0.765± 0.051 −0.340± 0.052 −0.162± 0.038 −0.096± 0.030 −0.072± 0.025

DR-DMP0(2) −1.833± 0.065 −0.906± 0.074 −0.422± 0.063 −0.230± 0.043 −0.140± 0.029 −0.099± 0.024

DR-DMP0(1) −0.860± 0.030 −0.447± 0.031 −0.195± 0.031 −0.103± 0.022 −0.068± 0.022 −0.052± 0.021

DR-DMPCMU (7) −1.970± 0.080 −0.907± 0.072 −0.386± 0.045 −0.167± 0.040 −0.084± 0.028 −0.053± 0.021

DR-DMPCMU (6) −1.949± 0.071 −0.878± 0.078 −0.367± 0.066 −0.175± 0.046 −0.090± 0.028 −0.060± 0.021

DR-DMPCMU (5) −1.925± 0.073 −0.897± 0.078 −0.410± 0.076 −0.192± 0.042 −0.092± 0.025 −0.056± 0.019

DR-DMPCMU (4) −2.146± 0.085 −1.108± 0.150 −0.386± 0.113 −0.174± 0.055 −0.094± 0.036 −0.067± 0.031

DR-DMPCMU (3) −0.678± 0.274 −0.330± 0.122 −0.141± 0.058 −0.073± 0.033 −0.044± 0.025 −0.030± 0.021

DR-DMPCMU (2) −0.758± 0.329 −0.401± 0.155 −0.173± 0.074 −0.085± 0.045 −0.043± 0.024 −0.027± 0.014

DR-DMPCMU (1) −0.563± 0.108 −0.216± 0.081 −0.094± 0.036 −0.053± 0.022 −0.034± 0.017 −0.025± 0.013

DR-DMP0
MCMU (3, 7) −1.880± 0.080 −0.854± 0.061 −0.384± 0.047 −0.196± 0.041 −0.107± 0.032 −0.070± 0.024

DR-DMP0
MCMU (3, 6) −1.937± 0.064 −0.901± 0.098 −0.371± 0.063 −0.164± 0.041 −0.075± 0.024 −0.046± 0.018

DR-DMP0
MCMU (3, 5) −1.995± 0.087 −0.916± 0.072 −0.363± 0.067 −0.165± 0.039 −0.083± 0.027 −0.055± 0.019

DR-DMP0
MCMU (3, 4) −2.169± 0.054 −1.108± 0.115 −0.355± 0.103 −0.154± 0.058 −0.081± 0.035 −0.053± 0.022

DR-DMP0
MCMU (3, 3) −0.468± 0.016 −0.239± 0.020 −0.104± 0.016 −0.054± 0.011 −0.029± 0.006 −0.017± 0.004

DR-DMP0
MCMU (3, 2) −0.499± 0.016 −0.272± 0.025 −0.117± 0.016 −0.057± 0.010 −0.031± 0.006 −0.021± 0.005

DR-DMP0
MCMU (3, 1) −0.462± 0.033 −0.146± 0.014 −0.061± 0.012 −0.031± 0.008 −0.019± 0.006 −0.012± 0.003

DR-DMPMCMU (3, 7) −1.970± 0.074 −0.872± 0.059 −0.390± 0.045 −0.181± 0.026 −0.086± 0.021 −0.050± 0.016

DR-DMPMCMU (3, 6) −1.981± 0.053 −0.929± 0.117 −0.376± 0.086 −0.181± 0.060 −0.084± 0.036 −0.050± 0.021

DR-DMPMCMU (3, 5) −1.951± 0.058 −0.851± 0.075 −0.320± 0.050 −0.133± 0.025 −0.068± 0.019 −0.045± 0.016

DR-DMPMCMU (3, 4) −2.165± 0.053 −1.090± 0.133 −0.322± 0.107 −0.142± 0.059 −0.075± 0.034 −0.051± 0.022

DR-DMPMCMU (3, 3) −0.456± 0.014 −0.244± 0.021 −0.112± 0.021 −0.057± 0.011 −0.030± 0.009 −0.017± 0.005

DR-DMPMCMU (3, 2) −0.500± 0.019 −0.285± 0.025 −0.134± 0.022 −0.070± 0.016 −0.037± 0.009 −0.022± 0.007

DR-DMPMCMU (3, 1) −0.492± 0.032 −0.150± 0.016 −0.062± 0.015 −0.028± 0.010 −0.014± 0.007 −0.010± 0.005

IDR-DMPCMU −1.826± 0.093 −0.815± 0.089 −0.300± 0.063 −0.137± 0.038 −0.069± 0.024 −0.047± 0.019

IDR-DMPMCMU (3) −1.955± 0.085 −0.807± 0.127 −0.240± 0.054 −0.105± 0.040 −0.050± 0.015 −0.033± 0.011

EM DR-DMP(6) −2.288± 0.021 −0.884± 0.105 −0.180± 0.027 −0.086± 0.012 −0.051± 0.003 −0.043± 0.002

EM DR-DMP(5) −2.274± 0.018 −0.975± 0.175 −0.217± 0.034 −0.094± 0.015 −0.056± 0.006 −0.043± 0.002

EM DR-DMP(4) −2.363± 0.026 −0.926± 0.144 −0.194± 0.026 −0.100± 0.017 −0.059± 0.006 −0.044± 0.002

EM DR-DMP(3) −2.050± 0.027 −1.075± 0.155 −0.231± 0.064 −0.103± 0.018 −0.063± 0.003 −0.049± 0.002

EM DR-DMP(2) −2.271± 0.015 −1.417± 0.100 −0.335± 0.049 −0.203± 0.014 −0.145± 0.009 −0.091± 0.007

EM DR-DMP(1) −1.111± 0.015 −0.653± 0.072 −0.283± 0.028 −0.196± 0.006 −0.182± 0.001 −0.177± 0.001

and 20% of the cost function.

Results and discussion

The results shown in Table 7.4 have the mean values throughout the 10 experiments, and

their confidence intervals with 95% confidence. Figure 7.7b shows the learning curves for some

selected methods. Using the standard DMP representation as the benchmark for comparison,

with r = 7 as fixed dimension (see first row in Table 7.4), we can say that:

- Using Ns = 3 coordination matrices yields significantly better results than using only one.

Ns = 3 with a single dimension results in a final reward of −0.010 ± 0.008, the best

7.2 Dimensionality Reduction for DMPs 145

obtained throughout all experiments.

- It is indeed better to use a coordination matrix update with automatic dimensionality

reduction than to use the standard DMP representation. Additionally, it provides infor-

mation on the true underlying dimensionality of the task itself. In the considered case,

there is a significant improvement from r = 4 to r = 3, given that the reward doesn’t take

orientation into account and, therefore, the task itself lies in the 3−dimensional Cartesian

space. Moreover, the results indicate that a 1-dimensional representation can be enough

for the task.

- Fixing the dimension to 1 leads to the best performance results overall, clearly showing

that smaller parameter dimensionality yields better learning curves. It is to be expected

that, given a 1-dimensional manifold of the Cartesian space, i.e., a trajectory, there exists

a 1-dimensional representation of such trajectory. Our approach seems to be approaching

such representation, as seen in black in Fig. 7.7a.

- Both DR-DMPCMU (r) and DR-DMPMCMU (3, r) provide a significant improvement over

the standard DMP representation, DR-DMP0(r). This is specially noticeable for r ≤ 3,

where the final reward values are much better. Additionally, the convergence speed is also

significantly faster for such dimensions, as the 10 updates column shows.

- The EM DR-DMP(r) shows a very fast convergence to high-reward values for r = {4, 5, 6},
but the results for a smaller dimension present a premature convergence to less optimal

reward values.

14-DoF dual-arm real-robot experiment

As a third experiment, we implemented the same framework on a dual-arm setting consisting of

two Barrett’s WAM robots, aiming to fold a polo shirt as seen in Fig. 7.8. We placed the robots

in a position yielding a good coordination capability according to our previous work in Section

3.2 and then taught the robots the initial motion.

Initialization and reward function

We kinesthetically taught both robots to jointly fold a polo shirt, with a relatively wrong

initial attempt as shown in Fig. 7.9a. Then we performed 3 runs consisting of 15 policy updates

of 12 rollouts each (totaling 180 real robot dual-arm motion executions for each run), with

a reuse of the previous 12 rollouts for the PS update. We ran the standard method and the

automatic dimensionality reduction for both Ns = 1 and Ns = 3. This added up to a total of 540

real robot executions with the dual-arm setup.

146 Reward-oriented Dimensionality Reduction with Movement Primitives

Figure 7.8: Two robotic arms coordinating their motions to fold a polo shirt.

The trajectories were stored in Cartesian coordinates, using 3 variables for position and

3 more for orientation1, totaling 12 DoF and, with 20 DMP weights per DoF, adding up to

240 DMP parameters. Additionally, the inverse kinematics algorithm in Section 3.1.5 was used

to convert Cartesian position trajectories to joint trajectories, which then a computed-torque

controller [18] would compliantly track, based on the friction model obtained in Section 4.2.

As reward, we used a function that would penalize large joint accelerations, together with

an indicator of how well the polo shirt was folded. To do so, we used a rooftop-placed Kinect

camera to generate a depth map with which to evaluate the resulting wrinkleness of the polo.

Additionally, we checked its rectangleness by color-segmenting the polo on the table and fitting

a rectangle with the obtained result (see Fig. 7.9a). Therefore, the reward function used was:

R = −Racceleration −Rcolor −Rdepth, (7.52)

where Racceleration is a term penalizing large acceleration commands at the joint level, Rcolor has

a large negative value if the result after the motion does not have a rectangular projection on

the table (see Fig. 7.9a) and Rdepth penalizes the outcome if the polo presents a too wrinkled

configuration after the motion (see Fig. 7.9b).

1In order to represent orientation as a 3-dimensional state, we used a projection of the quaternion representation
q = qxi + qyj + qzk, qw = cos θ

2
+ (uxi+ uyj+ uzk) sin θ

2
→ (uxi+ uyj+ uzk) sin θ

2
. The term qw = cos θ

2
can

be reconstructed by cos θ
2
= cosasin(‖(qx, qy, qz)‖). However, such reconstruction looses a sign on the process. To

solve such problem, the initial orientation was set to be the identity, and the trajectories’ orientations where encoded
relative to the initial orientation of the trajectory and, therefore, avoiding such change of sign unless big changes of
orientation occur in the trajectory, which was not the case.

7.2 Dimensionality Reduction for DMPs 147

(a) (b)

(c) (d)

Figure 7.9: 14-DoF dual-arm real-robot experiment. (a) Color segmentation of the polo shirt
after an initial folding attempt. The blue color (as the polo color) was segmented and the
number of blue pixels within the smallest rectangle containing it was counted. Then the ratio of
blue pixels wrt. the total number of pixels within the rectangle was used for the reward function.
(b) Depth image visualization from which the Rdepth component of the reward function was
computed. The mean gradient of the depth was used as a wrinkleness indicator. (c) Learning
curves showing mean and standard deviation over the rollouts for each epoch, for the standard
setting and two variants of the DR-DMP method. (d) Graphical representation of the synergies
obtained for the IDR-DMP(3) method. black areas indicate a higher influence (in absolute
value), while white areas represent a small influence.

148 Reward-oriented Dimensionality Reduction with Movement Primitives

Results and discussion

Despite the efforts of the authors to reduce the variability of results wrt. environmental

uncertainties, a slightest variation of the setup would change the outcome. As an example,

we ran the initial attempt with the same DMP parameters (shown in Figs. 7.9a and 7.9b) 20

times with no exploration, yielding a mean and a standard deviation for the vision terms of the

reward function of Rdepth = 0.473± 0.029 and Rcolor = 0.799± 0.088. This uncertainty increased

with exploration, resulting in slower learning curves than expected. Nonetheless, the resulting

learning curves obtained from the experiments and displayed in Fig. 7.9c show:

- The standard representation of DMPs, with 240 parameters, leads to a long transient period

of very small improvement, specially between epochs 4 and 10. This is due to the large

number of parameters wrt. the number of rollouts performed.

- The automatic dimensionality reduction with Ns = 1 algorithm presents a better and

more stable improvement behavior. Ending with a reduced dimension of r = 6, reduces

the dimensionality in the parameter space down to 120 parameters which, specially in the

early stages, allows to keep improving over epochs.

- The automatic dimensionality reduction with Ns = 3 algorithm, IDR-DMP(3,12) ending

with a dimensionality of r = 4, meaning 80 DMP weights - a third of those in the stan-

dard method- has a quicker learning at the early epochs, thanks to being able to quickly

eliminate unnecessary exploration. After a certain number of iterations, the IDR-DMP(3)

algorithm ends with a very similar result to that of IDR-DMP(1).

A video showing some snapshots of this experiment is provided in Appendix B.6. In such

video, we can also see the complexity of the task itself as some humans struggle to correctly

fold a polo shirt. Our method allows a dual-arm robot to improve its folding skill from an initial

faulty demonstration. Using these kinds of RL allows to improve a robotic behavior over an

initial existing one.

Additionally, Fig. 7.9d shows a graphical interpretation of the 3 coordination matrices

obtained by the IDR-DMP(3) method. Darker areas are more correlated than lighter ones.

Knowing that, within each 12 × 4 matrix, the columns on the left are more relevant, some

symmetries can already be seen. While the robot relative positioning seen in Fig. 7.8 does not

allow for a perfect match in x and y between the two robots, the z component of both robots is

strongly correlated.

7.2 Dimensionality Reduction for DMPs 149

Table 7.5: Results for the dual-arm real-robot experiment of folding clothes. The rewards for
the three tested methods are shown with the average over rollouts and their standard deviation
at each epoch.

method 1 update 2 update 5 update 10 update 15 update
DR-DMP0(12) −2.474± 0.546 −2.424± 0.634 −1.792± 0.447 −1.713± 0.228 −1.140± 0.136

IDR-DMPCMU −2.484± 0.966 −2.261± 0.582 −1.754± 0.641 −1.055± 0.141 −0.911± 0.074

IDR-DMPMCMU (3) −2.565± 0.650 −2.195± 0.354 −1.507± 0.364 −1.108± 0.095 −0.996± 0.086

7.2.4 Conclusions

Throughout this section, we proposed different ways to perform task-oriented linear dimension-

ality reduction of DMPs characterizations of motion. Such approaches help reduce the parameter

dimensionality, allowing for faster convergence, while still keeping good optimality conditions.

We presented an algorithm to update the linear dimensionality reduction projection matrix

with a task-related weighting in Section 7.2.1, so that it better adapts to the directions expected

to provide the most gain in performance in the following steps. We showed how to remove

unnecessary parameters from the trajectory representation, by discovering couplings between

the robot’s degrees of freedom and removing the redundant ones. Both these approaches were

combined and extended to use several projection matrices, yielding improved behavior.

The results of the experiments performed (the fully-simulated, the hybrid real-data simu-

lated, and the dual-arm real-robot experiment) clearly show the advantages of using dimension-

ality reduction for improving PS results with DMP motion characterizations.

Additional Expectation-Maximization (EM) derivations were also tested for such linear di-

mensionality reduction, but those showed a more greedy behavior in the policy updates, result-

ing in premature convergence. In fact, EM approaches suffer from such premature convergence,

as some literature [146] points out and tries to adapt such covariance in a less greedy manner.

We plan to further study and develop such approach in the future.

Moreover, arbitrary deciding a reward function might generate unexpected solutions. To

that matter, inverse reinforcement learning can infer a reward function for a certain task under

some expertise assumptions on the demonstrated motions to the robot [147], and future devel-

opments of this work also go in that direction. Last, the analysis of the obtained coordination

matrices Ω for the dual-arm experiment indicated an existing symmetry between the two robotic

arms. While this symmetry was not in all coordinates, due to the relative positioning of both

arms, it points out the possibility of using such symmetries in the future for improving a learning

behavior.

150 Reward-oriented Dimensionality Reduction with Movement Primitives

7.3 Summary

Using MPs as motion characterization for robot learning leads to a kind of exploration vs.

exploitation trade-off (i.e., learning speed vs. solution quality). Such trade-off meaning that

a good fitting of the initial trajectory yields too many parameters to effectively perform PS to

improve the robot behavior, while too few parameters allows for faster improvements, but limit

the optimality of the solution found after learning.

In general, when fitting a robot motion with a certain parametrized movement primitive, it

is common to have some overfitting that might result in meaningless exploration when learning.

Such overfitting might be useful to have a wider range of exploration in early stages, but quickly

eliminating it shows a significant improvement in the learning process of robotic skills.

This chapter showed how complex real robot manipulator tasks, encoded by MPs (either

ProMPs in Section 7.1 or DMPs in Section 7.2) can have their number of parameters significantly

reduced, understanding MP parameters as those used for exploration. To this endeavor, orient-

ing the DR with the reward of the samples obtained is a crucial element, allowing for a latent

projection that encodes that information related to the task only. The information provided by

such projection matrices alone is also a qualitative representation of a motion, indicating which

DoF synergies are the most actuated.

8
Conclusions

In the twenty-first century,

the robot will take the place which slave labor occupied in ancient civilization.

Nikola Tesla, 1935.

This thesis has focused on a complete framework for learning motion tasks in mostly unmod-

elled environments with robotic arms. We devised strategies to compliantly learn such tasks both

in the joint space and in the robot’s operational - or Cartesian- space, as well as to obtain coor-

dination schemes for the robot’s DoF for a certain task. This coordinated motion is represented

in a compact characterization through linear dimensionality reduction on movement primitives’

parameters. Moreover, such compact representation speeds up the learning speed of a task,

thanks to the elimination of irrelevant directions of exploration.

8.1 Summary

In this thesis, we have contributed to apparently different but strongly related topics regarding

robotics: kinematics, control, motion characterization and learning. None of these elements can

effectively work without the others in real-robot learning applications, therefore these topics

need to be combined to obtain the best-performing setup.

The contributions of the first part of this thesis can be summed up as follows:

1. We exhaustively reviewed, analyzed and improved some alternatives of Closed-Loop In-

verse Kinematics (CLIK) algorithms. CLIK methods in literature were found not to be

robust enough regarding convergence and numerical stability, as we pointed out in Chapter

3. Subsequently, we analyzed how robust these methods were in those terms, which are

often not considered in literature, and proposed a more robust solution that ensures a

numerical stability and better convergence overall. We used these IK approaches to then

152 Conclusions

elaborate on the bimanual robot configuration, a rather unexplored topic but soon to gain

relevance due to bimanual robots becoming more popular.

2. We modeled robot’s dynamics in two ways in Chapter 4: using Gaussian fitting methods

and building a global friction model. Such models allowed to compliantly move the robot

and simultaneously estimate the external forces acting on the robot. We also applied

such control algorithms to reproduce trajectories in both the joint space and the Cartesian

space, with the help of the IK algorithms obtained in Chapter 3. We used this compliant

control together with Movement Primitives (MP) and direct Policy Search (PS) to learn

complex tasks like putting a scarf around a mannequin’s head or folding a polo shirt.

While we added simple camera information to these learning cases, the external force

estimation also provided valuable information in terms of both safety and punishing those

trajectories in which a large interaction force was detected.

While such framework was positively working with standard MP representations and PS

algorithms, other factors could be making the learning process more difficult. In the second

part, we focused on:

3. Devising a variant or generalization of a popular PS algorithm that would not get stuck

in-between optimal solutions. Overall, PS algorithms applied to robotics start from a

movement initialization and locally explore around such provided initial motion. However,

when more than one (sub)optimal solution exists, those can be interfering with each other,

resulting in a slower convergence of the learning process, subsequently resulting in more

samples needed. In the case of human interaction or scenarios with deformable objects,

samples must be in a real-robot scenario and have a high cost in terms of physical time.

Generalizing REPS to an algorithm that can push the solution away from bad samples,

as well as choosing an adequate solution to converge to, helps to improve robot learning

performance in such situations. We first tested our proposed approach in a simulated

Reinforcement Learning (RL) setting and found that DREPS considerably speeds up the

learning process, especially during the early optimization steps and in cases where other

approaches get trapped in between several alternative maxima. Further experiments in

which a real robot had to learn a task with a multi-modal reward function confirm the

advantages of our proposed approach with respect to REPS.

4. Finally, the curse of dimensionality has been defined in many fields. Reinforcement learn-

ing, specially PS, use many parameters to optimize. Such number of parameters is usually

larger than the number of real robot sample motions we can actually perform. Therefore,

not only is the curse of dimensionality affecting the outcome of sampling high dimensional

8.2 Future work 153

spaces, but also the fact that if a PS algorithm uses much more parameters than samples

to update its policy, the result will be a very greedy learning behavior: The resulting

exploration covariance - regularized with a small value in order to keep it full rank - will

only explore the parameter subspace that is already known. This fact is actually critical

as, given 100 parameters updated with just 20 samples, the resulting exploration matrix

will only explore in a subspace of dimension 20 of the parameter space, leaving out all

the possibly better solutions that could be found in the higher-dimensional full manifold.

While filtering of the covariance matrix can be performed, the algorithms themselves face

the dilemma of diluting the full-rank initial exploration with the only obtained samples

or have a significantly high regularizing term for exploration that will actually add noise

and slow the convergence of the learning. This problem can actually be overcome when

using Bernstein’s concept of muscle synergy. In the case of robot applications, it will be

joint synergy, obtained through linear dimensionality reduction in Chapter 7. Obtaining

the DoF’s couplings and working in a joint/Cartesian subspace will be less harmful for the

task exploration, as the results in Chapter 7 show.

Overall, we provided a complete and vertical framework including kinematics, control,

motion characterization and learning, in a manner where coordination between DoF of the

robot - either joints or Cartesian space dimensions - is simultaneously learned with the objective

task. The reduced number of parameters then helps improve the learning speed. Moreover, all

the developed algorithms and applications were implemented on real robots, specially one or

two coordinated Barrett WAM arms, and a collection of results and experiments can be seen in

Appendix B.

8.2 Future work

In this thesis, we have contributed to build and connect the necessary elements for a model-

free reinforcement learning framework with efficient usage of samples in a compliant real-robot

environment. Nevertheless, several of the elements built through this thesis can be still further

developed or open new directions of research:

- Kinematics: This thesis focused on CLIK methods for solving the inverse kinematics of

redundant serial robots. While the two enhancements presented in Chapter 3 have been

proven to improve their performance, computational speed can still be a limiting factor,

specially for the continuous pseudoinverse used in Section 3.1.4. Such computation needs

to be optimized or approximated to a faster-to-compute but equivalent one. Moreover, the

results in Table 3.5 and Fig. 3.5 point in the direction of needing to combine such inverse

154 Conclusions

kinematics algorithms with planners, so as to avoid dead-ends in trajectories caused by

the unavailability of certain robot assembly modes due to joint limits.

- Learning motion and forces: We implemented feed-forward controllers that allow for

compliant manipulation, together with disturbance observers for sensor-less robots. We

think this approach can be developed further in order to obtain variable-stiffness con-

trollers, using variable gains throughout motion. Other works [148] learn trajectories

in both the kinematic and dynamic domain. The integration of such approaches with

disturbance observers can lead to similar performance without the need of force sensors.

- Dimensionality Reduction: We applied linear DR to movement primitives and obtained

the linear projections through principal component analysis and expectation-maximization

approaches, for DMPs and ProMPs. Our future aim in this direction is to tackle this problem

with other DR techniques - not necessarily linear - as well as to limit the premature con-

vergence experienced with EM approaches for DMPs. Other DR techniques include Factor

Analysis, Kernel-based methods, and mixture models for mapping the latent spaces to the

full joint space. CMA-ES [135] can also be used to prevent the premature convergence

due to covariance shrinkage, to then apply DR techniques on the resulting covariance

matrix. However, the natural application of such DR method combined with CMA-ES

would require to further evaluate the effects of performing DR in the parameter space,

rather in the joint space. Such case will also be considered in the future.

- Negative samples: We plan to extend our work in Chapter 6, finding other methods for

setting a negative effect on the policy update regarding low-performing samples. Our

current approach sets bounds on how close the new policy can be from a cluster of low-

performing samples, but more continuous approaches can also be explored.

- Contextualization: We strongly think that the direction to go in the future is adaptability

and unification, aiming at better adapting movement primitives with context variables,

namely contextual adaptability. While some PS approaches have already been adapted

to consider context variables [149], movement primitives cannot be as easily adapted to

changing situations. Therefore, a better reparametrization of MPs wrt. context variables

needs to be studied. Furthermore, it may be the case that the demonstrations taught to

the robot in order to initialize a MP are not fully necessary, meaning that motion can be

synthetically initialized and then refined through experience.

- Learning planning and motion: Reinforcement learning of robotic skills is nowadays still

divided into three main areas: perception, planning and motion. While perception is usu-

ally linked to the others as valuable information for decision-making or action evaluation,

8.3 Epilogue 155

linking the learning of planning and motion is still rather unexplored. Our belief is that

a full learning integration would simultaneously learn which action (motion) to perform,

execute it, evaluate it, and then improve it through policy search, while at the same time

the motion-selecting planner also learns a better policy as a planner.

8.3 Epilogue

Robotics, as a science field, together with reinforcement learning, have been receiving a lot of

attention over the last decades. This is still growing, thanks to the development of hardware that

leads to better platforms, with more capabilities in the kinematic, dynamic and computational

domains. Up to an extent where certain circles on the society are starting to see robots as a

threat for their job positions, fearing to be replaced by a robot in the mid-term future, as N. Tesla

actually predicted 80 years ago. However, hardware is developing at a faster pace than software

or AI is. Robots are still far from being capable of doing a wide variety of tasks humans can

easily perform. The field of reinforcement learning is, therefore, in need of strong development

in order to allow robots to do human tasks and actually releasing human of physical work,

including dangerous, poorly ergonomic, repetitive or hazardous labour. While latest trends

in AI are also using deep learning to solve several complex problems, the amount of data in

real environments is too limited to apply those deep learning approaches. As shown in our

work [23] [133], few samples can suffice to learn simple tasks from scratch, but there’s still

a long way to make robots capable of correctly adapting motion and compliance to any new

situation.

A
List of Publications

In this section, the reader can find the complete list of accepted and submitted publications since
the beginning of the PhD:

Journals

1. A. Colomé and C. Torras. “Closed-loop inverse kinematics for redundant robots: Compar-
ative assessment and two enhancements”. IEEE/ASME Transactions on Mechatronics, vol.
20, no. 2, pp. 944-955, 2015.

2. A. Colomé and C. Torras. “Dual REPS: A Generaliztion of Relative Entropy Policy Search
Exploiting Bad Experiences”, IEEE Transactions on Robotics, vol 33, no. 4, 2017.

3. A. Colomé and C. Torras. “Dimensionality Reduction for Dynamic Movement Primitives
and Application to Bimanual Manipulation of Clothes”. Under review.

4. A. Jevtic, A. Colomé, G. Alenyà and C. Torras. “Robot Motion Adaptation through User
Intervention and Reinforcement Learning”, Under review.

Conferences

5. A. Colomé and C. Torras. “Redundant inverse kinematics: Experimental comparative
review and two enhancements”, IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 5333-5340, 2012.

6. A. Colomé, D. Pardo, G. Alenyà and C. Torras. “External force estimation during compliant
robot manipulation”, IEEE International Conference on Robotics and Automation, pp. 3535-
3540, 2013.

7. A. Colomé and C. Torras. “Positioning two redundant arms for cooperative manipulation of
objects”, 6th International Workshop on Computational Kinematics, Vol 15 of Mechanisms
and Machine Science, pp. 121-129, 2014.

8. F. Husain, A. Colomé, B. Dellen, G. Alenyà and C. Torras. “Realtime tracking and grasp-
ing of a moving object from range video”, IEEE International Conference on Robotics and
Automation, pp. 2617-2622, 2014.

158 List of Publications

9. A. Colomé, G. Neumann, J. Peters and C. Torras. “Dimensionality reduction for proba-
bilistic movement primitives”, IEEE-RAS International Conference on Humanoid Robots, pp.
794-800, 2014.

10. A. Colomé and C. Torras. “Dimensionality reduction and motion coordination in learning
trajectories with dynamic movement primitives”, IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 1414-1420, 2014.

11. A. Colomé, A. Planells and C. Torras. “A friction-model-based framework for reinforcement
learning of robotic tasks in non-rigid environments”, IEEE International Conference on
Robotics and Automation, pp. 5649-5654, 2015.

12. A. Jevtic, A. Colomé, G. Alenyà and C. Torras. “User evaluation of an interactive learning
framework for single-arm and dual-arm robots”, 8th International Conference on Social
Robotics, pp. 52-61, 2016.

Workshops

13. A. Colomé, D. Pardo, G. Alenyà and C. Torras. “External force estimation for textile
grasp detection”, IROS Workshop Beyond Robot Grasping: Modern Approaches for Learning
Dynamic Manipulation, 2012.

14. A. Colomé, G. Alenyà and C. Torras. “Handling high parameter dimensionality in rein-
forcement learning with dynamic motor primitives”, ICRA Workshop on Novel Methods for
Learning and Optimization of Control Policies and Trajectories for Robotics, 2013.

15. A. Jevtic, A. Colomé, G. Alenyà and C. Torras. “Learning Robot Motion through User
Intervention and Policy Search”. ICRA Workshop on Nature versus Nurture in Robotics,
2016.

B
External Resources

In this section, the reader can find a list of supplementary material for different experiments
related with this thesis

B.1 Closed-loop inverse kinematics for redundant robots
http://www.iri.upc.edu/groups/perception/#inverseKinematics

B.2 Friction model applications
http://www.iri.upc.edu/groups/perception/#ScarfTask

B.3 Realtime tracking and grasping of a moving object
from range video

http://www.iri.upc.edu/groups/perception/#trackGrasp

B.4 Human-guided compliant control
http://www.iri.upc.edu/groups/perception/#adapt

http://www.iri.upc.edu/groups/perception/#adapt2

B.5 DREPS
http://www.iri.upc.edu/groups/perception/#dualReps

B.6 DR for DMPs
http://www.iri.upc.edu/groups/perception/#drdmp

http://www.iri.upc.edu/groups/perception/#inverseKinematics
http://www.iri.upc.edu/groups/perception/#ScarfTask
http://www.iri.upc.edu/groups/perception/#trackGrasp
http://www.iri.upc.edu/groups/perception/#adapt
http://www.iri.upc.edu/groups/perception/#adapt2
http://www.iri.upc.edu/groups/perception/#dualReps
http://www.iri.upc.edu/groups/perception/#drdmp

C
Acronyms

162 Acronyms

Table C.1: Acronym list

Acronym Name Acronym Name

AI Artificial Intelligence JW Jacobian Weighting
BC Bounding Cone KL Kullback-Liebler Divergence
CF Conditioning Factor LfD Learning from Demonstration
CLIK Closed Loop Inverse Kinematics LGP Local Gaussian Process
CMA Covariance Matrix Adaptation LWPR Locally Weighted Projection Regression
CMU Coordination Matrix Update MAE Mean Absolute Error
CN Condition Number MCMU Multiple Coordination Matrix Update
CTC Computed Torque Control MDP Markov Decision Process
CTP Continuous Task Priority MF Manipulability Factor
DF Distance Factor MP Movement Primitives
DMP Dynamic Movement Primitive MSE Mean Squared Error
DoF Degrees of Freedom OF Orientation Factor
DR Dimensionality Reduction PCA Principal Component Analysis
DREPS Dual Relative Entropy Policy Search PI2 Policy Improvement with Path Integrals
ED Error Damping PPCA Probabilistic Principal Component Analysis
EFE External Force Estimation ProMP Probabilistic Movement Primitive
EM Expectation Maximization PS Policy Search
FK Forward Kinematics REPS Relative Entropy Policy Search
GMM Gaussian Mixture Models RL Reinforcement Learning
GP Gradient Projection SD Selective Damping
IDM Inverse Dynamic Model SDF Solution Density Factor
IED Improved Error Damping SVD Singular Value Decomposition
IK Inverse Kinematics SVF Singular Value Filtering
JC Joint Clamping TA Taks Augmentation
JD Jacobian Damping TCP Tool Center Point
JF Jacobian Filtering TP Task Priority
JP Jacobian Pseudoinverse WAM Whole Arm Manipulator
JT Jacobian Transpose WMLE Weighted Maximum Likelihood Estimation

D
Glossary

In this Appendix, we define the most relevant variables used throughout this thesis

Table D.1: Relevant variables (Part I)

Variable Name

J Geometric Jacobian
J† Jacobian pseudoinverse
q = [q1, ..., qm], ∆q Joint state, and joint state variation
x Task space variable
e Positioning error of the robot
κ(·) Condition number of a matrix
FK(·) Forward kinematics function
α Gain in a CLIK algorithm
σ1, ..., σn Jacobian singular values
m Number of joints
n Task space dimension
uc Robot control torque
ue External torque acting on the robot
uPD Proportional-derivative torque
KP Proportional gain matrix
KD Derivative gain matrix
M(q) Robot joint inertia matrix
C(q, q̇) Coriolis and centripetal forces
Ff Robot joint friction
G(q) Robot’s gravity forces
n(q, q̇) Coriolis, centripetal, friction and gravity forces

164 Glossary

Table D.2: Relevant variables (Part II)

Variable Name

π Policy
Θ Policy parameter space
θ ∈ Θ Policy parameters
τ Trajectory
y Robot state variable
x Robot’s latent space state variable
s Contextual variable
u Action taken by the policy π
R Reward function
Jπθ Expected reward under policy π parametrized by θ
ω ∼ N (µω,Σω) Sample from a normally distributed policy with mean µω and covariance Σω

λ, η Weighting temperatures for PI2 and REPS, respectively
Nt Number of timesteps of a trajectory
Nf Number of Gaussian kernels used per DoF
Nk Number of trajectories (rollouts) used per policy update
yg DMP goal position
τ , αz, βz, αx DMP fixed parameters
x DMP phase variable
f(x) = ft DMP excitation function
g(x) Nf -dimensional vector of DMP Gaussian kernels
ψ = Id ⊗ g(x) d× dNf matrix of Gaussian kernels
Ω Robot’s DoF coupling matrix
Σy ProMP fitting and system noise
Σf DMP fitting and system noise

Bibliography

[1] N. Bernstein, The Co-ordination and Regulation of Movements. Oxford Pergamon Press,
1967.

[2] “Inner Body: Muscular system.” Available at http://www.innerbody.com/image/
musfov.html.

[3] R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT Press, 1998.

[4] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling, planning and
control. Springer Science & Business Media, 2010.

[5] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with nonlinear dynamical
systems in humanoid robots,” in IEEE International Conference on Robotics and Automation
(ICRA), vol. 2, pp. 1398–1403, 2002.

[6] J. Kober, K. Mülling, O. Krömer, C. H. Lampert, B. Schölkopf, and J. Peters, “Movement
templates for learning of hitting and batting,” in IEEE International Conference on Robotics
and Automation, pp. 853–858, 2010.

[7] S. Pfeiffer and C. Angulo, “Gesture learning and execution in a humanoid robot via
dynamic movement primitives,” Pattern Recognition Letters, vol. 67, Part 1, pp. 100 –
107, 2015.

[8] L. Rozo, P. Jimenez, and C. Torras, “Robot learning from demonstration of force-based
tasks with multiple solution trajectories,” in 15th International Conference on Advanced
Robotics (ICAR), pp. 124–129, 2011.

[9] L. Rozo, S. Calinon, D. G. Caldwell, P. Jiménez, and C. Torras, “Learning Physical
Collaborative Robot Behaviors From Human Demonstrations,” IEEE Transactions on
Robotics, vol. 32, no. 3, pp. 513–527, 2016.

[10] S. M. Khansari-Zadeh and A. Billard, “Learning Stable Nonlinear Dynamical Systems With
Gaussian Mixture Models,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 943–957,
2011.

[11] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, Robot Programming by Demonstration.
Springer, 2008.

[12] M. P. Deisenroth, G. Neumann, and J. Peters, “A Survey on Policy Search for Robotics,”
Found. Trends Robot, vol. 2, no. 1-2, pp. 1–142, 2013.

[13] R. E. Bellman, Dynamic Programming. Princeton University Press, 1957.

[14] A. Colomé and C. Torras, “Redundant inverse kinematics: Experimental comparative
review and two enhancements,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 5333–5340, 2012.

[15] A. Colomé and C. Torras, “Closed-Loop Inverse Kinematics for Redundant Robots:
Comparative Assessment and Two Enhancements,” IEEE/ASME Transactions on
Mechatronics, vol. 20, no. 2, pp. 944–955, 2015.

http://www.innerbody.com/image/musfov.html
http://www.innerbody.com/image/musfov.html

166 BIBLIOGRAPHY

[16] W. T. Townsend and J. K. Salisbury, Mechanical Design for Whole-Arm Manipulation,
pp. 153–164. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.

[17] A. Colomé and C. Torras, “Positioning two redundant arms for cooperative manipulation
of objects,” in 6th International Workshop on Computational Kinematics, pp. 121–129,
2013.

[18] A. Colomé, D. Pardo, G. Alenyà, and C. Torras, “External force estimation during
compliant robot manipulation,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 3535–3540, 2013.

[19] A. Colomé, d. Pardo, G. Alenyà, and C. Torras, “External force estimation for textile grasp
detection,” in IROS Workshop Beyond Robot Grasping: Modern Approaches for Learning
Dynamic Manipulation, 2012.

[20] F. Husain, A. Colomé, B. Dellen, G. Alenyà, and C. Torras, “Realtime tracking and grasping
of a moving object from range video,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 2617–2622, 2014.

[21] A. Colomé, A. Planells, and C. Torras, “A friction-model-based framework for
Reinforcement Learning of robotic tasks in non-rigid environments,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 5649–5654, 2015.

[22] A. Jevtic, A. Colomé, G. Alenyà, and C. Torras, “Learning Robot Motion through User
Intervention and Policy Search,” in ICRA Workshop on Nature versus Nurture in Robotics,
2016.

[23] A. Jevtic, A. Colomé, B. Dellen, G. Alenyà, and C. Torras, “User evaluation of an
interactive learning framework for single-arm and dual-arm robots,” in 8th International
Conference on Social Robotics, pp. 52–61, 2016.

[24] A. Colomé, G. Alenyà, and C. Torras, “Handling high parameter dimensionality in
reinforcement learning with dynamic motor primitives,” in ICRA Workshop on Novel
Methods for Learning and Optimization of Control Policies and Trajectories for Robotics,
2013.

[25] A. Colomé and C. Torras, “Dimensionality reduction and motion coordination in learning
trajectories with Dynamic Movement Primitives,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1414–1420, 2014.

[26] A. Colomé and C. Torras, “Dimensionality reduction for dynamic movement primitives
and application to bimanual manipulation of clothes,” under review, 2017.

[27] A. Colomé, G. Neumann, J. Peters, and C. Torras, “Dimensionality reduction for
probabilistic movement primitives,” in IEEE-RAS 14th International Conference on
Humanoid Robots (Humanoids), pp. 794–800, 2014.

[28] S. Sasaki, “Feasibility studies of kinematics problems in the case of a class of redundant
manipulators,” Robotica, vol. 13, no. 03, pp. 233–241, 1995.

BIBLIOGRAPHY 167

[29] G. K. Singh and J. Claassens, “An analytical solution for the inverse kinematics of a
redundant 7dof manipulator with link offsets,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2976–2982, 2010.

[30] X. Ding and C. Fang, “A novel method of motion planning for an anthropomorphic arm
based on movement primitives,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 2,
pp. 624–636, 2013.

[31] V. Ruiz de Angulo and C. Torras, “Learning inverse kinematics: Reduced sampling
through decomposition into virtual robots,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 38, no. 6, pp. 1571–1577, 2008.

[32] S. Ulbrich, V. Ruiz De Angulo, T. Asfour, C. Torras, and R. Dillmann, “General robot
kinematics decomposition without intermediate markers,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 23, no. 4, pp. 620–630, 2012.

[33] S. Chiaverini, G. Oriolo, and I. D. Walker, “Kinematically redundant manipulators,” in
HANDBOOK of ROBOTICS, Springer, 2008.

[34] K.-Y. Kim, H.-S. Song, J.-W. Suh, and J.-J. Lee, “A novel surgical manipulator with
workspace-conversion ability for telesurgery,” IEEE/ASME Transactions on Mechatronics,
vol. 18, no. 1, pp. 200–211, 2013.

[35] J. Funda, R. H. Taylor, B. Eldridge, S. Gomory, and K. G. Gruben, “Constrained cartesian
motion control for teleoperated surgical robots,” IEEE Transactions on Robotics and
Automation, vol. 12, no. 3, pp. 453–465, 1996.

[36] R. Rao, A. Asaithambi, and S. Agrawal, “Inverse kinematic solution of robot manipulators
using interval analysis,” Journal of Mechanical Design, vol. 120, no. 1, pp. 147–150, 1998.

[37] J. M. Porta Pleite, L. Ros Giralt, and F. Thomas Arroyo, “Inverse kinematics by distance
matrix completion,” in 12th International Workshop on Computational Kinematics, pp. 1–
9, 2005.

[38] V. Ruiz de Angulo and C. Torras, “Self-calibration of a space robot,” IEEE Transactions on
Neural Networks, vol. 8, no. 4, pp. 951–963, 1997.

[39] V. Ruiz de Angulo and C. Torras, “Speeding up the learning of robot kinematics through
function decomposition,” IEEE Transactions on Neural Networks, vol. 16, no. 6, pp. 1504–
1512, 2005.

[40] S. F. Assal, K. Watanabe, and K. Izumi, “Neural network-based kinematic inversion of
industrial redundant robots using cooperative fuzzy hint for the joint limits avoidance,”
IEEE/ASME Transactions on Mechatronics, vol. 11, no. 5, pp. 593–603, 2006.

[41] S. Ulbrich, V. Ruiz de Angulo, T. Asfour, C. Torras, and R. Dillmann, “Rapid learning
of humanoid body schemas with kinematic bezier maps,” in 9th IEEE-RAS International
Conference on Humanoid Robots, pp. 431–438, 2009.

168 BIBLIOGRAPHY

[42] S. Ulbrich, V. Ruiz de Angulo, T. Asfour, C. Torras, and R. Dillmann, “Kinematic bezier
maps,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 42, no. 4, pp. 1215–1230,
2012.

[43] O. Khatib, “A unified approach for motion and force control of robot manipulators: The
operational space formulation,” IEEE Journal of Robotics and Automation, vol. 3, no. 1,
pp. 43–53, 1987.

[44] D. E. Orin and W. W. Schrader, “Efficient computation of the jacobian for robot
manipulators,” The International Journal of Robotics Research, vol. 3, no. 4, pp. 66–75,
1984.

[45] M. Tucker and N. D. Perreira, “Generalized inverses for robotic manipulators,” Mechanism
and machine theory, vol. 22, no. 6, pp. 507–514, 1987.

[46] D. E. Whitney, “Resolved motion rate control of manipulators and human prostheses,”
IEEE Transactions on man-machine systems, vol. 10, no. 2, pp. 47–53, 1969.

[47] W. A. Wolovich and H. Elliott, “A computational technique for inverse kinematics,” in
IEEE Conference on Decision and Control, pp. 1359–1363, 1984.

[48] S. Chiaverini, O. Egeland, and R. Kanestrom, “Achieving user-defined accuracy with
damped least-squares inverse kinematics,” in IEEE Fifth International Conference on
Advanced Robotics (ICAR), pp. 672–677, 1991.

[49] S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the damped least-squares inverse
kinematics with experiments on an industrial robot manipulator,” IEEE Transactions on
Control Systems Technology, vol. 2, no. 2, pp. 123–134, 1994.

[50] B. Siciliano, “A closed-loop inverse kinematic scheme for on-line joint-based robot
control,” Robotica, vol. 8, no. 03, pp. 231–243, 1990.

[51] H. Das, J.-E. Slotine, and T. Sheridan, “Inverse kinematic algorithms for redundant
systems,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 43–
48, 1988.

[52] G. Antonelli, “Stability analysis for prioritized closed-loop inverse kinematic algorithms
for redundant robotic systems,” IEEE Transactions on Robotics, vol. 25, no. 5, pp. 985–994,
2009.

[53] Z.-P. Jiang and Y. Wang, “A converse lyapunov theorem for discrete-time systems with
disturbances,” Systems & control letters, vol. 45, no. 1, pp. 49–58, 2002.

[54] P. Falco and C. Natale, “On the stability of closed-loop inverse kinematics algorithms for
redundant robots,” IEEE Transactions on Robotics, vol. 27, no. 4, pp. 780–784, 2011.

[55] S. R. Buss and J.-S. Kim, “Selectively damped least squares for inverse kinematics,”
journal of graphics, gpu, and game tools, vol. 10, no. 3, pp. 37–49, 2005.

BIBLIOGRAPHY 169

[56] J. Baillieul, “Kinematic programming alternatives for redundant manipulators,” in IEEE
International Conference on Robotics and Automation (ICRA), vol. 2, pp. 722–728, 1985.

[57] T. Yoshikawa, “Dynamic manipulability of robot manipulators,” in IEEE International
Conference on Robotics and Automation, vol. 2, pp. 1033–1038, 1985.

[58] T. Yoshikawa, “Analysis and control of robot manipulators with redundancy,” in Robotics
research: the first international symposium, pp. 735–747, Mit Press Cambridge, MA, 1984.

[59] A. S. Deo and I. D. Walker, “Minimum effort inverse kinematics for redundant
manipulators,” IEEE Transactions on Robotics and Automation, vol. 13, no. 5, pp. 767–
775, 1997.

[60] Y. Nakamura, Advanced robotics: redundancy and optimization. Addison-Wesley Longman
Publishing Co., Inc., 1990.

[61] J. Duffy, “The fallacy of modern hybrid control theory that is based on orthogonal
complements of twist and wrench spaces,” Journal of Robotic Systems, vol. 139, no. 2,
pp. 144–199, 1990.

[62] K. L. Doty, C. Melchiorri, E. M. Schwartz, and C. Bonivento, “Robot manipulability,” IEEE
Transactions on Robotics and Automation, vol. 11, no. 3, pp. 462–468, 1995.

[63] F. Ranjbaran, J. Angeles, and A. Kecskeméthy, “On the kinematic conditioning of robotic
manipulators,” in IEEE International Conference on Robotics and Automation (ICRA), vol. 4,
pp. 3167–3172, 1996.

[64] F. Aghili, “Adaptive control of manipulators forming closed kinematic chain with
inaccurate kinematic model,” IEEE/ASME Transactions on Mechatronics, vol. 18, no. 5,
pp. 1544–1554, 2013.

[65] I.-W. Park, B.-J. Lee, S.-H. Cho, Y.-D. Hong, and J.-H. Kim, “Laser-based kinematic
calibration of robot manipulator using differential kinematics,” IEEE/ASME Transactions
on Mechatronics, vol. 17, no. 6, pp. 1059–1067, 2012.

[66] C. A. Klein and B. E. Blaho, “Dexterity measures for the design and control of
kinematically redundant manipulators,” The International Journal of Robotics Research,
vol. 6, no. 2, pp. 72–83, 1987.

[67] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson, “An estimate for the condition
number of a matrix,” SIAM Journal on Numerical Analysis, vol. 16, no. 2, pp. 368–375,
1979.

[68] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. Dimarogonas, and D. Kragic,
“Dual arm manipulation - A survey,” Robotics and Autonomous Systems, vol. 60, no. 10,
pp. 1340–1353, 2012.

[69] S. H. Hyon, J. G. Hale, and G. Cheng, “Full-Body Compliant Human Humanoid
Interaction: Balancing in the Presence of Unknown External Forces,” IEEE Transactions
on Robotics, vol. 23, no. 5, pp. 884–898, 2007.

170 BIBLIOGRAPHY

[70] N. Vahrenkamp, M. Przybylski, T. Asfour, and R. Dillmann, “Bimanual grasp planning,” in
IEEE-RAS 11th International Conference on Humanoid Robots (Humanoids), pp. 493–499,
2011.

[71] F. Zacharias, D. Leidner, F. Schmidt, C. Borst, and G. Hirzinger, “Exploiting structure
in two-armed manipulation tasks for humanoid robots,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 5446–5452, 2010.

[72] C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand, C. Borst, A. Albu-
Schaffer, B. Brunner, H. Hirschmuller, S. Kielhofer, R. Konietschke, M. Suppa,
T. Wimbock, F. Zacharias, and G. Hirzinger, “A Humanoid Two-Arm System for Dexterous
Manipulation,” in 6th IEEE-RAS International Conference on Humanoid Robots, pp. 276–
283, 2006.

[73] F. Zacharias, C. Borst, and G. Hirzinger, “Capturing robot workspace structure:
representing robot capabilities,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3229–3236, 2007.

[74] W. Burgard, O. Brock, and C. Stachniss, Safety Evaluation of Physical Human-Robot
Interaction via Crash-Testing, pp. 1–352. MIT Press, 2008.

[75] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias, “Safety in human-
robot collaborative manufacturing environments: Metrics and control,” IEEE Transactions
on Automation Science and Engineering, vol. 13, no. 2, pp. 882–893, 2016.

[76] T. Tamei and T. Shibata, “Fast Reinforcement Learning for Three-Dimensional Kinetic
Human–Robot Cooperation with an EMG-to-Activation Model,” Advanced Robotics,
vol. 25, no. 5, pp. 563–580, 2011.

[77] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Computed torque control with
nonparametric regression models,” in American Control Conference, pp. 212–217, 2008.

[78] S. Klanke, S. Vijayakumar, and S. Schaal, “A library for Locally Weighted Projection
Regression,” Journal of Machine Learning Research, vol. 9, pp. 623–626, 2008.

[79] M. V. Damme, P. Beyl, B. Vanderborght, V. Grosu, R. V. Ham, I. Vanderniepen,
A. Matthys, and D. Lefeber, “Estimating robot end-effector force from noisy actuator
torque measurements,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 1108–1113, 2011.

[80] A. Alcocer, A. Robertsson, A. Valera, and R. Johansson, “Force estimation and control in
robot manipulators,” in Robot control 2003 (J. Sasiadek and I. Duleba, eds.), pp. 31–36,
2004.

[81] G. McLachlan and D. Peel, Finite Mixture Models. Wiley, 2000.

[82] L. R. Rabiner, J. H. McClellan, and T. W. Parks, “FIR digital filter design techniques using
weighted Chebyshev approximation,” Proceedings of the IEEE, vol. 63, no. 4, pp. 595–610,
1975.

BIBLIOGRAPHY 171

[83] D. Mitrovic, S. Nagashima, S. Klanke, T. Matsubara, and S. Vijayakumar, “Optimal
Feedback Control for anthropomorphic manipulators,” in IEEE International Conference
on Robotics and Automation (ICRA), pp. 4143–4150, 2010.

[84] O. Kinematics and Dynamics, “Inverse Kinematics with KDL..”

[85] “ROS package repository with Barrett WAM/Hand interface..” Available at http://
code.google.com/p/lis-ros-pkg/wiki/README.

[86] N. Mansard, O. Khatib, and A. Kheddar, “A unified approach to integrate unilateral
constraints in the stack of tasks,” IEEE Transactions on Robotics, vol. 25, no. 3, pp. 670–
685, 2009.

[87] S. R. Buss, “Introduction to inverse kinematics with jacobian transpose, pseudoinverse
and damped least squares methods,” IEEE Journal of Robotics and Automation, vol. 17,
no. 1-19, p. 16, 2004.

[88] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with singularity robustness
for robot manipulator control,” Journal of dynamic systems, measurement, and control,
vol. 108, no. 3, pp. 163–171, 1986.

[89] C. W. Wampler, “Manipulator inverse kinematic solutions based on vector formulations
and damped least-squares methods,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 16, no. 1, pp. 93–101, 1986.

[90] S. K. Chan and P. D. Lawrence, “General inverse kinematics with the error damped
pseudoinverse,” in IEEE International Conference on Robotics and Automation (ICRA),
pp. 834–839, 1988.

[91] T. Sugihara, “Solvability-unconcerned inverse kinematics by the levenberg–marquardt
method,” IEEE Transactions on Robotics, vol. 27, no. 5, pp. 984–991, 2011.

[92] T. F. Chan and R. V. Dubey, “A weighted least-norm solution based scheme for
avoiding joint limits for redundant joint manipulators,” IEEE transactions on Robotics and
Automation, vol. 11, no. 2, pp. 286–292, 1995.

[93] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based redundancy control of
robot manipulators,” The International Journal of Robotics Research, vol. 6, no. 2, pp. 3–
15, 1987.

[94] S. Chiaverini, “Singularity-robust task-priority redundancy resolution for real-time
kinematic control of robot manipulators,” IEEE Transactions on Robotics and Automation,
vol. 13, no. 3, pp. 398–410, 1997.

[95] L. Sciavicco and B. Siciliano, “A solution algorithm to the inverse kinematic problem for
redundant manipulators,” IEEE Journal of Robotics and Automation, vol. 4, no. 4, pp. 403–
410, 1988.

[96] J. Xiang, C. Zhong, and W. Wei, “General-weighted least-norm control for redundant
manipulators,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 660–669, 2010.

http://code.google.com/p/lis-ros-pkg/wiki/README
http://code.google.com/p/lis-ros-pkg/wiki/README

172 BIBLIOGRAPHY

[97] H. Zghal, R. Dubey, and J. Euler, “Efficient gradient projection optimization for
manipulators with multiple degrees of redundancy,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 1006–1011, 1990.

[98] F. Flacco, A. De Luca, and O. Khatib, “Prioritized multi-task motion control of redundant
robots under hard joint constraints,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3970–3977, 2012.

[99] D. Raunhardt and R. Boulic, “Progressive clamping,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 4414–4419, 2007.

[100] N. Mansard, A. Remazeilles, , and F. Chaumette, “Continuity of varying-feature-set
control laws,” IRISA Technical report, 2009.

[101] N. Mansard, A. Remazeilles, and F. Chaumette, “Continuity of varying-feature-set control
laws,” IEEE Transactions on Automatic Control, vol. 54, no. 11, pp. 2493–2505, 2009.

[102] E. Saff and A. Kuijlaars, “Distributing many points on the sphere,” Mathematical
Intelligencer, vol. 19, no. 01, pp. 5–11, 1997.

[103] G. Barequet and G. Elber, “Optimal Bounding Cones of Vectors in Three Dimensions,” Inf.
Process. Lett., vol. 93, no. 2, pp. 83–89, 2005.

[104] E. Guizzo, DARPA Seeking to Revolutionize Robotic Manipulation, 2010.

[105] T. Asfour, K. Berns, and R. Dillmann, “The humanoid robot ARMAR: Design and control,”
in IEEE/APS International Conference on Humanoid Robots, pp. 7–8, 2000.

[106] T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum, N. Vahrenkamp, and
R. Dillmann, “ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor Control,”
in 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 169–175, 2006.

[107] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Global task space
manipulability ellipsoids for multiple-arm systems,” IEEE Transactions on Robotics and
Automation, vol. 7, no. 5, pp. 678–685, 1991.

[108] A. Bicchi and D. Prattichizzo, “Manipulability of cooperating robots with unactuated
joints and closed-chain mechanisms,” IEEE Transactions on Robotics and Automation,
vol. 16, no. 4, pp. 336–345, 2000.

[109] A. Albu-Schaeffer, O. Eiberger, M. Grebenstein, S. Haddadin, C. Ott, T. Wimboeck, S. Wolf,
and G. Hirzinger, “Soft robotics: From torque feedback controlled lightweight robots to
intrinsically compliant systems,” IEEE Robotics and Automation Magazine, vol. 15, no. 3,
pp. 20–30, 2008.

[110] P. J. Hacksel and S. E. Salcudean, “Estimation of Environment Forces and Rigid-Body
Velocities Using Observers,” in IEEE International Conference on Robotics and Automation
(ICRA), pp. 931–936, 1994.

BIBLIOGRAPHY 173

[111] C.-S. Liu and H. Peng, “Inverse-Dynamics Based State and Disturbance Observers for
Linear Time-Invariant Systems,” Journal of Dynamic Systems, Measurement, and Control,
vol. 124, no. 3, pp. 375–381, 2002.

[112] L. G. W.H. Chen, “Analysis of Disturbance Observer Based Control for Nonlinear Systems
under Disturbances with Bounded Variation,” in International Conference on Control,
pp. 1–5, 2004.

[113] W.-H. Chen, “Disturbance observer based control for nonlinear systems,” IEEE/ASME
Transactions on Mechatronics, vol. 9, no. 4, pp. 706–710, 2004.

[114] D. Nguyen-Tuong and J. Peters, “Learning Robot Dynamics for Computed Torque Control
Using Local Gaussian Processes Regression,” in ECSIS Symposium on Learning and
Adaptive Behaviors for Robotic Systems (LAB-RS), pp. 59–64, 2008.

[115] F. Stulp and O. Sigaud, “Path integral policy improvement with covariance matrix
adaptation,” in 29th International Conference on Machine Learning, vol. abs/1206.4621,
2012.

[116] F. Martí, “C++ Library to check if a scarf is well placed on a mannequin.” Available at
https://github.com/FelipMarti.

[117] J. Kober, Learning Motor Skills: From Algorithms to Robot Experiments. PhD thesis, TU
Darmstadt, 2012.

[118] J. Peters and S. Schaal, “"Reinforcement learning of motor skills with policy gradients",”
Neural Networks, vol. 21, no. 4, pp. 682 – 697, 2008.

[119] J. Peters and S. Schaal, “Policy Gradient Methods for Robotics,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2219–2225, 2006.

[120] S. Kullback and R. Leibler, “On information and sufficiency,” Annals of Mathematical
Statistics, 1951.

[121] J. Peters, K. Mülling, and Y. Altün, “Relative Entropy Policy Search,” in AAAI Conference
on Artificial Intelligence, pp. 1607–1612, 2010.

[122] C. Daniel, G. Neumann, O. Kroemer, and J. Peters, “Hierarchical relative entropy policy
search,” Journal of Machine Learning Research, vol. 17, no. 93, pp. 1–50, 2016.

[123] G. Neumann, “Variational Inference for Policy Search in changing situations,” in
International Conference on Machine Learning, pp. 817–824, 2011.

[124] E. Theodorou, J. Buchli, and S. Schaal, “A Generalized Path Integral Control Approach to
Reinforcement Learning,” Journal of Machine Learning Research, vol. 11, pp. 3137–3181,
2010.

[125] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical Movement
Primitives: Learning Attractor Models for Motor Behaviors,” Neural Computation, vol. 25,
no. 2, pp. 328–373, 2013.

https://github.com/FelipMarti

174 BIBLIOGRAPHY

[126] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with nonlinear dynamical
systems in humanoid robots,” in IEEE International Conference on Robotics and Automation
(ICRA), vol. 2, pp. 1398–1403, 2002.

[127] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic Movement Primitives,”
in Advances in Neural Information Processing Systems (NIPS), pp. 2616–2624, 2013.

[128] A. Lazaric and M. Ghavamzadeh, “Bayesian Multi-Task Reinforcement Learning,” in
International Conference on Machine Learning (ICML), pp. 599–606, 2010.

[129] A. Colomé and C. Torras, “Dual reps: A generalization of relative entropy policy search
exploiting bad experiences,” IEEE Transactions on Robotics, vol. 33, no. 4, 2017.

[130] V. Gómez, H. J. Kappen, J. Peters, and G. Neumann, “Policy search for path integral
control,” in European Conference in Machine Learning and Knowledge Discovery in
Databases (ECML), pp. 482–497, 2014.

[131] S. Lloyd, “Least Squares Quantization in PCM,” IEEE Transactions on Information Theory,
vol. 28, no. 2, pp. 129–137, 2006.

[132] S. S. Khan and A. Ahmad, “Cluster center initialization algorithm for k-means clustering,”
Pattern Recognition Letters, vol. 25, no. 11, pp. 1293 – 1302, 2004.

[133] A. Jevtic, A. Colomé, G. Alenyà, and C. Torras, “Robot Motion Adaptation through User
Intervention and Reinforcement Learning,” in Under review, 2017.

[134] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning Movement Primitives,” in
11th International Symposium on Robotics Research, pp. 561–572, 2005.

[135] N. Hansen, The CMA Evolution Strategy: A Comparing Review, pp. 75–102. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006.

[136] A. Abdolmaleki, N. Lau, L. P. Reis, and G. Neumann, “Regularized covariance estimation
for weighted maximum likelihood policy search methods,” in IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), pp. 154–159, 2015.

[137] R. Vinjamuri, M. Sun, C. C. Chang, H. N. Lee, R. J. Sclabassi, and Z. H. Mao,
“Dimensionality Reduction in Control and Coordination of the Human Hand,” IEEE
Transactions on Biomedical Engineering, vol. 57, no. 2, pp. 284–295, 2010.

[138] K. S. Luck, G. Neumann, E. Berger, J. Peters, and H. B. Amor, “Latent space policy search
for robotics,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1434–1440, 2014.

[139] H. B. Amor, O. Kroemer, U. Hillenbrand, G. Neumann, and J. Peters, “Generalization of
human grasping for multi-fingered robot hands,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 2043–2050, 2012.

[140] M. Toussaint, Lecture Notes: Gaussian identities. Available at http://ipvs.
informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf.

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

BIBLIOGRAPHY 175

[141] J. Duchi, Properties of the Trace and Matrix Derivatives. Available at https://web.
stanford.edu/~jduchi/projects/matrix_prop.pdf.

[142] N. Shafii, A. Abdolmaleki, R. Ferreira, N. Lau, and L. P. Reis, “Omnidirectional Walking
and Active Balance for Soccer Humanoid Robot,” in 16th Portuguese Conference on
Artificial Intelligence (EPIA), pp. 283–294, 2013.

[143] D. Pardo, Learning rest-to-rest Motor Coordination in Articulated Mobile Robots. PhD thesis,
Universitat Politècnica de Catalunya, 2009.

[144] R. A. Téllez, C. Angulo, and D. E. Pardo, “Evolving the walking behaviour of a 12
dof quadruped using a distributed neural architecture,” in International Workshop on
Biologically Inspired Approaches to Advanced Information Technology (BioADIT), pp. 5–19,
2006.

[145] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill coordination with EM-
based Reinforcement Learning,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3232–3237, 2010.

[146] P. A. N. Bosman, J. Grahl, and D. Thierens, “Enhancing the Performance of Maximum–
Likelihood Gaussian EDAs Using Anticipated Mean Shift,” in International Conference
Parallel Problem Solving from Nature (PPSN), pp. 133–143, 2008.

[147] S. Zhifei and E. Meng Joo, “A survey of inverse reinforcement learning techniques,”
International Journal of Intelligent Computing and Cybernetics, vol. 5, no. 3, pp. 293–311,
2012.

[148] L. Rozo, J. Silvério, S. Calinon, and D. G. Caldwell, “Learning controllers for reactive and
proactive behaviors in human-robot collaboration,” Frontiers in Robotics and AI, vol. 3,
no. 30, pp. 1–11, 2016.

[149] A. G. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann, “Data-efficient Generalization
of Robot Skills with Contextual Policy Search,” in AAAI Conference on Artificial Intelligence,
pp. 1401–1407, 2013.

https://web.stanford.edu/~jduchi/projects/matrix_prop.pdf
https://web.stanford.edu/~jduchi/projects/matrix_prop.pdf

	Abstract
	Resum
	Acknowledgements
	Contents
	Figures
	Tables
	Introduction
	Objectives
	Contributions
	Outline

	I Compliant Redundant Robot Control
	State of the Art
	Inverse kinematics of redundant serial robots
	Bimanual manipulation
	Compliant control and wrench estimation
	Learning robot inverse dynamics
	Fitting an analytical model

	Summary

	Inverse Kinematics and Relative Arm Positioning
	Inverse kinematics of redundant robots
	CLIK algorithm issues
	First enhancement: Singular Value Filtering (SVF)
	Multiple tasks
	Joint limit avoidance
	Second enhancement: pseudoinverse smoothing
	Experimentation
	Discussion

	Bimanual arm positioning
	Workspace representation
	Bimanual workspace
	Proposed quality function
	Experimentation

	Summary

	Robot Compliant Control
	External force estimation
	External wrench estimation as a disturbance observer
	Experimentation
	Discussion

	Building a friction model
	Introduction
	Advanced model for the WAM robot

	Applications
	Scarf-placing experiment
	Compliant object tracking

	Summary

	II Reinforcement Learning with Movement Primitives
	Preliminaries
	Policy Search (PS)
	Robot control as a reinforcement learning problem

	Movement Primitives (MP)
	Dynamic movement primitives
	Probabilistic movement primitives

	Summary

	Dual REPS: A Generalization of Relative Entropy Policy Search Exploiting Bad Experiences
	The Dual REPS Algorithm
	Clustering
	DREPS derivation
	Experiments

	Summary

	Reward-oriented Dimensionality Reduction with Movement Primitives
	Dimensionaliy Reduction for ProMPs
	Representing Dimensionality Reduction for ProMP (DR-ProMP)
	DR-ProMP for robot control
	Fitting DR-ProMP parameters with expectation maximization
	Experiments
	Conclusions

	Dimensionality Reduction for DMPs
	DMP coordination
	EM approach to find the latent space projection
	Experimentation
	Conclusions

	Summary

	Conclusions
	Summary
	Future work
	Epilogue

	List of Publications
	External Resources
	Closed-loop inverse kinematics for redundant robots
	Friction model applications
	Realtime tracking and grasping of a moving object from range video
	Human-guided compliant control
	DREPS
	DR for DMPs

	Acronyms
	Glossary
	Bibliography

