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Abstract

Randomness is one of the most intriguing, inspiring and debated topics
in the history of the world. It appears every time we wonder about our
existence, about the way we are, e.g. Do we have free will? Is evolution
a result of chance? It is also present in any attempt to understand our an-
choring to the universe, and about the rules behind the universe itself, e.g.
Why are we here and when and why did all this start? Is the universe de-
terministic or does unpredictability exist? Remarkably, randomness also
plays a central role in the information era and technology. Random dig-
its are used in communication protocols like Ethernet, in search engines
and in processing algorithms as page rank. Randomness is also widely
used in so-called Monte Carlo methods in physics, biology, chemistry, fi-
nance and mathematics, as well as in many other disciplines. However,
the most iconic use of random digits is found in cryptography. Random
numbers are used to generate cryptographic keys, which are the most
basic element to provide security and privacy to any form of secure com-
munication.

This thesis has been carried out with the following questions in mind:
Does randomness exist in photonics? If so, how do wemine it and how do
wemine it in a massively scalable manner so that everyone can easily use
it? Addressing these two questions lead us to combine tools from funda-
mental physics and engineering. The thesis starts with an in-depth study
of the phase diffusion process in semiconductor lasers and its application
to random number generation. In contrast to other physical processes
based on deterministic laws of nature, the phase diffusion process has
a pure quantum mechanical origin, and, as such, is an ideal source for
generating truly unpredictable digits.
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First, we experimentally demonstrated the fastest quantum random
number generation scheme ever reported (at the time), using components
from the telecommunications industry only. Up to 40 Gb/s were demon-
strated to be possible using a pulsed scheme. We then moved towards
building prototypes and testing them with partners in supercomputation
and fundamental research. In particular, the devices developed during
this thesis were used in the landmark loophole-free Bell test experiments
of 2015. In the process of building the technology, we started a new re-
search focus as an attempt to answer the following question: How do we
know that the digits that we generate are really coming from the phase
diffusion process that we trust? As a result, we introduced the random-
ness metrology methodology, which can be used to derive quantitative
bounds on the quality of any physical random number generation device.
Finally, we moved towards miniaturisation of the technology by leverag-
ing techniques from the photonic integrated circuits technology industry.
The first fully integrated quantum random number generator was demon-
strated using a novel two-laser scheme on an Indium Phosphide platform.
In addition, we also demonstrated the integration of part of the technology
on a Silicon Photonics platform, opening the door towards manufacturing
in the most advanced semiconductor industry.



Resum

L’aleatorietat és un dels temes més intrigants, inspiradors i debatuts al
llarg de la història. És un concepte que sorgeix quan ens preguntem
sobre la nostra pròpia existència i de per què som com som. Tenim free-
will? És l’evolució resultat de l’atzar? L’aleatorietat és també un tema que
sorgeix quan intentem entendre la nostra relació amb l’univers mateix.
Per què estem aquí? Quan o com va començar tot això? És l’univers
una màquina determinista o hi ha cabuda per a l’atzar? Sorprenentment,
l’aleatorietat també juga un paper crucial en l’era de la informació i la tec-
nologia. Els nombres aleatoris es fan servir en protocols de comunicació
com Ethernet, en algoritmes de classificació i processat com Page Rank.
També usem l’aleatorietat en els mètodes Monte Carlo, que s’utilitzen en
els àmbits de la física, la biologia, la química, les finances o les matemà-
tiques. Malgrat això, l’aplicació més icònica per als nombres aleatoris
la trobem en el camp de la criptografia o ciber-seguretat. Els nombres
aleatoris es fan servir per a generar claus criptogràfiques, l’element bàsic
que proporciona la seguretat i privacitat a les nostres comunicacions.

Aquesta tesi parteix de la següent pregunta fonamental: Existeix
l’aleatorietat a la fotònica? En cas afirmatiu, com podem extreure-la i fer-
la accessible a tothom? Per a afrontar aquestes dues preguntes, s’han
combinat eines des de la física fonamental fins a l’enginyeria. La tesi
parteix d’un estudi detallat del procés de difusió de fase en làsers semi-
conductors i de com aplicar aquest procés per a la generació de nombres
aleatoris. A diferència d’altres processos físics basats en lleis determin-
istes de la natura, la difusió de fase té un origen purament quàntic, i per
tant, és una font ideal per a generar nombres aleatoris.

Primerament, i fent servir aquest procés de difusió de fase, vam crear
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el generador quàntic de nombres aleatoris més ràpid mai implementat
(en aquell moment) fent servir, únicament, components de la indústria de
les telecomunicacions. Més de 40 Gb/s van ser demostrats fent servir un
esquema de làser polsat. Posteriorment, vam construir diversos prototips
que van ser testejats en aplicacions de ciència fonamental i supercom-
putació. En particular, alguns dels prototips desenvolupats en aquesta
tesi van ser claus en els famosos experiments loophole-free Bell tests re-
alitzats l’any 2015. En el procés de construir aquests prototips, vam ini-
ciar una nova línia de recerca per a intentar contestar una nova pregunta:
Com sabem si els nombres aleatoris que generem realment sorgeixen del
procés de difusió de fase, tal com nosaltres creiem? Com a resultat, vam
introduir una nova metodologia, la metrologia de l’aleatorietat. Aquesta
es pot fer servir per a derivar límits quantificables sobre la qualitat de
qualsevol dispositiu de generació de nombres aleatoris físic. Finalment,
ens vam moure en la direcció de la miniaturització de la tecnologia util-
itzant tècniques de la indústria de la fotònica integrada. En particular, vam
demostrar el primer generador de nombres aleatoris quàntic totalment in-
tegrat, fent servir un esquema de dos làsers en un xip de Fosfur d’Indi.
En paral·lel, també vam demostrar la integració d’una part del dispositiu
emprant tecnologia de Silici, obrint les portes, per tant, a la producció a
gran escala a través de la indústria més avançada de semiconductors.



Resumen

La aleatoriedad es uno de los temas más intrigantes, inspiradores y de-
batidos a lo largo de la historia. Es un concepto que surge cuando nos
preguntamos sobre nuestra propia existencia y de por qué somos como
somos. ¿Tenemos libre albedrío? ¿Es la evolución resultado del azar?
La aleatoriedad es también un tema que surge cuando intentamos enten-
der nuestra relación con el universo. ¿Por qué estamos aquí? ¿Cuándo
y cómo empezó todo esto? ¿Es el universo una máquina determinista
o existe espacio para el azar? Sorprendentemente, la aleatoriedad tam-
bién juega un papel crucial en la era de la información y la tecnología. Los
números aleatorios se usan en protocolos de comunicación como Ether-
net, y en algoritmos de clasificación y procesado como Page Rank. Tam-
bién la utilizamos en los métodos Monte Carlo, que sirven en los ámbitos
de la física, la biología, la química, las finanzas o las matemáticas. Sin
embargo, la aplicación más icónica para los números aleatorios la en-
contramos en el campo de la criptografía y la ciberseguridad. Aquí, los
números aleatorios se usan para generar claves criptográficas, propor-
cionando el elemento básico para dotar a nuestras comunicaciones de
seguridad y privacidad.

En esta tesis partimos de la siguiente pregunta fundamental: ¿Ex-
iste la aleatoriedad en la fotónica? En caso afirmativo, ¿Cómo podemos
extraerla y hacerla accesible a todo el mundo? Para afrontar estas dos
preguntas, se han combinado herramientas desde la física fundamental
hasta la ingeniería. La tesis parte de un estudio detallado del proceso
de difusión de fase en láseres semiconductores y de cómo aplicar este
proceso para la generación de números aleatorios. A diferencia de otros
procesos físicos basados en leyes deterministas de la naturaleza, la di-
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fusión de fase tiene un origen puramente cuántico y, por lo tanto, es una
fuente ideal para generar números aleatorios.

Primeramente, y utilizando este proceso de difusión de fase, creamos
el generador cuántico de números aleatorios más rápido nunca imple-
mentado (en ese momento) utilizando únicamente componentes de la
industria de las telecomunicaciones. Más de 40 Gb/s fueron demostra-
dos utilizando un esquema de láser pulsado. Posteriormente, constru-
imos varios prototipos que fueron testeados en aplicaciones de ciencia
fundamental y supercomputación. En particular, algunos de los prototi-
pos desarrollados en esta tesis fueron claves en los famosos experi-
mentos Loophole-free Bell tests realizados en el 2015. En el proceso
de construir estos prototipos, iniciamos una nueva línea de investigación
para intentar dar respuesta a una nueva pregunta: ¿Cómo sabemos si
los números aleatorios que generamos realmente surgen del proceso de
difusión de fase, tal y como nosotros creemos? Como resultado introdu-
jimos una nueva metodología, la metrología de la aleatoriedad. Esta se
puede usar para derivar límites cuantificables sobre la calidad de cualquier
dispositivo de generación de números aleatorios físico. Finalmente, nos
movimos en la dirección de la miniaturización de la tecnología utilizando
técnicas de la industria de la fotónica integrada. En particular, creamos el
primer generador de números aleatorios cuántico totalmente integrado
utilizando un esquema de dos láseres en un chip de Fosfuro de Indio.
En paralelo, también demostramos la integración de una parte del dis-
positivo utilizando tecnología de Silicio, abriendo las puertas, por tanto,
a la producción a gran escala a través de la industria más avanzada de
semiconductores.
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Chapter 1

Randomness in the
information era

Randomness is one of the most profound topics in science and philos-
ophy, present not only in modern society due to its practical relevance,
but also in ancient philosophy because of its close connection with the
concepts of physical determinism and free will. However, since the be-
ginning of the 20th century, randomness has taken a completely new
direction. The development of the first computers moved randomness
from pure philosophical debates into practically-driven discussions. One
example is in connection with the Monte Carlo method, a technique to
numerically solve complex analytical problems using randomised trials,
which finds application in multiple fields, including physics, finance, biol-
ogy and chemistry. Another relates to cryptography, the art of encrypting
and protecting information. While cryptographic methods have been used
for thousands of years, the use of random number generators in connec-
tion with cryptography is relatively new, and seems to appear in response
to the new cryptanalysis possibilities opened up by digital computers.

Today, random number generators are essential components in any
connected device. In this chapter, we discuss the topic of randomness first
from the application point-of-view. We then give a historic perspective of
the evolution of the field of randomness, including the basic concepts that
will be used throughout the thesis. Finally, we describe efforts towards
building dedicated devices for random number generation over the last 70
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years. We start with the first technologies that were built, then move on to
the first photonic devices, and finally we review the origin of a specific set
of schemes, the so-called continuous-variable quantum random number
generators.

1.1 Random numbers uncovered

Randomness, in contrast to other natural resources like oil or water, is
something that we will never run short of, as far as we know. Our cur-
rent understanding of physics provides strong evidence that randomness
is basically everywhere in the universe. However, “mining” it is not an
obvious task. Pure randomness easily interacts with nearby non-random
phenomena, masking its pure properties or even destroying them com-
pletely. Extracting good randomness from such mixed raw material is,
however, possible, but requires sophisticated procedures, much like re-
fining oil.

At this point, the question that some readers might be asking is, “Why
on earth would we want to mine randomness?” Throughout history, the
principal objective of humans has been to efficiently use natural resources,
firstly to survive, and then to improve quality of life. This long and slow
evolution process reached its maximum exponent during the industrial
revolution, when machines took over manual and heavy processes. One
of the most important consequences is that humans moved from being
valued for their strength to being valued for their brains. The world to-
day bears very little resemblance to the place where our great-great-
grandparents used to live. Today, information is more valuable than any
other natural resource, but similarly to what happened in the past, humans
are now concerned with how to use information to improve our quality of
life and to create growth and progress. Remarkably, and again very sim-
ilarly to what happened with other valuable resources, humans are also
tremendously concerned about protecting this new gold.

And guess what? In most of these areas, especially the protection of
data and for understanding better the universe we live in, random num-
bers are of extreme necessity. In the following pages, we describe the
role of randomness in multiple everyday life applications.
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1.1.1 Randomness in computer science

Seemingly counter-intuitive at first, randomised algorithms play an impor-
tant role in computer science and communications. It turns out that many
problems would not be solvable without an external random input. Some
examples include the original page rank algorithm by Google, commu-
nication systems on shared channels as Ethernet, and the Monte Carlo
method.

In the case of page rank, the algorithm is trying to classify webpages
based on their popularity, so that the most popular results can be shown to
the users. Roughly speaking, the algorithm works as follows: a webpage
A is ranked as popular if it has multiple inbound links from independent
webpages. In order to calculate the number of inbound and outbound
links, the algorithm operates by going to the source code of a webpage,
looking for the outbound links, and jumping to a new webpage. By do-
ing this repeatedly, an accurate picture of the complex network of links
can be drawn. However, it can happen that a series of webpages might
be pointing to one another in order to try to fool the algorithm and gain
popularity maliciously. To avoid this trap, one possible solution is that the
algorithm jumps randomly to a webpage B (with a probability p) which is
not necessarily in the list of outbound links of the current webpage. By
throwing in a random number, the algorithm will decide to follow a link or
to randomly jump to a website, escaping eventual traps.

Randomness is also a basic resource in shared communication chan-
nels, such as Ethernet or mobile networks. The actual transmission of
information happens through a given physical support, such as wires in
the case of electrical signals, wires or air in the case of radio-frequency
signals, or optical fibres in the case of optical signals. When multiple users
make use of the shared resource simultaneously, collisions might occur,
making it impossible for the receiver to extract the information. In such
events, information is lost, and the senders have to retransmit the mes-
sages. But what happens if both senders retransmit at the same time?
Of course, if their messages were to collide over and over again, the net-
work would collapse, and no information would be able to be transmitted.
In order to avoid this situation, every time a collision happens, the senders
generate a random number before resending the message. This random
number represents a waiting time, so before retransmitting, they have to
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wait a given amount of time. In this way, the probability that both senders
transmit at the same time again is largely minimised.

Another very important application of random numbers in computer
science is the so-called Monte Carlo method, which is a statistical sam-
pling technique extremely useful in solving complex analytical problems
without known solutions or closed formulae. The technique has been
known for a long time, but it gained a lot of traction after Stanislaw Ulam
and John Von Neumann used it to solve neutron diffusion problems in nu-
clear reactions during World War II. Monte Carlo methods are used across
science and engineering, including physics, biology, mathematics, chem-
istry, aeronautics, telecommunications and risk analysis. They are also
used in politics and many others fields.

Unfortunately, low quality random number generation and patterns
have led to several examples of incorrect results in solving specific prob-
lems (Click et al., 2011). A famous example is the failure to find the para-
meters of the Ising model (Ferrenberg et al., 1992; Lin et al., 2013).

1.1.2 Randomness in cryptography

Secret communications are as old as our knowledge of ancient civilisa-
tions. One of the first evidences that we have of employing encryption
devices for secure communications is found in the work of a Greek poet,
Archilochus (7th century BC). The device is known as the Scytale, and is
based on scrambling the positions of the letters in a message. During the
time of the Roman Empire, especially during Julius Caesar’s ruling, sev-
eral cryptographic methods were proposed. The so-called Caesar cipher
is one of them. Basically, by taking each letter of the message and replac-
ing it with the one three positions after it in the alphabet, the encrypted
message was unintelligible to the eyes of the curious enemy. This type of
algorithm, in which letters do not change position, but rather their “iden-
tity”, is known as a substitution cipher. Substitution ciphers seem to have
remained secure for a long time, until Al-Kindi, one of the most celebrated
philosophers of the Islamic world, introduced the first form of hacking: the
frequency analysis technique. The idea is that in every language there are
some letters that are more common than others. In English, for instance,
the letter e is the most common and frequently used. Thus, if we calculate
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the probability of every letter in a message encrypted by a substitution ci-
pher, we can identify each substitution by just looking at the frequency of
the relevant symbol. For instance, if we get an English text and we see
the symbol ζ being used most frequently, we can guess it represents the
letter e. Many workarounds were introduced by code makers to improve
the security against frequency analysis, for example by adding so-called
code words to the development of polyalphabetic ciphers, like the Vigener
cipher or the Engima machine. However, codebreakers also introduced
more sophisticated techniques, allowing them to break increasingly ad-
vanced methods.

In order to build a cryptographic system, one of the first things that we
need is (i) an algorithm that scrambles our message so that it becomes
unintelligible, and (ii) an algorithm that unscrambles the data so it recov-
ers meaning again. These algorithms are typically public and known by
everyone, so that both senders and receivers know what to do to establish
a secure communication. However, because these algorithms are known
a priori, it is not enough to distribute information securely. To add secrecy,
we add random digits into the recipee. By combining the message, the
private random digits and the scrambling algorithm, we can now send in-
formation with high confidence that no attacker can gain information about
our message (since he or she does not have access to the secret random
digits). To close the crypto-system, the last remaining task is to distribute
these random digits to the intended recipients, so that they can recover
the original information by using the unscrambling algorithm and the se-
cret random digits. In cryptography, we must assume that the enemy has
full access to every single element of the cryptographic chain, except for
one thing: the random digits (Kerckhoff principle). As a result, a crypto-
graphic system is only secure if the random digits are truly unpredictable
and if they are properly distributed between the intended recipients.

The one-time-pad (OTP) method, first developed by Frank Miller in
1882 and reinvented by Gilbert S. Vernam in 1917, is the most secure
encryption algorithm currently known. It is unconditionally secure no mat-
ter how powerful our enemy is and how many resources he has. It is
a simple variation of the Caesar cipher, in which now, instead of shift-
ing the letters by a fixed value, every letter is shifted by a random value.
Provided that each letter is substituted randomly (a random number de-
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termines how many positions we should shift each letter), the encrypted
message remains unbreakable forever. Two conditions have to be met:
(i) the cryptographic key, the secret, has to be as long as the message,
i.e. we need one random number for every letter in the message, and (ii)
the random numbers have to be totally unpredictable to the enemy. The
OTP method is, unfortunately, hard to implement because of the difficulty
in generating long keys and, also, because of the difficulty in distributing
those keys.

Algorithms requiring shorter cryptographic keys as well as algorithms
to distribute the keys efficiently were required to bring encryption into prac-
tice. The most iconic examples today are the Advanced Encryption Stan-
dard (AES) and the Rivest-Shamir-Adleman (RSA) algorithms. AES-like
methods are used to actually encrypt information, whereas RSA-like al-
gorithms are used to exchange cryptographic keys. For the encryption
process, both the sender and the receiver typically share the same en-
cryption key, as with the OTP. However, keys of only 256 bits are typically
required. These methods, in which sender and receiver use the same
key, are known as symmetric encryption. For the distribution of the keys,
a different type of algorithm is used, known as public key cryptography.
The RSA is probably the most famous example of this type. Currently,
key sizes of around 1024 or 2048 bits are used. In this case, sender and
receiver do not use the same keys, and so these methods are known as
asymmetric encryption. All algorithms other than OTP are based on so-
called one-way functions, i.e. mathematical problems that are easy to
calculate in one direction but very hard to compute in the opposite direc-
tion. For instance, in the case of RSA, the trick is that given two prime
numbers a and b it is very easy to calculate c = a× b, but it is very hard to
find a and b given only c. As a result, these methods are known as being
computationally secure, meaning that it is very hard for computers to per-
form a brute force attack to break the key. However, hard means hard,
not impossible. In fact, the RSA algorithm was found by (Shor, 1999)
to be easily breakable using a quantum computer. A huge effort is cur-
rently being made on building and implementing new algorithms that are
quantum-safe, i.e. that cannot be broken easily by a quantum computer.
For further information on quantum-safe algorithms, see (Bernstein et al.,
2009).
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Quantum key distribution (QKD) is an alternative to asymmetric en-
cryption methods for implementing the key exchange step. The basic idea
is that by using the laws of quantum physics, we can distribute strings of
random numbers in an unconditionally secure manner between two par-
ties. In this way, the distribution problem mentioned would be solved,
and thus we would have a totally secure method to share keys between
sender and receiver. Building scalable QKD systems is a technological
challenge, and tremendous effort are being made towards global quan-
tum key distribution infrastructures. When deployed, the combination of
QKD and OTP would allow us to build perfectly secure cryptographic sys-
tems, ending forever the war between code makers and codebreakers.
For a review on QKD, see (Gisin et al., 2002).

In any crypto-system, thus, the key exchange task is of fundamental
importance. However, there is a prior step required before the key distrib-
ution stage: the key generation. Generating random numbers for creating
cryptographic keys is far from a trivial task. There are many examples of
faulty implementations that led to serious vulnerabilities. These include
the attacks on the SSL keys generated in the Netscape browser (Gold-
berg et al., 1996; Shepherd, 1996), which used predictable sources for
randomness generation (e.g. the time of the day), or the attacks on the
OpenSSL protocol, which used a very limited entropy source space (Ah-
mad, 2008). (Lenstra et al., 2012) also found significant vulnerabilities in
around two out of every 1,000 RSA keys. By scrutinising public records of
RSA keys, they found an alarming number of around 27,000 vulnerable
keys. The failure to generate good random numbers also allowed hack-
ers to recover the private key used by Sony to sign software licenses for
the Play Station. Similarly, collisions on the Java random number gen-
erator allowed hackers to steal Bitcoins (Nakamoto, 2008) from digital
wallets, the cryptocurrency that at the time of writing is worth $4.225, 91.
There are typically two incentives for breaking a cryptographic system:
making money, or gaining private information. Using the best possible
cryptographic keys to secure our systems is therefore a basic step in the
protection of our data.
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1.1.3 Randomness in other areas

Cryptography and computer science are two of the most randomness-
consuming industries. However, many other applications rely heavily on
random number generation, such as the gambling industry or fundamen-
tal research. In the case of gambling, for both the online format and the
physical format, randomness is essential. In online format, the winning
and losing of people’s money is decided from the results of random num-
ber generators. From the distribution of the cards in a Poker game, to the
outcome of an online roulette. It would be totally unacceptable if online
casinos knew the digits that were going to be used. In physical casi-
nos, random number generators are also crucial on non-croupier-based
games, such as slot machines. In fact, flaws in the generation of random
numbers inside slot machines was recently in the news when a group of
hackers was found to be gaining huge profits by predicting the results from
low-quality pseudo-random number generators. It was estimated that a
single individuals could make more than $10k in a single day, and that
coordinated groups of four people could make up to $250k a week.

Fundamental research also needs high quality random digits for a va-
riety of purposes. A clear example is discussed thoroughly in this thesis,
and is related to tests of local realism by means of Bell theorem imple-
mentations, in which a very special form of random digits is required to
select the measurement basis in every experimental round.

1.2 From solitaire to quantum technologies

Throughout the 20th century, application-driven research has dramatically
changed the field of randomness generation, from recording random sam-
ples in tables and printing them in books to using quantum dynamics and
electronic devices directly plugged into computers and communication
devices. In this section, we review the progress of the field in the 20th
century1.

1Randomness is a very multidisciplinary topic ranging from mathematics, engineering,
computer science, philosophy, computer science, and physics. The literature on the topic
is very extensive (see e.g. a bibliographic chronology (Sowey, 1972, 1978; Sowey, 1986)
including about 750 highlighted publications on the topic. In this section, we attempt to
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1.2.1 From tables to algorithms

In 1927, (Tippett, 1927) published a book with 41,200 random numbers
extracted from census registers. A few years later, (Mahalanobis et al.,
1934) reported a similar list, this time with normally distributed random
numbers. Then, (Fisher et al., 1938) reported a new table emphasising
its use in biology, agriculture and medical research, and (Kendall et al.,
1939a; Kendall et al., 1939b) published 100,000 numbers read from a
spinning disk illuminated by a flash lamp. Since then, a number of other
tables have followed. A relevant example is “A Million Random Digits
with 100,000 normal deviates” by (Rand Corporation, 1955), in which an
“electrical roulette wheel” was used for the production of the digits.

Random tables were useful for solving certain mathematical problems
later known as Monte Carlo methods. The first known example of a Monte
Carlo calculation was by the French naturalist Georges-Louis Leclerc,
Comte de Buffon, in the 18th century. Starting with a pure probabilis-
tic problem, he estimated the value of π by counting how many needles
thrown randomly into a horizontally-divided grid had intersections with the
grid lines themselves. However, the real expansion of the Monte Carlo2

method can be traced back to Stanislaw Ulam, when he reinvented the
statistical sampling technique after sitting sick at home and trying, unsuc-
cessfully, to calculate the probability of winning in a solitaire game. He
eventually thought that if he were to play multiple times, he could count
the number of wins versus the number of losses, thereby getting an ap-
proximate answer to the initially complex problem in an straightforward
manner. Ulam and his colleague at the Los Alamos National Laboratory,
John Von Neumann, used this statistical sampling technique to solve neu-
tron diffusion problems in the ENIAC computer during World War II. In
Ulam’s own words (Eckhardt, 1987)

“The first thoughts and attempts I made to practice [the Monte
Carlo method] were suggested by a question which occurred
to me in 1946 as I was convalescing from an illness and play-

give an overall idea of the direction that the field has taken, and why and how we got to
where we are now.

2An interesting review on the Monte Carlo method with a perspective of the early days
of the field can be found in (Chambers, 1967).
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ing solitaires. The question was what are the chances that a
Canfield solitaire laid out with 52 cards will come out success-
fully? After spending a lot of time trying to estimate them by
pure combinatorial calculations, I wondered whether a more
practical method than “abstract thinking” might not be to lay
it out say one hundred times and simply observe and count
the number of successful plays. This was already possible to
envisage with the beginning of the new era of fast comput-
ers, and I immediately thought of problems of neutron diffu-
sion and other questions of mathematical physics, and more
generally how to change processes described by certain dif-
ferential equations into an equivalent form interpretable as a
succession of random operations. Later... [in 1946, I ] de-
scribed the idea to John von Neumann and we began to plan
actual calculations”

Unfortunately, when combining statistical sampling concepts, such as
the Monte Carlo technique, with computers, previous methods based on
getting the random samples from tables was no longer viable. Firstly,
these methods were extremely slow and limited - Monte Carlo calcu-
lations on computers required much longer sequences of random dig-
its. Secondly, the quality of those methods was not sufficient. For in-
stance, (Yule, 1938) scrutinised Tippett’s numbers and reported evidence
of “patchiness”. The longer the sequence of random digits is, the easier
it is to detect imperfections.

In order to implement the Monte Carlo approach in the ENIAC com-
puter, Von Neumann devised a smart strategy for generating random
numbers directly on the computer. The method introduced by Von Neu-
mann is known as the mid-square method. It consists of calculating the
square of an n-digits number to obtain a 2n-digits number, then keeping
the n digits in middle of the resulting number, and finally repeating these
steps periodically. Generally known as pseudo-random number genera-
tors, these methods have the advantages of being fast, and, more impor-
tantly, directly available to the calculation machines. The main drawback
is that they are very predictable, in other words, not random. Pseudo-
random number generators produce digits with statistically-good proper-
ties, like those observed in truly random sequences. This complete lack of
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randomness seemed to have some advantages for certain applications.
Quoting (Von Neumann, 1951)’s thoughts on the topic

“Anyonewho considers arithmetical methods of producing ran-
dom digits is, of course, in a state of sin. [...] The real objection
to this procedure [using physical randomness] is the practical
need for checking computations. If we suspect that a calcula-
tion is wrong, almost any reasonable check involves repeating
something done before. At that point, the introduction of new
random numbers would be intolerable. I think that the direct
use of a physical supply of random digits is absolutely unac-
ceptable for this reason and for this reason alone. The next
best thing would be to produce random digits by some physical
mechanism and record them, letting the machine read them
as needed. At this point we have manoeuvred into using the
weakest portion of presently designed machines - the reading
organ.”

In 1949, D. H. Lehmer proposed a new algorithm for producing pseudo-
random digits (Lehmer, 1949). This method, known as the linear congru-
ential generator, is based on the following recursive equation

xi+1 = (axi + c) mod m, (1.1)

where a, c, andm are the parameters of the generator. In order to obtain a
statistically robust generator, one has to be careful on how to select these
parameters. A famous example of this arithmetic method is the RANDU
generator, proposed in the by the RAND Corporation. The RANDU gen-
erator is found by setting a = 65539, c = 0, and m = 231. A few years
later, (Marsaglia, 1968) published in a seminal paper that any linear con-
gruential pseudo-random number generator, such as the one in Eq. (1.1),
fails to generate uniformly distributed random numbers. He showed that,
when grouping the sequence in n-tuples, these tuples are always distrib-
uted in at most (n/m)! parallel hyperplanes. Hence, while pseudo-random
number generators are easy to implement and to use, one has to pay spe-
cial attention when using this type of generators in practice. Some of the
most relevant features of pseudo-randomness that have to be taken into
account include:
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• /a/ The seeding problem. Pseudo-random algorithms have to be
initialised, a.k.a. as seeded. In the Lehmer method, the seeding
process corresponds to the selection of the initial value x0. If we
set the same x0 twice, we will obtain the exact same sequence of
random numbers, so we have to be careful when seeding a pseudo
random algorithm. Typically, the seeding process is performed us-
ing some kind of external randomness source, such as getting the
current time in timestamp format, and then storing that result. Then,
using only this number, one can re-generate the entire sequence for
the simulation in the future by using the same algorithm.

• /b/ The finite length problem. All pseudo-random algorithms have a
finite repetition length. This means that after some time, they start
repeating themselves in exactly the same order. For instance, in the
linear congruential generator described in Eq. (1.1), if we let x0 be
the initial state of the generator, whenever xi = x0, the exact same
sequence is going to be generated again.

• /c/ The internal algebraic structure problem. Some pseudo-random
algorithms have been found to lead to incorrect results in specific
physical models, while leading to correct results in other systems.
This issue has been observed multiple times when solving the Ising
model (Ferrenberg et al., 1992; Lin et al., 2013), as well as in other
problems (Click et al., 2011). As a result, pseudo-random algorithms
have to be tested for every specific problem and problem size.

Pseudo-random number generators are generally believed to be good-
enough for Monte Carlo purposes, even though they are not random at
all. For computation purposes, many such algorithms are still used today
for the generation of random digits in this way for computation purposes.
The Mersenne-Twister (Matsumoto et al., 1998) is one of the most widely
used schemes in Monte Carlo methods. However, progress in the field
and in technology has evidenced that this lack of randomness might lead
to incorrect results in some problems, and therefore, arguments such as
the following one by (Von Neumann, 1951), deserved further considera-
tion:

“We are here dealing with “cooking recipes” for making digits;
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probably they can not be justified, but should merely be judged
by their results. [...] If the digits work well on one problem, they
seem usually to be successful with others of the same type.”

1.2.2 The concept of randomness

In light of the above, randomness moved from being just a fundamen-
tal concept to becoming a basic resource for solving important problems.
As a result, the concern with what randomness was and whether or not
the methods being developed were good enough for solving problems
became a fascinating debate. One of the first attempts at formalising ran-
domness was based on the idea of frequency stability, influenced by the
concept of Kollectiv by von Mises. Intuitively, a sequence is said to be
random according to this definition if (i) being f(r) a function counting
the number of ones in a sequence of length |r|, f(r)/|r| approaches a
limit p as |r| approaches infinity, and (ii) an infinite sub-group extracted
from the original sequence, and g(r) the function counting the number
of ones in this new sequence, g(r)/|r| goes to the same p as |r| goes
to infinity. The second rule avoids the possibility that sequences of the
type 1010101010 are considered random even when perfectly satisfying
condition one. Several authors refined Von Mises’ concept of Kollectiv in
an attempt at formalising the notion of randomness, for example (Church,
1940; Kendall, 1941).

The frequency stability approach has, however, some serious issues
with respect to a formal definition of randomness. For instance, the digits
of π, which look totally random and satisfy many of the properties of a
perfectly random sequence, also satisfies the frequency stability require-
ment, in spite of the sequence being totally predictable. Using concepts
from computation, three authors, (R. Solomonoff, 1964; R. J. Solomonoff,
1964), (Kolmogorov, 1965), and (Chaitin, 1969), independently and al-
most simultaneously introduced the concept of compressibility as a nec-
essary element to define randomness. The intuition is that the shortest
way to represent a patternless, irregular, or unpredictable string, is by
giving the string itself. Note that in the case of the digits of π, the Kol-
mogorov complexity works well to identify the lack of randomness, since
we can write a very short program that describes precisely the digits of
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π without having to write them all. For instance, we can simply describe
them by writing “divide the perimeter of a circumference by twice its radius
and you will find all the digits of π”.

More formally, the Kolmogorov complexity K(x) of a sequence x,
which is the term coined to this new definition of randomness, is defined as
the length of the shortest computer program whose output is x. Namely,
if x has length n and is perfectly random, K(x) = n. However, if the se-
quence is not random, K(x) < n. For instance, the sequence of “10, 000
zeros” can be easily written in a computer program as “print 10,000 ze-
ros”, which clearly takes much less space than actually writing ten thou-
sand zeros one after the other. Remarkably, (Martin-Löf, 1966) proved
that, in the asymptotic limit, a sequence that is random according to the
Kolmogorov complexity criterion would pass any computable statistical
test for randomness. Unfortunately, the Kolmogorov complexity is also
proven not to be computable, and, as a result, cannot be used to prove
the randomness of a sequence. In addition, the Kolmogorov complexity
does not provide any insight on what randomness actually is, but rather
on whether a specific sequence of digits satisfies a given definition.

In general, there are two general ways to look at randomness and at-
tempt to describe it. Firstly, it can be looked at from the perspective of
sequences of digits that have to fulfil certain properties, as with the fre-
quency stability or the Kolmogorov complexity, and secondly, from the
perspective of the origin of the random digits or the nature of the genera-
tion process. In this second approach, the process by which the numbers
are generated must fulfil certain properties. For example, a process that
faithfully records the time of nuclear decay events generates numbers that
are random in a way that numbers generated by running an algorithm on
a deterministic computer are not. For those interested in this second ap-
proach, the question does randomness exist in the universe? becomes of
fundamental importance. If randomness did not exist, as in a Newtonian
description of the world in which any dynamical system can be predicted
from a proper model and initial conditions, then random number gener-
ation would be simply impossible. However, when physics moved from
classical physics to quantum physics, new and important elements were
brought into the discussion. Quantum mechanics is a probabilistic theory
and randomness is inherent in almost any physical process.
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Today, generating random digits is therefore possible within a quantum
mechanical world. However, there is still some work to be done to produce
random digits from quantum processes. Note that even if we have access
to a perfect quantum system, and this quantum system is totally random,
how do we know that the bits that are produced are truly coming from
that process alone? How do we know that all the electronics that we
use are not introducing weaknesses or predictabilities? To answer these
questions there are generally two approaches. The first one is based on
the sequence idea and employing statistical testing methods to test digits.
We will review progress in this direction in the next section. The other
option is to use the origin approach to randomness and derive entropy
estimates from the physical device. We will review this second option
afterwards.

1.2.3 Testing random digits

Imagine that we are in Las Vegas playing the roulette table. To simplify
the explanation, let’s imagine that only red and black outcomes are possi-
ble. In this case, the probability of a red or a black outcome are both 1/2,
and the probability that a specific combination of n outcomes appears is
1/2n. Imagine now that 19 reds have appeared in a row. What will our
next bet be? A lot of people would bet on the belief that “the probabil-
ity that the next is red is very low because there have been already 19
reds”, and thus place the next bet on blacks. The wheel spins again, but,
unfortunately, the outcome turns out to be red again. Angry, and with
a feeling of having been tricked, we decide to go to the director of the
Casino to make a complaint. The director, however, who is a quantum
physicist, kindly tells us that it is simply impossible that we have been
tricked because the outcome of the roulette is based on sampling a quan-
tum process. We might have a hard time believing it, but he continues,
“Well, the roulette table has been here for 2 years now, and it generates a
new outcome every second. This means that more than 63 million values
have been generated already. It’s true that the sequence that has just
occurred is unlikely and not typical (the probability of this happening is
1/220 ≈ 0.95 × 10−6 to be more precise). However, since so much data
has been generated during these two years, the 20-red-long sequence
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should have happened approximately 60 times already”. To prove him-
self, he goes to the records, processes the data, and detects that such
a sequence has actually occurred 57 times. So, indeed, probabilistically
speaking, that was a perfectly random sequence.

This toy example is useful to get an idea of how statistical testing
works, and what the limitations are. In general, a statistical test “looks” at
sequences, and if they are outside of what we might call, loosely speaking,
typical, it concludes that the sequence is not random. This brings some
limitations of course, since perfect random number generators, like the
one in the example above, also generate “non-typical” sequences from
time to time. The most relevant implication of this fact is that perfect ran-
dom number generators are expected to fail statistical tests with non-zero
probability when, by chance, they produce “non-typical” sequences. To
fully test a random number generation device, we would have to test a
string of infinite data generated by it, but, unfortunately, this is not possi-
ble.

Nowadays, statistical testing of random number generators is typically
carried out via batteries of statistical tests. (Knuth, 1997) covers some
of the most important tests. A more recent overview with benchmark-
ing of some commercial generators can be found in (Jakobsson, 2014).
The most commonly used batteries of statistical tests today are the NIST
SP 800-22 test suite (Rukhin et al., 2010), the Test U01 by (L’Ecuyer et
al., 2007), and the Diehard and Dieharder suits (Brown, 2016; Marsaglia,
1985). Statistical testing is a useful tool when it comes to the detection of
patterns. Basically, it can be used to proof the lack of randomness, but
not as a tool to proof the existence of randomness. In the next section,
we discuss the second approach to testing random number generators,
which is based on thoroughly analysing the functioning of a physical de-
vice, understanding the physical process, and tracing back to fundamental
principles the generation of every random digit.

1.2.4 Entropy estimation and randomness extraction

Computer algorithms cannot generate randomness due to their full de-
terministic nature. In contrast, physical processes can be used to create
random digits based on the assumption that certain physical processes
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are random. Unfortunately, there is a price to pay. Even if the physical
system is perfectly random, the conversion from an ideal physical process
into digital bits requires many steps that reduce the purity of the original
bits. Some examples of device imperfections, present in any physical de-
vice, include electronic noise, digitisation noise, thermal effects, electro-
magnetic interference, and mechanical vibrations, among many others.
Fortunately, nearly perfect random digits can be obtained from the output
of an imperfect device by using a set of mathematical methods known as
randomness extractors3.

In Fig. (1.1), we illustrate the effect of device imperfections on the
quality of the output bits from a physical random number generator. Typi-
cally, we start with a well-identified physical system which exhibits a phys-
ical property whose value changes in time in a way that is unpredictable.
Then, a detection system converts these random dynamics into, typically,
an electrical signal. Finally, an analogue-to-digital converter translates
this electronic signal into the digital domain by means of a digitisation
process. All of the processes following the pure physical process reduce
the quality per bit of the raw data, introducing therefore fluctuations that
do not originate from the physical process that we trust. Note that this is
clearly an undesired effect, but the question is: “can we quantify the ‘qual-
ity’ of a random number generator?” or “can we quantify how the effect of
all these untrusted processes on the trusted signal?” The conditional min-
entropy (Chor et al., 1988), a variant of the concept of entropy that was
introduced into the field of information by (Shannon, 1949), turns out to
be a very useful measure for this task. The conditional min-entropy quan-
tifies the amount of unpredictability or extractable randomness in a given
physical process conditioned on everything that happened in the past,
including all the previous values generated by the process itself as well
as any other physical process potentially influencing the trusted entropy
source mechanism. Then, once the conditional min-entropy of a source is
found, a randomness extractor can generate a quasi-perfect string by ap-
plying a data compression, albeit at the expense of losing some bits. We
will first describe the process of min-entropy estimation and then review
the evolution of randomness extraction.

3A review on randomness extraction can be found in (Vadhan, 2012).
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Figure 1.1: In any physical random number generator, the quality of the
digital data is degraded due to the unavoidable imperfections of real de-
vices. The detection and digitisation of the trusted physical process re-
duce the quality of the digital data. By rigorously quantifying the amount
of interference of these undesired effects, one can recover the original
quality by using a randomness extraction method.

Min-entropy estimation

Randomness extractors create nearly perfect random sequences from im-
perfect raw data by compressing the input space and by sacrificing some
input bits. The question is: how many bits do we have to sacrifice? In-
tuitively, if we have a signal with k bits of available randomness, but we
produce n > k bits in our measurement process, at the end, we can get
k bits of randomness at most, but never more. But what does this k rep-
resent and how do we measure it? The conditional min-entropy H∞ was
introduced into the field of randomness extraction in order to estimate the
amount of extractable randomness from a given source, conditioned on all
the prior knowledge that someone attempting at predicting the next value
has. This includes, but is not limited too, all the prior values generated by
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the source, and any other physical signal that can interact with the trusted
process. If we let X be the trusted physical process and H all the prior
history or knowledge available before the next value is generated, we can
write

H∞(X|H) ≡ − log max
x

P [X = x| H = h]. (1.2)

The conditional min-entropy quantifies the guessing probability of a
random variableX givenH. In other words, it represents the best chance
that someone (e.g. an adversary) has to correctly guess the next value in
the sequence. Using the definition of conditional min-entropy, the concept
of k-source is introduced. From now on, we will use min-entropy and
conditional min-entropy indistinguishably. Basically, a random variable X
(or a weak entropy source) is said to be a k-source if H∞(X|H) ≥ k, or,
equally, that P [X = x|H = h] ≤ 2−k.

Estimating the min-entropy or conditional min-entropy on a real device
is a complicated problem. Imagine, for instance, that we have a trusted
random variable Q (a process that is trusted to produce unpredictable
dynamics), but due to electronic noise E and thermal effects T , the signal
that we have access to will be given by S = f(Q,T ) + E, f(Q,T ) being
a function whose amplitude depends on both Q and T . In other words,
the amplitude of the trusted process depends on the temperature and
any electronic noise added to the signal. Thus, have access to S but not
directly to Q. The role of the experimenter is to devise a measurement
strategy that allows her or him to bound the effect of E and T on the
predictability of the process S.

The connection between min-entropy and randomness extraction is
simple. Imagine that we have a device producing random strings of n
numbers. Imagine also that the device is a k-source, being k < n, but that
our estimation of the min-entropy results in k′. When configured properly,
the output of a randomness extraction will be a k′-source. Thus, it is of
vital importance that the entropy estimation process never overestimates
the min-entropy, or what is the same, that k is a strict upper bound for k′.
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Randomness extraction

One of the first randomness extractors was proposed by John Von Neu-
mann, and was designed to eliminate a constant bias in a sequence of
bits. Basically, if we have a sequence x = {x1, x2, · · · }, the Von Neumann
extractor takes two subsequent input bits and puts a 0 at the output if the
combination is 01, puts a 1 if the combination is 10, or puts nothing if the
combination is either 00 or 11. Thus, given a source with P [0] ̸= P [1], with
both P [0] and P [1] constant over time, the output from the Von Neumann
extractor will be unbiased, since P [01] = P [10] = P [1]P [0]. For exam-
ple, if the sequence 0010110110 were processed with the Von Neumann
extractor, the output 101 would be produced. There are several consid-
erations with Von Neumann’s extractor. Firstly, it assumes independent
and identically distributed (IID) bits, secondly, it has an efficiency of at
most 50% (i.e. we lose at least half of the input bits), and thirdly, the out-
put rate is not constant. In order to design a randomness extractor, we
need a randomness for the input string. In the case of Von Neumann,
this is the IID assumption, which is very restrictive, since no real device
satisfies it. (Blum, 1984) introduced a more general randomness model
for sources based on deterministic finite state Markov chains. By using
this more general randomness model, Blum’s extractor, which consists of
carefully applying the Von Neumann extractor depending on the state of
the Markov chain, can be used with physical devices satisfying the Markov
assumption. These type of randomness extraction algorithms, in which a
pre-determined computation defines the extraction process, is known as
a deterministic extractor.

(Santha et al., 1984) (SV) introduced an even more general model for
random sequences. A source can be described by the SV model if for
any i, every x1, · · · , xn, and some constant δ > 0,

δ ≤ P [Xi = 1|X1 = x1, · · ·Xi−1 = xi−1] ≤ 1− δ. (1.3)

Using this model for random sequences, which applies to any phys-
ical device, Santha and Vazirani proved that deterministic randomness
extraction was impossible using only one weak, a.k.a. corrupted, en-
tropy source or k-source. In contrast, they also showed that by com-
bining the output of multiple independent weak sources using a simple
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bitwise xor operation, randomness extraction was possible. In particu-
lar, they proved that by combining the output of m independent weak
sources x1, x2, · · · , xm as y = x1 ⊕ x2 ⊕ · · · ⊕ xm, the bias is bounded
by |P [y = 1] − P [y = 0]| ≤ (1 − 2δ)m. Note, however, that m bits are re-
quired to generate 1 single output bit and that on physical grounds. This
method, in which multiple weak sources of random digits are combined,
is known as independent-source randomness extraction.

Faced with the impossibility to design randomness extractors using
only single weak sources, researchers began to look for new extraction
methods that could be applied to the output of single devices. One of
the most relevant developments was the seeded extraction method in-
troduced by (Nisan et al., 1996). Nisan and Zuckerman proved that by
using a small number of independent random digits, a.k.a. seeds, ran-
domness extraction is possible from just a single weak source. In gen-
eral, a seeded extractor is a function Ext : {0, 1}n × {0, 1}d → {0, 1}m,
which takes as an input a sequence of n-bits from a k-source X, com-
bines it with d independent random bits (the seed), and generates a se-
quence of m bits. Here, the seed is assumed to be a sequence of perfect
random bits. A seeded extractor is called a (k, ϵ)-extractor if for every
k-source X on {0, 1}n, the m-dimensional output block is ϵ-close to the
uniform distribution in {0, 1}m. Two distributions are said to be ϵ-close if
the trace distance between them is at most ϵ (Frauchiger et al., 2013).
Hash functions are a special and very common construction of seeded
extractors. Toeplitz matrices, imported from the privacy amplification step
in quantum key distribution, are efficient implementations for construct-
ing hashing-based extractors for weak entropy sources. There are many
other constructions, like the Trevisan extractor, which was proven to be
secure even against quantum adversaries. (X. Ma et al., 2013) present a
benchmarking between a Toeplitz extractor and a Trevisan extractor for
their physical random number generator.

1.3 Physical random number generators

In this section we review efforts and developments made over the last 70
years on physical generators. We start with the first physical devices that
were built in the 1950s, then we move on to photonic implementations,
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which started in the 1980s, and finally, we review progress towards a spe-
cific type of photonic technology known as continuous-variable quantum
random number generation.

1.3.1 First physical random number generators

With the rise of computation capacity, the development of electronic ran-
dom number generators expanded (Hull et al., 1962). One of the first
proposals was by (Pawlak, 1956). He proposed the use of flip-flop ele-
ments in a configuration such that every time a contact was activated, the
circuit collapsed into one of two possible outcomes. Other researchers fo-
cused on exploiting the inherently random nature of the radioactive decay
process (Isida, 1956; Manelis, 1961). By using a fast clock and a counter,
for example, one can count the number of clock cycles between any two
subsequent radiocative decay events. Given that these decay events
happen at random times (described by Poisson statistics), the number
of clock cycles between any two events will also be a random variable.
The theory behind random number generation based on radioactive de-
cay has been very influential, and similar schemes based on the time of
arrival of photons at a single photon detector can be found commercially
today.

An interest by the telecommunication industry emerged also in the
1950s in order to improve traffic simulations. One of the first dedicated
devices for physical random number generation was developed by the
Telecommunications Research Laboratory of Denmark for their Monte
Carlo simulations at the Danish Electronic Digital Solution (DASK) (Isaks-
son, 1959). The motivation by Isaksson et al., was to eliminate the rep-
etition pattern effect present in pseudo-random number generators. He
developed a device based on the shot noise effect in a diode operating at
5 kb/s. Shortly after the first patent on the topic at the European Patents
Office (EPO) (Sterzer, 1962), the authors proposed a device based on
parametric oscillators. In that case, their motivation was to improve the
quality of the random numbers, which they felt was not sufficient for the
algorithms of the day when long computations were performed. By using
a parametric oscillator with intrinsic noise and by driving the circuit with
a radio-frequency signal that interrupts the oscillation periodically, the re-
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Reference Physical process 

(Pawlak, 1956) Metastability flip-flop 
(Isida, 1956) Radioactive decay
(Isaksson, 1959) Shot noise in a diode
(Sterzer, 1959) Subharmonic oscillator
(Manelis, 1961) Radioactive decay
(Sterzer, 1962) Parametric oscillators
(Lancaster, 1967) Oscillators and counters
(Whitaker et al., 1967) Sampling wide band noise
(Vincent, 1970) Radioactive decay
(Schmidt, 1970) Radioactive decay
(George et al., 1971) Oscillators and counters
(Maddocks et al., 1972) Pulsed noise source
(Inoue et al., 1983) Radioactive decay

Table 1.1: List of some physical random number generation papers and
patents until the introduction of photonic methods for random bit gener-
ation in the 1980s. This list does not aim at being complete, but rather
at illustrating some general traits in the progress made on physical ran-
domisers during the second half of the 20th century.

sulting device oscillates with a random phase in every new modulation
cycle. A few years later, a second patent on the topic was disclosed to
the EPO, (Whitaker et al., 1967). Here, a device comprising a randomly
fluctuating signal from a wide-band source, e.g. a gas discharge tube,
was proposed, and random digits were extracted by sampling the ampli-
tude of the signal. The main motivation for this work was to outsource
the generation of random digits to a dedicated device, so that the main
compute node could focus on the specific calculation at hand.

During the 1970s, work on physical random number generation in-
creased, targeting also the gaming industry. In an article published in
1967 in Popular Electronics, (Lancaster, 1967) proposed a physical ran-
dom number generator to simulate the throwing of a pair of dice, to be
used in board games. Based on a 3 kHz oscillator driving a pair of coun-
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ters, every time the user pressed a button, the counters stopped. The
random number was given by the current value of the counters. Following
on from this work, the General Electric Company patented technological
improvements that overcame some limitations from the prior scheme pub-
lished by (George et al., 1971). During this decade, several patents were
presented in Japan by companies such as Cassio, NEC Corp., Hitachi,
Fujitsu, and Nippon Electric.

Following the landmark contribution by (Shamir, 1981) and (Blum et
al., 1982), the use of physical generators in cryptography to generate
cryptographically strong sequences of random digits gained a lot of trac-
tion. Clearly, pseudo random numbers were not strong enough for cryp-
tographic use, since gaining information about the internal state of an al-
gorithm eliminates all the security of the protocol. To mitigate this effect,
(Blum et al., 1982; Shamir, 1981) introduced the concept of cryptograph-
ically strong pseudo-random number generation. In order to build these
new type of generators, they proposed the combination of some sort of
physical randomness to act as a random seed for strong pseudo-random
number generation algorithms.

Currently, most system integrators use dedicated random number gen-
eration devices based on physical processes, including, for example, the
Intel RdRand instruction, which is based on metastability effects on tran-
sistors caused by thermal fluctuations.

1.3.2 Photonic quantum random number generators

The first optical implementation of random number generators was pro-
posed in the 1980s by (Morris, 1985). Following on from those results,
(Marron et al., 1986) experimentally demonstrated the first optical ran-
dom number generator by exploiting the random speckle pattern from a
laser source in a 2-D array of photon detectors. By thresholding the out-
put of each one of the pixels of the array, an arbitrary distribution function
for the random numbers could be obtained, being very useful for Monte
Carlo calculations requiring specific distributions. (Morris, 1989) patented
the optical method for random number generation in 2D arrays of photon
detectors. Laser speckle was also the basis of the scheme proposed by
(Ticknor et al., 1987), which was designed to provide a negative expo-
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nential distribution function for an optical Boltzmann machine. Following
this work, a massively parallel array of cellular processors, each with its
own binary random bit generator, was proposed by (Devos et al., 1987).
(Lalanne et al., 1990) then studied the speckle pattern in multimode fi-
bres, and (Martino et al., 1991) introduced a novel approach based on
the location of the detection events rather than the time.

(Rarity et al., 1994) proposed one of the most iconic photonic random
number generation schemes. It was based on sending a single photon
into a beam splitter and placing a single photon detector in each output.
This idea was further explored by (Stefanov et al., 2000) and (Jennewein
et al., 2000), and commercialised by the Swiss company ID Quantique.
Similarly to the physical functioning of the first radioactive decay genera-
tors, the random arrival time of the photons was used by (H.-Q. Ma et al.,
2005), who measured the time of arrival of the photons from a strongly
attenuated pulsed laser source. Multiple variations and proposals have
since been reported using the arrival time uncertainty of photons (Dynes
et al., 2008; Stipcevic et al., 2007). These schemes for the spatial and
temporal distribution of single-photon detection schemes are known as
discrete variable quantum random number generators. These methods
rely on single-photon detection technology, which is typically slow and ex-
pensive. After 2010, the literature on quantum random number generation
and patent applications exploded. Schemes building on top of previous
ideas continued to appear, and new promising quantum devices, requiring
no single photon technologies, were also produced.

1.3.3 Continuous variable approaches

Continuous variable quantum random number generators are physical
random devices based on sampling quantum systems with macroscopically-
observable dynamics. In this section, we will review two of these schemes.
The first one is based on measuring the vacuum fluctuations in a homo-
dyne detection scheme, introduced by (Gabriel et al., 2010). The second
one is based on measuring phase noise caused by spontaneous emis-
sion, first proposed by (Qi et al., 2010). Other schemes based on mea-
suring amplified spontaneous emission, such as (Williams et al., 2010)
have also attracted a lot of attention. Many papers have been published
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Reference Speed Physical process 

(Morris, 1985) - Photon counting
(Marron et al., 1986) 100 kb/s Clipped laser speckle
(Devos et al., 1987) - Laser speckle
(Morris, 1989) 100 kb/s Spatial distribution of light
(Martino et al., 1991) 100 kb/s Spatial distribution
(Lalanne et al., 1990) ∼ 1 Mb/s Multimode fibre speckle
(Rarity et al., 1994) - Single photon splitting
(Stefanov et al., 2000) 100 kb/s Single photon splitting
(Jennewein et al., 2000) 1 Mb/s Single photon splitting
(H.-Q. Ma et al., 2005) 80 kHz Time of arrival
(Stipcevic et al., 2007) 1 Mb/s Time of arrival
(Dynes et al., 2008) 4 Mb/s Time of arrival
(Qi et al., 2010) 500 Mb/s Phase noise CW laser
(Gabriel et al., 2010) 6.5 Mb/s Vacuum fluctuations
(Guo et al., 2010) 20 Mb/s Phase noise in CW laser
(Wayne et al., 2010) 110 Mb/s Time of arrival
(Xu et al., 2012) 6 Gb/s Phase noise in CW laser
(Fürst et al., 2010) 50 Mb/s Time of arrival
(Jofre et al., 2011) 1.1 Gb/s Phase noise in GS laser
(Williams et al., 2010) 12.5 Gb/s ASE Source
(Wahl et al., 2011) 150 Mb/s Time of arrival
(Symul et al., 2011) 2 Gb/s Vacuum fluctuations
(Li et al., 2011) 20 Gb/s ASE
▶ (Abellan et al., 2014a) 42 Gb/s Phase noise in GS laser

Table 1.2: List of photonic random number generators prior to the start of
this thesis. Bitrate comparison should be analysed carefully, since some
authors reported raw entropy production whereas others reported post-
extracted bit rate capabilities. The first publication of this thesis is marked
with ▶.
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during the development of this thesis, and are not reported in this state-
of-the-art review. An in-depth description of both discreet and continuous
variable approaches can be found in (Herrero-Collantes et al., 2017).

Homodyne detection of vacuum fluctuations

(Gabriel et al., 2010) introduced one of the first continuous variable quan-
tum random number generation methods. The experimental setup com-
prises a polarisation beam splitter in a homodyne configuration with one
input port connected to a strong local oscillator and the other to vacuum
fluctuations (i.e. no input connected). The intensity of the two outputs of
the polarisation beam splitter are photo-detected and subtracted (homo-
dyne detection) to recover one of the quadratures of the field. By describ-
ing the vacuum field as |0⟩ ≡

∫
ψ(x)|x⟩dx, with ψ(x) being the ground-

state wave function, which is a Gaussian function centred around x = 0,
and |x⟩ being the amplitude quadrature eigenstates, the result of a pro-
jective measurement is a random variable x with a probability distribution
function (PDF) given by |ψ(x)|2 = ⟨x|0⟩, where ⟨x| is the projection vector.
In order to account for untrusted additive noises Gabriel et al. proposed
a simple entropy estimation technique by means of the Shannon entropy
measure. Basically, if we let X be the quadrature measurement, they
first calculated the entropy of the total signal H(X)total and then switched
off the local oscillator to calculate the contribution from electronic noise
H(X)elec. Finally, by assuming that (i) the electronic noise and the quan-
tum signal are combined in an additive form, and (ii) that they are mutually
independent, they found the entropy of the quantum signal contribution
by subtraction, i.e. H(X)quantum = H(X)total − H(X)elec. (Symul et al.,
2011) then reported a similar entropy source scheme with special focus
on the entropy estimation and randomness extraction tasks. In particu-
lar, they proposed a smart thresholding technique allowing them to filter
out the contribution of the noise by just dropping the least significant bits.
They implemented the post-processing randomness extraction tasks on a
field-programmable-gate-array (FPGA) in real-time. Later, an even more
refined entropy estimation procedure was proposed by Haw et al., 2015.



28 Randomness in the information era

Quantum phase noise schemes

(Qi et al., 2010) published the first manuscript on continuous variable
methods for quantum random number generation. Their method con-
sisted of measuring the phase noise effect in semiconductor lasers. Quan-
tum phase noise is a direct consequence of spontaneous emission (Henry,
1982), and therefore a full quantum mechanical process. In (Qi et al.,
2010), a continuous-wave-operated semiconductor laser is used. The
light from the laser is sent to an unbalanced Mach Zehnder interferom-
eter with a delay length of 650 ps. At the output of the interferometer,
the amplitude of the detected signal is a function of the phase difference
between the signals travelling from each path, in particular, the output in-
tensity I(t) ∝ cos∆ϕ(t), where ∆ϕ(t) ≡ ϕ1(t)−ϕ2(t−τ). Here, ϕ1(t) and
ϕ2(t− τ) are the phases of the signal arriving via the short and long paths
of the interferometer respectively. Provided that the phase of the laser
diffuses sufficiently in the time interval τ due to spontaneous emission
fluctuations, the detected signal will contain an inherently unpredictable
component. (Guo et al., 2010) reported a very similar implementation of
the phase noise scheme, and (Xu et al., 2012) reported a 1 order of mag-
nitude rate improvement with respect to prior publications as well as a
strict min-entropy estimation procedure.

(Jofre et al., 2011) proposed a variation of the above scheme by oper-
ating the laser source in gain-switching mode instead of continuous wave
mode. In this way, by bringing the laser from below to above the threshold
level periodically, the phase of the laser source diffuses much faster than
in the continuous wave case. The average phase diffusion is proportional
to ⟨∆ϕ(T )2⟩ ∝ I−1, where I is the intensity of the intracavity laser field.
Hence, for a given time budget between subsequent measurements, the
pulsed scheme diffuses several orders of magnitude faster than its con-
tinuous wave counterpart. The experimental configuration is exactly the
same as in the previous scheme, but the delay length of the Mach Zehn-
der interferometer is now given by the pulse repetition frequency of the
laser source. Effectively, the interferometer carries out the interference
between two subsequent pulses from the laser. Again, by placing a digi-
tiser directly at the output of the photodetector, random numbers can be
extracted.

Phase noise approaches, both in continuous wave and gain-switching
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modes, translate quantum phase noise information into the amplitude do-
main by means of an interferometer. Direct detection of macroscopic sig-
nals bring the advantage that telecommunication components, which are
cost-effective and fast, can be used. In addition, the phase is an ideal vari-
able for random number generation, since it is very robust to amplitude
fluctuations as well as classical phase fluctuations.

1.4 Main results and outline

1.4.1 Main results

The main results of this thesis include

• Theoretical framework for phase diffusion quantum randomnum-
ber generators in pulsed schemes and record speed demon-
stration. We formalise the concept of phase diffusion in connec-
tion with quantum random number generation, and experimentally
demonstrate the process at up to 42 Gb/s, a world-record for quan-
tum random number generation at the time of publication.

• Introduction of the randomness metrology procedure. We in-
troduce a methodology to estimate the min-entropy in real devices
taking into account digitisation noise and memory effects. We have
applied the methodology in several publications and prototypes, and
this represents an important step towards building certifiable de-
vices. This type of guarantees is important for certification agencies,
which already have similar approaches in their regulatory frame-
works.

• First fully integrated quantum random number generation chip.
By using an Indium Phosphide platform and a new entropy source
configuration based on a two-laser scheme, we demonstrate the first
full photonic integration of a quantum random number generation
device. In addition, we also report the integration of the scheme on
a Silicon Photonics platform with an external laser source, providing
a route towards production in the most advanced semiconductor
industry.
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• Development of an enabling technology for loophole-free Bell
test experiments. By using the ultrafast scheme developed in this
thesis and the randomness metrology framework, we develope and
characterise a series of six prototypes that played a key role in
the three 2015 loophole free Bell Test experiments. By developing
an ultra-low latency technology and by providing strict min-entropy
bounds, the developed prototypes constituted a unique device for
the needs of the experiments.

1.4.2 Outline

This thesis is organised as follows:

• In Chapter 2, we introduce the concept of phase diffusion quantum
random number generation in a pulsed configuration. We start by
introducing the theoretical framework supporting the phase diffusion
process. We follow this with a Monte Carlo simulation illustrating the
average phase diffusion experienced in a pulsed laser, and show a
comparison between pulsed and continuous wave schemes. We
then show the results for the ultrafast (42 Gb/s) experiment, and we
conclude with an intuitive introduction to the randomness metrology
procedure that is used in Chapter 4.

• In Chapter 3, we describe progress towards the integration of the
phase diffusion quantum random number generation technology in
an integrated chip. We first describe the full optical integration in an
Indium Phosphide chip using a new two-laser scheme. Then, we
show the integration of a self-delayed scheme using Silicon Pho-
tonics with an external light source.

• In Chapter 4, we demonstrate the development of the fresh and
pure random number generation technology employed in the loop-
hole free Bell test experiments of 2015. We illustrate the design
considerations as well as giving an in-depth description of the exper-
imental work carried out to quantify and bound the unpredictability
of the source and the freshness time.



Chapter 2

Phase-diffusion in pulsed
semiconductor lasers

Spontaneous emission is the process by which an atom decays from an
excited state into a lower energy state without any apparent cause. In
each of these quantum jumps, energy is released in the form of a pho-
ton, whose frequency is proportional to the energy difference of the ini-
tial and final atomic states. The phenomenon of spontaneous emission
can only be theoretically framed within a full quantum description of both
matter and radiation. In the 1980s, Charles Henry pioneered the study of
the effect of spontaneous emission in semiconductor lasers, and recently,
these principles have been used in the development of quantum random
number generators (Jofre et al., 2011; Qi et al., 2010; Xu et al., 2012). In
this chapter, we present progress towards the understanding of the phase
diffusion process in gain-switched semiconductor lasers.

2.1 Spontaneous emission as an entropy source

Laser technology, first proposed in (Schawlow et al., 1958), has been one
of the most disruptive technologies of the last century, transforming many
industries, such as industrial manufacturing and medical procedures, and
enabling the heart of the Internet today, namely optical communications.
One of the most particular features of laser radiation is its extremely nar-
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row spectrum. Understanding the linewidth of the laser attracted a lot of
interest during the second half of the 20th century, since the first predic-
tions by Schwalow-Townes, and after posterior adjustments to the the-
ory by (Lax, 1967). However, none of this predictions were capable of
predicting the experimental observations made in semiconductor lasers
(Fleming et al., 1981). In 1982, C. Henry presented the first theoretical
description capable of predicting the linewidth enhancement observed in
semiconductor lasers (Henry, 1982). Henry’s intuitive description was that
for every single spontaneous emission event, the global intracavity laser
field experienced a phase and an intensity change. Immediately after,
the laser would undergo relaxation oscillations to restore the steady state
of emission, inducing delayed phase and amplitude changes. Based on
this microscopic description of the spontaneous emission process, Henry
derived a set of coupled stochastic differential equations with Langevin
noise sources, describing the exchange of energy between carriers and
photons, as well as introducing the spontaneous emission effect that was
ultimately responsible for the linewidth effect. Using a derivation from
(Henry, 1983), we can write a lower-bound on the average-phase diffu-
sion in a semiconductor laser cavity (i.e. how much the phase change per
unit time on average) as

⟨∆ϕ(t)2⟩ > R

2I
(1 + α2)t, (2.1)

where R is the spontaneous emission rate, I is the average number of
photons inside the laser cavity, and α is the so-called linewidth enhance-
ment factor, a.k.a. Henry’s factor. As observed, the average phase diffu-
sion increases linearly with time, is proportional to the spontaneous emis-
sion rate, and, most importantly, is inversely proportional to the intensity
of the field. Hence, the smaller the number of photons inside the cavity
the larger the average phase diffusion for a given time interval.

In coherent optical communications, laser diodes are operated well
above the threshold level so that phase noise effects are minimised. In
short-reach links, such as in fibre-to-the-home, on-off modulation schemes
are more frequent because of the simplified nature of the receiver. In
this section, we describe the principle of operation of our quantum ran-
dom number generation scheme, which is based on an on-off modulation
scheme going well below the threshold level in each modulation cycle to
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randomise the phase. This combines the use of the gain-switching tech-
nique to maximise the phase noise during the off-time of the modulation
cycle (very low number of photons inside of the cavity), with the use of
coherent communication demodulation techniques to retrieve phase in-
formation during the on-time of the modulation cycle (large number of
coherent photons). Basically, we combine techniques for short and long
reach optical communications for the purpose of random number gener-
ation.

2.1.1 Measuring the phase of an optical field

If we let s(t) be the number of photons inside of a laser cavity, ϕ(t) be the
phase, and ω be the resonant frequency of the laser cavity, we can write
the intracavity field as

E(t) =
√
s(t)exp[−ıωt]exp[ıϕ(t)], (2.2)

In order to detect this electromagnetic signal in the optical domain, we
use a photodetector. The measurement reading corresponds to u(t) ≡
η|E(t)|2 = ηE(t)E∗(t), with ∗ being the complex conjugate and η the trans-
mission coefficient of the laser cavity. Applied to the cavity field, the ob-
served signal would therefore be given by u(t) = ηs(t). Effectively, we are
detecting a fraction of the photons inside the cavity and losing all phase
information. For completeness, the average power detected in the inter-
val [0, T ) will be given by P(t) ≡ ℏω/T

∫ T
0 dt u(t), where ℏω is the en-

ergy of each photon, ℏ being the reduced Planck constant. In general, if
we want to retrieve phase information we have to use an interferometric
scheme. In this thesis, we will use two such detection schemes. One is
a self-delayed interferometer using an unbalanced Mach-Zehnder config-
uration and the other is an heterodyne scheme with a local oscillator. In
the following, we will formalise the interference process in general as well
as its statistical behaviour.

Let EA(t) and EB(t) be two electromagnetic fields described by Eq.
(2.2). The total field after interfering, i.e. combining, the two sources is
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given by E(out)(t) = EA(t) + EB(t), and the detected intensity by

u(out)(t) ≡ |E(out)|2 =
(
EA(t) + EB(t)

)(
EA(t) + EB(t)

)∗

= |EA(t)|2 + |EB(t)|2 + 2Re{EA(t)∗EB(t)}

= uA(t) + uB(t) + 2
√
uA(t)uB(t) cos

(∫ t

0
dξ∆Ω(ξ) + ∆ϕ(t)

)
,

(2.3)

where ∆Ω(t) ≡ ωA(t) − ωB(t) and ∆ϕ(t) = ϕA(t) −  ϕB(t). The first two
terms correspond to the intensity of the fields travelling the two paths of
the interferometer, whereas the last term corresponds to the interference
term. Without losing generality, we will now assume that (i) the two fields
oscillate at the same frequency, which corresponds to the case of the
self-delayed interference scheme, and (ii) the two signals are operated in
continuous wave, i.e. constant intensity. As a result, the previous expres-
sion can be simplified by eliminating the time dependence of uA,B. We
can write

u(out)(t) = uA + uB + 2
√
uAuB cos∆ϕ(t), (2.4)

in which we can directly associate a change in the phase ∆ϕ(t) to a
change in the intensity u(out). Depending on the phase difference between
the two fields, constructive and destructive interference is observed, as il-
lustrated in Fig. (2.2) for uA = uB = 1. Because of the interferometer, a
change in the phase is translated into a change in the amplitude. Thus, if
∆ϕ is a random process, for example because of phase noise, then u(out)
will be a random process too.

2.1.2 Statistical behaviour: the arcsine distribution

In general, if x is a random variable with density function Px(x) and y
is another random variable given by y = f(x), where f a differentiable
function, we can analytically find the density function of y by solving

Py(y) ≡
∑
k

∣∣∣ ∂
∂y
f−1
k (y)

∣∣∣Px

(
f−1
k (z)

)
, (2.5)
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Figure 2.1: Interference intensity values as a function of the phase dif-
ference between the two fields. Note that although the input intensities
are fixed to 1, the output intensity takes values ranging from 0 up to 4.
When the two fields are in phase, i.e. their difference is a multiple of 2πk,
constructive interference is observed (maximum intensity), whereas when
the phases are shifted by multiples of π(2k − 1), destructive interference
is observed (minimum intensity).

where f−1
k is the k-th root of the equation y = f(x). Using Eq. (2.4), we

find in the interference scenario that

f−1
k = arccos

[ u(out) − uA − uB
2
√
uAuB︸ ︷︷ ︸
ξ

]
+ 2πk (2.6)

and

∂f−1
k

∂u(out)
= − 1

2
√
uAuB

√
1− ξ2

. (2.7)

Let us first start by analysing what the distribution of y is when ∆ϕ ∼
U [−π, π) is uniformly distributed in [−π, π) and uA,B are constant. While
this uniform distribution of the phase does not correspond to a phase dif-
fusion process (which is, typically, normally distributed), the distribution
of u(out) when the phase uniformly covers the domain of the signal will re-
veal the distribution of a process in which the phase is totally random. In
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this simplified scenario, we can easily find the output distribution by using
the fact that (i) the distribution of z = cos∆ϕ is described by the arcsine
probability distribution function A(−1, 1), being

A(a, b) ≡ 1/π
√

(b− x)(x− a)

and (ii) the arcsine distribution is closed under translation and scaling by
a positive factor, i.e. if ξ ∼ A (a, b), then kξ + x ∼ A(ak + c, bk + c).

By inspecting Eq. (2.4), we find that the distribution of u(out) is given by
the arcsine distribution with transformation parameters k = 2

√
uAuB and

c = uA + uB. Effectively, in the noiseless case, the resulting distribution
is an arcsine with parameters (a, b) given by the destructive u

(out)
min and

constructive u(out)max interference terms, i.e;

Pu(out)(x) =
1

π

√
(x− u

(out)
min )(u

(out)
max − x)

(2.8)

For full phase randomisation, the intensity distribution is, therefore,
described by the arcsine distribution in Eq. (2.8). Now, let us analyse
the physical scenario in which the phase undergoes phase diffusion dy-
namics, i.e. it is described by Gaussian statistics. As described already
in Eq. (2.1), the average phase diffusion increases linearly with time, i.e.
⟨∆ϕ(t)2⟩ ∝ t, so in principle, by waiting long enough, an arbitrarily large
deviation can be observed. Intuitively, if the distribution of ∆ϕ is suffi-
ciently broad (e.g. infinitely broad), we would expect the phase to be fully
randomised, and therefore the intensity distribution would look, exactly,
like the distribution in Eq. (2.8), obtained when the phase spreads uni-
formly in [−π, π). In the phase diffusion scenario, the phase is distributed
according to normal statistics. However due to the modular nature of the
cosine, values exceeding −π and π wrap back into the domain range. By
taking ∆ϕ ∼ N (0, σ), and by folding it around the domain [−π, π), we can
compare the mean square error between this new variable and a uniform
distribution in the same domain. In Fig. (2.2) we show the fractional er-
ror for increasing values of σ. We find that σ > π has a fractional error
ϵ < 10−5, whereas σ > 2π has a fractional error ϵ < 10−11.
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(a) Intensity distribution function

(b) Fractional error

Figure 2.2: Intensity distribution and deviation from full randomisation as
a function of the average phase diffusion. (a) Numerically calculated in-
tensity distribution function for several average phase diffusion values.
(b) Fractional error between numerically evaluated distribution functions
with gaussian phase noise and the ideal and analytically calculated inten-
sity distribution for the uniform scenario. The fractional error is defined as
ϵ2 = ⟨PG − PU ⟩. We find that for σ > π, the fractional error drops below
10−5. Or in terms of average phase diffusion ⟨∆ϕ(t)2⟩, the fractional error
is below 10−5 for ⟨∆ϕ(t)2⟩ > π2
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2.2 Numerical analysis of the phase diffusion process

The dynamics of semiconductor lasers are described by a set of coupled
stochastic differential equations that govern the exchange of energy be-
tween charge carriers and the electromagnetic field. In general, if we let
x⃗ be a vector of stochastic variables, we can write a set of coupled differ-
ential equations as (Oksendal, 2003)

dxi = gi(x⃗) +
∑
j

hij(x⃗)dWj(t), (2.9)

where gi(x⃗) represents the drift or deterministic evolution of the i-th sto-
chastic variable, dWj(t) is a Wiener processes, and hij is the coefficient
describing the correlation between the i-th and j-th random processes.
For the laser rate equations we introduce the array of stochastic variables
x⃗ = {s, n, ϕ}, where s and ϕ are the intensity and the phase of the cavity
field, respectively, and n is the number of carriers. Following the equa-
tions derived by (Agrawal et al., 1988), we write the drift terms as

gs(x⃗) = (G̃− γ) · s+R (2.10)
gn(x⃗) = I/q − γen− G̃s (2.11)

gϕ(x⃗) =
α

2
(GL − γ)− β

2

GL · s
1 +

√
1 + p

(2.12)

where γ is the cavity decay rate, R = R0γen is the spontaneous emission
rate, I the electrical current, q is the electron charge, γe is the electron
decay rate, α is the linewidth enhancement or Henry’s factor, β is the
chirp parameter or nonlinear phase term and

G̃(x⃗) =
GL√
1 + p

= Gn
n− n0√
1 + p

(2.13)

is the intensity-dependent gain coefficient with saturation term p = s/ssat,
ssat being the saturation intensity. The noise-correlation matrix h⃗ = D⃗1/2

can be calculated by computing the square-root of the diffusion matrix as:

D⃗(x⃗) =

 Rs −Rs 0
−Rs Rs+ γen 0
0 0 R/4s

 (2.14)
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whose coefficients have been derived from first principles for steady-state
operation (Agrawal et al., 1988; Henry, 1983). When an equilibrium is
not achieved, however, the exact form of the diffusion matrix is unknown.
Nevertheless, these coefficients have been used with satisfactory results
even in non-equilibrium problems (Balle et al., 1993a,b, 1991).

Box 1. Method for solving the stochastic rate equations

In order to solve the rate equations numerically, we need, firstly, to derive the
coefficients of the h matrix in Eq. (2.9). Since the diffusion matrix D = hh†

is symmetric and has a maximum rank for R ̸= 0, we can calculate the
matrix h by applying the transformation h = Uf(h′)U†, h′ being a diago-
nalised version of h and f(x) =

√
x. By carrying out simple linear algebra

manipulations, we find

hss(x⃗) = (1 + d)F− − (1− d)F+ (2.15)
hsn,ns(x⃗) = −2R0(F+ − F−) (2.16)
hnn(x⃗) = (1 + d)F+ − (1− d)F− (2.17)

hϕϕ(x⃗) =
√
Dϕϕ =

√
R/4s, (2.18)

and hsϕ = hϕs = hnϕ = hϕn = 0, where

(2.19)

F+ = κ−1
√
1 + 2R0s+ d κ = 2

√
2d/

√
nγe (2.20)

F− = κ−1
√
1 + 2R0s− d d =

√
1 + 4R2

0s
2 (2.21)

In Section 2.2.1, we will use this set of coupled stochastic differential
equations to compare the average phase diffusion obtained in continuous
wave mode and pulsed mode. We will use the Euler-Maruyama method for
solving the above equations. In other words, we calculate iteratively for the
n-th step

xi [n] = xi [n− 1] + dt · gi (x⃗ [n− 1]) +
∑
j

hij(x⃗ [n− 1])∆Wj [n], (2.22)

where dt is the time step, and ∆Wj [n] =Wj [n]−Wj [n−1] are independent
and identically distributed normal random variables with zero mean and σ =√
dt.
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2.2.1 Accelerated phase diffusion process

In this section we will describe the generation of random numbers from
the phase diffusion process in a semiconductor laser. The indispens-
able blocks in the creation of raw random bits are (i) a semiconductor
laser undergoing phase diffusion dynamics, (ii) an interferometric scheme
to translate phase information into the amplitude domain, (iii) a photo-
detector to generate an electrical signal proportional to the optical inten-
sity, and (iv) a digitiser taking samples from the photo-detected signal
with a sampling rate fs ≡ 1/τs. In the previous section, we found that the
average phase diffusion ⟨∆ϕ(t)2⟩ increases linearly with time. Also, we
discussed the fact that for a sufficiently large ⟨∆ϕ(t)2⟩, the intensity distri-
bution after the interference process is practically indistinguishable from
a fully randomised phase. By using these two conditions, we can find an
upper limit to the sampling rate fs, being the maximum sampling rate that
we can use so that the phase has enough time to diffuse between two
subsequent samples. In continuous wave mode, and using Eq. (2.1), we
find that the minimum time between samples has to be:

τs >
2Dϕs

R(1 + α2)
, (2.23)

where s is the number of photons inside the cavity, R is the spontaneous
emission rate, α is the linewidth enhancement factor, and Dϕ is a free pa-
rameter representing the average phase diffusion value that the experi-
menter considers gives a sufficiently small fractional error compared to the
fully randomised case. For instance, as shown in Fig. (2.2),Dϕ = π2 gives
a fractional error below 10−6. Clearly, the quantity described in Eq. (2.23)
depends only on (i) the laser structure (i.e. R and α) and (ii) the oper-
ating power. In this thesis, in order to increase the phase diffusion rate
for a given sampling interval τs, we use the gain-switching technique, i.e.
the generation of optical pulses by switching the laser from well below
the threshold level (off-time) to well above the threshold level (on-time).
In this way, we can brutally increase the phase diffusion rate during the
off-time of the optical pulses, when the number of photons in the cavity is
hugely reduced.
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Figure 2.3: Simulation of the number of photons as a function of the bias
current for the simulated laser with parameters given in Table 2.1

2.2.2 Average phase diffusion in CW and GS

Parameter Symbol Value
Cavity decay rate γ−1

o 3× 1011

Carrier decay rate γ−1
e 2.5× 10−9

Spontaneous emission rate R0 0.18× 10−4

Gain Gn 5.4× 104

Linewidth enhancement factor α 2
Nonlinear phase β 0
Saturation intensity ssat 106

Transparency level N0 5.4× 107

Table 2.1: Simulated semiconductor laser parameters. Typical semicon-
ductor laser parameters are chosen (Balle et al., 1993a). The trans-
parency level is calculated as N0 = Nth − γo/Gn, being Nth = Ith/qγe.

In this subsection, we compare the average phase diffusion enhance-
ment for a given laser and fixed sampling interval in the continuous wave
and the gain-switching operation modes. The simulated laser parameters
are given in Table 2.1. The laser’s threshold level is set at ∼ 24 mA - see
simulated current-power graph in Fig. (2.3). In the continuous wave case,
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the biasing point is set at Ib = 25 mA. In the gain-switched case, the bi-
asing point is Ib = 15 mA and during the on-time, it increases to 30 mA.
In both simulations, the Monte Carlo time step is fixed at h = 100 fs. In
the gain-switched case, the pulse repetition frequency is set at 200 MHz.
The temporal evolution of the intensity and the phase in both operation
modes is depicted in Fig. (2.4). Clearly, in the continuous wave scenario,
a moderate phase noise is observed, whereas in the gain-switching case,
a very rapid (moderate) phase diffusion rate is experienced during the off-
(on-)time of the modulation.

From the solution of the phase from the stochastic rate equations, we
can easily calculate the average phase diffusion as a function of time by
evaluating the standard deviation of the phase noise at different times. In
theory, the average phase diffusion is described by a normal distribution
with a variance ⟨∆ϕ(t)2⟩ increasing linearly in time, or equivalently, with a
standard deviation growing as

√
t. In the simulation, we perform N = 100

Monte Carlo steps, obtaining N phase traces ϕi(t). For each trace, we
first subtract the ordinary solution ϕ(ord)(t) (i.e. the deterministic part),
keeping the phase noise component only, namely, ϕ′i(t) = ϕ(t)i − ϕ(ord).
Then, by calculating the standard deviation at different times, we obtain
σ∆(t) =

√
⟨∆ϕ(t)2⟩. In Fig. (2.5), we show the results for the gain-

switched scenario simulated above, as well as the solution for two con-
tinuous wave cases, one with a biasing point near threshold Ib = 25 mA
and the other for Ib = 30 mA. The standard deviation in the gain-switched
case is around 60 and 135 times larger when compared to the continuous
wave results, which corresponds to a 3500− and 18000-fold increase in
the phase diffusion rate, respectively.

2.3 Ultrafast quantum random number generation
experiment

In the previous section we described the accelerated phase diffusion mech-
anism for random number generation. In this section, we show the results
of an ultrafast experiment implementing the pulsed scheme in a self-delay
configuration with an unbalanced Mach-Zehnder interferometer. A pre-
liminary version of the experiment and data analysis was presented in



2.3 Ultrafast quantum random number generation experiment 43

(a) Number of photons (CW) (b) Number of photons (GS)

(c) Phase noise (CW) (d) Phase noise

Figure 2.4: Solution of the stochastic rate equations in continuous wave
(CW) and gain-switching (GS) modes. (a-b) Calculated number of pho-
tons for CW (a) and GS (b). (c-d) Phase noise, obtained by subtracting the
ordinary solution from the stochastic solution for CW (c) and GS (d). Note
that the vertical scale for the GS case is almost two orders of magnitude
larger than for the CW case.

(Abellan, 2013). The main novelty presented in this section is the estima-
tion of the average phase diffusion. The experiment and results are de-
scribed here again for completeness. An off-the-shelf 10 Gb/s distributed-
feedback (DFB) semiconductor laser was biased with a constant current
of 15 mA and directly modulated with a 5.825 GHz radio frequency (RF)
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Figure 2.5: Average-phase diffusion for a simulated laser operating in
gain-switching and continuous wave modes. The standard deviation in
the gain-switched case is ∼ 60 and ∼ 135 times larger than the contin-
uous wave result for Ib = 25 mA and for the Ib = 30 mA, respectively,
corresponding to a 3500- and 18000-fold increase in the phase diffusion
rate, respectively.

electrical signal. In Fig. (2.6), we show the electrical signal as recorded
by a 20 GHz and 80 GSa/s digital oscilloscope. Since the RF signal
brings the laser from below to above the threshold level in each cycle, the
diode experiences two completely different regimes. Firstly, for ∼ 40% of
the time, the diode goes below the threshold level and undergoes strong
phase diffusion dynamics. Then, it goes well above the threshold level,
generating a coherent optical pulse and reaching the saturation intensity.
The resulting optical output, also shown in Fig. (2.6), consists of ∼ 85 ps
optical pulses with a peak power of ∼ 7.65 mW. To avoid back reflections
into the laser cavity, the DFB incorporates a 30 dB internal optical isolator.
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Figure 2.6: Electrical and optical pulse trains. Magenta, (upper trace):
electrical current drive applied to the laser, with a period of 172 ps. Blue,
(lower trace): photo-detected optical pulses of 85 ps time width and 7.65
mW peak power and (black, dashed line) 9 mA LD current threshold. Sim-
ulation (green squares) is a conservative fitting of the rate equations such
that the predicted detected output power vs. time is always larger than
the observed output power vs. time.

2.3.1 Estimating the average phase diffusion

As a result of the gain-switching modulation process, a string of optical
pulses with nearly identical waveform and randomised phases is gener-
ated. To estimate the average phase diffusion between subsequent opti-
cal pulses we fit the solution of the ordinary rate equations Eqs (2.10-2.11)
to the observed optical signal. In order to do this, we first need to estimate
the following unknown parameters from the laser: the saturation intensity
ssat, the cavity length L that goes into calculating the cavity losses, the
number of carriers at threshold nth, the gain GN , the transparency level
n0 and the rate of spontaneous emission R0. In addition, since the optical
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signal is detected by limited bandwidth components, the oscilloscope be-
ing the most limiting component Bosc = 12.5 GHz, we low pass filter the
solution of the rate equations with a single-pole recursive filter with time
constant τf = 0.35/Bosc. The following recursive method is employed:

1. We set ssat to a typical value, and L to either 100, 200, 500, 1000 µm.

2. We solve the steady state solution of Eqs (2.10-2.11) for the number
of photons and carriers near the threshold level, i.e. with n ∼ nth,
which read:

0 = γ
( 1√

1 + pth
− 1

)
sth +R0γenth (2.24)

0 = Ith/q − γenth −
γsth√
1 + pth

, (2.25)

where the subscript th refers to the threshold value, and pth ≡ sth/ssat.
By using the fact that the laser emits 0.3 mW when it is biased with
I = 10 mA, from the solution of this equations we find nth and R0.

3. We choose GN , which mainly controls the speed dynamics, such
that the calculated detected power vs. time is always larger than
the observed output power vs. time. In this way, the calculation
is conservative since the larger the power, the slower the phase
diffusion will be. By setting GN , we immediately define n0 via GN =
γ/(nth − n0).

4. We repeat steps 1-3 to find the values of ssat and L that minimised
the root-mean-square deviation of the calculated solution and the
observed signal.

Following this iterative procedure, we find ssat = 7.7×105, L = 500 µm,
nth = 5.62× 107, R0 = 8.8× 10−4, GN = 2.3× 104, and n0 = 3.46× 107.
The calculated solution is depicted in Fig. (2.6). By using the linear bound
from Eq. (2.1) in differential format

d

dt
⟨∆ϕ(t)2⟩ = R

2s
(1 + α2), (2.26)

and numerically integrating this with the values estimated above, we find
an average phase diffusion ⟨∆ϕ(τs)2⟩ > (9.45 rad)2, where τs = 1/5.825GHz
≈ 172 ps, which, for all practical pulses, randomise the phase.
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Figure 2.7: Unbalanced Mach-Zehnder interferometer (U-MZI). Phase-
randomised coherent optical pulses interfering at the output of the U-MZI
produce random intensities. (Pulse driver) denotes the electrical pulse
generator that directly modulates the laser, (LD) is the laser diode, (PMC)
is the polarisation maintaining coupler, (PMF) are the polarisation main-
taining fibres, (θ0−3) are optical phases of different consecutive pulses,
(θloop) is the phase introduced by the delay line and (PD) is a fast pho-
todetector.

2.3.2 Measurements and statistical characterisation

Once a phase-randomised string of optical pulses is produced, the next
step in the generation of random numbers is to translate phase information
into the amplitude domain. An unbalanced Mach-Zehnder interferometer
(uMZI) is used for this task. As illustrated in Fig. (2.7), the uMZI first splits
the signal into two paths. Then, a phase delay θloop is introduced into one
of the two arms by means of a fibre delay line, and then the two fields are
recombined at the output. In our case, θloop is selected so that the pulse
travelling the long path of the interferometer is delayed by one period of
the modulation signal, effectively achieving at the output of the interferom-
eter an interference between the i-th and the (i− 1)-th pulses at the out-
put of the interferometer. The uMZI is a self-delayed interferometer, and,
therefore, when the interference occurs between the fields coming from
the two arms, the instantaneous frequency of the two interfering beams is
nearly the same. In a period of ∼ 172 ps, which corresponds to the path
time difference between the two arms of our interferometer, we measure
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phase variations caused by the stretching of the fibres and laser drifts
below 2 × 10−7 root-mean-square, negligible compared to the quantum
fluctuations described above. As a result, following on from Eq. (2.3), we
can apply the simplification ω1 = ω2, with ω1,2 being the instantaneous
frequency of the fields in each path, and write the output intensity as

u(out)(t) = uA(t)+uB(t)+2|g(1)(t)|
√
uA(t)uB(t) cos∆ϕ(t)+un(t), (2.27)

where we introduce the visibility or first-order coherence function g(1)(t)
and the term un(t), which represents electronic noise as well as other
additive noises.

A fast, 14-bit sampling oscilloscope is used to acquire data. For each
pulse, a single sample is taken 13 ps after the pulse peak. This delay
is chosen in order to let the laser frequency stabilise. During the build-
up of the cavity field, a large variation on the instantaneous frequency
occurs (Balle et al., 1991). As a result, either no interference or bad visi-
bility is observed during this time. Once this transient period damps out,
the instantaneous frequency stabilises and high visibility is observed. Ex-
perimentally, we found that 13 ps maximised the width of the observed
distribution. In total, 120 × 106 pulses were recorded for data analysis.
We took data over the course of 5 days, and high stability was observed.
To analyse the visibility of the interference process, we first measured the
distribution of the pulses travelling the two paths of the interferometer,
obtaining mean values of 0.97 mW and 0.9 mW and a standard deviation
of 45 µW. These fluctuations arise from background noise and intensity
noise in the laser, and produce narrow density functions, as shown in
Fig. (2.8a). In contrast, due the interference between optical pulses with
similar intensities and random phases, a broad distribution following an
arcsine density pattern is detected at the output.

In Fig. (2.8(b)) we show the autocorrelation Γ for the n = 120 × 106

dataset measured above. We estimate the autocorrelation with the unbi-
ased estimator

Γx(d) =
1

n− d

n−d∑
i

xixi+d − µ2x (2.28)

where µx is the mean of the input data. This form of the unbiased corre-
lation estimator is valid for small correlation distances and large sample
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(a) Histogram (b) Autocorrelation

Figure 2.8: Statistical characterisation of the raw data. (a) Input power
distributions (left y-axis) and the resultant output power distribution (right
y-axis). The visibility achieved for the interferometer is 0.9. The power
distribution has clearly widened due to the random phase generated by
amplified spontaneous emission (ASE). (b) Normalised correlation of 50
subsequent sampled pulses. The autocorrelation has been evaluated
with 120 × 106 14-bit samples. As expected, it follows a delta-function
like behaviour indicating the random nature of the process.

sizes, i.e. d≪ n. The low correlation values for d > 0 indicate the random
nature of the process.

2.3.3 Entropy estimation and randomness extraction

In the process of generating raw random bits, the digitised signal contains
information about the physical process that we trust (accelerated phase
diffusion, in our case) as well as other noise contributions from processes
such as electronic noise, electromagnetic interference and thermal fluc-
tuations, among others. All of these noise sources will introduce fluctua-
tions that might look random, but, since they probably do not come from
a quantum phenomenon, we cannot trust them. To eliminate these con-
tributions as well as to obtain a uniform output distribution, a randomness
extractor (RE) is used. As described in the Chapter 1, in order to apply
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a randomness extractor we first need to quantify the min-entropy H∞ of
our source. In this experiment, we quantify the min-entropy using second
order statistics of the observed distributions. By computing the variance
of the two sides of Eq. (2.27) and assuming independence between the
four terms that compose the right-hand side, we can estimate the visibility
as

|g(1)(tloop)|2 =
var(u(out))− var(uA)− var(uB)− var(un)

2E[
√
uA]2E[

√
uB]2

. (2.29)

In the experiment we find var(u(out)) = 1.4 mW2, var(uA) = 2.0 ×
10−3 mW2, var(uB) = 2.1 × 10−3 mW2, E[uA] = 0.97 mW, and E[uB] =
0.90 mW, and we find E[

√
uA] = 0.98 and E[

√
uB] = 0.95 numerically.

From measurements with the laser off, we find the contribution of detec-
tion and digitisation noise var(un) = 1.45 × 10−4 mW2. Substituting in
Eq. (2.29), we obtain |g(1)(tloop)| ≈ 0.89.

Box 2. Deriving Equation 2.29

If we assume independence between the three terms in Eq. (2.27) and take
the variance, we can write

var(u(out)) = var(uA)+var(uB)+4|g(1)(tloop)|2var(
√
uAuB cos∆ϕ)+var(un).

(2.30)
Using the independence assumption, we can easily calculate the variance
of the third term. In general, the variance of the product of n independent
random variables ξi is given by

var
( n∏

i=1

ξi

)
=

n∏
i=1

E[ξ2i ]−
n∏

i=1

E[ξi]
2

=
n∏

i=1

(
var(ξi) + E[ξi]

2
)
−

n∏
i=1

E[ξi]
2 (2.31)

where the operator E[ξi] represents the expected value of ξi. To simplify
this equation, we will neglect the terms var(uA) and var(uB), since they are
almost 3 orders of magnitude smaller than the corresponding mean values.
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Substituting in Eq. (2.31), we find

var(
√
uAuB cos∆ϕ) = E[

√
uA]

2E[
√
uB ]

2
(
var(cos∆ϕ)− E[cos∆ϕ]

)
− E[

√
uA]

2E[
√
uB]

2E[cos∆ϕ]
= E[

√
uA]

2E[
√
uB ]

2var(cos∆ϕ) (2.32)

Then, since ⟨∆ϕ⟩2 > (9.45 rad)2, the distribution of cos∆ϕ is nearly
equal to the arcsine distribution - see Fig. (2.2). We can use the analyti-
cal results that the mean and variance of an arcsine distribution A(a, b) are
given by

E[A(a, b)] =
1

2
(a+ b) (2.33)

var
(
A(a, b)

)
=

1

8
(b− a)2 (2.34)

and for the distribution cos∆ϕ, which is an arcsine with extreme values
a = −1 and b = 1 we get E[cos∆ϕ] = and var(cos∆ϕ) = 1/2. Replacing
these results in Eq. (2.32) and rearranging the terms in Eq. (2.30), we can
write the visibility as

|g(1)(tloop)|2 =
var(u(out))− var(uA)− var(uB)− var(un)

2E[
√
uA]2E[

√
uB ]2

(2.35)

In a noiseless scenario, and as shown in Eq. (2.8), the density function
of u(out) is described by an arcsine with parameters u± = E[uA + uB ±
2|g(1)(tloop)|2]. We calculate the min-entropy using

H∞ ≈ b

2
− 1

2
log2

( 4∆ADC
π2(u+ − u−)

)
, (2.36)

where ∆ADC is the range of the scope’s digitiser and b the resolution. In
the units of optical power, we measure in the experiment ∆ADC = 5 mW,
b = 14 bits, and u+ − u− = 4|g(1)(tloop)|2E[

√
uAuB] = 2.99 mW, find-

ing H∞ = 7.28 bits. Thus, since the repetition rate of the DFB laser
was fc = 5.825 GHz, a real time randomness generation rate of up to
R = fc×H∞ ≈ 42.41 Gb/s could be achieved if real time extraction at this
speed were possible. In practice, however, performing randomness ex-
traction at such high speed is hard. In the experiment, we implemented an
offline randomness extractor based on the Whirlpool hash function (Jofre
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(a) Histogram (b) Autocorrelation

Figure 2.9: Statistical characterisation of the post-processed data. (a)
Deviation from the ideal 7-bit uniform distribution. Dashed lines show
plus/minus 1σ expected variation. (b) Normalised autocorrelation of the
hashed data. The correlation coefficients for d > 0 are at the -40 dB level,
corresponding to the expected statistical variation at this sample size.

et al., 2011). We applied a compression factor of b/H∞ ≈ 1.93, reduc-
ing the initial 120 × 106 14-bit numbers to ∼ 125 × 106 7-bit numbers. In
Fig. (2.9) we show the deviation of the hashed data with the ideal 7-bit
uniform distribution and the autocorrelation. At the output of the hash
function, the data is uniformly distributed and uncorrelated.

Box 3. Deriving Equation 2.36

In general, the min-entropy H∞ of a weak entropy source is given by

H∞(x) ≡ − log2

(
max
∀xk

Px(xk)
)
, (2.37)

where max∀xk
Px(xk) is defined as the predictability P of the source. Using

the facts that (i) our distribution is nearly equal to an arcsine, and (ii) an
arcsine density function is peaked at the extremes u±, we can estimate an
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upper bound on the predictability of the source by calculating

Pu(out) <
1

π

∫ u−+∆

u−

dξ
1√

(ξ − u−)(u+ − ξ)
=

2

π
arcsin

√
∆

u+ − u−
,

where∆ = ∆ADC/2
b, ∆ADC is the range of the digitiser and b is the resolution.

With the predictability estimated, we can immediately derive the min-entropy
as H∞ ≡ − log2 Pu(out) , finding

H∞ = − log2

2

π
arcsin

√
∆

u+ − u−
≈ − log2

2

π

√
∆

u+ − u−
,

where we used that arcsinx ≈ x for x small. Rearranging terms, we can
find a conveniently closed form given by

H∞ ≈ b

2
− 1

2
log2

( 4∆ADC

π2(u+ − u−)

)
.

2.3.4 Statistical testing

In this experiment, we used the 15-test battery proposed by NIST, which
is applied on the hashed data to assess its randomness. The significance
level (αSL) is set at 0.01, meaning that one in every hundred sequences is
expected to be rejected even if it is produced by a fair random generator.
In order to evaluate the results of the tests, two statistics are calculated.
Firstly, the ratio of accepted to rejected sequences, which must fall within
the confidence interval defined by 1−αSL ± 3

√
(1− αSL)αSL/m , where

m = 1500 is the number of 1 Mbit sequences tested, see Fig. (2.10(a)). It’s
worth emphasising that the NIST battery of tests requires at least 1 Gbit of
data. Here, we used 1.5 Gbits. Second, the ϵ-uniformity of the p-values is
examined. The idea is to compute p-valueT , a ’P-value of P-values’. The
procedure is as follows: for each test, (i) calculate a 10-bit histogram of
the obtained p-values, (ii) compute the χ2 = s/10

∑10
i=1(Fi−s/10)2, being

s the number of p-values per test and Fi the number of p-values in the i-th
bin, and (iii) calculate the incomplete gamma function Γ(9/2, χ2/2), which
must be larger than 10−4, see Fig. (2.10(b)).
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(a) Proportion test (b) p-value test

Figure 2.10: Summary of the results of the NIST test suite to assess ran-
domness. (a) Proportion test. Red dashed lines represent the confidence
interval in which the proportion of accepted/rejected sequences per test
must fall. (b) P-value test. We plot the p-valueT = Γ(9/2, χ2/2) for each
test. All p-valueT > 10−4. The smallest coefficient is obtained for the
non-periodic template matching test, giving a value of p-valueT = 0.0926

.

2.4 Randomness metrology

One of most intriguing aspects in randomness and random bit generation
is that randomness per se cannot be tested. Still, batteries of statistical
tests are carried out on a daily basis as well as in regulatory frameworks
to test the quality of random number generators (L’Ecuyer et al., 2007).
These tests are useful to detect patterns and defects in certain processes,
but unfortunately that is all they can do. For fundamental reasons, statis-
tical tests cannot confirm randomness of finite sequences. Passing sta-
tistical tests is a necessary condition for randomness claims, but it is not
a sufficient one. This is because firstly, only finite strings of digits are
tested, and secondly, only a limited number of statistical anomalies are
tested for. In order to detect predictabilities on any scale, we need new
tools, and physics provides us with such tools.

Quantum mechanics tells us that some physical events are completely
unpredictable from first principles, and therefore, that by measuring them,
we can extract truly unpredictable bits. However, from the ideal quantum
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mechanical realisation of the process until its conversion into the digi-
tal domain, several untrusted physical mechanisms are involved, which
corrupt the quality of the original signal, opening the door for potential
predictabilities in the produced bitstream. New schemes based on Bell
inequality violations (BIV) allow for so-called device-independent random-
ness generation protocols (Pironio et al., 2010) as well as self-testing ran-
domness generation schemes (Lunghi et al., 2015; Vallone et al., 2014).
At different confidence levels, both methods allow for the derivation of un-
predictability bounds based only on the laws of quantum mechanics and
the non-local behaviour of certain quantum states. These schemes are
interesting because of the fact that no characterisation of the hardware is
required. However, they typically require (i) seed input randomness to se-
lect the measurement settings, and (ii) entanglement-based technologies
as building blocks. The seed input randomness requires, in turn, random-
ness validation, which cannot be provided by using the same methods
(similarly to the chicken and egg problem). Additionally, the requirement
for loophole-free entanglement-based technologies poses performance
limitations for today’s communication systems.

In this section we introduce the randomness metrology methodology
(Mitchell et al., 2015), which, in terms of confidence levels, sits some-
where between the naïve statistical testing approach, and the extreme
paranoia of the device-independent approach. The randomness metrol-
ogy methodology is based on the understanding and modelling of the sta-
tistical behaviour of a trusted entropy source, and a thorough characteri-
sation of the hardware components that convert the pure physical process
into strings of zeros and ones. As detailed in Chapter 1, by rigorously plac-
ing bounds on the unpredictability of a physical random number generator,
randomness extractors (Shaltiel, 2002) can then be used to convert the
corrupted raw data into fully unpredictable random bits (Frauchiger et al.,
2013).

2.4.1 Untrusted noises and min-entropy estimation

The presence of untrusted noise in real devices leads to smoothed distrib-
ution functions, which in general, may lead to overestimated min-entropy
values. The simplest example is the presence of an additive normally
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distributed noise, e.g. electronic noise. If we let y = x + n be the ob-
served signal, x being the process that we want to measure and n an
additive Gaussian noise, the observed probability distribution function of
y is given by Py ≡ Px ∗ Pn, where ∗ is the convolution operator. If, for
simplicity, we assume that Px and Pn are both normally distributed with
parameters µx, µn, σx and σn, it is well known that the resulting distribution
function will be normally distributed also, with parameters µy = µx + µn
and σ2y = σ2x + σ2n. Clearly, since the deviation is larger around the mean,
the distribution spreads over a larger range, and, therefore, the maximum
value of the new distribution is lower than the original distribution, i.e.
Py(µy) < Px(µx). As a result, when computing the min-entropy H∞ on
this distribution (see Chapter 1 for an introduction on the min-entropy),
defined as:

H∞(X) ≡ − log2 max
Xi

P (Xi), (2.38)

we find that, since maxPy is smaller than maxPx, the min-entropy H∞(y)
is larger than H∞(x). In other words, the estimated min-entropy is larger
than the entropy originally available in the trusted process. This smooth-
ing effect is depicted in Fig. (2.11) for a Gaussian additive noise and two
input distributions for the trusted process, an arcsine distribution and a
Gaussian distribution. The smoothing effect is clearly visible in the arc-
sine scenario, whereas it remains visually negligible in the Gaussian case.
However, when we move into the digital domain, i.e. we digitise the in-
put analogue signal, this situation changes. We calculate the number of
digitisation errors made, finding that fewer errors are made in the arcsine
case. We define a digitisation error as an output bit that does not corre-
spond to what was expected for a given input value. In Fig. (2.11c) we
show the number of digitisation errors made in the arcsine and Gaussian
cases due to the presence of untrusted noises when using a 1-bit digi-
tisation scheme. Remarkably, the fact that the arcsine is peaked at the
extremes, far from the mean value where the comparison threshold is
placed, leads to a smaller number of mistakes in the analogue-to-digital
conversion process. In contrast, in the Gaussian scenario, where the sig-
nal is peaked at the mean value, the number of mistakes is larger.

The challenge in entropy estimation for random number generators
is to quantify and measure all these untrusted effects and derive rigor-
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Figure 2.11: Effect of an additive noise on the observed distribution for
an arcsine distribution (left) and a Gaussian distribution (centre). The
smoothing effect on the arcsine distribution is clearly seen, whereas the
effect on the Gaussian can be barely appreciated. However, when tak-
ing the arcsine and Gaussian random signals into an analogue-to-digital
process, and quantifying the difference between the digitised signal in the
presence of noise and in the noiseless scenario, the Gaussian distribu-
tion suffers from more errors than the arcsine case. This is intuitive, since
the Gaussian is peaked at the centre (i.e. values around the mean oc-
cur more frequently) whereas the arcsine is peaked at the extremes. As
a result, when placing a comparator at the mean value of the signal to
convert the analogue domain into the digital domain, the arcsine is more
insensitive to the noise, since a smaller number of events happen around
the mean value.

ous bounds on the available min-entropy, avoiding all smoothing effects
that may lead to undesired overestimations. Unfortunately, this process
is challenging. First, we cannot measure the trusted signal alone - it is
always affected by the noises. Second, if multiple untrusted noises are
present, it might be hard to measure them independently and to assess
their joint probability distribution function.
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2.4.2 Digitisation noise on the min-entropy estimation

The analogue-to-digital (A/D) conversion process is a significant source
of errors and predictabilities when building a random number generator
(Mitchell et al., 2015). A/D converters are a fundamental element of any
information system, and act as a bridge between the physical quantity
and the observation that we make. An A/D converter takes an input ana-
logue signal, and converts it to one of the 2b possible output values, b
being the resolution of the A/D conversion. In the following section, we
will describe a simple situation that illustrates the limitations of the A/D
conversion process in a 1-bit resolution A/D system, and then we will in-
troduce a generalisation to a multiple-bit A/D converter.

Toy example: digitisation effects on random bit generation

To illustrate the limitations of the A/D conversion process in the entropy es-
timation problem, let us consider the simple example depicted in Fig. (2.12).
A normally distributed analogue random signal x(t) (purple crosses) is
digitised using a 1-bit resolution A/D system (a comparator), which has
a noisy reference voltage level µ(t) (black line). The digital value di ob-
tained at time i is given by

di =

{
0 if x(ti) < µ(ti)

1 if x(ti) ≥ µ(ti)
(2.39)

In a noiseless scenario, a given input analogue value is always con-
verted to the same output digital value. However, in a real system, the
comparison level µ(t) fluctuates in time, and, as a result, the same in-
put analogue value can be converted into different outputs depending on
the instantaneous value of the reference voltage. Unfortunately, due to
the fact that the distribution function of the analogue signal and the com-
parison level are symmetric, the errors made in the conversion process
average out, leading to the naive observation that P (0) = P (1) = 1/2.
If we limit ourselves to measuring this output distribution without consid-
ering the fluctuations in the reference voltage, the min-entropy that we
find is H∞ = − log2 max{P (0), P (1)} = − log2 1/2 = 1. Therefore, we
conclude that the source is totally unpredictable. However, if we inspect
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Figure 2.12: Simple description of the effect of A/D noise on the ran-
domness analysis with a 1-bit resolution A/D conversion. (a) Simulated
analogue stochastic process (purple) and a noisy comparison level for the
reference level (black). As observed, due to the fluctuations in the com-
parison level, a given input value might be converted to different output
digital values depending on the instantaneous strength of this signal. (b)
Probability distribution function for the analogue input signal and the com-
parison noise level. The signal levels µ and µ±th are used as boundary
thresholds in the randomness analysis presented in this section.

the comparison noise signal and the analogue signal, we immediately ob-
serve that many input values have been mistakenly converted due to the
instantaneous value of the reference voltage - see Fig. (2.11).

In order to include the effect of the instantaneous fluctuations of the
A/D noise, we propose the following methodology. First, we need to mea-
sure and statistically characterise the comparison reference noisy signal.
Then, using the distribution function of the trusted signal (obtained from
first principles), we derive upper bounds P̄ on the probability of every
symbol as follows:



60 Phase-diffusion in pulsed semiconductor lasers

P̄ (d = 0) ≡ P (x < µ+th)− P (x < −∞) ≡ Fx(µ
+)− 0 (2.40)

P̄ (d = 1) ≡ P (x <∞)− P (x < µ−th) ≡ 1− Fx(µ
−), (2.41)

where Fx is the cumulative distribution function of the trusted signal x(t),
µ+th is the maximum input value that can give rise to a 0 output value,
and µ−th is the minimum input value that can give rise to a 1 output value.
If we did not consider the instantaneous effect of the noise, we would
use µ+th = µ−th = ⟨x(t)⟩ = µ (the average value of the input signal),
leading to the P (0) = P (1) = 1/2 as naively estimated above. In contrast,
we can set µ±th using our knowledge of the dynamics of the comparison
level. For instance, as shown in Fig. (2.12), we can use µ±th = ±5σ,
where σ represents the standard deviation of the comparison level. Using
this strategy, the derived predictability of the source is conservative with
respect to the A/D noise. Only with a probability of ∼ 6 × 10−5 is the
instantaneous predictability of the source larger than µ±th.

Generalisation to multiple bit digitisers

If x(t) is an analogue signal taking any possible value between −∞ and
∞, an A/D converter quantises that information into one of the 2b possible
digital values d ∈ d0, · · · , d2b−1. Here, b is known as the resolution of the
digitiser. Basically, the A/D conversion process discretises the input space
in 2b equally spaced bins ∆d. If an input value falls within the boundaries
of ∆d = [µ−d , µ

+
d ), the digital outcome d is produced. The probability of

the digital outcome d in this ideal scenario is given by

P (d) ≡ Fx(µ
+
d )− Fx(µ

−
d ), (2.42)

where Fx represents the cumulative distribution function of the input signal
x. For the extreme values d = 0 and d = 2b−1, µ−0 = −∞ and µ+

2b−1
= ∞

respectively, and therefore Fx(µ
−
0 ) = 0 and Fx(µ

+
2b−1

) = 1.
Unfortunately, as described in the simplified 1-bit resolution A/D con-

version example above, the boundary levels µ±d are noisy, and this directly
influences the generated random bitstream. Following the same proce-
dure as described above, if we can find upper and lower limits for all the
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boundaries, we will be able to bound the effect of the digitisation noise.
If we let µ±d (t) be functions of time, describing the instantaneous value of
the threshold levels, we want to find the adapted bounds

∆̄d =
[

min
t
µ−d (t),max

t
µ+d (t)

)
≡ [ξ−d , ξ

+
d ), (2.43)

i.e. the lowest and highest analogue inputs that can give rise to the out-
put d. There are multiple ways to treat this problem, depending on the
statistical model that we use for the threshold levels µ±d . One possibility
is to assume that these threshold levels are normally distributed, statisti-
cally characterise µ±d , find the mean and standard deviations, and write
ξ±d = ⟨µ±d  ⟩+κσµ±

d
, with κ being the desired confidence levels. Here, σµ±

d

is the standard deviation of µ±d . Another statistical model is to use the
worst case observation on every interval ∆d, finding ξ+d = max{µ(t)|d}
and ξ−d = min{µ(t)|d}. From this analysis we can also derive confidence
intervals depending on how many data points have been used to find the
minimum and maximum observations.

In Chapter 4, we describe the process we followed to quantify digiti-
sation noise in the 1-bit A/D conversion scenario. For a 8-bit commercial
digitiser, we bounded the size of the digitisation errors in the following way.
We used an electronic signal generator (Tabor WW1281A) followed by a
low-pass filter to produce a 1 kHz triangle wave, which is, from the per-
spective of the 2 GS/s digitiser, quasi-static. Then, we digitised this sig-
nal with our fast 8-bit digitiser (Acqiris U1084A) and simultaneously with
a 14-bit oscilloscope (Agilent infiniium 86100C with an electronic module
Agilent 86112A) for reference. In Fig. (2.13 we show the distribution of
the digitisation errors (i.e. of the deviation of the digitised value from the
ideal value), based on ≈ 214 samples per digitisation value. This allows
us to identify the limits ξ±d . In other words, the minimum and maximum
voltages that were observed to produce a given digitisation value d.

2.4.3 Adding memory effects and other untrusted noises

A digitisation process is a fundamental step in any physical random num-
ber generator, so the procedure described above applies transversely
to the construction of any real device. Similarly, there is another noise
source that is common to any device: limited bandwidth electronics. When
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Figure 2.13: Measured digitisation error frequencies and error limits.
Colour indicates relative frequency from zero (black) to maximum (white).
It is interesting to note the presence of both a large-scale nonlinearity
in the con- version (the general trend) and small-scale regularities (e.g.
the period-two patterns clearly visible between 50 and 60). Green traces
above and below indicate the largest and smallest errors observed, re-
spectively. Approximately 214 samples per digitisation value were used to
obtain the frequencies, so the confidence that a new event will fall within
the limits is ≈ 1− 2−14

a digital sample is taken, the detection system is still responding (possibly
weakly) to analogue inputs it received at earlier times. If we let H(t) be
the impulse response of the detection system and x(t) the input signal,
then the detected signal y(t) is given by

y(t) = H(t) ∗ x(t) ≡
∫ t

−∞
dt′H(t− t′)x(t′), (2.44)

where ∗ is the convolution operator.
Again, there are multiple ways to determine memory effects, which

may depend on the construction of the random number generator. As
an example, we measured memory effects (a.k.a. hangover errors) from
the autocorrelation data in the 8-bit digitisation experiment (Mitchell et al.,
2015). In contrast, in the prototypes built in 2015 (Abellan et al., 2015b),
we calculated the hangover errors by periodically interrupting the modu-
lation of the laser using a radio-frequency switch in an unbalanced Mach-
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Zehnder configuration, and measuring the distribution of the last pulse of
every radio-frequency cycle (see Chapter 5 for further details).

Similarly to the A/D noise, upper bounds on memory effects (as well
as on other untrusted noises specific to a particular scheme) can be mea-
sured. Then, by incorporating these quantities into our analysis, we can
adjust the digitisation threshold values, finding conservative bounds on
the predictability of a real random number generation device. A possi-
ble approach is to quantify the fluctuations introduced by all the untrusted
noises and then add these fluctuations into the digitisation bounds de-
scribed above. As done above for the digitisation noise, the goal now is
to include the effect of all the other noises in the estimation process. To
derive conservative bounds, we can use multiple strategies depending on
how paranoid we want to be about the effect of the noises.

Following with the scenarios described above, one possibility is to as-
sume that all the noises are mutually independent and normally distributed
and adapt the bounds by adding the noise fluctuations in quadratures, i.e.

ξ±d = ⟨µ±d  ⟩+ κσT , (2.45)

with κ defining the ratio of events that satisfy the condition, and

σ2T = σ2
µ±
d

+
∑
i

σ2i

the joint contribution from untrusted noises. Here, σµ±
d

is defined as above,
and σi represents the standard deviation of the i-th noise.

A more paranoid solution might be to add the fluctuations of the noises
linearly, instead of doing it in quadratures. It corresponds to assuming that
all the noises are correlated. In this case, we would calculate

σT = σµ±
d
+

∑
i

σi.

2.4.4 Minimising the worst-case predictability

We understand the predictability P of a random number generator to be
the maximum probability for an adversary, with all possible information
and resources in the universe, to guess what the next outcome from a
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device will be. Following the methodology presented here, we can only
find bounds on the predictability of the source if we understand the digiti-
sation process of our device and the contribution from untrusted noises.
If we are able to bound the effects of all the noises, we can find physically-
guaranteed bounds on the predictability of the source. Basically, we have
to maximise

P(d) ≡ max
d

P (d|x) ≡ max
d

{
Fd(ξ̄

+
d )− Fd(ξ̄

−
d )

}
(2.46)

Different experimental techniques were applied to characterise and
combine the effect of the untrusted noises. In the 1-bit A/D technology
described in (Abellan et al., 2015b), we derived unpredictability bounds
using 5σ bounds on the observed noises and combining them with differ-
ent paranoia levels. In contrast, in the 8-bit A/D experiment (Mitchell et
al., 2015), we calculated the worst-case scenario that was compatible with
the available data set by solving a multi-dimensional linear programming
optimisation procedure to find the average min-entropy as follows:

⟨H∞⟩ ≡ −
∫
dx’P (x’)max

d
log2 P

(wc)(d |x’). (2.47)

Remarkably, we found that in this worst-case scenario for the noises,
⟨H∞⟩ is still several bits per symbol, allowing efficient extraction of pure
randomness from the dataset. Also, by leaving the classical phase as a
parameter in the optimisation, we showed that classical phase fluctuations
have an effect on the randomness of the digitised symbols that decreases
rapidly with increasing quantum phase diffusion. In other words, no clas-
sical noise can make the phase predictable, provided the quantum noise
is sufficient.

Deriving trustworthy min-entropy bounds is of fundamental importance
in the field of randomness generation in order to guarantee the security
and performance of cryptographic nodes. Cryptographic protocols rely
on the availability of high quality random digits, and false security percep-
tions can exist if the entropy of the randomness source is not properly es-
timated. The methodology introduced here is, in fact, similar to industry
efforts to standardise and regulate physical random number generation
devices and their characterisation. The AIS 31 standard is an example,
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proposed by the German Bundesamt für Sicherheit in der Informations-
technik (Killmann et al., 2011).

2.5 Conclusions

In this chapter, we have explored the phase diffusion process in semicon-
ductor lasers and its application and suitability for random number gen-
eration. We have presented a numerical analysis of the average phase
diffusion both in continuous wave and pulsed operational modes, finding a
large phase randomisation advantage in the gain-switching scheme. We
have also reported the results of an ultrafast experiment (above 40 Gb/s
bit rate), proving successful phase randomisation in the hundreds of pi-
cosecond time scale. In this experiment, we have presented a min-entropy
estimation procedure based on second-order statistics of the observed
signals. Finally, we have introduced the randomness metrology method-
ology to derive trustworthy min-entropy bounds by combining a thorough
characterisation of the hardware components with an in-depth knowledge
of the physical process. The results of this chapter confirm the suitability
of the phase diffusion process for ultrafast randomness generation, both
theoretically and experimentally, and introduce techniques to quantify the
quality of physical random number generators.
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Chapter 3

On-chip quantum entropy
sources

Photonic integrated circuit (PIC) technology (Heck et al., 2013; Smit et
al., 2014) is a key ingredient for building scalable optical devices (Walm-
sley, 2015). The telecommunications industry is a clear example, al-
ready accounting for commercial products such as semiconductor lasers,
100 GHz photodetectors, and high-bandwidth optical interconnects and
transceivers (Alduino et al., 2010). Recently, the quantum optics com-
munity has been making rapid progress by leveraging PIC technology,
offering the possibility to design scalable quantum optics experiments. In
the field of quantum computation, PIC technology in combination with ad-
ditional bulk elements, such as lasers, is allowing for the development
of novel experiments otherwise impossible using tabletop components.
Some examples include quantum simulation (Tillmann et al., 2013) and
quantum-enhanced sensing (Matthews et al., 2009). Quantum key distri-
bution (QKD) functionalities have also been integrated using Indium Phos-
phide technology (Sibson et al., 2015) and a monolithically integrated
QRNG, composed of a light-emitting diode (LED) and a single-photon
avalanche photodetector (SPAD), has been recently demonstrated at 1
Mb/s using Silicon (Si) Photonics technology (Khanmohammadi et al.,
2015). Si Photonics is a promising candidate for building scalable opti-
cal applications due to its compatibility with the microelectronics indus-
try. However, the impossibility of monolithically integrating a laser source
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poses serious limitations to the level of miniaturisation and performance
of the PIC.

Multiple technologies and materials have been considered for the in-
tegration of the phase diffusion QRNG technology. In particular, we have
experimented with silicon photonics (Si), silicon nitride (Si3N4), and in-
dium phosphide (InP). The key features that were considered critical in
our design include: (i) the availability of all the required optical compo-
nents (i.e. laser source, waveguides, couplers and detectors), (ii) a low
propagation loss in order to maximise the signal to noise ratio (quantum
fluctuations versus classical noise), (iii) a high-density component inte-
gration, and (iv) a mature manufacturing industry. In order to achieve a
high density of integration, high refractive index materials are desirable.
The higher the refractive index contrast, the higher the confinement of the
light in the waveguide mode, and the smaller the curvature radius that can
be achieved.

Technology Losses (dB/cm) Refractive index
Si 3 3.4 
Si3N4 < 1 2
InP 2 3.15

Table 3.1: Key parameters for three of the most common materials for
photonic integration.

As shown in Table 3.1, silicon nitride is the best candidate in terms
of propagation loss. In contrast, silicon photonics offers both the highest
density of components (highest refractive index contrast) and the most
advanced (by far) manufacturing industry. Finally, indium phosphide is the
only platform offering monolithic integration of all the optical components,
including light sources. In this chapter, we first describe the results of a
tiny silicon photonics device taking a 1x0.1 mm2 area with an external DFB
laser source, and then we show the results of an all optically integrated
device using indium phosphide in an area of less than 6x2 mm2.



3.1 Self-delayed scheme on a Silicon Photonics chip 69

3.1 Self-delayed schemeon aSiliconPhotonics chip

In this section, we report the results of the integration of the phase-diffusion
QRNG scheme on a Silicon chip with an unbalanced Mach-Zehnder con-
figuration. In contrast to the Indium Phosphide scheme, the Silicon chip is
constrained in a reduced area, and due to the self-delayed nature of the
scheme, the interference signal is almost immune to temperature varia-
tions.

3.1.1 Chip design and experiment

The integrated device implements the critical interferometry and photode-
tection elements of the phase-diffusion QRNG strategy, as shown in Fig. (3.1).
The laser component, which to date cannot be monolithically integrated in
Si, is interfaced to the chip by a grating coupler (GC). A single-frequency
DFB laser is operated in gain-switching (GS) mode, with a mean drive
current of 14 mA and a sinusoidal modulation at 1 GHz, applied via a
bias-tee. As the laser threshold is 10 mA, this takes the laser far above
and below the threshold on each modulation cycle, producing a train of
linearly-polarised optical pulses of duration ∼300 ps. Due to the phase
diffusion process, subsequent pulses have random relative phases, while
also having very similar wave-forms. In order to couple the light pulses
into the Si chip, the laser output is directed towards a grating coupler (GC)
via single mode fibres (SMF) at 10◦ incidence to couple the pulses into the
Si chip. A ∼ 10 dB Erbium-doped fibre-amplifier (EDFA) is used to com-
pensate for the losses of the grating coupler and to improve in this way
the signal to noise ratio at the output of the experiment. By measuring
the transmission through a straight waveguide, losses due to the GC are
estimated to be αgc ∼ 7 dB.

In the chip, a first multimode interference coupler (MMI) splits the in-
put light to the two arms of an unbalanced Mach-Zehnder interferometer
(uMZI) with a power-splitting ratio of 2:98. The large deviation between
the two output ports of the first MMI is chosen in order to pre-compensate
for the losses that the signal in the long path will suffer due to the extra
delay line. A delay line of 6.9 cm is integrated to introduce a 1 ns tempo-
ral delay, i.e. for 1 GHz modulation rate. Thus, the signal in the long arm
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Figure 3.1: Experimental setup for the characterisation of the Si-based
QRNG.A distributed feedback (DFB) laser is periodically modulated with
a 1 GHz sinusoidal signal and biased close to the threshold level. An
Erbium-doped fibre-amplifer (EDFA) is used to compensate for the losses
of the grating coupler. The optical pulses travel through a polarisation
controller (PC) and are sent to the Silicon chip through a coupling stage
(CS). The CS is set up to couple light from the cleaved fibre to the chip
at an incidence angle of 10◦. A grating coupler brings the signal into the
Si waveguide, which sends it directly into the unbalanced Mach Zehnder
interferometer (uMZI). The uMZI is composed of two multimode interfer-
ometers (MMI) and a delay line introducing a ∼1 ns delay. Finally, a
photodetector is reverse biased using a power source and the DC port
of a bias-tee, and the RF signal is extracted using a groud-signal-ground
(GSG) RF probe. The electrical signal is finally detected with a 4 GHz
oscilloscope. An imagining system (IM) allows the chip to be viewed on
a desktop computer.

suffers from approximately αdl ≈ 6.9 cm ×3 dB/cm ≈ 20.5 dB of propaga-
tion loss in the delay line. If we did not compensate for the loss in the first
MMI, then the signal in the short arm, which experiences almost no prop-
agation loss (only a few µm long waveguide), would reach the output MMI
20 dB stronger than the signal in the long arm, thereby killing in this way
the interference visibility. By introducing the 2:98 splitting ratio in the first
MMI, the signal travelling the short arm sees a loss of ≈ 10 log 2/100 ≈ 17
dB of loss, reaching the output MMI with approximately the same strength
as the signal from the long arm. After the uMZI structure, the interfered
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signal is detected by a 10 GHz on-chip Germanium photodiode and sent
to a 4 GHz real-time oscilloscope via a bias-tee. The detected intensity
Idet(t) can be written as:

Idet(t) = αsI(t) + αlI(t− τ) + 2V
√
αsI(t)αlI(t− τ) cos(∆ϕ+ δθ), (3.1)

where I(t) is the instantaneous laser power at time t, αl ≈ 0.98αgcαdl
are the losses experienced by the signal going through the long path of
the interferometer and αs ≈ 0.02αgc the losses in the short path, τ = 1 ns
is the pulse repetition period, V is the interference visibility, δθ is the rela-
tive phase between subsequent optical pulses, and δϕ is the optical phase
acquired in the uMZI. Due to strong phase diffusion between subsequent
optical pulses, ∆θ is, to a very good approximation, random, and, there-
fore, an arcsine distribution is observed (Abellan et al., 2014a), irrespec-
tive of ∆ϕ.

A microscope image of the 4 x 7.5 mm2 chip is shown in Fig. (3.2). Mul-
tiple uMZIs with different compensation values and delay lengths were
present on it for testing purposes. More specifically, up to 20 uMZIs
with optical-optical and optical-electrical input/output interfaces were in-
tegrated. Different splitting ratios for the MMIs and different path delay
lengths were integrated too, in order to select the optimal structure. As
well as the uMZI structures, a section of the chip is dedicated to test struc-
tures, in which all the building blocks forming the uMZIs are placed with
input/output contacts for direct characterisation. All the tested compo-
nents operate according to specifications. The measurements providing
the best interference signals were performed in the 2:98 splitting ratio
uMZIs, which introduced an amplitude compensation of around 20 dB,
very similar to the losses expected in the long arm of the interferometer,
i.e. ≈ 6.9 dB/cm ×3 dB/cm = 21 dB. The overall size of a single QRNG
detection structure is below 0.5 x 1 mm2.

3.1.2 Performance tests

By measuring the statistics of the electrical signal when the laser is below
the threshold level, one can obtain information about the overall noise of
the system - see purple line in Fig. (3.3). While the electronic noise and
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Figure 3.2: Microscope image of the 4 x 7.5 mm2 Silicon Photonics inte-
grated chip on top of a 1 euro cent coin. Up to 20 quantum random number
generation (QRNG) structures are present on the chip, together with test
structures of the various building blocks that form the QRNG device. A
single QRNG block is less than 0.5 x 1 mm2

optical power produce a strongly monomodal distribution (Gaussian-like
shape), the interference signal (orange line in Fig. (3.3)) shows a strong
bimodal behaviour (arcsine-like shape), reflecting the smoothed arcsine
distribution due to the convolution with the electronic noise. 700k samples
were acquired when calculating the histograms.

We ran a Monte Carlo calculation to find the interference parameters
that best fits the observed distribution according to the model in Eq. (3.1).
We set the waveguide losses to 3 dB/cm, as estimated experimentally,
the splitting ratio to 98:2, as also verified experimentally in one of the test
structures of the chip, and the electronic noise strength to σ = 1.9 mV,
as extracted from the histogram in Fig. (3.3). By leaving the interference
visibility V, as well as the noise acquired by the signal in each path of the
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Figure 3.3: Histogram of the observed signal and noise by taking samples
during the on and the off times of the modulation cycle. The normalised
frequency of the signal fits well the expected arcsine behaviour, whereas
the noise follows a Gaussian profile. A Monte Carlo simulation of the
process fits well the observed frequencies.

interferometer, i.e. the standard deviation of I(t) and I(t−τ), as free para-
meters, we found that the observed distribution is consistent with Eq. (3.1)
with V = 0.74 and random ∆θ. The mean square error between the ob-
served and simulated distributions is ≈ 10−5. The signal to noise ratio
(SNR), defined as the ratio between the standard deviation of the arcsine
signal and the noise, was found to be SNR≈ 4.1. The fitted distribution is
also plotted in Fig. (3.3), showing good agreement between the observed
and theoretical predictions.

In order to measure the correlation, we have introduced a new ex-
perimental method for situations in which high-speed digitisation is not
available. Typically, a long sequence of digits is stored, and then the
correlation is estimated from that data. In our case, for instance, since
capturing data continuously with a pulsed source at 1 GHz was not possi-
ble, we devised a new strategy to do this directly on the oscilloscope. By
using available measurement options in the oscilloscope, such as gaiting
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Figure 3.4: 2D autocorrelation of the raw data. By plotting the amplitudes
corresponding to the n-th and (n− d)-th pulses on an XY plot directly on
the oscilloscope, we can evaluate and visually inspect the autocorrelation
of the raw data in real-time.

and skewing, we measured the amplitudes of the n-the and the (n−d)-th
pulses and plot the pair of points using an XY plot. If we let An and An−d

represent the amplitudes of the two pulses, we accumulate the pairs of
pulses (An, An−d) on the screen and qualitatively analyse the results. This
proposed technique is very useful as a first real-time screening method.
A numerical simulation together with the measured XY plots for several
correlation distances d are depicted in Fig. (3.4).

3.2 Two-laser schemeon an IndiumPhosphide chip

In the unbalanced Mach-Zehnder interferometer approach presented in
the previous chapter, a path length difference between the two arms of the
interferometer of ∆L = cτc/n is required, where c is the speed of light in
vacuum, τc = f−1

c the period of the modulated signal, and n the refractive
index of the material. For instance, for a 1 GHz modulation frequency
and an InP waveguide (n = 3.15), a path length difference of L ∼ 10 cm
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would be required. In order to observe high interference visibility, the
losses in the short path should be increased to balance the signal levels
in both paths of the interferometer. Hence, we immediately reduce the
quantum signal to noise ratio, reducing the quality of the produced random
numbers.

Figure 3.5: Schematic of the QRNG-PIC based on two-laser interference.
The two DFB lasers are biased, each of them with its own current driver,
and one of them operating in CW mode, while the other one is periodically
GS using an external RF generator. The temperature of the entire chip
is controlled through a Peltier element, while that of the entropy source
area, including one of the lasers, is locally tuned by using a stable current
source. The outputs from the two lasers are combined and interfered in
a 2 × 2 MMI coupler, and two 40 GHz photodiodes are placed after the
coupler. The detected signal is then recorded by a fast oscilloscope.

In this chapter, a new configuration is introduced. It uses heterodyne
and gets rid of the need for long delay lines. As illustrated in Fig. (3.5),
the proposed scheme combines two DFB lasers on the same chip. The
first laser is operated in gain switching (GS) mode, while the second one
can be operated in either continuous wave (CW) or GS modes. As de-
scribed in Section 2.2.1, by continuously modulating the GS laser from
below to above the threshold level, optical pulses with nearly identical
waveforms and completely randomised phases are generated. Next, by
beating the GS and CW (the local oscillator) lasers through a multimode
interference (MMI) coupler, an intensity oscillation forms with a beating
frequency equal to the difference of the two lasers’ frequencies, which
can then be detected by a photo-detector. The principle of operation is
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Figure 3.6: Principle of operation of the QRNG-PIC: optical pulses from a
GS laser interfere with a CW laser, generating an interference modulation
whose frequency is equal to the difference of the two lasers’ frequencies.
The random phase of the GS laser pulse produces a random phase of
the interference oscillation that can be properly sampled into a random
amplitude. In this way, after digitisation, one sample per GS pulse can be
extracted.

qualitatively described in Fig. (3.6).
If we let us(t) = uA(t) + uB(t) be the sum of the intensities from the

two laser sources and up(t) =
√
uA(t)uB(t) their geometric mean, we can

write the interference signal at the output of the interferometer following
Eq. (2.3) as

u(out)(t) = us(t) + 2up(t) cos
(∫ t

0
dξΩC(ξ) + ∆ϕ(t)

)
, (3.2)

where ∆ϕ ≡ ϕ(cw) − ϕ(gs) is the phase difference between the two lasers’
fields, and ΩC(t) ≡ Ω − β(t) their frequency detuning as a function of
time. We introduce β(t) = β0t phenomenologically to account for the fre-
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quency chirp arising from fast thermal effects in the directly modulated
laser (Zadok et al., 1998). Here, Ω represents the initial frequency detun-
ing between the two lasers. As illustrated in Fig. (3.6), the resulting signal
corresponds to a train of pulses in which the amplitude of each pulse os-
cillates at

∫ t
0 dξΩc(ξ) with a random phase ∆ϕ (for simplicity β0 = 0 in

the illustration, i.e. the chirp is not represented). Finally, after the MMI
coupler, a photodetector converts the optical signal into the electrical do-
main, and random numbers are obtained by taking one sample per pulse
repetition period.

Box 4. Resolving the beating between two light sources

The interference between two light sources can be written as

u(out)(t) = us(t) + 2up(t) cos
(
Ωt+∆ϕ(t)

)
, (3.3)

where us(t) = uA(t) + uB(t) is the sum of the intensities of the two sources
and up(t) =

√
uA(t)uB(t) the geometric mean. Unlike with Eq. (3.2), we

here neglect the effect of the chirp without loss of generality, since we are
analysing bandwidth effects associated with the frequency detuning. IfΩD ≈
0.35/τD is the bandwidth of the detector and τD its response time, the elec-
trical signal at the output of the detector system v(t), assuming linearity, is
given by

v(t) = u(out) ∗ hD(t), (3.4)

where ∗ is the convolution operator and hD(t) the impulse response of
the detection system. The impulse response can be well approximated by
hD(t) ∼ θ(t) exp{−t2/2τ2D}, θ(t) being the heaviside step function and τD
the width given by the response time. Using the linearity of the convolution
operator:

(a+ b) ∗ c = a ∗ c+ b ∗ c
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we can focus on the oscillation term in Eq. (3.3), namely,

cos
(
Ωt+∆ϕ

)
∗ hD(t) =

∫ ∞

−∞
dξhD(ξ) cos

(
Ω(t− ξ) + ∆ϕ

)
=

∫ ∞

0

dξ exp{−ξ2/2τ2D} cos
(
Ω(t− ξ) + ∆ϕ

)
∝ exp
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}
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)
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]
sin

(
Ωt+∆ϕ
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.

Note that if the beating frequency Ω is much larger than the detection band-
width (i.e. Ω/ΩD >> 1), the exponential term tends to zero and therefore
the oscillating term cannot be resolved. On the other hand, for ΩD >> Ω ,
the exponential term tends to one, and the oscillation cosΩt + ∆ϕ can be
recovered. Thus, in the two-laser scheme, the central frequency of the two
lasers must be kept within the detection bandwidth.

Preliminary results with discrete components

The two-laser scheme was demonstrated using discrete components as a
proof-of-concept test before integration. An Alcatel A1905LMI DFB laser
was used as the GS source, and a tunable laser Photonetics Tunics Plus
3642 HE 10 as the CW reference, as illustrated in Fig. (3.7). A 2x1 po-
larisation maintaining coupler (PMC) was used to combine the two sig-
nals, and the beating was detected by a 10 GHz bandwidth photodetector
(Nortel PP10G), and digitised by a 2 Gsps digitiser Acquiris U1084A with
a 1 GHz electrical bandwidth. As seen in Eq. (3.2), the heterodyne sig-
nal oscillates at a frequency determined by the detuning between the two
lasers. Thus, in order to resolve this beat note, the detuning should be
kept within the detection bandwidth of the detector (see Box 4). Using
an optical sampling scope (20 GHz bandwidth) and an optical spectrum
analyser, we measured the interference visibility (RMS deviation of the
distribution) as a function of the detuning between the two lasers. As
shown in Fig. (3.8), high interference visibility was observed for detunings
of up to 200 pm, which corresponds to a frequency difference of ∼ 25 GHz,
in agreement with the electronic bandwidth of the measurement device.
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Figure 3.7: Bulk setup for the QRNG based on heterodyning two laser
diodes. A DFB laser is directly modulated from below to above threshold
with a 200 MHz signal. A tunable laser is operated in cw and the central
frequency is set very close to the central wavelength of the GS laser. A
2 × 1 polarisation maintaining coupler combines the two signals and a
photodetector (PD) detects the beating field. The random signal (rnd) is
sent to a high-speed digitiser. The 200 MHz signal and the internal 2 GHz
clock of the digitiser are synchronised with a 10 MHz reference clock.

For larger detuning frequencies, the visibility starts to decrease until it
reaches almost zero for detunings of more than 500 pm. After charac-
terising the visibility as a function of the detuning, we set the frequency
difference between the two lasers below 1 GHz, which is the electrical
bandwidth of the digitiser used to acquire large data sets.

The system ran overnight in order to acquire and process up to 60 se-
quences of 1 GB (Gigabyte) each. In Fig. (3.8), we show the histogram,
measured every 70 minutes, and high-interference visibility and repeata-
bility is observed, indicating that the frequency detuning between the two
lasers remained within the detection bandwidth over the entire measure-
ment run. We also calculated the autocorrelation function for the raw data,
showing a statistically significant correlation for d < 200, and falling into
the statistical sensitivity afterwards. This correlation pattern is always ob-
served with the employed photodetector (even in the unbalanced Mach-
Zehnder scheme), and is attributed to its long-lived states. For complete-
ness, we also implemented the randomness extraction step, as well as
statistical testing of the output bits. We wrote a parallelised version of
the hashing algorithm proposed by Frauchiger-Renner-Troyer in C++ to
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Figure 3.8: Stability of the two-laser scheme with discrete components.
(a) RMS deviation of the interference signal as a function of the detuning
between the CW reference laser and the GS laser. Note that for detunings
larger than λ = 400 nm, the RMS deviation falls, indicating that the inter-
ference term oscillates at a frequency that cannot be resolved. (b) His-
tograms taken at time intervals of 70 minutes. The observed distribution
is shown for every measurement. High interference visibility is observed
during the entire measurement run.

increase the throughput (Frauchiger et al., 2013). After randomness ex-
traction, we computed the correlation for a total dataset of 60 Gb, observ-
ing no statistically significant coefficients - see Fig. (3.9). We also applied
the Alphabit battery of statistical tests to the 60 sequences of 1 Gb post-
processed data, observing a rate of weak p-values below 2%. See the
statistical testing section in Chapter 5 for more details.

3.2.1 Chip design and experiment

The integrated chip was fabricated at the Fraunhofer Heinrich Hertz Insti-
tute (HHI) in Berlin. The design of the chip was carried out in collaboration
with VLC Photonics. For the implementation of the two-laser quantum
entropy source chip, two DFB lasers, a 2x2 MMI coupler, and two pho-
todetectors were utilised. HHI’s standard building blocks were used for
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Figure 3.9: Autocorrelation for the two-laser scheme with discrete com-
ponents. (a) Autocorrelation for the raw data calculated from a 100 Mb
dataset. (b) Autocorrelation for post-processed data using the Frauchiger-
Renner-Troyer randomness extractor (Frauchiger et al., 2013) computed
from a 60 Gb dataset.

the laser sources and the photodetectors. MMIs are based on the self-
imaging principle (Soldano et al., 1995), which is an effect observed in
slab waveguides supporting multiple spatial modes. In such structures,
an input field profile is periodically reproduced in single or multiple lo-
cations along the waveguide due to the interference between multiple
supported spatial modes. Different modes propagate at different group
velocities, and therefore, different patterns appear due to the local inter-
ference occurring at each point. In order to achieve the 2x2 functionality,
two input and two output single mode waveguides are connected to a wide
multimode waveguide at positions ±We/6 from the centre, We being the
effective width of the multimode waveguide. With this structure, the light
from each input port splits with probability 1/2 to each output port, at a
distance of approximately ∼ Lπ/2 from the input. Here Lπ ≡ 4nrW

2
e /3λ0

is the beat length of the two lowest-order modes, nr being the refractive
index and λ0 the central wavelength of the field. For best performance,
however, the dimensions of the MMI region are numerically optimised to
minimise coupling losses from and to the single mode structure and the
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multimode structure.

A microscope image of the two-laser quantum entropy source (QES)
PIC is shown in Fig. (3.10). The chip was placed on top of a Peltier con-
troller and its temperature was maintained at 25◦ with variations of less
than 0.1◦. Measurements were taken directly from the bare chip using
ground-signal-ground RF probes, as well as DC contacts, in a configura-
tion as shown in Fig. (3.2.1).

The first DFB laser, with a bias of 10 mA, was operated in GS mode
by superimposing a 100 MHz modulation from an Anritsu MP1800A pulse
generator through a bias-tee port. We chose this relatively low modula-
tion frequency in order to capture properly the dynamics of the interfer-
ence pattern within the GS pulse. Modulation frequencies above 1 GHz
were demonstrated in the laboratory using the same integrated compo-
nents, offering a very promising approach to achieve raw generation rates
in the order of tenths of Gb/s. As discussed in previous chapters, the
scheme will be limited by the stabilisation of the build-up dynamics of
the laser intensity, i.e. the time it takes for the laser to create a stable
single frequency mode starting from a below-threshold spectrum. In the
experiment, we operated the CW laser with a constant 30 mA current.
The beating signal was detected by an on-chip 40 GHz photodetector and
digitised with a 20 GHz and 50 GSa/s real-time scope (Digital Phosphor
Oscilloscope, Tektronix DPO72004C), providing a temporal resolution of
20 ps to analyse the beat note.

The central frequencies of the two lasers were independently tuned by
injecting a constant current from a stable source (Keithley 2401) through a
metallic contact on the grating structure. As expected, the injected current
produced a heating effect on the grating structure, changing its average
refractive index and, therefore, the Bragg resonance condition. As a re-
sult, the operating frequency (wavelength) of each laser could be indepen-
dently tuned. Following this approach, the detuning frequency between
the two lasers was reduced and brought within the detection bandwidth.
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(a) Microscope image

(b) Measurement stage

Figure 3.10: (a) Schematic of the QES-PIC based on the two-laser inter-
ference scheme. Two QES-PIC structures are integrated on the 6x4 mm2

chip, and a test structure with optical output can be observed in between.
Each QES-PIC structure consists of two DFB lasers, a 2x2 MMI coupler,
and two 40 GHz photodetectors. (b) Illustration of the experimental stage
for the optical characterisation of the chips. The signal to modulate the GS
laser is sent into the integrated DFB laser using a ground-signal-ground
(GSG) RF probe, and is generated using an RF source for the AC com-
ponent and a constant reference for the DC part. The AC and DC signals
are combined using a bias-tee. The CW laser is biased using a DC con-
tact line. Finally, a second bias-tee is used with the photodiode, firstly, to
reverse bias it through the DC port, and, secondly, to extract the detected
RF component. The two lasers are temperature controlled by injecting a
DC current through metallic contacts.
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3.2.2 Performance tests

Temporal dynamics and numerical simulations

In general, interfacing between different components in an integrated cir-
cuit produces back-reflections. In our scheme, in which we aim to extract
phase information due to spontaneous emission photons in the cavity of
the GS laser, photons coupling from the CW laser to the GS laser due to
back-reflections would prevent the generation of phase randomised opti-
cal pulses. More specifically, this effect is significant when the frequen-
cies of the two lasers are tuned close to each other, leading to phase-
locking (frequency-locking) effects. This phenomenon can be explained
on the basis of the general mechanism of Adler’s synchronisation of two
coupled nonlinear oscillators (Adler, 1946), and modelled by the Lang-
Kobayashi rate equation analysis for two mutually coupled semiconductor
lasers (Lang et al., 1980). With the effective coupling rate between the
two laser cavities represented by κ, and the frequency detuning between
the two bare longitudinal modes of the uncoupled cavities by Ω, it is known
in simple Adler’s theory of synchronisation that frequency locking occurs,
if we neglect delay effects, for:

|Ω| < 2κ. (3.5)

In Fig. (3.11), we show the frequency beating between the two lasers
measured by operating them both in CW mode, and sweeping the reso-
nance condition of one of them. As observed, the frequency between the
two lasers changes linearly with the applied current, except in the region
where the two central frequencies are similar. In this central region, the
frequency difference cannot be clearly measured, mainly because of two
effects: (i) phase noise, which can be a few hundreds of MHz typically,
and (ii) phase-locking effects. Experimentally, clear locking effects could
be seen in this region for frequencies below ∼ 1.5 GHz. Using Eq. (3.5),
we can estimate κ ∼ 5 ns−1 for this photonic integrated circuit. In (Abellan
et al., 2016a), a more complete analysis based on the numerical solution
of the Lang-Kobayashi rate equations is given.

In the experiments, we used two PICs: a high waveguide propagation
loss PIC that ensures the absence of significant back reflection from the
CW into the GS laser, and another one with a similar structure but lower



3.2 Two-laser scheme on an Indium Phosphide chip 85

Figure 3.11: Beat-note frequency at the output of the MMI measured by
sweeping one of the integrated lasers, while keeping the other one con-
stant in the low-loss QRNG-PIC. The beat-note frequency can be continu-
ously tuned by current control for large detuning frequencies, whereas for
small detuning frequencies phase- (frequency-) locking may occur (gray
square), leading eventually to disappearance of the oscillation.

loss. In the lower-loss PIC, back reflections at the MMI interface even-
tually induce phase-locking effects, preventing the generation of random
oscillations. As detailed above, the coupling constant for the low-loss chip
is given by κ ∼ 5 ns−1. With such a high coupling constant, spontaneous
emission is too weak compared to the back-reflection, and thus phase-
locking is observed. To obtain the QRNG functionality, it is, therefore,
mandatory to reduce the feedback arising from spurious reflections at the
MMI coupler. This goal was achieved by increasing the optical losses of
the bus waveguides (∼ 15 dB/cm), and, as a result, the coupling rate κ
between the two laser cavities is reduced by ∼ 30 dB from the previously
discussed low-loss PIC. For the high-loss PIC, the coupling, if any, is very
weak, and, thus, phase randomisation due to quantum noise prevails over
phase-locking. In Fig. (3.12) we show the solution of the Lang-Kobayashi
rate equations for different detuning parameters, and compare the results
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Figure 3.12: Temporal dynamics of the beating between the two lasers
forming the high-loss QRNG-PIC and comparison with numerical results.
(a)-(d) Experimental data with different temperature settings (currents).
Chirp due to thermal effects and attenuation of beating amplitude due to
the bandwidth limit of the detection electronics are evident. (e)-(h) Nu-
merical results with initial detuning frequencies set to fit the experimental
observations in (a).

with the experimental data.
For both the high- and low-loss PICs, the optical pulses of the GS

laser were strongly chirped due to thermal effects, yielding a frequency-
varying oscillation of the beating pattern, as depicted in Fig. (3.12). As a
result, a nearly zero detuning (NZD) region was observed within the op-
tical pulses when the chirped frequency of the GS laser coincided with
the stable frequency of the CW laser. The position of the NZD region
depended on the initial frequency separation between the GS and the
CW emission lines. When both lasers were initially close in frequency,
the NZD region occurred at the beginning of the pulse. Conversely, with
a large frequency separation, the NZD region occurred at the end of the
pulse - see Fig. (3.12). In the high waveguide-loss PIC (15 dB/cm), the in-
terference amplitude within the NZD region changed from pulse to pulse,
a clear signature that phase noise dominated. Instead, in the low-loss
PIC (2 dB/cm), back-reflection from the CW into the GS laser was signifi-
cant enough that phase-locking between the two lasers was observed. In
this case, the interference amplitude in the NZD region did not appreciably
change from pulse to pulse. In the experiment, the NZD region was tuned
at the end of the pulse - see Fig. (3.12d) - maximising the detuning fre-
quency between the two lasers in order to reduce residual phase-locking
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Figure 3.13: Statistical characterisation of the density function within the
chirped pulses. In the nearly zero detuning (NZD) region, good interfer-
ence visibility is observed, whereas outside this region, the interference
cannot be resolved and a narrow distribution appears.

effects, if any. In Fig. (3.13), we show the histograms observed by taking
samples at different positions within the pulse for a configuration in which
the NZD region occurs at approximately the central position of the pulse.
In this scenario, a Gaussian distribution is observed when the frequen-
cies are far from each other (corresponding to fast oscillations), and an
arcsine distribution arises within the NZD region.

PIC Stability and statistical characterisation

From a practical point of view, long-term stability of the scheme is a crit-
ical aspect. As we are interfering signals from two independent lasers,
intrinsic phase noise and temperature drifts can severely affect the perfor-
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Figure 3.14: Statistics on the output of the QES-PIC. (a) Histograms on
six sets of 200, 000 samples each taken over 14 h, confirming stable op-
eration of the QES-PIC device. (b) Autocorrelation function for 107 ran-
dom samples taken with a 20 GHz scope and a 50 GSa/s. Magenta and
green circles correspond to positive and negative correlation coefficients,
respectively.

mance. In Fig. (3.14a), we plot the histogram for six datasets with 200, 000
samples in each. High stability is observed between acquisitions taken
over a 14-hours period. Compared with the bulk case, higher stability is
observed with the integrated scheme. We attribute this effect mainly to
the fact that the two lasers are closely located in a region with uniform
temperature in the integrated case, whereas independent lasers with dif-
ferent packagings are used in the bulk experiment..

In Fig. (3.14b), we show the autocorrelation function Γx[k] ≡ ⟨xixi+k⟩−
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⟨x⟩2. Samples from the higher-loss PIC were acquired using a 50 GSa/s
resolution and 20 GHz bandwidth real-time scope, followed by a 30 dB
RF amplifier. The amplifier introduced noise at several frequency bands,
so we employed a 30 MHz high pass- band digital filter to remove low-
frequency components. In addition, in order to assess the quality of the
QES-PIC, we are interested in estimating the correlation of the beat note
only. In order to do so, we assume that the noise is independent of the
beat signal, and then calculate Γx = Γy−Γn, where Γy is the autocorrela-
tion of samples taken within the GS pulse, and Γn is calculated by taking
samples outside of the GS pulse - see Box. 5. We emphasise that this
technique is only valid for an estimation of the entropy source quality, but
will not work to estimate the autocorrelation of the raw data produced in a
real device. In the experiment, the use of a bare chip and RF probes in-
troduced significant noises. With a proper packaging and PCB soldering,
we expect these noises to be significantly reduced.

Box 5. Autocorrelation subtraction.

Let y = x + n be the signal that we measure, with x and n being inde-
pendent random variables. If Γz[k] ≡ ⟨zizi+k⟩ − ⟨z⟩2 is the autocorrelation
of a random variable z, we can calculate the autocorrelation of y as follows:

Γy[k] = ⟨(xi + ni)(xi+kni+k)⟩ − ⟨x+ n⟩2 
= ⟨xixi+k + xini+k + nixi+knini+k⟩ − ⟨x⟩2 − ⟨n⟩2

= ⟨xixi+k⟩+ ⟨nini+k⟩ − ⟨x⟩2 − ⟨n⟩2

= Γx[k] + Γx[k] (3.6)

The autocorrelation is calculated from a sequence with n = 107 sam-
ples and for a correlation delay distance of up to 500 samples. For such
a sequence length, the statistical uncertainty due to finite size effects is
3.16 × 10−4. Except for the d = 1 coefficient, which is significantly larger
than the statistical noise sensitivity, all the other coefficients fall within the
statistical noise level. We attribute the larger correlation at d = 1 to limi-
tations in the direct modulation of the DFB laser diode in the experiment,
leading to residual photons in the cavity from pulse to pulse. If this co-
efficient were due to phase-locking effects, we would expect it to last for
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much longer, not only for short correlation distances. Phase-locking is a
constant effect due to the injection of photons from the CW laser into the
GS laser, whereas residual photons due to not emptying the cavity fast
enough represent a pulse-to-pulse effect that would rapidly decay with
correlation distance. For the rest of coefficients (d > 1), we apply the
D’Agostino-Person’s normality test, finding a p-value of 0.18. Note that,
for an ideal random sequence, the correlation coefficients for d > 0 should
spread according to a normal distribution, with zero mean and standard
deviation given by the finite size effect sensitivity.

3.3 Conclusions

In this chapter, we have shown the integration of the phase diffusion quan-
tum random number generation technology on photonic integrated circuits
(PICs). First, we showed an all-optical integration on an Indium Phos-
phide platform with a novel two-laser scheme and heterodyne detection.
In this design, all the optical components, including laser, interferome-
ter and detectors, were integrated on the chip. We demonstrated that
GHz rates are possible in a form factor below 6 x 2 mm2 with standard
fabrication processes. Then, we also reported successful integration on
a Silicon Photonics platform, in which the critical interferometer and de-
tection components were integrated on the chip. By using an external
laser source, we observed high-quality interference at 1 GHz modulation
rates. The results of this chapter demonstrate the potential for large scale
and commercial production of quantum devices with standard fabrication
processes.



Chapter 4

Physical randomiser for
Bell-inequality-based
quantum technologies

Quantum nonlocality is one of the most striking predictions to emerge from
quantum theory. Beyond their fundamental interest, loophole-free Bell
tests enable powerful device-independent information protocols, guaran-
teed by the impossibility of faster-than-light communication. Bell tests and
device-independent protocols employ space-like separation of measure-
ments to guarantee the nonlocality of correlations and the monogamy of
correlations under the no-signalling principle. In addition to closing the
detection loophole, these experiments must also close two space-time
loopholes, namely, that no basis choice may influence a distant particle
(locality loophole), and that the entanglement generation must not influ-
ence the basis choices (freedom-of-choice loophole). In this chapter, we
describe the random number generation technology that was employed
by the first three experiments, closing, simultaneously, the detection and
locality loopholes, and addressing the freedom-of-choice loophole. By
combining the accelerated laser phase diffusion technology described in
previous chapters with real-time randomness extraction and metrological
assurances, the produced random digits satisfied the extremely stringent
conditions of these experimental tests.



92 Physical randomisers for Bell test implementations

4.1 Design considerations: freshness and purity

Random numbers used to determine the basis choice in a Bell test have
some special and very particular requirements when one is trying to close
loopholes. The first one is the ability to place strict predictability bounds
on the produced random digits. These bounds are extremely important
when statistically evaluating the strength of the Bell inequality violation.
The second types of requirements are related to space-time considera-
tions. In particular, the random events that determine the basis choice
have to be space-like separated from the distant detection station (local-
ity loophole) and from the production of the pairs of particles (freedom-of-
choice loophole), as illustrated in Fig. (4.1). This requires the generation
of random digits in a time window strictly shorter than the light-time be-
tween the detectors. This is what we call the freshness property. The
concept of freshness is very similar to the idea of latency, but with a sub-
tle, yet very important, consideration. Latency typically accounts for the
propagation or switch-on delay of a system. Freshness has a specific
consideration in the generation of random digits. In particular, the fresh-
ness time is defined as the time difference between the occurrence of the
relevant physical events influencing the value of the final bit, until such
bit is used to select a measurement basis. In this section, we describe
the proposed design for meeting all the relevant requirements mentioned
above. This includes the analogue design, the analog-to-digital conver-
sion, and the digital design for the randomness extraction stage in order
to achieve low unpredictability values. Recent publications have reported
progress towards the closure of the freedom of choice loophole by select-
ing the basis choice from cosmic sources (Handsteiner et al., 2017) and
by using human choices from thousands of participants in the so-called
Big Bell Test experiment (Abellan et al., 2018).

4.1.1 Analogue design

A single-mode laser diode (LD) is strongly current modulated, going above
the threshold level for about 2 ns out of every 5 ns cycle, to produce a train
of optical pulses with very similar waveforms, as seen in Fig. (4.4). In the
time below the threshold, strong phase diffusion randomises the optical
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Figure 4.1: Space-time diagram for the production of random numbers in
a loophole-free Bell scenario. As shown, up to k raw bits can be gener-
ated in a time window that is space-like separated from both (i) the pair
generation and (ii) the distant measurement. Laser pulses with random
phases ψi are converted into raw random bits di and extracted bits xi by
a running XOR (⊕) calculation.

phase within the laser, and, therefore, the relative phase ∆ϕ from one
pulse to the next. At the point when a pulse leaves the laser, it is already
a macroscopic (∼mW) signal, with a phase that has been fully randomised
by the microscopic process of spontaneous emission. See Fig. (4.3) for
an estimation of the average phase diffusion as a function of time. For
synchronisation with the experiments, all clock signals are generated from
a central phase-locked-loop (PLL) device with a 10 MHz reference input.
An unbalanced Mach-Zehnder interferometer (uMZI) converts the train of
phase-random pulses into amplitude-random pulses - see Fig. (4.4b) -
which are detected with a fast photodiode. The detected optical intensity
is given by:
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(a) Schematic

(b) Prototype

Figure 4.2: Random number generation scheme for loophole-free Bell
test experiments. (a) Experimental schematic. Laser pulses with random
phases ϕi from a semiconductor laser are converted into random powers
by an unbalanced Mach Zehnder interferometer (uMZI) and detected with
a linear photo-receiver (PIN PD) to give analogue voltages vi. These are
one-bit digitised with a comparator and D-type flip-flop to give raw bits di,
and summed modulo 2 with an XOR gate to give extracted bits xi. The
output value xi+k includes the parity of k raw bits, di+1 to di+k, due to
pulses space-like separated from the distant measurement and from the
entanglement production. (b) One of the six prototypes delivered to the
experimental groups. The prototypes have a general 10 MHz input clock
for synchronisation, and generate the 200 MHz signals internally using a
phase-locked-loop (PLL) chip.

pI(t) = ps(t) + pl(t) + 2
√
ps(t)pl(t) cos∆ϕ(t), (4.1)

being ps and pl the optical power from the short and long paths of the
interferometer, respectively, and ∆ϕ(t) the phase difference between the
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Figure 4.3: Observed frequencies (spot size) of field amplitude |E| and
resulting average phase diffusion ⟨∆ϕ(∆T )2⟩ over ∆t = 50 ps. These
quantities are derived from a Kalman filtering reconstruction of hetero-
dyne measurements of two lasers, one of them acting as a local oscillator
with fixed current, and the other one as the test laser; see (Abellan et
al., 2015b) for further experimental details. The test laser was operated
with several currents (colors, left to right) 15, 16, 16.5, 17, 17.5 and 19 mA
(colours left to right). Grey line shows ⟨∆ϕ(50 ps)2⟩ ∝ |E|−1 scaling of
spontaneous-emission-driven phase diffusion, as theoretically expected.
Because of the loss of coherence when biasing the test laser to low, the
minimum current that could be tested using heterodyne measurements
was 15 mA. In real operation, the gain-switched laser biasing current dur-
ing the off-time of the pulse is much lower (implying a faster phase diffu-
sion rate), and remains in the off-regime for around 3 ns rather than 50 ps
(i.e. around 60 times longer).

fields in the two paths. The detected voltage can be written as the con-
volution ∗ of the detected intensity with the impulse response of the pho-
todetector. If we let h be the impulse response, then the detected voltage
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(a) Input pulses

(b) Interfering pulses

Figure 4.4: Persistence mode visualisation of pulse statistics after the
photodetector. Warmer colours show greater frequency; teal histogram
on the left axis describes the voltages sampled inside the time window
indicated in grey. (a) Non-interfering pulses obtained by blocking the long
interferometer path; (b) Interfering pulses.

reads as v(t) = h ∗ pI(t). Because the bandwidth of the photoreceiver is
much larger than the pulse repetition frequency, the signal mainly repre-
sents the optical energy received within the last τPD ∼ 100 ps, and, thus,
from the present pulse. Nevertheless, we need to take account of “hang-
over error,” i.e., delayed contributions from previous pulses. To model
this behaviour, we define the impulse response as h(t) = hf (t) + hs(t),
where hf (t) represents the fast response of the detector and is non-zero
for 0 ≤ t ≤ 5 ns, and hs(t) accounts for the delayed response and is
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non-zero for t > 5 ns only. Then, we can write the detected voltage as:

v(t) = (hf + hs) ∗ pI(t) + vPD(t)

= hf ∗ pI(t) + hs ∗ pI(t) + vPD(t) 
= vs + vl + vϕ + vH + vPD, (4.2)

where vs,l(t) ≡ hf ∗ ps,l(t), vϕ ≡ V √vsvl cos∆ϕ ≡ hf ∗ (
√
pspl cos∆ϕ),

with V being the visibility of the interference, vH ≡ hs ∗ pI(t), and vPD(t)
the photodetector noise.

4.1.2 Digital design

A fast comparator and a D-type flip-flop digitise the signal (with one-bit res-
olution) at times ti to give raw digital values di = θ[v(ti)−vref (ti)] at a rate
of 200 Mb/s. Here, θ is the Heaviside step function and vref is the com-
parator reference level. In Eq. (4.2), the only term that contains space-like
separated randomness comes from the phase diffusion process vϕ(t). By
defining the sum of all the untrusted terms as vc ≡ vs+vl+vH+vPD−vref ,
we can conveniently write the voltage signal as the sum of a trusted vari-
able plus all the untrusted variables as

v(t) = vϕ(t) + vc(t) (4.3)

and the value of every new digital bit as

di = θ
[
vϕ(ti)− vc(ti)

]
. (4.4)

Hence, we can now calculate the distribution function of the raw bits as

P (di = 0) = P
(
vϕ(ti) + vc(ti) ≤ 0

)
= P

(
vϕ(ti) ≤ −vc(ti)

)
. (4.5)

The expression on the right is, by definition, the cumulative distribution
function of vϕ. As described in chapter 2, the distribution function of the
cosine of a random variable is given by the arcsine distribution, which can
be written as

P (vϕ = x) =
1

π
√

(∆vϕ − x)(x−∆vϕ)
, (4.6)
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for |x| ≤ ∆vϕ, with ∆vϕ = 2V√vsvl being the peak-to-peak range of vϕ.
From Eq. (4.6) we can calculate the cumulative distribution function of vϕ
as

P (vϕ ≤ x) ≡
∫ x

−∞
dxP (vϕ) =

2

π
arcsin

√
1

2
+

x

2∆vϕ
. (4.7)

Finally, by using Eq. (4.7) in Eq. (4.5), we find that the probability of di = 0
is given by

P (d = 0) =
2

π
arcsin

√
1

2
− vc

2∆vϕ
, (4.8)

for |vc| ≤ ∆vϕ. Similarly, we can find the probability of di = 1 as P (di =
1) = 1− P (di = 0), namely

P (d = 1) =
2

π
arcsin

√
1

2
+

vc
2∆vϕ

, (4.9)

In the experiments, the reference level for the comparator was set by
feedback from the raw digital values via an integrator with a 1 ms time
constant. Firstly, this slow feedback mechanism compensates for any
possible laser drift in the long run, and also, it simplifies the integration
and stability of the system in the experiments. We observed a raw-bit
average of ⟨d⟩ = 1

2 [1 + 6.9(1)× 10−4].

4.1.3 Randomness extraction circuitry

A continuous parity calculation is performed as a randomness extractor.
An XOR gate and a second flip-flop update the output x as xi = xi−1 ⊕
di, where ⊕ indicates an addition modulo 2. This describes a two-state
machine, which changes state every time a new raw bit di = 1 and stays
in the same state whenever di = 0, resulting, in principle, in a perfectly
unbiased output distribution (see Box 6). Note that x accumulates the
parity of all preceding raw bits, only k of which will be space-like separated
from the distant measurement station. Therefore, only those k bits can
be accounted for in the randomness analysis. As a result, when a bit
xi+k = xi ⊕ di+1 ⊕ · · · ⊕ di+k is used for a basis setting, xi contributes
no space-like separated randomness, and the predictability of xi+k will
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be determined by di+1 ⊕ · · · ⊕ di+k ≡ Di,k . Writing the predictability of di
(i.e. the probability of the more likely value), as P(di) =

1
2(1 + ϵi), where

ϵi ≥ 0 is the instantaneous excess predictability, we find (see Box 7) that
if we can bound the instantaneous predictability of the raw bits ϵi ≤ ϵmax,
then the predictability of the parity of k bits will be bounded as:

P(Di,k) ≤
1

2
(1 + ϵkmax). (4.10)

In other words, the RE output approaches ideal randomness exponentially
in k (see Box 7).

Box 6. Distribution of the output of a two-state machine with arbitrary
transition probabilities

If we take a two-state machine defined by xi = xi−1 ⊕ di, with x being
the state of the system and d the input bit, the probability that the output is
1 in the next time step can be calculated as

P (xi = 1) = P (xi−1 = 0 ∩ di = 1) + P (xi−1 = 1 ∩ di = 0)

= P (di = 1)P (xi−1 = 0) + P (di = 0)P (xi−1 = 1), (4.11)

where we used the independence property P (a ∩ b) = P (a)P (b). Now, by
assuming the process to be stationary, i.e. not dependent on time, we use
P (xi = 0) = P (xi−1 = 0), finding

P (x = 0) = P (d = 1)P (x = 0) + P (d = 0)P (x = 1), (4.12)

or equivalently

P (x = 0) =
P (d = 0)P (x = 1)

1− P (d = 1)
(4.13)

From this last equation, by using the fact that P (d = 0) = 1− P (d = 1), we
finally find

P (x = 0) = P (x = 1). (4.14)

This means that the density function of the two state machine is totally un-
biased, independently of the specific probability distribution function of the
raw bits d.
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Box 7. Predictability of the parity of k bits using a weak entropy source
model

As shown in Eq. (4.3), our signal is composed of vϕ, a completely unpre-
dictable term due to its physical origin, and vc, a term containing the effect
of other non-trustable processes. Here, we want to calculate the predictabil-
ity of the parity of multiple partially-random bits. Let a = θ[v

(a)
ϕ + v

(a)
c ] and

b = θ[v
(b)
ϕ + v

(b)
c ] be two bits obtained from our weak entropy source, where

superscripts (a) and (b) represent each of those two realisations. Since v(a)c

and v(b)c are not trusted to be independent, the joint probability distribution
function P (a, b) is not in general separable. However, because of the inde-
pendence of the trustable term, the joint conditional probability separates
as

P (a, b|v(a)c v(b)c ) = P (a|v(a)c )P (b|v(b)c ). (4.15)

In general, for a partially-random bit d, the predictability is defined as
P(d) ≡ max[P (d = 0), P (d = 1)]. A totally unpredictable source has pre-
dictability 1/2, so writing P(d) ≡ 1

2 (1 + ϵd), we define the predictability error
as ϵd ≡ 2P(d) − 1. Considering now the two partially-random bits a and b
with predictabilities P(a) and P(b) respectively, the predictability of a ⊕ b is
the larger of

P (a⊕ b = 0) = P (a = 0)P (b = 0) + P (a = 1)P (b = 1) (4.16)

or:
P (a⊕ b = 1) = P (a = 1)P (b = 0) + P (a = 0)P (b = 1), (4.17)

We find that we can conveniently write this as

P(a⊕ b) = P(a)P(b) + [1− P(a)][1−P(b)]. (4.18)

By multiplying both terms by a factor of 2 and subtracting 1, we find

2P(a⊕ b)− 1 = 2P(a)P(b) + 2[1− P(a)][1− P(b)]− 1 (4.19)
= 2P(a)P(b) + 2− 2P(a)− 2P(b) + 2P(a)P(b) (4.20)
= 4P(a)P(b)− 2(P(a) + P(b)) + 2 (4.21)
= [2P(a)− 1][2P(b)− 1], (4.22)
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and, using our definition of predictability error ϵx = 2P(x)− 1, we find

ϵa⊕b = ϵaϵb. (4.23)

If we now bound the predictability error of each bit as ϵx ≤ ϵx,max, the
error of the parity can be bounded as

ϵa⊕b ≤ ϵa,maxϵb,max, (4.24)

since ϵa⊕b is monotonically increasing with ϵa and ϵb. Finally, if we combine
the parity of k bits di for i = 1, · · · k, i.e. D(di,k) ≡ d1 ⊕ · · · ⊕ dk, and
repeatedly apply Eq. (4.24), we find

ϵDi,k
=≤

k∏
i=1

ϵdi,max (4.25)

showing an exponential approach to ideal randomness.

4.2 Measuring the age of the random bits

As illustrated in Fig. (4.1), the time window for randomness generation
is bracketed on the early side by the requirement for space-like separa-
tion from the distant detection, and on the late side by the requirement
for space-like separation from the pair generation. Ensuring that the ran-
dom events fall within this window requires both upper and lower bounds
on the freshness time. We measure the timing of relevant events using
a differential probe and a 4 GHz real time oscilloscope (Agilent Infinitum
MSO9404A). As shown in Fig. (4.5), we measure three delays in the cir-
cuit: (i) from the modulation of the laser, measured directly on the pins of
the laser (conservative measurement), to the output of the photodetector
(t1), (ii) from the output of the photodetector to the input of the XOR gate
(t2), and (iii) from the input of the XOR gate to the CML output connector
(t3). We split these into three intervals to assist with the traceability of
the signal while travelling through the electronics. All delays are quan-
tified by capturing traces and using cursors to identify the zero-crossing
times of the relevant edges. As shown in Fig. (4.6), for each transition we
identify a best guess t(best)i limited by the uncertainty of the interpolation
between 50 ps samples. We find t(best)1 = 7.82 ns, t(best)2 = 1.16 ns, and
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Figure 4.5: Schematic of the random number generator with timing in-
formation as directly measured by a 4 GHz real time oscilloscope. t1 de-
scribes the time from the rising edge of the current pulse to the rising edge
of the PIN PD output pulse, t2 describes the time from the PIN PD pulse
to the input of the XOR gate, and t3 the time from the input of the XOR
gate to the output SMA port.

t
(best)
3 = 1.55 ns.

Measuring the intervals on the oscilloscope can cause a systematic
error, which we now bound. In light of the ∼ 100−150ps 10%-90% rise and
fall times of the transitions, it is extremely improbable that we will misjudge
the location of the edge by 100 ps or more, as this would mean placing the
best guess outside of the transition region. As illustrated in Fig. (4.6), we
calculate the upper and lower bounds for the transition times as t(ub)i =

t
(best)
i + 100 ps and t(lb) = t

(best)
i − 100 ps, respectively. By combining the

three measured intervals we find τ (ub,sys) = t
(ub)
1 + t

(ub)
2 + t

(ub)
3 = 10.87 ns

and τ (lb,sys) = t
(lb)
1 + t

(lb)
2 + t

(lb)
3 = 10.21 ns. Fig. (4.7) shows the sequence

of measurements performed.
The jitter of the signal plus the jitter of the oscilloscope is quantified by

accumulating 107 traces using the persistence mode of the oscilloscope.
Measuring the rising edge of the signal at the photodiode output, we ob-
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Figure 4.6: For a given captured trace, the best- guess estimate for the
zero-crossing time is found by interpolation between the 50 ps samples
of the 20 Gsps oscilloscope, with systematic uncertainty (orange circles).
To obtain the upper bound (purple) and lower bound (blue) for the zero-
crossing time, we add or subtract the half-width of the transition. Statis-
tical uncertainty is accounted separately from the statistics of 107 traces
collected in the oscilloscope’s persistence mode.

serve that all of the traces fall within a 125 ps temporal window; there is no
recorded value outside of this window. Making the hypothesis that events
outside of this window will occur with probability of at least 1.4× 10−6, we
can expect > 14 events on average outside of this window. A Poisson
distribution with this mean predicts our observed zero events with prob-
ability 8 × 10−7. We can, therefore, reject the hypothesis and assign a
p-value p < 1.4 × 10−6 confidence to the 125 ps window for the mea-
sured zero-crossings. We note that this does not count the contribution
of the oscilloscope to the jitter and is, thus, a conservative estimate. The
freshness time combines intervals from three cascaded measurements.
Adding three such windows, the conservatively estimated window for the
full process is 3 × 125 = 375 ps. Half of this, i.e. 187.5 ps, can be as-
signed to the upper limit, and half to the lower. For simplicity, we use a
conservative round number and define the jitter bound as τjitt = 200 ps.

The lower and upper bounds for the freshness time of a single bit,
including statistical and systematic errors, conservatively estimated, are
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Figure 4.7: Details of the sequence of measurements used to obtain the
freshness time. We start by measuring the modulation pulse directly at the
laser diode pins (1). The LD generates an optical pulse sometime after
the modulation pulse is applied (2). Then, the signal is photodetected
and measured (3). The difference between (1) and (3) gives t1. Next,
the electrical pulse is digitised by a fast comparator and latched by a first
flip-flop (4), and then propagates until the input of an XOR gate (5). At the
input of the XOR gate we can tap the signal and measure the arrival time.
The difference between (3) and (5) gives t2. Finally, the signal goes into
the randomness extraction circuitry, and propagates to the output, where
we measure the arrival time again (6). The difference between (5) and (6)
gives t3.
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then

τ
(lb,sys)
f − τjitt < τf < τ

(ub,sys)
f + τjitt

10.01 ns < τf < 11.07 ns (4.26)

The clock of the RNG is derived from an external reference via a
phase-locked loop, introducing a timing uncertainty that is nominally <
1 ps and negligible on the scale of the other uncertainties. The freshness
time for k events is therefore given by

τ
(k)
f = τf + (k − 1)× 5 ns, (4.27)

with 5 ns being the laser’s modulation period.

4.3 Unpredictability bounds via randomnessmetrol-
ogy

In order to upper bound the instantaneous predictability error, we follow a
metrology approach based on the detection model in Eq. (4.2) and a char-
acterisation of the involved noises. In particular, we quantify the noise in
the detector and the long and short path of the interferometer, the noise in
the analogue-to-digital conversion, and the memory effects due to band-
width limitations. The measured and derived noises are summarised in
Table (4.1). Below, we describe the experimental procedure.

4.3.1 Directly measurable noises

Statistics of the photodetection noise, and fluctuations in the long and the
short paths of the interferometer, can be taken from the output of the pho-
todetector. The statistics are measured with an AC-coupled oscilloscope
(Agilent Infiniuum MSO9404A) with a 4 GHz input bandwidth and an 8-
bit resolution, and are acquired as histograms of sampled voltages within
a 50 ps window. For instance, to measure the photodetector noise, we
connect the output of the detector to the oscilloscope, and we switch off
the laser. The measured quantity thereby contains the fluctuations of the
photodetector, plus the uncertainty introduced by the oscilloscope. To
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Measured RMS dev. Derived Mean RMS dev.
vO 1.7

vD + vO 1.9 vD 0.8
vs + vD + vO 2.2 vs 251 1.1
vl + vD + vO 2.3 vl 251 1.3

vl + vH + vD + vO 4.4 vH 3.8
v′O 3.4

vref + v′O 8.4 vref 7.7
v′′O 7

vϕ + vs + vl + vD + vH + v′′O 354 ∆vϕ 483

Table 4.1: Measured noise statistics. All voltages are in mV. vO,
v′O and v′′O indicate the oscilloscope noise at gains of 50 mV/division,
100 mV/division and 200 mV/division, respectively. vl + vH + vD + vO is
measured using an interrupted pulse train, as in Section 4.3.3. vref + vO
is measured using the x-y method of Sec. 4.3.2. ∆vϕ is determined from
the fit of Fig. 3.

retrieve the noise from the photodetector alone, we should subtract the
noise in the scope. Similarly, to measure the fluctuations in the short and
long arms of the photodetector, we can block the long and the short paths
respectively. Importantly, the noise in the oscilloscope depends on the
dynamic range setting. The larger the dynamic range, the larger the digi-
tisation noise. Oscilloscope noises at different scales are also shown in
Table (4.1)

4.3.2 A/D noise

In addition to a direct measurement of vref , the comparator reference volt-
age, we can also measure the input-output relation of the comparator chip.
Note that while an ideal comparator converts each analogue input into an
unambiguous digital output, a real comparator has noise and, therefore,
the conversion of input values near the reference voltage is noisy. In or-
der to quantify this “transition voltage” range, it is not sufficient to measure
the reference noise, as any extra effect occurring inside the comparator
itself or lack of knowledge of the performance of the device would be ne-
glected. We emphasise that this measurement makes no assumptions at
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Figure 4.8: Schematic for the characterisation of the comparator chip.
The signal from the photodetector (PD) is split in two by means of a 3-dB
RF splitter. One of the signals is sent to the comparator and the other
is sent to the scope. By comparing the digital value obtained with the
chip and the input value measured with the scope, we can quantify the
performance of the comparator. Note that this measurement assumes
the oscilloscope as a reference device, but this equivalent to putting the
scope’s noise in the signal, making the measurement conservative.

all about the circuit.
We now describe the measurement setup, as shown in Fig. 4.8. We

use a 3 dB splitter (Mini-Circuits ZFRSC-183-S+) after the photodetector
in order to get two copies of the output analogue random amplitude v1
and v2. We send v1 to the comparator input and v2 to the oscilloscope,
which also records the output of the first flip-flop, i.e. the comparator out-
put latched exactly at the same point the oscilloscope is sampling. In
order to match the sampling points of the oscilloscope and the flip-flop,
we sweep the scope’s sampling point in steps of 10 ps until we find the
best agreement - see Fig. 4.9(a). Note that having a mismatch in the
sampling between the comparator and the scope leads to an incorrect
characterisation of the digitisation errors. The closer the sampling points,
the more accurate the result. Once the optimal sampling point is found,
we can calculate which is the probability of obtaining a zero or a one, con-
ditioned on the input value as measured by the scope - see Fig. (4.9(b)).
We calculate P (d = x|v2) for x ∈ {0,1}, finding a small but finite region
in which near the threshold region, as expected, in which the same input
analogue voltages give rise to different digital outputs.

Note that the characterisation of the digitisation noise suffers from
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(a) Detuning

(b) Transition noise

Figure 4.9: (a) Probability of getting an output of zero or one for each
input analogue voltage v2, i.e. cumulative distribution function of the input
signal. As observed, there is a small region near the threshold region in
which input values can give zero or one with certain probabilities. The
transition probability from 0 → 1 (1 → 0) is in excellent agreement with
the integral of a Gaussian variable with σvref ≤ 7.7 mV. (b) Measured
noise as a function of the detuning between the oscilloscope sampling
time and the flip-flop sampling time. We emphasise that this measurement
is conservative, as the measured error is necessarily larger than the real
error.
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some limitations. Ideally, we would need (i) the two outputs of the 3-
dB splitter, as well as the impulse response of the comparator and the
oscilloscope, to be identical, and (ii) as discussed above, the sampling
point of the oscilloscope and flip-flop to be the same. In practice, un-
fortunately, (i) the two outputs of the 3-dB splitter are not identical (their
difference is measured to be well described by a Gaussian distribution
with zero mean and 1.32 mV RMS deviation), and (ii) the timing precision
is limited to 10 ps. Note that the presence of both limitations are conser-
vative from a measurement point of view, i.e., the real error will always
be smaller than the measured error. The narrowest observed transition
is depicted in Fig. (4.8), and shows an RMS width of 8.4 mV. Considering
that the oscilloscope noise is 3.4 mV RMS, we can place an upper limit
vref ≤ 7.7 mV. In Fig. (4.9(b)), we depict the measured probabilities as
well as the cumulative distribution function of a Gaussian variable with
σ = 7.7 mV, showing excellent agreement with the observations.

4.3.3 Hangover noise

To measure the hangover errors, we periodically interrupt the modulation
of the LD using an RF switch (Mini- Circuits ZASWA-2-50DR+) at 10 MHz.
This generates a train of optical pulses at the output of the laser. Due to
the relative path difference in the interferometer, three different types of
pulses emerge: (i) the first output pulse, which contains only a short-path
contribution and experiences no interference, (ii) the intermediate pulses,
which contain both short and long-path contributions and show interfer-
ence and (iii) the last pulse, which contains only a long-path contribution
and, thus, shows no interference. This last pulse also contains any de-
layed response, i.e. “hangover” from previous pulses. By measuring the
statistical behaviour of this last pulse, and comparing it with the long-path
signal obtained by blocking the short-path, we can recover the contribu-
tion from hangover errors. This is illustrated in Fig. (4.10), which shows
a train of nine optical pulses. In the experiment, trains of ten pulses were
used.
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Figure 4.10: Measurement of “hangover error.” Upper image shows per-
sistence mode oscilloscope trace of trains of 9 optical pulses giving rise
to 8 strongly interfering pulses followed by one pulse without interference,
shown in higher resolution in the lower image. Pulse repetition period is
5 ns. Teal histograms on left vertical axis show data sampled in the region
defined by the white cursors. “Hangover,” i.e., remaining variation from
previous pulses, is visible at the start of the lower trace, and decreases
approaching the sampled point.

4.3.4 Deriving the bounds from the observed noises

By using Eq. (4.10) we can estimate the predictability of the source af-
ter combining the parity of k bits. However, an upper bound on the pre-
dictability of the raw bits, ϵmax, is required. In order to estimate ϵmax,
which accounts for the worst-case instantaneous effect that can be ob-
served at a single-bit level (i.e. the worst-case predictability of a single
bit), we take the largest of Eqs. (4.8-4.9) based on the metrological mea-
surements obtained in the previous section. This can be written simply
as

ϵmax =
2

π
max

{|vc|,∆vϕ}
arcsin

√
1

2
+

|vc|
2∆vϕ

, (4.28)

and corresponds to finding the largest possible value of the untrusted
noises max |vc| and the smallest value of ∆vϕ = 2V√vsvl.
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Maximising |vc|

In order to maximise the instantaneous effect, we will replace |vc| in Eq. (4.28)
with ⟨|vc|⟩+κσvc , where ⟨|vc|⟩ is the average value of the untrusted noises,
σvc is the combined standard deviation, and κ, a free parameter, speci-
fies the frequency of events that will fall outside of the defined range. For
κ = 6, for instance, it represents a 6σ confidence level on the derived
estimate, or equivalently that 1 out of every ∼ 500000000 events will be
outside of the range. We calculate ⟨vc⟩ from Eq. (4.9), finding

⟨vc ⟩ = 2∆vϕ[⟨sin2 πP (d = 1)/2⟩ − 1/2] (4.29)
≈ 2∆vϕ[sin2 π⟨P (d = 1)⟩/2− 1/2], (4.30)

where the approximation of ⟨sin2(P (d = 1)π/2) is justified in light of the
fact that |vc| << ∆vϕ. We measure ⟨P (d = 1)⟩ = 0.50035, and therefore
find directly ⟨vc⟩ = 3.0 mV. For the RMS deviation σvc , since we cannot
measure it directly, we consider three levels of distrust of the equipment,
which we name as “ordinary,” “digitiser paranoid” and “fully paranoid.” In
all cases, the noises are individually described by the measured statistics
in Table 4.1, but their assumed correlations vary. In ordinary distrust, we
make the physically reasonable assumption that the noise sources are un-
correlated. In digitiser paranoid distrust, we assume that the comparator,
the only nonlinear element of the signal chain, chooses vref in function of
the other noises in order to maximise the predictability. In fully paranoid
distrust, we assume that all noise sources are collaborating to maximise
predictability. We can write these different scenarios as,

(ordinary) σvc =

√∑
i

σ2i (4.31)

(digitiser paranoid) σvc = σvref +

√ ∑
i /∈vref

σ2i (4.32)

(fully paranoid) σvc =
∑
i

σi (4.33)

where the summation is performed over all the untrusted noises and σi
represents the RMS deviation of each independently characterised noise.
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Distrust level Noise σvc ϵ4max (26 ns) ϵ6max (36 ns)
Ordinary 8.6 mV 2.5× 10−5 1.3× 10−7

Dig. par. 11.7 mV 8.6× 10−5 8.0× 10−7

Fully par. 14.5 mV 2.0× 10−4 2.9× 10−6

Table 4.2: Noise and predictability for different trust scenarios. All pre-
dictabilities are given for a 6σ confidence level. Times in parentheses
indicate freshness time τ (k)f . See text for details.

These assumptions lead to normally-distributed vc with RMS deviations
shown in Table 4.2. Fluctuations in vc are, in principle, unbounded but
rarely exceed a few standard deviations, a situation that is captured by
assigning confidence bounds, in this case to P(d) and P(x). In the case
of the numbers depicted in Table 4.2, κ = 6 is used. Noise fluctuations will
produce a fraction P6σ of the raw bits with ϵ > ϵmax, where P6σ ≈ 2×10−9.
The excess predictability of the extracted bit exceeds ϵkmax at most this
often, even assuming maximally correlated raw-bit excess predictability.

Minimising ∆vϕ = 2V√vsvl

To minimise this expression, we first need to estimate V. We do so by
following a Monte Carlo approach based on Eq. (4.2). By using the knowl-
edge acquired during the characterisation of our equipment, we can write
the interference process as a function of the interference visibility V only,
i.e. we can write Eq. (4.2) as

f(V) = vs + vl + V 
√
vsvl cos∆ϕ+ vH + vPD, (4.34)

where vs(t) and vl(t) represent the long and short path signals of the in-
terferometer, respectively, ∆ϕ the phase difference between subsequent
optical pulses, vH the hangover errors, and vPD the photodetector noise
signal. From the metrological characterisation, we find that all the vari-
ables described in this equation, except for V and∆ϕ, can be described by
normal distributions with measurable parameters. We run a Monte Carlo
numerical simulation sweeping the unknown value of V from 0.8 · · · 1 in
steps of 0.05, while setting the rest of the noise variables to normal distri-
butions with the parameters given in Table 4.1. In the case of ∆ϕ, we use
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(a) Histogram (b) LSQ error

Figure 4.11: Measured and simulated distributions for the accelerated
phase diffusion process. (a) Measured histogram with the least square
error Monte Carlo simulation in shaded points. (b) Least square error
calculated after sweeping the visibility parameter. A secondary free pa-
rameter is introduced in the fitting procedure to account for mean value
displacement along the voltage axis.

a normal random process also with a standard deviation ≫ 3, in agree-
ment with the phase diffusion measurements depicted in Fig. (4.3). In
every Monte Carlo step, we accumulate 10 Mb of data. We then calculate
the resulting histogram, and, finally, we calculate the deviation between
the simulated histogram and the measured histogram. The result with
the best fit is obtained for V(LSE) = 0.955. The least-square-error for the
sweeping step and the resulting histogram can be seen in Fig. (4.11).

Finally, in the term √
vsvl in Eq. (4.34) we use vs → ⟨vs⟩ and vl → ⟨vl⟩.

To correct for fluctuations in these two terms with a confidence of κ = 6
we multiply by the correction factor, finding√

1− 6σvs/⟨vs⟩
√

1− 6σvl/⟨vl⟩ ≈ 0.971

4.4 Statistical analysis

Although no output test of the output can assure randomness, tests can,
nonetheless, detect failures. In this section, we follow two strategies for
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such testing. First, we compute the autocorrelation of the data. Second,
we apply standard batteries of statistical tests. Several statistical batter-
ies are used to test the quality of the output, including the TestU01 Al-
phabit battery (L’Ecuyer et al., 2007), the NIST SP800-22 battery (Rukhin
et al., 2010), and the Dieharder battery (Brown, 2016; Marsaglia, 1985).
The results are consistent with ideal randomness for k = 3 and above.
Due to the high output rate of the RNG, testing is limited by computation
speed for the various tests. In this respect, Alphabit has a significant ad-
vantage, as it was designed for testing physical RNGs, without the more
computationally-intensive tests used for pseudo random number genera-
tors. For example, testing a 1.5 Gb sequence with the NIST battery takes
more than 3 hours on a desktop computer whereas the Alphabit battery
takes one minute.

Autocorrelation

Because of the low computational capacity of physical RNGs, imperfec-
tions are expected mostly in low-order correlations, as shown in Fig (4.12).
We use the unbiased estimator for the autocorrelation of the extracted
output

Γx(k) = ⟨xixi+k⟩ − ⟨xi⟩2. (4.35)

Considering the output of the RE, with xi = xi−1⊕di, where di are raw
bits, we note that x can be described as a symmetric two-state machine
that changes state whenever d = 1. By using this property, and as detailed
in Box 8, we find a closed upper bound form for the correlation, given by

Γx(k) ≤
1

4
ϵkmax, (4.36)

and, therefore, the next-bit correlation coefficients decay to expected be-
haviour exponentially in k. Also, note that the values of the correlation
coefficients are directly related to the bias; the larger the bias, the larger
the correlation. In Fig. (4.13a) we show the next-bit correlation coefficient
(d = 1) for a dataset using different values of extraction depth k, clearly
showing the exponential decay for increasing k. Then, in Fig. (4.13b), we
show the autocorrelation for a data set of 1 Tb for k = 4, showing calcu-
lated values within the statistical sensitivity up to a correlation distance of
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Figure 4.12: Autocorrelation of the raw data for two high-bandwidth pho-
todetectors. As observed, for exactly the same input signal, the Nortel
photodetector (orange dots) shows a relatively long positive correlation
coefficient that vanishes to the statistical noise level after d = 200. In
contrast, for exactly the same input signal, the discovery photodetector
(purple dots) falls within the statistical level much quicker. Thus, the cor-
relation is not on the optical signal, but, rather, it is a memory effect of
the photodetector. We attribute the larger correlation in the Nortel pho-
todetector to long-lived states. A sample size of 100 Mb is used for both
measurements, leading to a statistical noise level of 10−4. The noise level
is shown as a grey line.

d = 9. The statistical sensitivity for such a large dataset is ∼ 10−6. Finally,
in Fig. (4.14), we take the same 1 Tb dataset but instead of computing the
correlation for the whole sequence, we split it into 1, 000 sequences of
1 Gb each, and study the distribution function of the correlation coeffi-
cients. For an ideal random sequence, we expect all these distributions
to be normally distributed with zero mean and standard deviation given
by the statistical sensitivity (3.16 × 10−5 for 1 Gb sequences). All corre-
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Figure 4.13: Autocorrelation data obtained from the output of the pro-
totypes. (a) Comparison between derived correlation bounds from the
metrological characterisation and the calculated correlation coefficients
for several extraction depths. As observed, the calculated correlations
are below the derived bounds, showing the very conservative nature of
the randomness metrology procedure. (b) Autocorrelation calculated with
a long dataset of 1 Tb for extraction depth k = 4. All coefficients are within
the statistical sensitivity.

lation coefficients pass the normality test from the SciPy library (Python),
based on the D’Agostino and Pearson tests (R. B. D’Agostino, 1971; R.
D’Agostino et al., 1973).

Box 8. Autocorrelation of a two-state machine

By using the correlation estimator

Γx(k) = ⟨xixi+k⟩ − ⟨xi⟩2 (4.37)

and letting xi = xi−1⊕di be the output of a two-state machine, with di being
the new input value at time i, we will calculate here an expression for the
correlation based on the predictability of the raw data max[P (d = 0), P (d =
1)] < 1

2 (1 + ϵmax).
From Eq. (4.37), we note that the term ⟨xixi+k⟩ is only different from

zero for xi = 1 and xi+k = 1. In the case of our two-state machine, this
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Figure 4.14: Distribution function of the autocorrelation coefficients eval-
uated from the computation of 1000 datasets of 1 Gb each. All coefficients
are distributed according to normal statistics, as expected from a random
sequence. All correlation coefficients pass normality tests.

situation corresponds to having an even number of transitions between i
and i+ k, or equivalently, and even number of input values equal to 1, i.e:

P (xi = 1 ∩ xi+k = 1) = P (xi = 1|xi+k = 1)P (xi+k = 1)

=
1

2

⌊k/2⌋∑
j=0

(
k

2j

)
P (d = 1)2jP (d = 0)k−2j .

Let us assume that the predictability of the raw data is P (d = 0) = 1
2 (1 +
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ϵmax). We find:

P (xi = 1 ∩ xi+k = 1) ≤ 1

2

⌊k/2⌋∑
j=0

(
k

2j

)
(
1

2
− ϵmax)

2j(
1

2
+ ϵmax)

k−2j

Then, by using the fact that:

⌊k/2⌋∑
j=0

(
k

2j

)
p2j(1− p)k−2j =

1

2

(
1 + (1− 2p)k

)
, (4.38)

and using that p = 1
2 (1− ϵmax), we get to

P (xi = 1 ∩ xi+k = 1) ≤ 1

4
(1 + ϵkmax).

Finally, if we substitute this into Eq. (4.37), using also the fact that ⟨xi⟩2 =
1/4 by definition (the two-state machine is unbiased), we get the simple
expression for the autocorrelation

Γx(k) ≤
1

4
ϵkmax (4.39)

4.4.1 NIST SP800-22 battery of statistical tests

As per NIST recommendations (Rukhin et al., 2010), we use 1500 se-
quences of 1 Mb each to assess the random numbers generated by the
device. The tested sequences pass both the proportion and uniformity of
the p-values assessments - see Fig. (4.15).

4.4.2 Dieharder battery of statistical tests

We run the Dieharder test with default settings. Results are shown in
Table 4.3.
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Test name N tuple t samples p samples p-value Res.
diehard birthdays 0 100 100 0.869 P
diehard operm5 0 1000000 100 0.627 P
diehard rank 32x32 0 40000 100 0.491 P
diehard rank 6x8 0 100000 100 0.469 P
diehard bitstream 0 2097152 100 0.949 P
diehard opso 0 2097152 100 0.412 P
diehard oqso 0 2097152 100 0.491 P
diehard dna 0 2097152 100 0.782 P
diehard count 1sstr 0 256000 100 0.595 P
diehard count 1sbyt 0 256000 100 0.441 P
diehard parking lot 0 12000 100 0.996 W
diehard 2dsphere 2 8000 100 0.936 P
diehard 3dsphere 3 4000 100 0.941 P
diehard squeeze 0 100000 100 0.587 P
diehard sums 0 100 100 0.761 P
diehard runs 0 100000 100 0.120 P
diehard runs 0 100000 100 0.517 P
diehard craps 0 200000 100 0.862 P
diehard craps 0 200000 100 0.970 P
Marsag. tsang gcd 0 10000000 100 0.681 P
Marsag. tsang gcd 0 10000000 100 0.208 P
sts monobit 1 100000 100 0.153 P
sts runs 2 100000 100 0.800 P
sts serial 1 . . . 16 100000 100 0.120−−0.987 P
rgb bitdist 1 . . . 12 100000 100 0.076−−0.960 P
rgb minimum dist. 2 10000 1000 0.194 P
rgb minimum dist. 3 10000 1000 0.459 P
rgb minimum dist. 4 10000 1000 0.540 P
rgb minimum dist. 5 10000 1000 0.829 P
rgb permutations 2 100000 100 0.592 P
rgb permutations 3 100000 100 0.773 P
rgb permutations 4 100000 100 0.985 P
rgb permutations 5 100000 100 0.478 P
rgb lagged sum 0 . . . 32 1000000 100 0.114−−0.993 P
rgb kstest test 0 10000 1000 0.814 P
dab bytedistrib 0 51200000 1 0.459 P
dab dct 256 50000 1 0.805 P
dab filltree 32 15000000 1 0.227 P
dab filltree 32 15000000 1 0.612 P
dab filltree2 0 5000000 1 0.188 P
dab filltree2 1 5000000 1 0.490 P
dab monobit2 12 65000000 1 0.437 P

Table 4.3: Summary of results for the entire Dieharder battery for k=3. In
column n tuple, the notation 1 . . . x indicates that the test was repeated
with the n tuple setting covering this range. As shown, the parking lot
test showed a weak value, i.e., an inconclusive result, in the initial run. For
an ideal source, it is expected that ∼ one weak value will appear in any
given full test run of the suite. As recommended, we re-ran the weak test
with the option -Y, which increases p samples until a clear result (passed
or failed) emerged. The test was passed. In the table we rounded the
p-values to the third digit precision. Also P=Passed and W=Weak.
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(a) Proportion test (b) Uniformity of p-values test

Figure 4.15: Summary of results for the NIST SP800-22 battery. (a) Re-
sults for the proportion test, i.e. evaluating how many times each test
passes or fails (note that even a perfect random number generator is
supposed to fail some tests from time to time). Dot-dash lines indicate
limits of acceptable behaviour as recommended by NIST SP800-22. (b)
Uniformity of the p-values assessment, which mainly quantifies how the
outcomes of each statistic (p-values) are distributed along the (0,1) range.
Both quantities satisfy the statistics for a perfect random number genera-
tor.

4.4.3 Alphabit battery of statistical tests (TestU01)

We use the Alphabit battery following two testing strategies: (i) test many
different sequences of a relatively small size, e.g. 300 files of 1 Gb each,
and (ii) testing very long sequences, e.g. one file containing 1 Tb. Using
(i), we can quantify how often the generator fails the Alphabit battery. This
is important because an ideal random number generator should fail with
around 0.2% probability for a significance level of 10−3. With (ii) we can
test for weaker correlations/anomalies, below the statistical uncertainty
of strategy (i). For each test, a p-value p is computed and its deviation
from zero or one ∆(p) = min 1− p, p is measured. If ∆(p) ≥ 10−2 the
test is considered to pass that statistic. In contrast, a test is considered
inconclusive or weak when its deviation is 10−2 > ∆(p) ≥ 10−6, failed
when 10−6 > ∆(p) ≥ 10−15, “eps,” (which implies catastrophic failure),
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when 10−15 > ∆(p) ≥ 10−300, and “eps2” when ∆(p) < 10−300.
Results for strategy (i) are depicted in Fig. (4.16) and Fig. (4.17). We

tested 1 Mb for k = 1, 120 Mb for k = 2, 500 Mb for k = 3, and 1 Gb for
k = 4. In each case, we tested 300 sequences. For strategy (ii) we tested
a single 1 Tb file, two 500 Gb files, one 80 Gb file, and two 64 Gb file for
k = 3 and all tests were passed. For evaluating the results, we followed
the same criteria for evaluating the results as in (Jakobsson, 2014), in
which regularities in commercial RNG systems were found for 64 Gb and
above.

4.5 Conclusion

In this chapter, we have reported the design and prototyping of a random
number generation device to meet the stringent requirements of so-called
loophole-free Bell test experiments. We combined an ultrafast phase dif-
fusion source of raw bit generation with randomness metrology and real-
time parity bit randomness extraction directly on board with basic elec-
tronic components. By doing so, we were able to demonstrate the gen-
eration of random numbers with unpredictability bounds below 10−5 in
less than 30 ns, even when being extremely paranoid about the untrusted
noises. The devices reported in this chapter played a fundamental role in
the strongest refutation to date of a local realistic worldview, thereby con-
firming the nonlocal and unpredictable nature of the universe, in agree-
ment with the predictions of quantum mechanics.
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Figure 4.16: Alphabit battery of statistical tests for k = 1 (top) and k = 2
(bottom). Left: Results for each of the 17 tests (horizontal axis) in the
Alphabit battery for 300 iterations (vertical axis). A dark blue square rep-
resenting a weak value is observed for that particular iteration and test.
Right: Frequency of obtaining weak, failed, eps, and eps2 p-values for
each of the 17 tests of the Alphabit battery. As shown, for k = 1 the Al-
phabit battery is able to find statistically significant anomalies, indicating
the need for randomness extraction.
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Figure 4.17: Alphabit battery of statistical tests tests for k = 3 (top) and
k = 4 (bottom). Left: Results for each of the 17 tests (horizontal axis) in
the Alphabit battery for 300 iterations (vertical axis). A dark blue square
representing a weak value is observed for that particular iteration and
test. Right: Frequency of obtaining weak, failed, eps, and eps2 p-values
for each of the 17 tests of the Alphabit battery. As shown, for k = 1
(Fig. 4.16), the Alphabit battery is able to find statistically significant anom-
alies, indicating the need for randomness extraction.
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Chapter 5

Conclusions and Outlook

Random numbers are a key ingredient to keep the wheel of the infor-
mation era turning. They are used in randomised algorithms, in Monte
Carlo methods, in data transmission protocols, in gambling, and in cryp-
tography, among many other applications. While, strictly speaking, ran-
dom numbers can only be obtained by measuring a quantum mechanical
process, multiple workarounds have been developed over the years due
to the unavailability of high-speed and scalable quantum technologies.
In this thesis, we have reported progress towards the development of a
miniature and scalable quantum random number generation technology
for high-speed operation and with high-quality guarantees.

We have, firstly, thoroughly studied the accelerated phase diffusion
dynamics in pulsed semiconductor lasers in connection with quantum
random number generation. By using components from the telecommu-
nications industry, we have demonstrated the validity of the process at
bit rates exceeding 40 Gb/s. Besides being a record speed in quantum
random number generation at the time of publication, the most important
finding is that the dynamics of the intracavity field in a pulsed commercial
laser are capable of achieving full phase randomisation in the order of the
100 ps timescale.

We then dedicated a significant effort towards the implementation and
miniaturisation of the technology, firstly, on the development of prototypes
for use in supercomputation and research. Up to eight different prototypes
were built, one of them being tested and validated by supercomputer nu-
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merical simulation researchers in the field of nuclear fission science. The
other prototypes were designed to meet the stringent requirements of the
so-called loophole-free Bell test experiments of local realism. In addi-
tion to building technologies and validating them in real environments,
we also showed progress towards chip-level integration using photonic
integrated circuits, paving the way for mass scale production of quantum
devices. Initially, we demonstrated an all optically integrated quantum en-
tropy source on an Indium Phosphide chip. Then, the integration of the
critical interferometric and detection steps of the phase diffusion scheme
on a Silicon-based Photonic platform, the most advanced semiconductor
industry.

Last but not least, we also introduced the randomness metrology method-
ology, a set of techniques to characterise and derive quantitative esti-
mates on the unpredictability of physical random number generators. Start-
ing from a theoretical model of the process, and following this with a care-
ful characterisation of the hardware components, we have proved that
pure randomness can be extracted even under paranoid considerations
about the untrusted noises. The randomness metrology has the potential
to become a useful tool for random number generation designers, as well
as for the development of new regulations and certifications required to
validate the next generation of random number generators.

5.1 Outlook

Randomness is a fascinating topic, and a great deal of research and de-
velopment is constantly ongoing at both the academia and the industrial
levels. Following on strictly from the results of this thesis, there are some
interesting research lines to pursue in the future. Examples include the
exploration of the average phase diffusion rate when going down to the
tenths of picoseconds scale (or even below), and the development of a
general framework for the randomness metrology methodology and its
application in multiple generators. Another example is the packaging of
the integrated chips reported in chapter 3, which, in the case of Silicon, re-
quires the development of an hybrid packaging or hybrid fabrication tech-
nique for integrating the laser source.

More generally, the field of quantum randomness generation now has
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two well differentiated dynamics. One of them is more industrially ori-
ented, and is focused on developing tiny devices that can be mass-produced
and integrated into general-purpose communication and computation de-
vices. Quantum random number generation has the potential to become
the first mass-market application of the so-called second quantum revolu-
tion, and lots of efforts is being made in this direction. The other principle
research line, which is more present in academia, is the development
of so-called device-independent (DI) and self-testing (ST) random num-
ber generation technologies. In these schemes, entangled states and
the nonlocal properties of certain quantum states are used to produce
and certify quantum digits. DI-RNGs allows for the generation of random
digits even in extremely paranoid scenarios. This is achieved through
a loophole-free violation of a Bell inequality, and has significant interest
for fundamental research. Alternatively, ST-RNG technology allows for
a new generation of devices in which entropy estimates can be derived
directly from the observation of a so-called witness, i.e. a property of
the quantum system that prove the quantum mechanical nature of the
process. In these circumstances, entropy estimates can be derived with-
out a full characterisation of the device, making the process arguably sim-
pler. However, the functioning of the device needs to be trusted, and as a
result, ST-RNG technology offers similar security guarantees to a trusted
and characterised device. In addition, both DI-RNGs and ST-RNGs ne-
cessitate raw randomness in order to select the measurement or state
preparation basis, thus requiring a random number generator with such
metrological assurances as the ones proposed in this thesis.
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Pironio, S., A. Acıń, S. Massar, A. Boyer de La Giroday, D. Matsukevich,
P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. Manning, and C. Mon-
roe: “Random numbers certified by Bell’s theorem”. Nature 464, 1021–
1024 (2010). doi: 10.1038/nature09008

Qi, B., Y.-M. Chi, H.-K. Lo, and L. Qian: “High-speed quantum random
number generation by measuring phase noise of a single-mode laser”.
Opt. Lett. 35, 3, 312–314 (Feb. 2010). doi: 10.1364/OL.35.000312

Rand Corporation: A Million Random Digits With 100,000 Normal Devi-
ates. Glencoe Free Press. 1955

Rarity, J., P. Owens, and P. Tapster: “Quantum Random-number Gener-
ation and Key Sharing”. Journal of Modern Optics 41, 12, 2435–2444
(1994). doi: 10.1080/09500349414552281

Rude, M., C. Abellán, A. Capdevila, D. Domenech, M. W. Mitchell, W.
Amaya, and V. Pruneri: “Quantum random number generation on a Si
Chip”. Submitted (2017)

Rukhin, A., J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Lev-
enson, M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo: “A Statis-
tical Test Suite for Random and Pseudorandom Number Generators
for Cryptographic Applications” (2010). doi: 10.6028/NIST.SP.800-
22r1a

Santha, M. and U. V. Vazirani: “Generating Quasi-Random Sequences
From Slightly-Random Sources”. 25th Annual Symposium on Founda-
tions of Computer Science, 1984. Oct. 1984, 434–440. doi: 10.1109/
SFCS.1984.715945

Schawlow, A. L. and C. H. Townes: “Infrared and Optical Masers”. Phys.
Rev. 112, 1940–1949 (6 Dec. 1958). doi: 10.1103/PhysRev.112.1940

Schmidt, H.: “Quantum�Mechanical Random�Number Generator”. Jour-
nal of Applied Physics 41, 2, 462–468 (1970). doi: 10.1063/1.1658698

http://dx.doi.org/10.1006/jcss.1996.0004
http://dx.doi.org/10.1006/jcss.1996.0004
http://dx.doi.org/10.1007/978-3-642-14394-6
http://dx.doi.org/10.1090/S0025-5718-1956-0076466-8
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1364/OL.35.000312
http://dx.doi.org/10.1080/09500349414552281
http://dx.doi.org/10.6028/NIST.SP.800-22r1a
http://dx.doi.org/10.6028/NIST.SP.800-22r1a
http://dx.doi.org/10.1109/SFCS.1984.715945
http://dx.doi.org/10.1109/SFCS.1984.715945
http://dx.doi.org/10.1103/PhysRev.112.1940
http://dx.doi.org/10.1063/1.1658698


Bibliography 139

Shalm, L. K., E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne,
M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J.
Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco,
E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Mar-
sili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T.
Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin,
E. Knill, and S. W. Nam: “Strong Loophole-Free Test of Local Real-
ism”. Phys. Rev. Lett. 115, 250402 (25 Dec. 2015). doi: 10 . 1103 /
PhysRevLett.115.250402

Shaltiel, R.: “Recent Developments in Explicit Constructions of Extrac-
tors”. Bulletin of the EATCS 77, 67–95 (2002)

Shamir, A.: “On the generation of cryptographically strong pseudo-random
sequences”. Automata, Languages and Programming: Eighth Collo-
quium Acre (Akko), Israel July 13–17, 1981. Ed. by S. Even and O.
Kariv. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981, 544–550.
isbn: 978-3-540-38745-9. doi: 10.1007/3-540-10843-2_43

Shannon, C. E.: “Communication theory of secrecy systems”. The Bell
System Technical Journal 28, 4, 656–715 (Oct. 1949). issn: 0005-
8580. doi: 10.1002/j.1538-7305.1949.tb00928.x

Shepherd, S. J.: “Lessons learned from security weaknesses in the Netscape
World Wide Web browser”. IEE Colloquium on Public Uses of Cryp-
tography. Apr. 1996, 7/1–7/6. doi: 10.1049/ic:19960524

Shor, P. W.: “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer”. SIAM Review 41, 2, 303–
332 (1999). doi: 10.1137/S0036144598347011

Sibson, P., M. Godfrey, C. Erven, S. Miki, T. Yamashita, M. Fujiwara, M.
Sasaki, H. Terai, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, J.
O’Brien, and M. G. Thompson: “Integrated Photonic Devices for Quan-
tum Key Distribution”. CLEO: 2015. Optical Society of America, 2015,
FF1A.6. doi: 10.1364/CLEO_QELS.2015.FF1A.6

Smit, M., X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smal-
brugge, T. de Vries, E.-J. Geluk, J. Bolk, R. van Veldhoven, L. Au-
gustin, P. Thijs, D. D’Agostino, H. Rabbani, K. Lawniczuk, S. Stopin-
ski, S. Tahvili, A. Corradi, E. Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka,
V. Moskalenko, J. Zhao, R. Santos, G. Gilardi, W. Yao, K. Williams,
P. Stabile, P. Kuindersma, J. Pello, S. Bhat, Y. Jiao, D. Heiss, G.

http://dx.doi.org/10.1103/PhysRevLett.115.250402
http://dx.doi.org/10.1103/PhysRevLett.115.250402
http://dx.doi.org/10.1007/3-540-10843-2_43
http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/10.1049/ic:19960524
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1364/CLEO_QELS.2015.FF1A.6


140 Bibliography

Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M. Schell, H. De-
bregeas, M. Achouche, J.-L. Gentner, A. Bakker, T. Korthorst, D. Gal-
lagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R.
Penty, R. Broeke, B. Musk, and D. Robbins: “An introduction to InP-
based generic integration technology”. Semiconductor Science and
Technology 29, 8, 083001 (2014). doi: 10.1088/0268-1242/29/8/
083001

Soldano, L. B. and E. C. M. Pennings: “Optical multi-mode interference
devices based on self-imaging: principles and applications”. Journal of
Lightwave Technology 13, 4, 615–627 (Apr. 1995). issn: 0733-8724.
doi: 10.1109/50.372474

Solomonoff, R.: “A formal theory of inductive inference. Part I”. Information
and Control 7, 1, 1–22 (1964). issn: 0019-9958. doi: 10.1016/S0019-
9958(64)90223-2

Solomonoff, R. J.: “A formal theory of inductive inference. Part II”. In-
formation and control 7, 2, 224–254 (1964). doi: 10.1016/S0019-
9958(64)90131-7

Sowey, E. R.: “A Chronological and Classified Bibliography on Random
Number Generation and Testing”. International Statistical Review / Re-
vue Internationale de Statistique 40, 3, 355–371 (1972). issn: 03067734,
17515823. url: http://www.jstor.org/stable/1402472

Sowey, E. R.: “A Second Classified Bibliography on Random Number
Generation and Testing”. International Statistical Review / Revue Inter-
nationale de Statistique 46, 1, 89–102 (1978). issn: 03067734, 17515823.
url: http://www.jstor.org/stable/1402512

Sowey, E. R.: “A Third Classified Bibliography on Random Number Gen-
eration and Testing”. Journal of the Royal Statistical Society. Series A
(General) 149, 1, 83–107 (1986). issn: 00359238. url: http://www.
jstor.org/stable/2981887

Stefanov, A., N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden: “Optical
quantum random number generator”. Journal of Modern Optics 47, 4,
595–598 (2000). doi: 10.1080/09500340008233380

Sterzer, F.: “Parametric oscillator random number generator”. 1962. url:
http://www.google.com/patents/US3069632

http://dx.doi.org/10.1088/0268-1242/29/8/083001
http://dx.doi.org/10.1088/0268-1242/29/8/083001
http://dx.doi.org/10.1109/50.372474
http://dx.doi.org/10.1016/S0019-9958(64)90223-2
http://dx.doi.org/10.1016/S0019-9958(64)90223-2
http://dx.doi.org/10.1016/S0019-9958(64)90131-7
http://dx.doi.org/10.1016/S0019-9958(64)90131-7
http://www.jstor.org/stable/1402472
http://www.jstor.org/stable/1402512
http://www.jstor.org/stable/2981887
http://www.jstor.org/stable/2981887
http://dx.doi.org/10.1080/09500340008233380
http://www.google.com/patents/US3069632


Bibliography 141

Sterzer, F.: “Random Number Generator Using Subharmonic Oscillators”.
Review of Scientific Instruments 30, 4, 241–243 (1959). doi: 10.1063/
1.1716525

Stipcevic, M. and B. M. Rogina: “Quantum random number generator
based on photonic emission in semiconductors”. Review of Scientific
Instruments 78, 4, 045104 (2007). doi: 10.1063/1.2720728

Symul, T., S. M. Assad, and P. K. Lam: “Real time demonstration of high
bitrate quantum random number generation with coherent laser light”.
Applied Physics Letters 98, 23, 231103 (2011). doi: 10 . 1063 / 1 .
3597793

Ticknor, A. J. and H. H. Barrett: “Optical Implementations In Boltzmann
Machines”. Optical Engineering 26, 26 (1987). doi: 10 . 1117 / 12 .
7974015

Tillmann, M., B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther:
“Experimental boson sampling”. Nature Photonics 7, 7, 540–544 (May
2013). doi: 10.1038/nphoton.2013.102

Tippett, L. H.: “Random Sampling Numbers”. Tracts for Computers 15
(1927)

Vadhan, S. P.: “Pseudorandomness”. Foundations and Trends® in The-
oretical Computer Science. Vol. 7. 1–3. 2012, 1–336. doi: 10.1561/
0400000010

Vallone, G., D. G. Marangon, M. Tomasin, and P. Villoresi: “Quantum
randomness certified by the uncertainty principle”. Phys. Rev. A 90,
052327 (5 Nov. 2014). doi: 10.1103/PhysRevA.90.052327

Vincent, C. H.: “The generation of truly random binary numbers”. Journal
of Physics E: Scientific Instruments 3, 8, 594 (1970). url: http : / /
stacks.iop.org/0022-3735/3/i=8/a=303

Von Neumann, J.: “Various Techniques Used in Connection With Random
Digits”. Monte Carlo Methods, Appl. Math. Series. Vol. 12. (Summary
written by George E. Forsythe); reprinted in John von Neumann, Col-
lected Works. Vol. 5, Pergamon Press; Macmillan, New York, 1963,
pp. 768-770. MR 28 1104. U. S. Nat. Bureau of Standards, 1951, 36–
38

Wahl, M., M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, and O. Ben-
son: “An ultrafast quantum random number generator with provably
bounded output bias based on photon arrival time measurements”.

http://dx.doi.org/10.1063/1.1716525
http://dx.doi.org/10.1063/1.1716525
http://dx.doi.org/10.1063/1.2720728
http://dx.doi.org/10.1063/1.3597793
http://dx.doi.org/10.1063/1.3597793
http://dx.doi.org/10.1117/12.7974015
http://dx.doi.org/10.1117/12.7974015
http://dx.doi.org/10.1038/nphoton.2013.102
http://dx.doi.org/10.1561/0400000010
http://dx.doi.org/10.1561/0400000010
http://dx.doi.org/10.1103/PhysRevA.90.052327
http://stacks.iop.org/0022-3735/3/i=8/a=303
http://stacks.iop.org/0022-3735/3/i=8/a=303


142 Bibliography

Applied Physics Letters 98, 17, 171105 (2011). doi: 10 . 1063 / 1 .
3578456

Walmsley, I. A.: “Quantum optics: Science and technology in a new light”.
Science 348, 6234, 525–530 (2015). issn: 0036-8075. doi: 10.1126/
science.aab0097 eprint: http://science.sciencemag.org/content/
348/6234/525.full.pdf

Wayne, M. A. and P. G. Kwiat: “Low-bias high-speed quantum random
number generator via shaped optical pulses”.Opt. Express 18, 9, 9351–
9357 (Apr. 2010). doi: 10.1364/OE.18.009351

Whitaker, S. and E. Kelsey: “Binary random number generator using switch-
ing tree and wide-band noise source”. US Patent 3,423,683. 1967. url:
http://www.google.sr/patents/US3423683

Williams, C. R. S., J. C. Salevan, X. Li, R. Roy, and T. E. Murphy: “Fast
physical random number generator using amplified spontaneous emis-
sion”. Optics express 18, 23, 23584–23597 (Nov. 2010). doi: 10.1364/
OE.18.023584

Xu, F., B. Qi, X. Ma, H. Xu, H. Zheng, and H.-K. Lo: “Ultrafast quantum
random number generation based on quantum phase fluctuations”.
Opt. Express 20, 11, 12366–12377 (May 2012). doi: 10.1364/OE.20.
012366

Yule, G. U.: “A test of Tippett’s random numbers”. Journal of the royal
Statistical Society 101, 1, 167–172 (1938). issn: 09528385. url: http:
//www.jstor.org/stable/2980656

Zadok, A., H. Shalom, M. Tur, W. D. Cornwell, and I. Andonovic: “Spectral
shift and broadening of DFB lasers under direct modulation”. IEEE
Photonics Technology Letters 10, 12, 1709–1711 (Dec. 1998). issn:
1041-1135. doi: 10.1109/68.730477

http://dx.doi.org/10.1063/1.3578456
http://dx.doi.org/10.1063/1.3578456
http://dx.doi.org/10.1126/science.aab0097
http://dx.doi.org/10.1126/science.aab0097
http://science.sciencemag.org/content/348/6234/525.full.pdf
http://science.sciencemag.org/content/348/6234/525.full.pdf
http://dx.doi.org/10.1364/OE.18.009351
http://www.google.sr/patents/US3423683
http://dx.doi.org/10.1364/OE.18.023584
http://dx.doi.org/10.1364/OE.18.023584
http://dx.doi.org/10.1364/OE.20.012366
http://dx.doi.org/10.1364/OE.20.012366
http://www.jstor.org/stable/2980656
http://www.jstor.org/stable/2980656
http://dx.doi.org/10.1109/68.730477

	Abstract
	Resum
	Acknowledgments
	List of Publications
	Randomness in the information era
	Random numbers uncovered
	Randomness in computer science
	Randomness in cryptography
	Randomness in other areas

	From solitaire to quantum technologies
	From tables to algorithms
	The concept of randomness
	Testing random digits
	Entropy estimation and randomness extraction

	Physical random number generators
	First physical random number generators
	Photonic quantum random number generators
	Continuous variable approaches

	Main results and outline
	Main results
	Outline


	Phase-diffusion in pulsed semiconductor lasers
	Spontaneous emission as an entropy source
	Measuring the phase of an optical field
	Statistical behaviour: the arcsine distribution

	Numerical analysis of the phase diffusion process
	Accelerated phase diffusion process
	Average phase diffusion in CW and GS

	Ultrafast quantum random number generation experiment
	Estimating the average phase diffusion
	Measurements and statistical characterisation
	Entropy estimation and randomness extraction
	Statistical testing

	Randomness metrology
	Untrusted noises and min-entropy estimation
	Digitisation noise on the min-entropy estimation
	Adding memory effects and other untrusted noises
	Minimising the worst-case predictability

	Conclusions

	On-chip quantum entropy sources
	Self-delayed scheme on a Silicon Photonics chip
	Chip design and experiment
	Performance tests

	Two-laser scheme on an Indium Phosphide chip
	Chip design and experiment
	Performance tests

	Conclusions

	Physical randomisers for Bell test implementations
	Design considerations: freshness and purity
	Analogue design
	Digital design
	Randomness extraction circuitry

	Measuring the age of the random bits
	Unpredictability bounds via randomness metrology
	Directly measurable noises
	A/D noise
	Hangover noise
	Deriving the bounds from the observed noises

	Statistical analysis
	NIST SP800-22 battery of statistical tests
	Dieharder battery of statistical tests
	Alphabit battery of statistical tests (TestU01)

	Conclusion

	Conclusions and Outlook
	Outlook

	Bibliography

