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Chapter 2

Previous Related Work

This chapter presents a bibliographical review of previous work related with the topics dealt

with in this dissertation, including: (1) mesh representations, (2) image sampling tech-

niques, (3) data triangulation techniques, (4) generation of adaptive triangular meshes from

images, (5) generation of images from triangular meshes, (6) triangular mesh processing

and, due to its close relation to this dissertation, (7) a short review of previous techniques

for the manipulation of compressed images.

2.1   Mesh Representations

A mesh is a set of points (also known as nodes or vertices) and segments that link those

points, such that two segments can only intersect at a shared endpoint. Meshes are usually

defined in both the 2D and 3D space.

There are two basic models of meshes: structured meshes and unstructured meshes.

The main difference between them is determined by the data structure utilized to describe

the mesh itself (Lattuada, 1998). Thus, the number of adjacent points for each point of a

structured mesh is the same, except for the boundaries, Figure 2.1(left). Two typical exam-

ples of structured meshes are quadrilateral and hexahedral meshes. On the other hand, an
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unstructured mesh allows any number of adjacent points associated with a single point of

the mesh. Figure 2.1(right) illustrates an example of unstructured mesh. Triangular and tet-

rahedral meshes are the most utilized unstructured meshes, although quadrilateral and

hexahedral meshes can also be unstructured (Owen, 1998). Borouchaki and Frey (1996)

propose a triangular to quadrilateral mesh conversion scheme. Likewise, there are methods

that allow the combination of small quadrilateral meshes into a single triangular mesh

(Davoine, Svensson, Chassery, 1995; Davoine, Robert, Chassery, 1997).

The main advantage of structured meshes over unstructured meshes is that they require

less computer memory, as well as that they are simpler and more convenient to use for finite

difference methods. Nonetheless, the big disadvantage of a structured mesh is its lack of

flexibility in adapting to a domain with a complicated shape (Bern, Eppstein, 1995). For this

reason, and given the need to model shapes with intricate domains, the common trend has

been to use unstructured meshes, since they can arbitrarily adapt to complicated domains.

Therefore, this survey is focused on unstructured mesh generators, concretely on 2D and 3D

triangular mesh generators. 

In the next section, a bibliographical review of previous techniques for image sampling

is presented. Those sampled data are then used for generating triangular meshes, which can

be contained in the 2D or 3D space.

Figure 2.1. Structured and unstructured Meshes. (left) Quadrilateral, structured mesh.
(right) Triangular, unstructured mesh.
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2.2   Image Sampling Techniques

The first step for the generation of a 2D or 3D triangular mesh from an image is the choice

(sampling) of a set of points that are to be triangulated. In this context, an image is consid-

ered to be a dense 2D array, such as a gray level image, a range image or a digital elevation

map. Each element of the array is considered to be a pixel. A pixel has an implicit location

in the array (e.g., a row and a column), and a property (e.g., gray level, range, elevation).

Each image pixel defines a point in a 3D space in which, for example, the x and y coordi-

nates correspond to the pixel’s row and column respectively, and the z coordinate

corresponds to the pixel’s property. Those points are the data which are finally triangulated.

Three possible techniques have been proposed for sampling an image: (1) sampling all the

original pixels, (2) sampling a predefined number of pixels and (3) sampling a non-pre-

defined number of pixels.

2.2.1   Sampling all the Original Pixels

The trivial technique for sampling an image consists of choosing all its elements (pixels).

This procedure is generally used when a fine triangular mesh is sought. In this way, the

resulting triangulation is a dense triangular mesh with a high resolution, which contains all

the original data. Several techniques proposed in the literature generate an initial dense tri-

angular mesh with the purpose of applying further decimation operations over it. They are

overviewed in Section 2.6.1.

2.2.2   Sampling a Predefined Number of Pixels

When the original pixels contain redundant information, it is necessary to sample a subset

of them in order to eliminate that redundancy. The sampled pixels must be chosen in such a

way that they constitute a good approximation of the original image. Two methods can be

utilized to sample a predefined number of pixels from an image: (1) uniform sampling and

(2) non-uniform sampling.
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2.2.2.1     Uniform Sampling

The simplest way of obtaining a uniform sampling from a given image consists of sampling

that image at specific intervals both horizontally and vertically. Thus, this process chooses

one pixel out of a predefined number of pixels along the rows and columns of the image.

Davoine and Chassery (1994) and Lechat, Sanson and Labelle (1997) apply the uniform

sampling process in order to obtain an initial triangular mesh which approximates the given

image. Then, they work over this initial mesh to improve the approximation error of the

final triangular mesh. Similar techniques are surveyed in Section 2.6.2.

2.2.2.2     Non-Uniform Sampling

Adaptive sampling is the most known non-uniform sampling technique. It varies the density

of sampled pixels depending on the amount of information (details) present in the given

image. In this way, the chosen pixels are concentrated in areas of high curvature and dis-

persed over low variation regions. García, Sappa and Basañez (1997a) propose a non-

uniform sampling technique for the generation of adaptive quadrilateral meshes from range

images. This technique selects a predefined number of pixels from a given image by first

computing a curvature estimation of the whole range image. Then, they divide the range

image into a user-specified number of equally-sized rectangular tiles. Taking into account

the previous curvature estimation, a user-specified number of pixels is independently cho-

sen for every tile. The final quadrilateral mesh is obtained from the pixels sampled at all the

tiles. 

Following this line, Huang and Zheng (1996, 1997) present two methods that allow to

sample a predefined number of points ensuring a maximum approximation error between

the resulting triangular mesh and the points of the original image. The algorithms divide the

original image into small windows. Afterwards, the sampled points are determined for each

window according to the spatial frequencies of each window by using the Short Time Fou-

rier Transform or the Wavelet Transform respectively.
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2.2.3   Sampling a Non-Predefined Number of Pixels

There are other techniques that subsample an image by taking into account the information

contained in it, trying to approximate it as much as possible, but without guaranteeing the

amount of pixels that will be finally chosen. García (1995a) proposes a technique that sam-

ples an original range image by applying a random selection process that tends to choose

more pixels in areas of high curvature and fewer pixels in low variation regions. Curvature

is used as a measure of the probability of choosing a pixel for the final triangulation. The

points corresponding to the selected pixels are then triangulated in order to obtain a triangu-

lar mesh that approximates the given range image. This algorithm does not guarantee a

specific number of points in the final mesh. However, the final number of points is indi-

rectly bounded by a sampling rate parameter that determines the density of points of the

final triangulation. 

Another technique that selects a non-predefined number of pixels from a given gray

level image is presented in (Altunbasak, 1997). Initially, the algorithm applies an image

segmentation in order to obtain separate objects in the image. Then, each object boundary is

approximated by means of a polygonalization algorithm. A set of points is selected after the

previous process. Finally, a square region is grown around each point of the enclosing poly-

gon of that object, until the spatial color gradient within the part of growing region that

overlaps with the object reaches a predefined threshold. The pixels which define the square

regions are sampled. The final set of pixels is obtained by applying the previous procedure

to all boundary pixels. 

Another technique that combines uniform sampling and does not guarantee a pre-

defined number of sampled pixels was presented by Wolberg (1997). Wolberg applies an

edge detector to a gray level image in order to capture all the pixels that define the contours

of the image. Then, a uniform sampling is applied to the original image. The resulting set of

pixels is a merging of the edge pixels and the uniformly sampled pixels. Those pixels are

then utilized by an image approximation algorithm.
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2.3   Data Triangulation Techniques

The input data for a triangulation process is a set of points which can be defined in the 2D or

3D space. Those points may also be linked by edges that have to be preserved after the tri-

angulation. In the latter case, those edges act as constraints in the triangulation.

Once the input data for the triangulation have been defined, it is necessary to determine

the type of triangulation. There are two possible types of triangulation. In the first type, the

points of the resulting triangulation are exactly the input points, while in the second type,

the resulting triangulation can contain, besides the input points, additional points called

Steiner points (Bern, Eppstein, 1995). In both cases, the obtained triangulation is generated

with or without optimization criteria.

In general, the objective of a triangulation is the partition of the initial geometrical

domain, typically the regions defined by the given set of points, into a set of domains with

simple geometry, such as triangles or tetrahedra. In this context, a triangle is a polygon with

three segments (edges), which is defined by a triplet of points given, for example, in coun-

terclockwise order, such as  in Figure 2.2(left). On the other hand, a tetrahedron

Figure 2.2. (left) triangle for 2D or 3D data. (right) tetrahedron for 3D data.

v1
v0

v2

v0

v1

v2

v3ó

v0 v1 v2, ,( )



DATA TRIANGULATION TECHNIQUES 13

is a polyhedron with four triangular faces defined by four points, such as  in

Figure 2.2(right).

Taking into account the previous considerations, different solutions have been reported

in the literature for the problem of data triangulation. For instance, Bern, Eppstein and Gil-

bert (1990) study several algorithms for the generation of triangular meshes starting with a

given set of points. A more recent and complete survey of triangulation algorithms in both

the 2D and 3D space is presented by Owen (1998). This paper also surveys software tools

for generating triangular meshes. 

Three different types of triangulation techniques can be defined: (1) 2D triangulation,

(2) 21/2D triangulation and (3) 3D triangulation.

2.3.1   2D Triangulation

The triangulation of a set of 2D points is a partition of these points into a set of non-overlap-

ping triangles. Depending on the shapes of the generated triangles, we can distinguish

between 2D triangulation algorithms with and without optimization.

2.3.1.1     Two Dimensional Triangulation without Optimization

An algorithm that generates 2D triangular meshes without optimization does not consider

any topological criteria when it generates the resulting mesh from the given data. The only

considered constraint is that there are no triangles overlapped in the final triangular mesh

(Kumar, 1996). Thus, the points contained in the final mesh are assumed to be the input

points, without the addition of Steiner points. 2D triangulation algorithms without optimiza-

tion criteria are not usually utilized since their results can lead to degenerated triangles

(triangles with low area/perimeter ratio) and their computational cost is the same as the one

of some triangulation algorithms with optimization.

2.3.1.2     Two Dimensional Triangulation with Optimization

Contrarily to the previous algorithms, the triangulation techniques with optimization con-

sider one or more quality measures during the triangulation process. Those measures

depend on the shape of the resulting triangles (O’Rourke, 1994). These algorithms may add

v0 v1 v2 v3, , ,( )
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Steiner points. With or without Steiner points, the typical quality measures take into account

the angles, edge lengths, heights and areas of the generated triangles. The quality measure

associated with the final triangulation is then taken to be the sum, maximum or minimum of

the measures obtained for all the triangles (Bern, Eppstein, 1995). 

Within the 2D triangulation algorithms with optimization, a popular technique is the

Delaunay triangulation. This algorithm allows the generation of triangular meshes with or

without the addition of Steiner points. The Delaunay triangulation allows the simultaneous

optimization of several of the quality measures mentioned above. In this way, the Delaunay

criterion states that any point must not be contained inside the circumcircle of any triangle

within the mesh. In other words, any point must only lie on the circumcircles corresponding

to the triangles that point belongs to. A circumcircle can be defined as the circle passing

through the three points of a triangle. Figure 2.3 illustrates a simple example of this crite-

rion. In practice, the Delaunay criterion is attained by maximizing the minimum interior

angle and minimizing the maximum circumcircle of a resulting triangle. Many Delaunay

triangulation algorithms have been proposed in the literature. Some of them are surveyed

and evaluated by Su and Drysdale (1997), George and Borouchaki (1998) and Fortune

(1987).

Figure 2.3. Example of the Delaunay criterion. The circumcircle of each triangle only
contains the points of that triangle. (left) fulfils the Delaunay criterion while (right) does
not.
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If the input data for the mesh generation process not only include a set of points, but

also a set of segments joining those points, and those edges must be preserved, the

Delaunay triangulation can be forced to maintain certain segments as constraints in the

result. Such a triangulation is known as the constrained Delaunay triangulation (George,

Borouchaki, 1998, pp. 73; Ruppert, 1995; Shewchuk, 1996a, 1996b, 1998). The constrained

Delaunay triangulation usually contains Steiner points, because, in general, they are neces-

sary for achieving shape bounds. An example that shows the 2D triangulation process, by

applying both unconstrained triangulation and constrained triangulation starting with a

given set of points and edges, is illustrated in Figure 2.4.

2.3.2   21/2D Triangulation

The input points for a 21/2D triangulation process are defined in the 3D space. The process

utilized to triangulate those points consists of three stages. In the first stage, the 3D space of

the input points is reduced to a 2D space by projecting them onto a given reference plane

along a predefined direction. The second stage triangulates the projected points in the 2D

space by utilizing some of the techniques described in Section 2.3.1. Finally in the third

Figure 2.4. Examples of unconstrained and constrained triangulation. (left column) input
data, (right column) resulting triangulation. 
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stage, the original 3D points are linked according to the resulting 2D triangulation. The 21/

2D triangulation is only valid when the surfaces to which the original 3D points belong can

be projected along the predefined direction without overlapping. If the surfaces overlap, a

3D triangulation is the only choice to triangulate the given 3D points (Section 2.3.3). Figure

2.5 illustrates the three stages applied during the 21/2D triangulation process.

Some work has been reported to generate triangular meshes by projecting the original

data (De Floriani, 1989; García 1995b; Fayek, Wong, 1994; García, Sappa, Basañez,

1997b). Similarly to 2D triangulation algorithms, 21/2D triangulation algorithms can also be

classified into triangulation algorithms with or without optimization.

2.3.2.1     21/2D Triangulation without Optimization

Taking into account that the input points for a 21/2D triangulation without optimization are

projected from the 3D space to the 2D space, this stage takes advantage of the proposed

techniques for 2D triangulation without optimization (Section 2.3.1.1) to generate an initial

2D triangular mesh. Afterwards, it links the original 3D points according to the resulting 2D

triangulation.

original point projected point

Figure 2.5. Illustration of a 21/2D triangulation process (Sappa, 1999). (left) Projection of
the set of points to be triangulated. (middle) 2D triangulation of the projected points.
(right) Mapping of the 2D triangulation to the original 3D space.
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2.3.2.2   21/2D Triangulation with Optimization

Similarly to the 21/2D triangulation without optimization, the 21/2D triangulation tech-

niques with optimization take advantage of 2D triangulation algorithms (see Section 2.3.1)

in order to generate an initial 2D triangulation. Then, the original 3D points are linked

according to the obtained 2D triangulation. Finally, an iterative process flips (swaps) trian-

gle edges whenever the approximation of an underlying discontinuity can be improved after

the flip. This process is performed in the 3D space. Thus, the final triangular mesh preserves

the surfaces and orientation discontinuities present in the input data as much as possible.

These triangulations are sometimes referred to as data dependent triangulations. Some

algorithms that follow this approach are described in (Dyn, Levin, Rippa, 1990; Brown,

1991; Soucy, Croteau, Laurendeau, 1992; Schumaker, 1993). 

2.3.3   3D Triangulation

A triangulation in three dimensions is called a tetrahedrization (or sometimes tetrahedral-

ization). This triangulation is necessary when it is not possible to project the original 3D

data onto a predefined reference plane, since it causes the overlap of the surfaces to which

the original points belong. A tetrahedrization is a partition of a set of 3D points into a col-

lection of tetrahedra that only meet at shared faces. 

As in two dimensions, the 3D triangulation can be carried out without applying any

optimization criteria or by applying one or various optimization criteria simultaneously.

2.3.3.1     Three Dimensional Triangulation without Optimization

When the 2D triangulation is extended to the 3D space, many of the two dimensional prop-

erties do not hold any more. An example is that a unique number of tetrahedra can not be

guaranteed in the three dimensional case. This means that, given a set of data, there is more

than a single, valid 3D triangulation (Lattuada, 1998). Another important problem arises

when the input data include non-convex polyhedra, since not all the polyhedra are tetrahe-

dralizable (Bern, Eppstein, 1995). However, Steiner points can be required to solve the

tetrahedrization of a non-convex polyhedron. The triangulation algorithms are not generally

applied without optimization criteria.
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2.3.3.2     Three Dimensional Triangulation with Optimization

In the 3D space, the triangulation algorithms with optimization consider as quality measures

the number of tetrahedra contained in the resulting partition, as well as shape parameters.

These quality measures are similar to those defined for 2D space triangulations (Section

2.3.1.2). They are usually obtained by adding Steiner points, which allow to improve the

quality of the resulting triangular mesh (Bowyer, 1981; Watson, 1981; Joe, 1995). Further-

more, when the Delaunay triangulation is applied in the 3D space, Steiner points can be

used to reduce the complexity of the Delaunay triangulation (Bern, Eppstein, Gilbert,

1990). Similarly to the 2D space, the Delaunay triangulation in the 3D space ensures that

any point must not be contained inside the circumsphere of any tetrahedra of the mesh. A

circumsphere can be defined as the sphere passing through the four points of a tetrahedron.

On the other hand, the constrained Delaunay triangulation applied to 3D data allows to

maintain polygonal faces in the final triangulation. These constraints define the external and

internal boundaries of a model. Some techniques for constrained Delaunay triangulation

were proposed by Hazlewood (1993), Weatherill and Hassan (1994), and Cavalcanti and

Mello (1999).

2.4   Generation of Adaptive Triangular Meshes from Images

The need to efficiently manipulate and extract the information contained in a digital image

has given rise to the development of alternative ways to represent images. Geometric repre-

sentations, such as adaptive triangular meshes, are gaining popularity as alternative

representations of image data, since they lead to compact representations that allow the

application of image processing operations directly in the 3D space.

Adaptive triangular meshes can be applied in order to approximate images, since the

pixels of an image are considered to be 3D points in a space in which coordinates x and y

represent the columns and rows of the image, and coordinate z represents some property of

an object contained in the scene (e.g., gray level, color, range, terrain elevation). Addition-

ally, since the obtained triangular meshes are compact representations of the original
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images, these meshes can later be used for applying further processing algorithms (e.g.,

decimation, refinement, segmentation, integration). Some of those techniques are over-

viewed in Section 2.6.

Several algorithms have been developed for generating an adaptive triangular mesh

from a given image. Usually, these algorithms first generate a set of points which corre-

spond to pixels sampled from that image by applying any of techniques described in Section

2.2. Afterwards, they use the resulting set of points for generating the corresponding trian-

gular mesh through any of techniques presented in Section 2.3. 

2.5   Generation of Images from Triangular Meshes

Besides being able to generate triangular meshes from images, it is also necessary to pro-

ceed on the other way round. Hence, it is also necessary to be able to generate images from

triangular meshes. This section surveys previous work related to the generation of images

from triangular meshes.

Several techniques that work with 2D triangular meshes take advantage of existent

methods for image compression in order to reduce the redundancy present in the input data.

Fractal compression is one of these techniques (Jacquin, 1993; Fisher, Menlove, 1995),

which allows to compress and decompress gray level images. Those methods initially

obtain a triangular partition (2D triangular mesh) of the given image. That mesh is then

coded by grouping the triangles that fulfill a similarity criterion (e.g., homogeneous gray

levels). Afterwards, they apply a set of affine transformations to the obtained groups. Later

on, the image pixels contained in each of the previous blocks are coded by using some com-

pression method, such as the Discrete Cosine Transform (DCT). During the decoding

process, the block-based coded residue is decoded and back transformed by applying the

inverse affine parameters, and added to the reconstructed image (decoded image). Follow-

ing this line, different techniques have been proposed in (Davoine, Svensson, Chassery,

1995; Davoine et at., 1996; Altunbasak, 1997).
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Alternatively, Lechat, Sanson and Labelle (1997) proposed a technique for rendering

images from 3D triangular meshes. They render a 2D model, for example a gray level

image, by interpolating the points in a triangular patch with a linear function of its vertex

coordinates. This function defines a plane. The same process can be applied to triangular

meshes representing color images, although in this case, the rendered process is indepen-

dently performed on each band (z coordinate defining each color). The color bands are

finally combined to produce the resulting color image. A similar technique is described in

(Wolberg, 1997).

2.6   Triangular Mesh Processing

This section surveys different algorithms that work upon triangular meshes. The processed

triangular meshes may represent image approximations (e.g., gray level images, range

images, digital elevation maps) or they can model any object of the real world.

2.6.1   Decimation of Triangular Meshes

The aim of the decimation algorithms is to transform a dense triangular mesh into a coarser

version, by reducing the number of vertices and triangles needed to represent that mesh,

while trying to retain a good approximation of its original shape and appearance. In this

way, the decimation process produces a fine-to-coarse transformation. The decimation algo-

rithms are commonly applied to dense triangular meshes that are defined in the 2D or 3D

space.

Considering that the approximation error is the maximum distance between the final

triangular mesh and the given initial triangular mesh, the problem of decimating a triangular

mesh can be defined in two different ways:

(1) Given a maximum allowed approximation error , find the triangular mesh

that ensures that maximum error with the minimum number of points.

(2) Given a predefined number n of points, find the triangular mesh that approxi-

mates the original data with the minimum approximation error.

ξ
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A decimation algorithm starts with an original model, such as a triangular mesh con-

taining all the points (pixels mapped to a 3D space) of a given image. Afterwards, an

iterative algorithm simplifies that mesh by repeatedly removing triangles or points from it.

This decimation process is iterated while the approximation error is below a maximum

allowed error (tolerance) and until the triangular mesh cannot be further simplified. The

result of a decimation process is a simplified representation, or level of detail of the given

original model. Thus, a largely simplified mesh represents a low level of detail, while a

marginally simplified mesh represents a high level of detail. The original mesh represents

the highest level of detail. 

Some decimation algorithms that work with 2D triangular meshes, which usually rep-

resent gray level images, have been proposed in (Davoine, Robert, Chassery, 1997; Lechat,

Sanson, Labelle, 1997). Davoine, Robert and Chassery propose the decimation of an origi-

nal mesh by computing the gray level associated with each triangle of the mesh, and by

merging the triangles that have a similar gray level. A similar technique is presented by

Lechat, Sanson and Labelle (1997).

Several fine-to-coarse algorithms working with 3D triangular meshes have also been

reported in the literature. Some of them are surveyed by Erikson (1996) and Heckbert and

Garland (1997). The main difference among the various proposals comes from the heuris-

tics applied to each iteration in order to decide which triangles or points are removed.

Schroeder, Zarge and Lorensen (1992) propose an algorithm that significantly reduces the

number of triangles required to model a physical object. The algorithm is based on multiple

filtering phases. It locally analyses the geometry and topology of the mesh and removes ver-

tices that pass either a minimal distance or curvature degree criteria. 

Cohen et al. (1996) propose the simplification envelopes method, which supports

bounded error control by forcing the simplified mesh to lie between two offset surfaces. In

(Cohen, Olano, Manocha, 1998), a new algorithm that allows not only the generation of low

polygon count approximations of an original model but also the preservation of its appear-

ance is presented. This algorithm converts the input model to a representation that
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decouples the sampling of three model attributes (color, curvature and position), storing the

colors and normals in texture and normal maps. Then, a texture deviation metric is applied.

This technique guarantees that these maps shift by no more than a user specified number of

points. Following this line, different 3D decimation techniques are described in (Turk,

1992; Garland, Heckbert, 1995, 1997; Ciampalini et at., 1997; Amenta, Bern, Kamvysselis,

1998; Lindstrom, Turk, 1999; Trotts, Hamann, Joy, 1999; Guéziec, 1999).

Another approach applied to 3D triangular meshes consists of minimizing an energy

function which simultaneously considers the number of vertices and their approximation

error at each iteration. Different definitions of the energy function are presented by Ter-

zopoulos and Vasilescu (1991), Vasilescu and Terzopoulos (1992) and Hoppe et al. (1993).

2.6.2   Refinement of Triangular Meshes

Contrarily to decimation algorithms, triangular mesh refinement algorithms start with a

coarse triangulation, which has a reduced set of points, typically chosen from all the origi-

nal points. Then, an iterative algorithm proceeds by adding more and more detail to local

areas of the mesh at each step. In this way, more points are added and new triangular

meshes are generated at each iteration. This procedure is performed until the maximum

approximation error between the current triangular mesh and the given initial triangular

mesh is below or equal to some required tolerance. A characteristic of this algorithm is that

if the given error tolerance is high, this method obtains a triangular mesh which is a greatly

simplified representation of the original model, whereas, if the error tolerance is low, it mar-

ginally simplifies the original model. Refinement algorithms are usually referred to as

coarse-to-fine algorithms.

Altunbasak (1997) proposes a refinement technique for 2D triangular meshes. This

technique initially generates a triangular mesh from a given image by using a 2D mesh gen-

eration method (Section 2.3.1). If the obtained triangular mesh approximates the given

image with an approximation error below the specified tolerance, the algorithm concludes.

The algorithm can also conclude if a predefined number of points is obtained. On the other

hand, the algorithm applies a criterion for selecting triangles to be divided into three or four
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sub-triangles. It chooses the triangles which would yield the largest reduction of peak sig-

nal-to-noise ratio (PSNR). Another work in this line is presented by Davoine and Chassery

(1994). Given an initial triangular mesh which is generated from a set of points sampled in a

uniform way from a gray level image, the algorithm generates local modifications of the

mesh by applying a split and merge method. The split step consists of adding a point at the

barycenter of each non homogenous triangle by considering a gradient criterion. The split

process continues until convergence. Thus, it stops when either the triangles are homoge-

nous or the areas of the triangles are below a given threshold. The merge step consists of

removing neighboring triangles with similar mean gray levels.

Some coarse-to-fine algorithms working with 3D triangular meshes are presented in

(Rivara, 1996; Schneiders, 1996; Canann, Muthukrishnan, Phillips, 1996; Hoppe, 1997;

Wilson, Hancock, 2000). A coarse-to-fine pioneering work was presented in (De Floriani,

1989). There, the farthest point from the current triangular mesh is selected at each iteration

and inserted into the triangulation. The latter is updated accordingly. 

2.6.3   Smoothing of Triangular Meshes

A problem with mesh generation methods is that they can produce poorly shaped elements.

Such elements are sometimes undesirable for the final mesh. An approach that can be uti-

lized to correct this problem consists of adjusting the mesh point locations in such a way

that the overall topology of the generated mesh is preserved. In this way, the application of

this process allows to reduce the element distortions and improve the overall quality of the

mesh. Typically, the previous approach is known as mesh smoothing. Some algorithms that

work with 3D triangular meshes are introduced below.

A commonly used technique is Laplacian smoothing (Field, 1988). This method moves

a point of the mesh to the average location of any point connected to it by an edge. Some

mesh smoothing methods working with Laplacian smoothing were proposed by Freitag,

Jones and Plassmann (1995), Freitag (1997), and Canann, Tristano and Staten (1998).

Another mesh smoothing technique is optimization-based smoothing. This method

measures the quality of the surrounding elements of a point and tries to optimize that quality
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measure by computing the local gradient of the element quality with respect to the point

location. The point is moved in the direction of the increasing gradient until convergence.

Freitag (1997), Amenta, Bern and Eppstein (1997), and Canann, Tristano and Staten (1998)

present some algorithms that apply optimization-based smoothing.

Following the mesh smoothing line, different techniques are described in (Bossen,

Heckbert, 1996; Shimada, 1997; Balendran, 1999). Additionally, a survey is presented in

(Owen, 1998).

2.6.4   Segmentation of Triangular Meshes

In order to segment a triangular mesh that approximates an image into uniform regions, two

different techniques have been proposed: edge-based segmentation and region-based seg-

mentation. A combination of both techniques is also possible. In the latter case, the

segmentation process is known as a mixed segmentation. When an edge-based segmentation

is used, the generation of a region is based on the detection and connection of discontinui-

ties that belong to the same region. On the other hand, in a region-based segmentation

process, regions are formed by grouping adjacent triangles that have a similar orientation or,

alternatively, according to some value associated with the triangles.

Segmentation is a typical stage of recognition processes in computer vision, in order to

extract the objects present in a certain scene. Some segmentation techniques that work with

2D triangular meshes have been proposed by Gevers and Kajcovski (1994) and Gevers and

Smeulders (1997). Alternatively, some segmentation techniques that work with 3D triangu-

lar meshes have been presented in (Cohen I., Cohen L., Ayache, 1992; Delinguette, Hebert,

Ikeuchi, 1992; García, Basañez, 1996; Malladi et at., 1996; McInerney, Terzopoulos, 1997;

Mangan, Withaker, 1999).

2.6.5   Warping of Triangular Meshes

Image warping or morphing refers to the process of deforming a 2D or 3D image into

another one in a continuous manner. This process can also be applied to a triangular mesh

representing an image by using affine transformations that allow to deform the polyhedrons

(or polygons in 2D) contained in the mesh. A warping process is potentially useful for mod-
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eling biological and physical processes, such as muscle contraction, for which deformations

are seamless in nature.

Fujimura and Makarov (1997) present a shape warping method that continuously

deforms an image (spatially and temporally) without foldover, while observing a given set

of trajectories of feature elements between initial and final shapes. This warping process is

applied to a 2D triangular mesh that represents an image. Following this line, different

approaches are described in (Goshtasby, 1987; Terzopoulos, Metaxas, 1991; Parent, 1992).

2.6.6   Integration of Triangular Meshes

Given a triangular mesh that approximates a certain image (e.g., gray level image, range

image, digital elevation map), the objective consists of merging it with another mesh repre-

senting a new view or a reconstructed model, generating thus a non-redundant surface

model that becomes the new current reconstructed model. Several applications have bene-

fitted from the previous process, including world modeling, reverse engineering and object

segmentation or recognition.

Two different methods have been proposed in the literature in order to integrate

meshes: (1) unstructured and (2) structured methods. A brief overview of these methods is

presented in (Sappa, 1999). Unstructured integration methods directly work by using the

original data points, generating a polygonal surface from that arbitrary set of unorganized

points. The integration, in this case, is obtained by collecting all the points from the differ-

ent views. On the other hand, structured integration methods work by using the original data

arranged in some way. In particular, most of the structured methods assume that the differ-

ent views to be integrated have been properly triangulated. Therefore, they can make use of

topological and geometric information associated with each point (e.g., neighborhood, cur-

vature, surface orientation). Some relevant contributions that work with unstructured

methods have been presented in (Boissonnat, 1984; Hoppe et al., 1992). Additionally, tech-

niques that work with structured methods applied to 3D triangular meshes are presented in

(Turk, Levoy, 1994; Sappa, García, 2000).
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2.6.7   Compression of Triangular Meshes

Triangular mesh compression techniques can be divided into two basic categories: geomet-

ric compression and topological compression. The geometric compression techniques allow

to reduce the redundant geometric information of a triangular mesh by generating a repre-

sentation with fewer data points than the original mesh. This initial mesh is usually a dense

triangular mesh containing, for example, all the original points of a given image. Several

relevant contributions working in this line are presented in Section 2.6.1 (decimation of tri-

angular meshes). 

On the other hand, topological compression techniques seek the reduction of informa-

tion necessary to store geometric representations such as triangular meshes. Taubin and

Rossignac (1998) propose a topological compression algorithm that allows to encode the

connectivity information of a triangular mesh by constructing two interlocked trees: a span-

ning tree of vertices and a spanning tree of triangles. The first tree stores the positions of all

the vertices of the given mesh, by considering the offsets between the 3D positions of adja-

cent vertices. The tree of triangles allows to encode the connectivity information of all the

triangles of the mesh. The position of each triangle with respect to one of its neighbors can

then be codified with a pair of bits. 

Similarly to the previous technique, some algorithms that use topological compression

applied to triangular meshes have been proposed in (Deering, 1995; Touma, Gotsman,

1998; Gumhold, Stra er, 1998; Rossignac 1999). Since the representations generated

through geometric compression can be further topologically compressed, both compression

techniques are complementary.

2.7   Manipulation of Compressed Images

Although image compression standard formats, such as gif and jpeg (Kunt, Ikonomopoulos,

Kocher, 1985; Wallace, 1991), allow a substantial reduction of the size of digital images,

those techniques were not originally devised for applying further processing operations

directly in the compressed domain. Thus, images codified in those formats must be uncom-

β
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pressed prior to being able to apply image processing operations upon them, no matter how

big and redundant the images are. Nonetheless, some researchers have managed to apply

various basic operations upon such compressed representations. This section presents a

short review of techniques that work in the domain of compressed images.

Smith and Lawrence (1993) describe some techniques that allow to perform algebraic

operations (addition and multiplication) directly on compressed jpeg data. Other techniques

for image and video manipulation working in the compressed domain are presented in

(Chang, 1995a; Chang, 1995b). Those algorithms perform image filtering, geometrical

transformations, overlapping, pixel multiplication and convolution. Following this line,

similar techniques for manipulating compressed images are described in (Chitprasert, Rao,

1990; Natarajan, Bhaskaran, 1995; Shen, Sheti, 1996).

In all cases, the range of processing operations that can be preformed in the com-

pressed domain is quite limited, excluding many important operations commonly utilized

for image processing and computer vision.
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