
71

Chapter 4

Geometric Processing of Adaptive

Triangular Meshes: Analysis

Operations

This chapter presents a set of geometric processing operations applicable to 21/2D adaptive

triangular meshes. As it was indicated in chapter 3, these meshes must be projectable onto

the reference plane, and they may approximate a digital image or any other kind of

surface, such as terrain. Those meshes are simply referred to as triangular meshes through-

out this chapter.

These operations have been classified as analysis operations since they involve the

extraction of information from adaptive triangular meshes. The extracted information can

then be used to perform a description, interpretation or understanding of the adaptive trian-

gular meshes in some way. Section 4.1 introduces the proposed analysis operations. Section

4.2 describes a set of preprocessing operations: geometric transformations, thresholding,

quantization and algebraic operations, region-of-interest selection and tools for the genera-

tion of synthetic triangular meshes. Section 4.3 describes an edge detection technique.

Section 4.4 presents a segmentation technique. Section 4.5 describes a set of operations for

z 0=

72 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

feature extraction from binary triangular meshes. Section 4.6 presents a histogram genera-

tion algorithm from adaptive triangular meshes. Finally, the contents of this chapter are

summarized in Section 4.7.

4.1 Introduction

The interest of applying processing operations to digital images is twofold. On the one

hand, image processing operations allow to improve the quality of the original images. On

the other hand, those processing operations may simplify further computer vision tasks.

In chapter 3, it was shown how to obtain 21/2D adaptive triangular meshes starting with

digital images. The advantage of utilizing triangular meshes is that they allow to represent

the information contained in digital images in a compact form, by removing redundant

information.

This chapter presents a set of techniques to perform typical image analysis operations

upon 21/2D triangular meshes with two main purposes. First, by taking into account that the

processed triangular meshes can represent any type of information, such as digital images or

terrain surfaces, the typical operations applied in image processing upon gray level images

can also be applied to triangular meshes in general. Additionally, by taking advantage that

the processed triangular meshes are compact representations of digital images, the process-

ing operations directly applied to those meshes can be more efficient than if they were

applied to the original digital images.

The classification of analysis operations utilized in this chapter is based on the classifi-

cation made by Jain (1989) and Umbaugh (1998). In the next section, a set of techniques to

perform image preprocessing operations upon 21/2D triangular meshes is described.

4.2 Preprocessing Operations upon 21/2D Triangular Meshes

This section describes several image preprocessing operations applied to 21/2D triangular

meshes. The described techniques allow the application of the following operations: geo-

GEOMETRIC TRANSFORMATIONS 73

metric transformations, thresholding, quantization, algebraic operations, selection of

regions-of-interest and generation of synthetic triangular meshes.

The next section presents the following geometric transformations: rotation, transla-

tion, shrinking, stretching, scaling and deformation.

4.2.1 Geometric Transformations

The adaptive triangular meshes obtained with any of the two techniques proposed in Chap-

ter 3 are representations of digital images at a higher level of abstraction. This may allow

the application of many image processing operations more efficiently than if they were

applied upon the individual pixels of the original images. For example, rotation, translation,

scaling, shrinking, stretching and deformation operations are trivially implemented by

applying geometric transformations to the 3D coordinates of the points that constitute the

adaptive triangular meshes. Since those adaptive meshes contain a fraction of the original

amount of pixels, these operations perform faster than their pixel-to-pixel counterparts. Fig-

ure 4.1(middle) shows an adaptive triangular mesh that will be used to illustrate the

application of the proposed geometric transformations. This mesh was obtained by applying

the algorithm described in Section 3.3.2.

Figure 4.1. (left) Original range image with 40,000 pixels (200x200). (middle) Adaptive
triangular mesh obtained with the algorithm described in Section 3.3.2 (1,634 sampled
pixels). The proposed geometric transformations are applied upon this mesh. (right)
Rendered adaptive triangular mesh.

74 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

4.2.1.1 Rotation and Translation of Triangular Meshes

The rotation of a triangular mesh can be implemented by rotating every point of

the mesh a previously defined angle. Hence, the new coordinates of the points of

the given triangular mesh are computed as follows:

(4.1)

where is the specified rotation angle. Figure 4.2(left) shows the result obtained when a

rotation of 45 degrees is applied to the triangular mesh shown in Figure 4.1(middle).

The translation of a triangular mesh consists of the translation of the coordi-

nates of its points:

(4.2)

where are the coordinates of the translated points and and are the speci-

fied translation factors. Figure 4.2(middle) shows the result obtained when a translation

with and is applied to the points of an adaptive triangular mesh.

Notice that the rotation and translation operations can also be combined as follows:

(4.3)

x y z, ,()

x′ y′ z′, ,()

x′ x Φ y Φsin+cos=

y′ x Φ y Φcos+sin–=

z′ z=

Φ

x y z, ,()

x′ x Tx+=

y′ y Ty+=

z′ z=

x′ y′ z′, ,() Tx Ty

Tx 70= Ty 100
·

=

x′ x Tx+() Φcos y Ty+() Φsin+=

y′ x Tx+()– Φsin y Ty+() Φcos+=

z′ z=

GEOMETRIC TRANSFORMATIONS: ROTATION AND TRANSLATION 75

Figure 4.2(right) displays the final image after applying the same rotation and transla-

tion operations, Figure 4.2(left) and Figure 4.2(middle), but now combined into a single

expression, by using Equation (4.3).

When an approximating image is generated from the triangular mesh obtained after a

translation or rotation, some problems may arise. For instance, if a translation is applied, the

dimensions of the mesh bounding box remain constant. In this way, the obtained approxi-

mating image by applying the z-buffering process (Section 3.4.2) would no visualize the

effect of the translation applied to the mesh. To avoid this problem, a visualization bounding

box has been defined. This new bounding box contains both the mesh bounding box and the

effects produced after processing that mesh. The minimum coordinates of the

visualization bounding box are set to , while the maximum coordinates are defined

according to the boundaries of the mesh. If any of the maximum coordinates are negative,

they are translated back to the positive quadrant. A similar procedure is applied when the

triangular mesh has been rotated. Figure 4.3 illustrates those problems. The pixels contained

in the visualization bounding box that are located outside the limits of the resulting mesh

are set to zero when they are visualized using the z-buffering technique presented in Section

3.4.2.

Figure 4.2. Approximating images obtained after applying geometric transformations to the
original triangular mesh. (left) Rotation. (middle) Translation. (right) Combined
operations: rotation and translation.

xmin ymin,()

0 0,()

76 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

4.2.1.2 Scaling, Shrinking and Stretching of Triangular Meshes

The scaling operation applied to a given triangular mesh is defined as:

(4.4)

where and are the scale factors computed as: and

; where S is the scale factor specified by the user. Figure

4.4(left) displays the result obtained when a scale factor is applied to the triangular

mesh shown in Figure 4.1(middle).

Figure 4.3. Definition of the visualization bounding box: (top row) after applying mesh
translation and (bottom row) after applying mesh rotation.

Tx

Ty

X

Y

Ymax

X

Y
translated mesh

XmaxXmin= 0

Ymin= 0

visualization bounding box

X

Y

rotated mesh

Φ X

Y
visualization bounding box

Xmax

Ymax

Xmin= 0

Ymin= 0

x′ x Sx=

y′ y Sy=

z′ z=

Sx Sy Sx S Xmax 1+() 1–() Xmax⁄=

Sy S Ymax 1+() 1–() Ymax⁄=

S 2=

GEOMETRIC TRANSFORMATIONS: SCALING, SHRINKING AND STRETCHING 77

Additionally, shrinking and stretching operations can also be applied to the given trian-

gular mesh if a new number of rows and columns is desired for the modified image. In this

case, the coordinates of the mesh points are computed as follows:

(4.5)

where and are the shrinking or stretching factors computed as:

 and . and are the new num-

ber of columns and rows desired for the final image (shrunk or stretched image)

respectively, and are the maximum coordinate values of the input triangular

mesh. Figure 4.4(right) shows the result when the triangular mesh is scaled up to an image

of 400x180 pixels (vertical stretching and horizontal shrinking).

Figure 4.4. Approximating images obtained after applying: (left) scaling and (right)
stretching and shrinking to the triangular mesh of Figure 4.1(middle).

x′ y′ z′, ,()

x′ xSx′=

y′ ySy′=

z′ z=

Sx′ Sy′

Sx′ Cnew 1–() Xmax⁄= Sy′ Rnew 1–() Ymax⁄= Cnew Rnew

Xmax Ymax,()

78 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

4.2.1.3 Deformation of Triangular Meshes

Besides the basic functions described above, any mathematical function can be applied to

the points of the mesh in order to obtain other types of visual effects. For example, a possi-

ble deformation is the generation of an elliptical bounded mesh from a quadrilateral

bounded mesh. This kind of geometric manipulation directly works upon the positions of

the points, maintaining the topology of the original triangular mesh. The procedure applied

to obtain the proposed deformation is the following.

First, the x and y coordinates of the points of the original mesh are scaled and translated

(Section 4.2.1.1 and Section 4.2.1.2) such that they are normalized into the interval .

Then, the positions of the points of the elliptical bounded mesh are obtained from the points

of the previous normalized mesh as:

(4.6)

where when either or , and when

 or ; is the angle of each normalized point with

respect to the horizontal axis of a coordinate system located at the center of the normalized

mesh, and are scalar factors used to generate a circular deformation () or an

elliptical deformation (). Two examples that illustrate the approximating images

obtained after applying a circular deformation and an elliptical deformation are shown in

Figure 4.6(bottom left) and Figure 4.6(bottom right) respectively.

4.2.1.4 Experimental Results

The proposed geometric transformations have been tested upon various adaptive triangular

meshes of different size. Those meshes are representations of digital images that have been

obtained with the algorithm described in Section 3.3.2. The CPU times to perform these

operations were measured and compared with the times to perform similar operations with

1– 1,[]

x′ kx r θcos=

y′ ky r θsin=

z′ z=

r x= π 4⁄– θ π 4⁄<≤ 3π 4⁄ θ 5π 4⁄<≤ r y=

π 4⁄ θ 3π 4⁄<≤ 5π 4⁄ θ 7π 4⁄<≤ θ

kx ky kx ky=

kx ky≠

GEOMETRIC TRANSFORMATIONS: DEFORMATION 79

CVIPtools, a conventional image processing software which is publicly available

(Umbaugh, 1998). These CPU times were measured on a SGI Indigo II with a 175MHz

R10000 processor.

Figure 4.1(middle) and Figure 4.5(middle) show two examples of adaptive triangular

meshes that contain 1,634 and 2,461 points respectively. Their corresponding RMS errors

with respect to the original images, Figure 4.1(left) and Figure 4.5(left), are 9.92 and 7.26

respectively.

The CPU times to perform the rotation operation upon the images displayed in Figure

4.1(left) and Figure 4.5(left) with CVIPtools were 0.33 sec. and 2.26 sec., while the same

operation in the geometric domain took 0.0043 sec. and 0.0056 sec. respectively. The trans-

lation operation took 0.05 sec. and 0.34 sec. with CVIPtools and 0.0003 sec. and 0.0004

sec. with the proposed technique. Finally, the scaling operation took 0.11 sec. and 0.34 sec.

with CVIPtools, while it took 0.0004 sec. and 0.0006 sec. with the proposed technique in

the geometric domain.

CVIPtools does not include any routines for producing deformations such as the circu-

lar and elliptical ones shown in Figure 4.6(bottom). Therefore, they should be implemented

Figure 4.5. Triangular mesh utilized to perform the geometric transformation operations.
(left) Original image with 262,144 pixels (512x512). (middle) Adaptive triangular mesh
generated with the algorithm described in Section 3.3.2, which contains 2,461 sampled
pixels. (right) Approximating image obtained from the previous mesh.

80 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

with a user program that would access the given image, pixel by pixel, with the subsequent

time penalty. Similarly, all the image deformations typically found in Adobe’s Photoshop-

like image processing packages are easily implementable in the 3D geometric domain by

trivial mesh deformations, requiring a fraction of the time utilized in the image domain.

Notice that the CPU times obtained with the proposed technique were much faster than

the ones obtained with CVIPtools in all cases. The reason is that only a small percentage of

points are processed in the geometric domain, while, in the image domain, all pixels must

Figure 4.6. Deformation of triangular meshes. (top left) Given triangular mesh with 10,866
points. (top right) Approximating image generated from the previous triangular mesh
(398x454 pixels). (bottom) Resulting images obtained after applying deformation
operations upon the given triangular mesh: (left) circular and (right) elliptical
deformation.

THRESHOLDING OF TRIANGULAR MESHES 81

be considered. Those times do not consider the mesh generation and image reconstruction

stages. The reason is that these stages must only be applied once: to map the original image

to the geometric domain and to map the resulting mesh back to image space. If several oper-

ations are performed (chained) in the geometric domain, the overhead of those two stages

will become negligible.

4.2.2 Thresholding of Triangular Meshes

This section describes a technique for thresholding adaptive triangular meshes. The pro-

posed technique generates triangular meshes that approximate the binary images that would

have been obtained by thresholding the original images pixel by pixel. This operation is

often used as a preprocessing step for the extraction of object features, such as area or

perimeter, or for labeling the objects contained in the image.

The proposed geometric thresholding technique consists of two main stages. The first

stage dissects the given adaptive triangular mesh with a plane parallel to the xy reference

plane of the mesh, which intersects the z axis at a value that corresponds to the specified

threshold. The result is a set of points that will be linked to produce cross-sections. The sec-

ond stage of the algorithm triangulates the points that define the different cross-sections,

using the segments between those points as constraints for the triangulation. Both stages are

described below.

4.2.2.1 Single Dissection of a Triangular Mesh

This stage determines the regions of a triangular mesh which are above and below a given

dissection plane. These regions will represent the areas in the binary image which are black

and white respectively. The algorithm applied to obtain these regions is the following.

First, a plane, referred to as the dissection plane, parallel to the xy reference plane and

intersecting the z axis at a value equal to a specified threshold is defined. This threshold will

range between 0 and , where represents, for example, the maximum gray level

in an 8-bit image. Figure 4.7(top left) illustrates a dissection plane superimposed over a tri-

angular mesh, considering a threshold equal to 128. In this case, the given triangular mesh

represents an 8-bit gray level image.

ZMAX ZMAX

82 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

The next step intersects the triangular mesh with the previous dissection plane. Several

cross-sections are generated as follows. First, the z coordinates of the points of the mesh

that are contained in the dissection plane are increased in one unit. In this way, the dissec-

tion plane can only intersect each triangle at two intersection points. Figure 4.7(top right)

shows the set of intersection points obtained for the example shown in Figure 4.7(top left).

If no intersection points are found after the dissection process, the whole triangular

mesh is above or below the dissection plane. In the first case, the result is a white image,

represented by a rectangular mesh formed by just two triangles, whose z coordinates are set

to white (e.g., 255). In the second case, the resulting image is black, and it is represented by

two triangles whose z coordinates are 0.

Figure 4.7. (top left) Dissection plane superimposed over a triangular mesh. (top right)
Intersection points obtained after the dissection process. (bottom left) Cross-sections
above and below the dissection plane, generated after linking the previously obtained
intersection points. (bottom right) Triangular meshes generated from the previous
cross-sections.

dissection
plane

cross-section

cross-section
holes

(black area)

(white area)

triangular
mesh

THRESHOLDING OF TRIANGULAR MESHES 83

The segment between each pair of intersection points is considered to be a

constraint for the subsequent triangulation phase. In order to determine the orientation of

this segment in a consistent manner, a plane that passes through the midpoint of the segment

and whose normal is the cross product between the normal of the triangle and the normal of

the dissection plane is determined. If is in the positive half-space defined by that plane,

the segment is oriented as . Otherwise, the segment is oriented as .

The intersection points found in this way and their corresponding segments are pro-

jected both upwards and downwards. Specifically, two new points are generated for each

intersection point. These points have the same x and y coordinates as the intersection point

but different z values: one of them is set to white (e.g., 255) and the other to black (e.g., 0).

The segments that are projected upwards (top segments) keep their original orientation,

while the segments projected downwards (bottom segments) invert their orientation, Figure

4.7(bottom left).

Correlative top segments (the endpoint of a segment coincides with the starting point

of the other) are linked forming polylines. The same process is applied to the bottom seg-

ments. Each polyline defines a closed region. A polyline will be open when its endpoints lie

at any of the four sides of the triangular mesh. If both endpoints lie at the same side, the

polyline is closed by linking its endpoints. If the endpoints lie at consecutive sides, the

polyline is closed by linking both endpoints to the corresponding corner of the triangular

mesh. This implies that the four corners of the triangular mesh are also projected upwards

and downwards, similarly to the intersection points, Figure 4.7(top right). If the endpoints

lie at opposite sides, those endpoints are linked to the two corners that produce a closed,

counter-clockwise polyline.

Each closed polyline obtained above defines a cross-section. Thus, top and bottom

cross-sections are formed, each corresponding to black and white regions of the binary

image. Figure 4.7 (bottom left) shows the top and bottom cross-sections obtained after the

application of this process.

P1 P2,{ }

P1

P1 P2,() P2 P1,()

84 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

4.2.2.2 Triangular Mesh Generation

The top and bottom cross-sections obtained above are triangulated separately, using their

respective polylines as constraints. A public implementation of the 2D constrained

Delaunay triangulation algorithm presented in (Shewchuk, 1996) is utilized. The triangula-

tion is applied to the x and y coordinates of the points that belong to those polylines.

By construction, clockwise polylines define holes in the final triangulation, while

counter-clockwise polylines define solid areas. It is possible that several polylines with

alternative orientations are inside each other, giving rise to an alternation of solid and empty

areas, Figure 4.7(bottom left). It is also possible that two counter-clockwise polylines inter-

sect. In that case only the area belonging to the intersection is solid. The algorithm

presented in (Shewchuk, 1996) is able to deal with both situations.

The triangular meshes generated for the current example are shown in Figure 4.7(bot-

tom right). The integration of the top and bottom meshes is simply done by triangulating the

endpoints of each top segment of a polyline with their corresponding points in the bottom

segment. Those triangles define vertical walls in the final triangular mesh.

In order to obtain a digital image from the previously computed triangular mesh and, in

general, from a 21/2D triangular mesh, any of the image generation algorithms described in

Section 3.4 can be applied. Basically, the triangular mesh is uniformly sampled at as many

positions as pixels the final approximating image has. The gray level of each pixel is the z

value of its corresponding sample.

Two binary images generated with the proposed algorithm are shown in Figure

4.8(middle column). The corresponding binary images obtained with a conventional thresh-

olding algorithm (Umbaugh, 1998) are shown in Figure 4.8(right column). The initial

adaptive triangular meshes were obtained with the algorithm presented in Section 3.3.2.

Figure 4.9 shows the original gray level images, their adaptive triangular meshes and the

approximating images corresponding to those meshes.

THRESHOLDING OF TRIANGULAR MESHES 85

4.2.2.3 Experimental Results

The proposed algorithm has been tested upon a set of 18 triangular meshes that represent

gray level images of different size, and also compared to a conventional image processing

software (CVIPtools) presented in (Umbaugh, 1998). The tested meshes were obtained with

the algorithm described in Section 3.3.2. Figure 4.9(middle column) shows two of the uti-

lized adaptive triangular meshes.

The CPU times corresponding to the thresholding operation with the proposed algo-

rithm and CVIPtools are displayed in Figure 4.10, considering the two given triangular

meshes. These algorithms were tested with thresholds ranging between 0 and 255. The CPU

times were measured on a SGI Indigo II with a 175MHz R10000 processor.

Figure 4.8. (left column) Triangular meshes obtained by applying the proposed algorithm:
(top) 8,502 points (bottom) 1,134 points. (middle column) Approximating images
obtained from the previous triangular meshes. (right column) Binary images generated
with a conventional image processing algorithm. Threshold set to 116.

86 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

Experimental results show that this thresholding operation may be more efficient in the

geometric domain than in the image domain. The actual times depend on the number of tri-

angles intersected by the dissection plane, which, in turn, depends on the contents of the

image, the resolution of the triangular mesh (i.e., its approximation error) and the chosen

threshold. Experiments have shown that, in general, an effective speed-up is guaranteed

when the original images have more than a hundred times more pixels than points their cor-

responding triangular meshes have. This is the case of the examples shown in Figure 4.8

and Figure 4.9.

Figure 4.9. (left column) Original images with 1,048,576 pixels (1024x1024, Lenna) and
262,144 pixels (512x512, pens). (middle column) Adaptive triangular meshes generated
with the technique presented in Section 3.3.2: (top) 9,497 points (bottom) 1,354 points.
(right column) Approximating images obtained through z-buffering (Section 3.4.2).
RMS Error: (top) 10.8, (bottom) 6.8, considering 256 gray levels.

QUANTIZATION OF TRIANGULAR MESHES 87

The previous CPU times do not consider the image-to-mesh and mesh-to-image stages.

The reason is that these stages must only be applied once. If many operations are performed

(chained) in the geometric domain, the overhead of those two stages will become

negligible.

4.2.3 Quantization of Triangular Meshes

Triangular mesh quantization refers to the process of defining a set of possible z coordinate

values that a point of a given 21/2D triangular mesh may take. This process consists of map-

ping predefined ranges of z values of the given triangular mesh to single z values. Within

the image processing field, this operation is referred to as image quantization.

The proposed quantization technique applies two main stages for mapping every pre-

defined range of z values to a single z value. The first stage dissects the triangular mesh with

as many horizontal planes as desired z values. Those planes are parallel to the xy reference

plane of the given mesh and intersect the z axis at values that correspond to specified thresh-

olds, Figure 4.11(left). Each parallel plane generates a mesh dissection, which is obtained

Figure 4.10. CPU times for the thresholding operations, using both the proposed and
conventional algorithms with different thresholds.

88 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

by applying the dissection algorithm proposed in the thresholding operation described in

Section 4.2.2.

The range of z values comprised between two consecutive parallel dissection planes is

mapped to a single z value that corresponds to coordinate , where is the

height of the inferior dissection plane, Figure 4.11(right). Furthermore, each intersection

point obtained after applying the mesh dissection process is unfolded into two points, by

projecting every intersection point both upwards and downwards. Those points have the

same coordinates as the intersection point, but different z coordinates: one of them is

set to coordinate , where is the z coordinate of the inferior plane and the

other is set to coordinate , where is the z coordinate of the superior plane.

Figure 4.11(right) illustrates an example of this process.

The second stage of the algorithm retriangulates the triangles that have been dissected

with the previous process. In this stage, the final quantized triangular mesh is generated.

Figure 4.12(middle) illustrates an example of the resulting triangular mesh after applying

the second stage of the proposed algorithm. Both stages are described in more detail below.

Figure 4.11. Illustration in the 2D space (zx plane) of the process of multiple dissection of a
triangular mesh. (left) Parallel planes dissecting the given triangular mesh. (right) The
range of z values comprised between two consecutive planes is projected to coordinate

, where corresponds to the z height of the inferior plane. Furthermore,
the intersection points are unfolded.
z zinf 1+= zinf

unfolding

triangular
mesh

di
ss

ec
ti

on
 p

la
ne

s range of
z values

z zinf 1+=

zinf

zsup

range of
z values

Z

X X

Z

z zinf 1+= zinf

x y,()

z zinf 1+= zinf

z zsup 1+= zsup

QUANTIZATION OF TRIANGULAR MESHES 89

4.2.3.1 Multiple Dissection of a Triangular Mesh

Given a triangular mesh M, a multiple dissection process is applied upon M. This process

dissects the given mesh at as many horizontal planes as possible z values, nz, are desired for

the final quantized mesh. Each mesh dissection is performed with a plane parallel to the xy

reference plane of M, by using the dissection algorithm proposed for the thresholding oper-

ation (Section 4.2.2). These dissection planes intersect the z axis at a value defined as

follows:

(4.7)

where and corresponds to the maximum value that can take the z coor-

dinate of the mesh points. Considering that the given triangular mesh M represents, for

example, an 8-bit gray level image, the maximum number of z values, nz, will be 256. The

value of nz must be specified by the user.

Figure 4.12. Illustration of the triangular mesh quantization process in the 3D space. (left)
Inferior and superior plane dissecting a range of z values in the triangular mesh. The
black triangles are labeled as dissected, while the others are labeled as non-dissected.
(middle) Triangular mesh generated after applying the quantization process by using
four dissection planes. (right) Approximating image obtained from the previous
quantized triangular mesh (four z values are generated).

superior dissection
plane

inferior dissection
plane

range of
z values

zi i
ZMAX 1+

nz
----------------------- 1–⋅=

i 0 nz,[]∈ ZMAX

90 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

Once the intersection values with the z axis, , for every dissection plane have been

determined, the triangular mesh is dissected by using those planes one after the other.

In Equation (4.7), the first plane intersecting the z axis at is not considered as

a dissection plane, but as the first inferior dissection plane. When the following dissection

plane is determined, it is considered as the superior dissection plane. That superior plane

dissects the triangular mesh by applying the algorithm proposed in Section 4.2.2 (threshold-

ing operation) in order to obtain the corresponding intersection points. In order to accelerate

the next stage of the algorithm, only the triangles that are dissected by the superior plane are

labeled as dissected, while the others are labeled as non-dissected. Figure 4.12(left) illus-

trates the previous steps. The range of z values comprised between the inferior and superior

plane, , corresponds to the z coordinates that should be mapped to a single z value.

Those values are finally set to . Finally, each intersection point is unfolded in

two points by projecting it to and , while keeping the same x and y

coordinates.

When a new dissection plane is computed, the previous superior dissection plane is

considered to be the inferior dissection plane, while the new dissection plane becomes the

new superior dissection plane.

The next stage of the algorithm triangulates the regions defined by the triangles labeled

as dissected.

4.2.3.2 Triangular Mesh Generation

Taking advantage that the points comprised between each pair of dissection planes are

maintained, the retriangulation process is only applied to the dissected triangles, keeping

the topology of the non-dissected triangles. This retriangulation process is applied as

follows.

Consider a triangle with vertices , which has been dissected by a hori-

zontal plane. Furthermore, consider that points and are the intersection points

zi

z0 1–=

z0 z1,)[

z z0 1+=

z z0 1+= z z1 1+=

tj v0 v1 v2, ,{ }

p0 p1

QUANTIZATION OF TRIANGULAR MESHES 91

corresponding to segments and respectively, such as illustrated in Figure

4.13(left).

A hash table is generated in order to store and retrieve all the information about the

intersection points. Hash tables are data structures that allow the storage of large amounts of

records identifiable by a certain numeric or alphanumeric key, guaranteeing that records are

retrieved in constant asymptotic time. In our case, the hash table is defined by a vector with

B entries, where B is the prime number closest to the total number of triangles contained in

the given mesh. In this way, the information associated with intersection point is stored

at the entry determined by the following hash function:

(4.8)

where are the identifiers of the two vertices respectively.

The intersection points stored at each entry of the hash table keep: (1) the identifi-

ers, , of segment , (2) the coordinates of intersection point and

(3) their opposite point identifiers corresponding to segment . Taking

v0 v1,{ } v0 v2,{ }

Figure 4.13. Illustration of the retriangulation process. (left) Triangle tj is dissected at
points and by a horizontal plane. (right) Retriangulation of triangle tj when it is
dissected by a superior dissection plane.

p0 p1

v1

v2

v0

v1

v2

v0

p1

p0
p’
0

p’’
0

p’
1

p’’
1

tj

p0

h i0 i1,() i0 i1
B 1–

3
------------⋅+ 

  B⁄=

i0 i1,{ } v0 v1,{ }

i0 i1,{ } v0 v1,{ } x y z, ,() p0

i0 i2,{ } v0 v2,{ }

92 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

advantage of the data kept in the hash table, it is very simple to determine the sequence of

intersection points to be retriangulated.

The triangulation process is applied by only retriangulating the dissected triangles.

First of all, two new points are generated for every intersection point. Hence, the intersec-

tion points and in triangle generate four new points: and ,

which respectively lie at the inferior and superior dissection planes. Afterwards, two “verti-

cal” triangles are generated from those new points: and , such as

displayed in Figure 4.13(right). The previous process is applied for every dissected triangle.

Once the mesh generation stage has been performed, a new dissection plane is com-

puted and the previous two stages are performed again. This process concludes when all the

dissection triangles have been retriangulated.

The approximating image corresponding to the final triangular mesh is obtained by

applying any of the image generation algorithms described in Section 3.4. An example that

illustrates the approximating image obtained from the triangular mesh in Figure 4.12(mid-

dle) is shown in Figure 4.12(right).

4.2.3.3 Experimental Results

This section presents experimental results obtained with the proposed quantization algo-

rithm, which was tested upon various adaptive triangular meshes of different size. The

utilized triangular meshes were generated with the algorithm described in Section 3.3.2.

The CPU times were measured on a SGI Indigo II with a 175MHz R10000 processor.

Figure 4.14(middle) shows an adaptive triangular mesh that represents a digital eleva-

tion map (DEM), which was generated by converting a DEM file to an 8-bit image and then

by approximating it with a triangular mesh through the algorithm described in Section 3.3.2.

Figure 4.15(left column) illustrates the triangular mesh obtained after applying the pro-

posed quantization algorithm, considering 8 possible z coordinate values. The CPU time

was 0.93 sec. For 32 possible z coordinate values, the CPU time was 6.65 sec. The corre-

sponding triangular mesh is displayed in Figure 4.15(right column). In both cases, the

p0 p1 tj p0' p0'',{ } p1' p1'',{ }

p0' p0'' p1', ,{ } p1' p0'' p1'', ,{ }

QUANTIZATION OF TRIANGULAR MESHES 93

approximating images generated from those meshes are shown in Figure 4.15(bottom row).

The same operations were applied to the original 8-bit image by using CVIPtools

(Umbaugh, 1998). In this case, both quantization operations with CVIPtools were per-

formed faster than with the proposed technique. For example, the CPU time with CVIPtools

was 0.03 sec. for both 8 and 32 gray levels.

The reason for the poor performance of the geometric technique in this case is the high

cost of the multiple dissection and retriangulation process. Therefore, the mesh quantization

technique is not advantageous for accelerating digital image processing, although it is use-

ful for being applied upon data originally described by 21/2D triangular meshes, such as

terrain surfaces.

Figure 4.14. (left) DEM of the Galapagos Islands converted to an 8-bit image with 262,144
pixels (512x512). (middle) Adaptive triangular mesh obtained with the algorithm
described in Section 3.3.2 (5,808 sampled pixels). (right) Rendered triangular mesh.

94 GEOMETRIC PROCESSING OF ADAPTIVE TRIANGULAR MESHES: ANALYSIS OPERATIONS

Figure 4.15. Adaptive triangular meshes obtained after applying the proposed quantization
process: (left column) with 8 possible intensities and (right column) with 32 possible
intensities. The bottom row shows the approximating images corresponding to the
quantized triangular meshes.

