
Chapter 2

Energy-based modelling of

electromechanical systems

In this chapter the energy–based model of the system is presented in a Hamiltonian for-
malism. Basic notions on Port-controlled Hamiltonian Systems (PCHS) and Dirac struc-
tures are discussed and then applied to the electromechanical systems. The whole system
(doubly-fed induction machine and back-to-back converter) is finally presented in as PCHS.

Part of the results of this Chapter can also be found in [4][9][15].

2.1 Port-controlled Hamiltonian Systems

The central paradigm of network modelling of complex systems is to have individual open
subsystems with well defined port interfaces, hiding an internal model of variable complexity,
and a set of rules describing how the subsystems interact through the port variables.

One implementation of this general idea is what is known as port Hamiltonian systems or
port-controlled Hamiltonian systems (PCHS) [56][57] (see also [25] and references therein).
Hamiltonian systems are close to the classical Lagrangian methods, both techniques use the
state dependent energy or co-energy functions to characterize the dynamics of the different
elements. In this approach, energy plays a fundamental role, port variables are conjugated
variables such that their product has dimension of power, and the interconnection of sub-
systems is implemented by means of what is called a Dirac structure, which enforces the
preservation of power, and can be seen as a generalization of Tellegen’s theorem of circuit
theory [58]. PCHS theory allows the coupling of systems from different domains using
energy as the linking concept, and provides the mathematical foundation for bond-graph
modelling [20][42]. Although originally developed for lumped parameter systems, PCHS
theory has been extended to distributed parameter systems as well [88], described by par-
tial differential equations, for which numerical spatial discretization schemes have also been
developed [41].

Besides describing systems in a modular, scalable and non domain-specific way, PCHS
theory allows a natural implementation of passivity-based control methods [51][87], using
energy as the storage function. The clear separation between (a) constitutive relations,
given by the energy, or Hamiltonian, function, (b) the structure matrix, describing how
energy flows inside the system, and (c) the power ports, some of which may be terminated
by dissipative elements, allows the design of controllers with a clear physical interpretation
in what is known as Interconnection and Damping Assignment Passivity-Based Control
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20 Chapter 2. Energy-based modelling

(IDA-PBC) [66], see Chapter 4.

2.1.1 Port-controlled Hamiltonian Systems in explicit form

Explicit port-controlled Hamiltonian systems have the form

{
ẋ = (J(x) − R(x))∂xH(x) + g(x)u
y = gT (x)∂xH(x)

(2.1)

where

• x ∈ R
n is the vector state.

• u, y ∈ R
m are the port variables.

• H(x) : R
n → R is the Hamiltonian function (usually representing the energy function

of the system). The ∂x (or ∂, if no confusion arises) operator defines the gradient of
a function of x, and in what follows we will take it as a column vector.

• J(x) ∈ R
n×n is the interconnection matrix (which is skew-symmetric, J(x) = −J(x)T ).

It represents the internal connection between whole elements of the system and define
its structure.

• R(x) ∈ R
n×n is the dissipation matrix (which, is symmetric and, in physical systems,

semi-positive definite R(x) = RT ≥). It represents the losses of the system.

• g(x) ∈ R
n×m is an interconnection matrix describing, the port connection of the

system outside the world. It yields the flow of energy to/from the system through the
port variables, u and y.

A nice feature of port-controlled Hamiltonian systems is their passivity and stability prop-
erties.

Proposition 2.1. Assume a PCHS (2.1) with

– A1 - a Hamiltonian function H(x) bounded from below (H(x) > c), with a mini-
mum at x∗

– A2 - an skew-symmetric interconnection matrix J(x) = −JT (x), and

– A3 - a semi-positive definite dissipation matrix R(x) = RT (x) ≥ 0,

then the system, in a closed-loop ( i.e. for u = 0), is asymptotically stablea.

aNotice that, if assumption A3 restricts in R(x) = RT (x) > 0, the closed-loop system is globally
asymptotically stabe

Proof. Consider the Hamiltonian function H(x), its derivative

Ḣ(x) = (∂H)T ẋ = (∂H)T (J(x) − R(x))∂H + (∂H)T g(x)u

with (A2) and y = gT (x)∂H(x) the power-balance equation is recovered
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Ḣ(x) = −(∂H)T R(x)∂H + yT u

with (A3) and considering u = 0

Ḣ(x) ≤ 0.

This result, with (A1) concludes that the Hamiltonian function is a Lyapunov function.
Invoking LaSalle’s invariance principle, if the largest invariant set under the dynamics (2.1,
with u = 0) contained in

{
x ∈ R

n|(∂H)T R∂H = 0
}

equals x∗, then the system is asymptotically stable. �

2.1.2 Dirac structures

As said before, the central mathematical object of the formulation is what is called a Dirac
structure, which contains information about the interconnection network. In the simplest
case (finite dimensional systems), flows corresponding to the open ports are arranged in a
m-dimensional vector space V, f ∈ V, while the associated efforts are viewed as elements of
its dual V∗, e ∈ V∗. The dual pairing between vectors and forms provides then the product
which yields power,

〈e, f〉 = p.

One also needs an state space X , with local coordinates x ∈ R
n and corresponding tangent

and co-tangent spaces TX and T ∗X . These will eventually be associated to the bonds
corresponding to the energy storing elements.

Let B(x) = TxX × T ∗
xX × V × V∗. On B(x) one can define a symmetric bilinear form

〈fx
1 , ex

1 , f1, e1), (f
x
2 , ex

2 , f2, e2)〉+ = (ex
1 , fx

2 ) + (ex
2 , fx

2 ) + (e1, f2) + (e2, f1).

A Dirac Structure on B = ∪x∈XB(x) is a smooth subbundle D ∈ B such that, for each x,

D(x) = D⊥(x),

D⊥(x) = (fx
1 , ex

1 , f1, e1) | 〈(fx
1 , ex

1 , f1, e1), (f
x
2 , ex

2 , f2, e2)〉+ = 0,∀(fx
2 , ex

2 , f2, e2) ∈ D(x).

Dirac structures have the following important properties:

1. dimD(x) = n + m.

2. If (fx, ex, f, e) ∈ D(x), then (ex, fx) + (e, f) = 0.

3. In local coordinates, a Dirac structure can be characterized by (n + m)-dimensional
square matrices E(x), F (x), satisfying F (x)ET (x) + E(x)F T (x) = 0 as follows:

(fx, ex, f, e) ∈ D(x) ⇐⇒ F (x)

[
fx

f

]

+ E(x)

[
ex

e

]

= 0. (2.2)



22 Chapter 2. Energy-based modelling

Let H be a smooth function on X . The port controlled Hamiltonian system correspond-
ing to (X ,V,D, H) is defined by

(fx, ex, f, e) ∈ D(x), (2.3)

with

ẋ = −fx, (2.4)

ex = dH(x), (2.5)

where the minus sign in (2.4) is introduced for convenience (it is related to an input power
convention; see (2.6) below). Substituting (2.4), (2.5) in (2.3) one has, alternatively,

(−ẋ, dH(x), f, e) ∈ D(x).

It follows from the self-duality of the Dirac structure that

Ḣ = (e, f), (2.6)

which expresses the energy balance, i.e. the rate of variation of the system energy equals
the power coming into the system. In local coordinates, assuming that F (x) is invertible
for all x, one has

[
ẋ
−f

]

= F−1(x)E(x)

[
∂H(x)

e

]

.

It is a simple computation to see from FET +EF T = 0 that F−1E must be skew-symmetric.
Then

[
ẋ
−f

]

=

[
J(x) g(x)

−gT (x) Jf (x)

] [
∂H(x)

e

]

.

where J(x), Jf (x) are skew-symmetric.

Dissipation may be included by terminating some of the open ports. Replacing m →
m + mr and setting er = −R(x)f with RT (x) = R(x) ≥ 0, one gets

Ḣ(x) = (e, f) + (er, fr) = (e, f) − fT
r R(x)fr ≤ (e, f).

Again, in local coordinates the system can be expressed as

{
ẋ = (J(x) − R(x))∂H(x) + g(x)e
f = gT (x)∂H(x) − Jf (x)e.

and an implicit port-controlled Hamiltonian system is obtained (2.1). In general, one can
interconnect several PCHS with open ports using Dirac structures, and the result is again
a PCHS, although not necessarily in explicit form. A main feature of the formalism is
that the interconnection of Hamiltonian subsystems using a Dirac structure yields again a
Hamiltonian system [25].
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2.1.3 Interconnection examples

Here we present some elementary examples of interconnection of two PCHS using a Dirac
structure. Although the formulation may seem a little overkill for such elementary systems,
this has the advantage that the main features and results can be easily checked against
physical intuition.

Example 2.2: A point particle subjected to an external force

m
v

F

Figure 2.1: A point particle subjected to an external force.

Consider a point particle in one dimension, with mass m and moving at speed v, and an
external force F applied to it, Figure 2.1. This dynamical system is described by variables
x = p ∈ R, where p = mv, and the energy function

H(p) =
1

2m
p2.

The elements of the Dirac structure description (2.3) are

fp = −ṗ, ep = ∂pH(p) =
p

m
= v, e = F, f = vF ,

where vF is the speed of the point where the external force is applied. The physics yields
the interconnection laws

ṗ = F, v = vF ,

The first relation is just Newton’s second law, while the second one says that the external
force is applied to the particle. The two interconnection laws above can be written as a
Dirac structure with

[
0 −1
1 0

]

︸ ︷︷ ︸

F (p)

[
−ṗ
vF

]

+

[
1 0
0 1

]

︸ ︷︷ ︸

E(p)

[
v
F

]

= 0,

which indeed satisfy FET + EF T = F + F T = 0.

Example 2.3: An ideal spring

Consider an ideal spring where x = q ∈ R is the equilibrium displacement. The energy
function is described by

H(q) =
1

2
kq2.
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where k is the spring constant. In this case, the elements of the Dirac structure are

fx = −q̇, ex = kq, e = F, f = v,

where F is the force on the spring and v the velocity of the point where it is applied. In
this case, physics dictates that

q̇ = v, F = kq,

so that the force on the spring is moving with its displacement and −F = −kq is the
force done on whatever is acting on the spring. These two relations can be written again
as a Dirac structure:

[
1 1
0 0

]

︸ ︷︷ ︸

F (q)

[
−q̇
v

]

+

[
0 0
1 −1

]

︸ ︷︷ ︸

E(q)

[
kq
F

]

= 0.

Example 2.4: A point particle subjected to two external forces

m

v

F1

F2

Figure 2.2: A point particle with a mass subjected to two external forces.

Consider now a point particle with mass m subjected to two external forces F1, F2, Figure
2.2. As in the first example, the dynamical variable is x = p ∈ R and as energy function
we have again

H(x) =
1

2m
p2.

The elements of the Dirac structure description are

fp = −ṗ, ep =
p

m
= v, e1 = F1, f1 = v1, e2 = F2, f2 = v2,

where ei, i = 1, 2 is the velocity of the point where Fi is applied. Notice that we only
add an external force to the first example, and now the interconnection laws are

ṗ = F1 + F2, v1 = v2 = v.

This is also a Dirac structure,





1 0 0
0 1 0
0 0 1





︸ ︷︷ ︸

F (p)





−ṗ
v1

v2



 +





0 1 1
−1 0 0
−1 0 0





︸ ︷︷ ︸

E(p)





v
F1

F2



 = 0.
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m
v

F

k

Figure 2.3: A point particle with a mass and an ideal spring subjected to an external force.

Example 2.5: A point particle attached to an ideal spring an subjected to an
external force

Consider a point particle with mass m, connected to an ideal spring (with elastic constant
k) and subjected besides to an external force F (Figure 2.3). In this example two dynamical
variables appears, one from the mass subsystem subjected to two external forces (one of
them will be the elastic force of the spring) and another one from the ideal spring. Figure

m
v

F
F2

k
F3

Figure 2.4: The point particle and ideal spring system, decoupled.

2.4 shows these two separated subsystems, which we have already described as a Dirac
structure. With the slightly new notation, we have

– point particle:




1 0 0
0 1 0
0 0 1





︸ ︷︷ ︸

F (p)





−ṗ
vF

v2



 +





0 1 1
−1 0 0
−1 0 0





︸ ︷︷ ︸

E(p)





v
F
F2



 = 0.

– ideal spring:
[

1 1
0 0

]

︸ ︷︷ ︸

F (q)

[
−q̇
v3

]

+

[
0 0
1 −1

]

︸ ︷︷ ︸

E(q)

[
kq
F3

]

= 0.

The interconnection dictates that

F3 = −F2, v3 = v2

or in a Dirac structure form (this is in fact a constant Dirac structure, with no dynamical
contents and describing just the topology of the interconnection)

[
1 −1
0 0

]

︸ ︷︷ ︸

Fc

[
v2

v3

]

+

[
0 0
1 1

]

︸ ︷︷ ︸

Ec

[
F2

F3

]

= 0.
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Putting everything together, we have

−ṗ + F + F2 = 0, v = v2 = vF , −q̇ + v3 = 0, F3 = kq F3 = −F2, v3 = v2,

or, eliminating the auxiliary interconnection variables v2, v3, F2, F3,

F − kq − ṗ = 0, vF = v, q̇ = v,

which can be written in Dirac structure form as




1 0 0
0 1 0
0 0 1





︸ ︷︷ ︸

F (p,q)





−ṗ
vF

−q̇



 +





0 1 −1
−1 0 0
1 0 0





︸ ︷︷ ︸

E(p,q)





v
F
kq



 = 0.

Notice that the energy function is the sum of the partial energy functions

H(p, q) =
1

2m
p2 +

1

2
kq2.

Example 2.6: Two point particles subjected to an external force

v

Fm1m2

Figure 2.5: Two point particles subjected to an external force.

As a last example consider two point particles with masses m1 and m2, glued together
and to which an external force F is applied, Figure 2.5. The system can be seen as
interconnection of a point particle m1 subjected to two external forces and a second mass
m2 subjected to an external force, see Figure 2.6.

v

F

F1

F2

m1m2

Figure 2.6: The two particle system, decoupled.

Adapting the notation, the subsystems are described by

– point particle m1:





1 0 0
0 1 0
0 0 1





︸ ︷︷ ︸

F (p1)





−ṗ1

v
v1



 +





0 1 1
−1 0 0
−1 0 0





︸ ︷︷ ︸

E(p1)





vp1

F
F1



 = 0.
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eM

fM

eE

fE

(λ, x)

Figure 2.7: A generalized electromechanical system.

– point particle m2:

[
0 −1
1 0

]

︸ ︷︷ ︸

F (p2)

[
−ṗ2

v2

]

+

[
1 0
0 1

]

︸ ︷︷ ︸

E(p2)

[
vp2

F2

]

= 0,

In this case the interconnection is described by

v1 = v2, F1 = −F2.

Putting everything together and getting rid of v1, v2, F1, F2, one gets





1 1 0
0 0 0
0 0 1





︸ ︷︷ ︸

F (p1,p2)





−ṗ1

−ṗ2

v



 +





0 0 1
1 −1 0
−1 0 0





︸ ︷︷ ︸

E(p1,p2)





vp1

vp2

F



 = 0,

which also satisfies (2.2).

2.2 Port-controlled Hamiltonian description of electromechan-

ical systems

An electromechanical system exchanges energy between a mechanical and electrical part
by means of geometry variations. In this section a general model, which includes many
of the classical electrical machines as well as linear motors and levitating systems [75], is
presented.

Consider the system displayed in Figure 2.71. There are nE generalized electrical ports
(eE , fE) and nM generalized mechanical ones (eM , fM ), and the state variables are denoted
by λ ∈ R

nE , x ∈ R
nM (we use a magnetic and translation mechanics notation, although the

ports can be of any nature).

The equations of motion and the constitutive relations of the ports of this system,
namely λ̇ = eE , ẋ = fM , fE = ∂λHE , eM = ∂xHE , where HE = HE(λ, x) is the energy

1In this Section we display systems using a bond graph representation, which, in a sense, are the graphical
counterpart of port-Hamiltonian modelling. This representation is not essential for our purposes, but the
reader not familiarized with bond graph theory can, for instance, consult [19][20][48].
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function, can be expressed in explicit port-Hamiltonian form as2

[
λ̇
ẋ

]

= O

[
∂λHE

∂xHE

]

+ I

[
eE

fM

]

, (2.7)

[
fE

eM

]

= I
T

[
∂λHE

∂xHE

]

. (2.8)

This is just the purely electromagnetic part of an electromechanical system. In fact,
the electromechanical system always contains some mechanical inertia, independently of
whether the port is connected to other systems or not. To model this, consider a generalized
mechanical element with nI ports (eI , fI) and state variables p ∈ R

nI . The dynamical
equations of the element, ṗ = eI , fI = I−1p, are written in port-Hamiltonian form as

ṗ = O ∂pHI + I eI , (2.9)

fI = I
T ∂pHI , (2.10)

with
HI(p) = pT I−1p.

This purely mechanic part can be coupled to the electromagnetic part and to the rest
of the system (if any), by means of

eI = −BIMeM + FI , (2.11)

fM = BT
IMfI , (2.12)

fI = vI , (2.13)

where the mechanical ports of the inertia element have been split into one contribution from
the electromagnetic part, (eM , fM ), and the connection to other subsystems, (FI , vI), with
FI , vI ∈ R

nI . The matrix BIM takes into account the fact that the mechanical ports may be
connected to the electromagnetical part in a nontrivial way (or the fact that nI 6= nM ), and
the minus sign in (2.11) reflects Newton’s third law (eM is the force on the electromagnetic
part, so a minus sign must be introduced to get the force on the mechanical element). Notice
that the above relations define a Dirac structure in R

nM+2nI × R
nM+2nI with coordinates

(eM ,−fM ,−eI , fI , FI , vI), since the nM + 2nI equations are clearly independent and can
be written as





I O O

O I O

O O I





︸ ︷︷ ︸

F





−fM

−eI

vI



 +





O BT
IM O

−BIM O I

O −I O





︸ ︷︷ ︸

E





eM

fI

FI



 = 0,

with EF T + FET = E + ET = 0. Notice that the two minus signs in −fM and −eI

correspond to power flowing into the mechanical port of the electromagnetic subsystem and
power flowing into the mechanical inertia, respectively, so that

F T
I vI = eT

I fI + eT
MfM .

The bond graph corresponding to the whole system is displayed in Figure 2.8, where the
power flow conventions can be clearly appreciated.

2
O denotes the zero matrix of appropriate size, and likewise I stands for the identity matrix.
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TF 1

I:

..
eM

fM

eE

fE

HE(λ, x)

HI(p)

eI fI = vI

BIM

FIFI − eI

vIvI

Figure 2.8: Bond graph of a generalized electromechanical system with mechanical inertia
included.

From (2.7), (2.8), (2.9), (2.10), (2.11), (2.12) and (2.13), one can express the equations
of motion for the state variables in terms of the external inputs (eE , FI), and obtain also
the corresponding outputs (fE , vI). Indeed, eliminating the internal port variables (eM , fM )
and (eI , fI), one gets

λ̇ = eE ,

ẋ = BT
IM∂pHI ,

ṗ = −BIM∂xHE + FI ,

fE = ∂λHE ,

vI = ∂pHI .

This can be given a port-Hamiltonian form, with total Hamiltonian

HEM (λ, x, p) = HE(λ, x) + HI(p),

and




λ̇
ẋ
ṗ



 =





O O O

O O BT
IM

O −BIM O









∂λHEM

∂xHEM

∂pHEM



 +





I O

O O

O I





[
eE

FI

]

,

[
fE

vI

]

=

[
I O O

O O I

]




∂λHEM

∂xHEM

∂pHEM



 .

In fact, a further generalization can be included, allowing a nontrivial interconnection
of the external and electrical ports to the actual power sources. This can be represented by
means of constant matrices BE , BM of appropriate dimensions, similarly to the transformer
matrix in the mechanical side. Denoting by (eS , fS), respectively (FS , vS), the variables at
the source electrical (mechanical) ports, the final port Hamiltonian description is then





λ̇
ẋ
ṗ



 =





O O O

O O BT
IM

O −BIM O









∂λHEM

∂xHEM

∂pHEM



 +





BE O

O O

O BM





[
eS

FS

]

,

[
fS

vS

]

=

[
BT

E O O

O O BT
M

]




∂λHEM

∂xHEM

∂pHEM



 . (2.14)
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We will now specialize this general description to the case of linear electrical systems,
and will also add dissipative effects for both the electrical and the mechanical parts. We will
adopt a bottom-top approach and see how the above description arises from the dynamical
equations as usually presented in the electrical engineering literature. Under the assumption
of linear electrical constitutive relations, and taking a simple inertia form for the mechanical
kinetic energy, the total energy is

H(λ, p, θ) =
1

2
λT L−1(θ)λ +

1

2
pT J−1

m p,

where λ ∈ R
ne are the generalized electrical energy variables (again, they may be charges

or magnetic fluxes ), p ∈ R
nm are the generalized mechanical variables (linear or angular, or

associated to any other generalized coordinate), and θ ∈ R
nm are the generalized geometric

coordinates. L ∈ R
ne×ne is the inductance (or capacitance) matrix.

One has

λ̇ = −Rei + Bev

ṗ = −Brω − τe(λ, θ) + BmτL

θ̇ = J−1
m p (2.15)

where Be ∈ R
ne×me is a matrix indicating how the input voltages v ∈ R

me are connected
to the electrical devices, Bm ∈ R

nm×mm is a matrix indicating how the external applied
mechanical torque τL ∈ R

mm are connected to the mechanical subsystem, Re ∈ R
ne×ne is

the electrical damping matrix, Br ∈ R
nm×nm is the mechanical damping matrix, τe ∈ R

nm

is the electrical torque and i ∈ R
ne , ω ∈ R

nm

i = L−1(θ)λ = ∂λH, ω = J−1
m p = ∂pH (2.16)

are the electrical currents (or voltages) and mechanical velocities ω = θ̇. The electrome-
chanical energy conversion is given by the constitutive law

τe = ∂θH = −1

2
λT L−1 ∂L

∂θ
L−1λ, (2.17)

where ∂L
∂θ

−1
= −L−1 ∂L

∂θ
L−1 has been used. Using (2.16) and (2.17), equations (2.15) can

be written in an explicit port-controlled Hamiltonian system (2.1) form as

ẋ =














One×ne One×nm One×nm

Onm×ne Onm×nm −Inm×nm

Onm×ne Inm×nm Onm×nm





︸ ︷︷ ︸

J

−





Re One×nm One×nm

Onm×ne Br Onm×nm

Onm×ne Onm×nm Onm×nm





︸ ︷︷ ︸

R










∂H

+





Be One×mm

Onm×me Bm

Onm×me 0nm×mm





︸ ︷︷ ︸

g

[
v
τL

]

where x = [λT , pT , θT ]T ∈ R
ne+nm . This has the form of (2.14), with the addition of a

dissipation matrix (notice also that the order of the configuration and mechanical variables
has been interchanged).
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2.2.1 Examples

In this section two examples of modelling PCHS electromechanical systems are presented,
namely a DC motor and a magnetic levitation system (see [75] for additional examples).

Example 2.7: a DC motor

A DC motor is displayed in Figure 2.9. Assuming parasitic resistances in both rotor and
field loops (ra and rf ), and neglecting any mutual inductance effect between both loops,
the equations of motion for the variables λf = Lf if (the field flux), λa = LAia (the
armature flux), and pm = Jmω (the mechanical angular momentum of the rotor) are

λ̇f = −rf if + vf

λ̇a = −LAf ifω − raia + va

ṗm = LAf if ia − Brω − τe (2.18)

where τe is the external applied mechanical torque.

-

+

-

+

rarf
LA

Lf

iaif

vavf LAfωif

ω

Figure 2.9: Circuit scheme of a DC motor.

For the DC motor, the above formulation has to be modified slightly due to the different
role played by the geometric coordinates (the angle in this case), see [15] for further
discussion. Direct inspection of equations (2.18) shows that they can be given a PCHS
form, with the Hamiltonian variables

x = [λf , λa, Jmω]T ,

a Hamiltonian function

H(x) =
1

2
λT L−1λ +

1

2Jm
ω2

where λ = [λf , λa]
T and

L =

[
Lf 0
0 LA

]

.

The interconnection and damping matrices are

J =





0 0 0
0 0 −LAf if
0 LAf if 0



 , R =





rf 0 0
0 ra 0
0 0 Br



 ,
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and the port matrix is g = I3, with inputs

u = [vf , va, τe]
T .

Example 2.8: A magnetic levitation system

Figure 2.10 shows a very simplified model of a magnetic levitation system.

+

-

u
i

y

m

g

r

L(y)

Figure 2.10: A magnetic levitation system.

The flux lines generated by the current at the coil close through the air gap and the iron
ball. Since the air gap has a variable reluctance, the system tries to close it, and this
counteracts the gravity. The equations of motion are

λ̇ = −ri + u

mv̇ = Fm + mg

ẏ = v

where λ = L(y)i is the linkage flux, r is the resistance of the coil, and Fm the magnetic
force, given by

Fm =
∂Wc

∂y
,

where the magnetic co-energy is (assuming a linear magnetic system)

Wc =
1

2

∂L

∂y
i2.
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In general L(y) is a complicated function of the air gap, y. A classical approximation for
L for this kind of systems for small y is

L(y) =
k

a + y

with k, a constants.

The system can be expressed as a PCHS taking

x = [λ, p = mv, y]T

as Hamiltonian variables, and

ẋ =














0 0 0
0 0 −1
0 1 0





︸ ︷︷ ︸

J

−





r 0 0
0 0 0
0 0 0





︸ ︷︷ ︸

R










∂H +





1
0
0





︸ ︷︷ ︸

g

u

with the Hamiltonian function

H(x) =
1

2k
(a + x3)x

2
1 +

1

2m
x2

2 − mgx3.

2.3 Variable structure systems in the PCHS framework

Electronic power converters can be modelled as Variable Structure Systems (VSS). In [34]
an extended study on the modelling large class of power converters was presented. Only
ideal switches and diodes were considered. Here, ideal means that the switching devices are
lossless elements, that is, current conduction occurs only at zero voltage, and viceversa).The
main contribution was that a mathematical model of a power converter can be systematically
derived using the generalized Hamiltonian formalism as

ẋ = (J(x, S) − R(x, S))∂H + g(x, S)u (2.19)

where S is a (multi)-index, with values on a finite, discrete set, enumerating the different
structure topologies. As is described in the previous section, the state is described by
x ∈ R

n, H is the Hamiltonian function, giving the total energy of the system, J is an
antisymmetric matrix, describing how energy flows inside the system, R = RT ≥ 0 is
a dissipation matrix, and g is an interconnection matrix which yields the flow of energy
to/from the system, given by the dual power variables u ∈ R

m and y = gT (∂H)T .

The main feature is that the for all operating modes the same state variables x, the
same Hamiltonian function H and the same dissipation matrix R are considered and the
variable topology is captured in the structure matrices (J and g) and the dissipation R.



34 Chapter 2. Energy-based modelling

Power converter are RLC circuits with a variable topology, then the state variables are
related to the inductors and capacitors. In the Hamiltonian formalism the variables are
fluxes and charges

x = [λ, q] ∈ R
n

with a Hamiltonian function

H =
1

2
xT Q−1x,

where Q is the matrix relating between Hamiltonian and Lagrangian variables (fluxes and
charges to currents and voltages). The methodology presented in [34] extracts the non-
energetic elements (resistors, transformers, diodes and switches), and as a first step considers
an LC circuit with ports connected to the disregarded elements. Then the system can be
written as

ẋ = Jx∂H + Gsus + Grur + Gswusw (2.20)

with natural outputs

y =





ys

yr

ysw



 =





GT
s

GT
r

GT
sw



 ∂H + D





us

ur

usw



 (2.21)

where x ∈ R
n are the Hamiltonian variables, Jx ∈ R

n×n is the interconnection matrix
between the energetic storage elements, ys, us ∈ R

s are the power variables of the external
ports, yr, ur ∈ R

r are the power variables of the resistances and ysw, usw ∈ R
sw are the

power variables associates to the switches. G is the associate input matrix for each kind of
components (with appropriate dimension) and D is the throughput skew-symmetric matrix
which describes the interaction between switches, resistances and sources.

Analyzing each position of the switches the PCHS is obtained. Rather than repeating
the general formulation in [34], we present a full example with the full-bridge rectifier that
constitutes half of our B2B converter.

Example 2.9: a full-bridge rectifier

The full bridge rectifier, represented in Figure 2.11, is the left hand side of the back-to-back
converter discussed in subsection 1.3.1.

It is made by an AC single-phase voltage source vi(t) = E sin(ωst), an inductor L, a
capacitor C for the DC part and r takes into account all the resistance losses. s1, s2, t1
and t2 represents ideal switches.

Following the methodology explained above, a PCHS of a full-bridge rectifier can be
obtained. First, the system can be written in a form (2.20) as

ẋ =

[
0 0
0 0

]

∂H +

[
1
0

]

vi +

[
0
1

]

(−iDC) +

[
1
0

]

(−er)

+

[
1
0

]

(−es1) +

[
−1
0

]

(−es2) +

[
0
−1

]

(−ft1) +

[
0
−1

]

(−ft2) (2.22)
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+

+

vi

Lr

C
vDC

iDC

i

s1 s2

t1 t2

Figure 2.11: Basic scheme of a full-bridge rectifier.

where x = [λ, q]T are the inductor flux (λ = Li) and the capacitor charge (q = CvDC),
and a Hamiltonian function

H =
1

2
xT Q−1x (2.23)

where

Q =

[
L 0
0 C

]

and e, f are efforts and fluxes (in a electrical domain, voltages and currents).The corre-
sponding outputs for the source, current port, resistance and switches (2.21) are given
by

y =













fvi

eiDC

fr

fs1

fs2

et1

et2













=













1 0
0 1
1 0
1 0
−1 0
0 −1
0 −1













∂H +













0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1
0 0 0 1 0 0 0
0 0 0 0 1 0 0

























vi

−iDC

−er

−es1

−es2

−ft1

−ft2













.

(2.24)
From the Ohm’s law, the constitutive relation for the resistance is

er =
λ

L
r. (2.25)

Analyzing each one of the two positions of the switch, with (2.24),

– Mode 1, (S = 1)
{

es1
= et2 = 0

fs2
= ft1 = 0

⇒
{

fs1
= ft2 = λ

L

es2
= − q

C
, et1 = − q

C

– Mode 2, (S = −1)
{

fs1
= ft2 = 0

es2
= et1 = 0

⇒
{

es1
= − q

C
, et2 = − q

C

fs2
= ft1 = − λ

L
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From the previous analysis, one can write,







es1
= S−1

2
q
C

es2
= −S+1

2
q
C

ft1 = S−1
2

λ
L

ft2 = S+1
2

λ
L

(2.26)

and replacing (2.25) and (2.26) in (2.22)

[
λ̇
q̇

]

=

[
−r −S
S 0

] [
λ
L
q
C

]

+

[
1 0
0 −1

] [
vi

iDC

]

(2.27)

which has the form (2.19) with the Hamiltonian variables x = [λ, q]T , the Hamiltonian
function (2.23), the interconnection and dissipation matrices

J =

[
0 −S
S 0

]

R =

[
r 0
0 0

]

and

g =

[
1 0
0 −1

]

with the input port variables u = [vi, iDC ]T .

Notice that for the averaged approximation models, S takes values in a continuum set.

2.4 Generalized Space State Averaged in a PCHS structure

Our approach to the modelling and control of the B2B converter is based on the com-
bined use of the PCHS and GSSA formalisms. Detailed presentations of GSSA theory and
applications can be found in [21][55][79][84].

Averaging techniques for VSS are based on the idea that the change in a state or control
variable is small over a given time length, and hence one is not interested on the fine details
of the variation. Hence one constructs evolution equations for averaged quantities of the
form

〈x〉(t) =
1

T

∫ t

t−T

x(τ) dτ,

where T > 0 is chosen according to the goals of the problem.

The GSSA expansion tries to improve on this and capture the fine detail of the state
evolution by considering a full Fourier series. Thus, one defines

〈x〉k(t) =
1

T

∫ t

t−T

x(τ)e−jkωτ dτ, (2.28)
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with ω = 2π/T and k ∈ Z. The time functions 〈x〉k are known as index-k averages or
k-phasors.

Under standard assumptions about x(t), one gets, for τ ∈ [t − T, t] with t fixed,

x(τ) =
+∞∑

k=−∞
〈x〉k(t)ejkωτ . (2.29)

If the 〈x〉k(t) are computed with (2.28) for a given t, then (2.29) just reproduces x(τ)
periodically outside [t−T, t], so it does not yield x outside of [t−T, t] if x is not T -periodic.
However, the idea of GSSA is to let t vary in (2.28) so that we really have a kind of ”moving”
Fourier series:

x(τ) =

+∞∑

k=−∞
〈x〉k(t)ejkωτ , ∀τ.

If the expected steady state of the system has a finite frequency content, one may select some
of the coefficients in this expansion and get a truncated GSSA expansion. The desired steady
state can then be obtained from a regulation problem for which appropriate constant values
of the selected coefficients are prescribed. A more mathematically advanced discussion is
presented in [84].

In order to obtain a dynamical GSSA model we need the following two essential prop-
erties:

d

dt
〈x〉k(t) =

〈
x.
t.

〉

k

(t) − jkω〈x〉k(t), (2.30)

〈x〉yk =
+∞∑

l=−∞
〈x〉k−l〈y〉l. (2.31)

Notice that 〈x〉k is in general complex and that, if x is real,

〈x〉−k = 〈x〉k.

We will use the notation 〈x〉k = xR
k +jxI

k, where the averaging notation has been suppressed.
In terms of these real and imaginary parts, the convolution property (2.31) becomes (notice
that xI

0 = 0 for x real, and that the following expressions are, in fact, symmetric in x and
y)

〈xy〉Rk = xR
k yR

0

+
∞∑

l=1

{
(xR

k−l + xR
k+l)y

R
l −(xI

k−l − xI
k+l)y

I
l

}

〈xy〉Ik = xI
ky

R
0

+
∞∑

l=1

{
(xI

k−l + xI
k+l)y

R
l +(xR

k−l − xR
k+l)y

I
l

}
(2.32)

Moreover, the evolution equation (2.30) splits into

ẋR
k =

〈
x.
t.

〉R

k

+ kωxI
k,

ẋI
k =

〈
x.
t.

〉I

k

− kωxR
k . (2.33)
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If all the terms in (2.19) have a series expansion in their variables, one can use (2.33)
and (2.32) to obtain evolution equations for xR,I

k , and then truncate them according to
the selected variables. The result is a PCHS description for the truncated GSSA system,
to which IDA-PBC regulation techniques can be applied. General formulae for the PCHS
description of the full GSSA system, as well as a discussion of the validity of the controller
designed for the truncated system, can be found in [16].

Example 2.10: a full-bridge rectifier

The GSSA model of a full-bridge rectifier is studied in [6][39]. Notice that this truncation
is basically used to simplify the tracking problem to a regulation one. In this way, it is
important a proper selection of the truncated harmonics (based on the control objectives)
because the designed controller will only work if the selected harmonics really represent
the targeted steady state.

The control objectives are

– the dc value of vDC voltage should be equal to a desired constant Vd, and

– the power factor of the converter should be equal to one. This means that the
inductor current should be i = LId sin(ωst), where Id is an appropriate value to
achieve the first objective via energy balance.

It is sensible for the control objectives of the problem to use a truncated GSSA expansion
with ω = ωs, keeping only the zeroth-order average of the dc-bus voltage, q0, and the
two components of the first harmonic of the inductor current, λR

1 and λI
1. As explained

in [39], this selection of coefficients can be further justified if one writes it for z = 1
2q2

instead of q, and uses the new control variable v = −Sq. In fact, these redefinitions are
instrumental in order to fulfill the conditions [16] under which the controller designed for
the truncated system can be used for the full system.

With all this, and following the dynamical system obtained in the previous section (equa-
tion (2.27)), one gets the PCHS,

x =

[
−r v
−v 0

]

︸ ︷︷ ︸

J−R

∂H +

[
1 0

0 −
√

2z

]

︸ ︷︷ ︸

g

u

with the Hamiltonian variables x = [λ, z]T , the external inputs u = [vi, iDC ]T and a
Hamiltonian function

H(λ, z) =
λ2

2L
+

z

C
.

Next, we apply a GSSA expansion to this system, and set to zero all the coefficients except
for x1 , z0, x2 , λR

1 , x3 , λI
1, u1 , vR

1 and u2 , vI
1 . Using that iDC is assumed to be

locally constant, and that the only nonzero coefficient of vi is vI
i1 = −E

2 , one gets

ẋ1 = −iDC

√
2x1 −

2

L
u1x2 −

2

L
u2x3

ẋ2 = − r

L
x2 + ωsx3 +

1

C
u1

ẋ3 = −ωsx2 −
r

L
x3 −

E

2
+

1

C
u2. (2.34)
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This system can be given a PCHS form with

J =





0 −u1 −u2

u1 0 ωsL
2

u2 −ωsL
2 0





R =





0 0 0
0 r

2 0
0 0 r

2





g =





−
√

2x1 0
0 0
0 −1

2



 ,

the port variables u = [iDC , E]T and the Hamiltonian function

H =
1

C
x1 +

1

L
x2

2 +
1

L
x2

3. (2.35)

This model differs from [39] in the −iDC

√
2x1 term, that now is included in the g matrix.

This change is instrumental in achieving the required bidirectional power flow capability,
as discussed in Section 4.2.

2.5 Port Hamiltonian model of a DFIM controlled through

a B2B converter

In this Section the Port-controlled Hamiltonian model of the flywheel energy storage system
is presented. As explained in Section 1, the system is basically composed by the doubly-
fed induction machine and the back-to-back converter. The flywheel can be modelled,
disregarding the torsion in the shaft, adding an extra inertia to the DFIM, while the local
load can be seen as a stator current requirement, see discussion 1.4. These results, including
a Bond Graph description, are also presented in [4].

2.5.1 Port-controlled Hamiltonian model of a doubly-fed induction ma-

chine

A dq-model of a doubly-fed induction machine is presented in sub-Section 1.2.3. Equations
(1.11) and (1.15) describe the dynamics of a DFIM and can be written as a Port-controlled
Hamiltonian System, see also [12]. The Hamiltonian variables are (the D subindex refers to
the DFIM subsystem) xT

D = (λT
s , λT

r , Jmω) ∈ R
5, or xT

D = (ΛT , xm), where ΛT = (λT
s , λT

r ) ∈
R

4, λs, λr ∈ R
2 are the inductor fluxes in dq-coordinates (stator and rotor respectively),

xm = Jmω is the mechanical Hamiltonian variable, ω the angular speed of the rotor, and Jm

is the total moment of inertia of the rotating parts (including the flywheel). The structure
JD ∈ R

5×5 and damping RD ∈ R
5×5 matrices are

JD =





−ωsLsJ2 −ωsLsrJ2 O2×1

−ωsLsrJ2 −(ωs − ωr)LrJ2 LsrJ2is
O1×2 Lsri

T
s J2 0




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RD =





RsI2 O2×2 O2×1

O2×2 RrI2 O2×1

O1×2 O1×2 Br



 ,

where L are inductances, R are resistances, lower indices s and r refer to stator and rotor
respectively, Br is the mechanical damping, is and ir ∈ R

2 are the stator and rotor currents
and

J2 =

[
0 −1
1 0

]

∈ R
2×2 I2 =

[
1 0
0 1

]

∈ R
2×2.

Currents iT = [iTs , iTr ] ∈ R
4 and fluxes Λ are related by Λ = Li, where the inductance

matrix L is (reminding (1.13))

L =

[
LsI2 LsrI2

LsrI2 LrI2

]

∈ R
4×4.

The interconnection matrix is

gD =





I2 O2×2

O2×2 I2

O1×2 O1×2



 ∈ R
5×4

with the port variables uT = [vT
s , vT

r ] ∈ R
4, where vs, vr ∈ R

2 are the stator and rotor
voltages. Finally, the Hamiltonian function is

HD =
1

2
ΛTL−1Λ +

1

2Jm
x2

m.

2.5.2 Port-controlled Hamiltonian model of a back-to-back converter

A detailed description of the back-to-back converter is done in Section 1.3. The dynamical
equation (1.16) escribes an averaged model of the power converter, where vi(t) = E sin(ωst)
is a single-phase AC voltage source, L is the inductance (including the effect of any trans-
former in the source), C is the capacitor of the DC part, r takes into account all the
resistance losses (inductor, source and switches), sk and tk, k = 1, 2, 4, 5, 6. Switch states
take values in {−1, 1} and t-switches are complementary to s-switches: tk = s̄k = −sk.
Additionally, s2 = s̄1 = −s1.

The PCHS averaged model of the full-bridge rectifier is as follows3. The Hamiltonian
variables are (B subindex refers to the B2B subsystem) xT

B = [λ, q] ∈ R
2, where λ is the

inductor flux and q is the DC charge in the capacitor. The Hamiltonian function is

HB =
1

2L
λ2 +

1

2C
q2,

while the structure and damping matrices are

JB =

[
0 −s1

s1 0

]

∈ R
2×2 RB =

[
r 0
0 0

]

∈ R
2×2.

3For control design purposes, the full-bridge rectifier modelling is done using the GSSA approach. See
Section 4.2 for the GSSA model and for more details on the disregarded harmonics.
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The interconnection matrix is

gB =

[
1 O1×3

0 fT

]

∈ R
2×4, f =

1

2





s6 − s4

s5 − s6

s4 − s5



 ∈ R
3,

with inputs

u =

[
vi

−iabc

]

∈ R
4,

where iTabc = [ia, ib, ic] ∈ R
3 are the three-phase currents in the inverter part. Notice that

the inverter subsystem can be seen as a Dirac structure [25] (see sub-Section 2.1.2) with

vabc = fvDC

iDC = fT iabc

where vT
abc = [ia, ib, ic] ∈ R

3 are the three-phase voltages and vDC ∈ R, is the DC voltage,
and iDC ∈ R is the DC current supplied by the rectifier subsystem.

2.5.3 Port-controlled Hamiltonian model of the whole system

Fig. 2.12 shows the interconnection scheme of the whole system (B2B+DFIM). The dq-
transformation connects the B2B converter with the DFIM as a Dirac structure.

+ + + +
B2B DFIM

+
B2B

dq
Transformation

+ +

+
DFIM

dq
Transformation

vi

vi

i

i

vabc

iabc

vABC

iABC

vr

vs

vs

ir

is

is

iDQ

vDQ

a) b)

c)

d)

Figure 2.12: Interconnection scheme.

The interconnection relations are

vr = vDQ, ir = iDQ, vABC = vabc, iABC = iabc. (2.36)

We use equations (2.36) and introduce a new K matrix which comes from the dq-transformation
of the rotor variables explained in sub-Section 1.2.2,

K = e−J2(δ−θ)T∗ ∈ R
3×2,
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with T∗ defined so as to remove the homopolar component (which is, in fact equations (1.4),
considering an equilibrate system):

T∗ =

[ √
2√
3

− 1√
6

− 1√
6

0 1√
2

− 1√
2

]

∈ R
2×3.

The variables of the whole PCHS system are x = [ΛT , Jmωr, λ, q]T ∈ R
7, with energy

function

H = HD + HB =
1

2
ΛTL−1Λ +

1

2Jm
x2

m +
1

2L
λ2 +

1

2C
q2.

The R
7×7 structure and dissipation matrices are

J − R =









JD − RD

O2×1 O2×1

O2×1 KT f
0 0

O1×2 O1×2 0
O1×2 −fTK 0

JB − RB









,

and the interconnection matrix and port variables are

g =









I2 O2×1

O2 O2×1

O1×2 0
O1×2 1
O1×2 0









∈ R
7×3 u = [vT

s , vi]
T ∈ R

3.

2.5.4 Simulations of a Hamiltonian model of a DFIM controlled through

a B2B converter

In this subsection some simulations of the Port-controlled Hamiltonian System obtained
above are presented. The whole system requires some control in order to verify it. More
precisely the rectifier part of the back-to-back needs an appropriate signal input, and the
rotor voltages of the doubly-fed induction machine has to be synchronously with the me-
chanical speed. For this reason the following simulations are using the controllers designed
is Chapter 4.

The simulation has been performed using the 20-sim4 modelling and simulation software.
The DFIM parameters used in the simulations are (in SI units): Lsr = 0.041, Ls = Lr =

0.042, Jm = 0.0005, Br = 0.005, Rs = 0.087, Rr = 0.0228, vs =
[√

2
3380, 0

]T

and ωs =

2π50. The B2B parameters are (in SI units): r = 0.001, L = 0.001, C = 0.0045, E = 68.16.
For the purposes of testing the model, the desired mechanical speed changes around

ω = 2π50 (dotted line in Fig. 4.15) and a desired bus voltage vd
DC = 150 has been selected.

Fig. 4.15 shows the desired and simulated mechanical speed. Fig. 2.14 shows the
reactive power compensation of the stator side of the DFIM. Fig. 4.30 shows vDC , which
remains close to the desired value even in the transient of the machine. Finally, voltage vi

and current i at the single phase source feeding the B2B are depicted in Fig. 2.16, showing
that they are nearly in phase.

4See www.20sim.com
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Figure 2.13: Simulation results: Mechanical speed ω.
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Figure 2.14: Simulation results: Detail of the grid a-phase voltage vsa and current isa.
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Figure 2.15: Simulation results: DC-bus voltage vDC of the B2B.

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6

−60

−40

−20

0

20

40

60

Source voltage (vi) and current (i)

vi
 [V

], 
i*

10
 [A

]

time [s]

vi
i

Figure 2.16: Simulation results: Detail of the AC single-phase voltage and current for the
B2B.


