
Chapter 3

Port Hamiltonian Control

In this Chapter the port Hamiltonian passivity-based control theory, which will applied
to the control of the DFIM and the B2B, is presented. We start with a review of the
basic ideas of passivity and of control by interconnection, move to the Interconnection
and Damping Assignment—Passivity-based Control (IDA-PBC), and finally discuss two
improvements of the basic IDA-PBC framework, namely Simultaneous Interconnection and
Damping Assignment (SIDA), and a variant of the method which improves the robustness
of the controller in front of uncertain parameters.

Part of the results of this Chapter can also be found in [7][5][10].

3.1 Introduction

According to one of the accepcions in Webster’s [1] “to control” means “to exercise restraint
or direction over”. In an engineering context, we can translate this to “to stabilize a system
in a desired equilibrium point or trajectory”. Although a variety of techniques are available
for linear control theory (see [26][28][46][47][49] and references therein), most nonlinear
control theory revolves around Lyapunov’s method and its variants. Lyapunov theory was
introduced originally as an analysis tool and became an useful technique for feedback control
design.

Lyapunov-based control design is a quite difficult task which involves the construction
of a suitable Lyapunov function. This function can be interpreted, in physical systems,
as the energy (or storage) function. The main difference between many nonlinear control
techniques is the way in which the appropriate Lyapunov function is constructed, as is the
case, for instance, of backstepping, forwarding or adaptive control (see [49]). Some other
techniques also use the Lyapunov method to design controllers, for instance Sliding Mode
Control [80][86], a technique for robust control where the trajectories are forced to reach a
sliding surface.

Passivity-based Control (PBC) [63] uses the fact that passive nonlinear systems are
described by an storage function (which is a proper Lyapunov function). The control
design main goal is then to reshape the original energy function by means of the controller.
Based on PBC, the IDA-PBC (Interconnection and Damping Assignment–Passivity-based
Control) technique, which uses the passive properties of Port Hamiltonian Systems, was
presented in [66] (see also the PhD. Thesis of Hugo Rodŕıguez [74]).
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3.2 Passivity-based control

Traditionally, control problems have been approached adopting a signal-processing view-
point. This is very useful for linear time-invariant systems, where signals can be discrim-
inated via filtering. However, for nonlinear systems, frequency mixing invalidates this ap-
proach due to the following reasons:

• Computations are far from obvious.

• Very complex controls are needed to quench the large set of undesirable signals, and
the result is very inefficient, with a lot of energy being consumed and always on the
verge of instability (a typical example is provided by bipedal walking machines; see
[30]).

Most of the problem stems from the fact that no information about the structure of the
system is used. A change of control paradigm is needed, and this can be summarized in the
catch expression ”control systems as energy exchanging entities”. A detailed presentation of
this energy-based approach to control is contained in [65] and [66], where complete proofs,
which will be mostly omitted here, can be found.

3.2.1 Energy-based control

Definition 3.1. The map u 7→ y is passive if there exists a state function H(x),
bounded from below, and a nonnegative function d(t) ≥ 0 such that

∫ t

0
uT (s)y(s)ds

︸ ︷︷ ︸

energy supplied to the system

= H(x(t)) − H(x(0))
︸ ︷︷ ︸

stored energy

+ d(t)
︸︷︷︸

dissipated energy

. (3.1)

Example 3.2: a mechanical system

The simplest example of passive system is probably the forced mass-spring-damper ar-
rangement of Figure 3.1, where q is the mass position, F (t) is an external applied force,
m is the mass and b and k are the damping and spring coefficients, respectively. One has

F

m

q

k

b

Figure 3.1: Example of a mechanical passive system.

(with v = q̇ as mechanical velocity)
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∫ t

0
F (s)v(s)ds =

∫ t

0
(mv̇(s) + kq(s) + bv(s)) ds

=

(
1

2
mv2(s) +

1

2
kq2(s)

)∣
∣
∣
∣

t

0

+ b

∫ t

0
v2(s)ds

= H(x(t)) − H(x(0)) + b

∫ t

0
v2(s)ds.

Remark 3.3. Notice that, a passive system (3.1), if x∗ is a global minimum of H(x)
and d(t) > 0, and setting u = 0, H(x) will decrease in time and the system will reach x∗

asymptotically. The rate of convergence can be increased if the energy is extracted from
the system with

u = −Kdiy

with KT
di = Kdi > 0. △

The key idea of passivity-based control (PBC) is as follows; use feedback

u(t) = β(x(t)) (3.2)

where β(x(t)) is a function depending on the states, so that the closed-loop system is again
a passive system, with new energy function Hd, with respect to α 7→ y, such that Hd has
the global minimum at the desired point. Passivity for the closed-loop system is far from
obvious: physically, the controller is injecting energy into the system. PBC is robust with
respect to unmodeled dissipation, and has built-in safety: even if H is not known exactly, if
passivity is preserved, the system will stop somewhere instead of running away and finally
blowing up.

With (3.2), Ha is defined as (minus) the energy supplied to the system,

Ha = −
∫ t

0
βT (x(s))y(s),

then the closed-loop system has energy function Hd(x) = H(x) − Ha(x). One has the
following energy balance equation (EBE), which yields an interpretation to PBC:

Hd(x(t))
︸ ︷︷ ︸

closed-loop energy

= H(x(t))
︸ ︷︷ ︸

stored energy

−
∫ t

0
βT (x(s))y(s).

︸ ︷︷ ︸

supplied energy

Remark 3.4. For an affine dynamical system

{
ẋ = f(x) + g(x)u
y = h(x)

,

the EBE is equivalent to the PDE

−βT (x)h(x) = ∂Ha (f(x) + g(x)β(x)) . (3.3)

△
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Example 3.5: electrical system

As an example, consider the electrical system in Figure 3.2,

+

r

V

i

L

C

Figure 3.2: Example of an electrical passive system.

ẋ =

[
x2

L

−x1

C
− x2

L
r

]

+

[
0
1

]

V

where x = [q, λ]T is the state, u = V is the control input and y = λ
L

(inductor current)
is the passive output. The map V 7→ i is passive with energy function

H(x) =
1

2C
x2

1 +
1

2L
x2

2

and dissipation

d(t) =

∫ t

0

r

L2
x2

2(s)ds.

Notice that the natural minimum is [0, 0], but forced equilibrium points are of the form
[x∗

1, 0]. The PDE (3.3) is in this case

x2

L
∂Ha −

(
1

C
x1 +

r

L
x2 − β(x)

)

∂Ha = − 1

L
x2β(x).

Since x∗
2 = 0 is already a minimum of H, its only necessary to shape the energy in x1.

Hence, taking Ha = Ha(x1) and solving the above PDE

β(x1) = −∂Ha

∂x1

i.e. it defines a closed-loop control. Then, one has to choose Ha so that Hd has the
minimum at x∗

1. The simplest solution is

Ha(x1) =
1

2Ca
x2

1 −
(

1

C
+

1

Ca

)

x∗
1x1

where Ca is a design parameter. The closed-loop energy Hd can then be computed and it
is seen that it has a minimum at [x∗

1, 0] if Ca > −C. Finally, the control is computed as
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u = −∂Ha

∂x1
= − 1

Ca
x1 +

(
1

C
+

1

Ca

)

x∗
1.

This control is an energy-balancing PBC that stabilizes x∗ under stated parameter restric-
tions.

Example 3.6: electrical system

Consider now the slightly different circuit of Figure 3.3.

+

rV

i

L

C

Figure 3.3: Example of an electrical passive system.

With the same states, energy, input and outputs than the preceding system, the equations
of the motion are now

ẋ =

[
− 1

rC
x1 + 1

L
x2

− 1
C

x1

]

+

[
0
1

]

V.

Only the dissipation structure has changed, but the admissible equilibria are of the form

x∗ = [CV d,
L

r
V d]T

for any constant V d. The power delivered by the source, p = V i = V x2

L
, is nonzero

at any equilibrium point except for the trivial one. Hence, the source has to provide
an infinite amount of energy to keep any nontrivial equilibrium point, a task which is
clearly not feasible. This situation will reappear later into the discussion of invariant and
Casimir functions. Notice that pure mechanical systems are free of this problem, since
any equilibrium has velocities equal to zero and hence no power in necessary to keep the
system at the equilibrium point.

3.2.2 Control as interconnection

To give a physical interpretation of PBC, one can think the controller as a system exchanging
energy with the plant. Consider two systems, Σ and Σc, exchanging energy through an
interconnection network given by Σl, as depicted in Figure 3.4.
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+ +

u

y

uc

yc

Σc ΣΣl

Figure 3.4: Network interpretation of control.

The condition for the interconnection to be power continuous is

uT
c (t)yc(t) + uT (t)y(t) = 0 ∀t.

Example 3.7: feedback interconnection

As an example, consider the typical negative feedback interconnection displayed in Figure
3.5

Plant

Controller

-

u y

ucyc

Figure 3.5: Typical negative feedback interconnection.

The interconnection is given by

uc = y

u = −yc

and is clearly power continuous.

Suppose now that some extra inputs u 7→ u + v, uc 7→ uc + vc are added to the intercon-
nected system. Then is easy to show the following.

Remark 3.8. Let Σ and Σc have the state variables x and ξ. If Σ and Σc are passive with
energy functions H(x) and Hc(ξ) and Σl is power preserving, then the map [v, vc] 7→ [y, yc]
is passive for the interconnected system with energy function Hd(x, ξ) = H(x)+Hc(ξ). Or,
in short, △
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Proposition 3.9. Power continuous interconnection of passive system yields passive
system.

The resulting system of the interconnection of the plant and the controller is a passive
system with energy function

Hd(x, ξ) = H(x) + Hc(ξ)

but this is not very useful unless the energy function depends only on x. To solve this, the
dynamics are restricted to a submanifold of the (x, ξ) space parametrized by x:

ΩK = (x, ξ); ξ = F (x) + K,

and dynamically invariant:

(∂F ẋ)ξ=F (x)+K = 0.

Instead of solving this in general, it is convenient to formulate the problem for a port-
controlled Hamiltonian systems.

3.2.3 Casimir functions and the dissipation obstacle

A port-controlled system in explicit form given by (2.1), remind,

{
ẋ = (J(x) − R(x))∂H(x) + g(x)u
y = gT (x)∂H(x)

with JT = −J , RT = R ≥ 0 and H > 0, satisfy the following relation

Ḣ = −(∂H)T R∂H + yT u.

Integrating, from 0 to t, the energy balance equation, is recovered

H(x(t)) − H(x(0)) =

∫ t

0
uT (s)y(s)ds −

∫ t

0
(∂H)T R∂H.

More precise results about the possibility of obtaining invariant manifolds expressing the
controller variables in terms of the variables of the system can be formulated if both systems
and controller are PCHS. Let thus

Σ :

{
ẋ = (J(x) − R(x))∂H(x) + g(x)u
y = gT (x)∂H(x)

define the plant and

Σc :

{
ξ̇ = (Jc(ξ) − Rc(ξ))∂Hc(ξ) + gc(ξ)uc

yc = gT
c (ξ)∂Hc(ξ)

define the controller. With the power preserving, standard negative feedback interconnec-
tion u = −yc, uc = y, one gets

[
ẋ

ξ̇

]

=

[
J(x) − R(x) −g(x)gc(ξ)

T

gc(ξ)g(x)T Jc(ξ) − Rc(ξ)

] [
∂Hd(x)
∂Hd(ξ)

]

where Hd(x, ξ) = H(x) + Hc(ξ). Let us look now for invariant manifolds of the form
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CK(x, ξ) = F (x) − ξ + K.

Condition ĊK = 0 yields

[∂F, Im]T
[

J(x) − R(x) −g(x)gc(ξ)
T

gc(ξ)g(x)T Jc(ξ) − Rc(ξ)

] [
∂Hd(x)
∂Hd(ξ)

]

= 0.

In order to keep the freedom to choose Hc, one demands that the above equation is satisfied
on CK for every Hamiltonian, i.e. one imposes on F the following system of PDE’s:

[∂F, Im]T
[

J(x) − R(x) −g(x)gc(ξ)
T

gc(ξ)g(x)T Jc(ξ) − Rc(ξ)

]

= 0.

Functions CK(x, ξ) such that F satisfies the above PDE on CK = 0 are called Casimir. They
are invariants associated to the structure of the system (J, R, g, Jc, Rc, gc), independently of
the Hamiltonian function.

One can show [66] that the PDE for F has solution iff, on CK = 0,

1. (∂F )T J∂F = Jc,

2. R∂F = 0,

3. Rc = 0,

4. (∂F )T J = gcg
T .

Conditions 2 and 3 are easy to understand: essentially, no Casimir functions exist in presence
of dissipation. Given the structure of the PDE, Rc = 0 is unavoidable, but one can have an
effective R = 0 just by demanding that the coordinates on which the Casimir depends do
not have dissipation, and hence condition 2.

If the preceding conditions are fulfilled, an easy computation shows that the dynamics
on CK is given by

ẋ = (J(x) − R(x))∂Hd

with Hd(x) = H(x) + Hc(F (x) + K). Notice that, due to condition 2,

R∂Hc(F (x) + K) = R(∂F )
︸ ︷︷ ︸

=0

∂Hc

∂ξ
(F (x) + K) = 0,

so, in energy-balancing PBC, dissipation is only admissible for those coordinates which do
not require energy shaping.

For regulation problems in mechanical systems, where the state consists of positions and
velocities, dissipation only appear associated to the later, while energy shaping is necessary
only in the position part, since the kinetic energy already has the minimum at the desired
point (that is, at velocity equal to zero). Hence, the dissipation obstacle is always absent
for mechanical regulation problems. For the first of the two simple RLC circuits considered
previously (Figures 3.2 and 3.3), dissipation appears in a coordinate, x2, which already has
the minimum at the desired point. For the second one, the minimum of the energy has to
be moved for both coordinates, and hence the dissipation obstacle is unavoidable.
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3.3 Interconnection and damping assignment – Passivity-based

control

The Interconnection and damping assignment–Passivity-based control (IDA-PBC) was in-
troduced in [66] to combine the passivity properties of PCHS with control by interconnection
and energy-based control. This technique has been applied to many different plants: me-
chanical systems [2][64], magnetic levitation systems [77][78], mass-balance systems [60],
electric machines [12][73], power converters [39][76]. An extended survey of the IDA-PBC
methodology with examples is presented in [62].

The key idea is that using the Hamiltonian framework, solving the PDE associated
to the energy-balance equation (3.3) can be done with an appropriate selection of the
interconnection J and dissipation R matrices and the energy function H of the desired
closed-loop system (which will be denoted with subindex d: Jd, Rd and Hd).

3.3.1 IDA-PBC technique

The previous Section has exposed some shortcomings of the passivity based control by
means of control-as-interconnection. One can get a method with more freedom if not only
the energy function is changed but also the interconnection J and dissipation R, i.e. if one
aims at a closed-loop system of the form

ẋ = (Jd(x) − Rd(x))∂Hd(x), (3.4)

where Jd = −JT
d is the desired interconnection matrix, Rd = RT

d ≥ 0 is the desired dissipa-
tion matrix and Hd (with a minimum at x∗) is the desired Hamiltonian function.

Proposition 3.10. Consider the system a

ẋ = f(x) + g(x)u. (3.5)

Assume there are matrices Jd = −JT
d , Rd = RT

d ≥ 0 and a smooth function Hd that
verify the so-called matching equation

f(x) + g(x)u = (Jd(x) − Rd(x))∂Hd(x). (3.6)

Then the closed-loop system with control u = β(x),

β(x) = (gT (x)g(x))−1gT (x) ((Jd(x) − Rd(x))∂Hd(x) − f(x)) (3.7)

is asymptotically stable.

aHistorically [66] the plant was described as a PCHS, but in a more general case the method is also
valid for an affine dynamical system with the form (3.5).

Proof. Substituting (3.7) into (3.5) the closed-loop system becomes

ẋ = (Jd(x) − Rd(x))∂Hd,

which, following Proposition 1, is asymptotically stable. �

It is thus clear that the problem is how to solve the matching equation (3.6). Notice
that there is a huge amount of freedom in selecting Jd, Rd and Hd satisfying the previous
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assumptions (Jd = −JT
d , Rd = RT

d ≥ 0 and x∗ = arg minHd). Several techniques have been
proposed in the literature (discussed in detail in [62]):

• In Non-Parameterized IDA (see [39][65][76]), the structure and damping matri-
ces (Jd(x) and Rd(x)) are fixed, the matching equation is pre-multiplied by a left
annihilator of g(x) and the resulting PDE in Hd is then solved.

• In Algebraic IDA, (see [37]), the desired Hamiltonian function Hd is first selected
(for example a quadratic function in the error terms) and then the resulting algebraic
equations are solved for Jd and Rd.

• In Parameterized IDA, applicable mainly to underactuated mechanical systems,
(see [64]), the knowledge of a priori structure of the desired Hamiltonian is used to
obtain a more easy to solve PDE, giving constraints on Jd and Rd.

• In Interlaced Algebraic-Parameterized IDA, (see [61]), the PDE is evaluated in
some subspace (where the solution can be easily computed) and then matrices Jd, Rd

are found which ensure a valid solution of the matching equation.

There is not a best method to solve the matching equation. Each control problem requires
an individual study to find out which of the above strategies provides an acceptable solution
of the matching equation.

The first papers on IDA-PBC (see for example [66]) introduced new matrices Ja, Ra

and a Hamiltonian function Ha such that

Jd(x) , J(x) + Ja(x),

Rd(x) , R(x) + Ra(x),

Hd(x) , H(x) + Ha(x)

referred to as the structure matrix, damping matrix and Hamiltonian function, respectively,
contributed by the controller. With this notation, and using a PCHS description of the
system (3.5), the matching equation (3.6) becomes

(J(x) + Ja(x) − R(x) − Ra(x))∂Ha = −(Ja(x) − Ra(x))∂H + g(x)u, (3.8)

where the available degrees of freedom for the design are the matrices are Ja, Ra and the
function Ha.

In order to clarify the methodology, and to compare later the classic IDA-PBC controllers
to the designed ones using the new approaches presented in this Thesis (see subsection 3.3.2
and Section 3.4), we present here two examples: a classical DC motor and a nonlinear toy
model.

Example 3.11: a DC motor

Consider a permanent magnet DC motor (or either a field DC motor for which the field
dynamics, λf , is neglected). From the PCHS model of the DC motor presented in Sec-
tion 2.2, and using K = LAf if = ct, called the torque constant, the port-controlled
Hamiltonian system is described by

ẋ = (J − R)∂H(x) + g + guu
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with the variables x ∈ R
2

x = [λ, pm]T

where λ is the inductor flux (or λa in the generic case), and pm is the angular momentum.
The interconnection, dissipation and port matrices are

J =

[
0 −K
K 0

]

R =

[
r 0
0 Br

]

g =

[
0

−τL

]

gu =

[
1
0

]

with the control input u = v (to simplify the notation the voltage va of section 2.2, in
now called v). Notice that the system inputs have been split according to whether they
can be controlled or not when the machine acts as a motor. In this case, the mechanical
torque can be seen as an external perturbation. r and Br represent the electrical and
mechanical losses respectively, and the Hamiltonian function is given by

H(x) =
1

2L
λ2 +

1

2Jm
p2

m,

where L is the inductance and Jm the inertia of the motor.

Assume that the control objective is a desired speed ωd. In terms of ωd, the equilibrium
values of i and v are

i∗ =
1

K
(Brω

d + τL)

u∗ = ri∗ + Kωd.

To apply the IDA-PBC technique (following the algebraic approach) a desired Hamiltonian
function Hd is fixed as

Hd(x) = H(x) =
1

2L
(λ − λ∗)2 +

1

2Jm
(pm − p∗m)2,

which implies (recall the energy and co-energy variables relationship, λ = Li and pm =
Jmω)

∂Hd =

[
i − i∗

ω − ωd

]

.

In order to solve the matching equation of the IDA-PBC method, we consider generalized
interconnection and dissipation matrices given by

Jd − Rd =

[
−rd −jd

jd −bd

]

. (3.9)

The first row of the matching equation will yield the desired control action, while the
second row imposes

jd(i − i∗) − bd(ω − ωd) = Ki − Brω − τL.

Setting bd = Br, and using the equilibrium point expression, jd is computed as

jd = K,
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Figure 3.6: Simulation results: Mechanical speed ω, for different rd values.

where rd is a still free parameter to tune the controller. Finally, substituting into the first
row of the matching equation,

u = −rd(i − i∗) − ri + Kωd. (3.10)

Notice that this is just a proportional + constant compensation controller.

Figures 3.6-3.8 show the system behaviour with the control law (3.10). The motor pa-
rameters are: r = 0.05Ω, L = 2mH, K = 0.07N·m·A−1, Br = 0.0001N·m·rad−1s−1,
Jm = 0.0006Kg·m2 and the nominal torque is τL = 2N·m. The desired mechanical speed
is fixed at ωd = 250rad·s−1 for 0s < t ≤ 0.5s and changes at ωd = 300rad·s−1 for
0.5s < t ≤ 1s.

Figure 3.6 shows the mechanical speed for different damping rd values. Notice that
for a higher value of rd the transient becomes more damped, which gives a physical
interpretation of the Rd matrix (3.9). Figure 3.7 shows the inductor current i, with a
similar behaviour to that of ω. Finally, the space-state trajectory for 0s < t ≤ 0.5s, which
converges to the equilibrium point, is depicted in Figure 3.8



3.3. Interconnection and damping assignment – Passivity-based control 57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−20

0

20

40

60

80

100

120

140
Inductor Current (i)

i[A
]

time[s]

wd
rd=0.05
rd=0.1
rd=0.25
rd=0.5

Figure 3.7: Simulation results: Inductor current i, for different rd values.
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Figure 3.8: Simulation results: State space [ω, i] trajectory, for different rd values.
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Example 3.12: a toy model

Consider the following 2-dimensional nonlinear control system (presented in [10])

ẋ1 = −x1 + ξx2
2,

ẋ2 = −x1x2 + u, (3.11)

where ξ > 0. This can be cast into PCHS form

ẋ = (J − R)∂H + gu (3.12)

with

J =

[
0 x2

−x2 0

]

, R =

[
1 0
0 0

]

, g =

[
0
1

]

H(x) =
1

2
x2

1 +
1

2
ξx2

2.

The control objective is to regulate, for example, x2 to a desired value xd
2 (nevertheless

the control law for a regulated x1 yields the same control law). The equilibrium of (3.11)
corresponding to this is given by

x∗
1 = ξ(xd

2)
2, u∗ = ξ(xd

2)
3.

Using the IDA-PBC technique, also within the algebraic approach, we match (3.12) to

ẋ = (Jd − Rd)∂Hd

with

Jd =

[
0 α(x)

−α(x) 0

]

, Rd =

[
1 0
0 r

]

,

and

Hd(x) =
1

2
(x1 − x∗

1)
2 +

1

2γ
(x2 − xd

2)
2,

where α(x1, x2) is a function to be determined by the matching procedure and γ > 0,
r > 0 are adjustable parameters.

From the first row of the matching equation (J −R)∂H + gu = (Jd −Rd)∂Hd one gets

−x1 + ξx2
2 = −(x1 − x∗

1) +
α

γ
(x2 − xd

2),

from which
α(x1, x2) =

γ

x2 − xd
2

(ξx2
2 − x∗

1) = γξ(x2 + xd
2).

Substituting this into the second row of the matching equation

−x1x2 + u = −α(x1 − x∗
1) −

r

γ
(x2 − xd

2),

yields the feedback control law

u = x1x2 − γξ(x1 − x∗
1)(x2 + xd

2) −
r

γ
(x2 − xd

2). (3.13)
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Figure 3.9: Simulation results: x2 behaviour for different r and γ values.

This control law yields a closed-loop system which is Hamiltonian with (Jd, Rd, Hd), and
which has (x∗

1, x
d
2) as a globally asymptotically stable equilibrium point.

Figures 3.9 to 3.12 show the behavior of the system controlled by the IDA-PBC controller
(3.13). The parameters are ξ = 2 and xd

2 = 1. Figures 3.9 and 3.10 show x2(t) and x1(t)
for different r and γ values, while in Figures 3.11 and 3.12 the phase portrait is depicted.
Notice that the γ parameter has more influence on the trajectories. This is due to the
fact that γ modifies the Hamiltonian in the x2 direction (see Figure 3.13) and tuning this
parameter makes trajectories of x2 restricted (or semi-bounded).

3.3.2 Simultaneous IDA-PBC

The standard two–stage procedure used in IDA-PBC, consisting of splitting the control
action into the sum of energy-shaping and damping injection terms, is not without loss of
generality, and effectively reduces the set of systems that can be stabilized with IDA–PBC.
This assertion is, of course, not surprising since it is clear that, to achieve strict passivity, the
procedure described above is just one of many other possible ways. This point is illustrated
with the IDA–PBC design methodology proposed in [66] (see the previous subsection).
To enlarge the set of systems that can be stabilized via IDA–PBC we suggest to carry
out simultaneously the energy shaping and the damping injection stages and refer to this
variation of the method as SIDA–PBC.

As we said before, the key for the success of IDA-PBC is the solution of the matching
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Figure 3.10: Simulation results: x1 behaviour for different r and γ values.
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Figure 3.12: Simulation results: State space [x1, x2] trajectory, for different γ values.
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equation

f(x) + g(x)u = (Jd − Rd)∂Hd. (3.14)

With the motivation of enlarging the class of systems for which this equation is solvable
we propose to avoid the decomposition of the control into energy–shaping and damping
injection terms. Instead, we suggest to carry out simultaneously both stages and replace
(3.14), with the SIDA–PBC matching equations

f(x) + g(x)u = Fd(x)∂Hd, (3.15)

and to replace the constraints

JT
d (x) = −Jd(x), Rd(x) = Rd(x)T ≥ 0 (3.16)

by the strictly weaker condition

Fd(x) + F T
d (x) ≤ 0, (3.17)

and define the control as

u = [gT (x)g(x)]−1gT (x)(Fd(x)∂Hd − f(x)). (3.18)

Since the set of skew–symmetric matrices is strictly contained in the set of matrices with
negative semi–definite symmetric part, it is clear that the set of functions {f(x), g(x)} for
which (3.14) (subject to the constraint (3.16)) is solvable is strictly smaller than the set for
which (3.15), subject to (3.17), is solvable.

Remark 3.13. Similarly to IDA–PBC, application of SIDA–PBC also yields a closed–loop
PCH system of the form (3.4) with

Jd(x, t) =
1

2
[Fd(x, t) − F T

d (x, t)], Rd(x, t) =
1

2
[Fd(x, t) + F T

d (x, t)].

△

The SIDA-PBC can be summarized in the following Proposition.

Proposition 3.14. A dynamical system in an affine the form

ẋ = f(x) + g(x)u,

with the control law (3.18)

u = [gT (x)g(x)]−1gT (x)(Fd(x)∂Hd − f(x)),

is asymptotically stable to x∗ iff

x∗ = arg minHd

and
Fd(x) + Fd(x)T ≤ 0.
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Example 3.15: a toy model

Now we apply this technique to the toy model described before. We have to solve the
new matching equation (3.15), which implies the control law (3.18). The model (3.11)
can be written in the form ẋ = f(x) + g(x)u with

f(x) =

[
−x1 + ξx2

2

−x1x2

]

, g =

[
0
1

]

.

Splitting the Fd matrix as

Fd =

[
F11 F12

F21 F22

]

,

the control law (3.18) has the following form

u = F21∂x1
Hd + F22∂x2

Hd + x1x2

where F21 and F22 are free parameters satisfying (3.17) and x∗ = arg minHd(x). Notice
that we have more degrees of freedom than in the conventional IDA-PBC technique.

In this case the more evident choice is to take a quadratic energy function, for example

Hd =
1

2
(x1 − x∗

1)
2 +

ξ

2
(x2 − x∗

2)
2

which implies
∂x1

Hd = x1 − x∗
1, and ∂x2

Hd = ξ(x2 − x∗
2).

Setting F21 = −x2 and F22 = −k
ξ
, the control law yields

u = x∗
1x2 − k(x2 − x∗

2). (3.19)

The F11 and F12 are still free and must satisfy the matching equation for the x1 dynamics,

−x1 + ξx2
2 = F11(x1 − x∗

1) + F12ξ(x2 − x∗
2).

In order to simplify the calculations, we set F11 = −1, which implies

F22 = x2 + x∗
2.

Finally, to prove stability we only have to be sure that the F + F T matrix is negative-
semidefinite, i.e.

F + F T =

[ −2 x∗
2

x∗
2 −k

ξ

]

≤ 0

and, applying Schur’s inequality,

k ≥ 1

4
ξx∗2

2 =
1

4
x∗

1.

Figure 3.14 shows the simulation results of the control law (3.19). The parameter values
are ξ = 2, xd

2 = 2 and k = 1. Notice that the system goes to the desired fixed point x∗.
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Figure 3.14: Simulation results: x1 and x2 for a SIDA-PBC controller.

3.4 Improving the robustness of the IDA-PBC technique

One of the problems of the IDA-PBC technique for practical applications is the robustness
of the designed controllers.

The input disturbance suppression for PCHS, using an internal model, is studied in
[40]. In [78] an IDA-PBC controller for a magnetic levitation system was experimentally
tested. In this case, the robustness problem was partially solved adding an integral term to
the error of the passive output. This dynamical extension partially solves the problem for
relative degree one outputs but the main problem remains open for higher relative degree
outputs [10]. In this case the dynamical extension is not clear because, in general, it breaks
the skew-symmetric property of the Jd matrix.

3.4.1 Adding an integral term

In this subsection we explain why the integral term can be used in a PCHS framework for
relative degree one outputs, or in other words, passive outputs. To expose the basic idea,
consider a fully actuated control system of the form

{
ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2) + g(x1, x2)u

(3.20)

where x1 ∈ R
n, x2 ∈ R

m and u ∈ R
m, and g is full rank. Assume the IDA-PBC technique

can be applied to (3.20) so that in closed-loop the system becomes1

[
ẋ1

ẋ2

]

=
[

Jd − Rd

]
[

∂1Hd

∂2Hd

]

1To simplify the notation ∂xs
is written as ∂s, where s is the subindex of x.
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with control law

u = g−1 ((Om×n Im×m)(Jd − Rd)∂Hd − f2) .

Under the stated assumptions, the x2 are relative degree one outputs. We can easily add a
dynamical extension to them by means of

ż = −a∂2Hd, (3.21)

where a ∈ R
m×m, see [36][78]. The whole closed loop system can be rewritten in Hamiltonian

form as




ẋ1

ẋ2

ż



 =




Jd − Rd

0
aT

0 −a 0









∂1Hdz

∂2Hdz

∂zHdz





with a new Hamiltonian function

Hdz = Hd +
k

2
zT z.

The new controller is

v = u + g−1kaT z = u − g−1kaT a

∫

∂2Hdz.

Notice that (3.21) forces x2 = x∗
2 to remain a fixed point of the extended system.

The same procedure, when applied to the higher relative degree output x1, requires a
closed loop system of the form





ẋ1

ẋ2

ż



 =




Jd − Rd

0
b

−a 0 0









∂1Hdz

∂2Hdz

∂zHdz





where now a ∈ R
n×n and b ∈ R

m×n. The a term is used to force the equilibrium point x∗
1

of the output, while b is necessary to put the integral action into the control law. In this
case stability cannot be proved using the PCHS properties, since the a, b terms break the
semi-definite positiveness of the dissipation matrix:

Rdz =




Rd

aT /2
−b/2

a/2 −bT /2 0



 .

Indeed, consider a matrix of the form

M =

[
A BT

B D

]

.

A simple application of Schur’s complement shows that if D = 0, then B 6= 0 implies M < 0.
In our case, this would mean a = 0 and b = 0, which makes no sense.
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3.4.2 Influence of unknown parameters on the PCHS structure

In this subsection we point out the kind of problems that can appear in the closed-loop
structure obtained by IDA-PBC methods for relative degree one outputs, when nominal
values are used in a system with uncertain parameters.

Although the IDA-PBC method has some built-in robustness coming from its PCHS
structure, the use of a nominal u for systems with uncertain parameters can give a closed-
loop system which is not exactly PCHS. One may thing that for nominal parameters in a
small neighborhood of the actual ones, the “J−R” structure will not be destroyed; however,
we will see that the resulting closed-loop system has interconnection and dissipation matrices
depending on the state of the system, even if the closed-loop system for the actual parameter
values does not; this has as a consequence that the effect of small parameter changes is not
uniform in state space and, in particular, is unbounded in a neighborhood of the desired
regulation point. In addition to this, the closed-loop system obtained with a nominal
control does not have, in general, x∗ as a fixed point. As is well known from elemental
control theory, this last problem can be corrected by adding control terms proportional to
the integral of the error. Integral control has been discussed in the PCHS setting in the
previous subsection 3.4.1, where it is shown that adding as state variable the integral of the
natural passive output of the closed-loop system yields a system which is again PCHS.

Consider the dynamical system (3.20) of subsection 3.4.1,

{
ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2) + g(x1, x2)u

(3.22)

where x1 ∈ R
n, x2 ∈ R

m, u ∈ R
m and det g 6= 0, so that the x2 are relative degree one

outputs which we want to regulate to desired values x∗
2. Given x∗

2, the fixed point values of
x1 and u are obtained by equaling to zero the right-hand sides of (3.22).

Applying the IDA-PBC technique, we match the system to the desired partitioned PCHS
[

ẋ1

ẋ2

]

=

[
Jd11 − Rd11 −JT

d21 − RT
d21

Jd21 − Rd21 Jd22 − Rd22

] [
∂1Hd

∂2Hd

]

,

where each Jd·· and Rd·· represents the interconnection and dissipative terms of the Jd and
Rd matrices, respectively. This implies that Jd11 and Jd22 must be skew-symmetric and
similarly Rd11 = RT

d11 ≥ 0 and Rd22 = RT
d22 ≥ 0. Hence, the desired interconnection and

damping matrices are

Jd =

[
Jd11 −JT

d21

Jd21 Jd22

]

, Rd =

[
Rd11 RT

d21

Rd21 Rd22

]

.

Equaling the first x1 rows of both systems yields the IDA-PBC matching equation

f1 = (Jd11 − Rd11)∂1Hd + (−JT
d21 − RT

d21)∂2Hd. (3.23)

Assume that this equation can be solved, giving Jd, Rd and Hd satisfying the proper struc-
tural and control objective conditions. Substituting then into the equation coming from the
last x2 rows, one gets the feedback control

u = g−1 [(Jd21 − Rd21)∂1Hd + (Jd22 − Rd22)∂2Hd − f2] .

Assume now that the system (3.22) depends on some uncertain constant parameters ξ,
for which we assume nominal values ξ̂. The unknown parameters creep into the formalism
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through fi (and fu), making the solution to the matching equation (3.23) depend on them,
and also through the desired values x∗

1, which appear in Hd and which may depend on ξ
due to the fact that they must obey f1(x

∗
1, x

∗
2) = 0. Hence, the nominal control is given by

û = ĝ−1
[

(Ĵd21 − R̂d21)∂1Ĥd + (Ĵd22 − R̂d22∂2Ĥd − f̂2

]

.

The closed-loop system computed with the nominal control is

ẋ1 = (Jd11 − Rd11)∂1Hd + (−JT
d21 − RT

d21)∂2Hd, (3.24)

ẋ2 = f2 − gĝ−1f̂2 + gĝ−1
[

(Ĵd21 − R̂d21)∂1Ĥd + (Ĵd22 − R̂d22)∂2Ĥd

]

.

In the equation for x1, (3.24), we can change Hd by Ĥd and put the balance terms into
δ1; denoting δ2 = f2 − gĝ−1f̂2, we get a system of the form

[
ẋ1

ẋ2

]

=

[
B11 B12

B21 B22

] [
∂1Ĥd

∂2Ĥd

]

+

[
δ1

δ2

]

.

The components of δ1 can be made proportional to components of ∂2Ĥd by dividing
by the corresponding factors; likewise, the components of δ2 can be made proportional to
components of ∂1Ĥd (one has a large amount of freedom in selecting the components of
∂Ĥd to which the extra terms are made proportional). After doing this, one gets

[
ẋ1

ẋ2

]

=

[
B11 B12 + B̃12

B21 + B̃21 B22

] [
∂1Ĥd

∂2Ĥd

]

≡ Âd∂Ĥd. (3.25)

Notice that there are no singularities in the differential equations (3.25), since the singular
terms in Âd are canceled by ∂Ĥd.

Since any matrix can be decomposed into symmetric and skew-symmetric parts, we
write

Âd = Ĵd − R̂d, ĴT
d = −Ĵd, R̂T

d = R̂d.

Due to the B̃21 and B̃12 terms, the corresponding elements of Ĵd and R̂d will contain
terms which are singular at x1 = x̂∗

1 or x2 = x∗
2. This is no formal problem for Ĵd, but the

presence of off-diagonal singular terms in R̂d will destroy its positive semidefiniteness at
least in a neighborhood of (x̂∗

1, x
∗
2). Notice, however, that due to the presence of δ1, δ2 the

closed-loop system has fixed points which differ from (x̂∗
1, x

∗
2); if R̂d is positive semidefinite

in a neighborhood of the closed loop fixed points, LaSalle’s theorem can still be invoked to
proof local asymptotic stability, albeit not for the desired regulation point.

In order to ensure the regularization objective in presence of the unknown parameter,
an integral term is introduced in basic control theory. For relative degree one outputs, this
can be given a Hamiltonian form as well (see previous subsection). Keeping the unknown
parameters assumption, we can rewrite the closed-loop system as follows. First of all, we
write u = û + v in the original system. This yields

ẋ = (Ĵd − R̂d)∂xĤd + gv.

Because of ∂2Hd|x2=x∗

2

= 0, we can enlarge the state space with z ∈ R
u so that

ż = −a∂2Hd = −a∂2Ĥd,
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with a = aT ∈ R
m×m also diagonal and positive definite. The closed-loop enlarged system

can be written as





ẋ1

ẋ2

ż



 =




Ĵd − R̂d

0
a

0 −aT 0



 ∂Ĥdz,

where

Ĥdz = Ĥd +
1

2
zT z.

As discussed in subsection 3.4.1, due to the equation for ż, the only fixed points of the new
closed-loop system are those with x2 = x∗

2. The equation for ẋ1 determines then x∗
1 in terms

of x∗
2 and the actual parameter values; finally, the equation for ẋ2 sets the equilibrium value

of z, z∗, in terms of the nominal parameter values. However,

R̂dz =




R̂d

0
0

0 0 0





has the same singularity problems that R̂d in a neighborhood of x∗
u, and a proof of stability

based on LaSalle’s theorem cannot be given. Nevertheless, we will present an example in
the next Section where the desired regulation point seems to be asymptotically stable.

Example 3.16: the toy model again

To illustrate the quite general previous remarks, consider the toy model studied in subsec-
tion 3.3.1, equation (3.11),

ẋ1 = −x1 + ξx2
2,

ẋ2 = −x1x2 + u,

where ξ > 0 is an uncertain parameter. The control objective is to regulate x2 to a desired
value xd

2. The IDA-PBC control law obtained was (3.13),

u = x1x2 − γξ(x1 − x∗
1)(x2 + xd

2) −
r

γ
(x2 − xd

2).

This control law yields a closed-loop system which is Hamiltonian with (Jd, Rd, Hd), and
which has (x∗

1, x
d
2) as a globally asymptotically stable equilibrium point. However, if we

use an estimated value ξ̂ of the uncertain parameter ξ, the feedback control is

û = x1x2 − γξ̂(x1 − x̂∗
1)(x2 + xd

2) −
r

γ
(x2 − xd

2),

where

x̂∗
1 = ξ̂(xd

2)
2 =

ξ̂

ξ
x∗

1.

For later convenience, we also define

α̂ = γξ̂(x2 + xd
2).
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Using this û, the closed-loop system equation for ẋ2 is

ẋ2 = −γξ̂(x1 − x̂∗
1)(x2 + x2) −

r

γ
(x2 − x2)

= −α̂(x1 − x̂∗
1) − r

1

γ
(x2 − xd

2)

= −α̂∂1Ĥd − r∂2Ĥd,

where

Ĥd =
1

2
(x1 − x̂∗

1)
2 +

1

2γ
(x2 − xd

2)
2.

The equation for ẋ1 is not changed by the feedback, but can be rewritten as

ẋ1 = −x1 + ξx2
2

= −(x1 − x̂∗
1) − x̂∗

1 + ξ̂x2
2 + (ξ − ξ̂)x2

2

= −∂1Ĥd + ξ̂(x2 + xd
2)(x2 − xd

2) + (ξ − ξ̂)x2
2

= −∂1Ĥd + α̂
1

γ
(x2 − xd

2) + (ξ − ξ̂)x2
2

= −∂1Ĥd + α̂∂2Ĥd + (ξ − ξ̂)x2
2.

These two equations can be cast into Hamiltonian form as

[
ẋ1

ẋ2

]

=

[

−1 α̂ + γ(ξ − ξ̂)
x2

2

x2−xd
2

−α̂ −r

] [
∂1Ĥd

∂2Ĥd

]

= Âd∂Ĥd = (Ĵd − R̂d)∂Ĥd,

where Ĵd is the skew-symmetric part, giving the closed-loop interconnection matrix, and

R̂d = −1

2
(Âd + ÂT

d ) =




1 −γ

2
(ξ−ξ̂)x2

2

x2−xd
2

−γ
2

(ξ−ξ̂)x2

2

x2−xd
2

r



 .

One has

tr R̂d = 1 + r > 0,

det R̂d = r − γ2

4

(ξ − ξ̂)2

(x2 − xd
2)

2
x4

2.

Hence, in order to ensure that R̂d ≥ 0, it is necessary that

(x2 − xd
2)

2

x4
2

≥ γ2(ξ − ξ̂)2

4r
, (3.26)

which is globally true if ξ̂ = ξ but fails in a neighborhood of x2 = xd
2, as well as for |x2|

large enough, if ξ 6= ξ̂.

Notice that, for ξ̂ 6= ξ, the closed-loop system does not have x2 = x2, x1 = x̂∗
1 as a fixed

point, even though these are critical points of Ĥd, due to the 1/(x2 − xd
2) term in Âd. In
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Figure 3.15: Simulation results: IDA-PBC controller for a toy model.

general, due to the state dependence of Âd, other solutions may appear anyway. In fact,
computing the fixed points yields the relation (depending only on the actual value of ξ)

x1 = ξx2
2,

while the value of x2 comes from the solutions to

0 = γ2ξ̂(ξx2
2 − x̂∗

1)(x2 + xd
2) + r(x2 − xd

2).

If ξ̂ = ξ, one gets

γ2ξ2(x2
2 − (xd

2)
2)(x2 + xd

2) + r(x2 − xd
2) = 0

which only has a real solution, namely x2 = xd
2. For ξ 6= ξ̂ one has, in general, three

solutions, at least one of them real, all different from xd
2.

Figure 3.15 shows a simulation of the controller. The asymptotic value of x2 is ∼ 2.666
instead of xd

2 = 2, while x1 goes to ξ × (2.666)2, as expected. As discussed in this
Chapter, local asymptotic stability can be proved using LaSalle’s theorem, but extensive
simulations with very broad initial conditions seem to indicate that the stability is in fact
global.

Following the general theory, an integral term is introduced next, so that the equation for
x2 gets modified by an az term while the dynamics of z is

ż = −a
1

γ
(x2 − xd

2).

All the fixed points of the closed-loop system have x2 = xd
2; from the equation for ẋ1,

one gets again x1 = x∗
1 = ξ(xd

2)
2. Finally, the equation for ẋ2 determines now the fixed
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point value of z, z∗, which depends on the nominal value ξ̂, instead of determining the
fixed point for x2.

Figure 3.16 shows a simulation of the new controller, for the same parameter values than
the simulation for the old controller and a = 50. The variable z, the integral of the error
in x2, starts from zero an goes asymptotically to z∗. A longer transitory appears, as is
characteristic of integral controllers. Simulations with initial values in a wide range of
points, seem to point to the global stability of the closed loop system.

However, if r is decreased oscillations do appear. For instance, for r = 20 and the same
values of all the other parameters, one gets the response displayed in Figure 3.17. The
disappearance of the oscillations when r is increased corresponds to a (reversed) Hopf
bifurcation. In fact, linearizing the closed loop system around (ξ(xd

2)
2, xd

2, z
∗) yields a

system which is asymptotically stable as long as

r

γ
+ γξ̂(xd

2)
2(ξ − ξ̂) − (ξ − γξ̂)2(xd

2)
2 > 0,

which is true for r sufficiently large. Numerical simulations seem to imply that the fixed
point of the nonlinear system is globally asymptotically stable. Computing the time deriva-
tive of Ĥdz,

d

dt
Ĥdz = −(x1 − x̂∗

1)
2 + (ξ − ξ̂)x2

2(x1 − x̂∗
1) −

r

γ2
(x2 − xd

2)
2, (3.27)

it can be seen that the region where (3.27) is nonpositive is much larger than what
is implied by (3.26), due to the state-space dependence of the closed-loop dissipation
matrix; in fact, for r large enough, the nonpositive region is pushed away from the desired
regulation point, except for a bounded shrinking region whose boundary contains the later
and which contains most of the periodic orbit. Although the details are quite particular
to this example, we hope to obtain some insight into any existing mechanism which could
be generalized.

3.4.3 Robust control via structure modification

As discussed in the previous Section, it is not clear how to generalize the integral extension
for higher relative degree outputs in the PCHS framework. We present here a different
approach, which can be applied to a larger class of systems. Examples include the DC
motor, the electrical part of a doubly-fed induction machine or the buck power converter.

Consider a dynamical system of the form
{

ẋo = fo(xo, xu, ξ)
ẋu = fu(xo, xu) + g(xo, xu)u

(3.28)

where xo ∈ R
o are higher order relative degree outputs, xu ∈ R

u, u ∈ R
p are the controls

and ξ is an uncertain parameter. To simplify the presentation we consider p = u = o and
that g is full rank.

As a control target we fix a desired xd
o, which implies that the fixed point value of xu is

given by the following equation
fo(x

d
o, x

∗
u, ξ) = 0, (3.29)
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Figure 3.16: Simulation results: IDA-PBC+integral controller (with r = 50) for a toy
model.

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20

25

Figure 3.17: Simulation results: IDA-PBC+integral controller (with r = 20) for a toy
model.
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and depends thus on the uncertain parameter ξ.

Applying the IDA-PBC technique, we match the system to the desired port Hamiltonian
structure, where (Jd − Rd) is partitioned as

[
ẋo

ẋu

]

=

[
Jdoo − Rdoo −JT

duo − RT
duo

Jduo − Rduo Jduu − Rduu

] [
∂oHd

∂uHd

]

.

Each Jd·· and Rd·· represents the interconnection and dissipative terms of the Jd and Rd ma-
trices, respectively. This implies that Jdoo and Jduu must be skew-symmetric and similarly
Rdoo = RT

doo ≥ 0 and Rduu = RT
duu ≥ 0. Hence, the desired interconnection and damping

matrices are

Jd =

[
Jdoo −JT

duo

Jduo Jduu

]

, Rd =

[
Rdoo RT

duo

Rduo Rduu

]

.

Notice that we need a Hd such that ∂Hd|x=x∗ = 0 to obtain an equilibrium point in x∗ =
(xd

o, x
∗
u). Equaling the u rows of the IDA-PBC matching equation (4.42) the control law

yields

u = g−1 [(Jduo − Rduo)∂oHd + (Jduu − Rduu)∂uHd − fu] .

Since Hd is a free function, it is chosen so that ∂oHd does not depend on ξ (Notice that
x∗

u depends on it, equation (3.29)). In the same way, ξ can appear in ∂uHd through x∗
u,

which can be removed from the control law setting

Jduu − Rduu = 0,

and the robustified IDA-PBC control law is

u = g−1 [(Jduo − Rduo)∂oHd − fu] .

As we set Rduu = 0, again Schur’s complement shows that in order to keep the semi-
positiveness of Rd, we are forced to Rduo = 0, and consequently

u = g−1 [Jduo∂oHd − fu] . (3.30)

From the o rows of the IDA-PBC matching equation (4.42), the following equation must be
satisfied, were we fixed Rduo = 0,

fo = (Jdoo − Rdoo)∂oHd − JT
duo∂uHd. (3.31)

Selecting Jduo full rank,

∂uHd = −(JT
duo)

−1 [fo − (Jdoo − Rdoo)∂oHd] . (3.32)

Rewriting fo as

fo = A(x)∂oHd + B(xu),

and choosing (Jdoo − Rdoo) so that

A(x) = Jdoo − Rdoo,

the PDE (3.32) simplifies to

∂uHd = −(JT
duo)

−1B(xu).
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Notice that Jduo must be a function of xu only, Jduo = Jduo(xu). Fixing a part of the
Hamiltonian and then finding the rest of Hd solving the PDE was also proposed in [61].
Stability can be discussed, using LaSalle’s theorem. Dissipativity is assured if

Rdoo = RT
doo > 0.

This is equivalent to
A(x) + A(x)T < 0.

Notice that this condition depends only on fo, irrespectively of u. Convergence to the
equilibrium point, defined by ∂uHd|x=x∗ = 0, follows from the condition

∂2Hd

∣
∣
x=x∗

> 0,

or, in other words,
∂u

(
−(JT

duo)
−1B(xu)

)∣
∣
x=x∗

> 0.

We can summarize this Section in the following Proposition.

Proposition 3.17. Consider a dynamical system given by (3.28), so that fo can be
expressed as,

fo = A(x)∂oHd + B(xu) (3.33)

where ∂oHd is a design function of xo such that

∂oHd(xo)|xo=xd
o

= 0

and
∂2

oHd(xo)
∣
∣
xo=xd

o
> 0. (3.34)

Then the control law
u = g−1 [Jduo(xu)∂oHd − fu] , (3.35)

where Jduo(xu) is another design function of xu, is robustly stable in front of variations
of ξ as long as

A(x) + AT (x) < 0, (3.36)
(
−(JT

duo)
−1B(xu)

)∣
∣
x=x∗

= 0, (3.37)

and
∂u

(
−(JT

duo)
−1B(xu)

)∣
∣
x=x∗

> 0. (3.38)

Notice that condition (3.36) implies that the dynamics of the output variables xo is
dissipative, and this is the only dissipation of the closed-loop system (due to Rduu = Rduo =
0).

Example 3.18: the toy model

Consider once more the toy model studied in subsection 3.3.1, equation (3.11), where
ξ > 0 is an uncertain parameter. In this case, differing from the previous subsection, the
desired output is fixed by xd

1. Notice that x1 is now a relative degree two output, and the
integral term discussion is not clear.
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Applying the classical IDA-PBC method to the system, the following feedback control law
is obtained2

u = x1x2 − γξ(x1 − xd
1)(x2 + x∗

2) −
r

γ
(x2 − x∗

2),

where r > 0, γ > 0 are control parameters. Notice that the control law u depends on xd
1

and x∗
2, where x∗

2 is function of ξ,

x∗
2 =

√
1

ξ
xd

1.

In this case the control law is not robust with respect to an uncertain ξ̂.

Let us calculate a new controller following the previous discussion. In this case the xo

output variable is x1 and the xu variable is x2. First we fix ∂oHd as

∂oHd = x1 − xd
1

which ensures conditions (3.34) and (3.35). Then from (3.33), A(x) and B(xu) must be

A(x) = −1 B(xu) = ξ(x2
2 − x∗2

2 ).

Notice that condition (3.36) is achieved.

The easiest choice of Jduo is a free constant, for instance k > 0, but for this nonlinear
example it is necessary to add a more complicated a(x2) function3. Then the final choice
is

Jduo = JT
duo = −a(x2)k

with k > 0 and

a(x) =







1, x2 > 0
b, x2 = 0
−1, x2 < 0

(3.39)

where b ∈ [−1, 1] is a parameter that would be used to choose the equilibrium point of
x2 (see discussion on the closed-loop dynamics at the end of the example). This selection
ensures conditions (3.37)

1

a(x2)k
ξ(x2

2 − x∗2
2 )

∣
∣
∣
∣
x2=x∗

2

= 0

and (3.38),
(

1

a(x2)k
ξ(x2

2 − x∗2
2 )

)∣
∣
∣
∣
x2=x∗

2

> 0

Finally the controller is obtained from (3.30) yields

u = x1x2 − ak(x1 − xd
1). (3.40)

2This control law is the same than (3.13), with the desired output variable xd
1 instead xd

2.
3The a(x) function is included to avoid stability restrictions on the space-state. The same procedure with

a = 1 implies

∂
2
Hd|x=x∗ =

»

1 0

0 2 ξ

k
x∗

2

–

which is negative for x∗

2 < 0. Consequently, the globally asymptotically stability is not achieved.
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The example seen as a classic IDA-PBC design

This design can be also obtained following the traditional IDA-PBC method in order
to show the Hamiltonian structure of the closed–loop system. Consider the matching
equation of the system (3.11) with the PCHS dynamics (3.4) where

Jd =

[
0 a(x2)k

−a(x2)k 0

]

, Rd =

[
rc 0
0 0

]

where k > 0, a(x2) is described in (3.39) and a Hamiltonian function such that

∂xHd =

[
x1 − xd

1

∂x2
Hd

]

. (3.41)

From the second row of the matching equation we obtain the same robust control law as
(3.40)

u = x1x2 − ak(x1 − xd
1)

which does not depend on ξ. From the first row we must compute ∂x2
Hd and verify the

stability properties of the closed loop system. The matching equation yields

−x1 + ξx2
2 = −rc(x1 − xd

1) + ak∂x2
Hd

and, using rc = 1 and xd
1 = ξx∗2

2 ,

∂x2
Hd =

ξ

ak
(x2

2 − x∗2
2 ). (3.42)

To show stability, with the desired structure (3.4) and Jd = −JT
d , Rd = RT

d > 0 we only
need positiveness of the Hessian of Hd evaluated at x∗,

∂2
xHd|x=x∗ =

[
1 0

0 2 ξ
k
a(x∗

2)x
∗
2

]

,

which is true for all x∗
2, as long as k > 0 and ξ > 0. Notice that

∂2
x2

Hd =
ξ

k

(
Θ(x2)(x

2
2 − x∗2

2 ) + 2a(x2)x2

)
,

where Θ(x2) is the Heaviside function.

The Hamiltonian function can be found integrating ∂xHd (equation (3.41) with (3.42))

Hd = a(x2)
ξ

k
x2

(
1

3
x2

2 − x∗2
2

)

+
1

2
(x1 − xd

1)
2,

which has two local minima, both with first coordinate xd
1. Hd is depicted in Figure 3.18

(using the same simulation parameters than for Figures 3.19 and 3.20). Notice that two
equilibrium points appear, given by

x∗
2 = ±

√
1

ξ
xd

1,

and these points yield the same value for xd
1. In the classical controller this ambiguity did

not appear, basically because we were fixing the desired value of x∗
2, while in the robust

controller both values of x2 are possible.
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Figure 3.18: Desired Hamiltonian function, Hd.

Simulations

Figures 3.19 and 3.20 show simulation results testing both controllers, the robust method
presented above and the classic IDA-PBC. The parameters are ξ = 2, ξ̂ = 1, with initial
conditions x(0) = (0,−1.5), and the desired output is xd

1 = 2. The control parameter for
the robust control law is k = 10, while for the classical IDA-PBC r = 1 and γ = 1 are
selected.

The robust controller achieves the desired value of x1 even with a wrong parameter
estimation, while the classical IDA-PBC controller is sensible to the ξ variations. Notice
that the variations on ξ̂ change the x∗

2 equilibrium point.

Study of the closed-loop dynamics

Now we focus on to study of the dynamical behavior of the controller designed above. Fig.
3.21 shows the phase portrait of the closed–loop system (the values of the parameters are
as above).

Two stable fixed points,x∗ = (2,±1), are present. To select x∗
2, let us to write the system

(3.11) with the feedback control law (3.40),
{

ẋ1 = −x1 + ξx2
2

ẋ2 = −ak(x1 − xd
1)

The dynamics after reaching x2 = 0 there is described by

ẋ1 = −x1,

so x1 tends to x1 = 0, and simultaneously the x2 dynamics is

ẋ2 = −ak(x1 − xd
1)
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Figure 3.19: Comparison between the robust method and the classic IDA-PBC, behaviour
of x1.
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Figure 3.20: Comparison between the robust method and the classic IDA-PBC, behaviour
of x2.
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Figure 3.21: State space; trajectory and vector field.

where k > 0 and a(x2) = b with b ∈ [−1, 1]. Notice that for x1 > xd
1, and sufficiently far

of the equilibrium point, x2 = 0 is an attractor set. Besides, for x1 < xd
1 and x2 = 0 the

dynamics of x2 for b = 1 is increasing, while if b = −1 the dynamics of x2 decreases. In
other words, for b = 1

lim
t→∞

x2 = +

√
1

ξ
xd

1

and for b = −1

lim
t→∞

x2 = −
√

1

ξ
xd

1.

Figure 3.22 shows a phase portrait of two different simulations, for b = 1 with a continuous
line and b = −1 with a dotted line. The behaviour is as expected from the discussion

above, for b = 1, x2 tends to +
√

1
ξ
xd

1 while for b = −1 x2 tends to −
√

1
ξ
xd

1. In Figure

3.23 the same simulations are depicted in function of time.

For numerical simulations, we modify a(x) (3.39) as

a(x) =







1, x2 > ǫ
b, −ǫ < x2 < ǫ
−1, x2 < ǫ

where ǫ > 0 is a constant, so that numerical errors do not bring the trajectory to the
wrong fixed point.
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Figure 3.22: Phase portrait of x for two different b values. b = 1 with a continuous line and
b = −1 with a dotted line.
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Figure 3.23: Simulations for two different b values.
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Example 3.19: the DC motor

This robust IDA-PBC technique can also be applied to the DC motor speed control prob-
lem. Consider the DC motor described in Section 2.2, in PCHS form given by

ẋ = (J − R)∂H(x) + g + guu

with x ∈ R
2

x = [λ, pm]T ,

and where λ is the inductor flux and pm is the angular momentum. The interconnection,
dissipation and port matrices are

J =

[
0 −K
K 0

]

R =

[
r 0
0 Br

]

g =

[
0

−τL

]

gu =

[
1
0

]

with the control input u = v. r and Br represent the electrical and mechanical losses
respectively, and the Hamiltonian function is given by

H(x) =
1

2L
λ2 +

1

2Jm
p2

m,

where L is the inductance and Jm the inertia of the motor. Assume that the control
objective is a desired speed ωd and in that the unknown parameter is the external torque
τL.

Following the procedure described in Proposition 17, where the xo (output) variable is the
mechanical speed ω and the xu variable is the inductor current i, we choose

∂oHd =
1

Jm
(pm − pd

m) = ω − ωd, (3.43)

which ensures (3.34). Now fo from equation (3.33) can be written as

fo = Ki − Brω − τL = A(x)(ω − ωd) + B(x),

and into taking account τL = Ki∗ − Brω
d, A(x) and B(x) are given by

A = −Br,

B = K(i − i∗),

which fulfill the conditions (3.36), (3.37) and (3.38), with

Jduo = γ > 0. (3.44)

Finally, the control law is obtained from (3.35),

u = γ(ω − ωd) − ri − Kω

with (3.43), (3.44) and
fu = −ri − Kω.

Figure 3.24 shows the behaviour of the DC motor with the IDA-PBC robust control
law. The motor parameters are: r = 0.05Ω, L = 2mH, K = 0.07N·m·A−1, Br =
0.01N·m·rad−1s−1, Jm = 0.0006Kg·m2, the nominal torque is τL = 1.25N·m and γ =
0.05. The system starts at ω = 170rad·s−1 with ωd = 120rad·s−1. For t = 1s the desired
mechanical speed is changed to ωd = 170rad·s−1, and for t = 2s the external torque
decreases until τL = 0.25N·m. Notice that the mechanical speed regulation is achieved
even with the change of the external torque.
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Figure 3.24: Simulations of the IDA-PBC robust for a DC motor.


