
Chapter 4

Control of the Flywheel Energy

Storage System

In this Chapter the control of the flywheel energy storage system is presented. IDA-PBC
controllers for a DFIM and a B2B converter are designed and simulated. Using some
extensions of the basic approach, namely simultaneous IDA-PBC (SIDA) and robust IDA-
PBC control via structure modification, different controllers for the DFIM are computed
and compared. Finally, the whole flywheel energy storage system is simulated with the
designed controllers.

Part of the results of this Chapter can also be found in [5][6][8][11][12][13][14].

4.1 Control of a DFIM

Most DFIM controllers proposed in the literature are based on Vector Control and decou-
pling [54]. This strategy provides a good performance with a simply PI controller through a
new coordinate frame. Vector Control (whose basic ideas will be presented later) is widely
used for generation systems [90], wind turbines [68][69][85] and energy storage systems [3].
Under the assumption of negligible stator resistances (valid only for large machines) the
problem can be formulated as a rotor current control objective. The control scheme reduces
to a high gain control rotor current and external loops to achieve the desired goals (mechan-
ical speed or active power, together with the reactive power). Some further developments
of vector control for a DFIM with so called sensorless schemes are presented in [44][89].

Some other authors have proposed diferent algorithms for the doubly-fed induction
machine. The work of Peresada et al. [70][71] is specially relevant. In [70] an indirect
stator-flux oriented output feedback controller is presented for mechanical torque tracking
objective. Using a similar idea, an output feedback controller for the stator currents is
designed in [71], within the stator voltage synchronous reference frame. Other authors
propose an state-feedback linearization controller [18] or, using passivity-based techniques,
the control design of a DFIM interconnected with an induction machine [17].

In all cases the control of the DFIM is done in a hierarchic way: an inner–loop controls
the electrical variables and an outer–loop achieves the mechanical objectives by setting
the desired values of the electrical variables. This is based on the fact that the electrical
variables are usually much faster than the mechanical ones. Furthermore, in most cases the
inner-loop control requires the reconstruction of the magnetic flux variables.

The main contributions of this thesis with respect to previous control schemes of the
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Figure 4.1: Control structure of the Vector Control strategy.

DFIM are twofold: on one hand, a new controller, not requiring flux reconstruction, is
designed using standard IDA-PBC techniques; on the other, a global controller for the
electric and mechanical parts is constructed by means of the SIDA method. Several modi-
fications, which improve the robustness of the controllers in front parameter variation, are
also presented.

4.1.1 Vector Control for a doubly-fed induction machine

Vector Control works by changing coordinates to a frame aligned with any flux variable,
either stator, rotor or magnetizing [54]. This new framework allows to decouple, on one
hand, the stator reactive power Qs with one rotor current component, and on the other
hand, either the stator active power Ps (generation mode) or the electrical torque τe (motor
mode). In this section a brief introduction to stator-flux oriented control is presented.

Figure 4.1 shows the control structure of the stator-flux vector control. Two steps
are required to design the complete controller. The first block, named ”Vector Control”,
expresses the power (Ps and Qs) and mechanical (for instance τe) inputs in terms of the
rotor currents ir. A second block, ”Voltage-fed Control”, is used to obtain the desired rotor
currents by means of the rotor voltages.

From the two phase model of the DFIM (1.10), new coordinate variables are defined by
means of the following transformation:

yr = K(θ, δ)y,

where y ∈ R
4 are the αβ two-phase variables, yr ∈ R

4 are the rotated variables and

K(θ, δ) =

[
eJ2δ O2

O2 eJ2(δ−θ)

]

∈ R
4×4,

where δ is an arbitrary function of time1. After this transformation the inductance matrix
becomes constant

L =

[
LsI2 LsrI2

LsrI2 LrI2

]

∈ R
4×4,

1Notice that by selecting the appropriate δ the well-known Blondel-Park transformation is recovered (see
subsection 1.2.3).
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and

λr = Lir. (4.1)

From the two-phase equations (1.10), and applying the transformation in fluxes λ, currents
i, and voltages v the following electrical equations are obtained

λ̇r
s + δ̇J2λ

r
s + RsI2i

r
s = V r

s (4.2)

λ̇r
r + (δ̇ − ω)J2λ

r
r + RrI2i

r
r = V r

r . (4.3)

For stator-flux oriented control the phase δ is selected as

δ = arctan

(
λsβ

λsα

)

where λsα and λsβ are the stator fluxes in αβ coordinates respectively, which implies

λr
s = eJ2δλsαβ =

[
λm

0

]

where λm = |λs|. In the steady-state and for balanced systems, the modulus of the flux is
a constant. Using this fact and the relation

λr
r =

Lsr

Ls
λr

s + σirr

with σ = Lr − L2
sr

Ls
obtained from (4.1), equations (4.2) and (4.3) yield

δ̇J2λ
r
s + RsI2i

r
s = V r

s

σi̇rr + (δ̇ − ω)J2

(
Lsr

Ls
λr

s + σirr

)

+ RrI2i
r
r = V r

r .

with λr
s = [λm, 0]T ,

δ̇

[
0

λm

]

+ RsI2i
r
s = V r

s (4.4)

σi̇rr + (δ̇ − ω)
Lsr

Ls

[
0

λm

]

+ (δ̇ − ω)σJ2i
r
r + RrI2i

r
r = V r

r . (4.5)

To simplify the notation, in the sequel the super–index (·)r will be omitted.

As explained above, the DFIM can act both in generator mode and in motor mode.
Since in both cases Qs is a control objective, let us derive the relation between the reactive
power and the d-rotor current ird. From definition of reactive power (in a 2-phase system)

Qs = iTs J2Vs

and, using the relation between the currents and fluxes (4.1), is = 1
Ls

([
λm

0

]

− Lsrir

)

,

Qs =
1

Ls

([
λm

0

]

− Lsrir

)T

J2Vs
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Notice that if Rs ∼ 0, using equation 4.4 and having the goal Qs = 0 in mind, a linear
relation between the reactive power and the d-component of the rotor current is obtained,

ird =
λm

Lsr
.

For the motor case mode, the relation between the electrical torque τe and the q-rotor
current component irq can be computed. Starting with τe, definition (1.14), and using the
relation between fluxes and currents

τe = Lsri
T
s J2ir =

Lsr

Ls

([
λm

0

]

− Lsri
T
r

)

J2ir = −Lsr

Ls
λmirq. (4.6)

For the generator case the interesting relation is the one between the active power Ps and
the q-component of the rotor currents. With the active power definition

Ps = iTs Vs,

the stator equation (4.4), and using for is the equation derived for the Qs analysis done
before, one obtains

Ps = iTs

(

−δ̇

[
0

λm

]

+ Rsis

)

= −δ̇
Lsr

Ls
λmirq + Rs

1

L2
s

(λ2
m − 2Lsrλmird − L2

sr|ir|2).

A typical consideration is that Rs is negligible, and the last relation becomes

Ps = −δ̇
Lsr

Ls
λmirq.

Voltage-fed control

As shown in Figure 4.1, a inner loop current control is required in order to obtain the rotor
voltages to be supplied to the machine. From rotor equations (4.5), a voltage control with
a PI contribution can be defined as

vr = (δ̇ − ω)
Lsr

Ls

[
0

λm

]

+ (δ̇ − ω)σJ2ir + RrI2ir − Kp(ir − i∗r) − Ki

∫

(ir − i∗r)dt, (4.7)

where i∗r are the desired rotor currents obtained in the ”Vector Control” block. With this
control law the rotor current dynamics becomes

σi̇r = −Kp(ir − i∗r) − Ki

∫

(ir − i∗r)dt

which is asymptotically stable to i∗r . Notice that the control law (4.7) has two parts: the
first three terms eliminate non-linear parts and decouple the dq-components, while the last
two force the convergence to the equilibrium point.

Speed control

The typical output of the vector control method in motor mode is the electrical torque τe,
while the most common output in applications of the electrical drives is the mechanical
speed. This subsection presents an outer loop to achieve speed control of the DFIM. From
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Figure 4.2: Simulation results, Vector Control: angular speed, ω

the mechanical equation (1.15), and using equation (4.6), the following linear dynamical
equation is obtained

Jmω̇ = −Lsr

Ls
λmirq − Brω − τL.

Using the same kind of arguments than in the previous subsection, the q-rotor current is
defined as

irq = − Ls

Lsrλm

(

(Brω + τL) + Kωp(ω − ω∗) + Kωi

∫

(ω − ω∗)dt

)

. (4.8)

Simulations

The parameter values used in the simulations are (in SI units): Lsr = 0.71, Ls = 0.725,
Lr = 0.715, Rs = 4.92, Rr = 4.42, Jm = 0.00512, Br = 0.005. The control parameters have
been tuned in to Kp = 5, Kωp = 10, Ki = 1 and Kωi = 5.

We have simulated a step where the desired angular speed ω∗ goes from 300rad·s−1 to
330rad·s−1 at t = 1 second. Figure 4.15 shows the angular speed behaviour. The stator
voltage and current of one of the phases are displayed in Figure 4.3. Notice that the reactive
power is close to zero in any of the steady states. Finally, Figure 4.4 shows the control action
in the rotor voltages.

4.1.2 IDA-PBC for a doubly-fed induction machine

Following the classic IDA-PBC method, a controller for a doubly-fed induction machine
was designed in [12]. To obtain a globally defined control law a state-dependent damping
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term is introduced that has the nice interpretation of effectively decoupling the electrical
and mechanical parts of the system. This results in a stable controller parameterized by
two degrees of freedom.

Let us recall the PCHS model of the DFIM presented in Section 2.5. The Hamiltonian
variables are

x = [λT
s , λT

r , Jmω]T = [xT
e , xm]T

where xT
e = [λT

s , λT
r ] are the electrical variables, xm = Jmω is the mechanical variable, and

the Hamiltonian function is

H(x) =
1

2
xT

e L−1xe +
1

2Jm
x2

m

L =

[
LsI2 LsrI2

LsrI2 LrI2

]

.

Finally, the interconnection, damping and port matrices are

J =





−ωsLsJ2 −ωsLsrJ2 O2×1

−ωsLsrJ2 −(ωs − ωr)LrJ2 LsrJ2is
O1×2 Lsri

T
s J2 0



 R =





RsI2 O2×2 O2×1

O2×2 RrI2 O2×1

O1×2 O1×2 Br





g =





I2 O2×2 O2×1

O2×2 I2 O2×1

O1×2 O1×2 1



 , u = [vT
s , vT

r , τL]T ,

while fluxes and currents are related by i = ∂λH, or

[
λs

λr

]

= L
[

is
ir

]

.

Fixed points

As mentioned above, the classic IDA-PBC method requires the knowledge of the complete
equilibrium point. A fixed point of the DFIM (see Section 1.4, equations (1.17, 1.18, 1.19))
is a solution of the five-dimensional system of equations

ωsLsJ2i
∗
s + ωsLsrJ2i

∗
r + RsI2i

∗
s − vs = 0 (4.9)

(ωs − ω∗)[LsrJ2i
∗
s + LrJ2i

∗
r] + RrI2i

∗
r − v∗r = 0

Lsri
∗T
s J2i

∗
r − Brω

∗ − τL = 0. (4.10)

Notice that the third equation includes a possible external torque τL.

Solving the Matching Equation

Following the strategy outlined in subsection 3.3.1, the matching equation (3.8) is equivalent
to

(Jd(x) − Rd(x))∂Ha = −(Ja(x) − Ra(x))∂H + g(x)u. (4.11)

Taking the desired quadratic total energy as

Hd(x) =
1

2
(xe − x∗

e)
TL−1(xe − x∗

e) +
1

2Jm
(xm − x∗

m)2,
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which clearly has a global minimum at the desired fixed point, yields

Ha(x) = Hd(x) − H(x) = −x∗T
e L−1xe −

1

Jm
x∗

mxm +
1

2
x∗T

e L−1x∗
e +

1

2Jm
x∗2

m .

Notice that

∂Ha =

[
−i∗

−ω∗

]

.

Using this relation, (4.11) becomes

(Jd(x) − Rd(x))

[
i∗

ω∗

]

= [Ja(x) − Ra(x)]

[
i
ω

]

− gu. (4.12)

The control action vr appears on the third and fourth rows, which suggests the choice

Ja(x) =





O2 O2 O2×1

O2 O2 −Jrm(x)
O1×2 J T

rm(x) 0



 , Ra =





O2 O2 O2×1

O2 rI2 O2×1

O1×2 O1×2 0



 (4.13)

where Jrm(x) ∈ R
2×1 is to be determined. An additional resistor r > 0 for the rotor

currents has been included in order to damp the transient oscillations.

Substituting (4.13) in (4.12) and using the fixed-point equations, one gets, after some
algebra,

J T
rm(x) = Lsr

(ir − i∗r)
T

|ir − i∗r|2
(is − i∗s)

T J2i
∗
r ,

vr = v∗r − (ω − ω∗)(LrJ2i
∗
r + Jrm(x)) − Lsrω

∗J2(is − i∗s) − rI2(ir − i∗r).

Unfortunately, the control is singular at the fixed point. Although from a numerical point
of view this problem can be solved by introducing a regularization parameter, it is actually
possible to get rid of the singularity by adding a variable damping which turns out to
decouple the mechanical and electrical subsystems.

Subsystem Decoupling via State–Dependent Damping

Now we take Hd(x) and Jd(x) as before, but instead of the constant Ra given in (4.13) a
state–dependent damping matrix is introduced

Ra(x) =





O2 O2 O2×1

O2 rI2 O2×1

O1×2 O1×2 ξ(x)



 ,

where

ξ(x) =
τ∗
e − τe(xe)

ω − ω∗ (4.14)

with τe the electrical torque

τe = Lsri
T
s J2ir

and τ∗
e = Brω

∗ its fixed point value. Notice that, when substituted into the closed-loop
Hamiltonian equations, ξ(x) is multiplied by ω−ω∗ and hence no singularity is introduced.
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Since only the mechanical part of (4.12) is changed, only the value for Jrm(x) is altered,
while the expression for vr in terms of Jrm(x) remains the same. After some algebra and
using the fixed point equations, one gets

Jrm(x) = LsrJ2is.

The closed loop dynamical system is still of the form (3.4) with

Jd(x) =





−ωsLsJ2 −ωsLsrJ2 O2×1

−ωsLsrJ2 −(ωs − ω)LrJ2 O2×1

O1×2 O1×2 0



 , Rd(x) =





RsI2 O2 O2×1

O2 (Rr + r)I2 O2×1

O1×2 O1×2 Br + ξ(x)



 .

Notice that the state–dependent ”damping” is an artifice to decouple the electrical and
mechanical parts in the closed-loop interconnection and dissipation matrices—and the pro-
posed control is shaping only the electrical dynamics. From (4.14) it follows that the sign
of Br + ξ(x) is indefinite, and depends on the state space point and, in particular on the
way a given trajectory approaches the fixed point.

Main Stability Result

Due to the fact that is not possible to use Br + ξ(x) ≥ 0, the standard stability analysis
for PCH systems (see Proposition 1 of Section 2.1 and [87]) cannot be applied. However,
the overall system has a nice cascaded structure, with the electrical part a bona fide PCH
subsystem with well–defined dissipation. (This situation is similar to the Nested PBC
proposed in Chapter 8 of [63].) Asymptotic stability of the overall system follows from well
known properties of cascaded systems [83]. For the sake of completeness we present the
specific result required for our system in the following lemma.

Lemma 4.1. Let us consider a system of the form

ẋ1 = f1(x1, x2),

ẋ2 = −Bx2 + h(x1), (4.15)

where x1 ∈ R
n, x2 ∈ R, B > 0 and h is a continuous function. Assume that the system

has fixed points x∗
1, x∗

2, and limt→+∞ x1(t) = x∗
1 for any x2(t). Then limt→+∞ x2(t) =

x∗
2.

Proof. Let (σ1(t), σ2(t)) be a given solution to (4.15). Since limt→+∞ σ1(t) = x∗
1 it

follows that σ1(t) is bounded and so is h(σ1(t)). Since Bx∗
2 = h(x∗

1), it follows that ∀ǫ >
0 there exists T > 0, which may depend on σ1(t) and σ2(t), such that if t > T then
|h(σ1(t)) − Bx∗

2| < ǫB
2 . Using

1 = e−Bt + B

∫ t

0
e−B(t−τ)dτ

it is immediate to write,

σ2(t) − x∗
2 = e−Bt(x2(0) − x∗

2) +

∫ t

0
e−B(t−τ)(h(σ1(τ)) − Bx∗

2)dτ

= e−Bt(x2(0) − x∗
2) +

∫ T

0
e−B(t−τ)(h(σ1(τ)) − Bx∗

2)dτ

+

∫ t

T

e−B(t−τ)(h(σ1(τ)) − Bx∗
2)dτ
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where t > T has been assumed. There exists T̃ > 0 such that if t > T̃ then

e−Bt

(

x2(0) − x∗
2 +

∫ T

0
eBτ (h(σ1(τ)) − Bx∗

2)dτ

)

<
ǫ

2
,

where the boundedness of h has been used. Furthermore
∣
∣
∣
∣

∫ t

T

e−B(t−τ)(h(σ1(τ)) − Bx∗
2)dτ

∣
∣
∣
∣
<

∫ t

T

e−B(t−τ)ǫ
B

2
dτ =

ǫ

2
(1 − e−B(t−T )) <

ǫ

2
.

Finally, taking t > max{T, T̃}, one gets |σ2(t) − x∗
2| < ǫ. This ends the proof. �

The results obtained in this subsection can be summarized in the following proposition.

Proposition 4.2. Consider the DFIM PCHS–based system described in Section 2.5
in closed–loop with the static state–feedback control

vr = v∗r − (ω − ω∗)(LrJ2i
∗
r + LsrJ2is) − Lsrω

∗J2(is − i∗s) − rI2(ir − i∗r), (4.16)

where
v∗r = (ωs − ω∗)[LsrJ2i

∗
s + LrJ2i

∗
r] + RrI2i

∗
r.

and (i∗s, i
∗
r, ω

∗) correspond to desired equilibria. Assume the motor friction coefficient
Br is sufficiently small to ensure the solution of the equilibrium equations. Then the
system is globally convergent.

Proof. Energy shaping of the electrical subsystem ensures that

Ḣde ≤ −min{Rs, Rr + r}|xe − x∗
e|2,

where Hde
△
= 1

2(xe − x∗
e)

TL−1(xe − x∗
e). Consequently, xe → x∗

e exponentially fast. The
proof follows immediately checking that the conditions of Lemma 1. To do that, we identify
x1 with the electric variables and x2 with the mechanical variable. The electric subsystem
has (i∗s, i

∗
r) as a global asymptotically stable fixed point for any function ω(t). Hence, all

trajectories of the closed–loop dynamics asymptotically converge to the equilibrium point
(i∗s, i

∗
r, ω

∗). �

Simulations

Numerical simulations have been run to validate the designed controller. The simulation
parameters are (in SI units): Ls = 0.725,Lr = 0.715, Lsr = 0.71, Rr = 4.42, Rs = 4.95,
Jm = 0.001, Br = 0.005, τL = −3.7, vs = [310.27, 0]T and ωs = 2π50. The controller
parameter is selected as r = 100.

The numerical experiment is performed using the DFIM as a motor. The DFIM starts
at ω = 314rad·s−1 and the desired speed is set at ω∗ = ωd = 350rad·s−1 for t ≥ 0.5s. To
improve the power factor, we have set the second (q) component of i∗s to zero.

Figures 4.5 and 4.6 shows the behaviour of the mechanical speed ω and the stator
currents, is. Notice that the control objectives are achieved and the systems stabilizes
at the desired fixed point. Figure 4.7 shows the phase portrait of the mechanical speed
and the stator currents, which shows that the electrical subsystem is much faster than
the mechanical one. This is also depicted in Figure 4.8, where it can be seen that the
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Figure 4.5: Simulation results, IDA-PBC: Mechanical speed, ω.
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Figure 4.7: Simulation results, IDA-PBC: Phase portrait, is and ω.
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Figure 4.9: Simulation results, IDA-PBC: Detail of the phase portrait, isd and isq.

dynamics is already close to the fixed point for the components of the stator currents while
the mechanical speed is still on its transient. This slow response of the mechanical variable
is associated to the cascaded structure of the controller and will be improved in the next
subsection using the SIDA variant of IDA-PBC. Finally, Figure 4.9 shows the state space
of the stator currents.

4.1.3 Simultaneous IDA-PBC for a DFIM

In the previous subsection the equilibria is stabilized with IDA–PBC that shape the elec-
trical energy, treating the mechanical dynamics as a cascaded subsystem.

The nested–loop architecture, with an inner–loop to control the electrical subsystem
and an outer–loop (usually a simple PI) to control the mechanical variables, is prevalent
in classical electromechanical systems applications, where it is justified invoking time–scale
separation arguments. Intrinsic to the nested–loop configuration is the fact that the time
response of the mechanical subsystem is subordinated to the electrical transient. This may
lead to below–par performances in small stand–alone DFIM–based generating units where
a fast response of the mechanical speed is needed to ensure efficient control of the power
flow and, furthermore, the mechanical and electrical time constants may be close. The
purpose of this Section is to show that using SIDA–PBC it is possible to shape the energy
function of the complete system dynamics, resulting in a controller with improved power–
flow regulation performance. To the best of our knowledge, this is the first control algorithm
for this class of systems that provides for this additional degree of freedom.
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SIDA–PBC Design

The desired energy function is fixed as

Hd(x) =
1

2
x̃T Px̃, P = P T > 0, (4.17)

where we defined (̃·) as the error, (̃·) = (·) − (·)∗. The SIDA–PBC design boils down to
finding a matrix Fd(x) solution of

[J(is, ω) − R]∂H +





vs

O2×1

τL



 +





O2×2

I2

O1×2



 vr = Fd(x)Px̃, (4.18)

and verifying Fd(x) + F T
d (x) ≤ 0. To simplify the solution we restrict P to be diagonal

and—for reasons that will become clear below—set the first row, third column entry of
Fd(x) to zero, that is,

P =





psI2 O2×2 O2×1

O2×2 prI2 O2×1

O1×2 O1×2 pω



 > 0, Fd(x) =





F11(x) F12(x) O2×1

F21(x) F22(x) F23(x)
F T

31(x) F T
32(x) F33(x)



 ,

where the partition of Fd(x) is conformal with the partition of P .
From the first two rows of (4.18), after using the relationship between fluxes and currents

(4.1) and the equilibria equation (4.9), one obtains

−(ωsLsJ2 + RsI2)̃is − ωsLsrJ2ĩr = (LsF11ps + LsrF12pr )̃is + (LsrF11ps + LrF12pr )̃ir,

which, for all ĩs, ĩr, has a unique solution given by

F11 = − 1

ps

(

ωsJ2 +
Lr

µ
RsI2

)

F12 =
Lsr

prµ
RsI2

where µ , LsLr − L2
sr > 0.

We remark that this simple calculation was possible because the 13–element of Fd(x)
was set to zero. The price paid for having this term equal to zero is that it makes the
selection of F31(x) critical. Indeed, this term will appear in the corners of Fd(x) + F T

d (x),
that we recall should be negative semi–definite. The term F32(x), on the other hand, is not
critical because its contribution to Fd(x)+F T

d (x) can be countered by a suitable selection of
F23(x) that, in view of the presence of the control, is totally free. These issues will become
clearer as we go through the calculations below.

From the fifth row of (4.18) and (4.1) we get

[
F T

31(x)ps F T
32(x)pr

]
Lĩ + F33(x)pωJmω̃ = Lsri

T
s J2ir − Brω

= Lsr

[
−i∗Tr J2 iTs J2

]
ĩ − Brω̃

with the second identity obtained adding and substracting the equilibrium equation (4.10).
From the ω̃ term we get

F33 = − Br

pωJm
,
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while the remaining equations can be arranged as

ĩT
(

L

[
psF31(x)
prF32(x)

]

− Lsr

[
J2i

∗
r

−J2is

])

= 0, (4.19)

where we have defined

L ,

[
LsI2 LsrI2

LsrI2 LrI2

]

.

Although a solution for F31(x) and F32(x) of this equation can be easily obtained—inverting
L to set the term inside the parenthesis equal to zero—it turns out that we do not have
enough flexibility in the control to generate a matrix Fd(x) that satisfies the skew–symmetry
constraint of Jd, and we have to look for an alternative solution. Towards this end, notice
that we can add to (4.19) any vector G(x) ∈ R

4

ĩT
(

L

[
psF31(x)
prF32(x)

]

− Lsr

[
J2i

∗
r

−J2is

]

− G(x)

)

= 0 (4.20)

as long as
ĩT G(x) = 0.

Setting the term inside the parenthesis of (4.20) equal to zero we get

[
psF31(x)
prF32(x)

]

=
Lsr

µ

[
LrJ2i

∗
r + LsrJ2is

−LrJ2is − LsrJ2i
∗
r

]

+

[
GC(x)
GD(x)

]

, (4.21)

where, for convenience, we have introduced the partition

[
GC(x)
GD(x)

]

= L−1G(x)

with GC(x), GD(x) ∈ R
2. As indicated above, to satisfy the skew–symmetry condition it is

necessary to generate a solution with F31(x) constant. This is easily achieved selecting

GC(x) = −L2
sr

µ
J2ĩs. (4.22)

With this selection G(x) results in

G(x) =

[

−L2
srLr

µ
J2ĩs + LsrGD

−L3
sr

µ
J2ĩs + LrGD

]

and, in order to ensure ĩT G(x) = 0, we fix

GD(x) = −L2
sr

µ
J2ĩr (4.23)

Finally, replacing (4.22) and (4.23) in (4.21) we get

F31 =
Lsr

psµ
J2(Lsri

∗
s + Lri

∗
r) =

Lsr

psµ
J2λ

∗
r

F32(x) = −Lsr

prµ
J2(Lsis + Lsrir) = −Lsr

prµ
J2λs.
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The next step is to select the remaining terms of Fd(x)—that are directly affected by the
control action—to satisfy the skew–symmetry constraint of Jd. To simplify the condition,
we select

F21 = −F12, F23(x) = −F32(x), F22 = − kr

2pr
I2 < 0

which yields

Fd(x) + F T
d (x) =






−2LrRs

psµ
I2 O2×2

Lsr

psµ
J2λ

∗
r

O2×2 −kr

pr
I2 O2×1

−Lsr

psµ
λ∗T

r J2 O1×2 − 2Br

pωJm




 .

A simple Schur’s complement analysis establishes that Fd(x)+F T
d (x) < 0 if and only if the

free parameters ps and pω satisfy

ps >

(
JmL2

sr

4BrLrRsµ
|λ∗

r |2
)

pω. (4.24)

Remark 4.3. The inequality (4.24) clearly reveals the critical role played by Br. If this
parameter is small ps

pω
has to be large. In the next Section we compute the control law and

we see that this can be achieved injecting a high gain in the current loop or reducing the
gain on the speed error feedback—both options inducing obvious detrimental effects on the
closed-loop performance. △

Proposed Controller and Stability Analysis

Once we have solved the SIDA–PBC matching equations, the design is completed computing
the controller and assessing its stability properties. This is summarized in the proposition
below.

Proposition 4.4. Consider the DFIM PCHS–based system described in Section 2.5
in closed–loop with the static feedback control

vr = Rrir+(ωs−ω)J2(Lsris+Lrir)−ks(Lsĩs+Lsr ĩr)−kr(Lsr ĩs+Lr ĩr)+kωJ2λsω̃ (4.25)

where kr > 0, kω > 0 and

ks >
L2

sr

4BrLrµ
|λ∗

r |2kω.

The closed–loop system is then described by ẋ = Fd(x)∂Hd, with Hd(x) defined in
(4.17), and Fd(x) + F T

d (x) < 0. Consequently, the equilibrium x∗ is globally exponen-
tially stable.

Proof. From the second row of (4.18) we obtain

vr = Rrir + (ωs − ω)J2(Lsris + Lrir) + F21psλ̃s + F22prλ̃r + F23(z)pωJmω̃.

The control law (4.25) follows from this expression after substitution of the values of Fij ,
using (4.1) and defining

ks ,
psLsrRs

prµ
, kω ,

pωJmLsr

prµ
.

Finally, the lower bound on ks

kω
is obtained from the inequality (4.24). �
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Figure 4.10: Simulation results, SIDA-PBC: Mechanical speed, ω.

Simulations

The simulation parameters are (in SI units): Ls = Lr = 0.011, Lsr = 0.01, Rr = Rs = 0.01,
Jm = 0.001, Br = 0.005, vs = [310.27, 0]T and ωs = 2π50. The controller parameters are
selected as ks = 1000, kr = 100 and kω = 0.01.

The first numerical experiment is performed using the DFIM as a motor (for 0 < t ≤
0.5s). In this case τL = −5N·m and the desired speed is ω∗ = ωd = 320rad·s−1 for
0 < t ≤ 0.25s and ω∗ = ωd = 305rad·s−1 for 0.25s < t ≤ 0.5s. The second simulation is
done using the DFIM as a generator (for 0.5s < t ≤ 1s). In this case τL = 5N·m and the
desired current is i∗s = ids = [−2.7, 0]T A for 0.5s < t ≤ 0.75s and i∗s = ids = [−2.85, 0]T A
for 0.75s < t ≤ 1s. Notice that, to improve the power factor, we have set the second
(q) component of i∗s to zero. The behavior of the mechanical speed and the d and q–
components of the stator current for both simulations are depicted in Figs. 4.10, 4.11 and
4.12, respectively.

In Figure 4.13 we compare the speed behaviour of the new SIDA-PBC with the IDA–
PBC reported in [12]—that shapes only the electrical energy. The simulation conditions
are the same as before but, in view of the slower response of the controller of subsection
4.1.2 (see also [12]), we had to scale up the time. As expected, in spite of the large damping
coefficient used in the IDA–PBC (r = 1000), SIDA–PBC achieves a much faster speed
response.
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Figure 4.11: Simulation results, SIDA-PBC: Stator current d-component.
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Figure 4.12: Simulation results, SIDA-PBC: Stator current q-component.
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Figure 4.13: Simulation results: Mechanical speed, ω, for SIDA–PBC (continuous line) and
IDA–PBC (dashed line).

4.1.4 Robust controller for a DFIM

As mentioned in Section 3.4, the main problem when implementing an IDA-PBC (or SIDA)
controller is the robustness. In subsection 3.4.3 a new procedure to avoid (or to minimize)
the parameter dependence of the final controller is presented. Following those ideas, a new
control law is designed here for the electrical part of the DFIM. The main advantage respect
to the controller designed in subsection 4.1.2 is that the fixed point is only a function of the
stator currents and no error is added through the fixed point computation.

The obtained controller is more robust respect to the previous ones based on IDA-PBC.
Even so, in order to implement it on the experimental plant, two new modifications are
introduced, outside of the IDA-PBC framework. On one hand, an outer-loop speed control
is designed (in the same spirit of the Vector Control, subsection 4.1.1) to improve the
transient behavior of the mechanical speed. Furthermore, an integral term is added in the
inner (or current) loop to increase robustness in front external perturbations.

Figure 4.14 shows the scheme of the complete control algorithm. It includes all the
required dq-transformations to show the simplicity of the proposed controller in front of the
Vector Control strategy, Figure 4.1. The main advantages are:

• The stator flux λs is not required to compute λm. This dispenses with the estimation
of a critical variable which will be used to construct the rotating reference.

• The rotating reference is referred to the stator voltage vs which, as discussed in the
previous item, is easier to obtain than the stator flux orientated reference. In other
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Figure 4.14: Control structure of the IDA-PBC based proposed controller.

words, computations depend only on a measured variable.

• The reference inputs of the new controller are directly the stator currents (which are
the outputs of the electrical subsystem), whereas the reference inputs of the inner-loop
of the Vector Control are the rotor currents.

• No assumption is made on the smallness of Rs.

The design control is organized as follows. First the new IDA-PBC approach is used to
obtain an stator current control. Next, using linear control theory an integral term is
added. Finally, the outer-loop speed control is designed.

Robust IDA-PBC controller for a DFIM

In this subsection we present a more robust IDA-PBC controller for the electrical part of
the DFIM. This new controller improves the previous one (subsection 4.1.2) in that the
proportional action is directly applied to the desired output, is. The design procedure is
based on the so-called robust IDA-PBC controller via structure modification methodology,
presented in subsection 3.4.3.

Consider the electrical subsystem of the DFIM, written in the stator reference frame,

λ̇ =

[
−ωsLsJ2 − RsI2 −ωsLsrJ2

−(ωs − ω)LsrJ2 −(ωs − ω)LrJ2 − RrI2

]

i +

[
vs

vr

]

(4.26)

where λ = Li and L = LT > 0. This system can be expressed in current terms as (x = i)

Lẋ =

[
fo(x)

fu(x) + g(x)u

]
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where the control input is u = vr, and

fo(x) = −(ωsLsJ2 + RsI2)is − ωsLsrJ2ir + vs (4.27)

fu(x) = −(ωs − ω)LsrJ2is − ((ωs − ω)LrJ2 + RrI2)ir (4.28)

g(x) = I2 (4.29)

Consider now the following target dynamics

Lẋ = (Jd − Rd)∂Hd.

This system has a PCHS form with new coordinates z = Lx and the stability is guaranteed
provided that Jd = −JT

d , Rd = RT
d ≥ 0 and x∗ = arg minHd(x). This desired Hamiltonian

function differs from the original one in the L matrix, but, as L = LT > 0, it only affects
the transient while the stability properties are kept. Then we can apply the methodology
of proposition 17 (in subsection 3.4.3).

First we fix ∂oHd (where the xo variables are the stator currents is) as

∂oHd = is − ids

which ensures stability of the ids fixed point. Then, from (3.33),

fo = A(x)∂oHd + B(xu),

where xu are the rotor currents ir,

−(ωsLsJ2 + RsI2)(is − ids) − ωsLsrJ2(ir − i∗r) = A(x)(is − ids) + B(ir)

and A(x) and B(ir) are
A(x) = −(ωsLsJ2 + RsI2),

B(ir) = −ωsLsrJ2(ir − i∗r).

Note that condition (3.36), A + AT = −2RsI2 < 0, is satisfied. Now we set

Jduo = −kJ2 (4.30)

which ensures condition (3.37),

(
−(JT

duo)
−1B(xu)

)∣
∣
ir=i∗r

=

(
1

k
ωsLsr(ir − i∗r)I2

)∣
∣
∣
∣
ir=i∗r

= 0

and condition (3.38)

∂u

(
−(JT

duo)
−1B(xu)

)∣
∣
ir=i∗r

=
1

k
ωsLsrI2 > 0.

Finally, the controller obtained from (3.30), vr = u = g−1[Jduo∂oHd − fu], using (4.27),
(4.28), (4.29) and (4.30), is

u = (ωs − ω)LsrJ2is + ((ωs − ω)LrJ2 + RrI2)ir − kJ2(is − ids). (4.31)

Let us recover the desired closed-loop Hamiltonian system. From equation (3.31),

fo = (Jdoo − Rdoo)∂oHd − JT
duo∂uHd
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with (4.27), (4.28) and (4.30) one gets

−(ωsLsJ2 + RsI2)(is − ids) − ωsLsrJ2(ir − i∗r) = (Jdoo − Rdoo)(is − ids) − kJ2∂uHd

which implies

Jdoo − Rdoo = −(ωsLsJ2 + RsI2),

and

∂uHd =
1

k
ωsLsr(ir − i∗r).

Notice that the proposed method (see subsection 3.4.3) takes Jduu−Rduu = 0 and Rduo = 0,
so the closed-loop dynamics has the following form

Lẋ =

[
−(ωsLsJ2 + RsI2) −kJ2

−kJ2 O2

]

∂Hd

with the Hamiltonian function

Hd(x) =
1

2
(is − ids)

T (is − ids) +
1

2k
ωsLsr(ir − i∗r)

T (ir − i∗r)

or, in a compact form, defining (̃·) as the error, (̃·) = (·) − (·)∗.,

Hd(x) =
1

2
x̃T Px̃

where

P =

[
I2 O2

O2
1
k
ωsLsrI2

]

.

We can also describe this system with Hamiltonian variables λ = Lx

λ̇ =

[
−(ωsLsJ2 + RsI2) −kJ2

−kJ2 O2

]

∂Hλd,

with the Hamiltonian function

Hλd =
1

2
λ̃T Pλλ̃,

where

Pλ = (L−1)T PL−1 =
1

µ2k

[
(L2

rk + L3
srωs)I2 −Lsr(Lrk + ωsLsLsr)I2

−Lsr(Lrk + ωsLsLsr)I2 Lsr(Lsrk + L2
sωs)I2

]

.

Adding an integral term

Adding an integral term is required to assure some robustness properties in front of rotor
parameters variations (as, for instance, the resistor variations with temperature) or external
perturbations. The new control law, vri, has the form

vri = vr + kiJ2

∫

ĩsdt (4.32)

where vr is the controller obtained in the previous Section, and ki > 0 is the integral
control gain. Stability proof (including the integral term) is presented in [14]. Notice that
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the controller is, in fact, a feedback linearization term and a PI controller. In contrast to
standard practice, the PI is defined with a J2 skew-symmetric matrix.

To carry out the stability analysis, we find it convenient to express the closed–loop
system in an alternative form. Replacing (4.31) with (4.32) in (4.26), and using the definition
of equilibria, we can write the closed–loop system in error coordinates as

˙̃
λs = −(ωsLsJ2 + RsI2)̃is − ωsLsrJ2ĩr (4.33)

˙̃
λr = −kJ2ĩs + kiJ2

∫

ĩsdt. (4.34)

Now, using the relation between fluxes and currents, λ = Li (see subsection 1.2.3),

ĩr =
1

Lr
(λ̃r − Lsr ĩs)

we get

˙̃
λs = Ls

˙̃is + Lsr
˙̃ir

= Ls
˙̃is +

Lsr

Lr
(
˙̃
λr − Lsr

˙̃is).

Replacing the last two equations in (4.33), differentiating and using (4.34) we can write the
electrical dynamics in the equivalent form

D(p)̃is = 0, (4.35)

with the polynomial matrix, in the derivative operator p = d
dt

,

D(p) = p3I2 + (c1I2 + c2J2)p
2 + (c3I2 + c4J2)p + c5I2,

and the parameters

c1 =
RsLr

µ
, c2 = ωs −

Lsr

µ
k, c3 =

ωsLsr

µ
k, c4 = −Lsr

µ
ki, c5 =

ωsLsr

µ
ki.

Equation (4.35) describes a linear system of order six whose stability is determined by the
characteristic polynomial detD(s), with s ∈ C the Laplace transform variable. Although the
study of this (sixth–order) polynomial can be carried out with classical tools, e.g., Routh–
Hurwitz criterion, this procedure yields complex parameter relations that complicate the
choice of the PI gains. These results are contained in the following proposition, whose proof
is given in [14].

Proposition 4.5. Consider the electrical part of the DFIM system described in Section
2.5, (4.26), in closed–loop with the control (4.32).

P1. If ki = 0, for all k > 0, the electrical coordinates converge to their desired values,
while the speed is bounded and also converges to a constant value.

P2. There exists kM
i > 0 such that, for all ki ∈ (0, kM

i ] and all k > 0, the electrical
coordinates converge to their desired values, while the speed is bounded and also
converges to a constant value.
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Outer-loop speed control

As explained in the previous sections, the isq value corresponds to the reactive power of the
stator side of the machine, so the i∗sq value is assigned according to the desired power factor
of the DFIM, while isd can be used to control the active power (delivered or consumed) by
the machine. In a drive application i∗sd is selected so that the target speed is reached. In
order to increase the performance and the robustness, an outer-loop speed controller with
a PI part is designed. Consider that the current controller is stable, then the mechanical
dynamics (see subsection 1.2.3)

Jmω̇ = Lsri
T
s J2ir − Brω − τL

can be stabilized by means of

i∗sd =
1

Lsri∗rq

(

Lsri
∗
sqi

∗
rd − Brω

∗ − τL + kωp(ω − ω∗) + kωi

∫

(ω − ω∗)dt

)

(4.36)

yielding the closed–loop behaviour

Jω̇ = −Br(ω − ω∗) − kωp(ω − ω∗) − kωi

∫

(ω − ω∗)dt.

Notice that in a practical implementation this controller could be simplified to a simple PI
controller by combining the system dissipation with the proportional part.

Simulations

Numerical simulations are run to validate the controller. The DFIM parameter values are
(in SI units): Lsr = 0.01, Lr = Ls = 0.011, Rs = 0.01, Rr = 0.01, Jm = 0.001, Br = 0.005,
τL = −1, vs = [310.27, 0]T and ωs = 2π50. In the control law the parameters are changed
in order to verify the robustness, and the gain parameters are fixed as k = 1, ki = 1,
kωp = 0.05 and kωi = 0.02.

The simulation starts with a desired mechanical speed ω∗ = 320rad·s−1, and at t = 1s
the desired value is changed to ω∗ = 350rad·s−1; again, at t = 2s the external torque changes
to τL = −1.3N·m. In both cases the desired q-stator current is fixed at i∗sq = 0 to obtain a
good power factor in the stator side.

Figure 4.15 shows the behavior of the mechanical speed. The transient can be tuned
by means of the control gain of (4.36) and the integral term drives the mechanical speed
to the desired value even, in the presence of the external perturbation (at t = 2s). Figures
4.16 and 4.17 show the behaviour of the stator currents. It can be seen that the electrical
subsystem is indeed faster than the mechanical one, and the hypothesis toked account in
the outer–loop design Section is true. Notice that the reference of isd is varying according
to the regulation speed and also due to the integral action of the outer control-loop.

4.1.5 Comparison of the controllers. Simulations

This subsection is a summary of the whole section, with the pros and cons of the proposed
control laws as deduced from the simulations. Obviously, this kind of comparison is not
intended as a contest to select the best overall controller, but it can help to clarify the
differences between them.
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Figure 4.15: Simulation results, Robust Controller: Angular speed under uncertain param-
eters.
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Figure 4.17: Simulation results, Robust Controller: Detail of the dq-stator currents tran-
sient.

Let us comment the simulation results. The DFIM parameters are (in SI units): Lsr =
0.71, Ls = 0.725, Lr = 0.715, Rs = 4.92, Rr = 4.42, Jm = 0.00512, Br = 0.005 and
τL = ±3.72 and the grid parameters are vs = [310.27, 0]T and ωs = 2π50. The control
parameters are summarized in Table 4.1.

Algorithm Control Parameters

Vector Control, (4.7, 4.8) Kp = 5, Ki = 15, Kωp = 10, Kωi = 1

IDA-PBC, (4.16) r = 100

SIDA-PBC, (4.25) ks = 50, kr = 50, kω = 5

Robust IDA-PBC, (4.31,4.32,4.36) k = 10, ki = 1, kωp = 4, kωi = 100

Table 4.1: Simulation parameter values of the proposed controllers for the DFIM.

Simulations are split in two parts: a motor and a generator mode. The motor mode
starts for t = 0s at ω(0) = 305rad·s−1, with a desired speed ωd = 320rad·s−1, and at t = 1.5s
the target mechanical speed is reduced to to ωd = 305rad·s−1. For the generator mode a
similar scenario is simulated. Coming from the last state of the motor mode, at t = 3s, the
desired active power supplied from the DFIM is set to P d

s = −750W, and at t = 4.5s the
active power is changed to P d

s = −650W. In both cases the desired reactive power is zero,
i.e. the stator voltages and currents must be in phase (or in opposite phase).

2The sign of τL depends on the mode; it is positive for the motor mode and negative for the generator
one, i.e. it acts as a load or as a drive, respectively.
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Figure 4.18: Simulation results, comparison: mechanical speed ω for a motor mode.

Figures from 4.18 to 4.23 show the behaviour of the DFIM with different controllers.
When the DFIM acts as a motor, the controlled outputs are the mechanical speed ω (Figures
4.18 and 4.19) and the power factor (Figure 4.20). In both cases all the proposed controllers
achieve the goals but the transient is slower for the IDA-PBC controller (clearly associated
to the cascaded control structure).

For the generator mode, the controlled outputs are the active power delivered by the
DFIM Ps (Figures 4.21 and 4.22), and also the power factor (Figure 4.23). The worst behav-
ior corresponds to the Vector Control technique. Notice that this is the unique methodology
which does not use the stator current is as feedback (the power objectives are expressed,
with some assumptions, in terms of rotor currents). The power factor objective is achieved
for all the controllers.

As mentioned above, the main problem of the implementation of IDA-based controllers
is the robustness. To illustrate this drawback, the simulations of Figures 4.24 to 4.26
show the behaviour (in a motor mode) of the proposed controllers under a variation of the
10% of the values of dissipation parameters which enter into computation of the controller
(Rs = 4.428Ω, Rr = 3.978Ω and Br = 0.0045N·m·rad−1s−1).

Clearly the worst controller under uncertain parameters is the classic IDA-PBC. It
is surprising the good behavior of the SIDA-PBC controller, for which, even without an
integral term to correct the error, the steady state is close to the desired fixed point. Finally,
both the Vector Control and our robust controller achieve the mechanical regulation.

Summing up, we have the following:

• Vector Control

– Pros: Robustness and fast transient response.
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Figure 4.19: Simulation results, comparison: detail of the mechanical speed ω for a motor
mode.
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Figure 4.21: Simulation results, comparison: active power Ps for a generator mode.
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Figure 4.22: Simulation results, comparison: detail of the active power Ps for a generator
mode.
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Figure 4.23: Simulation results, comparison: A-stator voltage and current (Vsa, isa) during
a generator mode.
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Figure 4.24: Simulation results, comparison: mechanical speed ω under uncertain parame-
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Figure 4.25: Simulation results, comparison: error of the mechanical speed ω − ωd under
uncertain parameters.
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Figure 4.26: Simulation results, comparison: A-stator voltage and current (Vsa, isa) under
uncertain parameters.
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– Cons: No global stability proved, estimation of the stator flux required, stator
power is expressed in rotor current terms.

• IDA-PBC

– Pros: Stability proved using cascaded properties and all control variables are
directly measured.

– Cons: No robustness and slow mechanical transient response.

• SIDA-PBC

– Pros: Stability proved with a global Lyapunov function, fast transient response
to the mechanical variables, and all the control variables are measurable.

– Cons: No robustness.

• Robust IDA-PBC

– Pros: Stability proved for the electrical part, fast transient response to the me-
chanical variables and all the control variables are measurable.

– Cons: No stability proved for the outer-loop.

For all these reasons, the controller that is chosen in this thesis for the experimental
implementation is the one we have called ”Robust”.

4.2 Control of the back-to-back converter

In this section an IDA-PBC controller for the back-to-back converter is presented. As
explained in Section 1.3, the B2B is made of a full-bridge rectifier (which controls the
DC link voltage) and a three-phase inverter (which generates a PWM voltage to feed the
DFIM rotor side). For control purposes, only the rectifier subsystem is considered, while
the inverter acts as an static interconnection with a load or current source. Notice that the
DFIM can act also as a current source depending on the operation state.

An important requirement is the ability to handle a bidirectional power flow, due that
power can flow in both directions through the back-to-back (rectifier+inversor) converter
connected to the DFIM rotor. Since the aim of the control scheme is to keep the intermediate
DC-bus to a constant voltage, the rectifier’s load current can have any sign (although it can
be supposed to be, approximately, piecewise-constant in time).

Traditional control strategies establish two loops in a cascade structure: a line current
inner loop for power factor compensation and an output voltage outer loop for voltage
regulation. Then the control of each loop can be done linearizing around an operation
point with PI controllers, or using feedback linearization [53], or Sliding Mode Control
[43][59].

A simple zero dynamics study shows that, depending on the power flow direction, the
power converter could be unstable for certain outputs. This fact advises against the use
of the typical variables as outputs (inductor current and capacitor voltage) and requires a
different control method to avoid instability for a bidirectional use of the power converter.
It should be noticed that standard output regulation procedures to solve the bidirectional
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case cannot be applied, since, no matter which output is chosen (for example in a boost
converter, either capacitor voltage or inductor current) the zero dynamics is unstable for
one of the two modes of operation (see also [81]).

To avoid this problem passive techniques can be applied to design a controller able to
operate in both cases. In particular, the IDA-PBC methodology was used in [39], or an
adaptive scheme proposed in [33].

This Section presents a zero dynamics study of a DC-DC boost converter in order to
investigate the stability for both power flow directions. This simpler power converter is
studied instead of the full-bridge rectifier because the assumption of a sinusoidal voltage
source implies the discussion of a class A, 2nd type, Abel ODE, which has no explicit
analytical solution.

After this discussion, applying the IDA-PBC technique and a GSSA model (see Section
2.4), a control law for a full-bridge rectifier is obtained and simulated.

4.2.1 Zero dynamics of a full-bridge rectifier

The full-bridge rectifier has been presented in subsection 1.3.1. The averaged model of the
power converter is described by

L
di

dt
= −SvDC − ri + vi

C
dvDC

dt
= Si − iDC

where now S takes values in a continuum set S ∈ [−1, 1]. As said before vi is an AC voltage
source and the system can be rewritten as

L
di

dt
= −S(t)vDC(t) − ri(t) + E sin(ωst)

C
dvDC

dt
= S(t)i(t) − iDC (4.37)

where E is the amplitude of the AC voltage and ωs is its frequency (typically the grid
frequency).

Notice that iDC is considered constant, but to achieve bidirectionality no assumption
is made on its sign, i.e. il ∈ R. Notice that iDC is considered constant, but in order to
get a bidirectional power flow no assumption is made on its sign, i.e. il ∈ R. The zero
dynamics studies the behaviour of the internal variables assuming that the control objective
is achieved. We will first study the zero dynamics taking the inductor current i as output
and after that the zero dynamics when the control goal is the the capacitor voltage V .

Current-output Analysis

As mentioned before, the inductor current control specification is

i(t) = Id sin(ωst) (4.38)

for an appropriate Id. Replacing (4.38) into the dynamical equations (4.37) we obtain the
control law, S = u(t)

u(t) =
(E − rId) sin(ωst) − ωsLId cos(ωst)

vDC(t)
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and the remaining dynamics of the dc bus voltage

dV

dt
=

(E − rId)Id sin2(ωst) − ωsLI2
d sin(ωst) cos(ωst) − vDC(t)iDC

CvDC(t)
. (4.39)

The zero dynamics is the solution of the previous differential equation (4.39), which can be
written in a simple form as

dV

dt
= − 1

C
iDC +

g(t)

vDC
,

where g is a function on time. This equation is a class A, 2nd type, Abel ODE, for which
numerical simulations show the existence of unstable solutions when iDC < 0; Abel equa-
tions are known to appear in tracking problems for power converters [35]. Notice that this

differs from the case with a resistive load [43], iDC = iDC(t) = vDC(t)
R

, for which the solution
is a stable Bernoulli ODE.

Voltage-output Analysis

Now we set vDC = vd
DC and, using (4.37), the control law is obtained as

u(t) =
iDC

i(t)
.

The remaining equation for the inductor current is then

di

dt
=

−ri(t)2 + i(t)E sin(ωst) − iDCvd
DC

Li(t)
.

This equation is, again, a class A, 2nd type, Abel ODE and, again, numerical simulations
show the instability of their solutions, but now for iDC > 0.

4.2.2 Zero dynamics of a boost converter

In order to better understand the unstable behaviour of the full-bridge rectifier, we study a
similar but simpler converter, namely the dc-dc boost shown in Figure 4.27, for which the
control goal is to regulate V to a desired value Vd, taking E as a constant input voltage.

The dynamical equations of the dc-dc boost converter are

L
di

dt
= −ri − uV + E

C
dV

dt
= ui − il (4.40)

where i is the inductor current, V the capacitor voltage, L > 0 is the inductance, C > 0 is
the capacitance, r > 0 describes the inductor losses, E > 0 is the input voltage, il is the
load port current (notice that if the port is connected to a dissipative load one has il > 0
and if it is connected to a source il < 0) and u is the control action.
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Figure 4.27: DC-DC boost power converter.

Voltage-output Analysis

The main goal of the dc-dc boost is to regulate the V voltage to a desired value Vd. The
zero-dynamics gives the system behavior when the control objective is achieved. From
(4.40), the equilibrium points for a desired output V = Vd correspond to current values
given by

i∗ =
E ±

√

E2 − 4rVdil
2r

,

where
E2 − 4rVdil > 0

is assumed. From (4.40), with V = Vd and V̇ = 0, the current dynamics is

di

dt
=

−ri2 + iE + ilVd

Li
.

This dynamics will be (linearly) stable as long as the partial derivative of the right-hand
side with respect to i evaluated at i∗ is negative; thus, the stability depends on the value of
the equilibrium point i∗ and of il. Figure 4.28 describes the stability of several equilibrium
points, depending on the values of il and i∗. We can observe that for a il > 0 one of
the two equilibrium points is unstable (this fact recovers the results given in [81]), and
furthermore this equilibrium point turns out to be the most suitable because it corresponds
to the smallest inductor current i. On the other hand, for il < 0 both equilibrium points
are stable.

Current-output Analysis

For an output-current analysis, the zero-dynamics is obtained by setting i = i∗ and di
dt

= 0.
The remaining dynamics is

dV

dt
=

Vdil
CV

− il
C

.

Computing the derivative of the right-hand side with respect to V at V = Vd yields

− il
VdC

,

and hence the equilibrium point is stable (unstable) if il > 0 (il < 0); see Figure 4.29.
The obtained results are similar to those in [81], but here we have extended the study

to a bidirectional power flow. Summing up, for the dc-dc boost converter no single output
yields a stable zero dynamics for power flowing both ways. This analysis lends weight to
the hypothesis that a similar result holds for the more complex full-bridge rectifier, and this
is confirmed by numerical simulations.
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4.2.3 IDA-PBC for an ac-dc boost rectifier

Since for a single phase system the dq-transformation can not be applied we use the GSSA
theory. Form the control model obtained in Section 2.4 an IDA-PBC controller is designed.
Let us remind the control objectives,

• the DC value of vDC voltage should be equal to a desired constant vd
DC , and

• the power factor of the converter should be equal to one. This means that the inductor
current should be i = LId sin(ωst), where Id is an appropriate value to achieve the
first objective via energy balance.

As discussed in the previous Chapter, this model differs from [39] in the −iDC

√
2x1 term,

that now is included in the g matrix. This change is instrumental in achieving a bidirectional
power flow capability, since in [39] iDC

√
2x1 was included in the dissipation matrix, for which

iDC ≥ 0 was necessary.
The control objectives for the rectifier are a DC value of the output voltage, vDC = 1

C
q,

equal to a desired point, vd
DC , which in GSSA variables translates to

x∗
1 =

1

2
C2(vd

DC)2,

and a power factor on the AC side equal to one, which in our truncated GSSA variables
can be expressed as x∗

2 = 0. To obtain the x∗
3 equilibrium point, we compute the derivative

of the Hamiltonian function (2.35),

Ḣ =
1

C
ẋ1 +

2

L
ẋ2x2 +

2

L
ẋ3x3,

which, using the dynamical equations (2.34), is

Ḣ = − 1

C
iDC

√
2x1 +

2

L
ẋ2x2 +

2

L
ẋ3x3, (4.41)

In the equilibrium point Ḣ = 0, and taking into account that x∗
2 = 0 and

√
2x∗

1

C
= vd

DC ,

x∗
3 =

−EL
2r

+

√
(

EL
2r

)2 − 2L2

r
iDCvd

DC

2
,

where we have chosen for x∗
3 the solution with the smallest magnitude.

The central idea of Interconnection and Damping Assignment-Passivity Based Control
(IDA-PBC) [66] is to assign to the closed-loop a desired energy function via the modifi-
cation of the interconnection and dissipation matrices. The desired target dynamics is a
Hamiltonian system of the form

ẋ = (Jd − Rd)(∂Hd)
T

where Hd(x) is the new total energy and Jd = −JT
d , Rd = RT

d ≥ 0, are the new interconnec-
tion and damping matrices, respectively. To achieve stabilization of the desired equilibrium
point we impose x∗ = arg minHd(x). The matching objective is achieved if and only if the
following PDE

(J − R)(∂H)T + g = (Jd − Rd)(∂Hd)
T (4.42)
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is satisfied, where Hd(x) = H(x)+Ha(x), Jd = J +Ja, Rd = R+Ra, and we have redefined
g = g1(x1)iDC + g2E, where g1(x1) = (−

√
2x1, 0, 0)T and g2 = (0, 0,−1/2)T .

Fixing the interconnection and damping matrices as Jd = J and Rd = R, equation
(4.42) simplifies to

−(J − R)(∂Ha)
T + g = 0,

and, defining k(x) = (k1, k2, k3)
T = (∂Ha)

T , one gets

0 = u1k2 + u2k3 − iDC

√
2x1 (4.43)

0 = −u1k1 +
r

2
k2 −

ωsL

2
k3 (4.44)

0 = −u2k1 +
ωsL

2
k2 +

r

2
k3 −

E

2
. (4.45)

Equations (4.44) and (4.45) can be solved for the controls,

u1 =
rk2 − ωsLk3

2k1
(4.46)

u2 =
ωsLk2 + rk3 − E

2k1
, (4.47)

and replacing (4.46) and (4.47) in (4.43) the following PDE is obtained:

r(k2
2 + k2

3) − Ek3 − 2iDC

√
2x1k1 = 0. (4.48)

If one is interested in control inputs u1 and u2 which only depend on x1, one can take k1 =
k1(x1), k2 = k2(x1) and k3 = k3(x1), and consequently, using the integrability condition

∂ki

∂xj
(x) =

∂kj

∂xi
(x)

one gets that k2 = a2 and k3 = a3 are constants. Then, from (4.48),

k1 =
1

2iDC

√
2x1

(
r
(
a2

2 + a2
3

)
− Ea3

)
. (4.49)

The equilibrium condition

∂Hd|x=x∗ = (∂H + ∂Ha)|x=x∗ = 0

is

1

C
+ k1(x

∗
1) = 0 (4.50)

2

L
x∗

2 + a2 = 0

2

L
x∗

3 + a3 = 0

and, since x∗
2 = 0, one obtains a2 = 0 and a3 = − 2

L
x∗

3. Substituting these values of a2 and
a3 in (4.49) yields

k1 = − 1

C

√

x∗
1

x1
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which satisfies the equilibrium condition (4.50). One can now solve the PDE (4.48) and
find Ha

Ha = −2
√

x∗
1

C

√
x1 −

2

L
x∗

3x3,

from which

Hd =
1

C
x1 +

1

L
x2

2 +
1

L
x2

3 −
2
√

x∗
1

C

√
x1 −

2

L
x∗

3x3. (4.51)

In order to guarantee that Hd has a minimum at x = x∗, the Hessian of Hd has to obey

∂2Hd

∂x2

∣
∣
∣
∣
x=x∗

> 0.

From (4.51)

∂2Hd

∂x2

∣
∣
∣
∣
x=x∗

=






1

2C
√

x∗

1

0 0

0 2
L

0
0 0 2

L




 ,

which is always positive definite, so the minimum condition is satisfied. Substituting ev-
erything in (4.46), (4.47), and taking into account that the equation satisfied by x∗

3 can be
written as

2r

L
x∗

3 + E = − L

x∗
3

iDCvDC ,

the control law can be expressed in terms of the output voltage vDC as

u1 = −ωsCx∗
3vDC

vd
DC

(4.52)

u2 = −CLiDCvDC

2x∗
3

. (4.53)

Writing (4.52) and (4.53) in real coordinates, using the inverse GSSA transformation

v = 2 (u1 cos(ωst) − u2 sin(ωst)) ,

and taking into account that v = −S
√

2x1, the control action simplifies finally to

S =
2ωsx

∗
3

vd
DC

cos(ωst) −
LiDC

x∗
3

sin(ωst).

Simulations

In this section we implement a numerical simulation of the IDA-PBC controller for a full-
bridge rectifier. We use the following parameters: r = 0.1Ω, L = 1mH, C = 4500µF,
ωs = 2π50rad s−1 and E = 68.16V. The desired voltage is fixed at vd

DC = 150V, and the
load current varies from iDC = −1A to iDC = 3A at t = 1s. Figure 4.30 shows the bus
voltage vDC . It starts at vDC = 140V and then goes to the desired value, for different load
current values. The small static error corresponds to the non-considered harmonics in the
control design using GSSA. AC voltage and current are depicted in Figure 4.31. Notice that
when iDC > 0 (for t < 1), current i is in phase with voltage vi and power flows to the load;
when iDC < 0 (for t > 1), i is in opposite phase with vi and power flows from the load to
the AC main. Finally, Figure 4.32 shows that the control action S remains in [−1, 1], which
allows its discrete experimental implementation using a PWM scheme.
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Figure 4.32: Simulation results: control action S remains in [−1, 1].

4.3 Control of the Flywheel Energy Storage System

In this Section some simulations of the Flywheel Energy Storage System are presented, using
the controllers designed for the DFIM and the B2B. In particular, the DFIM is controlled by
the so-called robust IDA-PBC method, with the outer-loop and the integral term designed
in subsection 4.1.4. The complete system is simulated in order to check whether the policy
management described in Section 1.4 is achieved.

Table 4.2 shows the parameter values used in this simulation. A three-phase network
is considered (effective voltage Vf = 380V and frequency f = 50Hz or ωs = 2π50). The
maximal power delivered by the network is set to PMAX

n = 2000W, and the load is connected
at t = 1s and disconnected at t = 2s.

Parameters (in SI units)

DFIM Lsr = 0.71, Ls = 0.725, Lr = 0.715, Rs = 4.92, Rr = 4.42
Jm = 0.11512, Br = 0.005

B2B r = 0.5, L = 0.001, C = 0.0045, vi = 68.16 sin(ωst)

Local Load Rload = 50, Lload = 0.005

Table 4.2: Simulation parameter values (in SI units) for the DFIM coupled to a flywheel
and the B2B.

Figures 4.33 and 4.34 show the evolution of the relevant output quantities of the system.
The active power delivered by the network is kept under its maximal value even when the
power required by the local load is higher, Figure 4.33. Notice that, at the same time, the
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Figure 4.33: Simulation results: Network and load active powers (Pn and Pl), and mechan-
ical speed ω.

mechanical speed decreases (we are in the so-called generator mode). When the load is dis-
connected (at t = 2s), the system keeps the maximal active power to accelerate the flywheel,
until it reaches the optimum speed (storage mode). Finally, the system acts as a motor
to keep the system at its optimal speed (stand-by mode). Figure 4.34 shows the reactive
power compensation. Notice that the a-phase network voltage (Vna) and current (ina) are
in phase even if the load current (ila) is advanced in phase. Notice that neither generator
nor storage modes arrive to their respective fixed points; these modes work always in the
transient regime. In fact, the equilibrium points of both modes could be very undesirable
(the mechanical speed becomes negative for the generator mode or very high for the storage
one, for typical values of the system parameters and requirements). This problem , with
a complex mathematical description [29], can be solved computing the energy balance and
estimating the flywheel speed in function of the local load, the connection time and the
maximal power network.

Figure 4.35 shows the behavior of the DC-bus voltage V during this sequence of changes.
Its value remains close to the desired value V d = 150V. A small oscillation corresponding
to a second harmonic component of the grid frequency ωs appears due the dynamics of
the rectifier [43]. Notice that in the generator and storage modes the ripple amplitude
changes. This can be associated to the transient behavior of the modes and to the fact that
the oscillations are a function of the load current (the rotor currents in this case). As was
computed in Section 1.4, the rotor currents increase with the difference between the optimal
and the mechanical speed, so this ripple also increases. In any case, when the DFIM is at
steady-state (stand-by mode) the bus voltage remains at the desired value.

The remaining control goal for the rectifier is to allow a bidirectional power flow with
a high power factor. Figure 4.36, displaying the AC-source voltage vi and the current i of
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Figure 4.34: Simulation results: A-network voltage and current (Vna and ina) and A-load
current ila.
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Figure 4.36: Simulation results: AC-source voltage vi and current i.

the rectifier, shows that the objective is achieved.


