Appendix A

Electrical power definitions

In this Appendix we provide expressions for active and reactive electrical power, both for
three-phase and reduced dq systems.

A.1 Three—phase electrical power
Let us consider three-phase electrical (voltages and currents)
VI(t) = [va, v, ve],  TE(t) = [iq,ip, ic].
Assumption 1 All the signals are periodic with the same fundamental period T .

From the basic power definition, the instantaneous power of a system is

p(t) = VI(OI(1).

For periodical signals it is more useful to define the power as an averaged value.

Definition A.1. The inner product of two periodic signals f, g is defined as

T
()= Fa=7 [ refg)ar

Definition A.2. The active power, P, is defined as the electrical power (consumed or
delivered) by a system,
P:=(V,I)

or

1 T
P=— / VTTdt. (A1)
T Jo

Definition A.3. The rms value of a signal f, ||f||, is defined as

T
117 =5 [ 1) Par (A2)

where | - | is the Fuclidian norm.
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152 Appendix A - Electrical power definitions

Definition A.4. The apparent power, S, is defined as the potentially maximum active
power by a system,

S:= VI (A-3)

where || - || is the rms value.

From the Cauchy-Schwartz inequality
P=V.I) <[|V[[I]| =5

So S is indeed the highest average power delivered or consumed by the electrical system.

Definition A.5. The power factor PF can be defined as the ratio

P
PF = —
S’

which, from the above inequality, satisfy |FP| < 1.

The reactive power @) definition is not so straightforward. The most popular definition is,
for a three-phase system,

Q = vgiq sin(og) + vpip sin(¢p) + veie sin(o.)
where ¢ is the phase angle, and the following equality
S? = P? 4+ Q%
However, for a non-sinusoidal systems one has
S? > p? 4+ Q2.
Because of this the so-called distortion power D is introduced as
D?=5%_-p2_Q°

This last result does not assure the additivity property and complicates power balancing
studies (see [38] for extended discussion).

Definition A.6. The sinusoidal and balanced three phase system reactive power @ can
be defined as

Q = Ssin¢ (A.4)

where ¢ is the phase angle.

A.2 Power definitions in the dg-framework

In this Section, from the previous definitions and using the dg-transformation, the active
and apparent power are recalculated. Let us to recall the dg-transformation described in
subsection 1.2.3.
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A sinusoidal and balanced three-phase signal

f(t)=F [cos(a(t)), cos <a(t) - §7r> cos <a(t) + §7r>]T,

can be transformed into a three-phase constant vector fqqo (with the third component equal
to zero) by means of

Fago = Te2*O f (1), (A.5)
with
V21 1
V3 V6 V6
T=|0 <+ -1
EE
V3 V3 V3
and

GJ2olt) _ [ Cf)S(Oé(t)) —sin(a(t)) ] '
sin(a(t))  cos(af(t))

Notice that 77! = T7. In order to simplify the computation we neglect the third compo-
nent, and to redefine T as

V21

V3 V6 ]

0 1 _ 1
V2 V2

T:

=S
[=2)

Proposition A.7. The active power of a sinusoidal and balanced three-phase system
i a dg-coordinates is

Puq = igqvdq- (A.6)

Proof. From the definition of active power for a three-phase system (A.1),

1 T
P:/ vTrat,
T Jo

with the inverse of the dg-transformation (A.5), f = TTe*JQO‘(t)qu, we can write
1 /T
p=2 / ({5, OTTT e 0Oy, )
0

Since, TTT = I, and e~ 722 e20(t) = [, the active power yields

S -
P = T/O (ququ) dt,

which, integrating, we recover (A.6). O

Proposition A.8. The apparent power of a sinusoidal and balanced three-phase system
in dg-coordinates is

Sdq = |idg||vag|- (A7)
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Proof. From the definition of the rms value of a three-phase variable (A.2),

1 T
1P = 5 [ ik
T Jo
1 /T
= - / 1" 1dr.
T Jo
With the dg-transformation,
1 [T
I = = / i e OTT e~ "Wy, dr
0
1"
— T/ zngdda
0
Since 744 is a constant vector
I1N1* = iyidq = liag|*- (A.8)
Similarly, for V,
HV||2 = ug“quq = ]vdq\Z. (A.9)

Then, from the definition of apparent power for a three-phase system (A.3),
S =V,

with (A.8) and (A.9) we recover (A.7). O

Proposition A.9. The reactive power of a sinusoidal and balanced three-phase system
m a dg-coordinates is

Quq = tugJ2vVdg- (A.10)

Proof. From the definition of reactive power, (A.4), and tacking into account that the
angle 8 between two vectors, a and b, can be written as

1
|al[o]

sinfg = a® Job,

it follows that
qu = qu sin ¢a
and from (A.7)

. 1 ) .
Qg = |qu’|vdq|mﬁqt}2”dq = ZquJ2qu-
q q



Appendix B

Optimal speed for a doubly-fed
induction machine

In this Appendix we compute the stator and rotor powers (active and reactive), in function
of the two variables of control in motor mode (mechanical speed w and reactive stator power
Qs), of the doubly-fed induction machine, in order to find the optimal mechanical speed.

These computations are based on the equations of the equilibrium points of the DFIM,
presented in subsection 1.2.3,

wsLsJois + wsLgrJoiy + Rslois —vs = 0 (Bl)
(ws — w)[LSTJQ’iS + LTJQiT] + R Iyi, —v, = 0 (B.Q)
Lgpil Joip — Byw — 1, = 0. (B.3)

Besides, some basic properties of the skew-symmetric matrix Jo are used, namely

L= —J (B.4)
LT = - (B.5)
Jody = —Iy (B.6)
alJa = 0 (B.7)

where a € R2*1,

B.1 Previous calculus

To compute the rotor active and reactive powers we will use some nontrivial expressions
which we calculate before.

Stator currents: |i,|?

For the stator currents, is, we want to compute |is|2. Using the active and reactive power
definitions, (A.6) and (A.10),

Py = igqveq + isquq

Qs = isqud_isdvsm
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we can obtain the following equations

. 2 2
Uqus +vsaQs = Lsq (vsd + Usq)

.9 2
VsqPs — Uqus = st(vsd + Usq)
or, in compact form

1 P
s = ——(vegl sq - ° .
1 |U5‘2(vd2+vq 2)|:Q :|

s

From then,

) 1
s = 75

il? = 7 = o (P2 Q1) (5.5)

Rotor currents: |i,|?

Similarly, from the rotor currents, i,, we need |i,|?. From (B.1), using (B.4) and (B.6),

1
wsLsr

(JQ(US — Rsis) + wsLSIQis) . (B.g)

Uy = —

Now, from (B.9), and tacking into account (B.5)

1

2712
wsLsr

(Jvs|? + (R2 + W2L%)]is|* + 2Rsvlis)

’iT|2 = ZZZT = ssr

and, with (A.6), (A.10) and (B.8),

R2 2L2
|er‘2: <|U5|2+ s+ws sr

o (P24 Q%) + 2RSPS> . (B.10)

272
wsLsr

Computation of i’

To compute Q, we will need i!is. From (B.9)

T 1 . T -
iy = — 7 (=l = Rgil)Jo + wsLsil) i
Wsligr

and simplifying with (B.7), we obtain,

1

Tyt - 12
—vy J: L .
Ly (el

is = —

Notice that Qs = —v! Joig, and finally and from (B.8),

T 1 L
Z?:ZS = - Qs >

- P? +Q?). B.11
wsLgy ‘US‘QLST( 3 QS) ( )
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Stator active power: P
Finally, we will compute the stator active power, P;. From (A.6)
P, = igvs.
and replacing v from (B.1),
Py = wiLgyiy Joiy + Rlis|,

with (B.8) and (B.3)

1
S

This is a quadratic equation for Ps with two solutions

N |U5|2 + \/|US|4 — 4|vs|Pws(Brw 4 71) + Qg
S — .
2

Since we are interested in the minimum power case we select

_ |US‘2 - \/|US|4 — 4|vs|?ws(Brw + 71) + Q2

P
2

(B.13)

B.2 Rotor active power: P.
From the definition of active power in dg-coordinates, (A.6),
P. = ifvr.
Replacing v, from (B.2), and using (B.7)
P, = (ws — w)(Byw + 11) + R, i |2
Finally, from (B.10)

R R? +w2L?
Pr:(wS_W)(Brw“‘TL)“‘ 4 (‘USQ“‘SSST

—r p? 2) L 2R, P B.14
21 R T +eRE ), B0

where Ps is computed as in (B.13). This is a complicated expression. However, the second
term is small for usual parameter and variable values. So, P, is small near w = ws.

Figure B.1 plots function (B.14) with the DFIM parameters of the experimental machine
(see Chapter 5, where ws = 314rad-s~!). Notice that this function is smooth near w = ws.
Figure B.2 is for Q5 = 0, it is also clear that for w = wy the rotor active power is small.

B.3 Rotor reactive power, (),
From the dg-definition of reactive power (A.10),

Q.= i,:,Fngr
replacing v, from (B.2),

Qr = iZJ2((ws - w)LSTJ2iS + (Ws - W)LTJZir + RTIQiT)y
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Pr

Figure B.1: Rotor active power, P,, depending on Qs and w.
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Figure B.2: Rotor active power, P,, with Qs = 0.
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Figure B.3: Rotor reactive power, @Q,, depending on Q)5 and w.

with (B.6) and (B.7)
Qr = —(ws — w)(Lgpilis + Lyliy]?).

Finally from (B.10) and (B.11)

1 L
Qr = _(Ws _W) <_st8 - ’05’2

L R? + w22
w2£2 <|v8|2 T v ’; Q)+ 2RSPS>> ’
S ST S

(P2 +Q2)
+

which can be simplified to

1 L, s 1 L, R? 9 o 2L.Rs
Q== (G0 ol - (b 2o G @) - )
(B.15)
where Pj is (B.13). It is clear that for w = ws the reactive power consumed (or delivered)
by the rotor is zero.

Function (B.15) is depicted in Figure B.3 for the DFIM parameters of Chapter 5. As
expected @, = 0 for w = ws. To better understand its dependence on w, the same function
is plotted for s = 0 in Figure B.4. Notice that there is a large value of w for which @, = 0.
Nevertheless, as is depicted in Figure B.5, near w = wg both active and reactive rotor powers
are close to zero.
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Figure B.4: Rotor reactive power, @.., with Qs = 0.
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Figure B.5: Rotor active and reactive powers, P, and @Q,, with Qs = 0.



List of Notations

This is a partial list of symbols. We have tried to make it as completed as possible, and we
think that it defines a map from left to right (but it is certainly not one-to-one...).

B mechanical damping
C capacitance
H energy or Hamiltonian function
I current electrical variable, (single-phase or three-phase)
L P identity matrix 2 x 2
L3 identity matrix 3 x 3
e interconnection matrix
Jo skew-symmetric matrix 2 x 2
A rotor inertia
7 PP inductance, inductance matrix
O zero matrix 2 x 2
P active electrical power
Qe reactive electrical power
R dissipation matrix
Ry resistance
Vo voltage electrical variable, (single-phase or three-phase)
/72 impedance
A three-phase inductor fluxes
COSQP i power factor for a three-phase sinusoidal and balanced system
X AP dg-transformation arbitrary angle
L/ arbitrary angle
5 inductor flux, (single-phase or two-phase)
L inductance matrix in dq coordinates
T e external torque
e electrical torque
0
e
f
9
7
v
w

—
~

...................................................... rotor angular position

............................................................ electrical current
............................................................ electrical voltage
........................................................... mechanical speed
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162 List of Notations

Subscripts

() fixed point
() desired fixed point
() DO direct current electrical variable
() desired matrices or functions
(e electrical
(L local load
() mechanical
(Dm power network
() rotor side of the DFIM
(;)s ..................................................... stator side of the DFIM
(1) estimated
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