HIGH PERFORMANCE INSTRUCTION
FETCH USING SOFTWARE AND
HARDWARE CO-DESIGN

Alex Ramirez

Department of Computer Architecture
Universitat Politecnica de Catalunya (UPC)
Barcelona, Spain. April 2002

A thesis submitted in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

(©2002 - Alex Ramirez

All rights reserved.

Thesis advisors Author
Josep L. Larriba-Pey and Mateo Valero Alex Ramirez

High performanceinstruction fetch using
softwar e and har dware co-design

Abstract

The design of higher performance processors has been following two major trends: increasing
the pipeline depth to allow faster clock rates, and widening the pipeline to allow parallel execution
of more instructions. Designing a higher-performance processor implies balancing all the pipeline
stages to ensure that overall performance is not dominated by any of them. This means that a faster
execution engine also requires a faster fetch engine, to ensure that it is possible to read and decode
enough instructions to keep the pipeline full, and the functional units busy.

This thesis explores the challenges faced by the design of the instruction fetch engine from a
dual perspective: design a better software for the existing fetch architectures, and design a better
hardware for the newly constructed software.

Our approach to the design of a better software has been the proposal of a novel code layout
algorithm which targets both the instruction cache performance and the effective fetch width.
Based on the analysis of the behavior of these optimized codes, we also propose a modification
to the trace cache mechanism to make a more efficient use of the available storage space, and a
novel branch predictor which exploits the available profile information to obtain higher prediction
accuracy.

Finally, we propose a novel fetch architecture designed to exploit the special characteristics of
optimized codes. The proposed fetch engine has low cost and complexity, but provides very high
fetch performance.

To my mother, who wanted me to get the best education.
| hope you can see this from where you are.

Acknowledgments

To Josep L. Larriba-Pey who took me into this PhD adventure without giving me a chance to
think about other options, for which I thank him.

To Mateo Valero who provided energy and tons of technical discussions on endless subjects
which could not be fully developed to be included here.

To Luiz Barroso, Kourosh Gharachorloo, Robert Cohn, Geoff Lawney, and the whole Western
Research Lab team, for hosting me for two consecutive summers, for the chance to work with
them, and for plenty of cakes.

To John Shen, Hong Wang, Ed Grochowsky, and the MRL teams in Santa Clara, Austin, and
Oregon, for bringing me in for an excellent summer which provided me a broader view of this
field, for their technical expertise, and for their friendship.

To Jesus Corbal, Dani Jimenez, Carlos Navarro, Daniel Ortega, Xavi Serrano, Josep Torrellas,
and all my fellow PBCs, who have all contributed significantly to this thesis. | could not have
gone this far without them.

To my sister Marta, and my girlfriend Alicia, who have endured this long path with me, pro-
viding support when it was most needed.

And to my advisors again, for this opportunity to work with such fine people.

Contents

ADSEract
Acknowledgments. L

I ntroduction

1.1 Motivation.
1.1.1 Superscalar processor architecture,
1.1.2 Objectives.
1.2 TheSISOVEIVIEW e e e e e e e
1.2.1 Compiler optimizations for improved fetch performance
1.2.2 Hardware modifications to exploit software characteristics
1.2.3 Exploiting layout optimizedcodes,
1.3 Documentstructure
State of the Art
2.1 Code layout optimizations
2.1.1 Basicblockchaining
2.1.2 Proceduresplitting
2.1.3 Proceduremapping
2.2 Processorarchitecture o
2.2.1 Pipelined processors
2.2.2 Superscalar proCessors
2.2.3 Wide superscalar processorso
2.3 CONCIUSIONS o
2.4 Historical context

Platform, Tools, and Benchmarks

3.1 Benchmarks
311 SPECINt9S. e
3.1.2 PostgreSQLand TPC-D
313 Oracleand TPC-B

3.2 Optimized code generation
3.21 Profilingtools.
3.22 Codeoptimizers e

3.3 Simulators
3.3.1 Fetchenginesimulation
3.3.2 The Simplescalartoolset
3.3.3 Branch predictor simulation

3.34 SIMOS . .. e
3.35 Realmachineruns
3.3.6 ldeal pipelinesimulator.
3.4 Finalremarks e

Software Trace Cache

4.1 Placementalgorithm
411 Seedselection.
4.1.2 Trace CONStruCtion e
413 Trace mapping

4.2 Performanceimpact
4.2.1 Impactontheinstructioncache
4.22 Impactonthefetchwidth
4.2.3 Impactonthe branch predictor
4.24 Overall performanceimpact

4.3 Conclusions

Selective Trace Storage

51 Introduction e

52 Tracecacheredundancy

5.3 Selective Trace Storage e

54 Evaluation
5.4.1 Realistic branch prediction
5.4.2 Perfect branch prediction

55 ConcClusions

The agbiasBranch Predictor

6.1 Introduction
6.2 Using profile data in dynamic prediction
6.2.1 Thegshare predictor
6.2.2 Theagreepredictor
6.2.3 Thebimode predictor
6.2.4 Thegskew predictor
6.2.5 Combining dynamic and static predictors
6.2.6 Theagbias predictor
6.3 Performanceevaluation
6.3.1 Prediction table interference
6.3.2 BHRfiltering
6.4 Conclusions e
Fetching Instruction Streams
7.1 Introduction e
7.2 Fetchinginstructionstreams
7.3 Performanceevaluation

7.4 Conclusions

59
59
60
60
62
63
64
69
72
79
83

85
85
86
88
88
88
92
94

8 Conclusions
Bibliography
List of Figures

List of Tables

123

127

135

139

