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Abstract

The design of higher performance processors has been following two major trends: increasing
the pipeline depth to allow faster clock rates, and widening the pipeline to allow parallel execution
of more instructions. Designing a higher-performance processor implies balancing all the pipeline
stages to ensure that overall performance is not dominated by any of them. This means that a faster
execution engine also requires a faster fetch engine, to ensure that it is possible to read and decode
enough instructions to keep the pipeline full, and the functional units busy.

This thesis explores the challenges faced by the design of the instruction fetch engine from a
dual perspective: design a better software for the existing fetch architectures, and design a better
hardware for the newly constructed software.

Our approach to the design of a better software has been the proposal of a novel code layout
algorithm which targets both the instruction cache performance and the effective fetch width.
Based on the analysis of the behavior of these optimized codes, we also propose a modification
to the trace cache mechanism to make a more efficient use of the available storage space, and a
novel branch predictor which exploits the available profile information to obtain higher prediction
accuracy.

Finally, we propose a novel fetch architecture designed to exploit the special characteristics of
optimized codes. The proposed fetch engine has low cost and complexity, but provides very high
fetch performance.
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