
��� ������� 	 
����
���

This chapter presents an overview of the thesis: the motivations behind our work, our objectives,
and a brief description of our contributions. We target a performance improvement in superscalar
processors by increasing the rate at which instructions can be provided to the processor execution
engine. That is, we target the fetch engine of superscalar processors.

In order to increase fetch performance we have used a combined software/hardware approach:
we first try to optimize existing applications to take full advantage of the present hardware; next
we make minor modifications to the hardware to avoid repeating at run-time what was done at
compile-time; finally, we analyze in detail the characteristics of optimized applications, and design
a fetch engine which fully exploits these characteristics.

1.1 Motivation

1.1.1 Superscalar processor architecture

Superscalar processors represent the major trend in high-performance processors in the last several
years [79]. These processors naturally evolve from pipelined architectures, and try to obtain higher
performance in two ways: first, by simultaneously executing several independent instructions in
parallel; second, by increasing the clock rate to speed up instruction execution.

When designing a high-performance processor, it is important to keep all parts of the proces-
sor balanced, avoiding bottlenecks whenever possible. For example, Figure 1.1 shows the typical
processor pipeline with 5 stages. If we design a high-performance processor capable of executing
five ALU operations at once, it is also important to ensure that we can feed the ALU stage, and re-
tire those instructions without stalling the pipeline. This means fetching and decoding at least five
instructions per cycle, to keep the ALU stage busy, and writing results and graduating instructions
at a fast enough rate.

13



14 Chapter 1: Introduction

Fe
tc

h

D
ec

od
e

A
L

U

M
em

or
y

W
ri

te
ba

ck

Figure 1.1. Example stages of instruction execution.

But the fetch stage does not behave like other pipeline stages in the sense that it can not be
widened by simply replicating it, or adding more functional units. Furthermore, it has to follow
the control path defined by branch instructions which have not been executed yet. The fetch stage
quickly evolved to include branch prediction, and used it to fetch instructions from speculative
execution paths.

This ability to follow speculative paths independently of the execution stages leads to a de-
coupled view of the processor, as shown in Figure 1.2. The fetch engine reads instructions from
memory, and places them in an instruction buffer following an speculative path indicated by the
branch prediction mechanism. Then, an execution engine reads instructions from the buffer and
generates the required results, providing feedback to the fetch engine regarding the actual outcome
of branch instructions.

Instruction
Fetch &
Decode

Instruction
Fetch &
Decode

Instruction
Execution
Instruction
Execution

Instruction Queue(s)

Branch /Jump outcome

Figure 1.2. Decoupled view of the processor: a fetch engine produces instructions, and an
execution engine consumes them.

An analysis of the decoupled view of a superscalar processor reveals that there are three main
factors in fetch performance, as shown in Figure 1.3: (1) memory latency: how long it takes
to read the instructions from memory, (2) fetch width: how many instructions we can transfer
each cycle, and (3) branch prediction accuracy: how many transferred instructions belong to
the wrong execution path.



Chapter 1: Introduction 15

���������	��

�����

����� � ��� �

� ���

� ��� ����� �����

 "! � �$# ���%�&�
� �&���

'

()

Figure 1.3. Fetch performance factors: memory latency, fetch width, and instruction quality.

The time it takes to load the required instructions from memory is computed together with the
time it takes to execute the instructions. If the memory latency is large, it can quickly become the
major component in the execution time. The main approach to reducing the memory latency is the
use of cache memories and prefetching schemes. Given the popularity of this approach, instead
of measuring instruction memory latency, we will measure the instruction cache miss rate.

As we mentioned earlier, the fetch engine can not be widened by simply replicating its func-
tional units. Fetching more than one instruction per cycle requires a completely new fetch ar-
chitecture, capable of selecting which instructions are to be fetched. This fetch architecture also
determines how many instructions can be fetched simultaneously. The ability to fetch multiple in-
structions in a single cycle becomes a more important fetch performance factor as the issue width
of the processor increases.

Finally, we must consider the presence of branch instructions which disrupt the flow of in-
structions through the pipeline. The problem arises when the outcome of a branch is not known
until several cycles after it has been fetched, but we need to continue fetching instructions from a
speculative path. By the time the branch has been resolved, several wrong path instructions may
have entered the pipeline, and may need to be squashed. The squashing of wrong path instructions
represents a wasted amount of fetch cycles, and directly affects fetch performance. The frequency
of this event mainly depends on the accuracy of the branch prediction mechanism.

This thesis does not discuss the fetch engine of VLIW and CISC processors. Although they
present interesting and hard to solve problems of their own, we concentrate instead on the fetch
engine of superscalar processors. Also, we concentrate on the description of the fetch architec-
tures only. Other elements found in the front-end engine of superscalar processors such as the
instruction decode and the rename logic stages have not been treated here.



16 Chapter 1: Introduction

1.1.2 Objectives

Given the importance of fetch performance in superscalar processors, we target an increase in the
rate at which useful instructions can be provided to the execution core.

However, we consider approaching fetch performance from a dual software/hardware perspec-
tive. We fist consider the use of compiler optimizations to adapt the existing applications to the
underlying fetch architecture. The software approach is attractive for two reasons: first, it has
a null hardware cost, it does not require additional transistors, and does not require additional
power; second, it provides performance improvements on already existing architectures.

Once we have obtained an optimized code which better exploits the underlying hardware, we
propose modifications to the different fetch architectures so that the work done by the software
optimized is not repeated again during run-time, saving resources, and further increasing perfor-
mance.

At the same time, we analyze in detail the characteristics of optimized codes, in order to
gain a clear understanding of how they improve performance. Using the results of this analysis,
we develop a new fetch architecture which fully exploits the unique characteristics of optimized
applications to obtain high fetch performance, at a minimum cost.

Thesis objective: we try to adapt the existing software to the underlying architecture, then we
re-adapt the architecture to the new software, and finally design a new fetch architecture taking
the best from both the software and the hardware approaches.

1.2 Thesis overview

In this section we provide a brief description of the topic we deal with in this thesis. We present
the problems we are trying to solve, the approach we take to solving the problem, and the novel
contributions of our work.

1.2.1 Compiler optimizations for improved fetch performance

In this topic we analyze in detail the instruction behavior of several applications, and examine the
source code of a database management application to understand its internal structure. Based on
the results of this analysis we conclude that these applications have characteristics which could be
exploited by the underlying fetch architecture, However, we find that they are oddly matched, and
that performance is not what could be expected.

The performance of an application with regard to the fetch engine is mainly determined by
its dynamic behavior, which we can not control, and by the mapping of instructions, which is
determined by the compiler. It is possible to optimized the performance of an application by
reordering the code so that it better suits the characteristics of the underlying fetch architecture.
Such is the target of code layout optimizations.

There has been much work done on code layout optimizations. However, the proposed op-
timizations targeted only specific elements in the fetch engine like the instruction cache [24, 32,
36, 59, 87], or the branch prediction mechanism [8]. They do not consider the fetch width as a
performance factor, because they targeted single issue pipelined processors, or narrow issue su-
perscalars (less that 4 instructions per cycle), where a single basic block of instructions is usually
wide enough. On wide issue superscalar processors (8 or more instructions per cycle), fetching
instructions from a single basic block is not enough, and the fetch width becomes a critical factor.



Chapter 1: Introduction 17

For this reason, we propose a novel code layout algorithm which targets all three performance
factors at the same time: instruction cache performance, branch prediction accuracy, and the fetch
width. We call out code layout algorithm the Software Trace Cache (STC).

We analyze in detail the impact of the STC and other layout optimizations on the three main
factors of fetch performance: instruction cache, fetch width, and branch prediction accuracy. Not
only we measure the performance improvements in each factor, but we analyze the reasons for
those improvements and provide insights on how optimized codes exercise the fetch architecture.

1.2.2 Hardware modifications to exploit software characteristics

After a detailed analysis of the interaction of the software trace cache with the hardware trace
cache we find that there is significant redundancy between both mechanisms, as they all do the
same task. The software trace cache joins basic blocks in traces at compile time, based on profile
data. The hardware trace cache joins basic blocks in traces at run time, based on the dynamic
execution paths encountered.

In order to avoid doing the same work both in the compiler and in the hardware, we propose a
simple filtering mechanism that completely avoids using hardware resources for those traces that
were built by the compiler. The use of this filter allows a more efficient implementation of the
trace cache, which reaches the same performance level at a lower implementation cost.

Also, we explore the possibilities of using the profile information that was collected to guide
the code layout optimization to improve the branch prediction mechanism. We analyze in detail
how the compiler can improve the branch prediction mechanism for some of the best proposed
branch predictors, and propose a novel branch predictor organization which requires extensive
compiler support, but provided higher prediction accuracy than any other branch predictor exam-
ined.

1.2.3 Exploiting layout optimized codes

From the analysis of the behavior of layout optimized codes we have gained a clear idea of the
unique characteristics of these codes: they contain a large proportion of not taken branches, and a
vast amounts of spatial locality.

Based on these characteristics, we define a new code structure, which we call stream: an
instruction stream is a sequence of sequential instructions going from the target of a taken branch,
to the next taken branch. The instruction stream is a much larger entity than a basic block, and has
a length comparable to that of an instruction trace is layout optimized codes. We design our fetch
engine around the concept of a stream, which unveils the fetch potential of optimized applications.

Our fetch architecture is based on the fact that there is little performance advantage in increas-
ing fetch performance beyond what the processor back-end can execute. For this reason, it is not
always necessary to use the highest performing architecture, if there is an alternative which pro-
vides high enough performance, but has a lower implementation cost, or uses less energy. Such
is the target of our stream front-end engine: to provide a high enough fetch performance at the
minimum cost.



18 Chapter 1: Introduction

1.3 Document structure

Figure 1.4 shows an overview of the thesis, from the problem we observed, to the different solu-
tions we proposed, leading to new problems or observations, which in turn opened the possibility
of new proposals.

The initial problem statement is superscalar processor performance, and in particular the fetch
performance of wide superscalar processors (from 8 to 16 issue pipelines). Our first approach to
increasing fetch performance is the use of code layout optimizations. In Chapter 4 we propose the
Software Trace Cache, a novel code placement algorithm which targets not only the instruction
cache performance, but also an increase in the effective fetch width.

Wide
superscalar

fetch

Software
Trace
Cache

Unexplained
performance

Optimized
code

analysis

Special
propertie

Redundant
resources

Selective
Trace

Storage

Under-
exploited

profile
Agbias

Instruction
streams

Ch. 4

Ch. 4

Ch. 5

Ch. 6

Ch. 7

Figure 1.4. Thesis overview: from the problems observed to the proposed solutions.

In addition to measuring the performance improvements obtained, we perform a detailed anal-
ysis of the behavior of layout optimized applications with regard to the three fetch performance
factors: memory latency, fetch width, and branch prediction accuracy. The detailed performance
analysis is also presented in Chapter 4.

Analyzing the joint performance of the software and the hardware trace cache we find signif-
icant redundancy between both approaches. In Chapter 5 we propose Selective Trace Storage, a
trace cache modification which eliminates this redundancy.

The STC uses profile data to optimize the layout of instructions in memory, but this does not
exhaust the possible uses of the data obtained. In Chapter 6 we explore the possible uses of profile
data to improve the branch prediction accuracy, and propose a novel branch predictor organization
which relies extensively on the compiler.

Finally, based in the special characteristics of optimized applications, in Chapter 7 we intro-
duce a new fetch architecture designed to fetch larger sized instruction sequences, which we call
instruction streams.



Chapter 1: Introduction 19

In Chapter 8 we present our conclusions for this work, and present guidelines for future work,
and new lines of research opened by our results.



20 Chapter 1: Introduction


