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ABSTRACT

Mitigating the effect of the large latency of load instructions is one of challenges of
micro-processor designers. This thesis analyses one of the alternatives for tackling this problem:
address prediction and speculative execution.

Several authors have noticed that the effective addresses computed by the load instructions
are quite predictable. First of all, we study why this predictability appears; our study tries to detect
the high-level language structures that are compiled into predictable load instructions. We also
analyse the conventional address predictors in order to determine which address predictors are
most appropriate for the typical applications.

Our study continues by proposing address predictors that use their storage structures more
efficiently. Address predictors track history information of the load instructions; however, the
requirements of the predictable instructions are different from the requirements of the
unpredictable instructions. We then propose an organization of the prediction tables considering
the existence of both kinds of instructions. We also show that there is a certain degree of
redundancy in the prediction tables of the address predictors. We propose organizing the
prediction tables in order to reduce this redundancy. These proposals allow us to reduce the area
cost of the address predictors without impacting their performance.

After that, we evaluate the impact of address prediction on processor performance. Our
evaluations assume that address prediction is used to start speculatively some memory
accesses and to execute speculatively their dependent instructions. On a correct prediction, all
the speculative work is considered as correct; on a misprediction, the speculative work must be
discarded. Our study is focused on several aspects such as the interaction of address prediction
and branch prediction, the implementation of verification mechanisms, the recovery mechanism
on address mispredictions, and the influence of several processor parameters (the issue-queue
size, the cache latency and the issue width) on the performance impact of address prediction.

Finally, we evaluate several recovery mechanisms for latency mispredictions. Latency
prediction is a speculative technique used by the schedulers of some superscalar processors to
deal with variable-latency instructions (for instance, load instructions). Our evaluations are
focused on a conventional recovery mechanism for latency mispredictions and a new proposal.
We also evaluate the proposed recovery mechanism in the scope of address prediction; we
conclude that it represents a cost-effective alternative to the conventional recovery mechanisms
used for address mispredictions.
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Chapter 1 I NTRODUCTION
1 INTRODUCTION

This chapter introduces this thesis. First, we outline the motivation of this work.
After that, we describe some works related to address prediction. Next, we
overview the work developed in this thesis. Finally, we detail the organization of
the whole document.

1.1 Motivation
High-performance processors try to extract parallelism from sequential programs in order to
execute several instructions at the same time; this ability allows a reduction in the execution time
of the programs. To extract parallelism, processors exploit the instruction-level parallelism (ILP)
available in a program. Unfortunately, the amount of ILP is limited because the dependences
between the instructions of a program determine an execution order.

Dependences between instructions are classified into three types: data dependences, name
dependences and control-flow dependences. Instruction j data-depends on instruction i if the
result produced by instruction i is consumed (directly or indirectly) by instruction j. A name
1
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dependence appears between two instructions that update the same storage element (a register
or a memory location). Control-flow dependences are produced by instructions that explicitly
determine the next instruction to be executed.

Computer architects use the average number of instructions committed per cycle (IPC) to
measure the performance of a processor. The IPC is one of the factors that determine the
execution time of the program; the execution time depends directly on both the number of
committed instructions and the clock cycle time, and also depends in the inverse proportion on
the IPC obtained by the processor.

Several hardware techniques have been proposed to increase the IPC obtained by the
processors. For instance, register renaming, prediction techniques and speculative execution.
Register renaming [Sima00] eliminates name dependences related to register locations.
Prediction techniques are used to advance some processor actions in order to reduce the
latency of some instructions. However, these actions do not update the processor state
(registers, memory), so when a misprediction occurs, no recovery action is needed. An example
of prediction techniques is prefetching the next cache line on a cache miss [Smit82].

Speculative execution can be considered as a further step in techniques that advance some
processor actions. It is supported by some kind of prediction (for instance, a branch outcome, the
independence of a load instruction on a previous store instruction); after that, some instructions
dependent on the prediction are executed speculatively. Later, the prediction is verified. On a
correct prediction, the speculatively executed instructions can commit their results into the
architectural state of the processor; on a misprediction, a recovery mechanism must discard the
effects of the misprediction.

Currently, high-performance processors use prediction and speculative execution to increase
the IPC in several scenarios: executing control-flow dependent instructions (all processors),
disambiguating the memory reference stream (PA-8000 [Hunt95], Alpha 21264 [Kess99]),
scheduling instructions dependent on a load instruction before knowing its latency (Alpha 21264
[Kess99], Sparc64 V [Dief99]).

However, to the best of our knowledge, no processor applies speculative execution to a more
generic case of data dependences. To apply speculative execution on data dependences, a
value predictor must predict the result of an operation. While a branch-direction predictor
performs a binary prediction for every conditional branch instruction (taken branch or not taken
branch), in the scope of data dependences a value predictor must perform 32-bit (or 64-bit)
predictions. In spite of the huge prediction space, several works [LWS96][Gabb96] have shown
that most results are highly predictable. For instance, the results of the arithmetic instructions,
memory accesses and even the effective addresses computed by load and store instructions.
This highly predictability can be explained by the fact that some instructions present a repeatable
behaviour that can be learnt by a finite-state machine.



1.1 Motivation 3
Although all register-writing instructions generate data dependences, the dependences
produced by load instructions are specially critical due to: a) the tendency of load instructions to
start time-critical chains of dependent instructions, b) the large frequency of load instructions
(around 25% of committed instructions) and c) their large latency (latency on data-cache hits is
two or three cycles on current processors). Moreover, load latency is expected to grow in
next-generation processors. Our evaluations show that this latency increment will significantly
degrade processor performance. For instance, assuming a 4-way processor with a 3-cycle
load-use latency (Section 5.2.1), executing integer benchmarks, increasing load-latency one
cycle degrades processor performance about 6%; larger increments (two and three cycles)
produce larger degradations (around 11% and 16% respectively).

As the continually increasing load latency is one of the key challenges on high-performance
processors, lots of researchers have proposed techniques that try to reduce or tolerate load
latency. The highly predictability of the effective addresses computed by the load instructions
offers an opportunity to face the challenge: address prediction can be used to speculatively start
memory accesses early in the pipeline and to speculatively execute their dependent instructions.
That is, the application of speculative execution to execute instructions dependent on a load
instruction before computing its effective address.

Figure 1.1 depicts the execution of a load instruction and a dependent instruction fetched on
the same cycle. It compares an execution without address prediction (Figure 1.1-a) versus an
execution with address prediction and speculative execution (Figure 1.1-b). The non shaded
pipeline stages are related to the non-speculative execution of the instructions: fetch (F), decode
and register renaming (D / Ren), issue queue (IQ), register read (R), execution (Exe),
effective-address computation (@) and memory access (m). The shaded stages are related to
the speculative execution: address prediction (Pred), speculative issue of the memory access
(LAQ), memory access (m) and prediction checking (check). We have assumed that first-level
data-cache latency is two cycles and an address-prediction latency is one cycle.

In the first case, the instruction dependent on the load instruction must wait in the
issue-queue stage until the load instruction is issued and data is available. In the second case, if
the speculative memory access has finished when the dependent instruction is inserted in the

Figure 1.1 Execution of a load instruction and a dependent instruction (without address
prediction and with address prediction and speculative execution)

 load r1← ... F D / Ren IQ R @ m m ...
... ← r1 F D / Ren IQ IQ IQ IQ R Exe ...

a) Without address prediction

 load r1← ... F D / Ren IQ R @ ...
Pred LAQ m m verif

... ← r1 F D / Ren IQ R Exe ...

b) With address prediction and speculative execution
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issue queue, the dependent instruction can be issued on the next cycle. Assuming a correct
prediction, address prediction and speculative execution allows us to obtain the result of the
dependent instruction several cycles in advance with respect to the non-speculative execution.

One of the purposes of this thesis is to explore the ability of address prediction and
speculative execution to mitigate the effect of the load latency.

1.2 Related works
Some researchers have suggested the use of hardware mechanisms that predict the effective
addresses that will be computed by load and store instructions. This section presents a brief
description of works related to address prediction. In addition, in each chapter of this document,
the works most closely related to that chapter are discussed.

• First, we describe works that introduce address predictors. Most of these predictors can
also be used in the scope of value prediction; that is, predicting the result of
register-writing instructions. This thesis, however, is focused on address prediction.

• After that, we relate works that make use of address prediction. We have classified these
works into the following types: dynamic disambiguation of memory references, hardware
prefetching and starting memory accesses early in the pipeline.

• Finally, we report recovery mechanisms for address mispredictions and speculative
execution.

1.2.1 Address Predictors
In this subsection we describe the main classes of address predictors: Last-Address Predictor,
Stride Address Predictor, Context Address Predictor and Hybrid Address Predictor.

These address predictors track the effective addresses computed by each memory-access
instruction in a data structure named prediction table. Using this information and a prediction
model, the address predictor can predict the effective address that will be computed on the next
execution of the memory-access instruction. In order to reduce the amount of wrong predictions,
all the address predictors use confidence estimators that prevent some predictions that will
probably be wrong.

The most simple address predictor assumes that a memory instruction will compute the same
effective address that it did in its previous instance. This predictor is named Last-Address
Predictor and has been used in the scope of starting the memory accesses early ([EiVa93]).

The Stride Address Predictor assumes that every memory instruction generates effective
addresses in arithmetic progression. This predictor has been used in the scopes of hardware
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prefetching ([ChBa95]), dynamic disambiguation of memory references ([GoGo97a]) and early
starting of the memory accesses ([EiVa93]).

The Context Address Predictor assumes that memory instructions compute repeatedly some
sequences of effective addresses. Several works have proposed Context Address Predictors in
the scope of hardware prefetching ([ChPu97]) and in the scope of early starting the memory
accesses ([BJR+99]).

The Hybrid Address Predictor combines several of the previous predictors and tries to use the
address predictor best suited to each memory instruction. This predictor has been used in the
scope of early starting the memory accesses ([BMP+98], [BJR+99]).

A deeper analysis of address predictors is provided in Chapter 2.

1.2.2 Dynamic memory disambiguation
Dynamic memory disambiguation consists in determining dynamically whether two instructions
are memory dependent.

When instruction j (consumer) data-depends on instruction i (producer), a storage element
(register o memory location) is used to communicate a value from the producer instruction to the
consumer instruction. This storage element is identified by a register number or by a memory
address. In the first case, data dependences can be detected as soon as the instructions have
been decoded. In the second case, the producer instruction is a store instruction and the
consumer instruction is a load instruction, so dependence detection is not resolved until the
computation of the effective addresses of both memory instructions. This delay restricts the
out-of-order execution of a load instruction independent on a previous store instruction.

Some processors assume conservatively that each load instruction data-depends on its
previous store instructions. Consequently, a load instruction cannot be out-of-order executed
respect its previous store instruction. This assumption produces a performance decrease
because most load instructions are independent on its previous store instruction.

However, some works propose the use of address prediction to predict memory dependences
between load and previous store instructions. González and González [GoGo97a] proposed to
predict the effective addresses of load and store instructions, and this information is used to
detect the dependence of a load instruction on a previous store instruction. On a predicted
dependence, data is speculatively forwarded from the store to the load instruction; on a predicted
independence, the load instruction accesses data cache speculatively. In both cases, the
instructions dependent on the load instruction may be executed speculatively. Other work
[Sato98] uses address prediction with the same goal.
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1.2.3 Hardware prefetching
Hardware prefetching makes use of address prediction to bring data into a memory-hierarchy
level closer to the processor. Thus, on a future reference to the predicted address, load-latency is
expected to be reduced.

In the simplest hardware-prefetching mechanism, when a line is referenced, a prefetch is
started for the next-sequential line [Smit82]. After this proposal, several works propose
hardware-prefetch mechanisms with more complex address predictors: Stride Address
Predictors ([ChBa95]), Context Address Predictors ([ChPu97]) and Markov-based Address
Predictors ([JoGr97]). None of the previous hardware-prefetching mechanisms need a recovery
mechanism on address mispredictions because no instructions are executed speculatively; the
only negative impacts of address mispredictions are cache pollution and wasted memory
bandwidth.

A more complex mechanism proposed in [GoGo97b] combines hardware prefetching and
speculative execution of dependent instructions. A stride predictor is used to predict the effective
address that will be computed on the next instance of every load instruction. This address
prediction is used to start a prefetch and the obtained data is recorded in a structure indexed by
load-instruction PC. When a load instruction is fetched, this structure is checked in order to
detect a prefetch for this instruction; if so, the dependent instructions can be executed
speculatively using the prefetched value. An additional structure is used to invalidate some
prefetchings due to data dependencies between store and load instructions. A recovery
mechanism must recover the processor state on address mispredictions.

1.2.4 Start memory accesses early in the pipeline
Other works use address prediction to allow load instructions to access memory early in the
pipeline instead of waiting until the computation of the effective address. In some cases, these
works also allow the speculative execution of the instructions dependent on the predicted load
instruction.

The authors of [EiVa93] presented two mechanisms to obtain the effective addresses of the
load instructions early in the pipeline: by using the current value of the base registers of the load
instructions and by using a stride predictor. The obtained addresses were used to access
memory early in the pipeline. On a correct prediction, load latency is reduced by one cycle; on a
misprediction no recovery mechanism is needed due to the pipeline organization and the
in-order scheduler used by the processor.

Austin et al. [APS95] proposed the use of a fast adder to predict the portion of the effective
addresses needed to speculatively access data cache. The fast adder performs the prediction by
OR'ing the set index portion of the base register and the offset. On a correct prediction, load
latency is reduced by one cycle; on a misprediction, no recovery mechanism is needed due to
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the pipeline organization. Note that the address predictor used in this work is a state-less
predictor; that is, it does not need a prediction table.

Austin and Sohi [AuSo95] extended the previous work to reduce even more load-instruction
latency. They use a small cache to record base addresses; this cache is accessed concurrently
to instruction cache (in pipeline organizations with one decode stage) or in the first decode stage
(in pipeline organizations with several decode stages). After that, the fast adder predicts the
portion of the effective address and the speculative data-cache access is started. No instructions
are executed speculatively because the speculative value is only used after verifying the
correctness of the prediction.

An exhaustive evaluation of load speculation techniques (dependence prediction, address
prediction, value prediction and memory renaming) is presented in [ReCa98]. The authors
applied address prediction to access memory speculatively and to execute speculatively the
instructions dependent on the predicted load. They evaluated several address predictors
(last-address, stride, context and hybrid) and they used two possible recovery mechanisms
(squash and selective re-execution), but they did not present practical implementations for the
recovery mechanisms.

1.2.5 Recovery mechanisms for address mispredictions
When address prediction is combined with speculative execution of dependent instructions, a
recovery mechanism must be provided to deal with address mispredictions. This is due to the
speculative execution of some instructions with incorrect input data; these instructions must not
update the architectural state of the processor and must be re-executed using the correct input
data.

Although all high-performance processors implement a recovery mechanism to deal with
branch mispredictions, this mechanism is too rough to be applied to address mispredictions. On
branch mispredictions, the instructions fetched after the mispredicted branch violate the
semantic correctness of the program. Consequently, they must be flushed-out from the pipeline
and the instruction-fetch address must be corrected. However, on address mispredictions, the
instructions fetched after the mispredicted load instruction are semantically correct (unless a
branch misprediction is involved). Consequently, to avoid re-fetching them, they may remain in a
buffer. Moreover, on address mispredictions, only the issued instructions dependent on the
misprediction must be re-issued.

Sato [Sato98] proposed the implementation of a recovery mechanism for address
mispredictions. This mechanism assumes a processor where the issue queue (structure that
contains instructions waiting for operands) and the reorder buffer (structure that contains all in-fly
instructions) are combined into a structure named Register Update Unit (RUU, [SoVa87]).

Sato extended the RUU structure to deal with mispredictions. He made the most of two
characteristics of the RUU: a) the instructions allocated in the RUU snoop the results computed
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by the other instructions allocated in the RUU, b) the instructions are inserted and extracted from
the RUU in program order. Sato's proposal consists in: a) marking that an issued instruction must
be re-issued when a new value for one of his operands has been detected, b) exploiting the fact
that a completed instruction in the head entry of the RUU has non-speculative operands. Other
works [Rote99][Saze99] have used similar recovery mechanisms in the scope of value
prediction.

This solution imposes a restriction on the number of reorder-buffer entries because the issue
queue is less scalable than the reorder buffer. Thus, actual processors decouple the issue queue
from the reorder buffer. However, in order not to increase the performance impact of
misprediction recovery, the recovery mechanism must include a device which removes issued
instructions from the issue queue when they are non-speculative.

Other works describe recovery mechanisms in a more restrictive speculative scope: latency
prediction (for instance, some processors predict if a cache reference will hit data cache
[Kess99], [Dief99]). The restriction appears because, in the scope of latency prediction, the
speculative instructions are issued after issuing the predicted instruction. However, in the scope
of address prediction, the speculative instructions may be issued before issuing the
effective-address computation of the predicted load instruction. As the recovery mechanisms for
latency mispredictions are more cost-effective than the recovery mechanisms for address
mispredictions, we will evaluate the convenience of restricting the speculative issue of the
instructions in the address-prediction scenario in order to allow the use of recovery mechanisms
specific for latency mispredictions.

A deeper analysis of recovery mechanisms is provided in Chapters 5 and 6.

1.3 Thesis overview
The purpose of this thesis is to explore the ability of address prediction and speculative execution
to mitigate the effect of the load latency. This work focuses on the following issues:

• Reducing prediction-table sizes: The amount of information recorded in the
prediction-tables of the address predictors is very large; it is comparable or even larger
than current first-level-cache capacities. We have designed and evaluated several
strategies to reduce the amount of information recorded in the prediction tables while
maintaining the performance of the address predictors. We have obtained up to 60%
capacity reductions.

• Recovery mechanisms in address-prediction scope: Address mispredictions may
produce the speculative execution of some instructions with incorrect input data. To obtain
a correct execution result, these instructions must be re-executed with the correct input
data. The mechanism responsible for re-executing these instructions and for guaranteeing
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a correct architectural state of the processor is named recovery mechanism. We have
designed and evaluated, using a detailed simulator, recovery mechanisms that enable the
issue queue to be decoupled from the reorder buffer.

• Latency prediction: We designed and evaluated a recovery mechanism which reduces
the pressure on the issue queue. The mechanism has been used to evaluate processor
performance in the scopes of load-latency prediction and address prediction.

1.4 Thesis organization
This document is organized as follows:

• Chapter 2 describes the phenomenon of the address predictability. First, we present
typical high-level code fragments that are compiled to instruction sequences with
predictable load instructions. After that, we introduce the typical address prediction models
(last-address, stride, context and hybrid). Finally, we compare the maximum performance
of these prediction models.

• Chapter 3 presents two techniques for reducing the amount of information recorded in the
prediction table of a Last-Address Predictor. The strategy used by both techniques is to
filter out the allocation of unpredictable instructions in the prediction table. The motivation
is the highly biased distribution of the address predictability, that is, some load instructions
are highly predictable and some are highly unpredictable. Moreover, the replacement
algorithm of the prediction tables does not consider predictability information.
Consequently, unpredictable instructions can evict predictable ones.

• Chapter 4 also presents a technique for reducing the amount of information recorded in
the prediction table of a Last-Address Predictor. In this case, the strategy consists in
reducing the redundancy of the information recorded in the prediction table. Redundancy
appears due to the spatial-locality property of the memory references; redundancy
produces the replication of the high-order portions of some effective addresses in the
prediction table.

The techniques presented in Chapter 3 and in Chapter 4 have been evaluated in terms of
predictor performance (captured predictability and accuracy) and area-cost reductions.
We do not present results in terms of committed instructions per cycle (IPC), because in
these chapters we focus on reducing prediction-table capacity maintaining predictor
performance. We focus on the impact of address prediction on processor performance in
the following chapter.

• Chapter 5 evaluates the performance impact of address prediction in an out-of-order
processor. The evaluated processor configurations use an issue queue decoupled from
the reorder buffer, and verification mechanisms which are designed for removing the
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speculatively issued instructions from the issue queue as soon as they are known to be
non-speculative. The processor configurations evaluated include 4-way and 8-way
issue-width processors with several first-level-cache latencies. Moreover, it is evaluated
the effect of delaying the speculative issue of instructions until issuing the predicted load
instruction; this delay allows the use a recovery mechanism designed for latency
prediction.

• Chapter 6 presents the design and the evaluation of two recovery mechanisms for latency
prediction. The first mechanism keeps the speculatively issued instructions in the issue
queue; the second mechanisms keeps them in a new structure named Recovery Buffer.
Moreover, both mechanisms are designed with selective and non-selective nullification
policies. The recovery mechanisms are evaluated in the scope of predicting the latency of
the load instructions; the evaluations compare the IPC results for integer and floating-point
benchmarks. Our results suggest the use of different recovery mechanisms for the integer
and the floating-point execution cores.

• Chapter 7 concludes with a summary of this thesis, its conclusions, and a discussion of
future work.

• Appendix A describes the simulation environment (simulators, processor model,
processor configurations and benchmarks) used in the evaluations presented in this
thesis.
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2 ADDRESS

PREDICTABILITY

This chapter describes the phenomenon of the address predictability. After a
brief introduction, in Section 2.2 some high-level language scenarios that
produce address-predictable memory instructions are presented. In Section 2.3
the main classes of address predictors proposed in the literature are given. In
Section 2.4 some performance results of the address predictors are shown. In
Section 2.5 some related works are reviewed. Finally, in Section 2.6 the chapter
is summarized.

2.1 Introduction
Temporal locality and spatial locality are two well known properties exhibited by the memory
references of a program. Both properties are exploited by caches in order to reduce the latency
11
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of most memory references. However, the impact of load latency (even assuming cache hit) on
processor performance is still significant.

Data caches exploit the locality of a program as a whole; that is, without considering which
instructions exhibit locality. On the other hand, some works have also proposed exploiting the
locality of each memory-access instruction in order to reduce the impact of load latency. To
exploit the locality, these proposals rely on hardware mechanisms (named address predictors)
that find a repeatable pattern; other address predictors recognize address patterns that follow an
arithmetic progression.

After that, they predict the effective address that will be computed on the next execution of this
memory-access instruction. This prediction can be used to start the memory access early in the
pipeline; that is, before computing the effective address of the memory reference. Consequently,
on a correct prediction, memory access may be anticipated by several processor cycles.

Address predictors keep track of several instances of each memory instruction in order to
identify if the effective addresses computed by a memory instruction are exhibiting a repeatable
pattern, or a pattern that follows an arithmetic progression. On a positive identification, the
address predictor can predict the effective address that will be computed on the next instance of
the memory instruction. A memory instruction is predictable by an address predictor if the
instruction is exhibiting a pattern that can be identified by the address predictor.

Address predictors can identify several classes of sequences of effective addressees. We
detail the main classes:

• Constant: a memory instruction that always computes the same effective address; for
instance: 100, 100, 100,... This sequence of addresses is exhibiting temporal locality.

• Stride: a memory instruction that computes effective addresses in arithmetic progression;
for instance: 100, 101, 102, 103,...

• Repeated: a memory instruction that repeatedly computes a sequence (strided or not
strided) of effective addresses; for instance: 100, 112, 104, 100, 112, 104, 100,... This
sequence of addresses is exhibiting temporal locality.

To understand when and why address predictability appears, in the following section some
high-level code fragments are presented where their generated assembly codes have predictable
load instructions. That is, these code fragments are sources of address predictability.

2.2 Sources of address predictability
In the next subsections, we present high-level code fragments related to the most predictable
load instructions of the benchmark suite (SPEC95 benchmarks, described in Appendix A.2) used
in this thesis.
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2.2.1 Global addresses
The RISC architecture used in this work (Alpha) uses 32-bit instructions and 64-bit logical
addresses. In this environment, the compiler must generate load instructions for loading 64-bit
addresses of global objects into registers. However, these loadings cannot be performed directly
because a 64-bit address cannot be coded as an immediate operand of the instruction.

Alpha AXP compilers solve this problem by recording the global addresses in a
Global-Address Table (GAT). In fact, the compiler creates one (or several) GAT for every module,
and the linker gathers the GATs into one GAT section. GAT is accessed using a register named
global pointer (gp) and a 16-bit immediate displacement. Potentially, every procedure can use a
different GAT; thus, the first instructions of every procedure update the value of the gp to point to
the GAT related to the procedure.

To access a global object, two load instructions are involved. First, the address of the object is
obtained accessing the GAT; second, the object is accessed. That is, global objects are
accessed indirectly via the GAT.

Figure 2.1 shows the code generated by the compiler to access a global variable (n). Load
instruction (1) obtains the address of the global variable from GAT; register gp contains the base
address of the GAT and the displacement points to the related GAT entry. Load instruction (2)
accesses the obtained address. Both load instructions will always compute the same effective
address.

However, the linker can apply some optimizations. For instance, the GAT can record
global-variable values instead of recording global-variable addresses. More optimizations are
proposed in [SrWa94].

Figure 2.2 shows how global variables are accessed if GAT records global-variable values. In
case a), accessing a global scalar variable, the optimization eliminates one load instruction, but

Figure 2.1 Address predictability accessing global variables

/* 540(gp) contains global-variable address (&n) */
(1) ldq a1, 540(gp) /* a1 = global-variable address (&n)*/
(2) ldq a2, 0(a1) /* a2 = global-variable value (n)*/

int n;

... = n;

Figure 2.2 Address predictability accessing global variables (optimized GAT accesses)

int n;

... = n;

/* 750(gp) contains the global-variable address (&c) */
ldq a1, 750(gp) /* a1 = global-variable value (c) */
ldq a2, 0(a1) /* a2 = pointer contents (*c) */

a) scalar reference

/* 724(gp) contains the global-variable address (&n)*/
ldq a1, 724(gp) /* a1 = variable value (n)*/

int *c;

... = *c;

b) pointer reference
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the remaining load instruction will always compute the same effective address. Case b),
traversing a global pointer, is analogue to the example of Figure 2.1.

2.2.2 Vector accesses
The address of a vector element is computed by adding the base address of the vector and the
element-vector size times the element index. The base addresses of the vectors are also
recorded in the GAT. Thus, in order to access a vector element, the compiler generates code for:

• Obtaining the vector base address by accessing GAT

• Computing the address of the element

• Accessing the element

An example of a vector access is shown in Figure 2.3. Load instruction (1) obtains the vector
base address and always computes the same effective address. Load instruction (2) can exhibit
address predictability depending on the predictability of the values of the vector index.

2.2.3 Switch statements
There are several possibilities for generating the assembly code for a switch statement.

• The easiest way consists in performing a cascaded comparison; that is, comparing the key
of the switch statement with the first switch alternative. If they do not match, the key is
compared with the second alternative, and so on until a match or the end of the
alternatives is found.

• Another possibility consists in the use of a branch table and an indirect branch. The table
is filled with the instruction addresses related to the statement alternatives, and the
compiler generates code for branching indirectly through this table. The advantage of this
alternative is that the number of branches executed for every execution of the switch
statement is independent of the value of the key.

Alpha-AXP compilers use the second alternative, and they record the base address of the
branch table in the GAT. The compiler must generate code for:

• Initializing a branch table with the addresses related to every alternative

int v[N];

... = v[i];

 /* 110(gp) contains vector base address */
 /* a0 = i */

(1) ldq at, 110(gp) /* at = vector base address (&v[0]) */
s4addq a0, at, a0 /* a0 = element address (&v[i]) */

(2) ldq at, 0(a0) /* at = element value (v[i]) */

Figure 2.3 Address predictability accessing vectors
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• Transforming the key into an index to the branch table

• Testing bounds of the transformed key

• Accessing the branch table

• Branching indirectly

Figure 2.4 shows the assembly output of a switch statement. Load instruction (1) obtains the
base address of the branch table; this load always computes the same effective address. The
predictability of load instruction (2) depends on the predictability of the values of the key.

2.2.4 Stack accesses
The stack is a run-time data structure used to record the activation blocks of the procedures that
are being executed. The stack is implemented in memory: its base address is fixed and it grows
towards consecutive memory locations; a processor register named stack pointer (sp) points to
the element most recently inserted. The stack is accessed by load and store instructions relative
to the sp register.

The value of register sp defines the stack depth. The amount of different effective address
computed by each stack-based load instruction of a procedure is equal to the number of different
stack depths seen at the executions of the call instructions to this procedure. However, some
procedures are always called from the same stack depth; in this case, each stack-based load
instruction of the procedure will always compute the same effective address.

switch (key) {
case 1:

...
case 3:
case 4:

...
default:

...
}

/* Table[0] = _lab1; Table[1] = _def; */
/* Table[2] = _lab34; Table[3] = _lab34; */
/* a0 = key */

subl a0, 0x1, t0 /* value transformation a0 = key-1 */
cmpult t0, 0x4, t1 /* compare to maximum value */
beq t1, _def /* branch to _def if key > 4 */

(1) ldq at, 100(gp) /* at = Table base address (&Table[0])*/
s4addq t0, at, t0 /* t0 = Table[t0] address (&Table[t0])*/

(2) ldl t0, 0(t0) /* t0 = Table[t0] value */
addq t0, gp, t0 /* gp-relative value */
jmp zero, (t0) /* indirect branch */

_lab1:
...

_lab34:
...

_def:
...

Figure 2.4 Address predictability in switch statements
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For instance, in Figure 2.5, every loop iteration calls the procedure proc. As stack depth must
be the same at every proc call, the effective addresses computed by each memory-access
instruction related to the sp register will be the same at every call.

2.2.5 System constants
System information that is always recorded at the same effective address may be accessed by
some user procedures, library procedures and macro-instructions. Consequently, the related
load instructions will always compute the same effective address.

while (cond)
proc(a,b);
...

}

proc:
addq sp, -64, sp
stq ra, 0(sp)
stq s0, 8(sp)
stq s1, 16(sp)
...
ldq v0, 56(sp)
...
ldq s1, 16(sp)
lqq s0, 8(sp)
ldq ra, 0(sp) /* ra = return address */
addq sp, 64, sp
ret zero, (ra), 1

Figure 2.5 Address predictability accessing the stack

Figure 2.6 Address predictability produced by system constants

(1) ldq a2, -3278(gp) /* a2 = __lc_ctype address */
(2) ldq a2, 0(a2) /* a2 = __lc_ctype value */
(3) ldq v0, 48(a2) /* v0 = __lc_ctype->core.iswctype value */

bne v0, _else /* if v0!=0 branch _else (never branchs) */
ldq t0, 24(sp) /* t0 = c */

(4) ldq t1, 104(a2) /* t1 = __lc_type->mask base address */
extqh t0, 0x1, t0
sra t0, 0x38, t0
s4addq t0, t1, t2 /* t2 = __lc_ctype->_mask[c] address */

(5) ldl a0, 0(t2) /* a0 = __lc_ctype->_mask[c] value */
and a0, 0x1, a0
br zero, _out

_else:
ldq a0, 24(sp) /* dead code */
addq zero, 0x1, a1
bis v0, v0, t12
extqh a0, 0x1, a0
sra a0, 0x38, a0
jsr ra, (v0)
...

_out:

if (isalpha(c)) n++;

if ((((*(__lc_ctype->core.iswctype)) == 0L) ?
(int) (__lc_ctype->_mask[c] & (0x001)) :
(*(__lc_ctype->core.iswctype)) (c,0x001,__lc_ctype))) n++;

Preprocessing

Compilation
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Figure 2.6 shows an example. Macro-instruction isalpha checks if a character is alphabetic.
isalpha consults system-configuration values to answer. Load instructions (1), (2), (3) and (4)
always compute the same effective address. The predictability of load instruction (5) depends on
the predictability of the parameter of the macro-instruction.

2.2.6 Sequential accesses to vector structures
Some programs access vectors sequentially using a loop statement. The effective addresses
computed by the load instruction related to these accesses are in arithmetic progression; that is
an arithmetic-progression pattern.

For instance, Figure 2.7 shows both a high-level code that accesses sequentially a vector and
its assembly output. The effective addresses computed by load instruction (2) are in arithmetic
progression because the address computed by an instance of the instruction is equal to the
address computed by the previous instance plus a constant (4, the size of every vector element).
Applying loop unrolling to this loop will generate a code that performs several vector accesses at
every iteration. However, the effective addresses produced by each one of these load
instructions will also be in arithmetic progression, but with a larger common difference. In
addition, load instruction (1) will always compute the same effective address (Section 2.2.2).

Arithmetic-progression patterns may also be exhibited by accesses to dynamically allocated
data structures. For instance, let us assume a dynamically allocated list structure. When the list
is being allocated, the program requests memory storage for each list element. Typically, the
memory allocator allocates a request next to the previous one. As the requests are equally sized
(s bytes), the base addresses of the list elements are in arithmetic progression (a, a+s, a+2s,...).
If this list is traversed in the same order as the list elements have been allocated, the load
instructions that access the list will compute addresses in arithmetic progression.

The stack accesses performed by recursive invocations of a procedure may also exhibit an
arithmetic-progression pattern. Assume a stack-based memory-access instruction that is
executed only once at every procedure invocation. On recursive invocations, the memory-access
instruction will compute effective addresses in arithmetic progression with a stride equal to the
size of the activation block of the procedure.

int v[N];
int i;
...

for (i=0; i<N; i++)
{

...= v[i];
}

(1) ldq t1, -32736(gp) /* t1 = vector base address */
bis zero, zero, t0 /* t0 = 0 */

...
loop:

(2) ldl t3, 0(t1) /* t3 = v[t0] */
addl t0, 0x1, t0 /* t0 = t0 + 1 */
cmplt t0, N, t4 /* test loop bound */
lda t1, 4(t1) /* t1 = t1 + 4 */
...
bne t4, loop /* branch if t0 < N */

Figure 2.7 Address predictability accessing vector structures sequentially
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2.2.7 Repeated access sequences
In some scenarios, a load instruction can repeatedly compute a sequence of effective addresses;
that is, the sequence of effective addresses computed by the load instruction is exhibiting
temporal locality.

A typical scenario where this situation arises is traversing a linked list. Figure 2.8 shows both
the high-level code that traverses a linked list searching for an element, and its assembly code.
Although the list may be updated during program execution, some portions may remain
unchanged during several traverses. In this case, load instructions (1) and (2) will repeatedly
compute the same sequence of effective addresses. For instance, if the depicted portion of the
list remains unchanged during some traverses, load instruction (2) will repeatedly compute the
address sequence 400, 160, 320 and 720; moreover, load instruction (1) will repeatedly compute
the address sequence 408, 168, 328 and 728.

Another scenario for this situation is produced by repeated sequential accesses to vectors.
The related load instruction will repeatedly compute the same sequence of vector-element
addresses.

2.3 Address predictors
This section reports the main classes of address predictors proposed in the literature. Each
subsection is related to an address-prediction class and details its functionality, its block diagram,
its pseudo-code and the amount of information that it records.

2.3.1 Last-Address Predictor (LAP)
The Last-Address Predictor (LAP) is designed to predict effective addresses computed by load
instructions that exhibit temporal locality. The LAP assumes that a load instruction will compute
the same effective address as in its previous execution.

This predictor predicts correctly the addresses computed by load instructions that always
generate the same address (such as accesses to global variables, some stack accesses).

struct elem
{ struct elem *next;

int key;
} *start, *p;

...
p = start;
while (p && p->key != key)

p = p -> next;
...

/* v0 contains p */
/* t2 contaits key */

beq v0, out /* branch if v0 is null */
loop:
(1) ldl t1, 8(v0) /* t1 = p->key */

xor t1, t2, t1 /* t1 = p->key XOR key */
beq t1, out /* branch if equal */

(2) ldq v0, 0(v0) /* v0 = p->next */
bne v0, loop /* branch if v0 not null */

out:

Figure 2.8 Address predictability accessing repeatedly a linked list

next

key

400 160 320 720@

......
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Moreover, load instructions presenting bursts of executions that compute the same effective
address will also be predicted correctly.

The learning time of an address predictor is defined as the number of executions of a load
instruction that must be tracked by the address predictor in order to be able to predict the next
effective address computed by the load instruction. The learning time of the LAP is one
execution.

The simplest implementation of an LAP consists in a direct-mapped table indexed by using
some bits of the instruction PC. Each table entry contains an effective address: the last effective
address computed by the load instructions mapped to the table entry. Consequently, the
allocation policy of the table is the always allocate policy; that is, after the execution of a load
instruction, its effective address is recorded in its related table entry. This table is named the
Prediction Table of the predictor; in the scope of address prediction it will be named the Address
Table (AT).

To reduce the number of wrong predictions, two basic mechanisms can prevent possible
wrong predictions from being performed:

• Tagging table entries. Tagging is useful to identify which load instruction the information
recorded in a table entry is related to. Tagging avoids predicting a load instruction using
information related to another load instruction. Table entries can be fully tagged or partially
tagged.

• Using a confidence estimator. This estimates how likely a prediction is of being correct.
The most used confidence estimator is the bimodal estimator [Smit81] which was
proposed in the scope of branch prediction. This estimator (Figure 2.9 shows its state
diagram) consists of a 2-bit saturating counter related to every prediction-table entry. The
counter is increased by one on correct predictions and decreased by one on wrong
predictions. If the counter value is over a threshold value (for instance, the counter-value
01), the confidence estimator allows predicting the next instance of the instruction. Note
that the use of confidence estimation can increase the learning time of a predictor.

Figure 2.10 shows the scheme of an LAP with tagged entries and bimodal estimation.

Figure 2.9 State diagram of the 2-bit confidence estimator

00 01 10 11

on correct predictions

threshold

on wrong predictions
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Figure 2.11 presents the pseudo-code that predicts and updates the Address Table (AT) of a
LAP with tagged entries and bimodal confidence estimators. Operators ++ and -- update the
counter of the confidence estimator in a saturated way.

The next formula gives the amount of information recorded by an LAP. For instance, an LAP
with a 4K-entry AT, 64-bit effective addresses, 4-bit tags and 2-bit confidence estimators records
286.720 bits; that is, 35 Kbytes.

Several works have used predictors equivalent to the LAP to predict effective addresses or
instruction results: [EiVa93], [LWS96], [ReCa98].

PC

index
bits

Address Table

Figure 2.10 Diagram of the Last-Address Predictor
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/* Updates the Address Table */

Update(PC, addr)
{

idx = index_bits(PC);
tag = tag_bits(PC);

if (AT[idx].tag == tag) {
if (AT[idx].addr == addr)

AT[idx].conf++;
else

AT[idx].conf--;
}
else {

AT[idx].tag = tag;
AT[idx].conf = INI_CONF;

}
AT[idx].addr = addr;

}

/* Predicts and effective address
Output variable:

predict: predicted address
*/

Prediction(PC)
{

idx = index_bits(PC);
tag = tag_bits(PC);

if (AT[idx].tag == tag) {
if (AT[idx].conf > threshold)

predict = AT[idx].addr;
}

}

Figure 2.11 Pseudo-code of the Last-Address Predictor

AreaCostLAP AT_entries addr_bits tag_bits conf_bits+ +( )×=



2.3 Address predictors 21
2.3.2 Stride Address predictor (SAP)
The Stride Address Predictor (SAP) is designed to predict effective addresses that exhibit
arithmetic-progression pattern. The SAP predicts that a load instruction will compute an effective
address equal to the sum of the last computed effective address and a stride. The stride is
defined as the difference of the effective addresses computed in two consecutive instances of the
load instruction.

This predictor predicts correctly load instructions that compute effective addresses in
arithmetic progression. Consequently, the SAP is able to generate addresses never seen by the
processor (the LAP only generates addresses that have been previously computed by the
processor). A load instruction correctly predicted by the LAP can also be predicted correctly by
the SAP because a constant sequence of addresses presents a particular case of arithmetic
progressions. However, the learning time of the SAP is larger than the learning time of the LAP
(two executions versus one execution).

The most simple implementation of an SAP consists of a direct-mapped table indexed by
using some bits of the instruction PC. Each table entry contains an effective address, the last
effective address computed by the load instructions mapped to the table entry, and the stride. To
reduce the number of wrong predictions, tags and confidence estimators can be attached to the
prediction-table entries. Potentially, the stride field of this table should be 64-bit wide. However,
some studies have shown that the high-order bits of the stride are not significant, and most
strides are 8-bit or 16-bit wide [GVD01].

Figure 2.12 shows the scheme of an SAP with tagged entries and with bimodal confidence
estimators.

Figure 2.13 presents the pseudo-code that predicts an effective address and updates the
Address Table of an SAP.
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Figure 2.12 Diagram of the Stride Address Predictor
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The next formula gives the amount of information recorded by an SAP. For instance, an SAP
with a 4K-entry AT, 64-bit effective addresses, 4-bit tags, 2-bit confidence estimators and 8-bit
strides records 319.488 bits, that is, 39 Kbytes.

Several works have used address predictors similar to the SAP. For instance: [EiVa93],
[ChBa95], [GoGo97a].

2.3.3 Context Address Predictor (CAP)
A Context Address Predictor (CAP) is designed to predict effective addresses computed by load
instructions that exhibit temporal locality. CAP tries to record the sequence of effective addresses
computed by the instances of each load instruction. If the predictor detects that a load instruction
is generating a recorded sequence again, the predictor predicts that the next effective address
will be the next effective address in the recorded sequence.

The basic implementation of this predictor consists in a two-level structure.

• The first-level table is named the Value History Table (VHT). The VHT is indexed by the PC
of the load instruction and contains the context; that is, the sequence of effective
addresses being generated by the load instruction. The order of a context-address
predictor is defined as the length of the sequence of addresses recorded in the context.

• The second-level table is named the Value Prediction Table (VPT). The VPT is indexed by
the hashed context and contains the predicted address that follows the context.

/* Updates the Address Table */

Update(PC, addr)
{

idx = index_bits(PC);
tag = tag_bits(PC);

if (AT[idx].tag == tag) {
if (AT[idx].addr == addr)

AT[idx].conf++;
else

AT[idx].conf--;
AT[idx].stride = addr - AT[idx].addr;

}
else {

AT[idx].tag = tag;
AT[idx].conf = INI_CONF;
AT[idx].stride = 0;

}
AT[idx].addr = addr;

}

/* Predicts an effective address
Output variable:

predict: predicted address
*/

Prediction(PC)
{

idx = index_bits(PC);
tag = tag_bits(PC);

if (AT[idx].tag == tag) {
if (AT[idx].conf > threshold)

predict = AT[idx].addr
+ AT[idx].stride;

}
}

Figure 2.13 Pseudo-code of the Stride Address Predictor

AreaCostSAP AT_entries addr_bits tag_bits conf_bits + stride_bits+ +( )×=
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The learning time of the CAP is longer than that of the previous predictors. It is equal to the
order of the predictor plus the length of the repeated sequence minus one. That is, some
executions are needed to fill the context of the instruction. After that, the sequence can be learnt,
and finally the predictor can predict effective addresses for this instruction.

A load instruction correctly predicted by the LAP can also be predicted by the CAP. Moreover,
some load instructions correctly predicted by the SAP can also be predicted by the CAP. These
load instructions must compute repeatedly the same strided sequence of effective addresses (for
instance, 1, 3, 5, 1, 3, 5, 1,...). The remaining load instructions predicted by the SAP cannot be
predicted by the CAP because the CAP generates only effective addresses previously seen by
the processor.

As in the previous predictors, prediction tables can be tagged and can contain confidence
estimators. The design space of CAP predictors is very large because there are a lot of new
design parameters such as: the order of the predictor, context representation, the indexing
function of VPT,... [Saze99] analyses some of these parameters. A typical indexing function is
obtained by shifting each address of the context some bits to the left (for instance, 0 bits the most
recent address, 3 bits the second most recent address, 6 bits the third most recent address,...),
xor-ing these values, and selecting the low-order bits of the result needed to index the VPT.

Figure 2.14 shows the scheme of a CAP with tagged VHT entries and with bimodal
confidence estimators in the VPT entries.

Figure 2.15 presents the pseudo-code that predicts an effective address and updates the
prediction tables of a CAP.

Figure 2.14 Diagram of a Context Address Predictor
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The next formula gives the amount of information recorded by a CAP. For instance, a CAP
with a 4K-entry VHT, 16K-entry VPT, 64-bit effective addresses, 14-bit contexts, 4-bit tags and
2-bit confidence estimators records 1.155.072 bits; that is, 141 Kbytes.

Other works ([SaSm97], [ReCa98]) have used this predictor; several variants of this predictor
are also presented in Section 2.5. Moreover, this predictor was previously used in branch
prediction [YePa92].

2.3.4 Hybrid Address Predictor (HAP)
Every address predictor is specialized in identifying a certain kind of address pattern. A hybrid
predictor combines several existent predictors to obtain a new predictor that tries to use the
address predictor best suited to each instruction.

A hybrid predictor needs a metapredictor (or selector) that selects the predictor that will
predict every instruction. The metapredictor can consider the operation code of the predicted
instruction or the past behaviour of the predictors with the instruction. A simple metapredictor to
choose between two predictors consists of a table of 2-bit saturating counters indexed by
predicted-instruction PC. Every counter tracks which predictor is more accurate for the
instructions that share that counter.

/* Updates VHT and APT */

Update(PC, addr)
{

idx = index_bits(PC);
tag = tag_bits(PC);

if (table[idx].tag == tag) {
idx2 = HASH(VHT[idx].context);
if (VPT[idx2].addr == addr)

VPT[idx].conf++;
else {

VPT[idx].conf--;
VPT[idx2].addr = addr;

}
}
else {

VHT[idx].tag = tag;
VHT[idx].conf = INI_CONF;
VHT[idx].context = NULL_CONTEXT;

}
insert(addr, VHT[idx].context);

}

/* Predicts an effective address
Output variable:

predict: predicted address
*/

Prediction(PC)
{

idx = index_bits(PC);
tag = tag_bits(PC);

if (VHT[idx].tag == tag) {
idx2 = HASH(VHT[idx].context);
if (VPT[idx2].conf > trh)

predict = VPT[idx2].addr;
}

}

Figure 2.15 Pseudo-code of the Context Address Predictor

AreaCostCAP VHT _entries tag_bits context_bits+( )× ˙ VPT _entries conf_bits addr_bits+( )×+=
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Several works have used hybrid predictors to predict effective addresses or instruction
results; for instance [WaFr97], [BMP+98] and [PMT99]. Hybrid prediction has also been used in
the context of branch prediction [McFa93].

2.4 Performance comparison of address predictors
In this section a simple evaluation of the basic address predictors reported in the previous
section is presented. We have used them to predict the effective addresses computed only by the
load instructions.

2.4.1 Metric description
In this work, we will use three metrics to measure the performance of the address predictors:

• Captured predictability, defined as the percent of correctly predicted effective addresses
out of the total number of executed load instructions.

• Accuracy, defined as the percentage of correct predictions out of the number of
predictions.

• Area cost, defined as the amount of information recorded in the prediction tables of a
predictor.

2.4.2 Results
In order to evaluate the address predictors, we have instrumented (Appendix A.1) the load
instructions of the benchmark suite (Appendix A.2). Benchmarks have been run until completion.

Maximum captured predictability
First, we have computed the potential performance of the predictors. Table 2.1 shows the
maximum predictability captured by the Last-Address Predictor, the Stride Address Predictor and
the Context Address Predictor. In these evaluations we have used LAP's and SAP's with
unbounded AT's and no confidence mechanisms; also, we have used CAP's with order 4,

unbounded VHT's and extremely large VPT's (220 entries).

We can observe that LAP predicts correctly around 56% of the effective addresses in
SPEC95-INT benchmarks, but only around 25% of effective addresses in SPEC95-FP
benchmarks. In most integer benchmarks, SAP increments slightly the predictability captured by
the LAP; only in m88ksim, compress and ijpeg is the increment significant. On the other hand,
the SAP is very effective in floating-point benchmarks due to the presence of strided vector
accesses. Finally, the CAP is more effective than SAP in integer benchmarks (79% versus 66%),
but not in floating-point benchmarks (76% versus 87%).

In benchmarks go and perl, the maximum predictability captured by the LAP is bigger than
the maximum predictability captured by the SAP. This is due to the fact that the learning time of
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SAP (two instructions) is longer than the learning time of LAP (one instruction), and most
instructions predictable by the SAP in these programs are also predictable by the LAP.

Maximum captured predictability using bimodal confidence mechanisms
With confidence mechanisms, some predictions that will probably be wrong can be avoided.
However, some correct predictions may also be avoided. Table 2.2 shows the captured
predictability and the accuracy of the predictors obtained by adding a confidence estimator to the
predictors used in the evaluations presented in Table 2.1. Note that the accuracy of the
predictors presented in Table 2.1 is equal to their captured predictability.

Comparing Table 2.1 and Table 2.2, there is a reduction in the maximum predictability
captured by the address predictors. Confidence mechanisms increase the learning time of the
predictors and prevents some predictions that may be correct.

SPEC95-INT
Benchmark

LAP SAP CAP
SPEC95-FP
Benchmark

LAP SAP CAP

go 52.66 50.21 69.44 tomcatv 2.78 97.78 69.75

m88ksim 71.89 84.22 95.75 swim 0.24 99.30 52.90

gcc 64.86 65.96 81.96 su2cor 23.89 83.20 59.74

compress 57.66 76.23 65.39 hydro2d 7.72 96.77 68.10

li 35.55 38.18 82.27 mgrid 0.29 92.92 87.33

ijpeg 21.71 73.18 45.44 applu 44.02 77.32 65.46

perl 79.22 78.95 99.92 turb3d 31.10 61.31 86.99

vortex 62.65 61.17 93.15 apsi 26.81 83.06 89.97

 Average 55.77 66.01 79.16 fpppp 97.29 97.73 99.14

wave5 19.38 80.82 77.88

Average 25.35 87.02 76.17

Table 2.1 Predictability captured by the address predictors with unbounded prediction tables and
no confidence mechanism in SPEC95 benchmarks
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Area cost versus captured predictability
We will compare the area cost of several predictor configurations versus their captured
predictability. We present the results of LAP and SAP configurations from 256-entry to
16Kbyte-entry AT's. Furthermore, we present the results of CAP configurations with order four,
from 256-entry 16Kbyte-entry VHT's, and the number of VPT entries is four times the number of
VHT entries. Figure 2.16 shows the results for SPEC95-INT benchmarks and Figure 2.17 for
SPEC95-FP benchmarks. Each graph is related to a benchmark; the vertical axis stands for the
captured predictability, the horizontal axis stands for the area cost of the predictors (note the
logarithmic scale) and a line connects the results for each address predictor.

Benchmark
LAP SAP CAP

Predict. Accur. Predict. Accur. Predict. Accur.

go 47.81 92.40 44.95 92.32 62.65 93.90

m88ksim 69.53 96.89 79.86 94.18 94.16 97.89

gcc 60.11 95.03 61.47 96.11 75.92 95.43

compress 57.27 99.72 71.73 96.17 61.95 99.18

li 30.20 94.11 31.06 94.16 76.27 96.07

ijpeg 19.11 93.14 68.67 93.05 38.78 96.71

perl 79.19 97.61 76.36 99.54 99.90 99.97

vortex 56.28 93.90 57.73 96.85 90.70 97.63

SPEC95-INT average 52.43 95.35 61.47 95.29 75.04 97.09

tomcatv 2.64 98.09 97.12 98.89 54.71 76.04

swim 0.24 99.94 98.95 99.30 42.39 75.15

su2cor 23.58 99.71 82.28 98.84 51.92 96.34

hydro2d 7.40 99.95 95.76 97.95 50.99 91.58

mgrid 0.29 99.94 89.53 93.30 80.95 96.73

applu 43.05 95.88 67.56 84.73 59.33 99.08

turb3d 28.89 99.06 53.11 87.24 84.55 98.30

apsi 26.19 96.71 74.99 90.05 86.96 99.42

fpppp 97.19 99.91 97.19 99.84 98.99 99.84

wave5 17.83 95.34  78.61 97.77 73.38 98.41

SPEC95-FP average 24.73 98.45 83.51 94.79 68.42 93.09

Table 2.2 Captured predictability and accuracy of the address predictors with unbounded
prediction tables and confidence mechanism in SPEC95 benchmarks
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In all integer benchmarks except ijpeg and compress, the CAP achieves the best
performance but it needs a large area cost to outperform the LAP and the SAP. However, with a
small area-cost budget, LAP and SAP offer better performance than CAP. In most benchmarks,
the LAP and the SAP offer a similar cost-performance relationship.

Figure 2.16 Area cost versus captured predictability of the LAP, SAP and CAP in
SPEC95-INT benchmarks
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Figure 2.17 Area cost versus captured predictability of the LAP, SAP and CAP in SPEC95-FP
benchmarks
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In most floating-point benchmarks, the SAP offers the best cost-performance relationship. In
benchmarks tomcatv, su2cor and hydro2d, CAP performance is much smaller than the value
presented in Table 2.2, because the mapping function to the VPT is not the best suited for these
benchmarks.

2.5 Related works
Lipasti et al. [LWS96] introduced the concept of value locality when they observed that the
sequence of results produced by each instruction exhibits temporal locality; that is, each
instruction tends to produce results that have been produced in previous executions of the
instruction. Their evaluations observed this property in arithmetic instructions and in memory
access instructions (both in the values loaded from memory and in the effective addresses). After
this observation, they proposed to extract more parallelism from programs by using a predictor
that exploits this property.

In order to perform a prediction, the predictor must select a value from the value history of the
instruction. The easiest implementation consists in selecting the last result produced by the
instruction; that is, a predictor like the Last-Address Predictor. However, although the sequence
of effective addresses computed by a load instruction exhibits temporal locality, they may not be
predictable by a Last-Address Predictor. For instance, a load instruction that randomly accesses
two memory locations exhibits temporal locality (only produces two different effective addresses)
but no predictor can learn its access pattern. Furthermore, a sequence of addresses that are in
arithmetic progression does not exhibit temporal locality, but it can be predicted by a Stride
Address Predictor. Consequently, although a sequence of addresses exhibit temporal locality, it
might not be predictable by a predictor. The sequence is predictable if it follows a pattern that can
be learnt by the predictor.

We have reported the basic implementations of the main address predictions, but several
works have presented slight variations to these schemes.

Eickemeyer and Vassiliadis [EiVa93] proposed a variation to the SAP that does not update the
stride field after every prediction in order to avoid mispredictions in repeated stride sequences.
This variation is useful for load instructions that produce strided sequences and that are placed
inside a loop nest, because it avoids the learning time of the predictor on the first loop iterations.
Chen and Baer [ChBa95] proposed the usage of branch-outcome information to avoid
mispredictions related to strided load instructions placed inside loop nests. This variation was
applied on prefetching; it avoids starting more prefetchings than loop iterations.

Several variants to the CAP reported in Section 2.3.3 have also been proposed. The main
difference between them is the context information recorded in the VHT.
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• The Global-correlated context-address predictor ([BJR+99]) builds the context from the
base addresses of the memory accesses instead of using the effective addresses. The
VPT records base addresses instead of effective addresses. Consequently, the
memory-access instructions that use the same base addresses will share the same VPT
entries. For instance, the load instructions that access several fields of a structure element
(load instructions (1) and (2) in Figure 2.8). To obtain the predicted effective address, the
base address obtained from the VPT must be added to the offset of the load instruction.

• The Differential Finite Context Method ([GVD01]) was proposed in the scope of value
prediction but can also be applied to address prediction. The context is built from the
sequence of differences between the last results of an instruction. Thus, all the
instructions that generate the same sequence of differences will share the same VPT
entries. The VPT records the differences related to each context. To obtain the predicted
result, the last instruction result must be added to the predicted difference. This predictor
also allows several instructions to share VPT entries. For instance, if we apply it to
address prediction, and some load instructions are accessing several fields of a linked list
load instructions (1) and (2) in Figure 2.8), the sequence of differences produced by these
load instructions will be unique. Moreover, the sequence of differences of all the load
instructions that are in arithmetic progression with stride one will be the same.
Consequently, these load instructions will share a VPT entry.

Another variant to the CAP was proposed by [WaFr97] in the scope of value prediction. This
proposal takes advantage of the temporal locality property of the instructions results. The
authors evaluated the number of different results produced by an instruction and found that in
most cases it was limited by four. Thus, they organize the prediction tables with this restriction.
Their VHT records the four most recent unique results of each instruction and their VPT selects
one of these four results. Their VPT is indexed by a history pattern built from the location
identifiers (00, 01, 10 and 11) of the results recorded in VHT.

The reported address predictors predict a load instruction by considering only the previous
instances of this load instruction. Other address predictors predict a load instruction by
considering the behaviour of other load instructions. For instance, the Dependence-based
Address Predictor (DEAP), proposed in [AEK+01], relies on the data dependences between two
load instructions. The DEAP tries to detect if a load instruction (producer) loads a value that is
used by another load instruction (consumer) as the base address of its memory access. Thus,
the effective address of the consumer load is predicted by considering the value loaded by the
producer load instruction. These kinds of predictors can predict load instructions that compute a
sequence of effective addresses exhibiting neither temporal locality nor arithmetic-progression
pattern.
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2.6 Chapter summary
In this chapter we have shown that some memory-access instructions generate effective
addresses exhibiting temporal locality or following an arithmetic-progression pattern. In the case
of an Alpha architecture, we have presented high-level code scenarios that produce these load
instructions.

Then, we have described address predictors. An address predictor is a hardware mechanism
designed both to identify load instructions that exhibit a repeatable pattern, and to predict the
effective addresses computed by the next instances of these load instructions. We have reported
the main classes of address predictors proposed in the literature: Last-Address Predictor, Stride
Address Predictor and Context Address Predictor.

After that we have evaluated the address predictors. The evaluations show that address
predictors can correctly predict a significant percentage of effective addresses computed by load
instructions. In SPEC95-INT benchmarks, the simplest address predictor (the Last-Address
Predictor) correctly predicts about 52% of effective addresses computed during their execution;
the Context Address Predictor can capture even more predictability (75%). In the case of
SPEC95-FP benchmarks, the Stride Address Predictor correctly predicts about 83% of the
effective addresses. Moreover, the accuracy of the predictors is around 95%.

The high predictability of the effective addresses suggests a new opportunity to tolerate the
latency of the load instructions. An address predictor can predict the effective addresses early in
the pipeline (note that prediction tables are indexed with the instruction PC) and memory can be
accessed before computing the effective address. On data availability, the instructions dependent
on the load instruction may be executed speculatively.

Despite the high predictability of the effective addresses, the performance impact of address
prediction and speculative execution on processor performance must also take other issues into
account such as area-cost of the address predictors, the integration of address prediction in a
processor pipeline, address-misprediction handling. These issues will be analysed in the
following chapters.
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3 REDUCING

PREDICTION-TABLE

SIZE BY FILTERING

In this chapter two techniques for reducing the amount of information recorded in
the prediction table of an address predictor are presented. Both techniques use
the same strategy: filtering-out the allocation of unpredictable load instructions in
the prediction table. This chapter is organized as follows. In Section 3.1, the
chapter is introduced. In Section 3.2, the main idea of the filtering techniques are
presented. In Section 3.3, the benchmarks used in our evaluations are
characterized; this characterization will be used to design the proposed filtering
techniques. In Section 3.4 an address predictor that uses the first filtering
technique is presented and evaluated. In Section 3.5, an address predictor that
33
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uses the second filtering technique is presented and evaluated. In Section 3.6,
some related works are reviewed. Finally, in Section 3.7 this chapter is
summarized and in Section 3.8 the results of our proposals for all SPEC95-INT
benchmarks are presented.

3.1 Introduction
The amount of information recorded in the prediction tables of the address predictors turns out to
be very large. For instance, assuming 64-bit effective addresses, a Last-Address Predictor with a
4K-entry Address Table manages around 32 Kbytes of information. A Context Address Predictor
with a 4.096-entry Value History Table and a 16K-entry Value Prediction Table manages around
140 Kbytes of information. That is, an amount of information similar of ever greater than that of
current first-level caches.

Potentially, the address predictors reported in Section 2.3 predict correctly a significant
amount of effective addresses. However, the use of bounded prediction tables can produce
conflicts between the load instructions, and these conflicts can reduce the performance of the
address predictor. We present two scenarios where conflicts in the prediction tables reduce
predictor performance:

• Predictor resources are efficiently used when they are assigned to predictable
instructions. However, the policy used by the reported address predictors to allocate load
instructions in the prediction tables does not consider the predictability of the load
instructions. These predictors use the always allocate allocation policy; that is, if a
prediction-table probe detects a miss in the prediction table, the prediction table will be
updated by inserting the load instruction that produced the miss. Consequently, an
unpredictable load instruction can evict a predictable one. The use of a more sophisticated
allocation policy can filter-out some allocations in the prediction tables to avoid the
allocation of unpredictable load instructions. Filtering is valuable to increase the
predictability captured by the predictor maintaining its area cost, or to capture the same
predictability reducing its area cost.

• Confidence estimators are useful for reducing the amount of address mispredictions; that
is, an address prediction only takes place when there is a high confidence in the
correctness of the prediction. The reported predictors predict a load instruction only when
the load instruction has shown during some executions that it is predictable. Consequently,
some executions that would be correctly predicted are not predicted; that is, confidence
counters represent a trade-off between the number of right predictions and the number of
mispredictions. Unfortunately, when a load instruction is evicted from the prediction table,
its confidence information is lost. Then, when this instruction is allocated again in the
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prediction table, the confidence estimator must start the estimation of the load instruction
from scratch. The use of other confidence mechanisms can reduce the
confidence-estimator start-up produced every time a load instruction is allocated in the
prediction table.

In this chapter we propose two enhancements to the Last-Address Predictor (LAP), which
focus on reducing prediction-table conflicts. Our proposals try to filter-out unpredictable load
instructions and to reduce the loss of predictability produced by the confidence-estimator
start-up. The first variation is named Filtering by Continuous Classification Last-Address
Predictor (CLAP); the second variation is named Filtering by Discrete Classification
Last-Address Predictor (DLAP). We have focused on the LAP because it offers a significant
performance on integer benchmarks (Section 2.4.2), and address prediction is expected to have
a larger impact in integer benchmarks than in floating-point benchmarks (they are less sensitive
to load latency than integer benchmarks [APS95]).

We have evaluated the performance of the proposed address predictors in terms on captured
predictability, accuracy and area cost, and we have compared them against that of the LAP. To
perform these evaluations, we have instrumented the benchmarks (Section A.1.1) and run them
until completion.

The evaluations show that our proposals need less area-cost than the LAP to capture the
same predictability; CLAP saves around 19% and DLAP saves around 40%. As the DLAP offers
better performance than the CLAP, we compare the DLAP against filtering predictors proposed in
the literature, assuming direct-mapped and associative prediction tables.

In this chapter we present results in terms of captured predictability, accuracy and area cost.
In Chapter 5 we will present IPC evaluations of address prediction.

3.2 Main idea of the filtering strategies
Using a LAP, the confidence information of all the load instructions that conflict at the same AT
entry is merged into one confidence counter. This fact can degrade the confidence information;
consequently, the number of correct predictions may be reduced and the number of wrong
predictions may be increased. To solve this problem, we will try to maintain the confidence
information of each load instruction without interference, even for the load instructions that
conflict in AT.

This goal is achieved by using a new prediction table, the Classification Table (CT), which
records the confidence information of the executed load instructions. The number of CT entries
will be larger than the number of AT entries in order to keep the confidence information of load
instructions that conflict in AT. To simplify the implementation of the filtering predictor, both the
number of AT entries and CT entries should be a two-power number. We will name the table-size
ratio of the filtering address predictor to the relation between the number of CT entries and the



36 Chapter 3 R EDUCING PREDICTION-TABLE SIZE BY FILTERING
number of AT entries. Figure 3.1 shows an example where the table-size ratio is four; that is, CT
records the classification of up to four load instructions mapped at the same AT entry.

We can use the information recorded in CT to avoid the placement of unpredictable load
instructions in AT. Applying this filtering to direct-mapped AT's, conflicts between predictable and
unpredictable load instructions in AT are avoided. However, the predictability captured by the
predictor is increased only when, in an execution-program context, several unpredictable load
instructions and only one predictable load instruction are mapped at the same AT entry.
Moreover, this information will be used to initialize the confidence estimator of the predictor.
Consequently, the use of the CT will reduce the miss rate related to predictable load instructions.

Updating the information recorded in CT is a critical aspect of this proposal. The main
difference between the two filtering techniques proposed in this chapter is how CT is updated.

3.3 Benchmark characterizations
This section presents some characterizations of the SPEC95-INT benchmarks. These
characterizations will be used to design the filtering techniques presented in this chapter, and to
decide the evaluated range of prediction-table capacities. First, in Section 3.3.1 an analysis of
how the address predictability is distributed among the instructions of the benchmarks is
presented. Then, in Section 3.3.2 the working-set size of load instructions of each benchmark is
evaluated. Finally, in Section 3.3.3 the bursts of accesses that are hits in direct-mapped
prediction tables are examined.

3.3.1 Address-predictability distributions
We present an analysis of the contribution of the load instructions to the overall address
predictability captured by a LAP with an unbounded Address Table and no confidence
mechanism. For each load instruction, we have evaluated its predictability (defined as the
percent of correctly predicted executions out of the number of executions). After that, we have
grouped load instructions in ranges of predictability. Figure 3.2-a presents the distribution of the
static load instructions according to their predictability. It fades out from the highly predictable
load instructions (90%-100% range, at the bottom of each bar), to the highly unpredictable ones
(0%-10% range, at the top of each bar). We can observe that between 25% (perl) and 60%
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(ijpeg) of static load instructions can be classified as highly predictable, and between 20% (go)
and 45% (perl) as highly unpredictable.

To show the contribution of each predictability range on the number of executed load
instructions, every static load instruction has been weighted with its execution frequency;
Figure 3.2-b shows this distribution. In some benchmarks, highly predictable and highly
unpredictable load instructions represent almost all executed loads (compress, perl). In other
benchmarks, load instructions with a medium predictability account for a significant proportion of
the number of executed load instructions (go, vortex). The static and the dynamic load-instruction
distributions can differ significantly (for instance, in benchmark ijpeg, 60% of static load
instructions are highly unpredictable, but they only represent 16% of executed load instructions).

The absolute contribution of every predictability range to the captured predictability show us
the significance of medium-predictable load instructions to the predictability. Left bars related to
benchmarks in Figure 3.3 show the contribution of every load-instruction range to the
predictability captured by the Last-Address Predictor. The main contribution is made by static
load instructions in range 90%-100%. They account for between 82% and 97% of the overall
predictability. The static load instructions in range 70%-90% represent a small contribution. They
account, at most, for 8% of the overall predictability. Remaining overall predictability is produced
by static load instructions that belong to lower predictability ranges; for instance, the contribution
of load instructions in the 10%-60% range to the overall predictability varies from 6.5% to 2%.

Influence of load-instruction classification on predictability distributions
We use two-bit saturated counters as a dynamic classifying mechanism of load instructions. A
counter is assigned to each prediction-table entry. When a load instruction computes the same
effective address as in its previous execution, the counter will be increased by one, otherwise it
will be decreased by one. We classify a load instruction as predictable if its saturated-counter
value is greater than one; otherwise, it is classified as unpredictable. This classification can be
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Figure 3.2 Static (a) and dynamic (b) load-instruction distribution according to their address
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used as a confidence estimator, that is, to predict a load instruction it must be classified as
predictable.

Classifying counters detect load instructions that, on a burst consecutive executions, compute
the same address; these bursts will be called predictable bursts. When a predictable burst is
detected, the load instruction is classified as predictable and, on subsequent executions, it will be
predicted. When the predictable burst finishes, the instruction is classified as unpredictable until
a new predictable burst is detected. As the classifying predictor needs some executions of the
load instruction to detect a predictable burst, some predictability of the load instruction is not
captured. Moreover, when a short predictable burst is detected, it can be over or almost finished.
Short predictable bursts are mainly produced by load instructions with medium or low
predictability.

Two-bit saturated counters classify correctly highly predictable and highly unpredictable load
instructions, but the ones with medium or low predictability may be classified wrongly. Then, the
predictability captured by the address predictor may be reduced. Using unbounded tables,
Figure 3.3 shows the predictability captured by the LAP without confidence estimation (left bar)
and by the LAP with confidence estimation (right bar) distributed according to the load-instruction
predictability ranges. The decrease in the captured predictability attributable to the classifying
mechanism is related to the contribution of load instructions with medium or low predictability to
overall predictability, because the classifying predictor is not able to fully capture their
predictability. This reduction can account for up to 15% of the captured predictability.

In summary, we have shown that the predictability of load instructions do not spread uniformly
among them; that is, a significant number of static load instructions are highly predictable or
highly unpredictable. This non-uniform distribution is not considered by address predictors that
use the always allocate policy because unpredictable load instructions can be allocated in AT.
These allocations do not contribute to the predictability captured by a predictor and, moreover,
can damage some predictability if these allocations evict predictable load instructions.
Consequently, filtering the allocation of unpredictable load instructions in AT can be profitable to
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Figure 3.3 Predictability captured by the LAP without confidence estimation (left bar) and by the
LAP with confidence estimation (right bar) distributed in address-predictability ranges.
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increase the predictability captured by the predictor or to reduce its area cost, because we can
capture as much predictability using less AT entries; that is, capacity misses are reduced. In this
chapter, we will present a mechanism that records confidence information of the evicted load
instructions as well as guiding the replacement algorithm in AT.

3.3.2 Working-set size of static load instructions
In order to dimension properly the amount of prediction-table entries used in the evaluations
performed in this chapter, we have computed the working-set size of static load instructions of
each benchmark.

First, we have evaluated the miss rate of the LAP using both direct-mapped and fully
associative mapping policies (the latter with the Least Recently Used (LRU) replacement policy).
The miss rate of a LAP is defined as the percentage of executed load instructions which tags are
not present in AT. Figure 3.4 shows the results obtained in the SPEC95-INT benchmarks; the
vertical axis stands for the miss rate and the horizontal axis stands for the number of AT entries.

From these results, we made the following observations:

• The presence of benchmarks that need a very large AT to achieve a low miss rate. For
instance, in benchmark go, a 1.024-entry fully associative AT or a 2.048-entry
direct-mapped AT are needed to achieve a 10% miss rate.
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Figure 3.4 Miss rates in the LAP (using direct-mapped and fully associative AT's)
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• The existence of a significant amount of conflicts due to direct mapping. For instance, in
benchmark m88ksim, a 512-entry fully associative AT exhibits a 3% miss rate while the
direct-mapped AT exhibits a 20% miss rate.

After that, we define the working-set size of static load instructions of a benchmark as the
minimum two-power number of AT entries needed to achieve a 1% miss rate, at most, in a fully
associative AT with LRU replacement policy. Table 3.1 shows a classification of all the analysed
benchmarks according to their working-set sizes.

The working-set size of a benchmark is related to the number of AT entries needed by a LAP
configuration to achieve a performance similar to the one obtained using an unbounded AT. In
previous evaluations ([BMP+98][CRT99][GoGo97b][LWS96][RFKS98]), typical prediction-table
sizes ranges from 1.024 to 4.096 entries and, in some cases, mapping is four associative. These
sizes are big enough to capture the whole working set of load instructions of most SPEC95-INT
benchmarks. Moreover, associativity reduces conflict misses in prediction tables but their access
time can be a restriction. In this chapter, we also evaluate smaller table sizes to know the
behaviour of our proposed predictors when they are pressured by capacity and conflict misses,
because the goal is filtering the allocation of unpredictable load instructions in the prediction
table.

3.3.3 Hit-bursts distributions
We define the hit-burst length as the number of consecutive executions of a static load instruction
that are hits in AT. A hit burst of length N involves N+1 consecutive executions of the load
instruction: the first one produces the allocation of the load instruction in AT (a miss in AT), and
the remaining N executions are hits in AT.

On a replacement in an AT entry, its confidence-counter value is initialized to one.
Consequently, the next execution of the allocated load instruction will not be predicted, and will
be only used to modify its confidence-counter value. The loss of predictability due to this
initialization can be large if the eviction of a load instruction from AT after few executions of this
load instruction is usual. For instance, consider a 100%-predictable load instruction, and let its
hit-burst length be two executions. The first execution of the load instruction will be a miss in AT,

Class Benchmark
Working-set size

of static load
instructions

Small compress ≤ 128

Medium li, ijpeg, perl 256 - 512

Large m88ksim 1.024

Extra-Large go, gcc, vortex ≥ 2.048

Table 3.1 Benchmark classification according to their working-set sizes of static load
instructions.
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so the LAP will allocate the load instruction in AT and will set to one its confidence-counter value.
The first hit of the burst will not be predicted, but will increase the confidence-counter value, and
the second (last) hit of the burst will be predicted. Consequently, the predictor will be able to
predict only one of the two executions of the hit burst; that is, the loss of predictability will be 50%.
On the other hand, consider the same load instruction with a hit-burst length of 10 executions. In
this case, the loss of predictability will be 10%.

We have evaluated the number of occurrences of every hit-burst length, and they have been
weighted by their number of involved executions. Figure 3.5 shows cumulative distributions of the
hit-burst lengths in SPEC95-INT benchmarks using direct-mapped AT's. The vertical axes stand
for the percent of dynamic load instructions and the horizontal axes stand for the hit-burst length,
and every graph is related to a number of AT entries. The horizontal axis is cut at hit-burst length
18, but all graphs saturate at 100%. As the number of AT entries increases, the number of
misses decreases, and the hit-burst lengths become larger.

We have observed that a significant amount of dynamic load instructions is related to short hit
bursts. For instance, in benchmark go, for a 1.024-entry direct-mapped AT, a 29% of dynamic
load instructions are related to hit bursts of, at most, length four. To capture the potential
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Figure 3.5 Cumulative dynamic-load-instruction distributions according to hit-burst lengths

go m88ksim gcc

compress li ijpeg

vortexperl

%
 D

yn
am

ic
 L

oa
d 

in
st

ru
ct

s

Hit-burst lenght
1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 17 180 1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 17 180

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 17 180
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

128
256
512

1.024
2.048
4.096

Number of AT entries

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 17 180 1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 17 180 1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 17 180

1 2 3 4 5 6 7 8 9 10 11 12 1314 1516 17 1801 2 3 4 5 6 7 8 9 10 11 12 1314 1516 17 180



42 Chapter 3 R EDUCING PREDICTION-TABLE SIZE BY FILTERING
predictability of these short hit bursts, an address predictor must be able to predict the load
instructions as soon as they are allocated in AT.

Moreover, we have noticed that the percentage of dynamic load instructions related to hit
bursts of length zero is significant in some benchmarks and configurations. For instance, in
benchmarks m88ksim and go using a 1.024-entry AT, they represent about 10% of the dynamic
load instructions. Zero-length hit bursts are generated by load instructions that are allocated in
AT and, before their next execution, they are evicted from AT.

Although several benchmarks exhibit a similar miss rate, their hit-burst length distributions
can present significant variations. For instance using direct-mapped AT's, the 256-entry AT in
benchmark li, the 1.024-entry AT in m88ksim and the 2.048-entry AT in go exhibit around a 12%
miss rate, but their hit-burst distributions differ significantly. Table 3.2 shows the percent of
dynamic load instructions related to hit bursts of length zero, up to four and up to ten executions
in these benchmarks. For the same miss rate, hit-burst lengths tend to be shorter in benchmark
go than in benchmark m88ksim. For instance, the percentage of dynamic load instructions that
are related to hit-burst lengths shorter than or equal to four instructions in benchmark go is
17.21%, while in benchmark m88ksim it is 13.39%.

To exploit fully the predictability available in short hit bursts of predictable load instructions, we
propose recording confidence information of the evicted load instructions. This information will be
used to initialize the confidence-counter value of the AT entries when the load instructions are
re-allocated in AT.

3.4 Filtering by means of a continuous classification
This section develops the first technique proposed to reduce prediction-table size of a LAP. First,
in Section 3.4.1, a mechanism for classifying continuously load instructions according to their
predictability is proposed. In Section 3.4.2, the Filtering by Continuous Classification
Last-Address Predictor (CLAP) is introduced, a predictor that uses the previous classifier to
avoid the allocation of unpredictable load instructions in the Address Table. Finally, in
Section 3.4.3 the evaluation of this predictor is presented.

256-entry
li

1.024-entry
m88ksim

2.048-entry
go

hit-burst length

0 7.54 9.4 5.18

≤ 4 16.41 13.39 17.21

≤ 10 23.65 16.89 26.16

Miss rate (direct-mapped AT) 12.69 11.63 11.72

Table 3.2 Percentage of dynamic load instructions related to hit-burst of length zero, up to four
and up to ten executions, and miss rates in some LAP configurations and benchmarks
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3.4.1 Dynamic classification: <N, k> classifying mechanism
All bits of the effective addresses are needed to perform a memory access, but they are not
needed to classify a load instruction. We propose the use of few bits of the effective addresses
as input of the load classifier.

To classify a load instruction as non-predictable by a LAP, it is sufficient to detect that one bit
of the effective addresses computed in two consecutive executions of a load instruction differs.
Consequently, a few bits of the computed addresses (N bits, for instance the least-significant
bits) can be enough to classify load instructions. If one of these bits is different, the classification
will be correct (equal to the classification performed comparing all bits of the computed
addresses). Wrong classifications will be produced, for instance, if addresses are in arithmetic
progression and the analysed bits are not modified (a load instruction with a large stride); this
load instruction will be classified as predictable but it is not.

Furthermore, the mapping of language data types into architectural data types performed by
the compiler can cause some low-order bits of the computed addresses to be non-significant for
classifying most load instructions. For instance, paddings performed by the compiler to align
fields of data structures.

Then, we propose a classifying mechanism named <N, k>, where N is the number of bits
used to classify load instructions, and k is the number of low-order bits discarded from the
computed addresses. That is, the classifier skips the k low-order bits of the computed addresses
and then selects the N low-order bits.

To evaluate the <N, k> classifying mechanism, we compared it against the classifying
mechanism that uses all bits of the effective address (<64, 0>). We define the similarity of the
<N, k> classifying mechanism as the percentage of coincidences of the classifying counters of
<N, k> and <64, 0> (every time a load is executed, the classifying counter values related to this
load are checked) out of the number of executed loads.

In this work we have used load-instruction traces taken from an 21264 Alpha-AXP processor.
Since the fundamental unit of data of Alpha architecture is 8 bytes [Bhan96], we have also
evaluated the discarding of the 3 low-order bits of the effective addresses for classifying load
instructions.

Figure 3.6 shows the average similarity in the SPEC95-INT benchmarks of two N-bit
mechanisms: no-skipping (<N, 0>) and 3-bit skipping (<N, 3>). Mechanism <N, 3> does not take
advantage of selecting more than five bits due to eight-byte un-aligned computed addresses. Its
similarity graph is saturated at 90%. To achieve a similarity greater than 90%, the three low-order
bits must be selected as shown in the graph of <N, 0>.
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Cases <3, 3> and <4, 3> obtain a high similarity (over 80%). Moreover, <4, 3> achieve almost
the same similarity as <6, 0>. We will use the <3, 3> classifier mechanism in our proposed
predictor; the similarity of this classifier is about 80%. To improve the similarity of the proposed
classifier, the operation code of load instructions can be used to decide dynamically the number
of skipped bits. However, we do not use this improvement in this work.

Figure 3.24 in Section 3.8.1 presents the similarity for each SPEC95-INT benchmark.

3.4.2 Filtering by Continuous Classification Last-Address Predictor (CLAP)
This section describes a predictor mechanism with run-time classification. It takes advantage of
two considerations:

• As we have shown in the previous section, a few bits of the effective addresses are
enough to classify load instructions precisely.

• Only when a load is predictable is it necessary to record the whole effective address
accessed by the load instruction

Following these considerations, we propose to split the Address Table of the LAP into two
tables: the Classification Table (CT) and the Address Table (AT). CT is used to classify
dynamically load instructions according to their predictability. AT stores the last effective
addresses computed by predictable load instructions. Figure 3.7 shows a diagram of the
mechanism. It will be named Filtering by Continuous Classification Last-Address Predictor
(CLAP).

To classify load instructions dynamically, the predictor uses the <N, k> mechanism described
in Section 3.4.1. CT is direct mapped and each entry contains two fields: a two-bit saturated
counter, and N bits of the effective address. The counter is used to classify load instructions
continuously; that is, each executed load updates the CT.

Figure 3.6 Average similarity of <N, 0> and <N, 3> classifying mechanisms
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AT is also direct mapped and each entry contains a complete effective address and a ct_tag;
this tag identifies the CT entry related to an AT entry.

The proposed predictor avoids the placement of highly unpredictable load instructions in the
AT using the information recorded in CT. The placement of load instructions in AT are filtered
using CT: their saturated counter must be greater than 1. This filtering allows predictable load
instructions to continue being placed in AT, and provides more chances to exploit their
predictability. Figure 3.8 compares the decision tables applied by the LAP and by the CLAP to
decide if a load instruction that misses in the AT must be allocated in AT. The LAP applies the
always allocate replacement policy, and the CLAP filters some allocations by considering the
information obtained from the CT.

The predictor works as follows: When a load instruction is fetched, the appropriate CT and AT
entries are selected, and the ct_tag field is checked to determine if the AT entry is related to this
CT entry. If so, the counter value in CT is used to decide if the load is predicted, otherwise it is
not predicted. The procedure Prediction in Figure 3.9 depicts the pseudo-code related to these
actions.

Classification
Table (CT)

Address
Table (AT)

address ct_tag

PC

index_at

index_ct

counter subaddress

ct_tag

Figure 3.7 Diagram of the Filtering by Continuous Classification Last-Address Predictor (CLAP)

Allocated instruction

unpredictable predictable

Missing
instruction

unpredictable

Replace

predictable

Allocated instruction

unpredictable predictable

Missing
instruction

unpredictable Don't replace

predictable Replace

Figure 3.8 Decision tables applied by the replacement algorithms of the LAP and by the CLAP
a) LAP b) CLAP
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The prediction tables are updated after the address stage of the pipeline (procedure Update
in Figure 3.9 shows its pseudo-code). On an AT hit, the selected entry is updated using the
computed effective address. On an AT miss, the counter value in CT entry is checked to decide if
the current AT entry is to be replaced.

The following expression shows the area cost of the CLAP as a function of the number of
table entries. We have assumed 64-bit effective addresses, 2-bit confidence counters and the
<3, 3> classifying mechanism.

3.4.3 Evaluation results
In this section an evaluation of the CLAP compared versus the LAP is presented. Their miss rate,
area-cost, captured predictability and accuracy have been compared.

Miss rate in the prediction tables
Using the LAP, every load instruction is allocated in the AT. However, using the CLAP, only a
portion of all load instructions are allocated in AT, because CT filters-out the allocation of some
load instructions. Thus, we expect this filtering to reduce the amount of capacity misses in AT
comparing a LAP and a CLAP with the same AT size.

/* Updates CT and AT */

void Update(PC, address) {
index_at = INDEX_AT(PC);
index_ct = INDEX_CT(PC);
ct_tag = CT_TAG(PC);
subaddress = SELECT_N_BITS(address);
if (AT[index_at].ct_tag == ct_tag) {

if (AT[index_at].address == address)
CT[index_ct].counter ++;

else CT[index_ct].counter --;
AT[index_at].address = address;

}
else {

if (CT[index_ct].subaddress == subaddress)
CT[index_ct].counter ++;

else CT[index_ct].counter --;
if (CT[index_ct].counter > 1) {

AT[index_at].ct_tag = ct_tag;
AT[index_at].address = address;

}
}
CT[index_ct].subaddress = subaddress;

}

Figure 3.9 Pseudo-code of the Filtering by Continuous Classification Last-Address Predictor
(CLAP)

/* Predicts an effective address
Output variable:

-pred: predicted address
*/

void Prediction(PC) {
index_at = INDEX_AT(PC);
index_ct = INDEX_CT(PC);
ct_tag = CT_TAG(PC);
if ((AT[index_at].ct_tag == ct_tag) &&

(CT[index_ct].counter > 1))
pred_addr = AT[index_at].address;

}

AreaCostCLAP CT_entries 2 3+( )× AT_entries 64 CT_entries
AT_entries
----------------------------- 

 
2

log+ 
 ×+=
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To measure this reduction, we evaluated the miss rate of both predictors. The miss rate of the
LAP is the percentage of load instructions that miss in AT out of the number of executed load
instructions. On the other hand, two cases produce a miss in the CLAP: a) a load instruction that
misses in CT, and b) a load instruction that hits in CT, which is classified as predictable by CT,
and which misses in AT. The miss rate of the CLAP is the percentage of misses in its tables out of
the number of executed load instructions.

First, we have evaluated the miss rate of both predictors when they are implemented using
fully associative AT's with LRU replacement policy, unbounded CT's, and the <64, 0> classifying
mechanism. To compute both miss rates we have employed fully tagged AT tables. These miss
rates can be assumed as capacity miss rates. Figure 3.10 shows the miss rate of some
configurations of the LAP and the CLAP in the SPEC95-INT benchmarks; the horizontal axis
represents the number of AT entries, and the vertical axis shows the miss rate.

From Figure 3.10, when the same number of effective addresses are stored in AT, the CLAP
has a lower miss rate than the LAP because CT filters the load instructions that can be placed in
AT. As AT's become larger, the miss-rate reduction is less significant due to the increment of
capacity in both tables. Similar miss rates are achieved using a CLAP with half AT-entries than an
LAP. For instance, in benchmark go, the CLAP with AT-entries=512 and a LAP with
AT-entries=1.024 achieve about a 10% miss rate.

go

Figure 3.10 Miss rate in the LAP and the CLAP in SPEC95-INT benchmarks (AT's are fully
associative with LRU replacement policy, CT's are unbounded)
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Next, we have evaluated the influence of the mapping policy and the number of CT entries on
the miss rate; AT's and CT's will be direct mapped. Bounded and direct-mapped CT's increase
the miss rate of the CLAP due to capacity and conflict misses in CT.

Figure 3.11 displays the miss rate of some configurations of the LAP and the CLAP in
SPEC95-INT benchmarks for several table-size ratios (CT entries/AT entries). The horizontal
axis represents the number of AT entries (we focus on AT's with at least 128 entries); the vertical
axis shows the miss rate. A configuration with table-size ratio equal to 1 is a degenerated CLAP
configuration; then the minimum analysed ratio is 2 and the maximum is 16. In addition, in
Figure 3.11 the miss rate for unbounded CT tables is shown.

For benchmark go, the CLAP with a table-size ratio equal to 2 shows a miss reduction of
about 20% in the whole range of evaluated configurations. Conflicts in CT between unpredictable
load instructions do not influence classification, but conflicts between predictable load
instructions classify CT entry as unpredictable. If the ratio is increased, a finer classification and
an additional miss-rate decrease can be achieved. That is, the classification will be improved
when at least one of two load instructions that previously collide in CT entry is predictable.
However, it improves the miss rate when only one of the load instructions that collide in AT entry
is predictable. Furthermore, for large ratios, the reduction in misses is gradually fewer. There are
a few conflicts in CT but remain conflicts in AT between predictable load instructions.

Figure 3.11 Miss rate in the LAP and the CLAP in all benchmarks (direct-mapped AT and CT)
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Area Cost
Area distribution between the LAP and the CLAP is very different. CLAP saves area for storing
addresses compared with LAP. This area saving is used to classify the load instructions more
finely. In that case, the classification improves the utilization of the AT entries.

We will use CLAP configurations with an area cost smaller than the area cost of the LAP
configuration with twice AT entries. From among these configurations, we select the configuration
with bigger CT size to obtain the finest possible classification. From area-cost expressions, we
obtain a table-size ratio equal to 8 (CT entries/AT entries=8). This CLAP configuration represents
an area-cost saving of 19% compared with the LAP.

Captured Predictability
We will compare the predictability of the CLAP and the LAP for several configurations.
Unbounded CT's obtain the maximum miss-rate reduction compared with the LAP. For
benchmark go (Figure 3.11), proposed configurations of the CLAP achieve about 80% of the
maximum miss reduction. For the other benchmarks, this reduction is similar considering the
working-set size of load instructions. Furthermore, since the biggest working-set size of load
instructions in analysed benchmarks is about 8K load instructions, we limit the CT size in our
evaluation to 8K entries.

We will name the CLAP configurations as {AT size, CT size}. From previous observations we
select the following configurations: {128, 1.024}, {256, 2.048}, {512, 4.096}, {1.024, 8.192} and
{2.048, 8.192}. From Figure 3.6 we select the <3, 3> classifying mechanism; this mechanism
achieves a 80% similarity.

Figure 3.12 shows the predictability captured by every predictor configuration. The horizontal
axes represent area cost (using a logarithmic scale), while the vertical axes show captured
predictability. In this section we present results only for large and extra-large benchmarks
(Table 3.1). The other benchmarks show similar behaviour when working-set size of load
instruction is considered (Figure 3.25 in Section 3.8).

First, we can compare a CLAP configuration versus the LAP configuration with twice AT
entries (they are represented by a cross and the first plus sign with higher area cost). We can
observe that, except for m88ksim, the CLAP configuration captures more predictability than the
LAP; that is, CT allows a more efficient use of the AT entries because only predictable
instructions are allocated in AT.

The behaviour of m88ksim benchmark is due to the fact that most of its load instructions are
highly predictable. Consequently, the CT will classify them as predictable, and no filtering will be
performed.

From Figure 3.11, the absolute miss-rate difference between the CLAP with unbounded CT
and the LAP is bigger for lower AT sizes. This potential increase in performance is observed in
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Figure 3.12, which shows more significant increases of predictability for small AT's. Furthermore,
for large AT's, the miss rate is lower; consequently, the miss-rate reduction obtained by the CLAP
represents a small captured-predictability increment.

Differences in predictability smaller than 3% in almost all the benchmarks are observed
between CLAP configurations and a LAP configuration with twice AT entries. Moreover, the
CLAP configuration needs only 81% of the area-cost needed by the LAP configuration.

Accuracy
Another advantage of the CLAP concerns the amount of mispredictions. Address predictors are
designed to capture as much address predictability as possible, and they should also mistake the
minimum number of predictions because every misprediction could have a penalty of some
processor cycles.

To compare the correctness of the predictors, we evaluated their accuracy (Section 2.4.2).
Figure 3.13 shows the accuracy achieved by the LAP and by the CLAP in selected benchmarks.

In almost every benchmark, any CLAP configuration achieves a higher accuracy than the
most accurate LAP configuration. This is due to several factors: a) the classification performed by
the CLAP is more precise than the one performed by the LAP due to the bigger number of
classifying counters, and b) as AT is partially tagged, the CLAP can detect some conflicts in AT
between CT entries, preventing probable mispredictions.

Figure 3.12 Predictability captured by the LAP and by the CLAP in large and extra-large
benchmarks
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Moreover, the accuracy of the LAP is sensitive to AT size, while the accuracy of the CLAP is
almost independent of AT size. Comparing the {256, 2.048} CLAP to the 256 AT entries LAP, the
accuracy is increased from 8% (vortex) to 16% (go); for bigger AT's, the difference between their
accuracy decreases.

3.5 Filtering by means of a discrete classification
This section presents the second technique for reducing prediction-table size by filtering-out
some allocations in the prediction table. The main difference from the previous technique
consists in the classification performed by the CT. This difference will also affect the replacement
algorithm in AT.

This section is organized as follows. First, in Section 3.5.1 the discrete classification is
described. Next, in Section 3.5.2 the Filtering by Discrete Classification Last-Address Predictor
(DLAP) is introduced. Finally, in Section 3.5.3 a performance evaluation of the predictor is
presented.

3.5.1 Discrete classification
In this subsection, we present a mechanism that classifies load instructions discretely, that is, the
classification of a load instruction will not be updated by all the executions of this load instruction.
We will detail the main characteristics of the classifier.
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Recording classification information of the evicted load instructions
From hit-burst length evaluations (Section 3.3.3), we suggest the addition of a Classification
Table (CT) to the LAP to record information of the evicted load instructions. The number of CT
entries will be larger than the number of AT entries. CT will be indexed using the PC of the load
instruction.

When a load instruction is evicted from AT, we classify it as unpredictable if its
confidence-counter value is zero or one, otherwise it is classified as predictable. This
classification is recorded in the CT. When a load instruction is re-allocated in AT, its
confidence-counter value is set to one if the load instruction is classified as unpredictable by CT;
otherwise, the confidence-counter value is set to two. These initializations represent a trade-off
between captured predictability and accuracy, and allow the predictor to exploit the predictability
available in the short hit-burst lengths.

Filtering the allocation in AT by means of the CT
Predictability analysis shows that some load instructions are highly unpredictable. The allocation
of an unpredictable load instruction in AT can evict a predictable one, producing a decrease in
the captured predictability. Consequently, we propose avoiding the allocation in AT of
unpredictable load instructions. Our goal is to reduce the capacity misses in AT related to
predictable load instructions.

Applying this filtering to direct-mapped AT's, conflicts between predictable and unpredictable
load instructions in AT are avoided. However, the predictability captured by the predictor is
increased only when, in an execution-program context, several unpredictable load instructions
and only one predictable load instruction are mapped at the same AT entry.

We will classify dynamically the static load instructions as predictable or unpredictable. For
the load instructions allocated in AT, we will use the current confidence-counter value to classify
them. For the load instructions not allocated in AT, we will use the information recorded in CT.
Note that this classification is discrete and dependent on the number of AT entries. Since the
classification of a load instruction will be updated only when it is allocated in AT, a hit-burst length
larger than zero is required to update the classification. On a zero-length hit burst, the load
instruction will maintain its previous classification.

First, we have evaluated the same filtering as that of the CLAP; that is, a load instruction
classified as unpredictable by CT will not replace a load instruction classified as predictable by
AT. In any other case, the replacement will be performed.

Using unbounded CT's and initializing all the CT entries as predictable, our evaluations show
that the discrete classification and the previous replacement algorithm is rough for
medium-predictable load instructions. Reclassification is obstructed by predictable load
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instructions allocated in AT that have not been executed for a long time, and the predictor
captures less predictability than the LAP.

In addition, to give all the load instructions a chance to be classified, they must be allocated at
least once in AT. Using a bounded CT, in different program-execution contexts, load instructions
with a different predictability may be mapped at the same CT entry. Consequently, we need a
mechanism to reclassify a load instruction classified by CT as unpredictable, since this
classification may be due to a collision at the same CT entry.

Re-evaluating the classification of load instructions classified as unpredictable
To re-evaluate the classification of a load instruction, it must be allocated in AT. The previous
replacement algorithm only allocates an unpredictable load instruction when it collides with
another load instruction classified as unpredictable, but this is not enough.

An opportunity to reclassify load instructions classified as unpredictable by CT is provided
when they collide in AT with a predictable load instruction that has not been executed for a long
time; that is, in a change of program-execution context.

We then use a saturated collision counter at every AT entry. These counters reflect the
execution ratio between the load instructions. The collision-counter value is decreased on AT
hits, and increased when unpredictable load instructions miss in AT. When the counter achieves
a threshold value, even the unpredictable load instructions can be allocated in AT.

A small threshold value for the collision counter is valuable: a) to detect a change in the
program-execution context, and b) to filter conflicts in AT between unpredictable load
instructions. In the latter case, the goal is to cause the hit-burst lengths of the unpredictable load
instructions allocated in AT to be larger than zero. A short hit-burst length is enough to reclassify
a load instruction. On the other hand, a small threshold value can favour the allocation of
unpredictable load instructions if the execution ratio is dominated by unpredictable load
instructions. In this case, filtering is reduced and can vanish, and the behaviour of our proposal
would be close to the behaviour of the LAP.

We will use two-bit collision counters and three as a threshold value for these counters; that
is, an unpredictable load instruction is allocated in AT when the collision-counter value is three.
The use of larger collision counters is not valuable because it decreases the results obtained in
some benchmarks.

CT initialization
Initializing all the CT entries as unpredictable is valuable because it filters load instructions with
zero hit-burst lengths. Note that the allocation of these load instructions does not increase the
predictability captured by the predictor, although some of the predictability can be damaged. Our
evaluations show that a predictor that initializes CT entries as unpredictable captures more
predictability than initializing them as predictable.
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3.5.2 Filtering by Discrete Classification Last-Address Predictor (DLAP)
In this subsection we propose an address predictor that uses the discrete classification
presented in the previous subsection. This predictor will be named Filtering by Discrete
Classification Last-Address Predictor (DLAP).

Figure 3.14 shows a diagram of the DLAP. It uses two prediction tables: the Address Table
(AT) and the Classification Table (CT); both tables will be direct mapped. Each CT entry contains
one bit that records the classification of a load instruction.

Each AT entry contains four fields: an effective address, a tag, a confidence-counter value
and a collision-counter value. The effective address will be used to predict addresses, the tag
contains the bits of the PC that do not index AT (the lower bits of the tag identify the CT entry
related to the AT entry), the confidence-counter value is used to decide if the load instruction
allocated in the AT entry must be predicted, and the collision-counter value reflects the execution
ratio between the allocated load instruction and the unpredictable ones that collide at the same
AT entry.

It was decided to record only one bit per CT entry, because recording the whole
confidence-counter value was not a cost-effective alternative. Results were similar, but for a
1,024-entry AT and a table-size ratio equal to 8, recording two bits per CT entry represents a cost
increment of around 10% (Section 3.5.3.1 presents an area-cost evaluation of our proposal).

Figure 3.15 compares the decision tables applied by the CLAP and by the DLAP to decide if a
load instruction that misses in the AT must be allocated in AT. We can observe the difference
between both decision tables: the DLAP can allocate load instructions classified as unpredictable
in AT.
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Figure 3.14 Diagram of the Filtering by Discrete Classification Last-Address Predictor (DLAP)
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The predictor works as follows. When a load instruction is fetched, the appropriate AT entry is
selected, and the tag field is compared with some bits of the PC to determine if the AT entry is
related to the executed load instruction (AT hit). If so, the confidence-counter value is used to
decide if the load instruction must be predicted; otherwise, it is not predicted. The procedure
Prediction in Figure 3.16 depicts the pseudo-code related to these actions.

The prediction tables are updated after the address stage of the pipeline (procedure Update
in Figure 3.16 depicts its pseudo-code). On an AT hit, the confidence-counter value is increased
as in the LAP. Moreover, the computed address is recorded in the address field of the selected
AT entry, and the collision-counter value of the AT entry is decreased by one. Note that in an
implementation of the procedure most prediction-table accesses can be performed in parallel.

On an AT miss, we will use a simple replacement mechanism in AT. A load instruction
classified by CT as predictable will immediately replace the load instruction allocated in the AT
entry. However, if the load instruction is classified as unpredictable by CT, the replacement is only
performed if the collision-counter value is greater than 2; otherwise, the collision-counter value of
the AT entry is increased by one.

On a replacement in AT, AT fields are updated according to the executed load instruction, the
collision-counter value is reset and the classification related to the evicted load instruction is
recorded in CT. Values 0 and 1 classify the load instruction as unpredictable, values 2 and 3
classify it as predictable.

On an AT miss produced by a load instruction that also collides in CT with the load instruction
allocated in AT, the replacement mechanism only considers the collision counter value to decide
the allocation of the load instruction. In this case, the confidence counter is set to one on a
replacement.

We will evaluate several table-size ratios: 2, 4, 8 and 16. Increasing the table-size ratio
produces a finer classification. That is, the classification will be improved when a predictable load
instruction does not collide in CT using the larger ratio. The increase in captured predictability
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Figure 3.15 Decision tables applied by the replacement algorithms of the CLAP and the DLAP
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depends on the conflicts in AT; that is, for an AT size and large table-size ratios, the captured
predictability saturates.

The discrete classification is obtained from confidence counters of the AT. As conflicts in CT
are also conflicts in AT, the discrete classification can be erroneous. Only conflicts in CT between
unpredictable load instructions do not influence the result of the discrete classification: it will be
unpredictable. In conflicts between other kinds of load instructions, the discrete classification will
also be unpredictable. The last case increases the filtering effect and, in some cases, could
increase the captured predictability if a conflict in AT exists with a predictable load instruction
mapped in another CT entry.

/* Predicts an effective address
Output variables:
-predict: predicted address
*/

Prediction(PC) {
index_at = INDEX_AT(PC);
tag = TAG(PC);
if ((AT[index_at].tag == tag) {

/* AT hit */
if (AT[index_at].conf > 1) {

predict = AT[index_at].addr;
}

}
}

/* Updates CT and AT */

Update(PC, addr) {
index_at = INDEX_AT(PC);
index_ct = INDEX_CT(PC);
tag = TAG(PC);
if (AT[index_at].tag == tag) { /* AT hit */

if (AT[index_at].addr == addr)
AT[index_at].conf ++;

else AT[index_at].conf --;
AT[index_at].addr = addr;
AT[index_at].colls --;

}
else { /* AT miss */

if(CT_TAG(PC)!=CT_TAG(AT[index_at].tag)) {
curr_conf = AT[index_at].conf;
exec_conf = CT[index_ct];
index_ct_curr =

COMBINE(AT[index_at].tag, index_at);
if ((exec_conf == 1) OR

(AT[index_at].colls > 2)) {
AT[index_at].tag = tag;
AT[index_at].addr = addr;
AT[index_at].colls = 0;
AT[index_at].conf = exec_conf + 1;
CT[index_ct_curr] = HIGH_BIT(curr_conf);

}
else AT[index_at].colls ++;

}
else { /* AT miss and CT conflict */

if (AT[index_at].colls > 2) {
AT[index_at].tag = tag;
AT[index_at].conf = 1;
AT[index_at].addr = addr;
AT[index_at].colls = 0;

}
else AT[index_at].colls++;

}
}

}
Figure 3.16 Pseudo-code of the Filtering by Discrete Classification Last-Address Predictor

(DLAP)
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Our predictor makes the most of the classification recorded in CT in two ways: a) to initialize
the confidence-counter of the AT entry on a replacement, and b) as an input of the replacement
mechanism of AT. As a result, filtering will increase the hit-burst lengths related to the predictable
load instructions, as well as reducing the overall loss of predictability produced by the learning
phase of the confidence mechanism.

The following expression gives the area cost of the DLAP as a function of the number of table
entries. To determine entry lengths, we are assuming 64-bit virtual addresses, tagbits of tag in
the AT, 2-bit confidence counters and 2-bit collision counters; every CT entry records only one
bit.

3.5.3 Performance evaluation
This section presents an evaluation of our proposal, comparing the area cost, the predictability
and the accuracy of the DLAP versus the LAP. Moreover, we will compare our proposal with other
replacement algorithms proposed to filter the allocation of instructions in the prediction tables
[CRT99][RFKS98].

3.5.3.1 Captured Predictability
We present a comparison between the predictability captured by the LAP and the DLAP. The
evaluated configurations of both predictors have an amount of tagbits equal to
17-log2(AT entries); this decision will be justified in Section 3.5.3.3

To show the influence of recording the classification of the evicted load instructions and
filtering the allocation of unpredictable load instructions on the performance, we present results
for three cases: (1) the LAP, (2) an LAP with a CT that is only used to initialize the confidence
counter on allocations in AT, and (3) the DLAP. Case (2) will be named LAP+CT.

Figure 3.17 presents results for the large and the extra-large benchmarks; Figure 3.27 in
Section 3.8, presents results for the remaining benchmarks. In these graphs, the vertical axes
stand for the captured predictability and the horizontal axes stand for the area cost of the
predictors. A line connects the predictability captured by the LAP for several numbers of AT
entries. Other lines connect results for LAP+CT (black points) and DLAP (white points) for an AT
size and several table-size ratios.

AreaCostDLAP CT_entries 1× AT_entries 64 2 2 tagbits+ + +( )×+=
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Comparisons between predictor configurations with the same number of AT entries
LAP+CT always outperforms LAP because it is able to exploit the hit bursts of the predictable
load instructions fully. As the number of AT entries increases, hit-burst lengths become larger due
to the reduction on the AT miss rate. Then, the difference between the predictability captured by
the LAP and LAP+CT decreases. Note that in LAP and LAP+CT predictors, the predictability
available in hit bursts of length zero cannot be exploited because the load instructions are evicted
from AT before their next execution.

The benefits of the LAP+CT are significant in configurations with a great amount of dynamic
load instructions related to short hit bursts (Table 3.2). For instance, benchmark go with a
2.048-entry AT, and benchmark m88ksim with a 1.024-entry AT exhibit a miss rate of about 12%,
but the increase in predictability produced by recording the classification is bigger in go than in
m88ksim.
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Figure 3.17 Predictability captured by the LAP, the LAP+CT and the DLAP in large and
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The difference between LAP+CT and the DLAP is due to the filtering performed by means of
the CT. We can appreciate that filtering increases the predictability in almost all benchmarks. In
some cases, the filtering effect is remarkable for few table-size ratios: benchmarks m88ksim and
gcc, because there is a significant proportion of hit-bursts of length zero.

For every number of AT entries, the predictability captured by the DLAP increases as the
table-size ratio is increased. The captured predictability saturates for large table-size ratios
because it is limited by the number of AT entries and the mapping policy; that is, increasing
excessively the number of CT entries produce a marginal increment in the captured predictability.

Comparisons between predictor configurations with a different number of AT entries
Filtering the allocation of the unpredictable load instructions in AT reduces the number of AT
entries needed by a predictor to achieve a performance level. Now, we will compare DLAP
configurations against LAP configurations with twice AT entries.

In Figure 3.17, discontinuous lines show the predictability captured by several LAP
configurations. These lines allow us to compare the predictability captured by a DLAP
configuration versus an LAP configuration with twice AT entries.

From the results, we see that the DLAP can capture more predictability than the LAP with
twice AT entries. This is possible because doubling the number of AT entries of the LAP
increases the predictability captured by the LAP only if doubling causes a predictable load
instruction not to conflict with other load instructions of the same program-execution context. But
in some cases, doubling the AT does not remove all the conflicts in an AT entry. The DLAP tries
to eliminate conflicts in the AT entries by filtering the allocation of unpredictable load instructions
in AT; that is, filtering is successful if there is only one predictable load instruction colliding at the
same AT entry. When two predictable load instructions collide at the same AT entry, the DLAP
cannot capture their predictability, but doubling the AT may eliminate this conflict. In this case, the
LAP can outperform a DLAP with half AT entries, for instance benchmark m88ksim with 2.048 AT
entries.

Most DLAP configurations with table-size ratios 8 or 16 capture as much predictability as the
LAP with twice AT entries. Furthermore, in some cases (gcc, go, vortex), the DLAP outperforms
the LAP with twice AT entries. These results show that there is a significant proportion of conflicts
between predictable and unpredictable load instructions, so doubling the AT of the LAP is not a
cost-effective solution.

Using as a reference the area cost of an LAP, the area cost of a DLAP with half AT entries and
table-size ratio 8 is around 43% smaller. For a table-size ratio 16, the area-cost reduction is
around 36%.

We can conclude that the use of the proposed mechanism to filter the allocation of the
unpredictable load instructions can increase the performance of the LAP as much as doubling its



60 Chapter 3 R EDUCING PREDICTION-TABLE SIZE BY FILTERING
number of AT entries. Moreover, the area-cost increment is smaller than the area cost of doubling
the AT. Finally, our proposal gives to the designer a wide range of configurations for obtaining the
best fit to the available area.

3.5.3.2 Comparison of filtering strategies
We will compare our filtering strategy with the ones proposed in [CRT99][RFKS98]. In these
works, their replacement algorithm uses confidence information of the allocated load
instructions, and mapping-conflict counters. They add a replacement counter to every AT entry of
the LAP. This counter is decreased on a correct prediction and increased on a misprediction or
when a miss is detected. Replacement takes place on saturation of the replacement counter;
after that, the counter is set to zero. We will name a predictor with this replacement algorithm a
Conservative Predictor because it prioritizes the load instructions allocated in the prediction table
versus a colliding load instruction that misses in the prediction table (even if it is predictable).
That is, the Conservative Predictor does not use classification information of the instructions that
collide with the entry as our replacement algorithm does. For this comparison, we will employ
3-bit replacement counters because we have observed that they saturate the predictability
captured by a Conservative Predictor.

Figure 3.18 compares the decision tables applied by the DLAP and by the Conservative
Predictor to decide if a load instruction that misses in the AT must be allocated in AT. We can
observe that the decision table of the Conservative Predictor does not use information of the
instructions that are not allocated in AT.

We can classify the SPEC95-INT benchmarks into two classes: (A) benchmarks with a high
amount of dynamic load instructions that are highly predictable (m88ksim and perl) and, (B) the
remaining benchmarks. Now, we will comment on the behaviour of the filtering strategies in both
benchmark classes. To show the differences, we choose as representative of each class the
benchmark with the largest working set of static load instructions; that is, m88ksim and go.
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Figure 3.18 Decision tables applied by the replacement algorithms of the DLAP and by the
Conservative Predictor
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Figure 3.19 shows the predictability captured by the LAP, the Conservative Predictor and the
DLAP for different numbers of AT entries using direct-mapped tables in benchmarks m88ksim
and go. To evaluate our proposal, we have selected a table-size ratio equal to 16.

In benchmark m88ksim, most conflicts are between predictable load instructions. Both the
Conservative Predictor and our proposal can capture more predictability than the LAP because
they are able to filter conflicts between predictable load instructions. However, for some AT sizes,
our proposal shows a slight decrease (2%) versus the Conservative Predictor.

Both replacement algorithms filter the predictable load instructions in a different way. The
Conservative Predictor favours the allocated load instructions; then, a highly predictable load
instruction allocated in the prediction table will only be evicted on saturation of the replacement
counter.

In contrast, the DLAP is filtering the allocation of predictable load instructions as a side effect
of initializing CT entries as unpredictable: a potentially predictable load instruction is classified in
CT as unpredictable. Then, potentially predictable load instructions that have a few conflicts with
an allocated predictable load instruction are not reclassified as predictable. If they have a bigger
number of conflicts, their reclassification will be only delayed.

However, in the case of two load instructions classified as predictable in different execution
contexts, and which in a third execution context collide in AT, using the DLAP can produce a
ping-pong effect and not capture predictability of either instruction.

In both replacement algorithms, the allocation of predictable or potentially predictable load
instructions is favoured by collisions produced by unpredictable load instructions. However, in our
proposed algorithm, a load instruction classified as predictable will be allocated in AT without
delay.

In benchmark go, both the Conservative Predictor and the DLAP capture more predictability
than the LAP. However, the DLAP is able to capture more predictability than the Conservative
Predictor because it prioritizes the predictable load instructions; that is, the allocation of load
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instructions classified as predictable is not delayed. However, the Conservative Predictor can
delay the allocation of these load instructions in an execution-context change or in the same
execution context. It is not delayed only if it collides with an unpredictable load instruction whose
replacement counter saturated. In the same execution context, unpredictable load instructions
can produce a delay chain that makes the allocation of a predictable load instruction difficult.

We can conclude that our replacement algorithm will perform better than that of the
Conservative Predictor on benchmarks with a significant amount of conflicts between predictable
and unpredictable load instructions. On benchmarks with a significant amount of conflicts
between predictable load instructions, the loss of predictability of the DLAP with respect to the
Conservative Predictor is small.

Comparing the area cost of the Conservative Predictor and that of the DLAP for the same
number of AT entries, our proposal represents an area-cost increment of around 20%. However,
our proposal is able to obtain the performance of an LAP with twice AT entries; which represents
an area-cost decrease of around 40%.

In Section 3.5.3.5 we will comment on the influence of associative mapping on the
performance of both filtering strategies.

3.5.3.3 Influence of partial tagging on performance
In this subsection an attempt will be made to reduce the area cost of the LAP and the DLAP. We
will evaluate if a predictor with a partial-tagged AT can emulate the performance of a fully tagged
AT. Partial-tagging in prediction tables has also been evaluated in other contexts [Fagi95].

In the LAP and the DLAP, the tag bits and the index bits identify the load instruction allocated
in an AT entry. This identification is used by the replacement algorithm to detect collisions in an
AT entry, and, on a replacement, to initialize the confidence counter of the AT entry. Using
partial-tagged AT's instead of fully tagged AT's, some identifications can be erroneous and
produce mispredictions. Nevertheless, as the processor checks the predictions, and a recovery
mechanism restores the correct architectural state on mispredictions, an exact identification of
the load instructions allocated in AT is not needed.

We have evaluated the effect of partial-tagging AT on the captured predictability and on the
accuracy of the predictors. The number of tagbits needed to saturate the accuracy of the
predictor in a benchmark depends on the number of static load instructions of the benchmark,
the temporal distribution of their references, and their placement in the program code. We have
performed simulations over a wide range of tagbits for every AT size to detect the number of
tagbits needed to saturate the accuracy and the predictability of the predictors.

From our results, we may conclude that in the evaluated benchmarks, both predictors should
use up to 17 bits to tag and index AT to saturate their accuracy. The use of a lower number of bits
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can reduce the accuracy up to 2%. As an example, we show results for benchmark gcc in
Figure 3.20. The horizontal axis shows the accuracy of some configurations of the LAP versus
the number of tagbits in benchmark gcc. We may observe that the accuracy of an LAP with a
number of AT entries saturates when the number of index bits plus tag bits is 17.

In addition, we have observed that the predictability is less sensitive to the number of tagbits
than the accuracy. Using 11 bits to tag and index AT, the captured predictability saturates for both
predictors.

3.5.3.4 Accuracy
Figure 3.21 shows the accuracy of the LAP, the DLAP and the Conservative Predictor in the large
and extra-large benchmarks (Figure 3.28 shows results for the remaining benchmarks). The
vertical axis stands for the accuracy of the predictor and the horizontal axis stands for the
number of AT entries. Every graph is related to a predictor and a benchmark.

One may observe that, for the same number of AT entries, the DLAP is more accurate than
the LAP. The only exception is benchmark m88ksim for 256 and 1.024 AT entries. This is due to
the large difference between the number of predictions performed by both predictors
(Figure 3.17). Furthermore, in most cases, a DLAP configuration is as accurate as an LAP
configuration with twice AT entries. The accuracy of the Conservative Predictor is between that of
the LAP and that of our proposal; the only exception is benchmark m88ksim, where the three
accuracies are very close.

When load instructions are allocated in the AT, the confidence counters guide the prediction.
Then, the accuracy of the DLAP can be improved using other types of confidence estimators.
This additional increase in accuracy will be added to the performance obtained by the use of the
classification.

94,5%

95%

95,5%

1 2 3 4 5 6 7 8 9

512
1024
2048

A
cc

ur
ac

y

AT entries

tagbits
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the saturation point for every number of AT entries)



64 Chapter 3 R EDUCING PREDICTION-TABLE SIZE BY FILTERING
3.5.3.5 Influence of associativity on performance
Temporal reuse is related to capacity and conflict misses in AT. When AT size or its associativity
is increased, the hit-burst lengths become larger and the predictability captured by the predictor
can be increased. However, the access time of the associative AT's can be a design restriction.
Consequently, it is valuable to evaluate the performance increase of an associative AT compared
with a direct mapped AT. In this section the gain obtained by the filtering strategy here proposed
is evaluated, in the context of associative tables, and compared with that of the Conservative
Predictor.

The CT of the DLAP will be direct mapped and the table-size ratio will be 16. The replacement
mechanism will use a collision counter per AT entry: on an AT hit, the collision counter is
decreased; on an AT miss, the collision counter of the LRU entry of the set is increased. The LRU
entry is replaced by an unpredictable load instruction on saturation of the collision counter.

Figure 3.22 compares the DLAP and the LAP, both using direct-mapped, 2-way and 4-way
AT's. Each bar is related to a number of AT entries and an associativity. The lower section of each
bar stands for the predictability captured by a LAP configuration, and the upper section of each
bar stands for the increment in captured predictability achieved by using a DLAP. We show the
weighted average predictability in every benchmark class (Section 3.5.3.2). We do not present
results for benchmarks li, compress and ijpeg since, in the evaluated sizes, they are close to
saturation.

For Class-A benchmarks (m88ksim and perl), our proposed filtering mechanism increments
the predictability captured using associative AT's up to 1.024 AT entries. For larger AT's, the
captured predictability is almost saturated.

For Class-B benchmarks (go, gcc and vortex), the increment is noticeable in all the evaluated
range of AT sizes and all the associativities. Moreover, DLAP configurations using up to a

Figure 3.21 Accuracy of the LAP, the Conservative Predictor, and the DLAP in large and
extra-large benchmarks using direct-mapped AT's.
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2.048-entry direct-mapped AT's capture more predictability than the LAP with a 2-way AT of the
same size. A similar relation holds, up to 1.024-entry AT's, for direct-mapped DLAP
configurations versus 4-way LAP configurations.

For 2-way AT's, the DLAP can achieve a performance close to the 2-way LAP with twice AT
entries and with a significant area-cost reduction (around 40%). The maximum predictability
decrease is 2%. For 4-way AT's, the maximum predictability decrease is also 2%.

Figure 3.23 compares the predictability captured by the LAP, the Conservative Predictor and
the DLAP in the context of associative AT's. The replacement algorithm in the Conservative
Predictor is an extension similar to that of the DLAP and to that presented in [CRT99]. We made
similar conclusions as in Section 3.5.3.2, when two benchmark classes were analysed. It is
worth noting that differences between both predictors are reduced.
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3.6 Related Works
Lipasti et al. [LiSh96] have proposed a value predictor that decouples the classification
information from the value information. They use two tables: the Classification Table (CT) and the
Value Prediction Table (VPT). The classification information recorded in CT is used to decide
which load instructions can be predicted, and to introduce hysteresis in the replacement of the
values recorded in the VPT. However, it is not used to filter the load instructions that can be
allocated in the VPT. The authors evaluate different configurations of CT and VPT, but they focus
on configurations with a bigger number of VPT entries than CT entries. Moreover, they do not
analyse the influence of the miss rates and the hit-burst lengths on the performance of the
predictor.

Berkerman et al. [BJR+99] applied the idea of the classification mechanism proposed in
Section 3.4.1 to a Context Address Predictor. Their goal was to prevent random accesses from
polluting the Value Prediction Table (VPT). They updated the VPT only when a load instruction
computed the same effective-address portion twice in a row.

Gabbay et al. [GaMe97] have proposed an alternative method to prevent the placement of
unpredictable load instructions in the AT. They propose classifying statically the load instructions
according to their predictability. This classification is performed using program profiling. The
compiler insert hints that are used by the predictor to determine if a load instruction should be
allocated in a prediction-table entry. The threshold value used by the compiler to classify load
instructions is a program-dependent value, and it is normally supplied by the user. Static
classification has some drawbacks: a) it needs a profile execution, b) static classification is not
binary compatible, c) it does not adapt to changes in the predictability of the load instructions.

Mechanisms that detect the usefulness of the predictions to reduce the execution time have
been proposed in [CRT99][RFKS98]. These mechanisms are used to select the instructions that
must be inserted in the prediction tables. Our proposal can improve their performance because
we filter the allocation of unpredictable load instructions in the prediction table.

Filtering the allocation of information in the prediction tables has been used in the context of
branch predictors [DrHo98][EdMu98]. These works propose hybrid predictors that predict some
branch instructions with a simple predictor (last value or bimodal), and the remaining ones with a
more complex predictor (context based). As some branch instructions can be correctly predicted
with the simple predictor, the authors propose filtering these branches out of the complex
predictor. However, when no predictor is predicting a branch instruction with strong confidence,
all predictors in the hybrid predictor are updated simultaneously, and resources are allocated for
a branch instruction in all prediction tables. Our proposal can be included and used to filter the
allocation of information in some prediction tables.
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3.7 Conclusions
The effective addresses computed by load instructions in the integer benchmarks exhibit a
significant tendency to be predictable. Using a conventional predictor (LAP) with an unbounded
prediction table, an average 50% of the computed addresses can be correctly predicted, but the
tendency of load instructions to be predictable does not spread uniformly among them.

Capacity and conflicts misses in the prediction table reduce the performance of the predictor
for several reasons. First, on a miss, the executed load instruction cannot be predicted. Second,
as some confidence measures used by the predictors have a learning phase of some executions,
when a load instruction is allocated in the prediction table some of its following executions can
not be predicted. Third, unpredictable load instructions can replace predictable load instructions
in the prediction table because some predictors use the always allocate allocation police.

Our characterizations show that the amount of executions of a load instruction from its
allocation in the prediction table until its eviction is small. Thus, the penalty imposed by the
learning phase of the confidence measures can be significant. Moreover, most load instructions
are highly predictable or highly unpredictable.

We have proposed two address predictors that record classification information of the
instructions evicted from the AT. The recorded information in used both to guide the replacement
algorithm of the AT and to initialize the confidence estimators. The evaluations show that our
proposals present the same predictor performance as the LAP, but they require a smaller area
cost (19% and 40% respectively).

Filtering techniques can also be applied to stride-address predictors and to value predictors
to reduce their area cost.

3.8 Detailed results
In some figures of this chapter, we have presented partial results (average results or results for
selected benchmarks) of our proposals. In this section we complement these figures by
presenting respectively the individual results and the results for the remaining benchmarks.

3.8.1 Similarity
Figure 3.24 presents the similarity of both the <N, 0> and the <N, 3> classification mechanisms
in each SPEC95-INT benchmark. We can observe that the <N, 3> mechanism does not reach
100% similarity in benchmarks gcc, compress and ijpeg. This is due to the existence of load
instructions that generate effective addresses where the three low-order bits are significant for
classifying the instructions.
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3.8.2 Predictability captured by the CLAP
Figure 3.25 shows the predictability captured by the LAP and the CLAP in small and medium
benchmarks. In benchmarks li and ijpeg, the CLAP needs less area cost to capture the same
predictability as the LAP. The behaviour of benchmark perl is due to the high amount of conflicts
between predictable load instructions; as the CLAP does not filter the allocation in AT of
predictable instructions, doubling the number of AT entries is more effective than adding a CT.
Benchmark compress present a behaviour similar to benchmark perl.
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Figure 3.24 Similarity in each benchmark of <N, 0> and <N, 3> classifying mechanisms

MIDA

m88ksim gcc

compress li ijpeg

perl vortex

S
im

ila
rit

y

<N, 0>

<N, 3>

Classifying mechanism

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 3 4 5 6 7 8 9 10
N

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10



3.8 Detailed results 69
3.8.3 Accuracy of the CLAP
Figure 3.26 shows the accuracy of the CLAP and the LAP in small and medium benchmarks. We
can observe that in almost all presented results, the CLAP is more accurate than the LAP with
the closest area cost.
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Figure 3.25 Predictability captured by the LAP and by the CLAP in small and medium
benchmarks
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3.8.4 Predictability captured by the DLAP
Figure 3.27 shows the predictability captured by the DLAP in small and medium benchmarks.
Benchmark perl is similar to m88ksim due to its large amount of conflicts in AT, and its large
predictability. Benchmarks compress and ijpeg are similar to li, their results almost saturate in the
presented configurations due to their small working set of load instructions.

3.8.5 Accuracy of the DLAP
Figure 3.28 shows the accuracy of the LAP, the DLAP and the Conservative Predictor in small
and medium benchmarks. As in the remaining benchmarks, the accuracy of the DLAP is higher
than that of the Conservative Predictor and LAP.
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4 REDUCING

PREDICTION-TABLE

SIZE BY NARROWING

In this chapter, a technique for reducing the amount of information recorded in
the prediction table of an address predictor is presented. Our motivation is the
presence of a certain degree of redundancy in the effective addresses recorded
in the prediction table; this redundancy is produced by both the temporal-locality
and the spatial-locality properties of the memory references. We propose a
prediction-table organization that reduces the redundancy present in the
prediction table. This chapter is organized as follows. Section 4.1 is the
introduction. In Section 4.2 an evaluation of the locality of the addresses
recorded by the prediction-table of a Last-Address Predictor (LAP) is presented.
73
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Section 4.3 introduces an organization of the prediction tables named Two-Level
Address Storage (TLAS) and applies it to the LAP. Section 4.4 shows that by
applying TLAS to the LAP, the area-cost of the LAP can be reduced without
affecting its performance. In Section 4.5, the inclusion of TLAS in an enhanced
last-address predictor presented in Chapter 3 is evaluated. In Section 4.6, some
related works are reviewed. Finally, the conclusions of this work are summarized
in Section 4.7 and in Section 4.8, the results of our proposals for all
SPEC95-INT benchmarks are given.

4.1 Introduction
As we pointed in the previous chapter, the capacity of the prediction tables of the address
predictors turns out to be very large. Prediction-table capacity is proportional both to the number
of prediction-table entries and to the entry width. Consequently, a reduction in any of these
parameters will produce a reduction in the capacity of the prediction table.

In the previous chapter we proposed two techniques for reducing the number of
prediction-table entries; both techniques filter-out the allocation of the unpredictable load
instructions. In this chapter, we will propose a technique for reducing the entry width of the
prediction table; that is, to narrow the prediction-table entries. We make use of two well known
characteristics of the memory-reference stream of the programs: the temporal-locality and the
spatial-locality properties.

Both reference properties produce a certain degree of redundancy in the contents of the
prediction tables. For instance, due to the temporal locality, several prediction-table entries may
record the same effective address; due to the spatial locality, several prediction-table entries may
record the same high-order bits of the effective addresses.

In this chapter we propose an organization of the prediction tables named Two-Level Address
Storage (TLAS). The design of this organization takes into account the temporal properties of the
memory-reference stream and reduces the redundancy in the prediction table. Consequently, the
organization reduces the capacity of the prediction tables and the area cost of the predictor.

We will apply the TLAS organization to the Last-Address Predictor (LAP) and to a filtering
address predictor proposed in the previous chapter, the Filtering by Discrete Classification
Last-Address Predictor (DLAP). We have evaluated the proposals by instrumenting the
SPEC95-INT benchmarks; we will show that the performance of both original predictors is not
affected and, moreover, a significant area-cost reduction if around 28% and 60% is obtained.

4.2 Locality analysis of the effective addresses
Many works have analysed a property of memory references: the locality. It has been defined as
the program’s tendency to reference memory in non-uniform, highly localized patterns [Bela66].
Temporal locality and spatial locality are the main classes of locality present in memory
references. Temporal locality is the tendency to reference a memory location that has previously
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been referenced; spatial locality is the tendency to reference a memory location that is close to
another memory location referenced in the past.

The addresses computed by the load instructions exhibit both kinds of locality. This can
produce a certain degree of redundancy in the content of the Address Table (AT) of a
Last-Address Predictor (LAP):

• Temporal redundancy: As the LAP assigns an AT entry to every static load instruction,
load instructions that compute the same address record the address redundantly at
several AT entries. For instance, this effect is produced by the accesses to the same global
variable from different routines, and the stack accesses performed by routines called from
the same stack depth.

• Spatial redundancy: Some addresses recorded in AT point to close memory locations.
Then, in most cases, the addresses will only differ in their low-order bits. This produces
redundancy because some addresses recorded in the AT have the same value in their
high-order bits. For instance, global variables stored in consecutive addresses and stack
accesses produce this effect.

Locality analysis
We will present an analysis of the locality of the addresses recorded in AT. To perform this
analysis, the last reference time of every address is used to maintain a temporal ordering on a
stack of slots; every slot records an address and an address is recorded in only one slot. If an
address recorded in the stack is not the last address computed by any load instruction, its slot
becomes an empty slot. Then, if an address is not found in the stack, the address is recorded in
the most recent empty slot and it is moved to the top of the stack.

We define as one the match depth of the Most Recently Used (MRU) address, the match
depth of the second MRU address as two, and so on. Then, for every dynamic load instruction,
we evaluate the match depth of its computed address. If it is not found in the stack, its match
depth is infinite.

In many works (Section 3.3.1, [GaMe97], [SaSm97]) it has been observed that some static
load instructions are highly unpredictable. Unpredictable load instructions are then filtered-out in
order not to update the stack of slots. To decide if a dynamic load instruction is unpredictable, we
will use the confidence-counter value of an unbounded LAP: the execution of a load instruction
will be classified as predictable if its confidence-counter value is greater than one. We consider
that the match depth of the addresses computed by unpredictable load instructions is zero.

To analyse the temporal locality of the effective addresses, we must discard zero low-order
bits of the addresses, and to evaluate the spatial locality in AT we must discard some low-order
bits of the addresses. In Figure 4.1, the vertical axes stand for the match depth, the horizontal
axes stand for the number of low-order bits discarded, and every graph is related to a percentage
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of dynamic load instructions. The meaning of every graph is that the addresses referenced by
this percentage of dynamic load instructions have a match depth smaller than or equal to the
vertical height. For instance, in benchmark compress, when 6 low-order bits of the addresses are
discarded, the addresses referenced by the 99% of dynamic load instructions have a match
depth ≤13. This value reflects the number of different high-order portions recently referenced by
the predictable load instructions.

We may observe that the lowest order bits of the addresses computed by predictable load
instructions are normally not significant as a consequence of the Alpha architecture, because
most load-instruction operation codes produce eight-byte aligned addresses and load
instructions that are not aligned are normally unpredictable by a LAP. As the number of low-order
bits discarded grows, the match depth related to the percentage of load instructions decreases.

The working-set size of static load instructions (Section 3.3.2) is much bigger than the
maximum match depth of 99% of all dynamic load instructions. For instance, in benchmark go,
the working-set size of static load instructions is larger than 2.048 load instructions, but when 12
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low-order bits of the addresses are discarded, 99% of dynamic load instructions have a match
depth ≤16.

The results suggest an organization of the predictor where high-order bit portions of
addresses are shared between several low-order bit portions; that is, in a many-to-one mapping.
Thus, exploiting the spatial locality in address portions can be valuable in reducing the area cost
of predictor. This organization will be named Two-Level Address Storage (TLAS). Figure 4.2
shows a diagram of this organization.

4.3 Two-Level Last-Address Predictor (TLAP)
In this section, the Address Table of the LAP is replaced by the suggested Two-Level Address
Storage (TLAS) organization. The new predictor will be named Two-Level Last-Address Predictor
(TLAP). We describe the TLAP, and we perform evaluations on the management of
High-Address-Table entries and the filtering-out of some allocations. Two replacement algorithms
are also evaluated.

4.3.1 TLAP design
We have shown that there is a certain degree of redundancy in the information recorded in the
AT of the LAP. To reduce the redundancy in the prediction table of an address predictor, the TLAS
organization is used. The AT is split into two parts (Figure 4.3): the Low-Address Table (LAT) and
the High-Address Table (HAT). The low-order bits of the effective addresses will be recorded in
the LAT and the high-order bits in the HAT. Moreover, each LAT entry has a link to reference one
HAT entry. Then, a HAT entry can be shared by several LAT entries: a one-to-many relationship.

To predict a load instruction, the TLAP indexes LAT using the PC of the load instruction. This
access retrieves the low-order bits of the predicted address and a link to HAT. Subsequently, the
predictor accesses HAT using the link; this access obtains the high-order bits of the predicted
address. The predicted address is formed by the concatenation of the low-order bits and the
high-order bits obtained from both tables.

The TLAP must access both tables sequentially to predict a load instruction. This does not
imply an implementation restriction, since the LAT can be accessed very early in the pipeline
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and, in current processors, the number of pipeline stages before issuing a instruction is so large
that both prediction tables can be accessed before issuing the dependent operations. For
instance, in the Alpha 21264 processor, an instruction passes through 5 pipeline stages before
be issued [Alph99]. Moreover, we could reduce the critical path of the predictor could be reduced
by recording enough low-order bits in the LAT for indexing the cache.

LAT and HAT management
The TLAP updates the LAT in the same way as the LAP updates the AT; that is, using the
always-allocate policy.

To link an LAT to an HAT entry, the TLAP applies a hash function to the high-order bits of the
computed address and searches for them in the HAT. The hash function used depends on the
number of HAT entries. Fully associative lookups are possible using a HAT with a small number
of entries; as a reference, current microprocessors perform fully associative lookups in up to
96-entry TLB’s [JaMu98].

To reduce the eviction of useful information on a HAT miss, the TLAP searches for HAT
entries that are related to zero LAT entries (empty HAT entries). In order to detect the empty HAT
entries, we will associate to every HAT entry a link counter that reflects the number of LAT entries
linked to it. If no empty HAT entry is found, the TLAP picks a HAT entry randomly except the MRU
one (non-MRU algorithm). These operations can be performed in parallel before selecting the
replaced entry.

When an LAT entry is replaced, or an update due to a change in the high-order portion, the
link counter of the previously related HAT entry is decreased by one (this operation can produce
an empty HAT entry). When the LAT entry is linked to a HAT entry, its link counter is updated: it is
increased if the high-order portion was already allocated (HAT hit), or otherwise set to one.
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When a HAT entry is replaced, the LAT entries that were pointing to the evicted HAT entry are
not invalidated because the cost is considerable and requires more complex logic. Note that
these incoherencies do not break the program correctness because the predictor belongs to an
speculative mechanism. These incoherencies, however, could decrease the performance of the
predictor.

In a later section we will show the performance decrease if the detection of empty HAT entries
is not considered on HAT replacements. The differences between the non-MRU and the LRU
policies will be described, and the link-counter width discussed.

Filtering out HAT allocations
Storing high-order bits related to unpredictable load instructions is not useful because these load
instructions will not be predicted. The TLAP allocates these loads in LAT but avoids the allocation
of high-order bits computed by these loads in HAT; that is, their LAT entries will not be linked to
any HAT entry.

To classify the load instructions, the TLAP will use a small chunk of the effective addresses (it
will be recorded in LAT). This idea was proposed in Chapter 3 using the low-order bits of the
addresses.

Most load instructions can be properly classified by checking the low-order bits of their
effective addresses, but for some load instructions this is not sufficient. For instance, for loads

with a stride multiple of 2b, where b is the number of low-order bits analysed, the classification
will be wrong and can produce mispredictions. However, a proper classification can be performed
by analysing other bits of the addresses.

For that reason, we propose in this chapter to select dynamically the effective-address chunk
that must be recorded in the LAT entry to classify each load instruction. As LAT entries record b
bits of the addresses, we divide the addresses in several non-overlapped b-bit chunks. The TLAP
will assume that two addresses are the same if the address-chunk contents are equal, and it will
update the confidence counter accordingly.

When a load instruction is allocated in LAT, its classification is initialized as unpredictable and
the TLAP uses the low-order bits of its addresses to classify it.

For load instructions classified as predictable, all bits of the address are used to update their
confidence counter. However, when the classification of a load instruction changes from
predictable to unpredictable, the predictor breaks the link with the HAT entry, decreases its link
counter, selects the lower chunk of the computed address that is not equal to that of the
predicted address, and records it in the LAT entry. In subsequent executions, classification is
performed by checking the selected address chunk. To this end, every LAT entry contains a field
that identifies the address chunk recorded in it. When the classification changes to predictable
(the confidence-counter value of the load instruction goes from 1 to 2) the link is established.
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In next subsection, we will show the performance decrease when filtering is not used, and the
effect of the chunk selection on the accuracy of the TLAP.

Figure 4.4 shows the pseudo-code of the TLAP.

4.3.2 HAT implementation issues
In this subsection we evaluate different policies in HAT replacement algorithm. All the evaluations
presented in this section assume unbounded LAT’s.

To perform a prediction, HAT is accessed after accessing LAT, close to the fetch stage; in a
later stage HAT is looked-up and updated. In this work we take into account the fact that access
time of large HAT's can be a restriction. Then we evaluate HAT's with an access time close to that
of the register file. Consequently, we use 16, 32 and 64-entry HAT's. Moreover, associative
lookups can also be performed for these sizes. Figure 4.1 suggests the number of low-order bits
that should be recorded in the LAT entries (b): 10, 12 and 14. Without restricting HAT
access-time, other designs can be considered for bigger HAT's as n-way associative mapping
and sequential lookups [ZZY97].

Figure 4.4 Pseudo-code of the Two-Level Last-Address Predictor (TLAP)

void Update(PC, addr, pred_addr,
index_lat, index_hat, tag)

{
if (LAT[index_lat].tag == tag) {

if (LAT[index_lat].conf > 1) {
if (addr == pred_addr)

LAT[index_lat].conf ++;
else {

LAT[index_lat].conf --;
if (LAT[index_lat].conf == 1) {

 /* Transition 2 -> 1 */
 LAT[index_lat].chunk_id =

 INDEX_DIF_CHUNK(addr,pred_addr);
 HAT[index_hat].links--;

}
}

}
else {

chunk = CHUNK(addr,
 LAT[index_lat].chunk_id);

if (chunk == LAT[index_lat].low_addr)
LAT[index_lat].conf ++;

else LAT[index_lat].conf --;
if (LAT[index_lat].conf == 2)

/* Transition 1 -> 2 */
LAT[index_lat].chunk_id = 0;

}
}

else {
if (LAT[index_lat].conf > 1)

HAT[index_hat].links--;
LAT[index_lat].tag = tag;
LAT[index_lat].conf = 1;
/* stands for the [0, b-1] chunk */
LAT[index_lat].chunk_id = 0;

}
LAT[index_lat].low_addr =

CHUNK(addr, LAT[index_lat].chunk_id);
if (LAT[index_lat].conf > 1) {

 index_hat= INSERT(HAT,HIGH_ADDR(addr));
 LAT[index_lat].link = index_hat;

}
}

void Prediction(PC) {
index_lat = INDEX_LAT(PC);
tag = TAG(PC);
if (LAT[index_lat].tag == tag) {

if (LAT[index_lat].conf > 1) {
index_hat =

LAT[index_lat].link;
pred_addr = CONCATENATE(

HAT[index_hat].high_addr,
LAT[index_lat].low_addr);

}
}

}
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First we perform evaluations using the LRU replacement algorithm in HAT. Later, we present
performance differences of the LRU versus the non-MRU algorithm. We also show accuracy
differences between classifying load instructions checking the low-order bits against allowing a
dynamic chunk selection. Captured-predictability differences between both classifiers are,
however, negligible.

Filtering HAT allocations and managing empty HAT entries
To evaluate the effect of managing empty HAT entries and the effect of filtering out the allocation
in HAT of address portions computed by unpredictable load instructions, we compare four TLAP
designs. We evaluate the influence of managing empty HAT entries when HAT allocations are not
filtered out. The influence of managing empty HAT entries when HAT allocations are filtered out
is also evaluated.

Our results show that the management of empty HAT entries increases the predictability
captured by a TLAP. Moreover, without the use of filtering, the performance increase is bigger;
that is, HAT allocations are more sensitive to the management of empty HAT entries. This effect
is specially noticeable in benchmark compress. In compress, a load instruction accesses a large

hash table (up to 219 bytes). This load instruction is unpredictable and pollutes the HAT with
different values. By managing empty HAT entries, the HAT entry related to this load instruction
becomes an empty entry, and it is reused to record the new address portion.

Figure 4.5 shows the influence of both policies on the predictability captured by the TLAP in
benchmark compress. The vertical axis stands for the predictability captured by the predictors,
and the horizontal axis shows different predictor configurations and benchmarks. Results for
configurations with the same number of low-order bits in LAT entries are grouped; the difference
between them is the number of HAT entries. The lower section of each bar stands for the
predictability captured by the TLAP configuration that does not filter, and the upper section
stands for the predictability increment due to filtering. One may observe that, without managing
empty HAT entries, the influence of filtering for b=10 and 16-entry HAT is significant. However,
when managing empty HAT entries, its influence is almost insignificant.

Filtering is valuable to reduce the working set of different high-order address bits. Predictable
load instructions can use HAT entries that could have been related to unpredictable load
instructions. Medium-predictable load instructions can also unlink HAT entries on unpredictable
bursts. The increase in performance is noticeable in benchmarks with a large number of
unpredictable static load instructions. For instance gcc (Figure 4.5). Observe that filtering
increases the predictability captured by the TLAP independently of the management of empty
HAT entries; but when both characteristics are combined, the TLAP captures more predictability.
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From previous observations we see that the predictability increase is obtained by managing
empty HAT entries and by filtering-out HAT allocations. Each characteristic is useful for some
benchmarks. In the case of TLAP configurations that manage empty HAT entries, Figure 4.6
shows the captured predictability without filtering and filtering-out HAT allocations for all the
evaluated benchmarks.

Configurations with b=14 and 32 HAT entries or 64 HAT entries, and b=12 and 64 HAT entries
capture as much predictability as the LAP with an unbounded AT (except in gcc). In the
remaining configurations, we can appreciate a captured-predictability decrease of the TLAP with
respect to the LAP. The decrease is significant in benchmarks go, gcc and vortex. These results
are coherent with the match-depth evaluations (Figure 4.1), because these benchmarks give the
largest match depths.
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Influence of chunk selection on the accuracy
Chunk selection hardly has any influence on the predictability captured by the TLAP, but the
accuracy is sensitive to it. Figure 4.7 presents an evaluation of the accuracy of the TLAP in the

two SPEC95 benchmarks that compute addresses with large strides: ijpeg (up to 211 bytes) and

the SPEC95-FP benchmark turb3d (up to 218 bytes). The lower section of each bar shows the
accuracy of a TLAP that always selects the low-order bits of the addresses; the upper section of
each bar reflects the increment on the accuracy when dynamic selection of the proper chunk is
performed. With chunk selection, the accuracy of the predictor saturates for all the analysed
configurations.

In the remaining SPEC95-INT benchmarks, chunk selection hardly has any influence on the
accuracy of the TLAP, because these benchmarks present strided addresses with a short stride.

Non-MRU versus LRU algorithm
When no empty HAT entry is found, we propose a replacement policy that selects a HAT entry
randomly except the MRU one (non-MRU algorithm) because the implementation of the LRU
algorithm is complex and expensive for large tables. Figure 4.8 shows the performance
difference between both replacement policies. The lower portion of each bar stands for the
predictability captured using the non-MRU algorithm, and the upper portion of each bar stands
for the increment due to the LRU algorithm.

The performance of the TLAP is not saturated in some configurations with the non-MRU
replacement algorithm because there is a significant amount of capacity misses in HAT. In these
cases, the LRU algorithm is better than non-MRU algorithm and the predictability decrease is
limited by 2.4%. For configurations with b=12 and 64 HAT entries, and with b=14 and 32 or 64
HAT entries, both the LRU and the non-MRU algorithms exhibit the same performance.
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Link-counter width
Our experiments show that when three-bit link counters are used, the performance of the TLAP
is almost saturated. Note that the goal of these counters is to detect empty HAT entries, and
three-bit counters estimate the empty HAT entries with a high degree of correctness.

4.4 Evaluation of the TLAP
This section presents an evaluation of three characteristics of the TLAP using bounded
prediction tables: area cost, captured predictability and accuracy, and compares them with those
of the LAP.

Bounded LAT's can reduce the pressure over HAT, decreasing the amount of capacity misses.
However, even using 64 HAT entries, the accuracy of some TLAP configurations decreases with
respect to that of the LAP. Consequently, the results showed in this chapter are focused on
64-entry HAT's. Moreover, we use TLAP configurations that manage empty HAT entries, 3-bit link
counters, non-MRU replacement algorithm in HAT and b=10, 12 or 14. Working-set size of static
load instructions of the benchmarks (Section 3.3.2) justifies the selected LAT-size range being
from 256 to 4.096 entries.

4.4.1 Area cost of the predictors
We evaluate the area cost of an address predictor as the number of bits of information that it
records. The following expression shows the area cost of the TLAP with the non-MRU
replacement policy as a function of the number of prediction-table entries. We have assumed the
use of 64-bit logical addresses, t-bit tags, 3-bit link counters in the HAT entries, and b-bit address
chunks in each LAT entry. The last component of the TLAP area cost is needed to record the
index of the MRU HAT entry.
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The number of tag bits influences the accuracy of the predictor. In the analysed benchmarks,
we showed (Section 3.5.3.3) that the accuracy of the LAP saturates when the number of index
bits plus tag bits is 17. We will use TLAP configurations with this number of tag bits.

The area-cost reduction from an LAP configuration to a TLAP configuration with the same
number of AT and LAT entries depends on the number of LAT entries, the number of HAT entries
and b. In the evaluated configurations, the reduction ranges from 37% (256-entry LAT, b=14) up
to 60% (4.096-entry LAT, b=10).

4.4.2 Captured address predictability
Figure 4.9 shows the predictability captured by the TLAP and the LAP in the benchmarks with
the largest working-set size of static load instructions and match depths. The horizontal axes
stand for the area-cost of the predictor and the vertical axes stand for the predictability captured
by the predictor. The graph in the top left-hand corner is labelled with the number of AT and LAT
entries of the predictor configurations.

The area-cost reduction from a TLAP to a LAP configuration with the same number of LAT
and AT entries does not represent a performance loss. In benchmark go, a continuous oval
surrounds configurations with AT entries=LAT entries=4.096. Note that in these cases, the load
instructions allocated in LAT are also allocated in AT.
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Similar area-cost for LAP and TLAP configurations are obtained when the number of LAT
entries doubles the number of AT entries. In benchmark go (these configurations are surrounded
by a dashed oval), for LAT entries=2×AT entries=2.048. In this case, the TLAP configurations
outperform the LAP configuration because LAT has fewer capacity misses than AT.

The remaining benchmarks present a similar behaviour but in a different AT/LAT-size range.
Figure 4.13 in Section 4.8 shows the results for these benchmarks.

4.4.3 Accuracy
Although predictability grows as the number of AT entries increases, accuracy may not behave in
the same way. Conflicts in AT can increase accuracy because fewer predictions are performed.
When there are few conflicts in AT, accuracy depends on the ability of the confidence counter to
characterize the load behaviour and to prevent some predictions. In this work, we use two-bit
saturating counters as a confidence mechanism. More conservative confidence mechanisms can
increase accuracy but they also reduce the captured predictability. Moreover, they can decrease
the pressure over the HAT; that is, our results for HAT-entry requirement are an upper limit for the
HAT-entry requirement of these confidence mechanisms. However, the evaluation of other
confidence estimators is beyond the scope of this work.

Figure 4.10 compares the accuracy of both the LAP and the TLAP in several benchmarks.
The vertical axes stand for the accuracy of the predictors and the horizontal axes for the same
predictor configurations as in Figure 4.10 (without showing area cost); configurations with the
same number of AT and LAT entries are grouped.

In TLAP, there is another characteristic that introduces mispredictions. When an HAT entry is
replaced, the TLAP does not invalidate the LAT entries linked previously to this HAT entry. Then,
the next execution of a load instruction allocated at these LAT entries may be mispredicted.

For small LAT's, some of these mispredictions are removed because an LAT replacement
invalidates the link. In this case, a slightly accuracy decrease is observed. For large LAT's, the
working-set size of values for the high-order bits of the addresses can be larger than the number
of HAT entries. In this case, an accuracy decrease is observed. For instance, for TLAP
configurations with b=10 the difference is limited by 0.7% (gcc).

Accuracy increases as b grows, since the pressure over HAT decreases, so more
replacements are performed using empty HAT entries. For TLAP configurations with b=14, TLAP
configurations are as accurate as the LAP.

Benchmark ijpeg presents a sharp decrease for 256 LAT entries and b=10. This behaviour is
due to load instructions with large stride. The allocation of one of these load instructions in HAT
produces a misprediction before classifying it as unpredictable. Its eviction from LAT by conflicts
and subsequent reallocation reproduces the previous behaviour.
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When LAT size doubles the number of AT entries, configurations with a similar area cost are
obtained. In these cases, the captured predictability is bigger in TLAP, but accuracy is usually
lower, due to the accuracy of the TLAP (b=14) being similar to that of the LAP with same AT size,
and also to the irregular behaviour of the accuracy of LAP.

4.5 Filtering by Discrete Classification Two-Level Last-Address
Predictor (DTLAP)

In some works, predictors with filtering capacity have been proposed. The purpose of these
predictors is to avoid the allocation of unpredictable instructions in the prediction table. To do this,
they delay the allocation of an instruction when it collides a few times with an allocated
predictable instruction that is being executed. Some proposals delay the allocation of any
instruction [CRT99][RFKS98]. Others proposals delay the allocation only of the unpredictable
ones (Section 3.4 and Section 3.5) by means of a dynamic classification.

We will evaluate the influence of TLAS organization on the performance of a Last-Address
Predictor with filtering capacity. The evaluation is performed on the DLAP (Section 3.5.2); DLAP
improves the performance of the LAP with twice AT entries, and reduces its area cost around
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40%. We will name the resulting predictor Filtering by Discrete Classification Two-Level
Last-Address Predictor (DTLAP). Figure 4.11 shows the diagram of the DTLAP.

First, Figure 4.12 shows the predictability results of the DTLAP versus the LAP. Results show
that the DTLAP needs as many HAT entries as the TLAP to achieve the performance of the
DLAP. Although the DLAP is filtering the allocation of unpredictable load instruction in LAT, the
TLAP is also filtering the allocation in HAT of high-order bits computed by unpredictable load
instructions. Moreover, the chained filtering of the DTLAP does not increase sufficiently the
performance of the predictor with fewer HAT entries to equalize the performance using 64 HAT
entries.

Furthermore, filtering HAT allocations using LAT information cannot be suppressed because
the predictors with filtering capacity do not guarantee the exclusion of unpredictable load
instructions from LAT. Moreover, the information used to filter HAT allocations is more accurate
than that used to filter LAT allocations.

The area cost reduction for a DTLAP when TLAS organization is used ranges from 29% (256
AT/LAT entries) to 40% (4.096 AT/LAT entries).
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4.6 Related works
The spatial-locality property of the memory references have been used to reduce the
address-bus width [FaPa91]. More recently, it has also been used to reduce the energy
consumed by the address bus [MLC97].

Brooks and Martoniosi [BrMa99] noticed that half of the integer operations of SPEC95-INT
benchmarks require 16 bits or less. They propose to exploiting this fact in order to reduce the
power consumed by integer execution units by disabling the upper portion of the functional unit.
They also combine multiple narrow operations to execute them in parallel in the same functional
unit.

Works closer to the scope of this chapter propose an organization that reduces the area cost
of address tags in caches [Sezn94][WSY97]. These organizations are similar to TLAS, but our
proposal has a simpler control logic. TLAS does not need to maintain the exact correspondence
between both tables because it will be applied to a predictor, then a recovery mechanism on
mispredictions is already supplied. [Fagi95] proposed narrowing the entries of the Branch Target
Buffers by using partial-tagged entries instead of fully-tagged ones.
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An organization similar to TLAS is proposed in [Sezn96] for sharing page-number information
between several processor devices. Replacement in shared tables is then guided for devices that
share it.

Rychlick et al. [RFK+98] proposed the Popular Last-Value Predictor which exploits the
temporal locality in the results produced by register-writing instructions. They report results for
4.096-entry LAT's. Differences between our work and Rychlick's work arise in LAT mapping and
management of the HAT entries. We take an explicit trace of unused entries in HAT to reduce
capacity misses. Another difference is that we add a filtering ability to reduce capacity misses in
HAT: we review a filtering idea presented in Section 3.4.1, and extend it to reduce pollution in
HAT by filtering out unpredictable load instructions. In this work we have also evaluated the
temporal and the spatial locality of the addresses computed by predictable load instructions for a
large range of high-order bits.

Sato et Arita [SaAr00] applied a narrowing technique to value prediction. They noticed that
the results of a significant amount (about 50%) of register-writing instructions are short; that is,
the high-order bits of the results are zero. The authors proposed the use of a hybrid predictor
with two components: one component for instructions that produce long results and the other
component for instructions that produce short results. The evaluations show that the area-cost of
the conventional predictor can be reduced between 25% and 50%, without affecting the
performance impact of value prediction.

4.7 Conclusions
We have shown that the spatial-locality property of the memory references produces redundancy
in the address field of the prediction tables of the address predictors, because the number of
different values for the high-order bits of the addresses recorded in the prediction tables is
relatively small.

We have used this property to reduce the amount of information recorded in the prediction
tables. Our proposed organization splits the addresses computed by the load instructions in two
parts: the high-order bits and the low-order bits. Addresses with the same high-order bits share
the only copy of these bits.

We also show that: a) management of empty entries in the table that records the high-order
bits (HAT), and b) filtering-out the allocations of high-order bits related to unpredictable load
instruction reduces capacity misses in HAT and improves the performance of the organization.

The inclusion of this organization and control in a typical last-address predictor, or in an
enhanced address predictor with filtering capacity, reduces the area-cost of the predictor without
performance loss.
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For b=14 and 64 HAT entries, both the LAP and the TLAP are predicting correctly and
mispredicting the same dynamic load instructions. A processor that implements the TLAP will
thus obtain the same IPC improvement as that obtained by implementing the LAP with a
significant area-cost reduction.

Other prediction models (stride-based, context-based and hybrid) can also make the most of
the spatial-locality of the addresses to reduce their area cost.

4.8 Detailed results

4.8.1 Predictability captured by the TLAP
Figure 4.13 presents the predictability captured by the TLAP on small and medium benchmarks.

4.8.2 Predictability captured by the DTLAP
Figure 4.14 shows the predictability captured by the DTLAP in small and medium benchmarks.
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5 EVALUATION OF

ADDRESS

PREDICTION

In this chapter, an evaluation of the impact of address prediction and speculative
execution on processor performance is presented. To perform this evaluation, it
is necessary to overcome a practical problem: the design space to be explored
is huge because the impact depends on a plethora of aspects (issue-queue size,
first-level-cache latency, issue width, verification mechanism of address
predictions, recovery mechanism on address mispredictions,...). This chapter is
focused on the influence of some of these aspects on the impact of address
prediction: the verification mechanism (and its relationship with
branch-instruction resolutions), the issue-queue size (assuming an issue queue
93
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decoupled from the reorder buffer) and the speculative-issue police (and its
relationship with the recovery mechanism). This chapter is organized as follows.
In Section 5.1, this chapter is introduced. In Section 5.2, the processor model
used in the evaluations is described. In Section 5.3, a basic verification
mechanism is reported, and it is also evaluated in the scope of
address-speculative processors with non-speculative branch resolutions. In
Section 5.4, the verification through the verification-flow graph is introduced; in
Section 5.5 and Section 5.6, two verification mechanisms based on the
verification-flow graph are detailed, and they are also evaluated in the same
scope as Section 5.3. In Section 5.7, the previous verification mechanisms are
evaluated in the scope of removing the instructions from the issue queue in
processors that decouple the issue queue from the reorder buffer. In
Section 5.8, the delayed speculative issue policy is presented. In Section 5.9,
the address-speculative processors presented in this chapter are compared.
Finally, in Section 5.10, some related works are reported, in Section 5.11, the
chapter is concluded, and in Section 5.12, detailed performance results are
presented.

5.1 Introduction
Branch prediction and speculative execution are techniques used by all superscalar processors
to deal with control-flow dependences. As both techniques have been used since early
processors, many works have evaluated the impact of these techniques taking into account a
wide range of parameters [SAMC98]. Some works have recently proposed the use of prediction
and speculative execution to deal with true-data dependences. These works propose the
prediction of the results of the register-writing instructions (value prediction) or the effective
addresses computed by the load instructions (address prediction) in order to execute
speculatively their dependent instructions. As the increasing load latency is one of the key
challenges on processor design, we have focused on address prediction.

Several works ([Sato98][ReCa98][AEK+01]) have presented evaluations of address
prediction and speculative execution. Although these evaluations yield promising results, they
focus on limited ranges of prediction environments. For instance, they use large issue queues
and, with respect to the recovery mechanism, either do not propose its practical implementation
or use a non-scalable one (they assume that the number of issue-queue entries is equal to the
number of reorder-buffer entries). Further analysis are needed to observe the influence of
several design parameters: a) in which moment a prediction-check result is used for driving
actions (after performing the check, on commit time), b) the propagation of the
verification/invalidation of the instructions (serially, in an enhanced way), c) the use of issue
queues with a number of entries smaller than that of the reorder buffer. Also, one may consider
the pipeline timing of the communication signals between the issue-queue device, which
dynamically schedules instructions, and the device that takes actions after checking the
predictions.

In the following paragraphs, the main aspects analysed in this chapter are described.
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Using address prediction, the result of the speculative execution of a branch instruction may
differ from the branch-prediction result; that is, the processor may have to deal with a branch
misprediction detected speculatively. In the scope of value prediction, Sodani and Sohi [SoSo98]
evaluated two approaches to deal with these branch mispredictions: a) by allowing speculative
branch resolutions and b) by delaying branch resolutions until the branch-instruction operands
are known to be non-speculative. Their average results show that the speculative branch
resolution presents about a 3% performance degradation with respect to the non-speculative
branch resolution. In this work we employ the non-speculative branch-resolution approach (like
Sazeides [Saze99], Rotenberg [Rote99],...), and in this chapter we evaluate several alternatives
for verifying the operands of the branch instructions: implicit verification on commit (implicit
verification), verification through the serial verification-flow graph (serial verification), and
verification through the enhanced verification-flow graph (enhanced verification).

In most existing processors, the number of issue-queue entries is smaller than the number of
reorder-buffer entries, since the use of larger issue queues may increase cycle time [PJS97].
Although some previous evaluations [Sato98][ReCa98] have assumed processors where the
number of entries of both structures is the same (such as AMD K6 [Half96], HP PA-8000
[Hunt95]), our evaluations assume processors where the issue queue has a number of entries
smaller than that of the reorder buffer (such as Alpha 21264 [Kess99], Sparc V [Dief99],
Pentium 4 [Carm00]) because the issue queue is less scalable than the reorder buffer. In this
chapter we evaluate the influence of the number of issue-queue entries on the impact of address
prediction and speculative execution.

After performing a speculative memory access, its dependent instructions may be issued. We
consider two speculative issue policies for the dependent instructions. First, an instruction
dependent on a speculative memory access may be issued as soon as the speculatively memory
access has been performed (non-delayed speculative issue). Second, an instruction dependent
on a speculative memory access must be issued after issuing the effective-address computation
for the predicted load instruction (delayed speculative issue). Although the non-delayed
alternative has more performance potential than the delayed alternative, we are interested in the
delayed speculative issue because it can be considered as a particular case of a speculative
technique named latency prediction. Then, the delayed speculative issue can use a specific
recovery mechanism that reduces the pressure on the issue queue with respect to a more
generic recovery mechanism. In this chapter we evaluate the influence of the speculative-issue
police on the impact of address prediction, and its sensitivity to the number of issue-queue
entries.

The evaluated processor configurations consider existing, 4-way processors and
next-generation, 8-way processors. Also, as first-level-cache access latency is expected to
increase on next generation processors, we evaluate first-level-cache access latencies that
range from two to four cycles.
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The evaluations will be performed using a detailed cycle-by-cycle simulator (Section A.1.2).
Unless noted, we will present the harmonic average of the performance results for the
SPEC95-INT benchmarks (Section A.2) in 4-way and in 8-way processors; we will plot the
harmonic average performance versus the cache latency or versus the issue-queue size.

5.2 Processor model
This section details the main characteristics of the processor models used in the evaluations
performed in this chapter. The first subsection describes the baseline processors (without
address prediction) and next subsection describes the address-speculative processors.

5.2.1 Baseline processors
Our baseline processor model is similar to an existing superscalar processor. Its block
organization is depicted in Figure 5.1 (solid lines and hollow boxes). The fetch unit generates the
effective addresses of the instructions that will be fetched from the instruction cache. To achieve
high instruction-fetch bandwidths, the fetch unit also predicts the behaviour of the branch
instructions. The outcomes of the conditional branches are predicted using an hybrid predictor
that combines a local predictor and a global predictor (gshare); branch targets are predicted
using a Branch Table Buffer (BTB) and a Return Address Stack (RAS).

After fetching the instructions, they are decoded and their architectural-register operands are
renamed into physical registers. Then, each renamed instruction is inserted into the issue queue
and into the reorder buffer.

Each renamed instruction waits in the issue queue for the availability of its source operands
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Figure 5.1 Block organization of the baseline processor (hollow boxes and solid lines) and the
address-speculative processor (all boxes and lines)
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and its functional unit. When these requirement are satisfied, the instruction is ready to be
issued. Then, a component of the issue queue named select logic, selects the oldest instructions
for issuing them.

After that, the source operands of the instruction are obtained from the physical-register file or
from a bypass network (not shown in the figure). Next, the instruction is executed in the
appropriate functional unit. When the result is available, it is bypassed to its data-dependent
instructions and it is written in the register file. Moreover, all the functional units notify the
identifiers of the executed instructions to the Reorder Buffer.

Finally, the instructions whose execution has been completed are retired from the Reorder
Buffer in program order. When an instruction is retired, the physical register assigned to the
previous mapping of the architectural register is freed.

Figure 5.2 presents the processor pipeline related to this organization. However, some stages
may take several processor cycles.

The processor pipeline can be divided into two parts:

• Front end. This is responsible for the initial in-order processing of the instructions; that is,
fetching, decoding, renaming and inserting them into the issue queue.

• Back-end. This is responsible for the out-of-order execution of the instructions and the
in-order instruction commitment.

The first component of the front-end pipeline is the fetch engine. It is in charge of providing
the instructions to be decoded. In detail, the fetch engine accesses the instruction cache to
obtain some cache lines, selects instructions from the accessed lines, aligns the selected
instructions, drives them to the decoders, and performs branch prediction. In back-end pipeline,
the execution of a load instruction requires computing its effective address, a memory access,
and driving data to the bypass network and to the register file.

The clock frequencies of future processors is expected to be higher than those of existing
processors, and wire delays are expected to increment the effective access latency of the
memory operations. These expected tendencies may increase both the fetch-engine latency and
the data-cache access latency. To reflect this trend, in this work we evaluate fetch engines and
data caches whose latencies range from two to four cycles; at each configuration we suppose
that both latencies are equal.

Figure 5.2 Processor pipeline assumed in this work

Fetch
Decode/ Issue Register

Execute Write CommitRename ReadQueue
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Alpha 21264 processor is an example of a two-cycle-latency fetch engine. Its instruction
cache is accessed during the first cycle, and the instructions are aligned and driven to the
decoders during the second cycle. A four-cycle-latency fetch engine may reflect a
two-cycle-latency instruction cache and an additional two-cycle latency for aligning the
instructions and driving them to the decoders. In case that the instruction cache is non-pipelined,
or the instruction cache is accessed on alternate cycles because branch prediction takes two
cycles, instruction fetches must be double-width in order to maintain the instruction-fetch
bandwidth seen by the decoders.

We have supposed that the remaining components of the front-end pipeline (decoding,
renaming and inserting into the issue queue) have a fixed latency of four cycles. Figure 5.3
shows the processor stages for executing a load instruction when fetch-engine and
cache-access latencies are two cycles.

Table 5.1 details the characteristics of the baseline processors used in this work: a 4-way
processor (resembles the Alpha 21264 processor) and a 8-way processor.

4 way 8 way

Fetch width 4 instructions 8 instructions

Fetch-engine latency 2 cycles

Branch Prediction
215-entry local predictor, 215-entry global predictor, 32-entry RAS

1024-entry, 4-way BTB

1 taken branch per cycle 2 taken branches per cycle

Reorder Buffer 128 entries 256 entries

Memory dependences Oracle Prediction

Decode width 4 instructions 8 instructions

Branch Misprediction Penalty 6 cycles + fetch-engine latency

Issue width 4 Integer + 2 Floating-point 8 Integer + 4 Floating-point

Functional units

4 Integer ALUs (2 ALU's can
compute effective addresses)

1 Integer Mult./Div.
1 FP ALU, 1 FP Mult./Div.

2 memory ports
(any combination of loads/stores)

8 Integer ALU's (4 ALU's can
compute effective addresses)

2 Integer Mult./Div.
2 FP ALU's, 2 FP Mult./Div.

4 memory ports
(any combination of loads/stores)

Latencies
1-cycle ALU, 3/20-cycle integer Mult./Div.
4-cycle FP ALU, 4/12-cycle FP Mult./Div.

2-cycle data cache

First-level caches Separated caches, 64Kbyte, direct-mapped, write back, write allocate

Second-level cache Unified, 1 Megabyte direct-mapped, 12-cycle latency

Main memory 80-cycle latency

Commit width 8 instructions 16 instructions

Table 5.1 Baseline processor configurations used in this thesis

Figure 5.3 Execution of a load instruction

F F D / Ren / Insert IQ IQ R @ m m wr



5.2 Processor model 99
5.2.2 Address-speculative processors
To perform address prediction and speculative execution, the baseline processor organization
must be modified. The following subsections detail some characteristics of the processors with
address prediction and speculative execution. In this chapter, we will refer to these processors as
address-speculative processors.

Differences with respect to the baseline processor
Figure 5.1 depicts the processor organization that performs address prediction and speculative
execution. Its main differences with respect to the baseline organization are detailed in the
following list:

• Concurrently with instruction fetch, the address predictor accesses prediction tables to
obtain address predictions for the load instructions being fetched. We assume an
optimistic address predictor with unbounded bandwidth, the same latency as the fetch
engine and immediate update of the address tables.

• Each predicted load instruction is inserted in the Load-Address Queue (LAQ) during the
decode stage. Moreover, the predicted address and the mapping for the destination
register must be recorded in the related LAQ entry. After that, the speculative memory
access can be issued from the LAQ. Unless indicated, we assume that predicted effective
addresses are inserted into the LAQ during the first cycle of the decode stage.

• The number of cache accesses that can be performed every cycle remains unchanged
with respect to the baseline processor. An arbiter prioritizes memory access initiated from
the issue queue respect memory accesses initiated from the LAQ.

• A functional unit must check the correctness of each prediction. The functional unit that
performs this checking obtains the predicted effective address from the LAQ.

• A verification mechanism must detect when a register value is known to be
non-speculative. As there are several alternatives to implement this mechanism (they are
discussed in Section 5.3, Section 5.4, Section 5.5 and Section 5.6), it is not depicted in
Figure 5.1.

The processor pipeline associated to the previous organization is the same as that of the
baseline processor. Figure 5.4 shows the execution of predicted load instructions, we have
assumed that both the fetch-engine and the cache-access latencies are two cycles, and the
availability of a free data-cache port for the predicted memory access. Figure 5.4-a depicts the
execution of a correctly predicted load instruction. Figure 5.4-b describes the execution of a
incorrectly predicted load instruction.

In our evaluations, we have varied both the fetch-engine latency and the first-level data-cache
latency in the same way as in the baseline processors. Section 5.7.4 presents an evaluation of
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the sensitivity of the processor performance to the moment when a speculative memory access
that uses a predicted address can be issued. That is, the predicted load is inserted in the LAQ
structure later than in Figure 5.4.

Finally, the address-speculative processors use the non-speculative branch resolution; that is,
the operands of a branch instruction must be known to be non-speculative before resolving the
branch instruction.

Address predictor
All the evaluations of address-speculative processors performed in this chapter use an Hybrid
Address Predictor (Section 2.3.4) made up of a conventional Stride-Address Predictor, a
Context-Address Predictor [BJR+99] and a bimodal selector.

Unless indicated, the evaluations presented in this chapter use a configuration of the previous
address predictor with large prediction tables: the Stride-Address Predictor has a 16K-entry
Address Table and the Context-Address Predictor has 16K-entry Value History Table and Value
Prediction Table. Using this configuration, we stress all the mechanisms specific to address
prediction.

We have considered a real and an oracle version of the address predictor; both versions
correctly predict the same load instructions. However, the oracle version performs no
mispredictions. Comparing the results for both versions, we are able to measure the influence of
address mispredictions on processor performance. Unless noted, we present results for the real
version of the address predictor.

Table 5.2 presents the captured predictability and the accuracy obtained by the real version of
the address predictor on SPEC95-INT benchmarks. In the case of the oracle version, its

F F D / Ren / Insert IQ IQ R @ m m wr

pred pred LAQ m m wr check

Figure 5.4 Execution of a load instruction assuming: a) correctly predicted load instruction
and b) incorrectly predicted load instruction

F F D / Ren / Insert IQ IQ R @

pred pred LAQ m m wr check

a) Execution of a correctly predicted load instruction
(actions related to the speculative execution have been shaded)

b) Execution of a incorrectly predicted load instruction
(actions related to the speculative execution have been shaded)
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captured predictability is the same as that of the real predictor, and its accuracy is 100%.

Speculative issue policies
We consider two alternatives for performing the speculative issue of the instructions dependent
on a predicted load instruction: non-delayed issue and delayed issue. In the first case, an
instruction can be issued speculatively as soon as it enters into the issue queue. In the second
case, the speculative issue is delayed until issuing the effective-address computation of the
predicted load instruction it depends on. Figure 5.5 shows the execution of a predicted load
instruction and a dependent instruction using both alternatives. In this example, the
delayed-issue alternative delays the issuing of the dependent instructions one cycle with respect
to the non-delayed alternative. The first instruction dependent on the predicted load instruction
must be issued on the cycle next to issuing the effective-address computation of the load
instruction.

The non-delayed alternative is more aggressive than the delayed one because the
computation of the effective address of the predicted load instruction does not delay the
speculative issue of the dependent instructions. When the address computation is issued, all its
dependent instructions may have been executed speculatively. However, the non-delayed
alternative can stress the issue queue because the propagation process for verifying instructions

Benchmark
Captured

predictability
Accuracy

go 59.16 91.65

m88ksim 96.27 97.81

gcc 83.26 95.02

compress 76.16 96.25

li 84.98 93.78

ijpeg 75.20 95.96

perl 98.99 99.33

vortex 90.66 95.47

average 83.08 96.00

Table 5.2 Captured predictability and accuracy obtained by the address predictor on
SPEC95-INT benchmarks

load r1, 0(r1)
F F D / Ren / Insert IQ IQ R @ ...

pred pred LAQ m m wr check

add r1, r1, r2 F F D / Ren / Insert IQ IQ R exe ...

Figure 5.5 Execution of a predicted load instruction and the speculative issue of a dependent
instruction: a) non delaying the issuing of the dependent instruction and b) delaying it

load r1, 0(r1)
F F D / Ren / Insert IQ IQ R @ ...

pred pred LAQ m m wr check

add r1, r1, r2 F F D / Ren / Insert IQ IQ IQ R exe ...

a) Non-delayed speculative issue

b) Delayed speculative issue
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requires the speculatively issued instructions to be maintained in the issue queue until they are
verified.

The delayed alternative is a particular case of a speculative technique named latency
prediction, which is applied by several superscalar processors (for instance, Alpha 21264
processor performs load hit/miss prediction[Kess99]). Our evaluations of the delayed alternative
assume the use of a recovery mechanism named Recovery Buffer. This mechanism is specific
for latency mispredictions, and allows removing the speculatively issued instructions from the
issue queue as soon as they are issued. We describe the Recovery Buffer in Chapter 6.

In this chapter, we evaluate both alternatives in order to decide if the delayed one may
represent a cost-effective alternative to the non-delayed one.

Address-prediction checkings
As address predictions may be incorrect, the processor must check the address predictions to
determine if the speculative work dependent on the predictions can be committed. Consequently,
for each predicted load instruction, its predicted effective-address must be compared to its
non-speculative effective address. There are several alternatives to perform this check.

• Serially. After computing the non-speculative effective address, it is compared to the
predicted effective address.

• Concurrently to the non-speculative effective-address computation (without waiting for the
carry propagation of the effective-address computation). We describe two alternatives to
perform it:
a) Cortadella and Llabería [CoLl92] proposed a circuit that evaluates A+B=K conditions
without carry propagation. Using this circuit, the prediction is checked by setting A to the
non-speculative base-register value, B to the load-instruction displacement and K to the
predicted effective address.
b) After performing an effective-address prediction, the base address related to this
prediction can be computed by substracting the load-instruction displacement from the
predicted address. The address-prediction check then consists in comparing the base
address of the prediction to the non-speculative base-register value.
As the latency of both concurrent alternatives is smaller than the latency of the adder, the
address-misprediction signal can be generated during the computation of the
non-speculative effective address.

In this work we use the concurrent alternative since it allows a faster detection of the
mispredictions. Moreover, correct predictions are notified to the verification circuit in order to be
used on the next cycle.

Finally, we assume that the address-prediction checkings are performed only by the ALU's
that compute effective addresses. Enabling all the ALU's to perform address-prediction
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checkings may be an interesting alternative because produces an increment of the checking
bandwidth, and then the dependent instructions can be issued earlier; however, after a
misprediction, the load instruction must be re-issued.

Recovery mechanism on address mispredictions
As some address predictions may be wrong, some instructions executed speculatively may have
used incorrect input data. To maintain program correctness, these instructions must be
re-executed. The mechanism responsible for maintaining program correctness despite address
mispredictions is the recovery mechanism. There are several alternatives to implement this
recovery mechanism:

• re-fetch versus re-issue: On re-fetch mechanisms, the instructions to be re-executed must
be read again from memory. This alternative is also named squashing, and it is similar to
the recovery mechanism on branch mispredictions because all the instructions younger
than the mispredicted load instruction are flushed-out from the pipeline and the fetch unit
is redirected to the next instruction after the mispredicted load instruction.
On re-issue mechanisms, the instructions are not read again from memory because the
processor keeps enough information to re-execute them. Re-issue mechanisms can be
classified by considering which storage structure (the issue queue or an additional
structure) is used for keeping this information.

• selective versus non-selective: The re-issue mechanisms can be classified into selective
and non-selective. On selective mechanisms, only the speculatively issued instructions
dependent on the misprediction are re-issued; on non-selective mechanisms, some
independent instructions may also be re-issued.

In this chapter we will use recovery mechanisms that re-issue instructions selectively.

Re-issue mechanisms
As previously pointed out, the re-issue mechanisms may differ on the storage structure used for
keeping the speculatively issued instructions. We describe some alternatives which have been
applied in several speculative scopes (address prediction, value prediction and latency
prediction).

On one hand, several authors (Sato [Sato98], Sazeides [Saze99]) have proposed using the
issue queue. They assumed a processor where the reorder buffer and the issue queue are
combined into a structure named Register Update Unit (RUU) [SoVa87]; that is, both the number
of issue-queue entries and the number of reorder-buffer entries are the same. Consequently, the
RUU keeps all the issued instructions until they are committed (or until they are flushed-out due
to a branch misprediction). Every RUU entry monitorizes the results produced by the remaining
instructions allocated in the RUU. When all the operands of an instruction are available, the
instruction can be selected for issue. After issuing an instruction, it is marked as non-visible to
the issue logic; that is, the instruction is prevented from being selected again for issue.
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The same authors extended the RUU to deal with address or value mispredictions. First, to
identify predicted instructions, they add a new field at every RUU entry. Second, to re-issue the
instructions dependent on a misprediction, they noted that its dependent instructions issued
speculatively are still allocated in the RUU; that is, although these instructions are non-visible to
the issue logic, they are still monitorizing the results produced by other instructions.
Consequently, when a non visible instruction detects a new value for one of its operands, the
instruction will be made visible again to allow its re-issue.

On the other hand, Morancho et al. [MLO01] proposed the use of a new storage structure to
record the speculatively issued instructions. They focus on the scope of latency prediction; in this
scope, the instructions issued speculatively are issued after issuing the predicted instruction, and
the interval from issuing a predicted instruction until checking its prediction is fixed. Taking
advantage of both facts, a recovery mechanism specific for latency prediction can be designed;
this mechanism is named Recovery Buffer, and it allows removing the speculatively issued
instructions from the issue queue as soon as they are issued. As the delayed speculative issue is
a particular case of latency prediction (the latency of some load instructions is predicted to be
one cycle), our evaluations of the address-speculative processors with delayed speculative issue
assume the use of the recovery buffer.

Invalidation mechanism
An address misprediction requires a recovery action because the speculatively issued
dependent instructions have produced wrong results due to the use of misspeculated source
operands. After detecting the address misprediction, there are several alternatives to invalidate
these wrong results: serial invalidation and parallel invalidation.

• Serial invalidation. After detecting the misprediction, the mechanism invalidates the
destination registers of the instructions as soon as they are re-issued. Consequently, after
detecting the address misprediction, a wrong result not directly dependent on the
misprediction may still be used and may also produce new wrong results. Note that the
program correctness is guaranteed because all these instructions will be re-issued.
Although this process wastes issue slots, it represents a performance degradation only if
younger instructions with correct operands are not selected for issue. Sato [Sato98] used
this alternative.

• Parallel invalidation. After detecting the misprediction, the mechanism invalidates
concurrently the destination registers of all the issued instructions dependent on the
misprediction. Consequently, no instruction will use these wrong results. Sazeides
[Saze99] used this alternative in the scope of value prediction.

In this work, we combine the non-delayed speculative issue with two invalidation
mechanisms: serial invalidation and enhanced invalidation; we combine the delayed speculative
issue with the parallel invalidation. Note that our schedulers select the oldest ready instructions
for issue. Consequently, we expect that the serial invalidation mechanism will produce only a
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small performance degradation.

Verification process
The verification process is responsible for propagating that an operand has become
non-speculative to its consumer instructions. This process influences branch-resolution delay
because we use non-speculative branch resolution; that is, to resolve a branch instruction, its
operands must be verified. Section 5.4, Section 5.5, Section 5.6 and Section 5.7 discuss several
strategies to perform the verification process.

Influence of the verification process on processor performance
In the literature, there are several alternatives to perform the verification process. On one hand,

Sato [Sato98] supposed an RRU-based processor1, and used a mechanism where no specific
hardware is devoted to propagating the verifications; we name it implicit verification on commit.
On the other hand, several works ([Dief99], [Saze99]) described the use of additional hardware
that allows a faster verification process. a) Diefendorff [Dief99] depicts how the Sparc64 V
processor speculates on the ordering of the memory accesses; however, the author does not
detail the implementation of the mechanism and only points out some ideas (for instance,
relating new state information to the registers). b) Sazeides ([Saze99]) proposed a combined
parallel verification/invalidation mechanism in the scope of value prediction. His implementation
assumes that, after detecting a correct prediction, the verification can be propagated serially to
all the instructions dependent on the prediction on a single cycle.

In next sections we evaluate the influence on processor performance of when the actions
(verification process) driven by address-check results are initiated. These evaluations are first
performed assuming that both the issue-queue and the reorder-buffer devices have the same
number of entries; consequently, these evaluations focus on the impact of the verification
process just on branch-instruction resolution.

We evaluate three verification mechanisms: the implicit verification, the serial verification and
the enhanced verification. First, we present results for the implicit verification. Then, we present a
design of a verification unit (the Verification Issue Queue) which is used for implementing the
serial verification and the enhanced verification. Next, we show processor performance using
these verification mechanisms.

Finally we evaluate processor performance for processors where the number of issue-queue
entries is smaller than the number of reorder-buffer entries. Our evaluations compare the
baseline processors (without address prediction) versus the address-speculative processors.

1. RUU-based processors have the reorder buffer and the issue queue grouped into the same
structure: the RUU. Our evaluations assume 128 RUU entries for the 4-way processors, and
256 RUU entries for the 8-way processors.
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5.3 Implicit verification on commit
This mechanism takes advantage of the fact that the instruction in the head entry of the RUU has
non-speculative operands because no previous instruction can modify them. Then, an instruction
gets verified when it reaches the head entry of the RUU and its execution has been completed.

Using this strategy, the instructions are verified in program order. However, in the same way
that several instructions can be committed on the same cycle, several instructions can be verified
on the same cycle; that is, a parallel verification of up to commit-width instructions ([Saze99]).

Although this mechanism is the simplest one (no specific hardware is devoted to propagate
verifications), it has a side effect that can affect processor performance. As we decided that
branch instructions will not be resolved until their operands are verified, the verification based on
retirement increases branch penalty because branch resolution is delayed until commit stage.
This overpenalty decreases the gain due to address prediction and, in some cases, may produce
net performances smaller than that of the baseline processors.

Figure 5.6 shows the performance of baseline processors and address-speculative
processors with the implicit verification mechanism executing benchmarks go (a) and perl (b). In
the case of go benchmark, the penalty due to delaying branch resolutions is bigger than the
benefits of address prediction; we can affirm it because the performance of the
address-speculative processor that uses the oracle predictor is smaller than that of the baseline
processor.

Using the real predictor, the address-misprediction penalty delays branch resolutions,
including the resolutions of the branch instructions independent on address mispredictions. On
branch mispredictions, the recovery action for the branch misprediction is delayed until commit
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with implicit verification mechanism (for benchmarks go and perl)
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stage and the performance degradation may be significant. In the case of perl benchmark,
considering the penalties produced by address mispredictions degrades significantly the
potential performance of address prediction.

Note that, on an address misprediction, the speculatively issued instructions have used
resources that could have been used to execute younger, prediction independent instructions.
Then, after detecting the address misprediction, these younger instructions must be executed
and the speculatively issued instructions must be re-executed. This produces a performance loss
that depends on a) the length of the chain of dependent instructions executed speculatively, b)
the amount of prediction independent instructions, c) the chains of dependent instructions which
speculative execution depends on several address predictions and d) address predictions
dependent on other address predictions. In the last case, the effective addresses of a load
instruction and that of a dependent load instruction may be predicted; then, the younger load
instruction and its chain of dependent instructions may be executed up to three times until
verifying its results. Performance loss is more significant on programs with high ILP because the
execution of some instructions independent on the misprediction is delayed.

We also present the average results in Figure 5.7. On average, address mispredictions
degrade the potential performance of address prediction around 2% (4-way processors) and
from 9% to 6%. In some cases, address mispredictions produce that the average performance of
address-speculative processors is smaller than that of baseline processors.

These results suggest that faster verification mechanisms must be evaluated, because
delaying the resolution of mispredicted branch instructions does not allow a full exploitation of the
potentiality of address prediction.
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5.4 Verification through the verification-flow graph
We first describe the basic idea of the mechanism. The processor executes concurrently two flow
graphs: a data-flow graph and an associated verification-flow graph. The data-flow graph is
traversed at operation latency. The verification-flow graph may be serial or enhanced. The serial
verification-flow graph is identical to the data-flow graph, but the latency of all instructions is one
cycle. In Section 5.6, we describe an Enhanced verification-flow graph that allows a faster
traverse of the dependence chains.

Once an address-prediction has been checked, the verification-flow graph is traversed. The
traverse starts at the predicted load instruction, and advances at an uniform single-cycle rate by
level of the verification-flow graph. As this work assumes a selective invalidation mechanism, the
verification-flow graph is also traversed to propagate invalidations in case of misspeculations.

The data-flow graph is managed by the Issue Queue (IQ) and the verification-flow graph is
managed by the Verification Issue Queue (VIQ). The physical-register state information is
composed by two components: a) data value is available/non-available and b) data value is
speculative/valid. Each component is handled by a different device. The IQ tracks if data value is
available/non-available and the VIQ tracks the other component. In this work, we refer to each
component as register state; context will usually disambiguate its meaning, otherwise, it will be
explicited.

Figure 5.8 shows the external inputs and the communication between the IQ and the VIQ
devices. Address-predicted load instructions are issued from the LAQ and, when data is
available, their destination-register state (available, non-available) is updated in the IQ for
waking-up speculatively their dependent instructions. The woken-up instructions will compete to
be selected for issue and, after issuing them, they will wake-up speculatively their dependent
instructions. To perform a fast recovery action in a misspeculation, the issued instructions are
kept in the IQ while they are speculative.

Instructions are verified/invalidated by tracking source-register states (speculative, valid) in
the Verification Issue Queue (VIQ). An instruction (other than an address-predicted load) is
verified when all its source operands are valid, and it is invalidated when some of its operands
are misspeculated. Verified/invalidated information is communicated to the IQ for removing
(verified), or re-issuing (invalidated) speculatively issued dependent instructions.

IQ VIQ

address check result

issue

remove
re-issue

data available from
predicted load instruction

Figure 5.8 External inputs and communication between the Issue Queue and the Verification
Issue Queue

misspeculate
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When the source operands of an address-predicted load instruction are valid, and the

address-check result (correct/incorrect)2 is known, the verification/invalidation process of a chain
of speculatively issued dependent instructions is initiated.

This section is organized as follows. Firstly, we describe the information flow for
verifying/invalidating instructions. Secondly, we detail the Issue Queue and the Verification Issue
Queue. Finally, we present some timing considerations on the communication between the Issue
Queue and the Verification Issue Queue.

5.4.1 Information flow for verifying/invalidating instructions
After the Rename stage, instruction information is inserted in both the IQ and the VIQ. Each
cycle, the IQ communicates to the VIQ which instructions are issued. When the source operand
of an address-predicted load instruction is valid, the load instruction is issued from the IQ and
performs address check.

In Figure 5.9 is showed the information flow for verificating/invalidating the instructions after
address check; we suppose that the serial verification-flow graph is used. After issuing an
address-predicted load instruction, its computed address is compared for equality with the
predicted address in the check stage, and address-check result (correct/incorrect) is notified to
the VIQ device. When the cycle is finished it is know if the address-predicted load instruction is
verified, or if the predicted address is mispredicted and a new memory access has been initiated.
In the later case, the speculatively issued dependent instructions must be invalidated because
they have used a misspeculated value.

Verify/invalidate information of an address-predicted load instruction is known by both the IQ
and the VIQ devices at the beginning of the next cycle. The load instruction is removed from the
IQ device because the load instruction has been issued with a valid source operand; note that in
case of an incorrect address-check result, the correct memory access is being issued. However,
when predicted address is mispredicted, the destination-register state in the IQ is set to
non-available. Thus, the non-issued instructions which directly depend on the load instruction will
wait in the IQ for the availability of the new data value.

Concurrently, in the VIQ device, verify/invalidate information of an address-predicted load
instruction is used to verify/invalidate the speculatively issued instructions directly dependent on
the load instruction (first level of the verification-flow graph).

In the next cycles, verified/invalidated-instruction information is used to remove/re-issue
instructions in the IQ and to verify/invalidate speculatively issued instructions of the next level of
the verification-flow graph in the VIQ. Thus, verify/invalidate information is propagated to the
following levels of the verification-flow graph in a rate of one level by cycle, and misspeculated

2. Result of the comparison of the address stored in LAQ with the computed address: correct
prediction or incorrect prediction
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instructions are re-issued.

5.4.2 Issue Queue
In dynamically-scheduled superscalar processors, instructions wait in the issue queue for the
availability of operands and functional units. To issue instructions out-of-order to the functional
units, the issue queue has two components: a) wakeup logic and b) select logic. The wakeup
logic keeps monitoring the dependencies among the instructions in the issue queue and, when
the operands of a queued instruction become available, this logic will mark the instruction as
ready. The select logic selects which ready instructions will be issued to the functional units on
the next cycle. When latency of the selected instructions is elapsed, dependent instructions are
woken up.

Dependence matrix
The Issue Queue includes a dependence matrix (Figure 5.10) for tracking dependencies among
instructions. The matrix has as many rows as the number of instructions analysed
simultaneously for scheduling, and as many columns as the number of physical registers
(registers for short).

The columns are wires that cross all rows, and each row includes a bit for each column. Each
column marks the data availability of a register, and it is set by a count-down latency counter or
by a shift register connected to the column.

When an instruction is inserted in an issue-queue entry, in the associated row of the
dependence matrix, the bits of the registers used as source operands of the instruction are set.
Also, the latency counter related to the destination register is initialised to the instruction

latency3.

Each crosspoint of the dependence matrix contains a logical circuit that determines if the
required source operand is available. For each row, the outputs of these logical circuits are used
to compute a ready bit that indicates if the instruction is ready to be selected by the select logic.

3. In this chapter we suppose an oracle predictor for the load-instruction latency.

address-predicted load IQ R @/Check Memory access (if mispredicted)
Address Check Result

VIQ
load instruction: verify/misspeculate
VIQ

1st level of the verification-flow graph
IQ verify/invalidate

VIQ
2nd level of the verification-flow graph:

IQ verify/invalidate

Figure 5.9 Information flow for verifying/invalidating instructions after the address check of a
predicted load instruction
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Ready bits are evaluated every cycle.

When an instruction is issued, the latency counter related to its destination register is
decreased on every cycle. Then, when latency lapses, the column will be set to mark the
availability of the result.

Re-issue mechanism
Issued instructions may use speculative source operands. Thus, when a data value is
misspeculated, its issued consumer instructions must be re-issued in order to be executed with
the new data value. To perform a fast recovery, the issued instructions are kept in the IQ until they
are verified. While an issued instruction waits in the IQ, it is made non-visible to the select logic.
This is handled by using a no-request bit in each dependence-matrix row; this bit it is set when
the instruction is issued.

When an instruction must be reissued because it uses a misspeculated operand, the
instruction is made visible again to the select logic. Moreover, its destination-register state is set
to non-available; this delays the issuing of its directly dependent instructions until the instruction
is re-issued and a new data value is computed.

Two control circuits perform previous operations: the removal circuit and the
register-scoreboard circuit. Figure 5.11 shows the interface between them and other issue-queue
elements.

Every cycle, the removal circuit is notified by the VIQ of the instructions that must be
removed/re-issued, and the register-scoreboard circuit is notified of the misspeculated
instructions. The removal circuit removes verified instructions from the IQ, and makes visible
again the instructions that must be re-issued. The register-scoreboard circuit activates latency
counters (for each issued instruction, and when data of the address-predicted load instruction
becomes available) or unsets columns (for each misspeculated instruction).

As ready bits are re-evaluated every cycle, misspeculated instructions will re-evaluate their
ready bits, waiting for operand availability; also, all instructions directly dependent on the
misspeculated instructions will be slept.

Figure 5.10  Dependence-matrix structure of the Issue Queue
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Address-predicted load instructions
Address-predicted load instructions are issued from the LAQ in order to perform a speculative
memory access; when it is finished, its destination-register state (available, non-available) is set
to available in order to wake-up speculatively its directly dependent instructions. However, if an
address-predicted load instruction is issued from the issue queue before initiating the speculative
memory access, the speculative access is not performed and address-check result is considered
as correct in the VIQ. This fact is detected when, in order to perform the address check, the
predicted address is read from LAQ.

The IQ is notified of the incorrect address-check results using the misspeculate signal; this
signal is used for updating, if it is needed, the destination-register state of the load instructions.
Register state is set to non-available when following two conditions are satisfied: a) the
address-check result is incorrect (compared addresses do not match) and b) the remaining
latency of the load instruction is larger than the latency from the issue stage to the first execution
stage.

5.4.3 Verification Issue Queue
In this section we describe the Verification Issue Queue, which implements the
verification/invalidation through the verification-flow graph.

All load instructions perform address check in order to update the prediction tables of the
address predictor, but address-check result of non-address-predicted load instructions is always
correct. Then, the statement “load instructions that perform address check” refers to the load
instructions which address-check result may be wrong.

After knowing the address-check result of a load instruction that performs address check, the
instruction initiates the verification/invalidation of the chain of speculatively issued dependent
instructions. It first verifies/invalidates issued instructions directly dependent (in the serial
verification-flow graph) on the load instruction. These verified/invalidated instructions are used, in

•
•

•

Dependence

Register Scoreboard
Circuit

Select
Logic

Removal Circuit

visible

no-request

misspeculate (VIQ)

remove / re-issue (VIQ)

ready

• • •

•
•

•

• • •

remove

• • •

data available from predicted load instruction

a) ready • no-request

b) a)
b)

D
estination

R
egister

b) selected

activation

Figure 5.11 Issue-queue structure

•

of latency
counters

Matrix



5.4 Verification through the verification-flow graph 113
next cycle, to verify/invalidate issued instructions that directly depend (in the serial
verification-flow graph) on them. Thus, each cycle, issued load instructions that perform address
check and verified/invalidated instructions are used to verify/invalidate issued instructions.

We next describe the base structure of the Verification Issue Queue. After that, we describe
the use of this base structure when the address check is performed non-speculatively,
speculatively and with an Enhanced verification-flow graph.

Verification Issue Queue: elements and input/output signals
The issued instructions, other than load instructions that perform address check, wait in the
Verification Issue Queue until knowing if its source operands have became valid or
misspeculated. The VIQ has two components (Figure 5.12): a) Verify/Invalidate logic and b)
Decision logic.

The Verify/Invalidate logic monitors if the source operands of the instructions are valid or
misspeculated. When all source operand of an instruction become valid or one of them is
misspeculated, the logic marks the instruction as verified or invalidated respectively.

For each issued instruction, the Decision logic determines if: a) the instruction can be
removed, b) the instruction must be re-issued or c) for load instructions that perform address
check, the data value has been misspeculated and the speculatively issued dependent
instructions must be re-issued. The Decision logic considers: a) the instruction has been issued,
b) verify/invalidate signals, c) instruction type (load that performs address check, other
instruction), d) address-check result, and e) memorization elements related to the instruction.

Decision-logic outputs are used in next cycle to propagate verify/invalidate information to
directly dependent (in the verification-flow graph) issued instructions; also, these outputs are sent
to the IQ in order to remove/re-issue instructions.

Matrix structure
The core of Verify/Invalidate logic is a matrix structure (Figure 5.13), similar to the matrix used in
the IQ device for tracking dependences. This matrix structure monitors if the source operands of
the instructions are valid or misspeculated. It has as many rows as the number of instructions in
the IQ, and as many columns as the number of physical registers.

verify/invalidate
logic

verify

invalidate

remove

re-issue
issued

address check result

Decision
logic

misspeculate

Figure 5.12  Components of the Verification Issue Queue
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The columns are wires that cross all rows and each row includes a bit for each column. Each
column marks the register state (speculative, valid) and if the data value has been
misspeculated. The state of a physical register is speculative until the Decision logic indicates
that the producer instruction, which computes the data value, can be removed. The
misspeculated signal is set only for one cycle, when Decision logic indicates that the instructions
that have consumed misspeculated data value must be re-issued.

When an instruction is inserted in a matrix entry (row), the bits related to the source operands
of the instruction are set. This information is built at the Register Rename stage and inserted in
VIQ after this stage.

Each crosspoint of the dependence matrix contains a logical circuit that determines if the
source operand is valid or it is misspeculated (Figure 5.13). For each row, the outputs of the
logical circuits are used to compute the verify/invalidate signals. Verify signal is activated when
all source operands of the instruction are valid. Invalidate signal is activated if any source
operand of the instruction is misspeculated. These signals are evaluated every cycle.

...
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...
...

...
...

Figure 5.13 Matrix structure of the Verification Issue Queue (VIQ)
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Load instructions that perform address check
A load instruction that performs address check establishes if its destination register is valid or
misspeculated using two informations related to the same instance of the dynamic load
instruction: a) address-check result and b) verify signal of the load instruction (source operand is
valid). Then, load instructions that perform address check must be tagged in order to take into
account both informations before the Decision Logic takes a decision. For this, we use the
instruction type bit (load instruction that performs address check, other instruction).

However, for incorrect address-check results, the chain of dependent instructions will be
re-issued immediately because the computed address is used for initiating a new memory
access after the address-check stage, and this chain of instructions had used misspeculate data
values.

Decision logic
Each entry of the matrix structure has a valid bit which indicates if the instruction has been
issued and it is waiting for the verification/invalidation of its source operands. This bit is set each
time the instruction is issued and it is unset (non-valid) when Decision logic decides that the
instruction must be re-issued.

For each instruction, the decision logic uses verify/invalidate signals of the matrix structure,
valid bits of the entries, address-check results, instruction type and memorization elements to
generate remove, re-issue and misspeculate signals.

For a load instruction that performs address check, address-check result and verify signal of
the source operand must be paired before deciding if data value is valid. Because both
informations may be generated at different time, a memorization element in Decision logic is
needed. After pairing both informations, on a correct address-check result, the remove signal is
set. In other case, incorrect-address check result, the misspeculate signal is set only for one

cycle, and in next cycle remove signal is set4. The actions performed in other cases are specific
of the issue and address check policies of the load instruction that performs address check.; that
is, if the address check is non-speculative/speculative.

For the other instruction type, verify/invalidate signals drive directly remove and
re-issue&misspeculate signals respectively (Table 5.3).

Figure 5.14 shows the interface between the Verification Issue Queue elements. Every cycle,

4. As the source operand of the load instruction has been verified, the memory access, initiated
after address check, will service the valid data value.

matrix structure outputs Decision logic outputs

verify remove

invalidate re-issue & misspeculate

Table 5.3 Decision logic outputs for instructions that non perform address check
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the removal circuit and the register-verify circuit are notified of the removed/re-issued and the
re-issued/misspeculated instructions respectively. The removal circuit removes an instruction
when then remove signal is activated; also, sets the entry as non-valid when the re-issue signal
is activated. The register-verify circuit sets the destination-register state to valid on a remove
signal, and activates the misspeculate-column signal on a misspeculate signal.

5.4.4 Pipeline timing considerations on the communication between IQ,
VIQ and check devices
The IQ and the VIQ devices are communicated in order to coordinate the actions performed by
each device. The IQ device communicates to the VIQ which instructions have been issued, and
the VIQ communicates to the IQ which instructions must be removed/re-issued, and which
register data values have been misspeculated. Moreover, the unit that performs address checks
must communicate the address-check result to the VIQ. The pipeline timing of the
communication signals must be considered in order to identify critical communication paths.

In order to avoid speculative address checkings, a possible design consists in issuing
address-predicted load instructions after validating their source operands. Therefore, these
instructions must wait in the IQ until validating their source operands. However, source operands
are validated in the VIQ. Then, the VIQ must inform to the IQ that all source operands of the
instructions are validated.

To not delay the issuing of an address-predicted load instruction, information on its
source-operand validity is needed at the same cycle at which the instruction would be woken-up
because the source operand will be available. Therefore, the VIQ must communicate to the IQ
the information at this cycle. In Figure 5.15-a is shown an example, where stage usage is
represented from the IQ stage. Each instruction is represented by two rows: the upper row shows
IQ, Register Read and Execute stages; the lower row shows the VIQ device.

On cycle 1, concurrently to waking-up and selection actions, the VIQ device computes
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verify/invalidate signals, and decides the actions to be performed for all instructions allocated in
the VIQ; however, these decisions will be effective only for issued instructions. For this, before
activating on cycle 2 the column signals in the matrix structure of the VIQ device, the VIQ must
known the instructions selected for execution in the previous cycle.

For an address-predicted load instruction, the VIQ device communicates to the IQ if the
source operand of the instruction is verified/invalidated (output of the matrix structure). Then, the
IQ device uses this information to not issue the instruction until source operand is verified,
although the ready bit is set. This can be observed on cycle 3 of Figure 5.15-a. The source
operand of the load instruction is available, it is validated, and the load instruction is selected by
the select logic.

We next analyse the cycle-time usage in the IQ and the VIQ devices. The matrix structures of
both devices are similar; both have the same number of columns and the same number of rows.
However, the VIQ matrix doubles the number of signals in rows and columns with respect to the
IQ matrix. Then, the VIQ area is bigger than IQ area, and VIQ wire delays are larger than IQ wire
delays. Therefore, VIQ signals (verify, invalidate) are known later than IQ signals (ready).
Figure 5.16 shows an of the relative time of the actions performed in both devices.

To not waste issue slots and to allow issuing younger load instructions while waiting the

cycles 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

r1=... IQ R alu wr IQ R alu wr
issued issued

VIQ VIQ VIQ VIQ
Register r1 validated Register r1 validated

r4=r1+... IQ IQ R alu wr IQ IQ R alu wr

VIQ VIQ VIQ VIQ VIQ
Register r4 validated Register r4 validated

ld ...,(r4) IQ IQ R @/C IQ IQ R @/C

VIQ VIQ VIQ VIQ VIQ VIQ

insert valid non-valid Source operand of load validated

Issued instruction Validated instruction Validated load instruction

Figure 5.15 Communication between VIQ and IQ devices
a) Stressed timing in communication b) Relaxed timing in communication

Cycle time

Issue Queue Wake-up Select

Verification Issue Queue Verify/invalidate D.L.

Figure 5.16 Qualitative cycle-time distribution of IQ and VIQ components
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source-operand validation, the source-operand information must be know before selection logic
begins to work (note that the selection logic prioritizes instructions by instruction age). Therefore,
with our previous discussion on time distribution of both devices, this communication affects the
cycle time, because the selection logic of IQ must wait until matrix structure of VIQ finishes its
computation.

Then, we analyse another design alternative. The VIQ device tracks the source-register state
of an instruction the next cycle after issuing it (Figure 5.15-b). Then, the validation of all source
registers of an instruction is communicated to the IQ in the cycle that follows the validation of the
last source operand of the instruction. In Figure 5.15-b, the source operand of the load
instruction is validated on cycle 4, and IQ is informed at the beginning of cycle 5. Moreover, this
design relaxes the communication time needed to communicate (from IQ to VIQ) which
instructions have been issued on the previous cycle, because this information is used by the
Decision logic after the matrix structure finishes its work.

Because the issuing of the address-predicted load instructions is delayed, destination-register
validation is also delayed. This delay produces a reduction in the effective size of the IQ, because
more entries are allocated to speculatively issued instructions waiting for verification. Moreover,
address-misprediction recovery action is initiated later than in the previous design.

To reduce these drawback effects, one may consider the use of instructions older than the
producer instruction for validating data values. For instance, we can use all grand-grand-parent
instructions of the source operands for validating source operands of an address-predicted load
instruction. However, the effectiveness of this technique is limited because the chain of
dependent instructions, from a grand-grand-parent instruction to the source operand, can not
include address-predicted load instructions.

In next section we develop a design that issues address-predicted load instructions when its
source operands are validated and, in other section, we develop a design that uses an enhanced
verification-flow graph that validates the source operand of the instructions using instructions
older, in the instruction dependent chain, than the parent instruction.

In a later section, we relax the issue policy for address-predicted load instructions. They will
be issued with speculative operands and then, address-check result will be speculative until
source operands will be verified. With the issue-policy relaxation, the communication restrictions
between the VIQ and the IQ do not delay the issuing of address-predicted load instructions.

Address-check result is used by the VIQ to know if the data value of an address-predicted
load instruction has been misspeculated. As we use a specific circuit to perform address checks
(Section 5.2.2), we assume that address-check result can be used by the Decision Logic of the
VIQ at the same cycle in which it is computed. The Decision Logic combines this result with the
verify/invalidate signals that computed by the Matrix structure also at this cycle.
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While the Decision logic of the VIQ uses local signals of each entry, the Selection logic of the
IQ uses signals from all entries. Then, the work time of the Decision logic is shorter than that of
the Select logic (Figure 5.17).

5.5 Serial verification through the verification-flow graph
Using serial verification, the verification-flow graph is identical to the data-flow graph, but the
latency of all instructions is one cycle.

Firstly, we describe the basic mechanism that supposes that: a) each predicted load
instruction waits for execution in the IQ until its operand is validated (address checking is not
speculative) and b) each non-predicted load instruction does not perform address checking and
may be executed with speculative operands. In later case, if the load instruction is
misspeculated, it and their speculatively issued dependent instructions must be invalidated and
re-issued. Thus, only address-predicted load instructions perform address check.

Secondly, we describe an extension of the base mechanism where address-predicted load
instructions perform checks with speculative source operands and also, non-predicted load
instructions perform speculative checks when they are re-issued. Moreover, the design supposes
that the number of concurrent instances of a dynamic load instruction, in execution phase, is
limited to one instance. Finally we extend the previous design to allow several concurrent
instances of a dynamic load instruction.

5.5.1 Non-speculative address check
An address-predicted load instruction must wait in the IQ until validating its source operand. For
this, we use the functionality of the VIQ for tracking the source-operand states of the issued
instructions with valid bit set. Thus, the VIQ informs to the IQ of the validation of the source
operand of the address-predicted load instruction. Then, the instruction is allowed to be selected
for issue. When the instruction is issued, the address check is performed and the result is sent to
the Decision logic of the VIQ. Now, the Decision logic is aware of both the source-operand
validity and the address-check result. Then, the Decision logic decides removing (or
re-issuing&misspeculating) the speculatively issued dependent instructions on a correct (or
incorrect) address-check result. Figure 5.18 shows a pipeline example of an address-predicted
load instruction which is not issued until validating its source operand.

Previous operations require that the VIQ must observe two times the predicted load

Cycle time

execution stage compute effective address
address check

Verification Issue Queue Verify/invalidate D.L.

Figure 5.17 Qualitative cycle-time distribution of address checking and VIQ components
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instruction. The first time is used for knowing when the source operand becomes valid, and the
second time is used for pairing the validity of the source operand and the address-check result.
To make this process, the VIQ uses a memorization element that marks if the address-predicted
load instruction is observed for the first time or for the second time. This memorization elements
is named check bit (on, off).

To avoid selecting for issue an address-predicted load instruction which source operand is not
yet valid, we use the mechanism that makes instructions non-visible to the select logic. That is,
when the address-predicted load instruction is inserted in the IQ, its no-request bit is set.

To know when the source operand is validated, the valid bit, of the associated entry in VIQ, is
set at the same time as the instruction is inserted in IQ. Moreover, the check bit is set to off for
marking that the load instruction is being observed by the VIQ for the first time.

While the load instruction is waiting for validating its source operand, the invalidate signals,
that may be generated by the matrix structure due to a misspeculated source operand, are
filtered in the Decision logic by using the instruction type bit (address-predicted load instruction).
When the source operand is valid, the instruction must be made visible in IQ; consequently, the
Decision logic activates the re-issue output signal. The removal circuit of the IQ uses the re-issue
signal for unseting the no-request bit of the instruction and, after that, it may be selected for
issue. Moreover, in the VIQ, the removal circuit unsets the valid bit and the Decision logic sets to
on the check bit.

The second time that VIQ observes the address-predicted load instruction, the Decision logic
decides, if address-check result is correct, removing the instruction and validating its destination
register. In the other case, two cycles are used for performing the recovery action. In the first
cycle, the misspeculate signal is activated for re-issuing the directly dependent issued
instructions; in the second cycle, the remove signal is activated for removing the

cycles 1 2 3 4 5 6 7

 r1=... IQ R alu wr

VIQ VIQ
Register r1 validated

r4=r1... IQ IQ R alu wr

VIQ VIQ
Register r4 validated

ld ...,(r4) IQ IQ R @/C

VIQ VIQ VIQ Validated load instruction

insert valid non-valid

validated instruction Source operand of load validated

Figure 5.18 Example of a non-speculative address check
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address-predicted load instruction and validating the destination register.

Table 5.4 summarizes the signals activated by the Decision logic considering the observation
phase (check bit) and the outputs of the matrix structure.

5.5.2 Speculative address check
Base design delays the verification of an address-predicted load instruction that depends on
other address-predicted load instruction. In Figure 5.19-a is showed an example. Once the
address check of the producer load instruction is known to be correct, the destination register
state is set to valid. Then, the dependent address-predicted load instruction may be issued and
checks its predicted address. After knowing that address-check result is correct, the destination
register of the younger load instruction is set to valid. The number of cycles elapsed between
both address checks is four cycles.

The delay required to verify dependent address-predicted load instructions may be reduced
by allowing speculative address checks with speculative operands. In Figure 5.19-b is shown the
same example as in Figure 5.19-a, but the younger address-predicted load instruction performs
address check with an speculative operand. As in Figure 5.19-a, the address-check result of the
younger load instruction is correct. Then, the instruction waits for the validation of its source
operand in order to propagate the verification to its issued dependent instructions. Two cycles
later, the younger load instruction knows the validity of its source operand, and then the
validation of its destination register is propagated. Moreover, if the younger load instruction is
address mispredicted, the recovery action can be initiated immediately after receiving the

first time (check bit off) second time (check bit on)

matrix structure
outputs

Decision logic matrix structure outputs Decision logic

verify re-issue verify remove

invalidate none invalidate first cycle misspeculate
second cycle remove

Table 5.4 Decision-logic results using non-speculative address check

cycles 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6

 ld r1,... IQ IQ IQ R @/C IQ IQ R @/C

VIQ VIQ VIQ VIQ VIQ VIQ

ld ...,(r1) IQ IQ R @/C IQ R @/C

VIQ VIQ VIQ VIQ VIQ VIQ VIQ

insert&valid valid non-valid

Figure 5.19 Validation of dependent predicted load instructions
a) with non-speculative address check, b) with speculative address check

a) with non-speculative address check b) with speculative address check
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address-check result. Then, if producer load is correctly predicted, the recovery time is reduced
with respect to the base design.

We next describe an extension of the base mechanism where address-predicted load
instructions perform address checks with speculative source operands. Moreover, we suppose
that the number of concurrent instances of a dynamic load instruction is limited to one instance.
That is, the Decision logic will decide to re-issue a load instruction after pairing two informations:
a) address-check result, and b) if source operand is valid or misspeculated.

To perform the address check, an instance of a dynamic load instruction uses the predicted
address or the address computed in its previous instance; if address-check result is incorrect, a
memory access with the computed address is initiated. Moreover, when address-check result is
incorrect, the recovery action will be initiated immediately, because it is hoped that the source
operand will be validated later. Also, non-address-predicted load instructions perform address
check if they are re-issued. First instance of a non-address-predicted load instruction returns
correct as address-check result and performs a memory access with computed address.

Address-check result may be received in the VIQ before knowing if the source operand is
verified/invalidated or vice versa. Moreover, while waiting address-check result, the source
operand may be first invalidated and later verificated. Then, as address check has used a
misspeculated operand, the Decision logic must take into account the invalidate signal to perform
actions. Thus, as the address-check result and the invalidate signal are only activated during one
cycle, they must be stored in memorization elements. These elements are named check result bit
and misoperand bit.

The Decision logic may take several actions to deal with a load instruction. The Decision logic
can remove or re-issue the load instruction and, after an incorrect address-check result, can
re-issue the chain of issued instructions dependent on the load instruction. Thus, the
remove/re-issue signals are activated after pairing both load informations. However, the
misspeculate signal is activated when the address-check result is known to be incorrect,
independently of the actions performed later, when load information is paired.

To remove a load instruction, by correctness, its source operand must be known to be verified
and its address-check result must be received. However, the misspeculated source operand
case (re-issue) is an implementation restriction; only one instance of a dynamic load instruction
is allowed in execution phase (without have performed the address check).

When address-check result is incorrect, the misspeculate signal is activated. Then, after
pairing load information, independently of the actions performed due to the address-check result,
the Decision logic considers the operand validity. If source operand is verified, the load
instruction is removed; otherwise, if the source operand is invalidated, the load instruction is
re-issued, because address check has used a misspeculate data value as source operand.
Therefore, in former case the Decision logic activates the remove signal and in the later case
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activates the re-issue signal.

Table 5.5 summarizes the outputs produced by the Decision Logic considering its input
signals. In case of receiving the verify signal of the source operand earlier or at the same cycle
as the check result, and the check-result is incorrect, the Decision Logic performs a two-cycle
response: on first cycle generates the misspeculate signal, and on second cycle generates the
remove signal.

Finally, we discuss the effect of the speculative address checking on updating the
address-prediction tables. The last address-check result may be not useful to update the address
predictor because the last address check may have used an address different from the predicted
address. Therefore, the address computed by the last instance of the load instruction must be
compared to the predicted address before updating the address predictor on commit time. For
this, the LAQ structure must store both the predicted address and the last computed address.

5.5.2.1 Speculative address check and concurrent execution of several instances
of a dynamic load instruction
The previous design delays the re-issue of a load instruction that performs address check when
its source operand is known to be misspeculated and its address-check result is not yet known,
because this design allows only one instance of a dynamic load instruction in execution phase.
The delay depends on the number of cycles (latency) lapsed from the issue cycle (IQ stage) until
the VIQ device knows the address-check result, because some misspeculate signals received
during these cycles are not attended immediately.

Figure 5.20-a shows an example where a load instruction depends on two mispredicted
address-predicted load instructions. Misspeculate signals of the address mispredicted load
instruction are delayed between them two cycles. We suppose, but not showed, that consumer
load instruction has been executed previously with speculative operand, and in the first
re-execution address-check result is correct and in the second re-execution the address-check is
incorrect but its source operand has already been verified. Re-executions are showed in
consecutive rows, before the row that shows the activity of the VIQ for the instruction. On cycle 7,
the invalidation of the source operand of the load instruction is received; however, the decision of
re-issuing the load is taken on cycle 8, after receiving the address-check result. Figure 5.20-b
shows only the differences with respect Figure 5.20-a when several instances of a dynamic load
instruction can be in execution phase concurrently. We can observe that the re-issue of the load

Decision logic outputs
matrix structure outputs check result when address-check

result is received
when both load informations

are paired

verify correct none
remove

incorrect misspeculate

invalidate correct none
re-issue

incorrect misspeculate

Table 5.5 Outputs of the Decision logic with speculative address checks
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instruction is initiated one cycle early, because the address-check result is not needed to take the
decision.

The design of Section 5.5.2 can be extended to support the concurrent execution of several
instances of a dynamic load instruction. When the Decision logic knows that the source operand
of a load instruction that performs address check is misspeculated, the Decision logic activates
the re-issue signal of the load instruction, without waiting for the address-check result of the
instance. Later, if address-check result is correct, the Decision logic does not activate any signal.
However, if address check-result is incorrect, the Decision logic activates the misspeculate signal
in order to re-issue the chain of dependent issued instructions. This it is needed because the new
instance, when issued, will perform address check with the computed address of the previous
instance.

Address-check results are received in the same order as the re-issue signals of the load
instructions are activated. Then, its is sufficient to count the number of pending address-check
results that must be received, before pairing the verification signal of source operands with the
address-check result of last instance of the dynamic load instruction.

Table 5.6 summarizes the outputs produced by the Decision Logic considering its input
signals. We suppose that the number of pending address-checks results related to a load
instruction is zero when, after issuing an instance of the load instruction, the next address-check

1 2 3 4 5 6 7 8 9 10 11 12 13 14
ld r1,... IQ R @/C m m wr

VIQ VIQ

ld r2,... IQ R @/C m m wr

VIQ VIQ

r3 =r2+r1 IQ R alu w

IQ R alu wr

IQ R alu wr

VIQ VIQ VIQ VIQ

ld...,(r3) IQ IQ R @/C

IQ R @/C m m wr

VIQ VIQ VIQ VIQ VIQ

ld...,(r3) IQ R @/C

IQ R @/C m m wr

VIQ VIQ VIQ VIQ

Figure 5.20 Example with one/several concurrent instances of a load instruction:
a) one instance, b) several instances

a)

b)
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result received by the VIQ corresponds to the last issued instance. In case of receiving the verify
signal of the source operand earlier or at the same cycle as the check result, and the check result
is incorrect, the Decision Logic performs a two-cycle response: on first cycle generates the
misspeculate signal, and on second cycle generates the remove signal. When the number of
pending address-check results is zero, this table is equal to Table 5.5; in the other case, incorrect
address-check results produce that the Decision logic activates the misspeculate signal.

5.5.3 Processor Performance
Branch instructions are resolved when their source operands are valid. In this subsection we
evaluate the influence of the serial verification on branch-resolution time. To do not bias the
evaluations, we use 4-way and 8-way processor configurations with a number of issue-queue
entries equal to the number of reorder-buffer entries. For 4-way processors we use 128 entries
and for 8-way processors we use 256 entries.

Next example depicts the execution of a sequence of instructions, and shows the branch
instruction is resolved earlier using the serial verification than using the verification on commit.
The presented results assume speculative-address checks and concurrent execution of several
instances of a dynamic load instruction.

Example
Figure 5.21 shows the cycle-by-cycle execution of some predicted load instructions, and how the
serial verification through the verification-flow graph propagates the verification to their
dependent instructions. The contents of the speculative state of the operands of the instructions
are also depicted. For instance, the speculative state (1, 0) of instruction b on cycle 3 means that
the state of the first operand (r1) is speculative (1), and the state of the second operand (r9) is
non speculative (0); we depict these contents only after issuing/re-issuing an instruction and after
updating their value. We have assumed that both speculative accesses (instructions a and c)
have finished before inserting the dependent instructions a into the issue queue; also, the
address prediction of instruction a is incorrect (KO), and the address prediction of the instruction
b is correct (OK). Finally, the initial state of all registers is non speculative.

Decision logic outputs

matrix-structure
outputs

address-check
result

number of pending
address-check

results

when address-check
result is received

when misspeculate
operand is received

when both load infor-
mations are paired

verify
correct

= 0
none

n.a.

remove
> 0 none

incorrect
= 0

misspeculate
remove

> 0 none

invalidate
correct

= 0
none

re-issue n.a
> 0

incorrect
= 0

misspeculate
> 0

Table 5.6 Outputs of the Decision logic with concurrent executions of several instances of a load
instruction
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The instructions dependent on the predictions are executed speculatively. First, instructions b
and f, next instructions d and g, and finally instruction e. Note that the state of some operands
are set to speculative (r2, r4 and r6).

After detecting the correct prediction of load instruction c on cycle 7, all its directly dependent
instructions are notified that register r3 has become non speculative. As both operands of
instruction f are known to be non speculative, the verification is propagated to its dependent
instructions (instruction g) on next cycle.

After detecting the incorrect prediction of load instruction a on cycle 10, memory is accessed
again. As dependent instructions are re-issued, the non speculative state is propagated.

We can observe that the branch instruction (instruction g) is resolved when its operand has
been verified (cycle 9). Note that the branch resolution has been advanced several cycles with
respect to the commit stage (cycle 18).

Results
Figure 5.22 shows the performance of the baseline processors and the address-speculative
processors with both the implicit verification on commit and the serial verification through
verification-flow graph.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a) load r1,.
IQ IQ R @ m m wr com

m KO

b) r2 =r1+r9
IQ IQ R exe wr IQ R exe wr com

(1,0) (0,0)

c) load r3,.
Ren IQ IQ R @ com

m OK

d) r4 =r3+r2
Ren IQ IQ R exe wr IQ R exe wr com

(1,1) (0,1) (0,0)

e) r5 =r4+r0
Ren IQ IQ R exe wr IQ R exe wr com

(1,0) (0,0)

f) r6 =r3+r9
Ren IQ R exe com

(1,0) (0,0)

g) branch r6
Ren IQ R exe resol. com

(1) (0)

Waiting in the Issue Queue Waiting for commit

Waiting for verification Instruction re-issue

(...) State of the source registers (0 stands for non speculative, 1 stands for speculative)

Figure 5.21 Example of the serial verification
(using this verification mechanism, the branch resolution of instruction g has been advanced 9

cycles with respect to the implicit verification on commit)
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We can observe that the address-speculative processors with the serial verification represent
a performance improvement with respect to the baseline processors. Using the real predictor,
this improvement ranges from 5% to 9% (4-way processors) and from 7% to 13% (8-way
processors).

Comparing both address-speculative processors (serial verification versus implicit
verification) using the real predictor, the verification mechanism has a great impact on processor
performance: the use of the serial verification improves the performance around 5% (4-way
processors) and from 13% to 17% (8-way processors). The instructions that take advantage of
the faster verification process are the mispredicted branch instructions, because they must be
resolved after verifying their operands. Consequently, using the serial verification, some
mispredicted branch instructions are verified before they reach the head-entry of the re-order
buffer (for instance, all the branch instructions independent on address predictions).

The degradation on the performance of the serial mechanism due to address mispredictions
can be observed by comparing the results for the real and the oracle predictor. This degradation
is around 1% in 4-way processors and around 2% in 8-way processors. Note that in the
evaluated processors, address mispredictions have two negative impacts: issuing mispredicted
memory accesses and consuming issue slots. However, these issue slots would be unused
unless the issued instructions delayed the issuing of younger instructions with correct operands.

Our results show that the verification mechanism is critical for dealing with mispredicted
branch instructions.

5.6 Enhanced verification-flow graph
The serial verification propagates verifications serially by traversing level-by-level the
verification-flow graph at a uniform one cycle latency. The potentiality of address prediction and

Figure 5.22 IPC versus data-cache latency in baseline and in address-speculative processors
with implicit and serial verification mechanism
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speculative execution is related to propagating the verifications through the speculatively issued
instructions faster than executing them.

In integer benchmarks, most instructions have single-cycle latency. The serial verification of a
large dependence chain of speculatively issued instructions then exposes a latency similar to
that of executing it. Assuming an unbounded number of functional units, both latencies are equal;
consequently, the verification of the instructions would be advanced with respect to their non

speculative execution as many cycles as the memory latency5.

Figure 5.23 shows an example of this situation. Instruction a is a correctly predicted load
instruction and instructions b, c and d are a chain of instructions dependent on this prediction.
Analogously, instruction e is an incorrectly predicted load instruction and instructions f, g and h
are a chain of instructions dependent on this prediction. After the address-prediction checking of
instruction a, instructions b, c and d get verified on cycles 11, 12 and 13 respectively. After the
address-prediction checking of instruction e, instructions f, g and h must be re-executed and their
non speculative results are obtained on cycles 14, 15 and 16 respectively. Comparing both
dependent chains, the verification is advanced with respect to the non-speculative execution as
many cycles as the memory latency.

5. We suppose that address-prediction checkings are notified concurrently to effective-address
computation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a) load r1,..
IQ IQ R @ com

m OK

b) r2 = r1+..
IQ R exe wr com

(1,0) (0,0)

c) r3 = r2+..
IQ IQ R exe wr com

(1,0) (0,0)

d) r4 = r3+..
IQ IQ R exe wr com

(1,0) (0,0)
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(1,0) (0,0)

h) r8 =r7 +..
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(1,0) (0,0)

Waiting in the Issue Queue Waiting for verification

(...) State of the source registers (0 stands for
non speculative, 1 stands for speculative)

Instruction re-issue

Figure 5.23 Example of the serial verification of large chains of dependent instructions
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Therefore, on correct address predictions, verifying the chain of speculatively issued
instructions in only one cycle is useful for resolving early some branch instructions.

In this section we present a design more aggressive than the serial verification flow-graph.
We will build a new verification-flow graph with less levels than the serial verification-flow graph.
The goal of this design is to reduce the number of cycles needed to verify/invalidate instructions
that depend on an address-predicted load instruction.

The Enhanced serial verification-flow graph (EVG) is built as follows. From the data-flow
graph, starting at nodes that represent an instruction that performs address check, each output
arc of a node is traversed, and the output arcs of the reached nodes are traversed recursively,
until reaching nodes that represent an instruction that performs address check. Then, each
traversed node (including the nodes that finish the recursions) is connected directly to the
starting node. Consequently, only one step will be required to verify/invalidate source operands
of instructions directly/indirectly dependent on an instruction that performs address check.

The verify/invalidate mechanism that uses the EVG works like the mechanism described for
the serial verification-flow graph. Once the Decision logic of the VIQ takes actions driven by a
load instruction that performs address check, the EVG is traversed at an uniform single-cycle rate
by level. The difference between both mechanisms is the dependence information stored in the
matrix structure of the mechanism; using this mechanism, each row of the matrix identifies the
input arcs of a node in the EVG. We next describe how this information is built.

Collapsed Graph Table
To build the rows of the matrix structure we use a table named Collapsed Graph Table (CGT) with
as many entries as architectural registers, and each entry has a bit vector with as many bits as
physical registers. The CGT is indexed by architectural-register identifier, is updated only with
information known in the rename stage, and is read also in this stage to build row information.

A load instruction that performs address check sets the bit that identifies its destination
register in the CGT entry of its destination architectural register. Any other instruction reads the
CGH entries related to its source architectural registers, applies the OR function to the bit
vectors, and stores the resultant bit vector in the CGT entry of it destination architectural register.

Figure 5.24 shows an example of the computation of these bit vectors. We present a chain of
instructions, and the sequence of CGT contents after processing each one of these instructions.
CGT's contents are presented partially; that is, only the rows and columns used in the example
are shown. Moreover, we assume that register renaming has not modified the registers identifiers
of the instructions, all load instructions perform address check, and the value of the non-shown
registers is established by instruction that store an immediate value. Instruction a sets the bit that
identifies r1 register; the instruction b sets the bit that marks its dependence on register r1;
instruction c behaves like instruction a; instruction d sets bits that marks its dependence of
registers r1 and r5; instruction e behaves like instructions a and c; finally, instruction f sets the
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bits that marks its dependence on registers r1 and r6.

Matrix structure
Each instruction reads the CGT entries associated to its source architectural registers, applies
the OR-function to the read bit vectors, and stores the result in its assigned entry of the matrix
structure of the VIQ device.

Figure 5.25 shows an example of the computation of the matrix structure. We present the
same sequence of instructions as in Figure 5.24, and the sequence of matrix contents after
inserting in the VIQ each one of these instructions.

Thus, after verifying instruction a, instruction b is verified. After verifying instruction c,
instructions d and e are verified.

All the mechanisms described for the serial verification (non-speculative address check,
speculative address check) can be also implemented using the enhanced verification-flow graph.

CGT contents after processing instructions
a) LD r1, . . . b) r3 = r1 + r9. c) LD r5, . . . d) r2 = r3 + r5 e) LD r6, 5(r5) f) r4 = r6 + r3

physical 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6

ar
ch

ite
ct
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1 1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1 1

4 1 1

5 1 1 1 1

6 1 1
a a, b a, b, c a, b, c, d a, b, c, d, e a, b, c, d, e, f

Figure 5.24 Computation of the Collapsed Graph Table
For each table, each row identifies an architectural register, and each columns identifies a

physical register. We assume that Register Rename stage does not modify register identifiers.

matrix-structure contents after processing instructions
a a, b a, b, c a, b, c, d a, b, c, d, e a, b, c, d, e, f

1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6 1 2 3 5 6

a) LD r1, . . .

b) r3 = r1 + r9. 1 1 1 1 1

c) LD r5, . . .

d) r2 = r3 + r5 1 1 1 1 1 1

e) LD r6, 5(r5) 1 1

f) r4 = r6 + r3 1 1

Figure 5.25 Computation of the Matrix structure of the VIQ
For each table, each row identifies an VIQ entry, and each column identifies a physical register
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5.6.1 Processor Performance
In this subsection we evaluate the influence of the enhanced verification on branch-resolution
time. The processor parameters that have been used are the same than the parameters used for
the evaluation of the serial verification.

Next example depicts the execution of a sequence of instructions, and shows the branch
instruction is resolved earlier using the enhanced verification that using the serial verification.

Example
Figure 5.26 shows the cycle-by-cycle execution of some predicted load instructions and how the
enhanced verification propagates the verification to their dependent instructions. We present the
execution of the same instructions as those in Figure 5.21.

When each instruction is inserted in the IQ, the VIQ tracks the destination registers of the
non-verified load instructions that the instruction depends on.

After detecting the correct prediction of load instruction c on cycle 7, all its dependent (directly
and indirectly) instructions are notified that register r3 has become non speculative. We can
observe that the branch instruction (instruction g) depends directly or indirectly on only this
predicted load instruction; then, the branch instruction can be resolved on cycle 8. In this
example, the enhanced verification-flow graph allows advancing branch resolution one cycle with
respect to the verification-flow graph.
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Figure 5.26 Example of the enhanced verification
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Results
Figure 5.27 shows the performance of the baseline processors and the address-speculative
processors with serial and enhanced verification.

We can observe that the address-speculative processors with enhanced verification
represent a performance improvement with regard to the baseline processors. Using the real
predictor, this improvement ranges from 6% to 11% (4-way processors) and from 8% to 15%
(8-way processors); the degradation due to address mispredictions is about 1% (4-way
processors) and 2% (8-way processors).

Comparing both address-speculative processors (serial verification versus enhanced
verification), we can appreciate a uniform improvement due to the faster verification process; this
improvement is around 1% (in 4-way processors) and 2% (in 8-way processors). The instructions
that take advantage of the faster verification process are the mispredicted branch instructions
that depend on correctly predicted load instructions.

5.7 Processors with the issue queue decoupled from the reorder
buffer
Existing superscalar processors (such as Alpha 21264 [Kess99], Sparc V [Dief99], Pentium 4
[Carm00]) decouple the issue queue from the reorder buffer, because the issue queue is less
scalable than the reorder buffer. Every instruction should then be maintained in each structure for
a different time interval: the reorder buffer holds an instruction while it is in-flight and the issue
queue holds an instruction while it is waiting for the availability of operands or functional units. In
this scenario, an instruction is removed from the issue queue after being issued, and it is
extracted from the reorder buffer on commit stage. Consequently, existing superscalar
processors have a number of issue-queue entries smaller than the number of reorder-buffer
entries.

Figure 5.27 IPC versus data-cache latency on baseline processors and
address-speculative processors with serial and enhanced verification
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Re-issue recovery mechanisms based on keeping the speculatively issued instructions in the
issue queue require a mechanism for removing the verified instructions from the issue queue.
Previous designed mechanism can be used for this purpose.

For baseline processors, the issue-queue size determines the ability of the scheduler for
issuing out-of-order the fetched instructions as soon as their source operands are ready. In
address-speculative processors, the effective issue-queue size is reduced because the issue
queue keeps the speculatively issued instructions until they are verified. Then, the issue-queue
becomes a critical resource because it limits the number of instructions that the scheduler
analyses to be executed.

In following subsections we first evaluate the influence of the issue-queue size on the
performance of baseline and address-speculative processors with the issue queue decoupled
from the reorder buffer; for address-speculative processors we use the serial verification and the
enhanced verification that implement the mechanism described in Section 5.5.2.1. In the
evaluations we focus on the integer issue queue because we simulate integer benchmarks.

5.7.1 Influence of issue-queue size on the performance of baseline
processors
First, we evaluate the influence of the issue-queue size on the performance of baseline
processors. In these processors, the instructions are removed from the issue queue as soon as
they are issued because no re-issue mechanism is needed.

Figure 5.28 shows our results; every graph connects results for the same first-level
data-cache latency. For 4-way processors, we have evaluated issue queues with 15, 20 and 25
entries because the integer issue-queue of current processors does not exceed 20 entries (20
entries in Alpha 21264, 18 entries in AMD Athlon and 20 entries in Intel P6). As a reference, we
also present results for large issue queues with 64 entries and 128 entries. For 8-way
processors, we scale the previous issue-queue sizes by two. We maintain unaltered the
reorder-buffer size with respect to the previous evaluations: 128 entries for the 4-way processors
and 256 entries for the 8-way processors.

In 4-way processors, we can observe that using a 25-entry issue queue, the performance is
close to saturation; the performance is below saturation from 0.1% (2-cycle latency) to 2.3%
(4-cycle latency). In 8-way processors, using a 50-entry issue queue, the performance is below
saturation from 1.6% to 3.2%. Consequently, the performance of the baseline processors is
almost saturated using issue queues with a number of entries significantly smaller than the
number of reorder-buffer entries.
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5.7.2 Serial verification
In Section 5.5, we described a serial verification mechanism that detects if all the operands of an
instruction are known to be non speculative. In this subsection, we apply this mechanism to
removing the instructions from the issue queue in addition to performing the verification process.
Each instruction will be removed from the issue queue one cycle after the VIQ notifies that the
instruction has been verified.

Figure 5.29 shows the impact of the issue-queue size on the performance of an
address-speculative processor with non-delayed speculative issue and serial verification
mechanism.

Our results show that address-speculative processors outperform baseline processors. For
instance, in 4-way processors with a 25-entry issue-queue, the performance improvement
ranges from 4% (2-cycle latency) to 9% (4-cycle latency); in 8-way processors, these
improvements range from 7% to 14%.

We can observe that the issue-queue size needed to saturate the performance is larger in
address-speculative processors than in baseline processors. This is due to the fact that
address-speculative processors use some issue-queue entries to maintain the speculatively
issued instructions until they become non speculative; then, these entries are not used by the
scheduler to look-ahead for independent non-issued instructions. For instance, in 4-way
processors, using the 25-entry issue queue, the performance is below saturation from 1.6%
(2-cycle latency) to 1.9% (4-cycle latency). In 8-way processors, using the 50-entry issue queue,
the performance is below saturation from 2% to 2.3%. We present results for 4-way processors
with 32 issue-queue entries, and for 8-way processors with 64-entry issue-queue entries to show
this effect.

Figure 5.28 IPC versus issue-queue size on baseline processors
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Figure 5.30 shows the impact of the data-cache latency on the performance of the same
address-speculative processors. We can observe that address-speculative processors are less
sensitive to data-cache latency than baseline processors. For instance, in 4-way processors with
25-entry issue queues, increasing cache latency from two to four cycles produces an 8%
performance degradation in baseline processors and 3% in address-speculative processors.
Therefore, as the cache-access latency increases, the improvement due to address prediction
also increases.

5.7.3 Enhanced verification
In Section 5.6, we described a enhanced verification mechanism that detects if all the operands
of an instruction depend on correctly predicted load instructions. In this subsection, we apply the
enhanced verification mechanism to removing the instructions from the issue queue. Each

Figure 5.29 IPC versus issue-queue size on baseline processors and address-speculative
processors with serial verification
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Figure 5.30 IPC versus cache latency on baseline processors and address-speculative
processors with serial verification
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instruction will be removed from the issue queue one cycle after the VIQ notifies that the
instruction has been verified. The use of the enhanced mechanism reduces the pressure on the
issue queue with respect to the use of the serial mechanism, since the enhanced mechanism
frees some issue-queue entries earlier than the serial mechanism. Freeing issue-queue entries
as soon as possible is useful because it may allow advancing the insertion of younger
instructions into the issue queue

Figure 5.31 shows the impact of the issue-queue size on the performance of
address-speculative processors with non-delayed speculative issue and both the serial and the
enhanced verification mechanisms.

Our results show the performance effect of the enhanced mechanism compared with the
serial mechanism; it is similar to reducing both the cache latency and the fetch-engine latency by
one cycle. For instance, graphs related to the 3-cycle latency, serial verification, 8-way
processors and to the 4-cycle latency, enhanced verification, 8-way processors are almost
overlapped.

We can observe that address-speculative processors with the enhanced mechanism are
closer to saturation than address-speculative processors with the serial mechanism. For
instance, in 4-way processors, using the 25-entry issue queue and the enhanced verification
mechanism, the performance is below saturation from 1.5% to 1.7% (versus 1.6% to 1.9% using
the serial mechanism); in 8-way processors, performance is below saturation from 1.6% to 2%
(versus 2% to 2.3% using the serial mechanism).

Figure 5.31 IPC versus issue-queue size on address-speculative processors with serial and
enhanced verification
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5.7.4 Influence of increasing address-predictor latency on the performance
of address-speculative processors
To issue a speculative memory access, the address predictor must produce a prediction and the
predicted address must be inserted into the Load-Address Queue. Our previous evaluations
considered that the predicted effective addresses are inserted into the Load-Address Queue
during the first cycle after the fetch engine provides the fetched instruction; on next cycle, the
speculative memory access may be issued. These previous evaluations represent an upper
bound for the address-prediction look-ahead. However, the latency of the address predictor plus
the transit time from the address predictor to the Load-Address Queue may avoid issuing the
speculative memory access so early.

In this subsection we evaluate the effect of the early issue of the speculative memory
accesses on the performance of address-speculative processors. We define the
prediction-latency increment as the number of additional cycles (in relation to our previous
evaluations) before starting the speculative memory accesses. We evaluate prediction-latency
increments from one to three cycles (all the previous evaluations assumed a prediction-latency
increment of zero cycles).

Figure 5.32 presents results for baseline and non-delayed address-speculative processors
that use the enhanced verification mechanism and the oracle address predictor. The horizontal
axis stands for the cache latency and the prediction-latency increment, and the vertical axis
stands for the IPC. We present results for 64-entry issue queue, 128-entry reorder buffer 4-way
processors and for 128-entry issue queue, 256-entry reorder buffer 8-way processors.

We can observe that the performance degradation due to increasing the prediction-latency
increment in non-delayed address-speculative processors ranges from 0.6% to 2.2% (4-way
processors), and from 1% to 3.3% (8-way processors).

Figure 5.32 IPC versus address-predictor latency and data-cache latency on
address-speculative processors with non-delayed speculative issue
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Using the non-delayed policy, an instruction dependent on a predicted load instruction may be
issued speculatively as soon as the speculative memory access has finished. Then, delaying the
issuing of a speculative memory access is delaying the issuing of its dependent instructions.
Consequently, it is mitigating the performance impact of address prediction.

5.8 Delayed speculative issue
Some existing superscalar processors use a speculative technique named latency prediction. It
is employed by the scheduler of some high-performance processors to deal with instructions
whose latency is unknown when they are issued; for instance, load instructions ([Kess99]).
Schedulers that predict the latency of the load instructions are able to schedule optimistically the
instructions dependent on the load instructions. Thus, on a correct latency prediction, these
schedulers achieve a back-to-back execution of the load instruction and its dependent
instructions.

There are two implicit characteristics of latency prediction: a) the instructions dependent on
the latency-predicted instruction are issued after issuing the latency-predicted instruction and b)
the number of cycles from issuing a latency-predicted instruction until knowing the correctness of
the prediction is fixed. The designer of a recovery mechanism for latency mispredictions may
make the most of both conditions in order to design a recovery mechanism specific for latency
mispredictions. In Chapter 6 we propose a recovery mechanism (named Recovery Buffer)
specific for latency mispredictions that allows extracting the speculatively issued instructions as
soon as they are issued.

The non-delayed speculative issue is not a particular case of latency prediction because the
instructions dependent on a predicted load instruction may be issue before issuing the predicted
load instruction. Then, its recovery mechanism for address mispredictions must be different from
a recovery mechanism specific for latency mispredictions.

We propose the use of a speculative-issue policy for address predictions that can be
considered a particular case of latency prediction; this allow us to use any recovery mechanism
specific for latency mispredictions. We must guarantee that the instructions dependent on a
predicted load instruction will be issued after issuing the effective-address computation of the
load instruction; in terms of latency prediction, the latency of the load instruction is predicted to
be one cycle. In this work, we refer to this policy as delayed speculative issue and in our
evaluations we will assume the use of the recovery mechanism specific for latency
mispredictions proposed in Chapter 6 (the Recovery Buffer).

Figure 5.33 presents an example of both non delayed (a) and delayed (b) speculative issue.
Using delayed speculative issue, the instruction dependent on the predicted load is issued after
issuing the effective-address computation of the load. Consequently, on a correct prediction, the
predicted load instruction appears to be a one-cycle-latency instruction.
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The use of the delayed speculative issue may represent a performance degradation in
relation to the non-delayed speculative issue, because the instructions dependent on the
predicted load instruction are speculatively issued after issuing the effective-address
computation of the predicted load instruction. This degradation may be significant if the base
register of the predicted load instruction depends on a large dependence chain or on a
data-cache miss.

In Chapter 6, we evaluate several recovery mechanisms for latency mispredictions. These
recovery mechanisms re-issue mispredicted instructions, but they differ on the structure that
records the speculatively issued instructions: the issue queue or a new structure named
Recovery Buffer. On one hand, using the issue queue, a speculatively issued instruction remains
in the issue queue until verifying it. On the other hand, using the recovery buffer, a speculatively
issued instruction is removed from the issue queue after issuing it; these instructions are inserted
into the recovery buffer and they are removed either when they are verified or when they are
re-issued. Both recovery mechanisms present a drawback respect the recovery mechanism
used in previous sections: on a latency misprediction, the latency-misprediction recovery
mechanisms suffer an one-cycle penalty. This penalty is needed to perform an enhanced
invalidation of the instructions dependent on the misprediction. As in the previous evaluations,
branch instructions are resolved non speculatively; also, on a latency misprediction, only the
instructions dependent on the misprediction are re-issued.

In this and following sections we evaluate address-speculative processors with delayed
speculative issue and a recovery mechanism based in the recovery buffer. This recovery
mechanism allows us to reduce the pressure on the issue queue because instructions are
removed from the issue queue as soon as they are issued.

5.8.1 Delayed speculative issue versus baseline processors
We compare the performance of address-speculative processors with delayed speculative issue
versus baseline processors.

Figure 5.34 shows the impact of the issue-queue size on the performance of baseline
processors and address-speculative processors with delayed speculative issue; every graph

load r1, 0(r1)
F F D / Ren / Insert IQ IQ R @ ...

pred pred LAQ m m wr check

add r1, r1, r2 F F D / Ren / Insert IQ IQ R exe ...

Figure 5.33 Execution of a predicted load instruction and the speculative issue of a dependent
instruction: a) non delaying the issuing of the dependent instruction and b) delaying it

load r1, 0(r1)
F F D / Ren / Insert IQ IQ R @ ...

pred pred LAQ m m wr check

add r1, r1, r2 F F D / Ren / Insert IQ IQ IQ R exe ...

a) Non-delayed speculative issue

b) Delayed speculative issue



140 Chapter 5 E VALUATION OF ADDRESS PREDICTION
connects results for the same data-cache latency.

We can observe that the evaluated address-speculative processors outperform the baseline
processors. For instance, in 4-way processors with a 25-entry issue queue, the improvement
ranges from 4% (2-cycle latency) to 10% (4-cycle latency); in 8-way processors with a 50-entry
issue queue, the improvement ranges from 6% (2-cycle latency) to 13% (4-cycle latency).

Furthermore, the performance of the evaluated address-speculative processors are less
sensitive to small issue-queue sizes. For instance, in 4-way processors with 20-entry issue
queues, baseline processors are below saturation from 2% (2-cycle latency) to 4% (4-cycle
latency). However, address-speculative processors are below saturation around 1%.
Consequently, the smaller the issue-queue size, the larger the performance impact of address
prediction with delayed speculative issue.

Finally, the evaluated address-speculative processors tolerate cache latency better than
baseline processors. For instance, in 4-way processors with 25-entry issue queues, the
performance degradation observed when cache latency increases from two to four cycles is 8%
(baseline processors) and 3% (address-speculative processors); in 8-way processors with
50-entry issue queues, the degradation is 11% and 5% respectively.

5.9 Non-delayed versus delayed speculative issue
In this section we evaluate the effect of some processor parameters (issue-queue size, cache
latency and issue width) on the performance of both non-delayed and delayed
address-speculative processors.

Figure 5.35 shows the performance of baseline and both delayed and non-delayed
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address-speculative processors. The horizontal axis stands for the first-level-cache latency and
each bar is related to a processor model (baseline, serial-verification non-delayed issue,
enhanced-verification non-delayed issue and delayed issue), vertical axis stands for the IPC.
Each bar also stacks results for several issue-queue sizes.

For a cache latency and issue-width, all evaluated address-speculative processors
outperform the baseline processors, independently of the issue-queue size. Then, address
speculation may produce a performance impact bigger than that of enlarging the issue queue of
a baseline processor.

The issue-queue is one of the most critical structures of superscalar processors [PJS97].
Consequently, we are interested in finding out the sensitivity of the evaluated processors to the
issue-queue size. Our results show that while address-speculative processors with non-delayed
speculative issue are able to exploit large issue-queue sizes, the performance of delayed-issue
address-speculative processors almost saturate using relatively small issue queues. For
instance, in 4-way processors with 20-entry issue queues, while the performance of
delayed-issue address speculative processors is 1% below saturation, the performance of
non-delayed-issue address-speculative processors is around 3% below saturation. For 8-way
processors with 40-entry issue queues, the results are similar.

This behaviour can be explained because an address-speculative processor with delayed
speculative issue which recovery mechanism uses the recovery buffer extract the instructions
from the issue queue as soon as they are issued. However, an address-speculative processor
with non-delayed speculative issue retains the speculatively issued instructions into the issue
queue until they become non speculative.

Comparing all address-speculative processors, our conclusions depend on the issue-queue
size. In 4-way processors, for small issue queues (20 entries), the delayed-issue processors
achieve performances around 2% larger than that of non-delayed processors with serial
verification, and a similar performance to that of non-delayed processors with enhanced
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verification. For medium issue queues (25 entries) delayed processors outperform non-delayed
processors with serial verification around 0.5%, and present around an 1% performance
degradation in relation to the non-delayed processors with enhanced verification. Finally, for
large issue queues (64 entries), performance of delayed processors degrades around 0.5% and
2% with respect to non-delayed processors with serial and enhanced verification respectively.

In 8-way processors, for small issue queues (40 entries), delayed processors achieve similar
performances to that of non-delayed processors with serial verification, and around 2%
degradation in relation to the non-delayed processors with enhanced verification. For medium
issue queues (50 entries), performance degradation is around 1% (serial) and 3% (enhanced).
For large issue queues (128 entries), degradation reaches 2% and 4% respectively.

The performance difference between both speculative issue policies is due to two factors.
First, using the delayed policy, the instructions dependent on a predicted load instruction are
issued after issuing the effective-address computation of the predicted load instruction; however,
this restriction is not present using the non-delayed policy. Second, the recovery mechanism
used by address-speculative processors with non-delayed speculative issue suffers an one-cycle
penalty on each address misprediction.

From these evaluations we conclude that the delayed policy combined with the recovery
mechanism based on the recovery buffer may be an attractive alternative to the non-delayed
policy. However, several aspects may made the delayed alternative still more attractive. For
instance, we have considered oracle latency prediction for the load instructions; without this
oracle prediction, the non-delayed alternative would suffer an additional pressure over the issue

queue because more instructions speculatively issued will be kept into the issue queue6.

5.9.1 Effect of address mispredictions on performance
In this subsection we present an evaluation of the impact of address mispredictions on the
performance of both address-speculative processors. Figure 5.36 depicts the performance of
address-speculative processors with both real and oracle address predictors; we present results
for 64-entry issue queue, 128-entry reorder buffer 4-way processors and for 128-entry issue
queue, 256-entry reorder buffer 8-way processors.

6. Instructions dependent on a load instruction will not be removed from the issue queue until
knowing if the load instruction is a hit or a miss in the first-level data cache.
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Our results show that delayed address-speculative processors are more sensitive to address
mispredictions than non-delayed address-speculative processors. For instance, in 4-way
processors, the performance degradation due to address mispredictions in delayed processors is
around 1.2%; however, in non-delayed processors the degradation is around 0.6%. In 8-way
processors, these percentages are 2.4% for the delayed processors and 0.7% for the
non-delayed processors.

Delayed address-speculative processors are more sensitive to address mispredictions than
non-delayed processors because the recovery mechanism used by the delayed
address-speculative processors suffers a one-cycle penalty after each misprediction to perform
the enhanced invalidation of the instructions dependent on the misprediction. Non-delayed
address-speculative processors does not perform enhanced invalidation; the issued instructions
dependent on the misprediction impact on processor performance only if they pollute caches or
they avoid issuing misprediction-independent younger instructions.

We can conclude that address mispredictions reduce the potential performance improvement
of address prediction. This reduction is specially significant if the recovery mechanism suffers a
fixed penalty for each misprediction. In this scope, better confidence mechanisms should be
proposed in order to reach a compromise between the captured predictability and the accuracy
of a predictor.

5.10 Related works
Several works have presented evaluations of the impact of address prediction and speculative
execution on processor performance.

Reinman and Calder [ReCa98] presented an evaluation of speculation techniques that can be
applied to load instructions: dependence prediction, address prediction, value prediction and
memory renaming. They evaluated these techniques over a future generation micro-architecture

Figure 5.36 IPC versus data-cache latency on address-speculative processors with real and
oracle address predictors
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that fetches up to 8 instructions per cycle, issues up to 16 instructions per cycle, couples the
issue queue and the reorder buffer into a 512-entry RUU, and has a first-level cache latency of
four cycles. They considered two recovery mechanisms: a squash recovery that flushes-out all
the instructions after a mispredicted load instruction and re-fetches them from instruction cache,
and a conventional selective re-issue mechanism. In their evaluations, they varied the
address-predictor model (Last-Address Predictor, Stride Address Predictor, Context Address
Predictor and Hybrid Address Predictor), the confidence estimator (conservative, conventional
and oracle) and the recovery mechanism (squash recovery coupled with the conservative
estimator, and the re-issue recovery coupled with the conventional estimator); however, the
authors do not present the implementation of the recovery mechanisms.

There is a subtle difference between their oracle predictor and our oracle predictor: the
low-confident address predictions that are correct. Both oracle predictors filter the address
mispredictions; however, our oracle predictor also filters the low-confident address predictions
(although they were correct predictions). Then, their oracle predictor can capture more
predictability than their real predictor, consequently, the difference of performance impact
between the real and the oracle predictors are due to both the effect of mispredictions and the
effect of the captured-predictability increment. Moreover, the wide issue width of the processor
can mitigate the effect of re-issuing the instructions dependent on a misprediction.

Their results show that when the squash recovery mechanism is used (and conservative
confidence estimation), the impact of address prediction is small (limited by a 1.04 speed-up).
However, using the re-issue recovery mechanism (and conventional confidence estimation), the
impact is closer (up to 1.10 speed-up) to that of the oracle predictor (1.13).

Bekerman et al. [BJR+99] evaluated the performance impact of address prediction and
speculative execution; they used a new prediction model: the Global-Correlated Context-Address
Predictor (Section 2.5). They focused on a prediction-table configuration and analysed the
impact of pipelining address prediction (prediction tables are not updated immediately). Their
results showed that pipelining address prediction affects the performance impact of address
prediction, but this impact is still significant (in SPEC95-INT benchmarks, speed-up decreases
from 1.22 to 1.17).

Ahuja et al. [AEK+01] presented an evaluation of the potential impact of address prediction.
They proposed a new prediction model, the Dependence-based Address Predictor (Section 2.5),
and evaluated its impact assuming no wrong predictions. They showed that their predictor is
suitable for pointer-chasing programs.

Some works have proposed recovery mechanisms that can be applied to address-speculative
processors with the non-delayed speculative issue.

Akkary and Driscoll [AkDr98] proposed a two-level issue queue. After decoding the
instructions, they are sent to the rename stage (and after that, they are inserted into the issue
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queue) and they are inserted into a trace buffer. Instructions are removed from the issue queue
as soon as they have been issued, but they remain in the trace buffer until they have been
committed. On a misprediction, the trace buffer detects which instructions depend on the
misprediction, groups them, and sends these instruction blocks to the rename stage.

Sato [Sato99] also proposed a two-level structure: the scheduling window and the instruction
buffer. The scheduling window is equivalent to the issue queue; it holds non-issued instructions.
The instruction buffer is equivalent to the RUU; it holds all the fetched instructions that have not
been committed. On a misprediction, instructions are re-issued from the instruction buffer. There
is a key difference between the recovery buffer and this scheme. While the recovery buffer is a
simpler structure because it records a valid scheduling of the instructions, Sato's proposal must
replicate the scheduling logic in the scheduling window and the instruction buffer. Moreover, due
to the large size of the instruction buffer, its select logic and its wake-up logic are pipelined.

5.11 Conclusions
The evaluations presented in this chapter show that address-speculative processors have a
potential performance improvement in relation to existing superscalar processors.
Address-speculative processors are more tolerant to cache latency than baseline processors;
then, address speculation can mitigate the performance degradation produced by increasing
cache latency. Moreover, address speculation may produce a performance impact bigger than
that of enlarging the issue queue of a baseline processor.

Many parameters influence the effective improvement due to address prediction. To begin
with, the performance of address-speculative processors is very sensitive to branch-instruction
resolutions. We have decided that branch instructions are resolved non speculatively; that is, all
the operands of the branch instruction must be known to be non speculative before resolving the
branch instruction. Then, a verification mechanism must be responsible for tracking the
speculative state of the operands of each instruction. We have evaluated several verification
mechanisms (implicit, serial and enhanced) and our results show that the performance of
address-speculative processors is very sensitive to this verification mechanism because a slow
verification mechanism increases the branch penalty of the mispredicted branch instructions.

As the issue-queue size has a large influence on processor performance, we have also
evaluated the sensitivity of address-speculative processors to the issue-queue size. We have
considered two speculative issue policies for the address-speculative processors: non-delayed
and delayed speculative issue. Although the non-delayed policy has a larger performance
potential than the delayed one, the delayed policy may be a cost-effective alternative to the
non-delayed one. While the first policy needs a recovery mechanism with a conventional
recovery mechanism that puts additional pressure on the issue queue, the second policy may
use a recovery mechanism (the Recovery Buffer) that puts no additional pressure on the issue
queue.
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Our results show that, depending on the number of issue-queue entries of the processor,
address-speculative processors with delayed speculative issue (and the recovery mechanism
based on the Recovery Buffer) may be a cost-effective alternative to address-speculative
processors with non-delayed speculative issue.

Moreover, we expect that the delayed speculative issue may result more attractive if some
additional aspects are taken into account. For instance, in this chapter we have considered
oracle latency prediction for the load instructions. To deal with latency mispredictions, a
conventional re-issue recovery mechanism (similar to the mechanism used by the non-delayed
speculative issue) must keep the instructions dependent on a latency prediction into the issue
queue until verifying the prediction; consequently, the pressure over the issue queue is
increased. However, the Recovery Buffer can also be applied to latency mispredictions;
consequently, these instructions will put no additional pressure on the issue queue. Then, we
expect that the degradation due to supporting load-latency prediction will be smaller in
address-speculative processors with delayed speculative issue than in address-speculative
processors with the non-delayed speculative issue.

From our results, we suggest that the scenario where address prediction is expected to have
a larger impact is on processors with a large cache latency (3 or 4 cycles), a wide issue
mechanism (8 way). Furthermore, depending on the number of issue-queue entries of the
processor, the delayed speculative issue is an attractive alternative to the non-delayed
speculative issue.

In the evaluations performed in this chapter some directions of the design space have been
unexplored. For instance, in our evaluations address-prediction tables are updated immediately
and non speculatively on decode stage. However, an implementation of the address predictor
must take into account the latency needed to update the prediction tables and the speculative
nature of the effective addresses available on decode stage. Both factors may affect the captured
predictability and the accuracy of the address predictor. The performance of the
address-speculative processors may then decrease. Moreover, we have shown the degradation
produced by address mispredictions. Further work should be performed in order to develop
better confidence mechanisms that will reduce this degradation.

5.12 Detailed results

5.12.1 4-way processors
Figure 5.37 shows the results of the evaluated 4-way processors on each benchmark.
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5.12.2 8-way processors
Figure 5.37 shows the results of the evaluated 8-way processors on each benchmark.
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Figure 5.37 Performance of 4-way baseline and address-speculative processors on each
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Chapter 6
6 RECOVERY

MECHANISMS FOR

LATENCY

MISPREDICTIONS

Latency prediction is a speculative technique used by some superscalar
processors to deal with instructions whose latency is variable (for instance, load
instructions). Latency prediction allows the scheduler to planify optimistically the
instructions dependent on variable-latency instructions. Although prediction
techniques have great performance potential, their gain can vanish due to
149
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misprediction handling; for instance, holding speculatively scheduled
instructions in the issue queue reduces the queue's ability to look-ahead for
independent instructions. This chapter evaluates a recovery mechanism for
latency mispredictions that retains the speculatively issued instructions in a
structure apart from the issue queue: the recovery buffer. This chapter is
organized as follows. Section 6.1 introduces the chapter. Section 6.2
characterizes the recovery process for latency mispredictions. Section 6.3
outlines the recovery process when speculative instructions are retained in the
issue queue. In Section 6.4 the recovery process using the recovery buffer is
designed. Section 6.5 gives performance results of the recovery-buffer
mechanism compared with the conventional recovery mechanism. Finally,
Section 6.6 presents the conclusions of this work.

6.1 Introduction
In dynamically-scheduled superscalar processors, instructions wait in the issue queue for the
availability of operands and functional units [Toma67][Hunt95][Yeag96][PJS97]. To issue
instructions out-of-order to the functional units, the issue queue has two components: a) wakeup
logic and b) select logic. The wakeup logic keeps monitoring the dependencies among the
instructions in the issue queue and, when the operands of a queued instruction become
available, this logic will mark the instruction as ready. The select logic selects which instructions
will be issued to the functional units on the next cycle.

If only instructions with known latency are considered, a mechanism that counts latencies and
wakes-up dependent instructions can be included in the issue logic. However, to deal with
instructions with unknown latency, the functional units must send a signal to the wakeup logic;
then, with high clock rates, wire delays may prevent back-to-back execution of dependent
instructions [CaGo00][Matz98]. Therefore, a valuable mechanism that deals with
unknown-latency instructions is latency prediction. If the predicted latency is optimistic,
instructions dependent on the predicted instruction can be scheduled speculatively. However, a
recovery mechanism is needed on mispredictions to nullify and to re-issue the speculatively
issued instructions.

A simple alternative for the recovery mechanism is squashing; all the instructions younger
than the mispredicted instruction are flushed-out from the processor, and these instructions are
later re-fetched from the instruction cache. This process is identical to the branch-misprediction
recovery mechanism.

However, to reduce the penalty of the recovery process, finer recovery mechanisms are
needed. For instance, they can benefit from the fact that the instructions that must be re-issued
have already been fetched. In this case, the mechanism must provide storage to keep the
speculatively issued instructions until the prediction is verified.

A conventional solution is to maintain the chain of speculatively issued instructions (and
probably other independent instructions) in the issue queue [Kess99][Rote99] until latency
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prediction is verified. However, unless the issue-queue size is increased, processor performance
can suffer because this solution reduces the ability of the scheduler to look-ahead for
independent instructions. On the other hand, increasing the issue-queue size will be limited by
future wire delays [AHKB00]; therefore, as the issue queue is in the critical path, this solution is a
limited alternative.

Another approach consists in extracting the issued instructions from the issue queue after
being issued, and storing them in a recovery buffer, apart from the issue queue, until latency
prediction is verified. New instructions can then be inserted in the freed issue-queue entries and
the look-ahead ability of the issue queue is maintained. On a misprediction, the re-issue is
performed from the recovery buffer and, to reduce the complexity of the re-issue logic of the
recovery buffer versus that of the issue queue, the recovery buffer maintains the relative issue
cycles between the instructions. Moreover, on mispredictions, the recovery buffer increases the
amount of in-flight instructions, because it holds issued instructions dependent on
latency-mispredicted instructions.

A scope where this work can be applied is load-use delay. Load instructions have unknown
latency because latency depends on the location of the data in the memory hierarchy. Moreover,
tag-checking is in the critical path to wake up the dependent instructions. In first-level caches,
data-array contents can also be obtained before tag-checking result [MIPS]. Consequently,
waiting until tag-checking to wake up the dependent instructions can reduce the performance.
For instance, in a 4-way processor executing integer benchmarks, performance degradation is
about 6% when load-use delay increases from 3 to 4 cycles. Other scope where this work can be
applied is address prediction, as it has been shown in Chapter 5.

This chapter applies latency prediction in the instruction scheduler, and evaluates the
performance of the recovery-buffer mechanism versus keeping the speculatively issued
instructions in the issue queue. Moreover, two issued-instruction nullification policies are
evaluated: a) nullifying all the instructions potentially dependent on the mispredicted instruction,
b) nullifying only the chain of instructions dependent on the mispredicted instruction.

The evaluations are focused on load-latency prediction [Carm00][Dief99][HoLa99][Kess99]
and, as high first-level-cache hit rates are expected, the prediction is that all load instructions are
hits in data cache. As a side effect, cache tag-checking can be moved out of the critical path.
Evaluations show that the recovery-buffer mechanism outperforms the conventional recovery
mechanism. For integer benchmarks, the recovery-buffer mechanism allows a issue-queue-size
reduction of about 20-25% without performance decrease.

6.2 Background
Figure 6.1 shows two cases where latency prediction is profitable (stages between
instruction-fetch stage and rename stage are not shown as they are not relevant to this work). In
Figure 6.1.a, as tag-checking is performed before waking-up the dependent instruction, it
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increases load-use delay if data-array access is a cache hit. Using latency prediction,
tag-checking can be decoupled from data availability, and thus load-use delay is reduced by two
cycles. Another pipeline design (Figure 6.1.b), includes a stage between the issue queue and the
functional units. In this case, to support back-to-back execution of dependent instructions,
wakeup logic must wake-up the dependent instructions before tag-checking.

In both cases, predicting hit latency is useful to execute the chain of dependent instructions
without delay if memory access is a cache hit. Without latency prediction, load-use delay is four
cycles; with latency prediction, load-use delay is two cycles. However, a recovery mechanism is
required on a latency misprediction because the dependent instructions use incorrect data in
their computations. From now on, the pipeline design b) on Figure 6.1 is used in the examples on
this chapter.

For instance, latency prediction is also useful in: a) way prediction in associative caches, b)
bank prediction in multi-banked caches, c) caching physical registers when they are read after
the issue stage ([BTME02]), d) first-level cache with ECC correction logic, e) pipelining the
scheduling logic ([BSP01]).

Figure 6.2 is used to introduce the terminology of this chapter. Assume that on cycle 1 a load
instruction is issued with a data-cache latency of two cycles and a tag-check latency of three
cycles. When hit latency is predicted, the speculative instructions potentially dependent on the
load instruction, directly or through a dependent chain, are issued on cycles 3, 4 and 5
(shadowed instructions). We name these cycles speculative window (SW); that is, the cycle
range from waking-up the first potential dependent instruction until tag-checking. We name
verification delay to the duration of the speculative window (three cycles in the example). We also
name independent window (IW) to the cycle range between issuing the load and the beginning of
the speculative-window; the instructions issued during the independent window are independent
of the load. An instruction is inside a window if it is issued during a cycle of the window. A wave of
instructions represents all the instructions issued during a cycle.

 load R1= ... . . . R IQ @ m TC wr

 ... = R1 ... ... IQ exe wr

pipeline a)

load R1= ... . . . IQ R @ m/TC wr

... = R1 ... . . . IQ R exe wr

pipeline b)

Figure 6.1 Pipeline designs without latency prediction
(stages: read registers (R), issue queue (IQ), compute address (@), execute (exe), data-array

access (m), tag-checking (TC), write registers (wr))
a) Registers are read before IQ stage; tag-checking is performed one cycle after data availability;

the issue queue stores the values of the registers or a functional-unit identifier.
b) Registers are read after IQ stage; simultaneous tag-checking and data availability.
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6.2.1 Recovery on a mispredicted latency
Known scopes where the processor executes instructions speculatively are branch prediction
and memory-dependence prediction.

Branch prediction is used to speculatively execute predicted-path instructions. These
instructions may be issued before issuing the predicted branch instruction. The prediction is
performed by the fetch unit and the verification is performed by the branch instruction when it is
executed. On a misprediction, wrong-path instructions are squashed and the fetch unit is
redirected to the new path.

Memory-dependence prediction is used to execute a load instruction and its dependent
instructions before knowing the addresses accessed by older store instructions. The speculative
instructions are issued after issuing the predicted load instruction. The prediction is performed by
a load instruction and the verification by an older store instruction. On a misprediction, the
instructions that must be re-executed have already been fetched.

Usually, these predictions rely on a general recovery mechanism that flushes-out the entire
instruction pipeline [Kess99].

Unlike the previous prediction types, latency prediction shows all the following characteristics:

• The verification of the prediction is performed by the predicted instruction.

• The speculative instructions are issued after issuing the predicted instruction.

• When a latency-predicted instruction is issued, the cycles where the dependent
instructions can be speculatively issued are known (the speculative window).

• On a misprediction, the instructions that must be re-executed are the same as those that
are nullified.

cycle 1 2 3 4 5 6 7

load IQ R @ m TC wr  predict hit latency

IQ R exe wr

IQ R exe wr

IQ R exe . . .

IQ R . . .

IQ . . .

IW SW

Figure 6.2 Instruction flow after issuing a load instruction (LD) with predicted hit latency
(IW is the Independent Window, SW is the Speculative Window)
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These characteristics allow the design of a simple recovery mechanism that is slightly

aggressive from a performance point of view1. When a misprediction is detected, all instructions
issued inside the speculative window are nullified and their dependent instructions are slept.
After that, the nullified instructions are re-issued in proper time: the instructions independent of
the latency-predicted instruction are re-issued on next cycles, and the dependent instructions will
be re-issued when data is available. In the following sections we analyse two structures for
keeping the instructions while predicted latency is verified: the issue queue and the recovery
buffer.

The previous approach loses on every misprediction a number of cycles equal to the
speculative-window size. Figure 6.3 shows an example where 3 cycles are lost on a
misprediction. A better mechanism is also evaluated in this chapter; the mechanism only nullifies
the instructions dependent on the mispredicted instructions.

Our evaluations assume that no instruction is issued on cycles where latency mispredictions
are detected; that is, on the last cycle of the speculative window of a mispredicted instruction, the
instructions selected to be issued are not issued (cycle 5 in Figure 6.3).

In summary, this chapter presents evaluations of two approaches:

1. Alpha 21264 processor handles this situation with a mini-restart mechanism. All integer
instructions issued during the speculative window are “pulled back” into the issue queue to be
re-issued later [Kess99].

issued
instructs.

1 2 3 4 5 6 7 8

a,b IQ R @ m TC ... mispredicted

c,d IQ R @ m TC wr

e,f IQ R exe nullified

g,h IQ R nullified

i,j IQ no issued

f,h IQ R . . .

j,k lost cycles IQ . . .

Figure 6.3 Example of an instruction flow with a latency-mispredicted instruction
Load instruction a is a latency-mispredicted instruction. On cycle 5, the misprediction is

detected, instructions i and j are not issued and do not wakeup their dependent instructions;
also instructions e, f, g, h are nullified and their dependent instructions (i, k, n and m) are slept
in the issue queue. On cycle 6, nullified instructions f and h are re-issued and their dependent

instructions are woken-up. On cycle 7, instruction j is re-issued and instruction k is issued.
Instructions dependent on load instruction a are re-issued (not shown) once the memory

hierarchy provides data.

a b

f

i

e g

c

j h

d

k

dependence graph

mn



6.3 Keeping issued instructions in the issue queue 155
• A conservative approach, named non-selective, that assumes that all issued instructions
are inside a potential speculative window. On mispredictions, it nullifies all the instructions
inside the speculative window.

• An aggressive approach, named selective, that considers only the instructions dependent
on latency-predicted instructions. On mispredictions, it nullifies only the instructions of the
speculative window dependent on mispredicted instructions.

These approaches represent two extreme cases, although several intermediate approaches
could be designed.

6.2.2 Base Pipeline and Issue Queue
Base Pipeline (Figure 6.4). In this chapter we use the baseline processor described in
Section 5.2.1. After fetching the instructions, they are decoded and renamed. A renamed
instruction resides in the issue queue until its source operands have been computed and it has
been selected for execution. After it has been executed, it is marked in the Reorder Buffer (ROB)
as completed. After that, it is committed when all previous instructions in program order have
been marked as completed and have been committed. When an instruction is committed, the
previous physical register mapped to the destination logical register of the instruction is freed.
The ROB records all in-flight instructions.

Base Issue Queue.  The structure of the issue queue has been described in Section 5.4.2.

6.3 Keeping issued instructions in the issue queue
In regular operation, without latency prediction, instructions are removed from the issue queue as
soon as they are issued. However, with latency prediction, some instructions must be re-issued
when a misprediction is detected.

To perform a fast recovery, a possibility is to keep each issued instruction in the issue queue
until the instruction is known to be unnecessary for a recovery action [Kess99]. During these
cycles, the issued instruction should be nonvisible to the select logic. A no-request bit is then
added to each dependence-matrix row; the bit is set when its instruction is issued.

When an issued instruction is known not to be needed in a latency-mispredicted recovery
action, it can be removed from the issue queue. Otherwise, on a misprediction, it must be
nullified. It is made visible again to the select logic, and its destination register is set as not
available to delay the issue of its dependent instructions until it has been re-issued.

Fetch
Decode/ Issue Register

Execute Write CommitRename Read

Figure 6.4 Base processor pipeline

Queue
Register
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Two control circuits perform these operations: the removal circuit and the register-scoreboard
circuit. Figure 6.5 shows the interface between them and other issue-queue elements.

The removal circuit is used to remove issued instructions from the issue queue (if it is safe to
remove them), as well as to make them visible again (if they must be re-issued).

The register-scoreboard circuit is used for activating latency counters (for each issued
instruction) or for unsetting columns (for each nullified instruction). As ready bits are re-evaluated
every cycle, nullified instructions will re-evaluate their ready bits and all instructions dependent
on the nullified instructions will be slept.

On every cycle, the removal circuit is aware of the issued instructions and the
register-scoreboard circuit is notified of their destination registers. Both circuits are also notified
of which issued instructions are latency predicted, and of the results of the prediction
verifications. Moreover, the register-scoreboard circuit keeps track of the mispredicted-data
availability.

This chapter presents the evaluation of two extreme approaches that differ on two aspects:

• When an instruction can be removed from the issue queue.

• Which instructions are nullified on a misprediction.

6.3.1 Non-selective nullification
The simplest recovery mechanism conservatively assumes that all the instructions are issued
inside a potential speculative window and, on a misprediction, they are dependent on a
latency-predicted instruction. All issued instructions are then retained in the issue queue during a

•
•

•

Dependence Matrix

Register Scoreboard
Circuit

Select
Logic

Removal Circuit
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no-request
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number of cycles equal to the verification delay minus one. After that, if no latency-misprediction
is detected, the instructions can be removed from the issue queue. Otherwise, on a
misprediction, all the instructions issued on the speculative window of the mispredicted
instruction must be nullified and re-issued (for instance, instructions e, f, g and h in Figure 6.3).
Consequently, the columns related to these instructions must be reset and the issue-queue
entries must be made visible again.

To perform both actions, the register scoreboard circuit and the removal circuit respectively
track the destination registers and the issue-queue entries of the instructions issued each cycle.
The information related to a cycle can be discarded as soon as the instruction wave is outside
any speculative window.

On a misprediction, both circuits aggregate the information related to the speculative window
of the mispredicted instruction. After that, the register scoreboard circuit clears the columns
related to the destination registers of the instructions to be nullified, and the removal circuit
unsets the no-request bits of the issue-queue entries of these instructions. Moreover, the register
scoreboard circuit also clears the destination register of the mispredicted instruction.

Among nullified instructions, there may be instructions independent of the mispredicted
instruction. These instructions will immediately compete to be selected for issue because their
source operands are still available (for instance, instructions f and h in Figure 6.3).

A possible implementation of the tracking mechanism uses bit vectors; every cycle, a bit
vector is allocated in every circuit. Every bit vector of the register scoreboard circuit has as many
bits as physical registers; setting its i-th bit indicates that the instruction that produces the i-th
register has been issued on the related cycle. Every bit vector of the removal circuit has as many
bits as issue-queue entries; setting its j-th bit indicates that the instruction allocated in the j-th
issue-queue entry has been issued on the related cycle. The amount of bit vectors of each circuit
is equal to the verification delay minus one.

On a misprediction, both circuits aggregate the information by OR-ing the bits vectors related
to the cycles of the speculative window. The resultant bit vectors are used to clear the columns
and the no-request bits on a single cycle.

6.3.2 Selective nullification
The previous mechanism is simple but conservative because it assumes that all the issued
instructions are inside a potential speculative window and, on a misprediction, independent
instructions inside this speculative window are also nullified. A more selective mechanism keeps
in the issue queue only instructions dependent on a latency-predicted instruction not yet verified,
and nullifies just these instructions on a misprediction. For instance, in Figure 6.3, this
mechanism does not nullify instructions f and h, and retains in the issue queue only the
instructions e and g.
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We suppose that the cycle following the issue of an instruction is used to compute the
dependence of the issued instructions on a latency-predicted instruction not yet verified. Then,
independent instructions are removed from the issue queue one cycle after issuing them, and
dependent instructions are kept in the issue queue while the prediction is not yet verified.

Register-scoreboard circuit tracks dependencies and notifies them (not shown in Figure 6.5)
to the removal circuit to track the issue-queue entries of the dependent instructions. To do so,
each circuit uses bit vectors with the same size as in the previous subsection, but managed
differently. When a latency-predicted instruction is issued, a bit vector is allocated in each control
circuit; bit vectors of the register-scoreboard circuit are initialised by setting the destination
register of the instruction. These bit vectors are updated in successive cycles with the destination
registers and the issue-queue entry numbers of the dependent issued instructions.

Register-scoreboard circuit tracks dependencies using as inputs the identifiers of the source
operands of the issued instructions. If any source operand is marked in the bit vector of a
latency-predicted instruction, the control circuit sets the destination register of the issued
instruction in this bit vector. Then, a bit vector shows the registers dependent on the related
latency-predicted instruction.

On mispredictions, each circuit uses the bit vector related to the mispredicted instruction. Bit
vectors are freed as in the non-selective mechanism. Thus, the amount of bit vectors of each
circuit is equal to the issue-width of latency predicted instructions times the verification delay
minus one.

6.4 Keeping issued instructions in the recovery buffer
Keeping speculatively-issued instructions in the issue-queue reduces the queue's ability to
look-ahead for independent instructions. This section develops a recovery mechanism that keeps
issued instructions in a structure apart from the issue queue while they can be nullified: the
recovery buffer.

Figure 6.6 shows the placement of the recovery buffer in the pipeline. In every cycle,
instructions can be issued from the issue queue, from the recovery buffer or from both structures
to the execution pipelines; in the latter case, each pipeline is fed prioritarily from the recovery
buffer.

Fetch
Decode/ Issue Register

Execute Write CommitRename Read

correct/mispredicted
result available

Recovery
Buffer

Figure 6.6 Placement of the recovery buffer in the processor pipeline

Queue
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After issuing the instructions, they are removed from their source structures and are stored in
the recovery buffer, and they remain there while they can be nullified.

Each recovery-buffer entry stores all the instructions issued on the same cycle, i.e., an
instruction wave. If no instruction is issued on a cycle, the related recovery-buffer entry is kept
empty. Thus, the recovery-buffer entries are time-ordered in issue order; that is, the relative issue
cycles among instruction waves are maintained. For instance, on cycle 5 of Figure 6.3, the
recovery buffer holds the following instruction waves: (e, f) and (g, h).

When a prediction is verified and it turns out to be correct, the recovery-buffer entries related
to the speculative window of the latency-predicted instruction are freed. However, on a
misprediction, the instructions dependent on the mispredicted instruction are retained in the
recovery buffer until they can be re-issued. For instance, in example of Figure 6.3, instruction
waves (e) and (g) would be retained.

For each latency-mispredicted instruction, the recovery buffer identifies the range of
recovery-buffer entries related to the instruction. Then, when the result of a mispredicted
instruction is available, the re-issue logic of the recovery buffer scans the entry range (one entry
per cycle) related to the instruction to re-issue its dependent instructions. For instance, in the
example of Figure 6.3, the re-issue logic scans the entries that hold the instruction waves (e) and
(g).

As in the previous models, on cycles where a misprediction is detected (that is, the last cycle
of the speculative window of the mispredicted instruction), the instructions selected to be issued
are not issued and remain in their source structure. Furthermore, in the issue-queue structure,
instructions dependent on the nullified instructions are slept until nullified instructions are
re-issued (Section 6.3).
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Figure 6.7 shows the interface between the issue queue and the recovery buffer. The removal
circuit is not shown because issued instructions are always removed from the issue queue
without waiting for the prediction verification; also, neither are the no-request bits needed.

Execution pipelines can be fed from both the issue queue and the recovery buffer. The
multiplexers are controlled by signals generated by the recovery buffer. These signals are also
used by the select logic to avoid selecting some instructions due to the higher priority of the
instructions re-issued from the recovery buffer.

To wake-up the issue-queued instructions dependent on the re-issued instructions, the
recovery buffer notifies the destination registers of the re-issued instructions at every cycle.

The re-issue logic of the recovery buffer has a lower complexity than the issue logic of the
issue queue, because the former makes use of the scheduling performed when the instructions
were previously issued. This logic is described in the next section.

6.4.1 Recovery-Buffer organization
The recovery buffer has three instruction storage components (Figure 6.8): pending-verification
buffer, first-level buffer and second-level buffer. The pending-verification buffer stores
latency-predicted instructions not yet verified. The first-level buffer stores issued instructions
potentially dependent on the instructions stored in the pending-verification buffer. The
second-level buffer stores issued instructions dependent on latency-mispredicted instructions.

The issued instruction waves are stored in the first-level buffer and they are removed from it
when they are outside all the potential speculative windows. The number of cycles that an
instruction wave remains in this buffer is then fixed and equal to the verification delay minus one.

When an instruction wave leaves the first-level buffer, each one of the instructions is either
moved to the second-level buffer or discarded. Moreover, the latency-predicted instructions of the
wave are either moved to the second-level buffer or to the pending-verification buffer. These
decisions are taken by considering if the instructions are included in the speculative window of a
mispredicted instruction, and if they are dependent on a mispredicted instruction.

execution pipelines

misprediction

Misprediction Buffer
destination register

IQ

move

First-Level Buffer

Second-Level Buffer

Pending

Figure 6.8 Recovery-Buffer organization

Verification
Buffer
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The number of entries of the pending-verification buffer is equal to the duration of the
independent window. So when a latency-predicted instruction leaves this buffer, its prediction is
verified.

On a misprediction, the recovery buffer allocates an entry in a structure named misprediction
buffer. This entry stores the destination register of the mispredicted instruction and a pointer to
the first entry of the second level buffer related to the mispredicted instruction.

After that, during a number of cycles equal to the verification delay minus one, the instruction
waves that leave the first-level buffer are analysed looking for instructions dependent on the
mispredicted instruction. The dependent instructions are moved to an empty entry of the
second-level buffer, and the independent instructions are discarded. Concurrently, execution
pipelines are fed with ready instructions

For instance, in Figure 6.3, instruction a is moved to pending-verification buffer on cycle 4. If a
is a latency-mispredicted instruction, instructions e and g are moved to second-level buffer on
cycles 6 and 7.

Re-issue logic of the recovery buffer. The idea is to make use of the scheduling performed
when the instructions were previously issued. The re-issue logic is based on the fact that the
recovery-buffer entries are time ordered and only one entry is analysed on a cycle. So, the
re-issue logic does not need to account explicitly for instruction latencies. It is enough to account
for the status (availability) of the physical registers.

The status of the physical registers can be maintained locally because the recovery buffer
analyses all issued instructions. When an instruction is issued, its destination register is marked
as available in the recovery buffer. In addition, the recovery buffer is notified of the misprediction;
so the status of the destination registers of the nullified instruction can be updated locally as
not-available.

Figure 6.9 shows the re-issue logic of the recovery buffer. We distinguish three components:
two dependence matrices (similar to the matrix described in Section 6.2.2) and a register
scoreboard circuit without latency counters. A dependence matrix is used by instruction waves
leaving the first-level buffer, and the other one is used by instruction waves re-issued from
second-level buffer. The number of rows of both dependence matrices is equal to the processor
issue width. Register-scoreboard circuit controls columns of both dependence matrices. A
column is set or unset in both matrices at the same time.

Some input signals of the register-scoreboard circuit are generated by the first-level buffer to
unset columns. Other inputs are generated by the second-level buffer to set columns. The
remaining inputs are used to set/unset columns related to the destination register of mispredicted
instructions.
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When an instruction wave leaves the first-level buffer, it is scanned using the associated
dependence matrix. This matrix has two functions: updating the status of the destination
registers of the wave and, after detecting a misprediction, discriminating dependent from
independent instructions.

The dependence matrix associated to the second-level buffer is used when the result of a
mispredicted instruction is available. This matrix has two functions: checking the availability of
the source registers of an instruction wave and updating the status of the destination registers of
the re-issued instructions.

When a latency-predicted instruction leaves the pending-verification buffer, its prediction has
been verified. On a misprediction, the register-scoreboard circuit unsets the column associated
to its destination register.

First-level buffer. When an instruction wave leaves the first-level buffer, the columns related to
the destination registers of the wave are set, and the wave is analysed in the dependence matrix
of the first-level buffer. We differentiate two cases. In the first case, the instruction wave is not
included in the speculative window of a mispredicted instruction. In this case, the dependence
matrix indicates that all source registers of the instructions are available.

In the second case, the instruction wave is included in the speculative window of a
mispredicted instruction. As the column associated to the destination register of the mispredicted
instruction has been previously unset, the dependence matrix discriminates between instructions
dependent and independent of the mispredicted instruction. Columns associated to the
destination registers of the dependent instructions are unset. By unsetting the columns, the chain
of instructions dependent on the latency instruction is detected on consecutive cycles.

Moreover, the output of the dependence matrix is used to indicate to the move logic which
instructions of an instruction wave must be stored in the second-level buffer.

Second-level buffer. The dependence matrix associated to the second-level buffer is used to
re-issue instructions when the result of a mispredicted instruction is available. From the
misprediction buffer a pointer to a second-level buffer entry and the identifier of the destination
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register of the mispredicted instruction are obtained. This register identifier is used to set the
associated column of the matrices. After that, from the pointed entry, a fixed range of
second-level buffer entries is scanned to re-issue the chain of dependent instructions. At each
cycle a single second-level buffer entry is scanned.

Note that on a cycle as many mispredictions may be detected as the number of
latency-predicted instructions simultaneously issued. A new misprediction can also be detected
while another is being processed; that is, while moving dependent instructions form the first-level
buffer to the second-level buffer. Then, in the scanned range of second-level buffer entries,
instructions dependent on several mispredictions may be stored. Moreover, data can return from
memory hierarchy in an order different from misprediction-detection order.

The role of the second-level-buffer dependence matrix is to identify ready instructions in the
scanned range of entries. In order to do this, in each cycle an instruction wave is analysed.
Ready instructions are re-issued and the columns associated to their destination registers are
set.

6.4.2 Recovery buffer with selective nullification
This mechanism nullifies only instructions dependent on a latency-mispredicted instruction. First,
we describe the management of the storage components of the recovery buffer and their sizes.
Second, we use an example to show the detail of the mechanism. Finally, we present an
optimization in the re-issue logic to avoid performance degradations.

Storage components of the Recovery Buffer. All storage components are handled using the
FIFO policy. The instructions remain in the first-level buffer and in the pending-verification buffer
for a fixed number of cycles. Instruction waves remain in the first-level buffer for a number of
cycles equal to the verification delay minus one. Latency-predicted instructions remain in the
pending-verification buffer a number of cycles equal to the duration of the independent window.
The second level buffer and misprediction buffer are handled as a circular queue, and after
re-issuing the instruction, its storage is freed using a FIFO policy.

Each misprediction requires a number of second-level-buffer entries equal to the verification
delay minus one.

In the worst case, when the speculative windows of the mispredictions do not overlap, the
maximum number of second-level buffer entries needed is equal to the number of pending
mispredictions supported by the processor times the verification delay minus one. Although
second-level-buffer size can be large, the accesses to this buffer can be pipelined without
performance degradation.

Example. Figure 6.10 shows an example where the speculative windows of the mispredicted
instructions (a and c) overlap by two cycles; instructions issued on cycles 8 and 9 can be
dependent on both latency-predicted instructions.
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On cycle 9, instruction a leaves the pending-verification buffer and a misprediction is
detected. In this moment, the instructions waves stored in the first-level buffer are (d), (e) and (f).
A misprediction-buffer entry is allocated to store the destination register of the mispredicted
instruction and the current tail pointer to the second-level buffer.

During a number of cycles equal to the verification delay minus one, a second-level-buffer
entry is allocated every cycle; an instruction wave is also analysed every cycle. Every entry will
store the instructions of the analysed wave that are dependent on the mispredicted instruction.

On cycle 10, instruction d is inserted in the second-level buffer. On cycle 11, the misprediction
of instruction c is detected and a misprediction-buffer entry is allocated. Furthermore, because
instruction e is independent of the misprediction, a second-level-buffer entry is left empty. On
cycle 12, instruction f is moved to the second-level buffer; note that this instruction is in the
speculative windows of both mispredicted instructions. On cycles 13 and 15, second-level-buffer
entries are kept empty. On cycle 14, instruction g is moved.

When the result of the mispredicted instruction a is available (cycle n), instruction d will be
reissued. On cycle n+1 no instructions will be re-issued because the related second-level buffer
entry is empty. On cycle n+2, instruction f is not re-issued because it must wait until the
availability of the result of the mispredicted instruction c.

6.4.2.1 Re-issue optimization
In some cases, when the result of a mispredicted instruction is available, the first entries of the
scanned range of second-level-buffer entries are empty. One such case is when the speculative
windows of several latency-mispredicted instructions overlap (note that instruction-issue is
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stalled when a misprediction is detected). Another case is when no instruction dependent on the
latency-mispredicted instruction has been issued on the first cycles of its speculative window.

The cycles used to scan the first empty entries are not needed for a proper scheduling of the
next not empty entries; consequently, these cycles constitute a delay. This situation can be
critical if the latency of the instructions to be re-issued is long (for instance, floating-point
operations).

Figure 6.11 shows an example where, on the overlapped cycle between two speculative
windows (cycle 9), no instructions are issued due to the mispredicted instruction a. Moreover, on
cycle 10, no instructions are issued due to the mispredicted instruction b. These cycles are the
first cycles of the speculative window of instruction d.

In the second-level buffer, the relevant entry ranges stores the following instruction waves:
{(h), (e), (f), (-), (-) and (g)}. When data of mispredicted instruction d is available, the entry range
{(-), (-), (g)} is scanned to re-issue the dependent instructions. Consequently, no instructions will
be re-issued from second-level buffer on the first and the second cycle of the scanning process.

In order not to delay the re-issue of instructions, the cache controller can notify to the
second-level buffer data arrival several cycles in advance. Then, re-issue-logic can skip the first
empty entries of the entry range.
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Figure 6.11 Instruction-flow example using the recovery buffer with selective nullification and
the re-issue optimization
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6.4.3 Recovery buffer with non-selective nullification
This mechanism nullifies all the instructions issued inside the speculative window of a
latency-predicted instruction when a misprediction is detected. The nullified instructions
independent of the misprediction are re-issued without delay from the first-level buffer.
Concurrently, the dependent instructions are moved to the second-level buffer.

An example is shown Figure 6.12. The latency prediction of instruction a is verified on cycle 5.
A misprediction is detected and the instruction waves (e, f) and (g, h) are nullified. On cycle 6,
the instruction wave (e, f) is analysed in the dependence matrix associated to the first-level
buffer; after that, instruction e is recorded in the second-level buffer and instruction f is re-issued
from the first-level buffer. Analogously, on cycle 7, the dependent instruction g is moved to the
next entry of the second-level buffer and instruction h is re-issued. Concurrently, some
instructions are issued from the issue queue (j and k on cycles 6 and 7).

6.4.4 Effect of wrong-path instructions on recovery-buffer structures
When a branch misprediction is detected, wrong-path instructions are squashed and their
physical destination registers are freed. Age identifiers are used to detect the instructions to be
squashed, and shadow map tables are used to re-establish the mapping from architectural to
physical registers.

Recovery-buffer structures also require attention when a branch misprediction is detected.
The local status of the physical registers must be repaired and the wrong-path instructions stored
in these structures must be squashed. These actions are not performed immediately; they are
performed concurrently with the regular operation of the recovery buffer.

In the recovery buffer, an age identifier is stored with each instruction2. In addition, a new
recovery-buffer structure (the squashed-range buffer) holds the range of age identifiers of the

2. This identifier can be the processor age identifier, or the recovery buffer can build a local age
identifier from the processor age identifier.
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Figure 6.12 Instruction-flow example of the recovery buffer with non-selective nullification
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squashed instructions. An entry of this structure is freed when the age identifier of a committed
instruction is younger than the youngest limit of the range.

Regular operations of the recovery buffer that analyse instruction waves are: a) when an
instruction wave leaves the first-level buffer and b) when an instruction is re-issued from the
second-level buffer. In both cases, the local status of the physical registers is updated. To squash
wrong-path instructions, the age identifiers of the analysed instructions are checked with entries
of the squashed-range buffer. If the age identifier is included in a squashed range, the instruction
is squashed and neither recorded in the second-level buffer nor re-issued.

When a mispredicted instruction must be squashed, previous regular operations squash
neither it nor its dependent instructions (all of them are wrong-path instructions). This case is
managed by the freeing algorithm of the second-level buffer. As this buffer and the misprediction
buffer are managed as circular queues, the age identifier of the latency-mispredicted instructions
will achieve the head entry of the misprediction buffer. The age identifier of the head entry is then
compared with the squashed-range-buffer entries. If the age identifier is included in a squashed
range, the related instruction is squashed.

The local status of the physical registers freed by squashed instructions is repaired in time by
the algorithm described in Section 6.4.1. This algorithm updates the local status of a physical
register when its producer instruction leaves the first-level buffer. The freed physical registers are
assigned to a producer instruction in the new path, and younger instructions use it as a source
register. When the producer instruction leaves the first-level buffer, before its consumer
instructions, the local status of the register is repaired. Before this time, no instruction needs to
check the local status of this register.

6.5 Evaluation

6.5.1 Evaluation environment
We have evaluated our proposals over all the SPEC95 benchmarks (Section A.2). Our
evaluations used a cycle-by-cycle simulator (Section A.1.2) that models the processors
described in Figure 5.1, and assume hit-latency prediction for all load instructions. Table A.3 and
Table A.4 show the simulation intervals selected for each integer and floating-point benchmark
respectively. Table 6.1 shows the miss rate of the 64K first-level data cache for each benchmarks
in its selected simulation interval.

The evaluations varied the following processor parameters: the verification delay and the
issue-queue size.

• The verification delay was defined in Section 6.2 as the duration of the speculative
window; we consider 2-cycle, 3-cycle and 4-cycle verification delays.
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• In current processors, the integer issue queue typically does not exceed 20 entries. For
instance, 20 entries in Alpha 21264, 18 entries in AMD Athlon and 20 entries in Intel P6.
Moreover, the number of in-flight instructions (reorder-buffer size) is typically 2 to 4 times
bigger. In this chapter, the issue-queue sizes of the baseline processor model are 20-entry
integer issue queue, and 15-entry floating-point issue queue. We present results also for
15-entry and 25-entry integer issue queues and for 10-entry and 20-entry floating-point
issue queues.

6.5.2 Results
We present the results of the integer benchmarks separately from the results of the

floating-point benchmarks because the behaviour of the recovery-buffer mechanisms depends
on the computational latency of the instructions.

In figures, the following acronyms are used for identifying the evaluated mechanisms: a)
IQNS: keeping in the Issue Queue with No Selective nullification, b) IQS: keeping in the Issue
Queue with Selective nullification, c) RBNS: Recovery Buffer with No Selective nullification, and
d) RBS: Recovery Buffer with Selective nullification.

6.5.2.1 Integer benchmarks
In all the evaluations performed in this section we used a 10-entry floating-point issue queue

and the following integer issue-queue sizes: 15, 20 and 25 entries. First, the sensitivity of the
evaluated mechanisms to the verification delay is shown. In Figure 6.13, each graph is related to
an issue-queue size, the horizontal axis stands for the verification delay and the vertical axis for
the harmonic mean of the IPC's of the integer benchmarks.

The sensitivity to the verification delay of RBNS and RBS remains small when the verification
delay or the issue-queue size increases. Performance differences between RBNS and RBS are
small (less than 1.3%). As the instructions are removed from the issue queue after issuing them,
the differences arise because RBNS re-issues nullified instructions independent of the
mispredicted instructions.

SPEC INT SPEC FP
Benchmark %miss Benchmark %miss

go 1.9 tomcatv 18.6
m88ksim 0.7 swim 6.1

gcc 2.2 hydro2d 15.0
compress 12.5 mgrid 4.0

li 3.3 applu 7.1
ijpeg 0.6 turb3d 4.1
perl 0.5 fpppp 0.2

vortex 3.0 wave5 7.5

Table 6.1  Miss rates for the SPEC95 benchmarks in a direct-mapped 64K first-level data cache.
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However, the sensitivity to the verification delay of IQNS and IQS is very significant for the
15-entry issue queue, and decreases as the issue-queue size increases. This result shows that
keeping all instructions in the issue queue a number of cycles equal to the verification delay
(IQNS) can reduce performance significantly.

IQS retains in the issue queue only instructions dependent on the latency-predicted
instructions but its performance is smaller than the performance of RBNS, although both are
close in a 25-entry issue-queue. The recovery buffer enables the issue-queue entries to be freed
of some of the instructions dependent on the mispredicted instructions. These freed entries can
be assigned to new instructions, increasing the look-ahead ability of the instruction scheduler.
Moreover, this ability overcomes the lost issue slots for re-issuing independent instructions.
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The ability of the recovery buffer to free issue-queue entries allows the use of a smaller issue
queue. Figure 6.14 shows almost the same information as Figure 6.13, but grouping data by
verification delay and putting the issue-queue size in the horizontal axis. In all cases, RBNS and
RBS can obtain the same performance as IQNS and IQS, but with a reduction of the issue-queue

size of between 20% to 25%3.

The implementation of the selective nullification in the issue queue may be critical with
intensive one-cycle operations. Comparing non-selective mechanisms, the longer the verification
delay, the larger the issue-queue size can be reduced. RBNS is therefore an attractive solution.

6.5.2.2 Floating-point benchmarks
In all the evaluations performed in this section we used a 20-entry integer issue queue and

the following floating-point issue-queue sizes: 10, 15 and 20 entries.

In the evaluated mechanisms, floating-point benchmarks show (Figure 6.15 and Figure 6.16),
a different behaviour than integer benchmarks. Non-selective mechanisms are sensitive to the
verification delay while selective mechanisms are not. This makes IQS performance better than
RBNS performance when issue-queue size increases.

The best (RBS) and the worst (IQNS) mechanisms are the same for both classes of
benchmarks. Furthermore, RBS is almost insensitive to the verification delay while IQNS is very
sensitive to it.

3. This reduction is significant because the delay of the issue logic of the issue queue depends
quadratically on the product of the instruction-issue width and the instruction-window size
[PJS97].
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The behaviour of the floating-point benchmarks is related to the computational latency of the
floating-point instructions; four-cycle latency for FPadder and FPmultiplier are used, and the
evaluated verification delays range from two to four cycles. These latencies forbid the existence
of a chain of dependent instructions larger than one instruction in the speculative window of a
FPload instruction. Therefore, only the first data-flow level dependent on a FPload is included in
its speculative window. Other data-flow levels are held in issue-queue entries and the scheduler
cannot look-ahead because the issue queue is full. Thus, the capacity of the recovery buffer to
store dependent instructions is only slightly used.

The value retrieved by a load instruction is not used by many instructions either; that is, its
fan-out is small. Then, in a non-selective mechanism, a large number of the independent

instructions4 are often re-issued. As the latency of the re-issued instructions is long in
floating-point benchmarks, the execution of the chain of dependent instructions is significantly
delayed, and potential ILP is lost.

The implementation of selective mechanisms for integer-benchmarks can be critical because
the latency of most ALU operations is one cycle. However, as the computational latency of the
FP operations is longer, the implementation of selective mechanisms for them is less critical.

6.6 Conclusions
This chapter addresses recovery mechanisms for dealing with latency-predicted instructions. It
compares the performance of a conventional mechanism that keeps issued instructions in the
issue queue with a mechanism that stores these instructions in a recovery buffer apart from the

4. Using a 15-entry floating-point issue queue and a 4-cycle verification delay, 85% of the nullified
instructions on floating-point benchmarks are independent of the mispredicted instructions. In
integer benchmarks, using a 20-entry integer issue-queue and a 4-cycle verification delay, this
percentage drops to 53%.
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issue queue. It also compares selective with non-selective instruction nullifications on
mispredictions.

We designed a recovery-buffer mechanism and we evaluated it in the context of load-latency
prediction. Our results show that, under the same nullification conditions, the recovery-buffer
mechanism outperforms the mechanism that retains the instructions in the issue queue.
Moreover, the recovery-buffer mechanism is less sensitive to the verification delay of the
predictions. For integer benchmarks, it allows a reduction in the issue-queue size of between
20-25% without performance decrease. It enables the issue-queue logic to free entries and to
insert new instructions in the issue queue, and therefore increases the capacity of the scheduler
to look-ahead for independent instructions.

We also showed that for issue queues feeding functional units with intensive one-cycle
latency operations, the simple recovery-buffer mechanism with non-selective nullification is an
attractive solution. On the other hand, for issue queues feeding functional units where the latency
of most instructions is long, the use of selective nullification is preferable. Note that, in this case,
selective nullification is not critical due to the long latency of the operations.

On each latency misprediction, the recovery buffer suffers a one-cycle penalty where no
instruction is neither issued nor re-issued; this cycle coincides with the last cycle of the
speculative window of the mispredicted load instruction. This penalty cycle is used to avoid
issuing instructions that may be dependent on the misprediction and to update the issue queue
in order to sleep all the instructions dependent on the nullified instructions. As a future work, the
recovery buffer with selective nullification may be enhanced in order to reduce the performance
degradation produced by this penalty cycle. The idea is re-issuing instructions from the recovery
buffer while the issue queue is being updated due to a latency misprediction.

We may take advantage of several facts:

• Most second-level caches provide tag-checking result before data-array contents.
Moreover, tag-checking latency of second-level caches is slightly larger than tag-checking
latency of first-level caches.

• We hope that the chain of instructions dependent on the mispredicted load instruction is
short. That is, the number of instructions independent on the misprediction increases as
the speculative window is traversed.

We then propose delaying latency-misprediction handling until knowing tag-checking result
on second-level cache. That is, we will extend the speculative window until tag-checking in
second-level cache.
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• When a miss on the first-level cache is detected, no recovery action is started.
Consequently, instructions dependent on the mispredicted load instruction may still be
issued. Issuing them allows freeing some issue-queue entries and inserting new
instructions in the issue queue; however, these dependent instructions must be re-issued
later. Instructions independent on the memory access may also be issued. We hope that
most issued instructions will be independent on the memory access due to the short
dependence-chain lengths.

• On a second-level cache hit, the second-level cache will provide the data-array contents
after a fixed number of cycles. When data is available, two actions are performed
concurrently: the issue queue is updated, and the first instruction wave dependent on the
mispredicted load is re-issued from the recovery buffer. That is, the issue queue is being
updated while an instruction wave is being re-issued from the recovery buffer. On next
cycles, ready instructions are issued from the issue queue and the remaining instruction
waves are re-issued from the recovery buffer.

• On a second-level-cache miss, the issue queue is updated and all the issued instructions
dependent on the load are kept in the recovery buffer until the memory system provides
the accessed data. In this case, no instruction is neither issued nor re-issued on the
penalty cycle.

Consequently, the one-cycle penalty where no instructions is neither issued nor re-issued
arises only for memory references that miss in both cache levels. We expect this reduction on the
number of cycles where no instruction is issued or re-issued will offer an attractive performance.

Further work is needed to evaluate the use of the recovery-buffer mechanism in other kinds of
prediction scenarios, such as limited cases of value prediction; for instance, performing value
prediction on load instructions and issuing their dependent instructions after issuing the
predicted load instruction. We are also interested in studying how the recovery-buffer mechanism
can be integrated into mechanisms that perform a dynamic data-flow pre-scheduling [MiSe01]
and use an issue queue for accounting latency mispredictions or for waiting the result of
unknown-latency instructions [CaGo00].

6.7 Detailed results
Figure 6.13 and Figure 6.15 presented average results for integer and floating-point benchmarks
respectively. Following subsections present individual results for each benchmark.

6.7.1 Integer benchmarks
Figure 6.17 and Figure 6.18 show the results obtained in each SPEC95-INT benchmark.
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6.7.2 Floating-point benchmarks
Figure 6.19 and Figure 6.20 show the results obtained in each SPEC95-FP benchmark.
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Figure 6.19 Influence of both the recovery mechanism and the verification delay on the
performance of processors executing floating-point benchmarks tomcatv, swim, hydro2d and
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Figure 6.20 Influence of both the recovery mechanism and the verification delay on the
performance of processors executing floating-point benchmarks applu, turb3d, fpppp and

wave5
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7 CONCLUSIONS

This chapter lists the conclusions of this work and describes some directions of
future research

7.1 Summary
This thesis is concerned with exploiting the predictability of the effective address computed by
the load instructions. Our goal was evaluating the effectiveness of address prediction to improve
the performance of superscalar processors.

First, we analysed the phenomenon of address predictability. We studied the sources of
address predictability, focusing on the high-level language structures that are compiled to
predictable load instructions; we found usual high-level structures that produce predictable load
instructions. Also, we evaluated the performance of conventional address predictors
(Last-Address Predictor, Stride Address Predictor and Context Address Predictor) on both
integer and floating-point benchmarks.
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After that, we proposed several techniques that try to use more efficiently the area-cost
devoted to an address predictor: we refer to these techniques as filtering and narrowing
techniques. The application of these techniques is two folded. First, given an address predictor,
they allow obtaining a new, similar-performance address predictor that needs a smaller area
cost. Second, given an area cost, they allow obtaining an address-predictor configuration that
best fits the available area cost. Our results allows area-cost reductions around 50% without
performance effects on the Last-Address Predictor; moreover, these techniques can be applied
to other address predictors (Stride-Address Predictor, Context-Address Predictor).

Next, we have applied address prediction to superscalar processors in order to execute
speculatively instructions dependent on the predicted load instructions; we refer to these
processors as address-speculative processors.

To begin with, our evaluations focused on the interaction between address prediction and
branch-prediction resolution. This interaction appears because we assumed that the operands of
a branch instruction must be known to be non-speculative before resolving the branch
instruction. We describe several verification mechanisms that notify when a branch instruction
can be resolved. From our results we conclude that address prediction is a promising alternative
to improve the performance of superscalar processors; however, the verification process must be
performed without delaying branch-instruction resolutions because these resolutions are critical
on processor performance.

We then analysed address-speculative processors where the issue queue is decoupled from
the reorder buffer. In this scope, the permanence of the instructions in the issue queue should be
as short as possible; moreover, the selected recovery mechanism may influence on this
permanence. We have considered two recovery mechanisms: a conventional recovery
mechanism that keeps the speculatively issued instructions in the issue queue until they are
known to be non speculative, and a recovery mechanism that records them in a separated
structure; however, the latter mechanism restricts the speculative issue of the instructions until
issuing the predicted load instruction. Our results show that restricting the speculative issue may
be an attractive alternative.

We also evaluated the effect of some processor-design trends on the performance impact of
address-speculative processors: increasing the cache latency and widening the issue width. Our
results show that the performance impact of address prediction gets larger as data-cache latency
increases and as the issue width widens.

This document finishes with the proposal and evaluation of recovery mechanisms for a
speculative technique named latency prediction; these mechanisms differ on the structure used
to record the speculatively issued instructions: the issue queue or a new structure named
recovery buffer. Also, we have evaluated two nullification policies (non selective and selective) for
each of these mechanisms. We applied latency prediction to predict the latency of the load
instructions in order to schedule optimistically its dependent instructions. From our results, the
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nullification policy to be used depends on the dominating instruction latency: while the
non-selective policy is enough in scopes where the dominating latency is one cycle (integer issue
queue), the selective policy must be used in scopes where the dominating latency is several
cycles and the instruction-level parallelism is large (floating-point issue queue).

7.2 Future directions
In this section we detail some possible directions of further research:

To achieve a deeper understanding of the phenomenon of the address predictability, the
analysis presented in Chapter 2 must be extended. First, we should consider new
address-predictor models; for instance, address predictors that correlate the addresses
computed by several load instructions and the results computed by arithmetic instructions. Also,
we should analyse the load instructions that remain unpredictable. Finally, other ISA's must be
studied because some predictability is inherent to the ISA and to the compiler technology.

Our study has analysed some design parameters of address-speculative processors.
However, other parameters have not been evaluated such as the degradation imposed by a)
performing address checks out of the processor core, b) wire delays in the communication
between the address-check unit, the verification issue queue and the issue queue, c)
non-immediate prediction-table updates, and d) banking prediction tables. We hope that these
new evaluations will lead us to determine which are the most critical design parameters of
address-speculative processors, and to design a cost-effective micro-architecture for an
address-speculative processor.

Finally, in this work we have evaluated our proposed recovery mechanism (the Recovery
Buffer) in two scopes: latency prediction and address prediction. We should evaluate the
performance of the Recovery Buffer in processors that perform both kinds of predictions
simultaneously, because we expect that the Recovery Buffer will reduce the pressure on the
issue queue with respect to other recovery mechanisms.
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Appendix A
A EVALUATION

ENVIRONMENT

This appendix details the evaluation environment built for the experiences
reported in this thesis. Section A.1 describes the tools used to evaluate the
proposals of this thesis. Section A.2 lists and characterizes the benchmark suite
run in the evaluations.

A.1 Evaluation tools
All the proposals presented in this thesis have been analysed using evaluation tools. These tools
can be divided into two categories: instrumented executables and processor simulators. This
section describes both types and their purpose in this thesis.
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A.1.1 Instrumented executables
An instrumented executable not only behaves like the uninstrumented executable, but also
executes some added code inserted at some specific points (for instance, before every load
instruction). This added code performs the analysis programmed by the user (for instance, the
evaluation of the data-cache hit rate). Instrumented executables perform analysis with a small
execution-time overhead. However, they cannot model accurately a cycle-by-cycle evolution of
the processor components.

ATOM instrumentation tool
The instrumented executables used in this work have been generated using the ATOM

instrumentation tool [EuSr94]. To instrument a binary executable, ATOM requires two input files:
the instrumentation file and the analysis file.

The instrumentation file tells ATOM:

• Which instructions of the executable must be instrumented (for instance, every load
instruction, the first instruction of every basic block,...)

• The analysis routine that must be called at every instrumentation point

• The parameters of the analysis routines (for instance, the PC of the instrumented
instruction, the target of a conditional branch, the effective address of a load instruction,
register values,...).

The analysis file provides the implementation (in C language) of the analysis routines
referenced in the instrumentation file.

Instrumented executables in this thesis
These kinds of simulators have been used in this thesis to collect basic statistics related to the

address predictors; for instance, the amount of predictions and the misprediction rate.

A.1.2 Processor simulators
A processor simulator models the internal timing of a processor at the cycle level. Working at this
level, the simulator can model the relationship between pipeline stages and processor
components, and can model events that will not affect the final architectural state; that is, events
related to non-committed instructions. However, the cost of this detailed simulation is a large
execution time.

Simple Scalar tool set
The simulators used in this work derive from the sim-outorder simulator of the Simple Scalar

tool set version 3.0 [BAB96]. The sim-outorder simulator models an out-of-order, superscalar
processor and can be fully parametrized; for instance, fetch width, branch prediction, decode
width, reorder-buffer size, issue width, functional units, latencies, memory system,... Moreover,
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the source code of this simulator is generally available, so researchers can adapt the simulator to
their own.

Processor simulators in this thesis
Although sim-outorder simulator models the micro-architectural behaviour of an out-of-order

superscalar processor, sim-outorder does not cover some aspects relevant to this thesis. For
instance:

• sim-outorder combines the Issue Queue and the Reorder Buffer in the same structure: the
Register Update Unit (RUU) [SoVa87]. This leads to the simulation of processor
configurations with unrealistic instruction-window capacities. Moreover, some processors
have separate instruction windows for integer and for floating-point instructions.

• sim-outorder simulates explicitly only one decode stage; more decode stages are
simulated implicitly by increasing the branch misprediction latency. However, all the
actions related to the decode stage are performed on the same simulated cycle.

• sim-outorder assumes that source registers are read before issuing the instructions using
the reservation-station model. Moreover, it assumes that registers are read in a single
cycle.

• There is no support for address-prediction mechanisms.

• sim-outorder deals with only one misprediction type: branch mispredictions. Consequently,
recovery mechanisms for other types of mispredictions were not provided.

• sim-outorder assumes perfect cache-hit/miss prediction for load instructions, because the
latency of a load instruction is unrealistically assumed to be known in its issue cycle.

Consequently, to evaluate the proposals presented in this thesis, the sim-outorder simulator
has been heavily modified to model them.

Processor-simulation validation
The validation of a cycle-by-cycle simulator is a difficult task due to the complex relationships

between processor components. Several strategies have been used to validate the simulators
used in this work:

• The benchmark results obtained during the simulation of the benchmarks have been
compared to the results obtained in a native execution of the benchmarks.

• Consistence checkings are performed through all the simulated pipeline stages.

• Several simulation actions (for instance issue-queue occupancy,...) were performed
redundantly in order to detect incoherencies.
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• Source-level debugging was used to perform step-by-step executions of the modified
simulator-code fragments.

• A revision control system (RCS) was used to maintain the different versions of the
simulators.

A.2 Benchmarks

A.2.1 Benchmark description
All the evaluations presented in this thesis are based on the SPEC95 benchmark suite
[SPEC95]. This suite is composed of eight integer programs and ten floating-point programs.
Table A.1 lists these benchmarks and describes their function.

These benchmarks have been compiled on an AXP-Alpha 21264 using the highest
optimization level of the native compiler of the machine. Table A.2 summarizes the execution
characteristics of these benchmarks using their reference input data set (the input data set for
benchmarks gcc and perl is composed of only one of the reference input files). The table shows

Benchmark Description

Integer
Benchmarks
(SPEC95-INT)

go go game player

m88ksim Motorola 88000 simulator

gcc C compiler

compress File compression and decompression

li Lisp interpreter

ijpeg Graphic compression

perl Perl interpreter

vortex Object-oriented data base

Floating-point
Benchmarks
(SPEC95-FP)

tomcatv Mesh-generation program

swim Solver of shallow water equations

su2cor Quantum-physics application

hydro2d Solver of hydrodynamical equations

mgrid Multigrid solver

applu Solver of partial differential equations

turb3d Turbulence simulator

appsi Atmospheric model

fpppp Quantum-chemistry application

wave5 Solver of Maxell's equations

Table A.1 SPEC95 benchmark description
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the number of user-level committed instructions, the percentage of load instructions (loads to
zeroed registers have been ignored) and the percentage of store instructions.

Our evaluation tools based on instrumented executables run all these benchmarks until
completion. However, due to simulation-time constrains, our cycle-by-cycle simulations focus on
an execution interval specific for each benchmark. Next section describes how these intervals
have been selected.

A.2.2 Simulation intervals for cycle-by-cycle simulations
A cycle-by-cycle simulation of the complete execution of the SPEC-95 benchmarks with their
reference input data set is not feasible. Even when 500.000 instructions per second are
simulated, a complete simulation of compress takes 37 hours. Most computer-architecture
researchers must deal with this problem and apply several solutions.

Lee et al. [LWY00] decided to use of much smaller input data sets in order to simulate the
whole execution of the benchmarks. This may cause an imbalance between the initialization
phase and the steady phase of the benchmark, and could lead to wrong conclusions.

Other studies extrapolate the program behaviour from the behaviour in a selected execution
interval that uses the reference input data set; that is, sample a full-length run with the reference
input. However, there are several approaches that follow this idea:

Benchmark Input Data Set Instructions (×109) %Loads %Stores

go reference 29.7 28.80 9.97

m88ksim reference 78.7 24.64 10.38

gcc cp-decl.i 0.4 26.84 11.55

compress reference 66.9 18.72 12.44

li reference 43.1 25.47 15.82

ijpeg reference 39.7 18.08 7.33

perl primes.pl 51.5 22.50 7.19

vortex reference 89.3 25.60 16.38

tomcatv reference 29.8 28.19 7.82

swim reference 37.4 25.93 8.24

su2cor reference 40.7 17.99 8.80

hydro2d reference 48.9 23.88 6.96

mgrid reference 81.1 43.19 1.83

applu reference 50.1 24.09 9.14

turb3d reference 88.8 24.07 16.61

apsi reference 33.0 19.23 10.51

fpppp reference 136.4 32.07 11.82

wave5 reference 35.3 22.35 12.68

Table A.2 SPEC95 benchmark characterization
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• Sato [Sato00] simulates only the first 100 million of committed instructions of the
benchmarks. These results may not be extrapolated because the behaviour of the
initialization phase of a benchmark can be different from the behaviour of the steady
phase.

• Berkeman et al. [BJR+99] use a trace of 30 million of consecutive instructions (including
kernel activity). They affirm that these traces are representative of the entire execution,
although the authors do not explain how the traces have been obtained.

• Other works skip a certain amount of the initial instructions of the execution; after skipping
them, they simulate a limited amount of instructions. Most of these papers select an
arbitrary interval that is the same for all benchmarks ([GoGo97a] skips the first 100-million
instructions and simulates the following 50-million instructions). Consequently, their results
are not clearly extrapolable.

• Reinman and Calder [ReCa98] skip an initial number of instructions that depend on the
simulated benchmark, but they do not justify these amounts. They then simulate
100-million instructions. Chrysos and Emer [ChEm98] also skip the initialization code, but
they do not specify how it is measures. They then simulate until the retirement of
100-million instructions.

• Skadron et al. [SAMC98] select the simulated interval by evaluating the
branch-misprediction rate for every 50-million of committed instructions and choosing an
interval with a representative behaviour.

This work follows the same approach as [SAMC98]. In order to select a significant simulation
interval, the evolution of a performance metric during program execution has been evaluated.
This metric has then been plotted every 500 millions of committed instructions. Finally, a
representative simulation interval has been selected.

Integer benchmarks
The metric chosen is related to the topic covered by this thesis: the predictability captured by

a last-address predictor (Section 2.4.1). Figure A.1 shows the evolution of captured predictability
(vertical axis) during execution time (horizontal axis). Horizontal scales differ because every
graph is related to the complete execution of a benchmark, and every benchmark executes a
different number of instructions (Table A.2). Due to the execution length of benchmark gcc, it has
been sampled every 50-million instructions.
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The regular behaviour of some benchmarks can be explained from their input data sets.

• m88ksim performs two micro-architecture simulations where the first lasts half the time of
the second.

Figure A.1 Evolution of the predictability captured by a last-address predictor during the
execution of the SPEC95-INT benchmarks
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• compress performs a main loop with 25 iterations. Every period of the graph is related to
an iteration.

• vortex performs a main loop with 14 iterations. Every period of the graph is related to an
iteration.

From these graphs, we have selected the simulation intervals related to the steady phases of
the benchmarks (shaded zones of the graphs). Table A.3 presents the number of initial
instructions skipped (initialization phase), and the number of instructions executed after the
initialization phase. These intervals had been used in all the cycle-by-cycle simulations of this
work.

Floating point benchmarks
For floating-point benchmarks last-address predictors perform poorly. Consequently we use a

different address predictor to select the simulation interval: the stride predictor (Section 2.3.2).

Figure A.2 shows the evolution of captured predictability (vertical axis) during execution time
(horizontal axis). Horizontal scales differ because every graph is related to the complete
execution of a benchmark, and every benchmark executes a different number of instructions
(Table A.2).

Benchmark
Instructions

skipped (×106)

Instructions

simulated (×106)

go 4.000 1.000

m88ksim 1.000 1.000

gcc 0 all

compress 4.500 2.500

li 2.500 1.000

ijpeg 1.000 1.000

perl 1.000 1.000

vortex 1.000 7.000

Table A.3 Selected simulation intervals for SPEC95-INT benchmarks
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Figure A.2 Evolution of the predictability captured by a stride predictor during the execution of
the SPEC95-FP benchmarks
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We may observe that floating-point benchmarks exhibit more regular behaviour than integer
benchmarks.

From these graphs, we have selected the simulation interval related to the steady phases of
each benchmark (shaded zones of the graphs). Table A.4 presents the number of initial
instructions skipped (initialization phase), and the number of instructions executed after the
initialization phase. These intervals have been used in all the cycle-by-cycle simulations of this
work.

In order to determine the representative execution intervals of the benchmarks, a more
in-depth analysis should be carried out. However, such an analysis is beyond the scope of this
thesis.

Benchmark
Instructions

skipped (×106)

Instructions

simulated (×106)

tomcatv 1.500 500

swim 500 500

su2cor 2.000 5.000

hydro2d 500 500

mgrid 0 500

applu 500 500

turb3d 0 500

apsi 0 500

fpppp 0 500

wave5 1.500 500

Table A.4 Selected simulation intervals for SPEC95-FP benchmarks
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