UNIVERSITAT POLITECNICA DE CATALUNYA

LOOP PIPELINING WITH
RESOURCE AND TIMING
CONSTRAINTS

Autor: Fermin Sanchez

October, 1995

2

SOFTWARE PIPELINING

2.1 INTRODUCTION

Software pipelining [Cha81] comprises a family of techniques aimed at finding a pipelined schedule
of the execution of loop iterations. The pipelined schedule represents a new loop body which may
contain instructions belonging to different iterations. The sequential execution of the schedule
takes less time than the sequential execution of the iterations of the loop as they were initially
written.

In general, a pipelined loop schedule has the following characteristics!:

m All the iterations (of the new loop) are executed in the same fashion.

m The initiation interval (II) between the issuing of two consecutive iterations is always the
same.

Figure 2.1 shows an example of software pipelining a loop. The DDG representing the loop body
to pipeline is presented in Figure 2.1(a). The loop must be executed ten times (with an iteration
index 7 € [0,9]). Let us assume that all instructions in the loop are executed in a single cycle
and a new iteration may start every cycle (otherwise the dependence between instruction A from

1We will assume here that the schedule contains a unique iteration of the loop.

15

16 _ | CHAPTER 2

Ay
ti .
Bo|A) tne Ay Prologue
C() B] A2
e‘ ! NEAEAN By| A
o “1] B2| A3
0 Co|BilAy| 3<iso

0 Dy| C3| ByjAs| '
Stead .
e D;| C4| Bs| Ag it Bi_l i=i+1

0 Dy| Cs| Bg[A7
Ds[Cg| B7| Ag v

®) [Dy]Cs[B

Dg| Cqf Bg| Ay
Dg| Cy
Dy| C4| By P
Dq| Cy Epilogue | 9]

Dy

(@) (b) o (c)

Figure 2.1 Software pipelining a loop
(a) DDG representing a loop body

(b) Parallel execution of the loop

(c) New paralle] loop body

Ao

iterations ¢ and 7 4+ 1 will not be honored).. With this assumption,-the loop can-be.executed in a
more parallel fashion than the sequential one, as shown in Figure 2.1(b). The execution time of the
sequential loop is 40 cycles, whereas the execution time of the pipelined loop is only 13 cycles. The
execution of an instruction X belonging to the iteration 7 is denoted by X; in Figure 2.1. Note that
an execution pattern is repeated from the issuing of iteration thitd until the issuing of iteration
ninth (i € [3,9]). Such a pattern is called the steady state or pipeline. Instructions A;, Bi—1,Ci—2
and D;_3 from iterations 1 = 3 to 1 = 9 are executed at a time in the steady state (we assume that
the architecture has sufficient resources to execute the four instructions in parallel). In order to
maintain the semantics of the loop execution, a piece of code must be executed before the steady
state. This code is denoted as the prologue. In the same way, a piece of code, denoted as epilogue,
must be executed after the last iteration of the steady state. By using the previous description, a
new more parallel loop body (formed by the steady state) can be built, as shown in Figure 2.1(c).

The new loop is preceded by a prologue and followed by an epilogue, and it is executed seven times
instead of ten.

2.2 STATE OF THE ART

2.2.1 Notation éndd'classAiﬁc'aufibr'l

This section describes some software pipelining approaches. Software pipelining has been widely
studied in recent years. It is suitable for the high-level synthesis (HLS) of VLSI circuits, as well
as for compilers for parallel architectures (superscalar and VLIW processors). Several software
pipelining techniques have been proposed for these two areas in recent years. The terminology

Software Pipelining e _ 17

used in the papers describing such techniques is quite wide, and usually different terms are used
to describe the same concept. In order to use the same terminology for all methods, we will firstly
perform some brief definitions which will be used in the rest of this chapter to describe the different
techniques.

Let us call initial loop the loop as it was initially written, and pipelined loop the new loop obtained
after being software pipelined. The initiation interval (II) denotes the number of cycles elapsed
between the issuing of two consecutive iterations of the pipelined loop (and therefore the time
required to execute an iteration). The IT is usually shorter than the time required to execute an
iteration of the initial loop. When a lower bound on the initiation interval is computed, 1t is called
the minimum initiation interval, and denoted by MII. The time required to execute an iteration of
the initial loop in the pipelined loop is called the iteration time. The number of iterations skewed
for each instruction in the steady state is called the iteration index or folding indez. The tleration
indices are always positive integers normalized to zero. In the example from Figure 2.1(c), the
initiation inierval is 1, the iteration time is 4 and the iteration indices for instructions A, B, C and
D are respectively 3,2, 1 and 0, indicating that instructions A; 3, B;j 12, Cj41 and D; are executed
in parallel in the steady state.

In general, software pipelining approaches represent a loop by means of a data dependence graph,
which is a directed graph DG(V, E). Instructions of the loop are represented by the set of nodes
V', whilst the set of edges E represents the data dependences or precedence constraints between
instructions (in general, compilers for parallel architectures consider the nodes of the DG as
instructions, while systems for HLS consider nodes as single operations. The main difference among
them is that an instruction may contain multiple operations and use several resources). When a
subset of edges forms a cycle in the DG, it is called ¢ recurrence. Two kind of data dependences
are in general considered: inira loop dependences (ILDs) between instructions belonging to the
same iteration, and loop carried dependences (LCDs) between instructions belonging to different
iterations. A sequence of edges (with their corresponding nodes) in the DG is called a path. The
node which has no predecessors in the path is called the head of the path. In the same way, the
node which has no successors is called the tail of the path. A path in the DG requires a certain
execution time in order to honor all its dependences. Such execution time is called the length of
the path. The path with the largest length is called the critical path of the graph.

We will classify software pipelining approaches into three main categories:

1. Techniques which do not calculate alower bound on the IT (MII). These techniques usually try
to find a pipelined schedule quickly. The IT of the schedule is then successively decreased until
it cannot be further reduced. These techniques cannot guarantee that an optimal schedule is
found, even when they find it, because they do not calculate MII.

2. Techniques which make an estimation of the MII. In general, these techniques make an
estimation of the MII precompacting the loop by assuming infinite resources. Next, they
try to find a pipelined schedule in the previously compacted number of cycles by considering
resource constraints. As in the techniques of category 1, these kind of techniques cannot
guarantee that an optimal schedule is found, since MII is estimated.

3. Techniques which analytically compute the MII. We classify these techniques into three
categories, according to which factors they take into account for calculating the MII:

(a) Techniques which take only resources into account for' calculating MII.

18 ’ i CHAPTER 2

(b) Techniques which take only recurrences into account for calculating MII.

(¢) Techniques which take both the resources and the recurrences into account for calculating
MII.

These techniques try to find a pipelined schedule in the previously computed MII cycles. If no
schedule is found, the expected initiation interval is increased and the methodology is applied
again. The main advantage of these techniques is that they can guarantee that an optimal
schedule is found when the II of the schedule is the previously calculated MII.

2.2.2 Approaches which do not calculate MII
Perfect pipelining [AN88b)] : Coa

In perfect pipelining (P P) [AN88b], the loop is compacted, unrolled and pipelined, searching for
an emerging pattern. The instructions may be moved independently after precompaction.

A set of local primitive transformations, involving only adjacent nodes of the DG, are the building
blocks of PP. They are called the core transformations, and were defined for percolation scheduling
[Nic85]. The four core transformations are the following:

» DELETE: reimoves a node from the DG if the node is empty (contains no instructions) or
unreachable. A node may become empty or unreachable as a result of other transformations.

s MOVE-OP: moves an assignment z from a node u to a node v through an edge (u, v), provided
no conflict exists between 2 and the instructions in v, and & does not kill any value alive in v.

m UNIFY:moves a single copy z of identical assignments from a set of nodes {v;} to a common
predecessor node u. This is performed if no dependence exists between z and the instructions
in u, and 2 does not kill any value alive at u.

s MOVE-TEST: moves a test z from a node v to a node u through an edge (u,v), provided
that no dependence exists between 2z and the instructions in u.

Once the loop has been compacted; it is unrolled an unspecified- number of times. The result is
further compacted by using the core transformations and assuming unlimited resources. In order
to make the formation of a pattern easier, conditions are added to limit the distance between
the first and the last scheduled instructions from an iteration. When the pattern produced after
unrolling K times the loop is equivalent to the pattern produced by unrolling the loop K — 1
times, the algorithm halts.

Although code space is increased, an advantage of PP face to other approaches is that the code
may be compacted more tightly. Another advantage is that the target machine is assumed to
have multi-way branching. This is a powerful feature which compares directly to other approaches
whose basic blocks are ended by a single branch, and where only basic blocks are considered. A
disadvantage of PP is that unlimited resources are initially assumed. The way to solve resource

Software Pipelining . ‘ . 19

[y

constraints is by rescheduling the pattern found for unlimited resources with the given constraints.
This produce sub-optimal results in several cases.

Software retiming [PR91]

[PR91] and [PR94] present a methodology for software pipelining based on four transformations:
retiming, associativity, commutativity and inverse element law. The approach is denoted as
software retiming (SR). The proposed transformations work as follows:

m Retiming: As defined by Leiserson in [LRS83], retiming uses the distributivity of the delay
operator D over most other operators: D(a)@D(b) is equivalent to D(a©b) and vice versa (©
being an arbitrary operator).

® Associativity: Associativity postulates that, in the set over an algebraic structure defined
using an operation O, for every a, b and ¢ which are elements of the set, it holds that

a©(hOc) = (¢@b)Oc [Van50).

s Commutativity: Commutativity states that, in the set over an algebraic structure defined
using an operation O, for every a, b which are elements of the set, it holds that @b = O«
[Van50].

s Inverse element law: If a is in the the set over an algebraic structure defined using an operation
O, then there is some element b in the set, called an inverse of a, such that ¢©b = 6Qa = e.

Software retiming is a fast iterative improvement probabilistic algorithm that uses the previous
transformations. SR focuses on solving the following problem: “given a DG of a loop and a set
of resource constraints, apply retiming, associativity, commutativity and inverse element law in
such a way that the resource utilization of the obtained DG i1s maximized”. Note that software
retiming maximizes the resource utilization achievable by a DG, and not the resource utilization
of a schedule. Therefore, software retiming makes an estimation of the resource utilization, instead
of an exact measurement. The resource utilization for a resource r, U, is defined as the ratio of
the number of cycles in which the resource is used to the available number of cycles. The total
resource utilization of a loop, U, is defined as the weighted sum of the resource utilization of the
set of resources (R): U = Z wy - Uy,. The weights w, are proportional to the hardware cost of the

reR
resource r.

In order to lead the transformations, software retiming uses an objective function highly correlated
to the final (unknown) hardware utilization. The function is based in the following observations:

m Timing constraints on nodes that are not strict make it easier to achieve a high resource
utilization.

m Nodes vying for the same resource must be distributed over the time.
s The critical path must be shorter than the available time.

® The number of variables which are alive at the same time must be smaller than the number
of available registers. :

20 CHAPTER 2

Software rétiming uses an iterative algorithm to find a solution. Two classes of movements are
defined: retiming and generalized associativity movements. For each feasible movement «, an
inverse transformation 8 exists. Movement « is denoted as a forward movement, and movement
B is denoted as a reverse movement. The iterative algorithm is organized in two phases:

1. In the first phase, the solution space is scanned in an organized fashion in order to detect
areas where the objective function has a small value. - At every point in the optimization
process, a movement is selected in a probabilistic fashion.

2. The areas selected in the first phase are used in the second phase as the starting points for a
more elaborate search. The movement offering the best decreasing in the objective function
is automatically performed. For each starting point, the search is concluded when a local
minimuim is reached. The best of those minima is selected as the final solution.

Since the objective function is parameterized, users may guide the search towards their own
objectives. However, a high CPU-time is required to execute the iterative algorithm, especially
for large DGs. One problem is that, since the points found in the first phase do not guarantee a
near proximity to the best solution, phase 2 can derive to local minima, moving away from the
best solution.

PEEEN

Rotation scheduling [CL92]

An approach for software pipelining based on 1etiming [LRSSS] called rotatzon scheduling, is
presented in [CL92] and [CLS93]." Rotation scheduling reduces the iteration time of the pipeline
schedule after finding the schedule.

The rotation technique repeatedly transforms a schedule into a more compacted one, increasing
the resource utilization. An existent schedule is partially rescheduled by rotation to obtain a
shorter and valid schedule with resource constraints. . The result of rotation implicitally retimes
the DG(V, E) to naturally produce a pipeline schedule. The state of a sequence of rotations is
recorded by a simple retiming (node-labelling) function. Therefore, rotation and folding are similar
concepts.

After a sequence of rotations, the iteration time may be too long? In this case, it must be reduced.
Rotation scheduling (RS) uses a simpler integer linear programming formulation [Sch86] to find a
retiming with the smallest iteration time such that the given schedule is a valid schedule.

The algorithm to find a loop schedule by rotation with a short iteration time for a given schedule
is as follows: :

1. Find a down-rotatable sei of nodes: A set X of nodes is down- rotatable if and only if every
path from V — X to X contains at least one LCD.) :

2. Rotate the found set down: A down-rotation of a node implies retiming the node (in terms of
folding, it is equivalent to increasing the folding index of the node). In order to select a node
to be down-rotated, rotation scheduling uses a list scheduling algorithm [DLSM81] which uses
the number of successors of a node as priority function.

Software Pipelining . . - 21

3. Reschedule ihe set of nodes: Fach node is initially rescheduled at the last possible cycle of
the schedule while resources are available. After that, the node is pushed across the schedule
according to the data dependences in the DG. After any down-rotation, there always exists
a schedule which is at least as short as the original one.

An advantage of rotation scheduling is that it is intuitively easy to understand. However, since
the MII is not computed, rotation scheduling cannot guarantee that an optimal solution has been
found (except when all the resources are fully used). The final step, reducing the iteration time,
may correct excessive retiming done by the rotation algorithm (since heuristics have been used to
select a node to be down-rotated). However, since such a step is performed by using an integer
linear programming formulation, it may consume much CPU-time.

2.2.3 © Approaches which estimate the MII
URPR [SDX86]

The URPR algorithm (UnRolling, Pipelining and Rerolling) [SDX86] first compacts the loop body
without taking LCDs into account, and following this the precompacted loop is pipelined. The
compaction is performed to find an upper bound on the steady state length. The new instructions
(composed of several of the original instructions) found after the initial compaction are called
microcode composites (M Cs). The initiation interval expected for the pipelined loop is computed
as follows: '

m The number of cycles that éach MC; from different iterations must be offset to honor all
ILDs, 6(MCj), is computed.

m The expected initiation interval is the maximum of all the §(MC;).

Once the initiation interval (IT) has been computed, URPR unrolls the loop K = % times, L
being the length of the precompacted loop body. K is the maximum number of iterations that
URPR can execute concurrently under ideal conditions. The unrolled loop is scheduled as follows:

® Fach new compacted loop body is scheduled from IT cycles after the starting of the last loop
body. S '

w When MCs from different compacted loop bodies are placed in the same cycle, there must
be no resource conflicts. Moreover, the pipeline must honor all LCDs.

m If placing an MC violates an LCD, it is moved down in the schedule until all dependences
are honored.

After the loop has been unrolled and pipelined, it is rerolled. Rerolling is the process of creating
a prologue, a steady state and an epilogue. The steady state is created from a set of adjacent
cycles of minimum length which contains all the M Cs in the original loop body. Since the steady

22 CHAPTER 2

state may contain more than one copy of a given MC, all duplicated MCs are deleted. This is
performed to ensure an integer number of original loop iterations within the steady state. For
greater simplicity, the algorithm further restricts the integer number of loop iterations to one.

In order to calculate the initiation interval, the URPR algorithm only takes dependences which
cross one iteration into account. However, this process should be performed for all dependences in
the loop. The URPR algorithm has the advantage of being simple. Working with a precompacted
loop makes it easy to pipeline without taking ILDs into account. However, this can also be
considered as a disadvantage, since the precompaction may impose unnecessary constraints on the
pipelining process, often restricting the achievable parallelism.

Sehwa [PP88]

Sehwa [PP88] is a system for the synthesis of pipelined data paths. Shewa can find the minimum
cost design, the highest performance design and other designs between these two in the design
space.

Sehwa contains a set of fast scheduling procedures which are iteratively executed. In order to
maximize the performance of the deésign, these procedures perform resource allocation at the same
time as scheduling. Each scheduling iteration is guided by the performance and cost estimation
of the previous schedule. Sehwa optionally uses an exhaustive algorithm for optimal scheduling of
operations while satisfying the cost constraints. Such exhaustive'scheduling algorithm takes the
best result of polynomial time-scheduling algorithms as a'good lower bound on'performance to
prune the search space. Thé algorithm to perform cost-constrained synthesis is as follows:

1. Compute the minimum possible initiation interval'such that the cost for the minimum required
set, of resources is within the cost constraint. The number of resources of each type 7 required
for an expected initiation interval II, N;, is computed as N; = [}—/IL], V; being the number of
nodes representing operations which require a resource of type i.

2. For all possible cycles, performing schedulmg of the loop operations while resource constraints
are satisfied. :

3. For all schedules find at step 2:
m compute the total cost of the design by adding the latch and multiplexer cost to the

operator cost.

m compute the performance of the design considering the resynchronization rate.
4. 1f any solutions are found satisfying the cost-constraints: .. .-

m select the fastest design.

m check if the performance of the fastest des1gn can be 1ncreased by addmg resources whlle
the cost constraint is satisfied. Select a type of resource to be increased and execute step
2 agam Otherw1se execute step 6.

5. If no solutions are found satlsfylng resource constraints, choose another set of resources.
Increment II in one unit and recompute the minimum numbéer of required resources. Then,
go to step 2.

Software Pipelining . o 23

6. Report the fastest design found.

Sehwa works with conditional jumps. Software pipelining is achieved by considering functional
pipelining in the data path. That is, a new datum may be issued before the previous datum
gives a result. Although functional pipelining was initially proposed to work with an algorithm
represented by a basic block, it works quite well with loops. In fact, functional pipelining n the
data-path is specially useful to pipeline loops represented by acyclic DGs.

Since Sehwa is an algorithm based on successive refinements of the found solutions, its computa-
tional complexity is higher than the computational complexity of other approaches. Sehwa usually
finds good designs because the search space is widely explored.

Loop folding [GVD89]

Loop folding (LF) [GVD89] is a control-flow transformation that is equivalent to functional pipelin-
ing in the data-path. Loop folding has been implemented in the CATHEDRAL II compiler inte-
grated in the ATOMICS system [GRVD87].

The goal of loop folding is to optimize loop organization by introducing partial overlaps between
the schedule of consecutive loop iterations. Like the remaining software pipelining techniques, loop
folding reduce the average time required to execute an iteration by parallelizing the execution of
operations belonging to different iterations. As a side effect, the iteration time may increase. In
terms of data~path pipelining, the number of cycles elapsed between the supply of an input data
and the associated output may be increased.

Loop folding can be realized by moving (or folding) operations between loop iterations before
scheduling the loop. The folding indez of an operation in a certain loop organization is the
(integer) number of loop iterations over which the operation has been moved with respect to the
original loop organization. In the original loop organization, all operations have a folding indez of
zero. If the folding index of an operation u is increased (decreased) in a DG, the folding indices
of all the successors (predecessors) of u should be increased (decreased) with at least the same
amount.

ATOMICS optimizes the loop control-flow iteratively. In successive folding-iteration steps, some
operations are folded. The obtained DG is scheduled by using lst scheduling [DLSM81] and
taking resource constraints into account. In order to schedule the DG, ATOMICS uses a two-level
iteration mechanism.

m - First of all, an estimation of the II is calculated, and the DG is scheduled in IT cycles. II is
assumed to be the length of the critical path plus one. If no schedule in IT cycles is found,
the estimated II is increased and the process is repeated again until a schedule is found.

w The folding may be adjusted in a next iteration step, in order to reduce the obtained II. The
goal of folding-iteration step j is simply to find a schedule with a length II; equal to IT; _; —1.

The heuristics used to fold a loop are described below. As a basic principle, folding indices of
operations will never be decreased.- In every folding-iteration step j, the schedule obtained from

24 CHAPTER 2

step 7 —11s examined. A group of nodes, for which an additional folding will most probably result
in a faster schedule, is identified: :

m The folding indez of all nodes that have been scheduled prior to cycle II; is increased by one.

® In order for a schedule of length II; to exist, the DG should not contain any path longer than
IT; 4 1. If such path(s) occurs, the folding indez of all nodes belonging to the excessive parts
of such path(s) is increased by one. This action is repeated until no such path(s) remains.

2.2.4 Approaches which analytically calculate MII
Modulo scheduling‘ [RG8‘1I]

Modulo Scheduling (M S) [RG81] is probably the best-known software pipelining approach. In
fact, M S is a framework within which a wide variety of algorithms and heuristics may be defined
for scheduling a loop. The objective of M S.is to engineer a schedule for one iteration of the loop
such that, when this same schedule is repeated at regular intervals of IT cycles, no ILD nor LCD is
violated, and NO resource usage conﬁlct arises between instructions of either the same or different
iterations.

MS consists of the following steps:

1. Compute a lower bound on the initiation interval (MII). The riumber of available resources
and the recurrences (cycles formed by data dependences in the DG) on the loop are taken
into account to compute MII.

2. If MII is not an integer, and if the percentage degradation in rounding it up to the next larger
integer is unacceptably high, the body of the loop may be unrolled prior to scheduling.

3. Schedule a single iteration of the loop in any desired manner while resource and dependence
constraints are being fulfilled. The different heuristics to determine the order of scheduling
instructions configurate the different M S algonthms The 1nstructlons are scheduled as soon
as posstble. e ' '

4. If no schedule has been found by step 3, increase the expected II by one unit and execute
again step 3. Some approaches have proposed increasing the initiation interval by more than
one unit in order to avoid spendmg an excessive amount of time compiling large complex
loops [Huf93].

If rotating registers [RYY T89; BYA93] are absenf, the steady state 1s unrolled to enable
modulo variable expansion [Lam88).

(<]

6. Generate the appropriate prologue and epilogue code sequences.

The schedule found by following the previous steps allows us to issue a new iteration each IT cycles.
Initially, the instructions were stored in a reservation table with a length of IT cycles, IT being
the iteration time. The space required to store such a schedule is proportional to the iteration

Software Pipelining ' ' . 25

time of the loop. In order to reduce such a space, and given that the expected II of the loop is
known in advance, current approaches of M S use a modulo reservation table (MRT) [Lam88] to
store the schedule. The MRT is a reservation table with a length of IT cycles. Therefore, the space
required to store the schedule is proportional to II (II is, in general, less than the iteration time).
Each row of the MRT represents a cycle for issuing an instruction, and each column represents a
resource. Operations are assigned to the MRT by fulfilling the modulo constraint:

® An instruction u which is scheduled at cycle C,, is assigned to cycle C, mod I in the MRT,

.) L C
with an iteration index l—“J .
17
® No other instruction v can be scheduled at cycle C, such that (Cy, mod II) = (C, mod II) if
there are not sufficient resources to execute u and v at the same time.

The algorithm stops when all instructions have been assigned to the MRT or an instruction exists
which cannot be assigned without violating any dependence nor modulo constraint.

In M S approaches, if an instruction is scheduled in an inappropriate cycle, scheduling the remain-
der instructions of the loop may be impossible, even though a feasible schedule may exist. Since
no heuristic guarantees a correct selection of instructions, the only way to solve this drawback is to
introduce backtracking when an instruction cannot be scheduled in the MRT. Several approaches
have been recently proposed by using this idea [Huf93, Rau94].

MS approaches are easy to understand and to implement. Moreover, their low computational
complexity [Rau94] makes them appropriate for compilers for parallel architectures. In fact, to
our knowledge, at least two current compilers [Ram92, DT93] have already incorporated modulo
scheduling algorithms.

Optimal loop parallelization [AN88a]-

The approach developed in [AN88a] is based on some results in compaction-based software pipelin-
ing from perfect pipelining [AN88b]. We will call this approach OLP. OLP is based on the follow-
ing idea: “scheduling a large portion of the loop’s execution history should reveal some repeating
behavior, which can be used to obtain a good schedule for the loop”. Such a repeating behavior
is denoted as the pattern of the loop. '

In order to find the patiern, O LP examines a partial execution history of the loop, denoted as the
first 7 iterations. After that, the statements of those i iterations are scheduled as soon as possible.
That is, if the longest chain of dependences on which statement u depends has length j, then u is
scheduled at cycle j. This is called a greedy schedule.

First of all, OLP calculates a lower bound on the initiation interval (MII) of the loop by taking
the recurrences of the loop into account. After that, OLP searches for a pattern with length MII.
To do this, statements not belonging to the critical path are rescheduled so that they have the
same initiation interval as statements on the critical path. The critical path can be scheduled
exactly in MII cycles. The result is a very compact pattern for the entire loop.

26 4 SRR : : - CHAPTER 2

OLP divides the schedule of an iteration in regions. A region in the schedule of an iteration is a
continuous interval of cycles in which each one contains some statement from the iteration. OLP
searches for the mazimal (longest) regions of an iteration. Between two adjacent mazimal regions
there must be at least one cycle (gap) with no statement from that iteration. OLP looks for
consecutive iterations 7 and ¢ + 1 with the same mazimal regions and where the gap between the
mazimal regions from 1+ 1 is larger than or equal to the gap between the mazimal regions from 1.
Reducing the gap of both iterations by delaying the mazimal region which is first scheduled does
not increase the execution time of the loop, but it makes it easier to find an execution pattern.

As in perfect pipelining, when the number of resources is constrainéd, O L P reschedules the pattern
found for infinite resources with the given constraints. Therefore, sub-optimal results are found
(note also that resource constraints are not taken into account to compute MII). OLP is an
approach intuitively easy to understand and to program with a low computational complexity, as
shown in [AN88a.

Percolation-based synthesis [PLNG90]

The Percolation Based Synthesis (PBS) [PLNG90] is a software pipelining approach which works
with conditional jumps and multi-cycle pipelined 1nstruct10ns PBS is based on percolation
scheduling [Nic85] and loop umolhng

Percolation scheduhng is a systern of Semantic-preserving transformations which converts an orig-
inal DG into a more parallel one. Nodes in the new DG may contain several instructions which
may be executed in parallel. They are also called stdtes. Tlie core of PBS consists in the same
four transformations as perfect pipelining; namely, move-op, move-test, delete and unify. Repeat-
edly applying this transformations allows data-independent instructions to percolate towards the
top of the DG from the different parts of the code. The core transformations are proven to be
complete with respect to the set of all possible local, dependence-preserving transformations.

[

PBS performs the following five steps:

1. Find the optimal schedule: the first step consists of finding an optimal schedule without taking
resource constraints into account. Such a schedule is found by using the OLP approach.

2. Find each instruction’s mobility and reorder instructions: if the number of instructions in one
state exceeds the number of available resources, some instructions must be delayed. PBS uses
the mobility [PG87] as criterion to defer instructions. Operations with the highest mobility are
first deferred because their delay will not necessarily stretch the schedule, whereas deferring
an instruction with mobility 0 will certainly make the, schedule longer

3. Make reservations:” when the functlonal umts are not p1pehned a new mstructlon must
wait for another one to be completed if both execute in the same functional unit. This fact
causes the reservation problem. In the presence of resource constraints, assigning the optimal
schedule to the available resources is not always possible. Therefore, PBS reserves states so
that the execution time of the functional units is respected for any instruction. Empty states
are added when necessary.

Software Pipelining : L 27

4. Select and adjust state i: this step selects a state 7 and delays instructions from ¢ due to
resource constraints. An instruction which has to be deferred is moved to the next available
state in the program.

5. Percolate instructions from i’s successors: after deferring some instruction from state ¢, there
is a possibility that some of the instructions from #’s successors will percolate up. This
percolation of instructions is due to the addition of new states between the original ¢ and its
successors. Operations are moved up while preserving data dependences, and only if there
are available resources in earlier states. Steps 4 and 5 are repeated while there are resource
conflicts.

The advantage of PBS is that conditional jumps and multi-cycle pipelined instructions are taken
into account. The disadvantage is that the loop is unrolled only until a pattern is found, and only
one iteration of the loop is considered. This reduces the possibility of percolating instructions.
Moreover, since the initial optimal schedule only takes recurrences (and not resource constraints)
into account, the schedule found may be sub-optimal.

Unrolling-based software pipelining [BC90)

In [BC90], a loop optimization approach for horizontal microcode machines, is proposed. This
approach is denoted as unrolling based software pipelining, and it will be shortened here by UBSP.

First of all, UBSP calculates a lower and an upper bound on the initiation interval. The lower
bound is computed by taking only resources into account. The upper bound is the length of a
non-pipelined schedule. The expected initiation interval of the schedule may range between the
previous two bounds.

The basic idea of UBSP is to search for a repetitive pattern in the scheduling of the previously
unrolled (and compacted) loop. Such a pattern may contain more than one iteration. Since
unrolling is considered, UBSP enables several iterations to have a different scheduling, unlike
techniques which do not take loop unrolling into account. The algorithm used for UBSP is as
follows: '

1. Initiate the unrolling degree? i (i = 1).
Unroll the loop 7+ 1 times and schedule (by compaction) the unrolled loop.

Search for a pattern in the schedule. This pattern may contain several iterations of the loop.

X

. If no pattern is found, increment ¢ by one unit and go to 2. If a pattern is found, construct a
new equivalent loop containing the following: a prologue, the found pattern repeated a certain
number of times, and an epilogue.

The main problem of the algorithm is to ensure that the compaction algorithm used at step 2 is
really bounded. In order to guarantee this, the algorithm has a mechanism which restrains the

2The unrolling degree is the number of instances of the loop body. Therefore, an unrolling degree two mecans
that two loop bodies are considered. : . . .

28 : ' CHAPTER 2

length of the scheduling of the iterations. It prohibits instructions of an iteration to be scheduled
too early in the unrolled loop.

As can be seen, the algorithm is quite similar to the proposed by OLP. The main difference
is that resource constraints are taken into account from the beginning, whilst OLP considers
resource constraints at the end of the process. However, the calculation of the lower bound
on II does not take recurrences into account. Therefore, the algorithm can start searching for
impossible schedules, which increases its execution time. One advantage of U BSP compared with
some previous described techniques is that a pattern containing several iterations of the loop is
considered. This may significantly increase the throughput of the schedule, as will be shown in
following chapters.

Lam’s algorithm [Lam88|

The Lam’s algorithm (LA) [Lam88] is one of the most well-known software pipelining approaches.
In fact, the term software pipelining comes from this algorithm. LA creates a schedule (by com-
pacting the loop body) for a single iteration of the loop which remains valid when it is overlapped
in a pipelinie with initiation interval II: Such-a schedule is longer than"IT" cycles (the length is the
iteration time), but it will form a steady state with a length of II cycles when it is overlapped in
the pipeline. This type of pipeline is called a regular pipeline. All iterations in the loop will be
identically scheduled. In the regulatpipeline there aré no résonrce conflicts if 'a new iteration of
the compacted loop starts every II cycles. 'Moreover, all data dependences in the loop are honored.

The initial compacted loop (for cyclic graphs) is found as follows:*

1. Find the strongly connected components in the graph [Meh84], and compute the closure of
the precedence constraints in each connected component by solving the all-points longest path
problem for each component [Flo62, DBR67].

2. The connected components are first individually scheduled. The original DG is reduced by
representing each connected component as a single vertex. Edges connecting nodes from
different connected components are represented by edges between the corresponding vertices.
This reduced graph is acyclic.

3. The nodes belonging to a connected component are scheduled (by using list scheduling) in a
topological order by taking only ILDs hin_to account.

4. The algorithm to schedule the reduced graph is also a list scheduling.

5. If a node cannot be scheduled in.IT consecutive cycles due to,resource conflicts, it will not fit in
anywhere within the current schedule. When this happens, the attempt to find a schedule for
the given initiation interval is aborted and the schedullng process is repeated with a greater
IT value.

The software pipelining algorithm differs from traditional list scheduling in that a resource reser-
vation table with II cycles, similar to the one used in modulo scheduling algorithms, is used to
determine if there is a resource conflict.

Software Pipelining _ | - 29

LA calculates a lower and an upper bound on the initiation interval. The upper bound is the
iteration time of the loop. The lower bound (MII) is calculated by taking resource constraints
and recurrences into account. LA produces a loop body which will form a regular pipeline, which
simplifies the creation of the prologue, steady state and epilogue.

Decomposed software pipelining (FRLC) [WE93a, WE93b]

In decomposed software pipelining (DESP) [WE93a, WE93b], software pipelining is considered as
an instruction-level transformation from a vector of one-dimension to a matrix of two dimensions.
Rows in the matrix represent cycles of the schedule; columns represent the iteration which instruc-
tions belong to. For example, if instruction w is in the element (7, j) of the matrix, this represents
that instruction u from the iteration j (u;) is executed at cycle 7 of the schedule. If two instructions
have the same row number (rn), they will be executed at the same cycle. If two instructions have
the same colurmn number (cn), the instance of both instructions comes from the same iteration.
The column number and the row number are defined such that S(u1) = rn(u) + II - (en(u) — 1)
and S(u;) = S(u1)+II-(i—1). Therefore, the software pipelining problem is decomposed into two
subproblems: determining the row and the column numbers of instructions in the matrix. Some
constraints must be fulfilled: ’

m Resource constraints: two instructions with the same row number cannot use the same re-
source (or resource stage for pipelined resources).

® Dependence constraints: all data dependences must be honored.

s Cyclicity constraint: a new iteration (with the same schedule) can start every II cycles without
resource conflicts.

The basic idea of DESP is very simple. The loop is pipelined in two steps: one is to determine
the row numbers and the other to determine the column numbers. Two algorithms are proposed:
one to compute the row numbers before the column numbers (FRLC), and the other to compute
the column numbers before the row numbers (FFCLR). We will only describe here FRLC. The
FRLC (first row last column) algorithm is as follows:

1. Find the strongly connected components (SCC) of the DG [Meh84].

2. Remove some edges from these SCCs such that the modified SCCs become acyclic and, in the
absence of resource constraints, list scheduling may be used to get the row numbers for the
instructions of the SCCs with the minimum possible II.

3. Remove all edges which are not included in these SCCs.

4. Use list scheduling [DLSM81] to determine the row numbers by taking resource constraints
into account.

5. Determine column numbers by taking dependences into account

30 , , : i CHAPTER 2

Pipeline optimization based on iterative refinements [MD90]

An algorithm for the generation of pipelined designs developed for use in an interactive behavioral
synthesis system is presented in [MD90]. The algorithm (I R1S) is based on the iterative refinement
of initial solutions, and works only with acyclic graphs. The main difference among IRIS and
other approaches based on iterative refinements (such as loop folding, for example), is that the user
is able to interrupt the algorithm during the optimization phase, obtaining a partially optimized
solution. TRIS is divided into three main phases: C

1. Statement of design goals. The statement of design goals is made by the designer. This
takes the form of either a resource constraint or a target initiation interval to be achieved
by the final solution. When resource constraints are given, IRIS computes first the MII of
the target design by only taking resources into account. When an initiation interval is given,
IRIS determines the minimum resource requirement for each type of resource.

2. Derivaiion of a base solution. Unlike loop folding, IRIS does not have to carry out an
iterative scheduling process to determine II, since it has been determined in the first phase.
In order to find the base solution, IRIS schedules the operations in the loop in a topological
order, as soon as possible and modulo II. That is, operations are assigned from cycle 0 to
cycle II —1. When an operation must be assigned to cycle II, it is actually assigned to cycle 0.
Therefore, operations to be assigned to cycle C are assigned to cycle C'mod II. The folding
index of an operation to be assigned to cycle Cis |C/II]. .

3. Neraiive optimization. The iteration time can often be improved without increasing either
the number of resources or the initiation interval. Achieving this improvement is the goal of
the optimization phase. The optimization is based on swapping folded operations with others
of the same cldss, but with a lower folding index. In particular, IRIS strategy consists of
swapping an operation with the nearest suitable operation.

Loop winding [HHL91]

By using a functionally-pipelined data path, the processing of a sample datum can be started
before the completion of the previous one. The idea of loop winding is similar to that of functional
pipelining, except that it is applied to a loop rather than an overall algorithm. In fact, functional
pipelining is a special case of loop winding. The approach proposed in [HHL91] (LW) is based on
loop winding. LW optimizes both the initiation interval of a schedule and the iteration time. It
is divided into two phases:

m the construction phase, in which a schedule with minimum initiation interval is found.

®m the refinement phase, in which the iteration time is reduced.

In order to pipeline the execution of a DG, the DG is partitioned horizontally into pieces, which
are then wound to form a shorter loop DGg. DGs contains one instance for each operation of
the loop, and it is executed in the ezecution window. The ezecution window is a portion of the

Software Pipelining _ | 31

schedule of the overall loop whose length: is II cycles (II has been previously determined). The
DG formed by the hitherto unscheduled operations is called the remaining graph, and is denoted
by DGR. During each step of the algorithm, a set of operations is selected from DGg. The
scheduled graph DGy is constructed iteratively by adding the operations just selected from DGg.
The algorithm terminates when DGR becomes empty.

Two different approaches are proposed, depending on whether the loop has LCDs or is without
them.

)

1. When no LCDs exist in the DG, a minimum initiation interval MII 1s determined by taking
resources into account. The length of the ezecution window is MII. Then, the operations in
the DG are incrementally partitioned into blocks. During the scheduling of a block, opera-
tions in DG are scheduled into the execution window as soon as possible by using urgency
[PP88] as priority function to select operations (forward scheduling). After that, the already
scheduled operations are pulled down so that the operations in DG can be scheduled into
the earlier cycles during the next pass (forward scheduling).

2. When LCDs exist in the DG, the solution space is explored by successively estimating a new
~ initiation interval. A pipehined schedule is performed for each estimation until a feasible so-
lution 1s found. The estimation starts with the minimum intiation interval, and ends with
a mazimum ingtiation interval. MII is calculated by taking recurrences and resources into
account. The mazimum iniliation interval is the number of cycles required for a list schedul-
ing [DLSMS81] to schedule an iteration of the loop. The priority function used to select an
operation for scheduling first selects nodes belonging to strongly connected components. The
algorithm for finding a pipelined schedule of a loop with LCDs first schedules the loop without
taking LCDs into account. Following this, it makes a pre-assignment of those operations that
produce data for operations in DGg. Finally, DGy is reorganized until a feasible schedule
is found (iterative folding). The iterative folding ends when a feasible schedule is found or
MII + 1 iterations are done.

After a schedule is found, the iteration time is iteratively reduced. A cycle is reduced at each
iteration by performing backward scheduling with the operations with the greatest folding indez
“and by reducing the length of the critical path. This is done by folding the tail of a critical path.

Theda.Fold algorithm [LWGL92]

An approach of software pipelining also based on loop folding is presented in [LWGL92, LWLG94].
The algorithm is denoted as Theda.Fold (T'F). TF solves the following problem: “given a loop, a
target initiation interval and a set of resource constraints, schedule the loop in a pipelined fashion
such that the iteration time of executing an iteration of the loop is minimized”. The target
initiation interval is initially the MII, calculated by taking resources and recurrences into account.
The algorithm consists of two phases: '

1. As soon as possible pipelined scheduling. In the first phase, the resource constraints are
ignored, and only the data dependences and the target II are taken into account. The result
is a schedule that has the shortest possible iteration time. The operations in the DG are

32 ‘ CHAPTER 2

scheduled as soon as possible by using a loop folding schedule similar to the one explained
in [GVD89]. If no schedule exists in the expected II cycles, the algorithm halts (II must be
increased). Otherwise, the expected iteration time is set to the iteration time of the found
schedule. ' h '

2. Rescheduling. In the second phase, some operations scheduled at cycles such that resource con-
straints are violated are rescheduled to other cycles. The selection of operations for reschedul-
ing is based on a priority function called total difference (also called variability in [LWGL92]).
Total difference is calculated in three steps. In the first step, a look-ahead schedule is built
for each candidate operation. In the second step, all the found look-ahead schedules are
scored. Finally, the operations are selected according to the score of the produced look-ahead
schedules. If no schedule is found, the expected iteration time is increased by one unit and
scheduling is performed again.

The two-phase approach in T'F is similar to PBS [Nic85], but TF requires less execution time
and less memory storage to work (for example, T'F only needs a single copy of the DG during
loop folding, while PBS needs to unroll the loop until a pattern emerges).

Multidimensional loop folding [Rim93]

Multidimensional Loop Folding (M DLF) [Rim93] is an approach aimed at executing a loop with
the maximum performance under some given constraints. Three loop transformations are con-
sidered, namely loop unrolling [DH79], loop ezpansion [RJ94] and tree height reduction [HC89).
Software pipelining is performed by means of loop folding (GVD89]. If loop folding cannot achieve
the desired performance due to insufficient (fine-grain) parallelism, loop transformations are used
to enhance and extract additional (coarse-grain) parallelism. The loop is then scheduled using
conventional loop folding techniques. ,

Loop expansion is a loop-optimizing transformation aimed at software pipelining a nested loop.
When the previously described techniques must be applied to a (perfect) multiple-nested loop,
software pipelining is performed in the innermost loop, ignoring the remaining loops. The idea of
loop expansion is different, and it is similar to the one proposed by Unroll and Jam [CCK87, Car93].
It consists of unrolling an outer loop and fusing back together the resulting inner loops. The effect
is the same as unrolling the innermost loop with respect to the'index of an outer loop. Once the
loop has been unrolled, it is pipelined. M DLF works as follows:

1. Select a loop transformation (loop unrolling, loop expansion or tree height reduction). In order
to select which transformation to apply, M DLF performs an estimation of the expected mini-
mum nitiation interval of the loop by using the different transformations. MII is analytically
computed by taken -resource constraints-and recurrences in the loop into account.

2. Select the number of loop instances per iteration afier the transformation. This calculation is
also analytically performed. (it is not performed if the selected. transformation is tree height
reduction). :

3. Perform the selected loop iransformation.

Software Pipelining : : ' 33

4. Schedule the transformed loop. MDLF uses a scheduling approach called RECALS II.
RECALS II is a list scheduling algorithm [DLSM81] based on a priority function called
PALAP (pseudo — ALAP). The difference between ALAP and PALAP is that ALAP is
computed without taking resource constraints into account, whereas PALAP is computed by
considering a subset of resource constraints. PALAP assigns higher priorities to nodes with
successors vying for the same resources.

5. Perform loop folding with the found schedule.

The loop-optimizing techniques used by M DLF are not always useful, and in general, apply-
ing such techniques increases the cost (code length, registers requirement) while improving the
performance of the schedule.

2.2.5 Linear programming approaches

Several Linear Programming (LP) approaches have been proposed for software pipelining in the
recent years. Instead of giving heuristic algorithms, as the previously explained methods, LP
approaches begin with a mathematic description of the -scheduling objectives and constraints,
which can easily be translated into linear programming formulations [Sch86]. The final objective
is to minimize a user-defined cost function. We will describe here some of these techniques. They
belong to the categories 1 and 3.

ALPS [HLH91] is an integer lineal programming (ILP) approach which tries to reduce the CPU-
time by reducing the solution space of the scheduling problem. ALPS arranges the data depen-
dence relationships in the formulation, such that the cost function is transformed into a hinear
function. The search space for each operation (time frame for scheduling) is restricted by a pre-
vious calculation of the first and the last cycle at which each operation may be issued. The
search space for resources is reduced by introducing a lower and an upper bound in the num-
ber of resources of each type. ALPS solves time-consirained scheduling and resource-constrained
scheduling. The software pipelining formulation is built based on the concepts from loop folding
[GVD89]. ALPS reduces the number of registers required after a schedule is found.

[VGN92] and [GNV93] present another ILP approach (R-PER) to the software pipelining problem.
It is based on the idea that the schedule of all loop iterations do not have to be regular. That
is, not all the iterations have to be executed in the same manner. The requirement that only
regular schedules are considered may exclude some optimal solutions [JA90]. A software pipelining
improvement may beé achieved if previous loop unrolling is considered [JA90, JC92a). This ILP
approach presents a single mathematical formulation which considers both software pipelining
and loop unrolling, but does not take resource-constraints into account. The schedule of two
consecutive iterations may not be the same, but it will repeat every r iterations. For this reason,
the schedule is said to be r-periodic. '

Another ILP approach (OASIC) is presented in [GE90, GE91, GE92]. Three problems are solved:
(1) simultaneous scheduling and functional unit allocation (ii) simultaneous scheduling and register
allocation and (iii) simultaneous scheduling and functional unit and register allocation. The ap-
proach considers multi cycle pipelined FUs, as well as maximum and minimum timing constraints
between pairs (or groups) of operations. The ILP model presented could not be solved by using

34 CHAPTER 2

general branch and bound techniques due to their size. Therefore, polyhedral theory [NW89] is
used to synthesize a solution.

[GAGY4] presents SPILP, an ILP approach oriented towards minimizing register requirements
under resource constraints. SPILP starts computing the MII of the loop by taking resources
and recurrences into account. Following this, an ILP formulation tries to find a schedule in
the minimum initiation interval by using the minimum number of buffers (a concept similar to
registers). If no schedule is found, the expected initiation interval is increased and the process
is repeated again. The ILP formulation considers multi-operation pipelined functional units and
functional pipelining. The formulation is quite general in that it can be used for architectures with
homogeneous or heterogeneous FUs. The approach seems to be very powerful, since it achieves
optimal results in a few seconds.

[EDA95] presents an approach that schedules the loop operations for the highest steady state
throughput and minimum register requirements. The approach determines optimal register re-
quirements for machines with finite resources and for gerieral dependence graphs. Loop iterations
with multiple basic blocks are IF-converted. The scheduling method satisfies arbitrary resource
and dependence constraints and minimizes the maximum number of live values at any cycle. Al-
though the algorithm finds very promise results, it is too expensive to be integrated in a compiler.

ILP approaches find optimal solutions for the defined cost function. However, when the cost
function is a heuristic, the results may not be optimal. For example, ALPS reduces register re-
quirements by reducing variable lifetimés. Although in most casés a rediiction it variable lifetimes
leads to a reduction in the number of required registers, this is not always true. Therefore, an
“inappropriate” cost function may guide the ILP approach to a sub-optimal solution. The main
disadvantage of such approaches is that, usually, they consume much CPU-time.

2.2.6 Comparisons among the approaches

This Section compares the software pipelining approaches explained at the previous Section by
using different features. We will use the following characteristics to compare the methodologies:

1. How the final schedlﬂe is built:"

(a) By unrolling the loop and searching for an emergent pattern.
(b) By scheduling and transforming the loop instruction to instruction.

(¢) By previous precompaction of the loop body by using a scheduling algorithm. The
pipelined schedule is found by using the previously compacted loop (usually by means
of transformations in the loop schedule).. . : R - :

(d) By using ILP formulation to find the schedule.

2. Consider (or not) previous unrolling of the loop to increase the throughput (when MII is not
an integer). This consideration produces a schedule containing several iterations of the loop.
In such a schedule, all the iterations are not necessarily executed in the same manner.

3. How resource constraints are considered:

(a) Consider resource constraints from the beginning.

Software Pipelining 35

(b) Find a schedule by considering unlimited resources, and next consider resource con-
straints.

4. Consider {or not) multi-cycle pipelined functional units.

5. Consider (or not) conditional jumps.

6. Consider (or not) functional pipelining between the scheduling of consecutive iterations.
7. Consider optimizations on:

(a) Iteration time.

(b) Register requirements.

By using the previously enumerated features, table 2.1 presents a comparison among the software
pipelining approaches. The last row, labelled as UNRET, corresponds to the methodology pro-
posed in this work. Note that there is no mark at point 1. This is because we use an approach
different, from the previous ones. Qur approach transforms the overall loop before being scheduled.
This allows us to use any scheduling algorithm proposed in the literature. We optimize both the
iteration time and the number of required registers (although they are strongly related, optimizing
iteration time does not always guarantee optimizing the number of registers).

The approaches are ordered according to the classification done in Section 2.2.1:

1. Techniques which do not calculate MII.
2. Techniques which make an estimation of the MII.
3. Techniques which calculate the MII:

(a) By taking resources into account.

(b) By taking recurrences into account. .

(c¢) By taking both resources and recurrences into.account.

2.3 TECHNIQUES PROPOSED IN THIS WORK

This work proposes methodologies to solve two different problems: resource-constrained soffware
pipelining and time-constrained software pipelining. Both methodologies are based on the same
principles, and the loop pipelining algorithm used is the same.

First, we will briefly show how the approach proposed to solve resource-constrained software
pipelining works. Henceforth, it will be denoted as UNRET. We will also show how other method-
ologies solve the same example. Time-constrained software pipelining will be addressed at the end
of this section.

Our first objective is, for a given a set of resource constraints, to determine analytically the
minimum number of times a loop must be unrolled in order to obtain the minimum execution
time. Such a number is called the optimal unrolling degree.

36 | N | e CHAPTER 2

Category/ 1 2 3 4 || 51| 6 7
Approach albJc]d
PP .
SR .|| . I
1 RS .
ALPS .
OASIC Iy
URPR . . .
2 Sehwa
LF
UBSP . o |l o B
3(a) TRIS . . : .
OLP . . ’
3(b) PBS . Y

olo|o|ele]|lp
ojojo]|e

°

°

3(c) TF

=

oleoio|o o fojoio]e

Table 2.1 Comparison among djﬁérgnp software pipelining approaches

Computing the theoretical optimal unrolling degree is always possible. However, finding a schedule
of the unrolled loop with the expected initiation interval is not always possible. Figure 2.2 shows
an example. Dependence (E, A) traverses three iterations, and thus E; must be executed to
completion before A; ;3 starts. The remaining dependences exist within each iteration.

Ap Ay By G| |Bo By Gy Dy

° Ay A Ay :

asl l e
B, C; D, D,| |B, C, D, E

3 e @ 1 ™~ (1] 1 2 1 1 (4]

/ By C; Dy Eo| (A3 C Dy By |z By, C, Do

Ay E; E, B; C3 D3 E;| |g,

(@) ®) © @

Figure 2.2 Example of DG and schedulés for 4 adders
(a) Example of DG with 5 additions

(b) Schedule found by UNRET)

(c) Schedule found by using the optimal unrolling degree
(d) Schedule found without previous unrolling

Software Pipelining choaef o b 37

Scheduling without previous unrolling

Let us assume that the loop depicted in Figure 2.2(a) is executed in an architecture with 4 adders
which add in a single cycle. A schedule in two cycles (II=2) can easily be found by software
pipelining the loop, as shown in Figure 2.2(d). The throughput (average number of iterations
executed per cycle) of such a schedule is Th = % All the methodologies described in Section 2.2
which do not consider loop unrolling may find such a schedule (or a similar one with the same
throughput).

Scheduling by considering previous unrolling

Unrolling the loop may increase the throughput of the schedule. The minimum initiation interval
of the loop in Figure 2.2(a) is MII = %, indicating that 4 iterations can be initiated every 5 cycles,
with a maximum throughput Th = % iterations/cycle3. The optimal unrolling degree is therefore
4, and a time-optimal schedule of the unrolled loop must delay II = 5 cycles. Unfortunately, none
of the current software pipelining approaches has found such a schedule (we challenge the reader
to find it).

n What do other techniques propose?

As shown in Section 2.2, when a schedule with the expected II is not found, current approaches
[SDX86, RG81, Huf93, Rau94, BC90, PP88] increase the expected II and try to find a longer
schedule by using the same unrolling degree.

Therefore, the loop (unrolled four times) is software pipelined again, looking for a schedule
in 6 cycles. Figure 2.2(c) shows the found schedule, with a throughput Th = % All the
previous techniques that consider loop unrolling find such a schedule as the best one (or a
similar one with the same throughput). This schedule is far from the theoretical optimal-time
schedule, but it is 1.33 times faster than the schedule found without previous unrolling (see

Figure 2.2(d)).
m What does this work propose?

1. Exploration of the iteration space

The strategy followed by UNRET when a time-optimal schedule of the unrolled loop is
not found is quite different. In order to find a schedule which maximizes the execution
throughput, UNRET attempts to explore other unrolling degrees instead of increasing
the expected IT while maintaining the optimal unrolling degree. Thus, UNRET explores
pairs (I, K) in decreasing order of expected throughput. K represents the unrolling
degree of the loop, and IIx represents the expected II of a schedule of the loop unrolled
K times. Chapter 6 explains how this exploration is done.

The initial pair to explore, representing an optimal-time schedule, is (IIx, K)=(5,4).
As no schedule for 4 iterations in 5 cycles is found, UNRET computes the next pair,
obtaining (IIx, K)=(4,3). Following this, the loop is unrolled 3 times with a target
IIx = 4. The unrolled DG is software pipelined and a schedule in 4 cycles is found,

as shown in Figure 2.2(b). The throughput of such a schedule is Th = %. Although

3The way to compute such a bound will be described in Chapter 3.

38

CHAPTER 2

this schedule is not time-optimal (for the lower bound computed), it is better than that
obtained by any of the approaches described in Section 2.2. A significant speedup is
obtained due to the more exhaustive exploration of the unrolling degree of the loop:
1.125 with respect to techniques which previously unroll the loop, and 1.5 with respect
to techniques which do not unroll the loop.

. Software pipelining

The pipelined schedule is found by using an approach different from that previously
proposed in the literature. The loop body is first overally transformed (by means of
retiming). Since the expected initiation interval is known in advance, the transformed
loop body may be scheduled in a modulo reservation table [Lam88] by using any known
scheduling algorithm. Therefore, different algorithms can be used for scheduling the same
(transformed) loop. The treatment of complex operations which use several functional
units (FUs) is hidden into the scheduling algorithm, as well the use of pipelined multi-
operation FUs and functional pipelining. Other features, such as operation chaining or
bus constraints, can be easily included. We use a modified list scheduling as scheduling
algorithm. Chapters 4 and 5 explain the basis of our algorithm and how it works.

. Register optimization

As in some techniques described in Section 2.2 [PP88, HLH91, GAGY94], UNRET also
reduces the number of registers required aftér a schedule is found. This is done in two
steps: (i) by reducing the iteration time (SPAN) and (i) by rescheduhng some operations.
Chapter 7 explains this stép in detail.

. Time-constrained loop plpelmmg

Finally, time-constrained loop pipelining is considered in Chapter 8. By using some of the
features of UNRET , we have developed a new algorithm to find the cheapest pipelined
loop schedule when the input constraint is a maximum number of cycles (Tmaz). First
of all, a pipelined schedule which uses the minimum number of resources is found for a
given Tp,qs. Then, the throughput of the schedule is increased by using the found set of
resources. Finally, the number of required registers is reduced.

2.4 SUMMARY

This chapter describes the basic software pipelining idea. Previous work in software pipelining is
also presented. Techniques are divided into three categories: approaches which do not calculate
the MII, approaches which perform an estimation of the MII and approaches which analytically
compute the MII, Software pipelining techniques are proposed for compilers for parallel architec-
tures (superscalar and VLIW processors), as well as for the high-level synthesis of VLSI circuits.
Therefore, the previous work here descnbed includes techmques proposed by commumtles working
in both subJects

The effectivity of the methodology proposed in this work is shown by using a simple example
of resource constrained software pipelining. The example illustrates how our methodology may
improve the results obtained by current software pipelining approaches.

