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3
BASIC DEFINITIONS AND LOOP

TRANSFORMATIONS

3.1 INTRODUCTION

This chapter presents some basic concepts used in this work, as well as the loop transformations
used by the methodologies proposed in the following chapters.

First of all, we show the way to represent loops and the architecture in which the loop must
be executed. A loop is represented by means of a data dependence graph (DDG). A DDG is a
directed graph in which nodes represent instructions from the loop body, and edges represent data
dependences between instruction pairs. Initially, only one iteration of the loop is represented in
the DDG. Section 3.2 shows how a loop is represented.

An architecture is a set of functional units (FUs). Different types of architectures can be defined
depending on the execution model of instructions. In this work, we consider three types of ar-
chitectures: sequential circuits obtained by high-level synthesis tools, superscalar processors and
very long instruction word processors.

Let us consider a set of FUs and a set of instructions which use such a set of FUs. On one hand, the
set of FUs is represented as an array . Each element from the array states the number of available
FUs of a given type. On the other hand, the way to execute the instructions is represented by
a matrix, called the execution pattern of each instruction. The number of columns of the matrix
is the number of different FUs used by the instruction. The number of rows is the number of
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cycles required to execute the instruction. The element (i, j ) of the matrix states the number of •
functional units of type j required to execute the instruction at cycle i. Section 3.3 presents in
detail the description of the architecture. _

The topology of the DDG of a loop and the architecture in which the loop is executed impose two ™
lower bounds on loop execution.

• The number of FUs in the architecture clearly impose a lower bound. For example, if only
one multiplier is available, no more than one multiplication can be executed per cycle.

• Furthermore, dependences in the DDG may also impose a lower bound. Let us assume that a jj
given instruction u requires as data input a result calculated by itself in the previous iteration.
With this assumption, no more than one instance of u can be executed at the same time. •
Therefore, each iteration of the loop will take at least one cycle. I

Section 3.4 shows how to analytically compute such lower bounds. •

The objective of this work is to propose methodologies to efficiently pipeline a loop under resources
and/or timing constraints. Initially, a DDG represents a single iteration of the loop; that is, all ^
the instructions belong to the same iteration. A pipelined schedule of a loop contains instructions •
belonging to different iterations. In Section 3.5 we propose dependence retiming, a loop transfer-
mation to obtain a DDG which contains instructions from different iterations. Therefore, if the
transformed DDG is scheduled it follows that the loop is pipelined. Dependence retiming has been •
previously used by other authors to reduce the number of buffers (registers) required to execute a |
loop [LRS83, Lei33, LS83, LS91].

Sometimes is possible to execute more than one iteration of the loop at the same time. For •
example, a loop without dependences can be executed completely in parallel. All the instructions
from all the iterations can be simultaneously executed. We present in Section 3.6 the loop unrolling
transformation. Loop unrolling produces a DDG containing more than one iteration of the loop. •
Loop unrolling combined with dependence retiming may achieve a DDG such that an optimal H
pipelined execution of the loop may be found by a simple scheduling algorithm. Dependence
retiming and loop unrolling are the core of the methodologies proposed in the following chapters. •

3.2 REPRESENTATION OF A LOOP |

Our scope will be limited to single nested loops whose body is a basic block, i.e. containing neither
conditional sentences nor other loop statements. . . •

We will assume that the number of iterations of the loop, K, is known before the execution of
the loop (either statically at compile time or or dynamically at run time). Henceforth, the ¿th •
execution of the loop body will be denoted by iteration i. Without loss of generality, we will |
assume i ranges between 0 and K — 1. If u is an instruction of the loop, u j will denote the
execution of instruction u at iteration j.
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Basic Definitions and Loop Transformations •—*. 41

The instructions of a loop may be executed in a different order without changing the semantics of
the loop, depending on the data dependences existing among the instructions. Data dependences
in a loop fall into two categories [PW86] [BC90]:

• Local data dependences between instructions from the same iteration (w¿ and v,;). These kinds
of da.ta dependences are also called intra-loop dependences (ILDs).

• Global data dependences between instructions from different iterations (w; and Vj, with i < j).
These kinds of data dependences are also called loop-carried dependences (LCDs).

A loop will be represented by a labelled directed graph called pipelining graph (or 7r-graph). A
TT-graph is a 4-tuple ir = G(V, E, X, <5), where:

• V is the set of vertices. Each vertex u € V represents an instruction of the loop body. The
number of instructions of the loop body will be denoted by |V|.

• E is the set of edges. Each edge e = (u, v) G E represents a data dependence between
instructions IL and v.

• A and 8 are two mappings, A : V >—*• IN and 6 : E <-* IN, representing the iteration index (A)
and the number of iterations traversed by the dependence (6), also called dependence distance
or dependence weight.

A node ux(u) represents the execution of instruction U,;+A(«) at the ¿th iteration of the loop.
Therefore, A states an iteration skew with respect to other instructions. For example, if MO and v\
are instructions from the same 7r-graph, u¿ and i>,-+i will be executed during the ith iteration of
the loop. Note that this representation implicitly pipelines the loop.

On the other hand, for a given dependence e, 8(e) is the number of iterations traversed by the
dependence. If e is an ILD then ¿(e) = 0. If e represents an LCD between «,- and Vj then
¿(e) - j - i.

A dependence (u,v) will be depicted as WA(U) —~* v\(v)- We will use u —U v to denote a

dependence in which A(w) = A(u) . Thus, An ILD (u,v) will be depicted as u —>• v or simply
u —>• v.

Definition 3.1 : Initial 7r-graph

A 7r-graph ?r = G(V, E, A, 5) is an initial Tr-graph if, Vw G V, A(M) = 0.

Let us show an example of an initial 7r-graph. Figure 3.1 shows a loop and its representation in an
initial TT-graph. Dependence (A, B) is an LCD with distance one, stating that the result computed
by instruction A at iteration i is consumed by instruction B at iteration i+l. On the other hand,
dependence (A, C) is an ILD, stating that the result computed by instruction A from an iteration
is consumed by instruction C in the same iteration. Note that the index of all instructions is the
same, indicating that all of them belong to the same iteration of the loop.
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fori:=l to 1000 do f^\

B: Y[i] :=X[i-l]+l ; / \
C: Z[i] :=X[i]-l ; /^~\ /~~~\

endfor V¿y \CoJ

(a) (b)

Figure 3.1 Representation of a loop by means of a ir-graph

CHAPTER 3

Dependences studied in this work are uniform across iterations. This means that, if a dependence

u¡ — >• Vj exists for a given loop, then the dependence Ui+x —>• Vj+x also exists (assuming that the
instruction indices are in the range [0, K — 1]). Non-uniform dependences [Ban89] are beyond the
scope of this work.

Lemma 3.1 u — >• v and u¡ — » «¿+d represent the same uniform dependence.

Proof: An edge u — > v represents a data dependence between instructions MJ+/\(U) and VJ+AM+^U,»;)-

Since A(u) = A(w) (otherwise the dependence could not be represented as u — * v), we have that
the dependence exists between instructions WJ+A(U) and Vj+A(u)+i(u,tO- ^•ie

taking i = j + A(M).

Definition 3.2 : Equivalent 7r-graphs

Two Tr-graphs, TT = G(V,E,X,6) and TT' = G(V, E, A', 5'), are equivalent
following equation holds:

X(v) - X(u) + 6(u, v) = A» - A'(u) + o'(u, v)

Theorem 3.1 Two equivalent ir -graphs represent the same loop.

Proof: It is sufficient to prove that «A(U) — -* v\(v) and «A'(ti) — •* WA'(D)
dependence if X(v) - X(u) + 6(u, v) = X'(v) - X'(u) + 6'(u, v).

Let us assume that A'(M) = A(w) + i. With this assumption, we have:

A(v) — X(u) + 6(u, v) = X'(v) — X(u) — i + 6'(u,v)

X(v)+6(u,v) = X'(v) — i + o'(u,v)

X(v)+6(u,v).+ i = X'(v) + 6'(u,v)

i

lemma is proved by
D

if, V(u ,v) G E the

(3.1)

represent the same

(3.2)
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Basic Definitions and Loop Transformations 43

Since WA(U) —'-* vx(v) represents a uniform dependence, WA( U )+Í —'-* v\(v)+i also exists V¿ €
IN. Such a dependence represents a uniform dependence between UA(U)+» and VA(«)+Í (U,U)+¿- By
substituting A(u) + i with A'(«) and A(v) + 6(u, v) + i with X'(v) + 6'(u, v), we see that the same

dependence is represented by MV(U) —* V\'(v)+S'(u,v) and WA'(JI) —•* v\'(v)-

Since dependences in both 7r-graphs represent the same data dependences between nodes, and given
that the topology of the loop has not been changed, we conclude that both 7r-graphs represent the
same loop. D

Definition 3.2 states that a dependence can be represented by different labellings, A and 6, as far
as Equation (3.1) is fulfilled. This is the key feature used in our proposal, which transforms a TT-
graph by changing the labellings A and 6, and seeks a new labellings which impose less constraints
to the scheduling process. Figure 3.2 shows an example of three equivalent 7r-graphs.

(a) (c)

Figure 3.2 Equivalent TT-graphs

3.3 REPRESENTATION OF THE ARCHITECTURE

3.3.1 Representation of resources

An architecture is defined by a set of resources and a set of instructions. .The functional units
(FUs) required to execute single arithmetic and logic operations (additions, multiplications,...) are
called resources. The memory address units (required to execute load and store instructions) and
the read/write register ports (when the registers visible from the machine language are organized
in banks) are also called resources, as well as, in general, any other unit required to execute an
instruction. FUs may be pipelined.

The set of resources of the architecture, 71, is represented as an array. The number of elements
in the array is the number of different types of resources of the architecture. The element 7£[i]
indicates the number of resources of type i available in the architecture. Each resource of type i
may perform several single operations. For example, an ALU may add, subtract or compare two
numbers.



An FU able to perform float point additions in one cycle, labelled as FUadd-
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3.3.2 Representation of instructions |

Nodes in the 7r-graph represent instructions from the loop body. Defining how a given instruction _
uses the resources of the architecture is the responsibility of the designer. An instruction may •
perform several single operations, may need several resources to be executed and may take several •
cycles in executing to completion.

I
Definition 3.3 Lu: Result latency of instruction w

The result latency of instruction u, Lu, is the number of cycles required by u to produce a result. •

Definition 3.4 ILU: Issue latency of instruction u B

The issue latency of instruction u, ILU, is defined as the minimum number of cycles required
between the issuing of two instructions of type u to the same FUs. _

The terms result latency and issue latency have been taken from [Joh90]. For simplicity in the
notation, we will henceforth use the terms latency and result latency in the same sense. Since a fl
node represents an instruction, we will also use the terms latency of an instruction and latency of ||
a node in the same way. . • . . - , , ,

In order to completely define an instruction, an execution pattern must be described by the designer •
for each instruction. The execution pattern defines how and when the resources of the architecture
are used in the execution of the instruction. The execution of any instruction will be statically led
by its execution pattern, and therefore an instruction will always be executed in the same way. •
The execution pattern of u is represented as a matrix of Lu rows and Ru columns, Ru being the •
number of different types of resources used by u. The element (i, j ) of the matrix states the number
of resources of type i required at cycle j (cycles are referred to the starting of the execution of •
the instruction) to execute u. The architecture must have at least this number of resources of I
type i to execute u, otherwise, it would be impossible to execute the loop. Let us illustrate the
above-mentioned definitions with an example. »

3.3.3 Example of representation of instructions —

The objective is to represent instruction axpy Rl,R2, R3 (Rl = Rl * Rl + /£3), together with the •
required architecture. Let us assume that the architecture has:

• A microprogrammed control and a bank of registers with two read/write ports. The result
latency for each one of the register ports, labelled as Regport, is one. _

• A fully pipelined float point multiplier with latency two, labelled as FUmui, which issues one |
operation per cycle.

I
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I
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• Figure 3.3 Description of an architecture
™ (a) Execution pattern of axpy and architecture to execute it

(b) Execution pattern of axpy when the multiplier is not pipelined

I Figure 3.3(a) shows the execution pattern of instruction axpy and the minimum architecture
required to execute it. For the sake of clarity, a "0" in the matrix has been represented as an

• empty cell. Instruction axpy executes as follows:

1
1. The values of Rl and Rl are read

are required).
from the bank of registers at first cycle (two register ports

2. The multiplication starts at second cycle. The value of RZ is also loaded from the bank of
• registers at second cycle (only oneregister port is required).

3. The sum starts at fourth cycle, since the multiplier requires two cycles to compute the result
of Rl * Rl.

• 4. Rl is written at the fifth cycle (one register port is only required).

1 Instruction axpy has a result latency Laxpy = 5 and uses 3 different types of resources: register
ports, F P -multiplier s and FP- adders .
without increasing the latency of axpy

The load of R3 could be delayed until the third cycle
, given that the value of R3 is not used by the FP-adder

1 until the fourth cycle. Choosing the cycle in which n3 will be loaded is a designer's decision. Also
note that, in spite of the FP-multiplier not being used at the third cycle, the FP-adder must wait
until the fourth cycle before starting the sum. If the FP-multiplier were not pipelined, cycle 3

M would have an "1", as Figure 3.3(b) shows.

1
* When any instruction does not use some of the resources in a given cycle, they may be used by

other instructions. In general, the execution of instructions can be overlapped. This overlap-

I ping improves the resource utilization
throughput. This is one of the goals of

I

1

1

1

done by the loop execution, and therefore the execution
this work.



46 CHAPTER 3

«s J O c¿
S D Q Q
a s < 9S üu u. <

| 2 | 1 | 1 | 2~|

Architecture

Load Instructions

.Figure 3.4 Subset of the architecture of the Cydra 5 Computer

3.3.4 Example of architecture

The representation described in Sections 3.3.1 and 3.3.2 enable us to model architectures oriented
to the high-level synthesis of circuits (henceforth, high-level synthesis systems), superscalar pro-
cessors and VLIW processors. We will use the inner product example from Figures 1.4 and 1.5
to illustrate how the instructions and resources are represented. We will use the description of a
subset of the Cydra 5 Directed Dataflow™ architecture [Rau88, RYYT89, SM88] to show an
architecture able to execute the loop. For the sake of future comparisons, we will make the same
assumptions as in [DHB89]:

A memory load has a six-cycle latency. There are two memory reference units (MEM).

A floating point addition has a one-cycle latency. There is one FU (FADD) to execute it.

A floating point multiplication has a two-cycle latency. There is one FU (FMUL) to execute
i t . ••'•• - . . : - - : . - . . - . • . - - - . - . ,'...' : , - . . . . . • : - ,

An address addition has a one-cycle latency. There are two address adders (ADDR).

The memory reference FUs and the floating point multiplier are fully pipelined. Therefore,
each one of the six FUs may issue an operation per cycle.

Figure 3.4 presents the description of the subset of the architecture of Cydra 5 able to execute the
inner product of Figure 1.5 by using the previous assumptions. Figure 3.5(a) shows the 7r-graph
representing the compiled inner product from Figure 1.5. Figure 3.5(b) shows a possible schedule
of an iteration of the loop by using the architecture of Cydra 5 described in Figure 3.4. The cycles
at which an instruction uses a resource are marked as "X". Bold rectangles denote the cycles used
by each instruction in its execution.
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(b)

Figure 3.5 Execution of compiled inner product
(a) 7>graph representing the inner product
(b) A possible schedule in the Cydra 5 architecture
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3.4 BOUNDS ON LOOP EXECUTION |

Definition 3.5 II: Initiation interval of a loop schedule

The initiation interval of a loop schedule, II, is the average number of cycles elapsed between the *
initiation of two consecutive iterations of the loop.

The number of resources of the architecture limits the minimum initiation interval (MTÍ) achievable
by any schedule of a loop. This lower bound is denoted as resource-constrained Mil (nesMII(Tr)).
In the same way, the cycles produced by the dependences in the loop also limit the MIL This I
bound is denoted as recurrence-constrained MU (ñesMÍÍ(Tr)) [RST92]. I

3.4.1 Resource-constrained Mil

Definition 3.6 ResMII^ : Lower bound on the II due to resource RÍ

ResMIIi = " (3-3)

I

I
The minimum number of cycles required to execute an iteration of the loop by taking into account
the resource i, ResMIIi, can be computed by dividing the number of cycles used by the resource i —
¿7), the execution of an iteration by the number of available resources of such a type, Tl[{\. Let EPU •
be the matrix representing the execution pattern of u. ResMIIi is: *

I

The resource i which determines the maximum ResMIIi is the one that determines ResMII(-ir). •

Definition 3.7 ResMII(^): Resource-constrained Mil _

The minimum initiation interval (MIT) of the loop TT executed with the set of resources 7£,
ResMII(ir), is defined as:

ResMII(ir) = max ResMIIi (3.4)

I
Theorem 3.2 IÍ > ResMII(ir) for any schedule O/TT.

Proof:

The proof of the lemma is trivial by using the two previous definitions. If a schedule exists with an •
II so that IÍ < ResMII(ir), then a resource i exists for which II < ResMIIi. But this contradicts •
the definition of ResMIIi. O

I

I

I
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The previous definitions assume that an instruction is always executed in the same type of FU,
a-nd therefore it always executes in the same number of cycles. We will use this approach in this
work.

However, a particular operation may be executed on multiple FUs, in which case it is said to have
multiple alternatives, with a different execution pattern corresponding to each one. Furthermore,
these FUs might not be equivalent. For instance, a floating-point multiply might be executed on
two FUs, of which only one is capable of executing divide operations. The exact ResMII can be
computed by performing a bin-packing of the execution patterns for all the instructions. Bin-
packing is a problem which is of exponential complexity. Complex execution patterns (containing
several resources) and multiple alternatives make it even more complex, and it is impractical,
in general, to compute the ResMII exactly. Instead, an approximate value must be computed.
Accordingly, the ResMII may be computed by first sorting the instructions in the loop body in
increasing order of the number of alternatives. As each instruction is taken in order from the list,
the number of times it uses each resource is added to the usage count for that resource. For each
instruction, the alternative which yields the lowest partial ResMII is selected, i.e. the usage count
of the most heavily used resource at that point. When all instructions have been considered, the
usage count for the most heavily used resource constitutes the ResMII(ir) [Rau94].

3.4.2 Recurrence-constrained Mil

Definition 3.8 : Recurrence

A set of dependences R = {(MI, M2), (M2, MS), . . . , (un, MI)} is called a cycle or a recurrence.

Figure 3.6 Recurrence in a loop

Definition 3.9 SR: Weight of a recurrence R

The weight of a recurrence R, OR, is defined as:

6R- V" 6(u, v)

Definition 3.10 CR: Latency of a recurrence R

The latency of a recurrence R, CR, is defined as:
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Theorem 3.3 The minimum, number of cycles elapsed between the initiation of two consecutive |
iterations imposed by a recurrence R, RecMÜR, is [RG81]:

RecMIlR = ̂  (3.5) I
OR •

IProof:

Let us consider a recurrence R, as shown in Figure 3.6. For any instruction u so that 3(w, v) £ R, •
Ui must be scheduled at least JÛR cycles before W¿+ÍR . Therefore, the minimum number of cycles I
elapsed between the execution of M, and w¿+i is, on average1, 4a. O

Definition 3.11 RecMII(ir): Recurrence- constrained Mil

maxftecMíífl if the loop has recurrences (3-6)
RCE J L

reachable from s. Let dk(s, w) be the weight of the shortest path from s to v consisting exactly
of k edges. Let lk(s, v) be the sum of the latencies of the instructions represented by nodes
included in this path3. The weight of the minimum mean- weight cycle of TT¿ can be computed

riTt \ • dn(s,v) - dk(s,v)
W(ïïi) = mm max — - - '- '

as:

1Note that 5/j > 0, otherwise a dependence «, —» «, would exist, and finding a schedule would be impossible.
2 Karp 's algorithm has been modified here. Since the original algorithm assumes each node has a latency equal

to one, the mean weight of a recurrence R is defined as r^r. Here, the mean weight of a recurrence R is defined as

3 The latency of the node v is not added in this sum.

I

In a loop without recurrences, RecMII(ir) — 0. If a loop has more than one recurrence, the one B
with the highest RecMÜR will determine RecMII(ir). Therefore, the minimum initiation interval |
due to the recurrences is:

0 if the loop has no recurrences I

I
Complexity of computing RecMII(ir)

In the worst case, the number of recurrences of a 7r-graph grows exponentially with \E\. However,
finding RecMII(ir) can be done in polynomial time by using Karp's algorithm [Kar78] to find the m
minimum mean-weight cycle in a graph2. The algorithm is as follows: I

1. Decompose TT into a set of strongly connected components {TT¿}. This can be done in linear •
time O(V + E)[Meh84]. |

2. For each TT,- = G(Vi,Ei,Xi,f>i), calculate W(TTÎ) as follows. Let n = \V¿\, and let us take
a vertex s G V¿. Since TT¿ is a strongly connected component of TT, all the other vertices are I

|

I
. , ,o<k<n-i l n ( s , v ) -lk(s,v)

This can be done in O(VE) time[Kar78]. I

I

I

I

I
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3. ñecMZI(ír) is:

ñecMIÍ(Tr) = max ——-
" « r v ^.,;

The problem of finding the minimum mean-weight cycle is a variation of the shortest path problem.
— Therefore, the problem of finding the minimum mean-weight cycle can be solved in polynomial
• time by using (with slight modifications) any algorithm which solves the shortest paths prob-
™ lem (algorithms of Dijkstra's [Dij59], Bellman-Ford's [Law76] or Gabow-Tarjan's [GT89], among

others).

I
3.4.3 Minimum initiation interval and throughput

| Definition 3.12 MII(w) : Minimum initiation interval of TT

I
An absolute lower bound on the initiation interval achievable in the execution of a loop, the Mini-
mum Initiation Interval (Mil), is the maximum between ResMII(ir) and RecMII(Tr).

MH(TT) = max(ftecMIi(7r), ResMH(ir)) (3.7)

I
Theorem 3.4 If IT and TT' are equivalent w-graphs, then MÍÍ(TT) = MÍÍ(TT').

Proof:

It is sufficient to prove that, for any recurrence R, OR — o'R.

By using Equation (3.1), we have:

6(u, v) = 6'(u, v) + A(u) - X(v) + X'(v) - A'(«)

hence

I

I
nence

sR = 6'R+ 53 A(«)- 53 \(v) + 53 A»- 53 A»

I
Since R is a recurrence

£ AH- S A(»)= £ A>>- £/(u) = 0

• and therefore SR = 6'R. O

I
Therefore, we conclude that the minimum initiation interval (Mil) is a property of the loop, and
not of its representation. For this reason, the terms Mil of a loop and Mil of a 7r-graph will be
used indiscriminately.

• When each iteration of ?r is executed in MÍÍ(TT) cycles (on average), the average number of instruc-
tions executed per cycle is maximum. With this assumption, the loop is executed with maximum
throughput.
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Definition 3.13 MaxTh(w) : Maximum execution throughput of TT I

An upper bound for the execution throughput O/TT, MaxTh(ir), is the average number of iterations _
executed per cycle ivhen the loop executes with the minimum initiation interval. •

1

3.5 DEPENDENCE RETIMING

In high-level synthesis, a transformation called retiming [LS91] is used to move buffers across •
nodes in a graph. It is oriented to reduce the number of buffers required to execute a loop, and it *
has been widely used in real-time signal processing applications (digital signal processing, filters,
etc.). Retiming has also been widely used in systolic arrays [LRS83, Lei83, LS83]. Researchers •

|in compilers for parallel architectures also use similar transformations, generically called software
pipelining [Lam88].

Figure 3.7(a) shows an initial K-graph representing a loop and a possible way of executing the
loop. For the sake of simplicity, we will assume here that all instructions can be executed in a
single cycle. With this assumption, LCD (A, A) is always honored by the sequential execution of
the iterations of the loop. Therefore, the scheduling of each iteration must only take into account
ILDs (A, B) and (A,C).

I
3.5.1 , Dependence retiming transformation

In order to transform agiven ?r-graph TT = G(V, E, A, 6) into another equivalent one TT' = G(V, E, A', 6'), •
we define the transformation dependence retiming, which has similar effects to the above cited
retiming. Dependence retiming transforms a dependence (u,v) with 6(u,v) = i into another
dependence with 6'(u, v) = i + 1. This is done by performing the following steps: •

• A'(«) = A(u) + 1 •

• V(u,w)£E, 6'(u,w)-6(u,w)+l •

• V(u>, w) € E, S'(w, u) - 6(w, u) - I m

Dependence retiming must be applied to edges so that no dependence with negative distance is
produced in the transformed 7r-graph. It produces an equivalent 7r-graph, since Equation (3.1) is •
fulfilled for each edge in the 7r-graph. We will use dependence retiming to transform a 7r-graph I
into an equivalent one executable in fewer cycles. We now give an example.

Example
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loop body
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time (cycles)
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Figure 3.7 Equivalent Tr-graphs and their schedules
(a) Initial w-graph of a loop and its schedule
(b) Equivalent 7r-graph and its schedule

Figure 3.7(b) shows an equivalent 7r-graph after retiming dependence (A, B) (note that the distance
of (A, C) has also been increased). ILDs have been transformed into LCDs, and no dependence
influences the scheduling of each iteration. An iteration of the retimed 7r-graph contains instruc-
tions belonging to different iterations in the initial loop. Therefore, dependence retiming allows
the loop to be pipelined. The execution of the loop now consists of three parts: prologue, steady
state, and epilogue [Lam88]. The prologue and epilogue must be included to initiate and conclude
the loop execution properly.

Since no ILDs exist in the 7r-graph from Figure 3.7(b), instructions A\, BQ and Co (and, in general,
instructions A+i> BÍ and Ci) can be executed at the same time if sufficient resources are available.
Therefore, the loop represented by the retimed ?r-graph may be executed in half the time4 required
by the loop represented by the initial 7r-graph.

3.6 LOOP UNROLLING

3.6.1 Loop unrolling transformation

Loop unrolling [DH79] is a well-known loop transformation. Unrolling m times an initial 7r-graph
7T generates another initial ir-graph 7rm in which each instruction and each dependence in TT appears
m times. Unrolling the initial 7r-graph m times produces an initial 7r-graph representing the loop
unrolled m times.

For each vertex u representing instructions M¿ (i — Q..K — 1) in TT, irm has m vertices (labelled
as u°, ul,..., um~i), so that each uj represents all the instructions w¿ such that i mod m = j.

4 We ignore the length of the prologue and the epilogue since, in general, their execution time scarcely influences
in the total execution time of the loop.
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Figure 3.8 Unrolling a 7r-graph 3 times

function unroll (IT, m);
Vm := 0; Em := 0; {set of vertices (Vm) and edges (Em)}
for each u £ V do

for i := 0 to m — 1 do
ym • =vm\j{ui};
Am(tt'') := 0;

for each (u, v) £ E do
for i := 0 to m — 1 do

Em ._ £m u ^u¿) ^(i+íCu.iOJmodm^.

Sm(u' t,('+
í("."))modm') •— i i+¿(u,t>) i .

return 7rm;

Algorithm 3.1 Algorithm to unroll a ir-graph m times

Likewise, for each dependence u —*• v in ir, m dependences wj —>• v(j+d)modm ^- _ Q /{• _ ^

are created in irm.

Figure 3.8 shows an example of 7r-graph unrolling. The labelled vertex u\ of ?rm represents
instruction uj at iteration i. Consequently, the same instruction is represented by instruction
Wf.m+j in 7T.

Algorithm 3.1 shows how to create a 7r-graph representing a loop unrolled m times. The proposed
algorithm executes in 0(V + E) time.

3.6.2 n-graphs with integer Mil

In general, a ?r-graph representing multiple instances of the loop body is required to obtain a
schedule in Mil cycles [JC92b]. Such a 7r-graph will be called a multiple-instanced Tr-graph.

Let us show an example. The ?r-graph in Figure 3.9(a) has MÍÍ(TT) = | (we assume that the
latency of all instructions is one). This means that, at best, three iterations will be issued every
two cycles. Since the initiation interval represents a number of cycles, it must be an integer. Thus,
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Figure 3.9 Scheduling a 7r-graph and a
(a) 7T- graph TT
(b) Schedule of TT
(c) Schedule of 7r3
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multiple-instanced ir-graph

the shortest ÍÍ for any schedule of TT is ÍÍ = 1 (see Figure 3.9(b)). A multiple-instanced ir-graph
representing three instances of the loop body (îr3) may produce a schedule with the minimum
initiation interval, as shown in Figure 3.9(c).

For the sake of simplicity, and without loss of generality, we will use the terms 7r-graph and
multiple-instanced Tc-graph to mean the same.

Theorem 3.5 Míí(7rm) = m • MÍÍ(TT)

Proof:

Given that TT and TT™ represent the same loop, the execution time with minimum initiation interval
must be the same. The loop represented by TT must be executed K times, while 7rm must be
executed only — times. Therefore:

— • MII(7Tm) = K • MUM => MII(7Tm) = m • MÍÍ(TT)
m

ü

Mil is always a rational number. A 7r-graph with integer minimum initiation interval can be
obtained as follows:

1. Calculate the MÍÍ of the initial 7r-graph. Let MÍÍ(TT) = |.

2. Calculate m = d/ ^

3. Generate 7rm = unroll (ir,m). The MÍÍ of TT™ is MIi(7rm) = pg^y
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3.7 SUMMARY AND CONCLUSIONS

CHAPTER 3

This chapter shows the way to represent a loop by using a data dependence labeled graph, called
7r-graph. A loop can be represented by durèrent but equivalent 7r-graphs. Equations are provided
to check when two 7r-graphs are equivalent. A transformation, dependence retiming, is proposed
to transform a TT- graph into an equivalent one in linear time.

This chapter also describes the way to represent an architecture. Lower bounds on the initiation
interval achievable in the execution of a loop, and upper bounds on the instruction parallelism and
the execution throughput are derived. Algorithms to compute such bounds in polynomial time
are also presented.

This chapter establishes lower bounds in the execution time of a loop by calculating the lower
bound in the execution time of an iteration. This is key factor in this work, since we will show in
Chapter 6 the way to find a schedule which executes the loop with the minimum execution time.

Finally, this chapter presents dependence retiming and loop unrolling, the two loop transformations
which are the core of this work.
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