
UNIVERSITAT POLITÈCNICA DE CATALUNYA

LOOP PIPELINING WITH
RESOURCE AND TIMING

CONSTRAINTS

Autor: Fermín Sánchez

October, 1995

T
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4
ANALYSIS OF DATA DEPENDENCES

4.1 INTRODUCTION

Analysis of dependences is usually statically performed [Ban89]. This chapter studies data depen-
dences from a new point of view.

A scheduling algorithm schedules the instructions one by one. After scheduling each instruction,
some dependences cease to constrain the scheduling process, whilst others change the way in
which they impose constraints. In a given instance of the scheduling process, some instructions
have already been scheduled, while others have not. In this instance, the constraints imposed
by the dependences are, in general, quite different from the ones imposed before starting the
scheduling.

A combination between dependence retiming and scheduling of 7r-graphs allows a loop to be
pipelined. Let us give an example. Figure 4.1(a) depicts a 7r-graph after retiming dependence
(v, x). A possible pipelined schedule for the loop is shown in Figure 4.1(b). All the iterations are
executed in the same fashion, and therefore scheduling the ?r-graph is equivalent to scheduling the
entire loop. If instruction u from iteration i is scheduled at cycle c, instruction u from k iteration
will be scheduled later at cycle c + k • II, II being the length (initiation interval) of the schedule
of an iteration.

57

58

Lu=l Lw=l

Q-V0 o
3̂ . V0

x*1 *\ 1 x""-~ \̂
(v,)—•••(*n)

Lv=2 L,=2

(a)

time

1 2 3 4

ll() V| Ú] V2

w() X(| W] X j

(b)

FSD

5 6 Cycle u i y

u2 v-5 ^k~~~-
• • • Wfli Xfl

w2 x2 •

PSD

1

1
CHAPTER 4 m

1

NSD

/"I V2 •
^~ .̂

W| X!

1
(c) ~~

Figure 4.1 Types of dependences in a schedule
1
•(a) Example of retimed 7r-graph

(b) Schedule of the loop
(c) Types of dependences in a schedule

Which kind of algorithms can be used to schedule the 7r-graph? Scheduling algorithms for basic —

blocks have not been devised for
to ILDs, ignoring the effect of

loops. They only consider data dependences which are equivalent •
LCDs. However, in a loop with LCDs, an iteration cannot be ^

scheduled without taking into account how the previous iterations have been scheduled. In the
example from Figure 4.1, x cannot be scheduled at the first cycle of a given iteration if v has |
been scheduled at the last cycle of the previous iteration. Otherwise, the LCD (v, x) would not |
be honored. We conclude that scheduling algorithms for basic blocks cannot be used to schedule
TT-graphs. 1

'

Some scheduling algorithms attempt to guess the initiation interval of the schedule before schedul- ™
ing the instructions [RG81]. Therefore, they can foresee whether a LCD will be honored or not.
These algorithms can be used to schedule a 7r-graph. ILDs always constrain the scheduling process. 1

0 1̂
In the example from Figure 4.1(c), x is scheduled after u on each iteration due to ILD u — >• x. m

For this reason, we call such dependences positive scheduling dependences (PSDs). However, not

all LCDs constrain the scheduling process. In the example, LCD u — > w does not constrain the |
scheduling, regardless of the cycle in which u is scheduled. Therefore, it may be ignored by the •
scheduling algorithm. We call these kind of dependences free scheduling de\

the other hand, LCD v — > x forces x to be scheduled from the same cycle
Therefore, the cycle in which x is scheduled depends on the cycle on which

lendences (FSDs). On

as v (because ÍÍ — 2). •
v has been scheduled. |

We call such LCDs negative scheduling dependences (NSDs). Figure 4.1(c) illustrates the three
types of dependences.

. - , . . .

4.2 SCHEDULE OF A vr-GRAPH

1

1
The scope of this chapter is limited to 7r-graph schedules in which the (expected) initiation interval
is known in advance. Henceforth, we will assume that the cycles of a schedule are numbered |
from 0 to II - 1, II being the initiation interval of the schedule. Let us consider a 7r-graph |
7T = G(V, E, A, 6). Let S(u) be the cycle at which instruction u has been scheduled.

- • - .•< •• . ' • ; . - • • •

1

1

1

1

1
1
1
1•1

1
1
1
1
1
1
1
1
•

1
1
1
1
1
1
1
1

Analysis of Data dependences • •

Theorem 4.1 In order to honor any dependence (u,v) 6 E, the following equation must
fulfilled:

S(u) > max (5(u) + Lu - II • 6(e)) (4

Proof:

A dependence u — > v indicates that the data produced by instruction u at the ¿th iteration

59

be

•1)

is
consumed by operation v at iteration i + <5(e). Instruction v¿+¿(e) must be scheduled at least Lu

cycles after the scheduling of tí,;. Thus:

o/ ^ ~"x cv \ i r
O (i/¿ -j- ¿ (Q \ 1 -^ O l t*¿ 1 ~T" J-Jy,

Given that u¿ is scheduled ÍÍ • 6(e) cycles before ^¡+,5(6), by substituting the equation 5(v¿+í(e))
S(v{) + II • 6(e) with the former equation we obtain:

S(vi) + II • 6(e) > S(ui) + LU

C* (\ ~**^ C* (\ i 7" TT C/ \o\Vi) > o(Ui) + Lu — li • o(e)

Definition 4.1 S(TT) : Schedule of a TT-graph

=

D

For a given II, a schedule of TT = G(V, E , X , 6) , is an integer labelling S : V >— > IN which fulfills the
following conditions:

• Vue V,0 < S(u) < II- 1.

• V(u, v) 6 E, S(v) > S(u) + Lu — II • o(u, v), i.e. all dependences must be honored.

• There are sufficient resources to execute the instructions scheduled at each cycle.

Let us consider a loop schedule S with an initiation interval ÍÍ.

Definition 4.2 Th(S) : Execution throughput of S

The execution throughput of S, Th(S), is the average number of iterations executed per cycle in
S.

Th(S) = - (4.2)

60

4.3 SCHEDULING DEPENDENCES

Definition 4.3 PSD: Positive Scheduling Dependence

A data dependence e = (u, v) £ E is a positive scheduling dependence when
must follow the scheduling of u at each iteration of TT (S(v) > S(u)).

ILDs are always PSDs. From Theorem 4.1 we have:

S(v) > max (5(w) + Lu - II • S(e))

We conclude that PSDs honor:
Lu - II • 6(e) > 0

Definition 4.4 FSD: Free Scheduling Dependence

Data dependences e = (u, v) 6 E so that the scheduling of u does not impose
scheduling of v are called free scheduling dependences.

CHAPTER 4

the scheduling of v

• > • : (4.3)

constraints on the

If e — (u, v) £ E is an FSD, then S(v) > 0. By using Theorem 4.1, we conclude a dependence
e - (u,v) £ E is an FSD when S(u) + Lu - II • S(e) < 0. Since S(u) e [0,11— I], the more
restrictive value of S(u) for scheduling v is S(u) = II — 1. Therefore, we conclude that FSDs
fulfill:

, , Lu..-II-6(e) < 1-ÍÍ

Definition 4.5 Negative Scheduling Dependences

A data dependence e = (u, v) £ E is a negative scheduling dependence when v
scheduled at any one of the II cycles of the schedule but e is not a PSD.

might not be freely

In this case, the datum produced by the instruction u from the current iteration is consumed by
instruction v from a following iteration, but v may be scheduled before u. Moreover, NSDs fulfill

1

1

1

1

1

1

1
•

1

I

I
•

1

1
•

1

1
•

S(v) > 0 (otherwise they would be FSDs). By using the former expressions and Theorem 4.1, we
conclude that NSDs fulfill:

1 - II < Lu - II • 6(e) < 0

By using the previous definitions, scheduling dependences can be classified
distance as follows:

• PSD: Lu - II • 6(u, v) > 0 => 6(u, v) < ^f

• NSD: l-II<Lu-II- 6(u, v)<Q=ï ¿"+//-1 > 6(u, v)>jf

according to their

1

1

1

1

1

1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Analysis of Data dependences 61

5 (u,v)

FSD

NSD

PSD
//

Figure 4.2 Types of scheduling dependences according to the value of S(u, v)

| PSD
S(u)

ASAPu(v)
time frame

, , for S(v)

NSD

-S(u)

1 ASAPu(v)

time frame
for S(v)

(a)

Figure 4.3 Time frame for S(v)
(a) When e is a PSD
(b) When e is an NSD

(b)

FSD: LU-II- 6(e) < 1 - II => 6(u, v] >

Figure 4.2 illustrates this classification.

Let us consider a dependence e = (u, v) in a 7r-graph. The relationship between the scheduling of
u and v depends on whether dependence is a PSD or an NSD. Figure 4.3 shows an example. Note
that v must be scheduled after u when e is a PSD, whereas it might be scheduled before u when
e is an NSD.

I
I

62 CHAPTER 4

4.4 POSITIVE DEPTH AND HEIGHT |

4.4.1 Positive path •

Definition 4.6 Path

A path in TT = G(V, E, X, 6) is defined as a set of edges ei G E, {ei = («i, «2), e2 = («2, MS), . . . , en = •
(un,un+i)}, with ei ̂ ej Vi 5¿ j. •

The edges e\ and en are called respectively the head edge and the tail edge of the path. In the •
same way, u\ and un+i are called respectively the head node and the tail node of the path. A
node u is included in (or belongs to) a path p if 3(u, v) € p or 3(v, u) £ p. With this assumption, _
we say that u € p. •

Definition 4.7 Positive Path jm

A path p = {ei,. .., en} is called a positive path if, Me G p, e is a PSD.

A positive path p determines a partial execution order of the instructions represented by the nodes |
belonging to p. A cycle (recurrence) composed only of PSDs is called a positive recurrence.

When all instructions in p are scheduled as soon as possible, the total number of elapsed cycles
between the scheduling of u and the scheduling of z is:

ITheorem 4.2 A n-graph cannot contain positive recurrences.

Proof: (by contradiction) •

Let us assume that a 7r-graph has a positive recurrence R composed of n nodes (MI, M2, • • • , un)
and ?î edges (ei ,e2 , • • - , e n) . •

Let S(ui) be the cycle at which instruction w¡ starts their execution. Given that <5(e¿) is a PSD
\1 Û • ^ Í7

7
 \X1£i li Í ÍA7J3 • f l T Ç Ï ' f W i l l . 1 ̂ C V l í ~ 1 Ç?itlr.\ .X*' Ç f t l ^ . 1 r> VI l'I 1T1 íT^in üï» 1 1 W i l l . I .X' Gflt. . .. I AAj^V^/^AÍ£lf

I

Let 5(t<¿) be the cycle at which instruction w¿ starts their execution. Given that <5(e¿) is a PSD
Ve,; 6 51, we have that S(MI) < £(^2), 5(w2) < i5(M3) and, in general 5(M¿) < 5(M¿+i). Moreover,
S(un) < S(ui}. Therefore, S(ui) < S(«i), which is false. G

Figure 4.4 shows a positive path p in a 7r-graph. Instruction v must be scheduled at least Lu —
II • S(u, v) cycles after the scheduling of M. In the same way, w must be scheduled Lv — II • 6(v, w) •
cycles after v, i.e., (Lu — II • 6(u, v)) + (Lv — II • 6(v, w)) cycles after M, and so on. •

I
S(z) - S(u) = (Lu - II • 6(u, «)) + (Lv - II • 6(v, w)) + ... + (Ly - II • 6(y, z))

S(z) - S(u) = ^ (£„ - ÍÍ • 6(u, v)) (4.4)
(u,«)€p

Since instruction z must start its execution inside the scheduling of the current iteration, the B
minimum length of the schedule of p is S,(z) — S(u) + 1.

I

I

I

1
1

1
1

1
1
1

1
1•i
1
1

1
1
1
1
1

Analysis of Data dependences

\ x 8(«,v) \ x 8(v,w) \ x V -^8(y,z) V^lx

S(w)'= S(u) +LU - //. 5(u,v) + Lv - //. 8(v,iv)

S(v) = S(u) +LU - //. S(«,v)

S(u) S(z)-S(u) = Z (£u • //.8(u,v)) +1 S(z)
__ (u,v)ep ^

Figure 4.4 Length of a positive path

Definition 4.8 Length(p): Length of a positive path p

The length of a positive path p, Length(p), is defined as the minimum number of
betiueen the starting of the instructions represented by the head node and the tail n
length, of a positive path p is:

Length(p) = l+ ^ (Lu - II • 6(u, v))

<«,„*„

4.4.2 Maximal positive path, positive depth and

Definition 4.9 MPP(ir) : Maximal Positive Path of TT

A maximal positive path (MPP) O/TT = G(V, E, A, <5), is a positive path p such that,
positive path p' C E, Length(p) > Length(p').

An MPP will also be called a critical path. Henceforth, MPP will denote the length
path. For any schedule S of a loop, ÍÍ > MPP,

Definition 4.10 E+ : Set of PSDs of a 7>graph

E+ is the set of the PSDs of TT = G(V, E, A, 6) for a given II.

E+ = {(u, v) e E \ Lu - II • 6(u, v) > 0 }

Definition 4.11 D+(u) : Positive Depth of node u in a ?r-graph

The positive depth of a node u in TT = G(V, E, A, 6), D+(u), is:

D+(u] - j max (D+(v) + LU - II • 6 (it, v)) otherwise

63

cycles elapsed
ode of p. The

height

for any other

of the critical

I
I

64 CHAPTER 4 _

Definition 4.12 H(v) : Height of node v

For a given ir-graph ir = G(V, E, A, 6) the height of a node v, H(v), is:

- f 0
H (v) = \ max (H(u) + Lu - II • 6(u, v}) otherwise

' •"

= 1

4.5 ASAP AND ALAP TIME

_

As in the calculation of positive depth, only PSDs are taken into account to compute the height
of a node. The positive depth of a node indicates the urgency to schedule the node [Gof76]. The •
height of a node is the first cycle at which the node can be scheduled without violating precedence |
constraints.

Since a 7r-graph does not contain positive recurrences (see theorem 4.2), a positive path cannot I
form a recurrence. Therefore, a positive depth and a height can be assigned to each node in the *
7r-graph in O(V + E) time by using a topological sort algorithm [CLR90].

4.4.3 Example of computing positive depth

Figure 4.5 shows an example of computing the MPP and assigning positive depth to nodes in I
a TT-graph. The expected initiation interval of the schedule is ÍÍ = 1 (the Mil). The 7r-graph
shown in Figure 4.5(a) shows the PSDs as bold arrows. The result latency of instructions is •
LZ = LX = Lq = 1, Lw = 2 and Lu = Lv = 6 . The 7r-graph shown in Figure 4.5(b) represents •
the set of dependences E+ = { (z , u), (u, w), (v, w), (w, q)}. Bold arrows represent the critical path
(v —> w —>• q), with Length = 7. Thus, the minimum number of cycles for any schedule of this _
TT-graph is ÍÍ = 7 (and therefore no schedule exists with the previous assumptions). The depth of I
the nodes is computed as follows: *

I
D+(w) = D+(q) + Lw - I I - 6 (w , q) = 1 + 2-0 = 3 _

D+(z) = D+(u) + Lz -II-S(z,u) = 5 + 1 - 0 = 6

Note that, despite the number of edges in the path (z —> u —* w —>• q) being greater than the
number of edges in the MPP, the length is shorter (Length. — 6). •. _

I
The ASAP and the ALAP time of an instruction are well-known concepts. They indicate respec-
tively the first and the last cycle at which the instruction may be scheduled. The ASAP and . •
the ALAP time of a given instruction may change during the scheduling process, but their initial •
values can be statically computed. ASAP(v), ALAP(v) Ç. [0,11— 1].

I

I

I

1
1

1
1
1
1

1
1

1
1

1
1
1
1
1
1
1

Analysis of Data dependences

r^D+(z)=6Qy?1 Qy?1 fa) Q^) D+(X)=i
A /*! A (^)D»=5

^^â àX^ ^ \ « »X^ D+(v)=7
4 x*~-v 2 4 x-— v ^
© © D»=3

©í1 © D+(q)=i
(a) (b)

Figure 4.5 Positive Depth of the nodes in a jr-graph when II = 1
(a) 7r-graph example
(b) PSDs of the 7r-graph and positive depth of nodes

65

Let us consider a Tr-graph TT = G(V, E, A, 6) and a schedule of TT with an expected initiation interval
if.

Definition 4.13 IASAP(u) : Initial ASAP time of instruction u

The initial ASAP time of instruction u 6 V, IASAP(u), is the first
scheduled without violating any dependence (computed before starting the

IASAP(u) = H(u)

Definition 4.14 IALAP(u) : Initial ALAP time of instruction u

The initial ALAP time of u, IALAP(u), is the last cycle at which u may
schedule (computed before starting the scheduling process).

IALAP(u) = H-D+(u)

Theorem 4.3

S(u) < min S(v) - Lu + II • 6(u, v)
(u,v)C.E

Proof: If v has already been scheduled, from equation (4.1) we have:

S(v) > 5(u) + Lu - II • 6(e)

S(u) < S(v) -LU+II- 6(e]

cycle at which u can be
scheduling process).

(4.5)

be scheduled in a correct

(4.6)

D

66 CHAPTER 4

time frame
1

time frame
for S(u)

time frame
for S(w)

(b)

Figure 4.6 NSD (u,v) that does not constrain the scheduling process
(a) 7r-graph example
(b) Time frame for scheduling instructions

4.6 NEGATIVE DEPTH

4.6.1 Negative restrictive dependences

As with FSDs, some NSDs do not constrain the scheduling process.either. Figure,4.6 shows an
example in which the result latency for all instructions is.2 and If = 3. Positive depth for each
instruction is shown on the right of each node. Edge (u,v) is an NSD, since Lu — I I - 6 (u , v) = — 1.
This means that v cannot start more than 1 cycle before the starting of u.

The time frame for scheduling an instruction goes from its ASAP time to its ALAP time. When
the TT-graph from Figure 4.6(a) is scheduled in 3 cycles, u can be scheduled, only at cycle 0, and
w can be scheduled only at cycle 2. In this assumption, v may be scheduled from cycle 0 to cycle
2. Figure 4.6(b) illustrates this issue. As can be seen, dependence (u , v) does not constrain the
scheduling because v may be scheduled at any cycle.

An NSD e — (u, v) constrains the scheduling depending on the cycle at which u is scheduled.

Theorem 4.4 A necessary (but not sufficient) condition for an NSD e = (ú, v) to constrain the
scheduling is:

D+(u)-II<Lu-U-6(u,v)

Proof:

Dependence e = (u, v) constrains the schedule if it causes S(v) > 0. By substituting S(v) with
Equation (4.1), we obtain S(u) + Lu — II • 6(u,v)>0.

The maximum constraint imposed by an NSD e = (u, v) is the case S(u) = ALAP(u). Therefore,
ALAP(u) + Lu - II • 6(u, v) > 0.

Since the maximum value for ALAP(u) is IALAP(u), by substituting ALAP(u) with Equation
(4.6) we obtain II - D+(u) + Lu - II • 6(u, v) > 0.

Thus, we conclude that Lu — II :.6(u, v) >,D+.(u) •—,;Jf. D

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1
I
1
1VI

1

1
•

1
1
•̂

1

I
1

..

1
1

1
1
1
1

Analysis of Data dependences ,

In the example from Figure 4.6, we have Lu — II • 6(u,v) = — 1 and D+(u) — II = 0.
conclude that (u , v) does not constrain the scheduling process.

Definition 4; 15 INRD : Initial Negative Restrictive Dependence

A dependence e — (u¡ v) is called an initial negative restrictive dependence, INRD, if:

D+W-n<Lu-II.6M

Before starting the scheduling process, an INRD constrains the scheduling. However

67

Thus, we

, it might
cease to constrain the scheduling during the scheduling process. If u has already been scheduled,
an NSD e = (u, v) constrains the scheduling process if 5(w) + Lu — II • 6(e) > 0 (a, necessary
condition for ASAP(v) > 0). On the other hand, if u has not yet been scheduled, we will use
Theorem 4.4 to decide whether e constrains the scheduling or not.

Definition 4.16 NRD : Negative restrictive dependence

An NSD e = (u, v) is an NRD if and only if:

(LU — II • 6(e) > —S(u) If u has already been scheduled
\ Lu — II • 6(e) > D+(u) — II If u has not yet been scheduled

4.6.2 Assigning negative depth to nodes

(A 7\\ /

In the same way that a positive depth can be assigned to each node in the 7r-graph by only taking
PSDs into account, a negative depth can be assigned by only considering NRDs. Initially, the
negative depth is assigned by considering INRDs. However, whilst the positive depth
never changes, the negative depth might change because some INRDs may cease to
during the scheduling process. This chapter shows how to calculate the initial negative
each node. Changes on negative depth produced during the scheduling process will be
Chapter 5.

Definition 4.17 E- : Set of the INRDs of a 7r-graph

E~ is the set of the INRDs of TT = G(V, E, A, ¿) for a given II.

E' = {e = (u, v) e E \ D+(u) - II < Lu - II • 6(u, v) }

Definition 4.18 D~(v) : Negative Depth of node v in a ;r-graph

The negative depth of node v in TT — G(V,E,\,S), D~(v), is defined as:

D (v)='(max (D~(u) + LU — II • 6(u,v)) otherwise

*

of a node
be NRDs
depth for

studied in

I
I

68 CHAPTER 4

I

I

I

L,,=2

Lv=2
•^^s

INRD./
1 1

Lw=2

Figure 4.7 Negative recurrence in a 7r-graph

Figure 4.8 IT-graph with negative recurrences chained

I

I

I

Definition 4.19 Negative Path |

A path p = {e\,... ,en} ¿s called negative path of IT = G(V, E, X, <5) if, Ve € p, e ¿s an INRD. «

An NRD e — (u, v) imposes a maximum time constraint between u and v, since v cannot start
more than Lu — II • 6(e) cycles before u. Therefore, a chain of NRDs also impose a maximum time B
constraint [KD92]. The negative depth of a node gives an idea of the maximum time constraints |
imposed by the node on the scheduling process.

A recurrence only composed of,NRDs will be called a negative recurrence. Unlike PSDs, NRDs I
may produce negative recurrences, as shown in Figure 4.7. Moreover, a set of negative recurrences
may be chained by INRDs, as shown in Figure 4.8. In order to assign a negative depth to the
nodes from a negative recurrence, and given that all nodes impose maximum time constraints •
among them, we will assign the same negative depth to all nodes belonging to the same negative •
recurrence.

Therefore, a way of computing the negative depth of the nodes of a ?r-graph TT is by substituting all •
negative recurrences R with single nodes a;, creating a new 7r-graph V. A dependence (u,v) € E
so that u € R and v (£ R is replaced by a dependence (a;, v) in ir'. In the same way, a dependence ^
(tí, v) 6 E so that v G R and u $ R is replaced by a dependence (u,x) in TT'. •

The algorithm to compute the negative depth performs the following steps:

1. Substitute each negative cycle R with a single node x. Retain only the dependence with the
longest distance for each node x with several incoming (outgoing) edges from the same source
(target). I

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Analysis of Data dependences 69

2. Compute the negative depth for any node of the new ir-graph. Once negative recurrences have
been eliminated from the 7r-graph, the algorithm to compute the negative depth is similar to
that used to compute the positive depth.

3. For each node x replacing a negative recurrence R, substitute x with the original nodes of R
(and the original edges). Assign the negative depth of x to all nodes in R.

Computational complexity

The running time of the algorithm to assign the negative depth to the nodes in a 7r-graph is as
follows:

1. Build the 7r-graph only composed of INRDs has a running time 0(V + E). All negative cycles
in the TT-graph can be found by using Johnson's algorithm to solve the all-pairs shortest paths
problem [Joh77]. The running time of Johnson's algorithm is 0(V2 Ig V + VE). Substituting
the negative recurrences with single nodes has a running time 0(V + E). Therefore, the
running time of this step is:

0(V2lgV+VE)

2. The second step has the same running time as the algorithm to compute positive depth:
0(V + E}.

3. Finally, replacing nodes with negative recurrences (restoring initial dependences) has a, run-
ning time 0(V + E).

Therefore, the final running time of the algorithm to compute the negative depth is:

0(V2 Ig V + VE)

4.6.3 Example

Figure 4.9 shows an example of computing the negative depth when the 7r-graph has negative
cycles. Figure 4.9(a) shows an example of 7r-graph in which the result latency of all instructions is
two. The expected initiation interval for the schedule is II — 3. Bold nodes D, F and G identify
nodes belonging to a negative recurrence R, marked by grey edges in Figures 4.9(a) and 4.9(c).
Figure 4.9(b) shows the vr-graph (only with the INRDs) after substituting the negative recurrence
with a single node u. The negative depth of each node is stated within the node. Figure 4.9(c)
shows the final negative depth assigned to the nodes in the initial 7r-graph, as well as the INRDs.

4.7 SUMMARY AND CONCLUSIONS

In this chapter we present a new analysis of the data dependences in a loop. Data dependences are
studied from the point of view of how they constrain the scheduling process. Data dependences

70 CHAPTER 4

(a) (b) (c)

Figure 4.9 Compute of negative depth
(a) IT-graph example
(b) NSDs after substituting nodes D, G and F with a single node u
(c) Negative depth assigned to the nodes of the initial 7>graph

are classified into three categories: positive scheduling dependences (PSDs), negative scheduling
dependences (NSDs) and free scheduling dependences (FSDs). The ASAP and the ALAP time for
each node are computed by taking only PSDs and NSDs into account, since FSDs do not constrain
the scheduling process.

This chapter presents two algorithms which execute in polynomial time:

• An algorithm to assign a positive depth and a height to each node by only considering PSDs.
Positive depth influences the length of the schedule because it expresses the minimum time
constraints imposed by a node to the scheduling process. Moreover, the initial ALAP time
and the initial ASAP time for each node are computed by taking positive depth and height
into account.

• An algorithm to compute the negative depth by only using some NSDs. Negative depth
expresses the maxirhum time constraints imposed by a node to the scheduling process.

This chapter presents the following main contributions:

1. Data dependences are studied from a dynamic point of view. For a given dependence e =
(tí, v), e is classified according to where v may be initially scheduled. If v can be scheduled
anywhere into the schedule, e is called an FSD. Otherwise, e is a PSD or a NSD according to
whether v may be scheduled after or before u respectively.

2. Positive depth and height have been largely studied in the literature. However, negative depth
is a new concept in scheduling. Negative depth of a node is directly related to the maximum
time constraints imposed by the node to the scheduling process. As we will show in the
following chapter, negative depth is also ah important criterion for deciding which node must
be scheduled at each moment.

3. PSDs and NSDs initially impose constraints on the scheduling process. However, while PSDs
always constrain the scheduling process, not all NSDs impose constraints. Moreover, some
NSDs which initially impose constraints may cease to be restrictive during the scheduling
process.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

