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5
SCHEDULING A IT-GRAPH

5.1 INTRODUCTION

According to Gajski [GDP86], "scheduling is the most important step during the architecture
synthesis". This chapter presents the scheduling algorithm used by the methodologies proposed
in this work. Henceforth, the algorithm will also be called scheduler.

A ff-graph constituted by all the instructions (nodes) in the loop, but only those dependences that
constrain the scheduling, contains all the information required by the scheduler. This 7r-graph is
called the scheduling graph. Section 5.2 describes it in detail.

Several techniques [PK89a, Gof76, PK91, KD92] schedule an iteration of the loop as a basic block,
i.e. the execution of a new iteration cannot start until the former iteration is completely executed.
Therefore, the overlapping in the execution of consecutive iterations (functional pipelining) is not
considered.

The execution of two consecutive instances of the schedule can be overlapped when the scheduler
knows the target initiation interval in advance, in the same way as the execution of the iterations
from the original loop are overlapped by software pipelining the loop. This produces the same
effect as a functionally-pipelined data path. Section 5.3 shows how an overlapped schedule may
be found by using a basic block.
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Among all the scheduling algorithms described in the literature, we have selected list scheduling J
[Gof76] for its low computational complexity and easy implementation. The priority functions
used by the algorithm are mainly based on the positive and the negative depth of each node. «
Section 5.5 provides an exhaustive description of the criteria used to select an instruction to be •
scheduled. Finally, Section 5.6 presents the algorithm used by the methodologies proposed in this
work.

5.2 SCHEDULING GRAPH

Definition 5.1 Es : Set of scheduling dependences

For an expected initiation interval II, the set of dependences luhich constrain the scheduling of a
7r-graph, Es , is Es = E+U È- . . . . . .

5.3 OVERLAPPED SCHEDULE

This section presents how instructions are assigned to cycles. An instruction may start at the time
of a given iteration and finish at the time of a different (following) iteration.

I

Chapter 4 showed that only positive scheduling dependences (PSDs) and negative restrictive depen-
dences (NRDs) constrain the scheduling process. Therefore, from the point of view of scheduling, it ^
is sufficient for the 7r-graph to contain only the PSDs and the NRDs instead of all the dependences •
in the loop. Such a 7r-graph will be called the scheduling graph.

jf

Es = {(u,v)eE | Lu— II-6(u,v) > 0 V Lu - II • 6(u,v)

Definition 5.2 ?rs : Scheduling Graph of TT

For a given II, the scheduling graph of IT = G(V, E, A, <5), TTS , is the directed graph TTS — G(V, Es). •

I

We represent the resource utilization performed by the instructions in a reservation table (RT), _
similar to the modulo reservation table used in [Lam88]. The RT has II rows and T columns, where •
T is the number of different types of resources of the architecture. Every row of the RT represents ™
the number of resources of a given type available at a cycle; i.e. the element (i, j ) identifies the
number of resources of type j available at cycle i. Initially, all the "elements in each column .;' •
a.re initialized with the number of resources of type j available in the architecture. Every time an |
instruction u is scheduled at cycle i, all the resources used during the execution of M are discounted
in the RT from cycle i, according to the execution pattern of w. In order to achieve a schedule •
which overlaps with the schedule of the next iteration, the mapping between the execution pattern •
of the instructions and the RT must be modulo II. Thus, the assignation of resources at cycle c
is actually performed at cycle c mod ÍÍ.

Figure 5.1 shows an example of assignment of instructions to cycles in an RT with a length of four •
cycles. We assume the architecture has 2 FUs of type RO, 3 FUs of type RI and 1 FU of type
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77=4

time

initial RT

(c)

Figure 5.1 Reservation table example
(a) 7r-graph example
(b) Description of the execution pattern of instructions
(c) Initial contents of the reservation table
(d) Contents of the reservation table during the scheduling process

after w

fí,2- The shaded rectangles in the RT from Figure 5.1(d) represent the values updated during the
scheduling of each instruction. Note that w is modulo-assigned in the RT. As a result, it starts at
cycle 3 and ends at cycle 0 of the following iteration.

5.4 LIST SCHEDULING OVERVIEW

From among all the algorithms described in the literature, list scheduling [Gof76] has been selected
for its low computational complexity and easy implementation. A list scheduling algorithm selects
instructions in a topological order, guided by a user-defined priority function. Instructions are
stored in a list, and the priority function is used to select an instruction from this list [DLSM81].
Different types of list scheduling algorithms can be found in the literature. A good description of
them can be found in [Rim93]. We will use the algorithm 5.1.

Several local priority functions have been described in the literature, most of them related to the
ASAP and the ALAP time of a node. REGALS [JMSW91] uses the IALAP time of a node as
priority function. REGALS II [Rim93] uses a value called PALAP (pseudo ALAP time). The
PALAP time of an instruction is the IALAP time when a subset of resource constraints is taken
into account (note that the IALAP time is obtained by considering unlimited resources). The
non-pipelined scheduling algorithm of SEHWA [PP88] uses urgency as priority function. The
urgency of a node is similar to the positive depth. ELF [GK84] and the algorithm described in
[Gof76] also use a priority function based on urgency. Slicer [PG87] proposes the mobility of the
instructions as priority function. Mobility of u is defined as ALAP(u) — ASAP(u). ATOMICS
[GRVD87] also uses mobility as priority function, and MAHA [PPM86] uses freedom, a criterion
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I
function List Scheduling;

LIST :=list of nodes ready to be scheduled;
while LIST not empty do ' ' "• " ' •
(1) Select a node u from LIST; |
(2) Assign u to the earliest cycle satisfying

precedence and resource constraints;
(3) Remove u from LIST;
(4) Append the successors of u ready to be scheduled to LIST

(if they were not in LIST);

Algorithm 5.1 List Scheduling Algorithm

I

I

I
similar to mobility. Other priority functions mentioned in the literature are the latest starting
time [ACD74, DLSM81] (the latest starting time of a node is closely related to the IALAP time of I
the node), the violation of time constraints (BSI)[NT86] (whether placing the instruction in the •
current cycle will violate a. minimum time constraint and whether placing an instruction in a later
cycle will violate a maximum time constraint) and the self force of an instruction [PK89a, PK89b] •
(the self force of an instruction reflects the effect of attempting a cycle assignment on the overall •
instruction concurrency, by itaking resource constraints into account).

The reservation table guarantees that there are suiBcient FUs in the architecture to execute the •
loop as it has been scheduled. The process of assigning concrete FUs to execute each instruction •
is known as allocation or binding [TS86, PK89b, ST91, HLH90, BC93], and it is beyond the scope
of this paper. Some approaches perform resource allocation before scheduling [PK89a]. M

5.5 SCHEDULING PRIORITY FUNCTIONS |

We have done experiments with several priority functions. Some of them have previously been
proposed by other authors, but others are new in scheduling literature. The criteria to select nodes •
for scheduling are the following (in priority order): '

I1. The 0-mobility

2. The positive depth

3. The negative depth •

4. The number of successors in the scheduling graph not yet scheduled

5. The resource utilization of each instruction •

The order of consulting the criteria has been selected according to the influence of each one in •
the final length of the schedule. Next sections study in detail the motivations for each priority •
function.

I

I

I



1
1

Scheduling a Ü- graph

1

G¡ FÉ A, B¡

Cfl) H, E, D¡ C¡

I rS\ f£\ D¡» C¡ E¡ FÍ

1*̂ 4 1 ^^ B¡̂ A¡ G¡ H¡

(J5\ fF>) G¡+S^¡+1 A¡+l B¡+l

I )X~^ 1^-^Cl H¡+| E¡+1 D¡+| C¡+,

r?\ (^ (ÏÏ\ Dvi O,., E¡+l FU.,
\3J \$) \a)

B¡+, A¡+, G¡+| H i+,

— (a) (b) (c)

1

75

time

V

Figure 5.2 List scheduling when the priority function is the negative depth

|

(a) Example of TT- graph composed only of INRDs
(b) Schedule obtained by assigning more priority to nodes with the highest negative depth
(c) Schedule obtained by assigning more priority to nodes with the lowest negative depth

1 5.5.1 The 0-mobility of a node

0-mobility is a particular case of mobility. Mobility is defined as the difference between the

I ALAP time and the ASAP time of a node. A node u has no mobility or has 0-mobility when
ALAP(u) - ASAP(u) = 0. A node u which has 0-mobility is a node that can be scheduled only
at cycle ASAP(u). Therefore, anode with 0-mobility must be immediately scheduled; otherwise,

1 finding a schedule would be impossible. Since 0-mobility nothing says about nodes with mobility
greater than zero, it must be used in combination with other priority function(s).

I 5.5.2 The positive depth of a node

Positive depth gives an idea of the urgency for scheduling the node. Some algorithms [GK84,

|
Gof76, PP88] use this priority function as main criterion to select which node must be scheduled.
This criterion is sufficient for finding an optimal schedule when the number of resources is not
constrained. When this priority function is used, the nodes with the highest positive depth have

I the greatest priority.

1 5.5.3 The negative depth of a node

Motivation and example

1
Figure 5.2(a) shows an example of ?r-graph representing a loop in which all dependences are INRDs

1
(initial negative restrictive dependences}. The numbers under labels of nodes are the negative
depth assigned to each node. We assume that all instructions are multiplications that can be
executed in a fully pipelined multiplier in 3 cycles (the result latency is 3 and the issue latency is
1). We also assume that two multipliers are available. With this assumption, MII(ir) = 4.

Figure 5.2(b) shows a schedule obtained by assigning first the nodes with the lowest negative
depth (the most negative). The schedule is incorrect, since dependences (D,F) and (B,E) are

1

1
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consecutive iterations. Intuitively, it is easy to see that the topology of the 7r-graph must guide
the scheduling process. Thus, it seems better to schedule first ..the instructions with the highest _
negative depth (the least negative), as shown in Figure 5.2(c). •

The negative depth initially assigned to each node assumes the node is ALAP scheduled (see
definition of INRD). Let us consider an INRD (u, v). The negative depth of v would decrease from •
its initial value as much as S(u) differs from the initial value of ALAP(u), reducing its priority for |
scheduling with regard to other instructions. Moreover, the decreasing must be extended across all
the NRDs. The new value in the negative depth must reflect the same priority among instructions «
that recomputing the negative depth for all nodes after scheduling u. The advantage of extending I
the decrease is that the computational complexity is lower than the computational complexity of
recomputing the overall negative depth1. Summarizing:

• An initial negative depth must be assigned to every node by using the INRDs from the
scheduling graph. «

• Negative depth may change for some nodes during the scheduling process. •

Changing negative depth of successors

Given an NRD (u,v), v is called a, negative'successor of ù. Let k be an integer number greater •
than zero. If u is scheduled at cycle ALAP(u) - k, the negative depth of v must decrease in k
units. Moreover, the decrease must be extended towards all the negative successors of v, and so •
on. The negative depth of a node is modified when it has not yet been scheduled, and once as •
maximum (to avoid negative cycles). A simple Breadth-first search algorithm may update the
negative depth of the negative successors of a node in 0(V + E) time [CLR90]. The algorithm is _
invoked only when a npde is scheduled before its ALAP time. I

Changing negative depth of predecessors

1 O(V + E) if a node is modified only once, face to 0(V2lg V + VE).

I
Let us consider an NRD (u,v), and let us assume that v has already been scheduled and u has •
not yet been scheduled. The priority to select u must increase as much as ALAP(u] differs from •
IALAP(u). Since Equation (4.6) gives IALAP(u) = í í — D+(u), we conclude that the negative
depth of u must increase in k = II — D+(u) — ALAP(ii) units after scheduling v (note that k > 0).
Moreover, the increment must be extended towards the predecessors of u not yet scheduled, and so •
on. Updating the negative predecessors of w always increments their negative depth, and thus their B
priority for scheduling. In order to avoid negative cycles, all nodes are visited once as maximum.
Negative depth is only modified if the node has not yet been scheduled. •

We will consider NSDs (negative scheduling dependences) instead of NRDs when negative depth
of predecessors is dynamically changed. This is because NRDs are a subset of the NSDs, which _

I
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express constraints only towards the successors. Therefore, we define that u is a negative predeces-
sor of v if (u, v) is an NSD. As for the negative successors, a simple Breadth-first search algorithm
may update the negative depth of the negative predecessors of a node in O(V + E) time [CLR90].

Dynamic changes 011 negative depth

For the sake of simplicity in the notation, we will henceforth shorten the negative predecessors
not yet scheduled by NPNS, and the negative successors not yet scheduled by NSNS. When u is
scheduled before ALAP(u), the negative depth of its NPNS increases while the negative depth of
its NSNS decreases (in general). Thus:

• The priority for scheduling the NPNS of u increases face to the remainder nodes not yet
scheduled.

• The priority for scheduling the NSNS of u decreases face to the remainder nodes not yet
scheduled.

Experiments have shown that taking NPNS before NSNS into account gives better results. There-
fore, the negative depth of the NPNS is updated before the negative depth of the NSNS. Note
that since the negative depth of a node is updated only once (as maximum) for each scheduled
instruction, the result obtained is different according to whether NPNS are modified before or
after NSNS.

Example of dynamic changes on negative depth

Figure 5.3 shows the effectiveness of considering dynamic changes on negative depth during the
scheduling process. We assume that all instructions in the 7r-graph from Figure 5.3(a) are mul-
tiplications, and the architecture has two fully pipelined multipliers able to multiply in 2 cycles.
The objective is finding a schedule in 4 cycles (the Mil).

Figures 5.3(b) and 5.3(c) show respectively the positive and initial negative depth under labels of
nodes, as well as the PSDs and INRDs. Dependences (B, E), (B, F), (C, G) and (D, G) are NSDs
but are not INRDs. Figure 5.3(g) shows an incorrect schedule obtained by using the initial value
of the negative depth as priority function. According to the priority function (1st) positive depth
and (2nd) negative depth, nodes have been scheduled in the following order: E, F, G, H, A, D, C
and B.

Note that instruction B cannot be scheduled at the last cycle because dependence (B,E) is
violated. A bold line in Figure 5.3(g) represents such a violation. On the other hand, if B is the
last scheduled instruction, it can only be assigned at cycle 3 because all the resources are busy
at cycles 0, 1 and 2. However, the scheduling of B is advanced to the C and D when dynamic
changes on negative depth are taken into account, as shown in Figure 5.3(h). Nodes have now
been scheduled in the following order: E, F, G, A, H, B, D and C.
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Figure 5.3 Scheduling with (1st) Positive depth (2nd) Negative depth
(a) Example of 7r-graph
(b) PSDs and positive depth
(c) INRDs and initial negative depth
(d) NSDs and final negative depth for the schedule of 7r-graph (h)
(e) Negative depth of nodes after scheduling instruction E
(f) Negative depth of nodes after scheduling instruction F
(g) Wrong schedule found without considering dynamic changes on negative depth
(h) Schedule found by taking dynamic changes on negative depth into account
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Figure 5.4 Scheduling with: (1st) Positive depth (2nd) Number of successors
(a) Example of TT-graph
(b) Scheduling without considering resource constraints, dependences belonging to the scheduling
graph and positive depth of nodes. Instructions are aligned according to their positive depth
(c) Schedule obtained by using two adders with the priority function (1st) Positive depth (2nd)
Number of successors
(d) A possible schedule for two adders obtained by using as priority function (1st) Positive depth
(2nd) random

5.5.4 The number of successors (not yet scheduled) of a
node in the scheduling graph

The scheduler has greater possibilities of success if it can choose among the highest number of
nodes. Thus, assigning more priority to nodes with the highest number of successors connected
by PSDs or NRDs is a good priority function2. This priority function is a refinement of a more
general one, consisting in assigning more priority to the node with the highest number of successors.
This priority function has previously been used by systems as [CLS93], which uses it in the loop
pipelining algorithm as the only priority function.

Figure 5.4 shows an example of the effectiveness of considering this priority function. Note that
the schedule found by using the number of successors not yet scheduled as criterion is shorter than
that obtained by using a random criterion.

5.5.5 The use of resources performed by an instruction

Since instructions are assigned at its ASAP time if possible, the resources are in general more
used at the first cycles of a schedule. Therefore, scheduling an instruction among consecutive
iterations (by module-assignment) will become difficult as the resource utilization performed by
the instruction increases. In order to avoid this mishap, we first schedule instructions performing
the highest use of the resources.

Figure 5.5 shows an example of the effectiveness of using this priority function in an overlapped
schedule. Note that w uses fewer resources than v. Figure 5.5(c) shows a schedule in 8 cycles,

2Note that a successor connected by an FSD is already in the list of nodes ready to be scheduled.
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Figure 5.5 List scheduling by using as priority function the resource utilization performed by
an instruction
(a) ir-graph example
(b) Execution pattern of instructions
(c) A possible schedule requiring 8 cycles . . , . . . , . . . .
(d) Overlapped schedule obtained by considering resource utilization

achieved by scheduling w before v. Figure 5.5(d) shows an overlappëd'-scliëdule of 6 cycles length,
achieved by scheduling v before w. Shadow parts in the schedule show the resource utilization
carried out by w.

5.5.6 Complexity of selecting a node for scheduling

The running time of function selecting a node for scheduling is the highest running time of all the
priority functions.

• By assuming that the ASAP time and the ALAP time of a node can be computed in 0(1)
time (they can be held as information in the node), deciding which nodes have 0-mobility is
computed in 0(V) time.

• Computing the node with the highest positive and negative depth also executes in 0(V) time,
since positive and negative depth are data included in node information.

• The running time of computing the number of successors for each node is, at most, 0(E).

• Finally, by assuming that the resource utilization of a node is also a datum included in node
information, computing the node that uses more resources executes in 0(V) time.

Therefore, the running time of selecting a node for scheduling is 0(V + E).
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Scheduling a H- graph

function scheduling (ir, ÍÍ,);
if MPP(-ïï) > II then return false; {scheduling impossible}
wp:=G(V,E+,X,6);
READY ;=0;. . . . . . .
for each u € V do :

if predecessors(u, 7rp)=0 then append(u, READY);
while READY is not empty do

node :=select_node(-R-E'yl-Dy ) ;
delete.node(node, READY);
c:=ASAP_scheduling(nocfe);
if node cannot be scheduled then return false;
update_negative_predecessors(7r, node, II );
if c ̂  ALAP(node) then update_negative_successors(?r, node, II );
append_successors(node, TTP, READY);

return true;

Figure 5.6 Scheduling algorithm

5.6 SCHEDULING ALGORITHM

81

The overall scheduling algorithm is sketched in Figure 5.6. The scheduling is impossible if
MPP(-ïï) > II. READY is the list of the nodes ready to be scheduled. Function predeces-
sors returns the number of predecessors of a node. Function ASAP -scheduling assigns a node
as soon as possible and returns the cycle at which the node has been scheduled. Function
pend_successors(w, irp, READY) appends the successors of u in TTP to the list READY .

Computational complexity

The running time of the loop is as follows:

• The running time of function select-node is 0(V + E).

• Updating negative successors and predecessors executes in 0(V + E) time.

• Appending successors of a node to the list READY executes in 0(E) time.

Since the loop iterates \V\ times, the running time of the loop is 0(V2 + VE).

5.7 SUMMARY AND CONCLUSIONS

In this chapter, we present a list scheduling algorithm which executes in polynomial time.

ap-

We
describe how the schedules of successive iterations may be overlapped by modulo-assigning instruc-
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tions in the reservation table. Although modulo scheduling is a well-known family of algorithms, |
most of the algorithms in HLS literature do not use the modulo- assignment feature in the reserva-
tion table. This is because such algorithms try to find as short a schedule of the loop as possible. •
We show that systems which know in advance the expected length of the schedule may efficiently I
modulo-assign instructions, obtaining shorter schedules than other approaches that do not. make
use of this knowledge. We call them overlapped schedules.

We also present the priority functions used to select an instruction for scheduling. Some of the •
priority functions are well-known, while others are presented here for the first time.

This chapter does not report results since the scheduling algorithm has been devised to be in- I
tegrated in a loop pipelining system. Chapters 6 and 8 show the results obtained by the loop
pipelining approach. —

The main contributions of this chapter are the following: ™

• Although maximum time constraints have previously been studied by other authors, this is I
the first time negative depth is proposed as priority function in a list scheduling algorithm. In
fact, to our knowledge, this is the first time negative depth is proposed to represent maximum
time constraints. . . . I

...... The use . of resources :of eachjl;no.de must be, .taken into, account by the. algorithm since, the
schedule may be overlapped. M

Some algorithms previously proposed by other authors could benefit from negative depth. For
example, the algorithms that simultaneously schedule and transform the loop, instruction by in- •
struction. These algorithms retime the loop while scheduling is in process, transforming positive •
scheduling dependences into negative scheduling dependences. Therefore, taking negative schedul-
ing dependences into account is very important for these algorithms. Modulo scheduling [RG81] _
and the algorithm described in [MD90] are examples of these kind of algorithms. I

Dynamic changes on negative depth are shown to be an important key for scheduling retimed
loops. Retimed loops usually contain a lot of NSDs, and therefore this kind of dependence plays an I
important role in the scheduling process. It is therefore crucial for some loops to take the variations |
produced in such dependences during the scheduling process fully into account. Moreover, the
combination between positive and dynamic negative depth behaves is often similar to human •
behavior when schedules are performed by hand (the other priority functions take part in only ten •
per cent of the decisions). ,
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