
UNIVERSITAT POLITÈCNICA DE CATALUNYA

LOOP PIPELINING WITH
RESOURCE AND TIMING

CONSTRAINTS

Autor: Fermín Sánchez

October, 1995

I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8
TCLP: LOOP PIPELINING WITH TIMING

CONSTRAINTS

8.1 INTRODUCTION

The term timing constraints has previously been used to refer to two types of timing constraints:

• Local liming constraints. In some types of applications, i.e. the behavioral synthesis of
interfaces [NT86], it is useful to specify minimum and/or maximum timing constraints between
operation pairs. Approaches to solve scheduling with local timing constraints can be found in
[NT86, KD90b, NK90].

• Global timing constraints. Some applications require data to be processed with a maximum
delay time. In these applications, the objective is to find a loop schedule which satisfies
the timing constraints; that is, a schedule no longer than the given maximum delay time.
Many real-time signal processing applications in video, image, speech and telecom process-
ing [CGD94] are examples of this kind of application. Some Integer Linear Programming
approaches have been proposed to solve scheduling (not loop pipelining) with global timing
constraints [HLH91, Ach93]. Force Directed Scheduling [PK89a] addresses both local and
global timing constraints.

This chapter studies loop pipelining with global timing constraints, which is significantly different
from loop pipelining with resource constraints, studied in Chapter 6. Loop pipelining with global

143

144 CHAPTER 8

1. Initially, the minimum initiation interval of the loop is computed. The problem has no
solution when Tmax < Mil.

TCLP tries to find a schedule in Tmax cycles. .If a schedule is found,,the,algorithm executes
step 5. Otherwise, it executes step 4.

I
I
I

timing constraints can be defined as follows: "Given a fixed throughput, finding a schedule of a |
loop which minimizes the resource requirements". The throughput requirement is defined as the
maximum number of cycles required to execute each iteration of the loop, and is denoted by «
Tmax- Even though the number of cycles of a schedule is an integer number, a non-integer ÍÍ can •
be obtained by unrolling the loop. As an example, let us assume that the objective is executing ™
a loop in no more than seven cycles (Tmax = 7). Let us also assume that a single loop iteration
spends 7 cycles when using a given set of resources, but a schedule in 13 cycles is found if the •
loop is unrolled twice. With this assumption, each iteration of the unrolled loop is executed (on |
average) in 6.5 cycles (ÍÍ = 6.5). However, although the average time for each iteration is less
than Tmax, the iteration time of some iterations may be greater than Tmax cycles. This mishap •
must be avoided in some applications. •

This chapter presents TCLP (Time-Constrained Loop Pipelining), anew methodology to solve loop
pipelining with global timing constraints. Although loop pipelining with global timing constraints •
is an NP-hard problem [GJ79], TCLP solves it very efficiently, as the results presented at Section •
8.4 shows. Henceforth, we will indiscriminately use the terms global timing constraints and timing
constraints. •

The main contributions of TCLP with regard to the previous time-constrained scheduling ap-
proaches [PK89a^ HLH91, Ach93] are the following: :••",,.•.••<<• •

• Absolute lower bounds are computed for each type of resource. When these bounds are met,
an optimal solution is guaranteed. I

• Not only is a set of resources with minimum area cost computed for a given Tmax, but also
the execution throughput is increased by using such a set of resources. This goal is achieved
by exploring in increasing order of throughput different unrolling degrees of the loop with •
different expected initiation inter vals.. Farey's series are used to do such exploration. •

• The number of required registers is finally reduced, producing a schedule with minimum cost «
in time and area (resources and registers). •

8.1.1 Strategy overview I

Figure 8.1 shows the flow diagram of TCLP. As we can see, the steps performed by TCLP to find
a schedule for a given maximum time constraint Tmax are the following: •

I
2. TCLP next attempts to find a loop schedule with minimum cost (minimum area requirements

and maximum throughput). In order to compute the initial architecture, the absolute lower •
bound on the number of resources of each type required to execute the loop is computed. I
Section 8.2.2 explains how this calculation.is done.

3. By using the lower bound for each type calculated at step1 2 as the initial set of resources, I

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TCLP: Loop Pipelining with Timing Constraints 145

NO FEASIBLE
SOLUTION

Computing lower
bounds on resources

Retiming and
Scheduling the loop

T
FINAL

SCHEDULE

Figure 8.1 Flow Diagram of TCLP

I
I

146 CHAPTER 8 .

4. When no schedule is found by, using the current set qf^resources, heuristics ; are used to select |
a type of resource. The number of resources of such a type is increased. One instance of
the selected resource is added to the architecture and step 3 is executed again. Section 8.2.3 M
shows such heuristics. •

5. At this point, a schedule in Tmax cycles has been found for a given set of resources. Since
the heuristics used at step 4 do not guarantee a minimum set of resources (and therefore •
a minimum area cost), TCLP attempts to reduce the number of resources of the current •
architecture while maintaining the throughput of the schedule. Section 8.2.4 explains the
approach used to do this. _

6. Once a minimum area-cost schedule has been found, the execution throughput is increased |
without varying the set of resources. Throughput is explored in increasing order by using
Farey's series Frmax, as shown in Chapter 6. . •

7. Finally, once a schedule with minimum area cost and maximum throughput has been found, •
TCLP reduces the number of required registers.

On one hand, results in Appendix C show that increasing the execution throughput usually in-
creases the number of required registers.. This -is .because throughput. is, reduced by unrolling
the loop and, in general, the number of required registers increases with the unrolling degree. •
Therefore, step 6 may be eliminated depending on whether the area consumed by the registers is M
considered or not.

On the other hand, reducing the number of registers may increase the execution throughput. This |
is because instructions in the schedule may be compacted by RESIS, achieving in some cases a
reduction in the II of the schedule. Therefore, we conclude that steps 6 and 7 may be swapped «
according to which objective is more important. In this assumption, throughput is reduced whilst •
the number of registers is not increased.

' ' " I

8.2 TCLP APPROACH

I8.2.1 Minimum initiation interval

Since the number of resources must be decided by TCLP, only recurrences in the loop must be
taken into account to calculate the minimum initiation interval. Therefore, the Mil is the RecMII
(recurrences minimum initiation interval) studied in Chapter 3 (definition 3.11).

I

I
8.2.2 Absolute lower bound on the set of resources

Since the expected number of cycles of the loop schedule is known in advance (Tmax), an absolute •
lower bound on the number of resources of each type required to execute the loop can be computed.
Two lower bounds must be taken into account:

I

I

I

I

TCLP: Loop Pipelining with Timing Constraints , 147

1. Let n¿ be the number of times a resource of type i is used by an iteration of the loop1.
A lower bound on the number of resources of type i required to execute the loop, LBi, is
LBi = - .

2. On the other hand, the execution pattern of any operation may require EP¡ (EPi > LBi)
resources of a given type i in a given cycle to be executed correctly.

The absolute lower bound on the number of resources of type i required to execute the loop, NÍ,
is the maximum between LBi and EP¡ .

NÍ = m&x(LBi,EPi)

TCLP starts with an architecture composed of NÍ resources for each type of resource i. However,
having NÍ resources of every type i does not guarantee that a schedule in Tmax cycles exists,
since dependences in the loop may prevent a schedule from being found.

8.2.3 Increasing the number of resources

Finding a schedule in Tmax cycles

Algorithm 6.3 (retiming-and-scheduling), described in Section 6.4.2, is used to find a schedule for
the loop.

Retiming-and-scheduling successively transforms the initial ?r-graph by means of dependence re-
timing. After each transformation, the 7r-graph is scheduled (by using Algorithm 5.6), attempting
to find a schedule in Tjnax cycles in the current set of resources. Dependence retiming is done
until a schedule is found for some 7r-graph or retiming can no longer be performed because the
7r-graph with the highest quality (see Section 6.4.1) has been found. If no schedule is found, the
number of resources of some type is increased and retiming-and-scheduling is executed again. This
process is repeated until a schedule is found.

Which type of resource must be increased ?

Heuristics are used to determine which type of resource(s) is(are) mainly responsible for not finding
the schedule. Once such a resource has been found, the number of resources of this type is increased
in one unit and retiming-and-scheduling is executed again by using the new set of resources.

Two different reasons can preclude that a schedule in the expected number of cycles be found2:
1 n¿ is computed by adding the number of times each operation of the loop uses a resource of type i.
2 We assume the critical path of the 7r-graph is less than or equal to the expected //. Otherwise, the schedule

would be impossible.

148 CHAPTER 8

I
I
I

Some operation cannot be scheduled because of sufficient resources are not available. When
sufficient resources are not available to schedule an operation u at.its ASAP time, it is deferred
to the next cycle, and so on. Deferring u may produce the deferring of some successors of u.
Therefore, the ASAP time of some successors of u increases as well as their time frame for
scheduling (ALAP — ASAP) decreases. As the number of resources is limited, some of these
successors may not be scheduled within this range. When this happens, the deferring of u is
considered responsible for not finding the schedule. The resource which causes the deferring
of u is increased by one unit.

The TT-graph used to determine u is the 7r-graph with the greatest quality found by retim-
ing-and-scheduling. We consider this 7r-graph as the one with the greatest constraints imposed
by the resources, since it is the one with the fewest constraints imposed by data dependences.
Figure 8.2 shows an example. The schedule of the 7r-graph with the highest quality (by using
2 adders and 1 multiplier) produces the deferring of instructions B and D. D is scheduled
after its ASAP-time due to the deferring of B. B is scheduled after its ASAP-time because
only one multiplier is available at cycle 1. Therefore, the number of multipliers is increased.
The final schedule, by using 2 adders and 2 multipliers, is shown in Figure 8.2(d).

A,

EO
DO'

k

c,
,B,

1 Resource
•̂ dependence

Data

Lime

+ + * *

A]

DO EO B, c,
(c)

Figure 8.2 Resource responsible for not finding the schedule
(a) Example of 7r-graph
(b) 7r-graph with the highest quality
(c) Schedule for-ir-graph (b) by using 2 adders and 1 multiplier
(d) Schedule for 7r-graph (b) by using 2 adders and 2 multipliers

(d)

There is no time frame to schedule some instruction u. In this assumption, ALAP(u) <
ASAP(u). Figure 8.3 illustrates this fact with an example. Let us assume that the instruction
latency is Lu — Lv = 2, and Lw = I . Figure 8.3(b) shows a possible schedule in which u and w
have already been scheduled at cycles 0 and 3 respectively, and v has not yet been scheduled.
When the scheduler attempts to schedule v, it finds that v should be scheduled after (or at)
cycle 2 because of ILD (u, v) (time frame TF^)t and'.before (or at) cycle 1 because of ILD
(v , w) (time frame TF\). Since both time frames are disjoint, the scheduler fails. This problem
cannot always be solved in loops with recurrences. When this occurs, TCLP increments the
resource most used by the loop.

I

I

I

I

I

I

I

I

I

I

Algorithm

Algorithm 8.1 presents the proposed approach. I

I

I

I

I

I

I

I

i

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

T CLP: Loop Pipelining with Timing Constraints ^ , 149

time (tvc/t'.v)

(a) (b)

Figure 8.3 (a) Example of 7r-graph (b) v. has no time-frame to be scheduled

function increase-set-of.resources(ir,II, 72.);
{ "R. is the set of resources}
loop

found := retiming-and-scheduling(ir,II);
exit if found;
R:=select resource to increase;
increase resource R;

Algorithm 8.1 Algorithm to increase the architecture until a schedule is found

Each iteration of the while loop executes in 0(V2E + VE2) time (the execution time of retim-
ing-and-scheduling). Experiments have shown that the number of iterations of the loop is very
small. Therefore, we conclude that the execution time of the whole algorithm is the same as the
execution time of one iteration of the loop.

8.2.4 Reducing the set of resources

In some cases, the heuristics used to increase the resources might lead to solutions that are no
local minima. For example, if the first instruction deferred in schedule from Figure 8.2(c) was
an addition instead of a multiplication, increase-sei^of.resources would increase the number of
adders, and no schedule in two cycles would be found. Therefore, when the number of multipliers
would be later increased, TCLP would find a schedule in two cycles by using more adders than
those actually required. To avoid this, TCLP attempts to reduce the number of resources of
the architecture after a schedule has been found (while maintaining the initiation interval of the
schedule).

In order to obtain a schedule with a lower area cost, resources are greedily explored in decreasing
order of area. That is, if a multiplier uses more area than an ALU, TCLP tries to reduce the
number of multipliers before reducing the number of ALUs. It has been shown that this step is
very important in the optimization of the number of resources, since it is able to correct errors
introduced by the heuristics described in Section 8.2.3. The combination of both steps (increasing
and decreasing resources) produces optimal results in almost all cases by using little CPU time,
as shown in Section 8.4. Algorithm 8.2 (reduce-number-of-resources) is used by TCLP to optimize

150 CHAPTER 8

the area cost of the schedule. In the algorithm, 7V¿ is the absolute lower bound on the number of
resources of type i required to execute the loop, and J2¡ is the current number of resources of type

function reduce-number-of-resources(x,n, 72.);
for each type of resource (i) do
(explored in decreasing order of area)

loop
exit if Ri =Ni;
remove a resource of type i;
found := retiming-and.scheduting(w,II);
if not found then

add a resource of type i;
exit;

Algorithm 8.2 Algorithm to reduce area cost.

Given that experiments show that the loop iterates only a few times, ,we conclude that the execution
time of reduce-number.of.resources is the same as the execution time of reiiming.and-scheduling:

8.2.5 Increasing throughput

K

Th=MaxTh.

* max . M axil
Ilk

Figure 8.4 Exploration of the throughput diagram

Once the number of resources has been fixed, TCLP tries to increase the schedule throughput
without varying the architecture. This is done by exploring the points in the throughput diagram
in increasing order of throughput, starting at the point (K,IIj() = (l,Tmax) and finishing at
any point in the line Th = MaxTh. The shadowed triangle in Figure 8.4 shows the space to be

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TCLP: Loop Pipelining with Timing Constraints > ' 151

function increase-throughput(TT,
X := 1;!' :— Tmax;
found := true;
while found and y < MaxTh do

7T :=nmroll(initiaLloop,X);
found :=retiming,and.s cheduling (T , Y);
Y :=Next element in FMO.XII',

Algorithm 8.3 Algorithm to find the maximum-throughput schedule

explored. Since M axil may represent the length of a schedule of several loop iterations, M axil
may be greater than T¡nax- Algorithm 8.3 shows how the schedule throughput is increased.

In general, only a few points in the throughput diagram are explored. The number of points
to explore does not depend on the size of the 7r-graph, and therefore it does not influence the
calculation of the computational complexity of function increase-throughput. The execution time of
increase-throughput is the same as the execution time of retiming -and-scheduling: 0(V2E + VE2).

On one hand, increasing the unrolling degree of the loop also increases the register pressure.
Therefore, this step may be avoided when the number of registers is limited or the size of the
registers has greater influence in the final area of the chip. On the other hand, reducing registers
may increase the throughput in some cases, because incremental scheduling may move instructions
from the last cycle of the schedule to previous cycles, reducing the initiation interval.

Moreover, since the schedule of a loop unrolled X times taking Y cycles does not guarantee that
each iteration is executed in less than Tmax cycles (it only can guarantee that each iteration

|rexecutes on average in y cycles, with |r < Tmax), this fact must be verified before considering
the schedule as a valid schedule.

8.2.6 Reducing register pressure

Once a schedule with maximum throughput and minimum area (by taking only resources into
account) has been found, TCLP attempts to reduce register pressure by reducing the number of
registers required to store partial results. To do so, the algorithm shown at Chapter 7 is used.
The execution time of such an algorithm is O(V3E + VE2}.

8.2.7 TCLP. Execution time

The computational complexity of TCLP is the sum of the execution times of all functions used by
TCLP. That is O(V3E + VE2).

152 CHAPTER 8

8.3 EXAMPLE

Let us illustrate how TGLP works by using an example. We have chosen the Fast Discrete
Cosine Transform Kernel (FDCT) from [MD90]. The maximum number of cycles of the schedule,
M axil, has been fixed to 50 cycles. The objective is to execute the FDCT in less than 18
cycles (Tjnax = 18)- The FDCT consists of 16 multiplications, 13 additions and 13 subtractions,
as Figure 8.5(a) shows. We will make the same assumptions as [MD90]. We will assume each
operation can be executed in a single cycle in the appropriate FU (a multiplier, an adder or a
subtracter).

(a)

1618 3335 4950

(b)

Figure 8.5 (a) DG of FDCT (b) Throughput exploration

TCLP works as follows:

The TT-graph has no recurrences. Therefore, RecMII — 0.

The lower bound on the number of required resources is one multiplier, one adder and one
subtracter. Retiming.and.scheduling finds a schedule in 18 cycles by using the previous ar-
chitecture (this takes less than 0.8 seconds).

The number'of resources cannot be reduced, since it is minimal.

TCLP then attempts to reduce the length of the schedule without increasing the number
of resources. Farcy's series FSQ are explored (MaxII = 50), starting at fraction ^ (point
1 in Figure 8.5(b)). Since the Mil computed by using one FU of each type is Mil = 16,
the exploration of Farcy's series will finish when a fraction less than ^ ¡s generated. The
fractions to explore are: ^, ^, ^, ^, ^, ^ and ̂ . These fractions are represented in
Figure 8.5(b). A fraction - produces the search of a schedule of x iterations of the loop in
y cycles. A fraction is explored only when a schedule has been found for the previous one.
TCLP finds a schedule for each one of the fractions, stopping when it finds a schedule for 1
iteration in 16 cycles (point 7 in Figure 8.5(b)). The time used to explore all the fractions
was 44.2 seconds.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TCLP: Loop Pipelining with Timing Constraints 153

LB FUs II req. FUs Results Cpu (secs)

Mil II | R Tf I Tr
3
4
5
6
7

6
5
4
3
3

6
5
4
3
3

3
3.4
4.25
5.66
5.66

3
3.4
4.25
5.66
5.66

9
31
24
17
17

1/3
5/17
4/17

3/17
3/17

0.21
0.11
0.13

0.11

0.16

0.00

268
143
20.3
71.1

Table 8.1 CyIron's example

After reducing the length of the schedule, TCLP attempts to reduce the number of registers.
The schedule found after the exploration of Farcy's series uses 18 registers. After reducing
the SPAN, TCLP finds a schedule using 15 registers. The final schedule, found after moving
operations, requires only 12 registers. The time used to reduce the number of registers (SPAN
reduction + incremental scheduling) was 2.55 seconds.

8.4 EXPERIMENTAL RESULTS

We present here only results obtained for HLS systems, since there is little point in presenting
results for superscalar processors and VLIW processors (the architecture is fixed).

Optimal time-constrained scheduling has been studied in [HLH91, Ach93], and some results can
be found in [Ach93]. When comparing TCLP to [Ach93], TCLP obtains schedules requiring less
area because [Ach93] is an ILP approach which does not perform loop pipelining. Thus, we will
compare the results obtained by TCLP to the lower bounds on the number of resources and the
Mil. The Mil has been computed for each case by using the set of resources required by TCLP to
find a schedule. To our knowledge, these are the first results published for time-constrained loop
pipelining.

Tables 8.1 to 8.5 show the results obtained. The first columns show Tmax and the lower bounds
on FUs (LB FUs) computed for each Tmax- The following columns specify the number and type
of resources required to achieve the given Tmax (req. FUs). The Mil calculated for each set of
used FUs, the IT of the schedule found by TCLP, the lower bound on the number of registers
required for each schedule (7?,) and the fraction of the Farey's series which is associated to the
schedule (K/IÎK) are shown in the next columns. Finally, the last two columns show the time
used to find an optimal schedule in area cost (Tf) and the time required to optimize the schedule
throughput and reduce register pressure (Tr). Note that Tr is sometimes large, whilst Tf is usually
small. We have considered MaxII — 50 for all the examples, except for (*) in table 8.5, in which
MaxII — 10. This has been considered in order to show how the parameter MaxII influences
the execution time of TCLP, since MaxII determines the number of Farey's fractions to explore
when throughput is optimized. Note that an optimal solution (by taking resource requirements
into account) is achieved in most cases.

154 CHAPTER 8

LB FUs II req. FUs Results Cpu (sees)

ALU * j ALU || Mil || II | R | K f 11K || Tf Tr

6
10
12

2
2
1

1
1
1

2
2
1

1
1
1

6
6
12

6
6
12

6
6
6

1/6
1/6

1/12

0.10
0.18
0.18

0.00
49.8
0.00

Table 8.2 Differential Equation

LB FUs || req. FUs Results Cpu (sees)
Mil || II | R Tf | Tr

16
17
18
19
27
28

1
1
1
1
1
1

2
2
2
2
1
.1

2
2
2
1
1
1

3
2
2
2
2
1

16
16
16
16
16
.26

16
17
17
19
19
28

10
10
10
9
9
12

1/16
1/17
1/17

1/19
1/19
1/28

7.18

5.00

2.92
0.73
3.42
0.70

0.00

15.8
19.2
6.36
22.3
1.70

Table 8.3 Fifth-Order Elliptic Filter with Non-Pipelined Multipliers

LB FUs || req. FUs Results Cpu (sees)

Mil || // | R Tf Tr
16
17
20
26
27
28

1
1
1
1
1
1

2
2
2
1
1
1

1
1
1
1
1
1

3
2
2
2
2
1

16
16
16
16
16
26

16
17
17
17
17
28

10
9
9
9
9
11

1/16
1/17
1/17

1/17

1/17

1/28

3.38
0.75
0.63
0.70
0.68
0.70

0.00
15.7
23.3
33.6
36.7
1.63

Table 8.4 Fifth-Order Elliptic Filter with Pipelined Multipliers

LB FUs || req. FUs Results Cpu (sees)

Mil II ft Tf I Tr
3
4
5
5(*)

6
7
8
12
13
15
16
18

6
4
4
4
3
3
2
2
2
2
1
1

5
4
3
3
3
2
2
2
1
1
1
1

5
4
3
3
3
2
2
2
1

1
1
1

6
4
4
4
3
3
2
2
2
2
1
1

5
4
3
3
3
2
2
2
1
1
1
1

5
4
3
3
3
2
2
2
1
1
1
1

2.66
4

4.33
4.33
5.33
6.5
8
8
13
13
16
16

2.66
4

4.36
4.5
5.33
6.5
8
8
13
13
16
16

44
18
139
27
38
23
18
18
12
12
12
12

3/8
1/4
11/48
2/9
3/16
2/13
1/8
1/8
1/13
1/13
1/16
1/16

1.73
1.53
0..92
1.00

1.15
0.83

1.51
0.65
0.66

0.66

1.28

0.86

15.3

0.08

1992

4.18

14.3

2.80

0.01

1.18

0.00

24.6

0.00

46.7

Table 8.5 Fast Discrete Cosine Transform. MaxII — 50 for all cases except for (*), in which
MaxII =10.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TCLP: Loop Pipelining with Timing Constraints ! 155

8.5 SUMMARY AND CONCLUSIONS

In this chapter we present a new algorithm for loop pipelining with global timing constraints.
The main contributions of the proposed approach with respect to the previous techniques are the
following:

• Loop pipelining is considered. Previous techniques only consider scheduling (and not loop
pipelining) with global timing constraints. Results show that TCLP improves the results
obtained by other techniques.

• Absolute lower bounds are computed for each type of resource for a given global timing
constraint. Therefore, we can compare the results obtained with the theoretically optimal
ones.

• The execution throughput and the register requirements are optimized once a schedule has
been found for the given timing constraint. This can be done in both orders first optimizing
throughput or first optimizing registers. Optimizing throughput may increase the number of
registers required by the schedule, since the unrolling degree of the loop may also be increased.
Optimizing registers may also optimizing throughput because the initiation interval of the
schedule may be reduced by incremental scheduling. Therefore, it is a designer decision
which optimization must first be performed, according to its objectives.

We have compared the results obtained by TCLP with the previous calculated lower bounds.
TCLP finds a schedule by using the minimum set of resources in a high percentage of cases. In
those cases .in which further resources are required, we think that no solution exists for the given
timing constraint by using the minimum set of resources. For example, first line of Table 8.3 shows
that 1 multiplier and 2 adders is the minimum set of resources required to execute the fifth-order
elliptic filter in 16 cycles. TCLP requires 2 multipliers and 3 adders to find a schedule. Results
from Appendix B show that no schedule in 16 cycles exists by using less registers. ILP approaches
as ALPS [HLH91] require 17 cycles for 2 multipliers and 2 adders, and 19 cycles for 1 multiplier
and 2 adders. Since these are exactly the resource requirements found by TCLP, we claim that
TCLP may obtain optimal results in most cases.

We conclude that the proposed approach is an appropriate methodology to solve the time-constrained
loop pipelining problem.

