
MULTILEVEL TILING FOR
NON-RECTANGULAR ITERATION SPACES

Marta Jiménez

Departamento de Arquitectura de Computadores

Universitat Politècnica de Catalunya

Barcelona (Spain). March, 1999

A THESIS SUBMITTED IN FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE

Doctor por la Universitat Politècnica de Catalunya

MULTILEVEL TILING FOR
NON-RECTANGULAR ITERATION SPACES

Author: Marta Jiménez

Advisor: Agustín Fernández

A mis padres y,

especialmente, a Roger.

ABSTRACT

Microprocessor-based systems are increasingly becoming the workhorse for all scientific and

engineering computation. They have numerical processing capabilities that already rival older

generations of supercomputers. Over the last decade, microprocessor design strategies have

focused on increasing the computational power available on a single chip. These advances in

computational capacity have been achieved by reducing cycle time and also via architectural

changes such as pipelined floating-point functional units, multiple instruction issue and

out-of-order execution. Nevertheless, a high computation bandwidth is meaningless unless it is

matched by a similarly powerful memory subsystem. Unfortunately, while on-chip operation

speeds have improved dramatically, the performance of memory has not. The result has been an

imbalance between computation speed and memory speed and this imbalance has led machine

designers to use complex memory systems based on a hierarchy of levels.

However, to achieve high levels of performance it is not enough by improving the hardware

structures. Compiler techniques should also be developed to fully utilize the architectural

advances. In fact, the efficiency of architectural improvements depends on the compiler ability to

change the structure of programs for taking full advantage of them. In the past few years,

compilers have provided some support both to improve ILP and to optimize code for complex

memory hierarchies. However, existing compiler technology is oriented mostly towards simple

numerical codes containing simple loop nests that describe rectangular iteration spaces. This is

understandable since transformations are easy to apply on this type of loop nests. Nevertheless,

several linear algebra algorithms typically used in numerical codes consist of complex loop nests

defining non-rectangular iteration spaces. Current commercial compilers are unable to restructure

and optimize these types of codes and, therefore, poor performance is achieved on these complex

loop nests.

This fact has led many programmers to restructure their algorithms by hand to perform well

on particular memory systems, a situation that has lead to machine-specific programs.

Additionally, manufacturers have tried to minimize the complexity of writing optimized code by

providing numerical libraries that attain high performance under their machine. However, not all

applications can take advantage of these libraries and there are many situations in which none of

the routines provided can specifically solve the task at hand. We believe that restructuring a code

vu

viii ABSTRACT

to achieve high performance should be the job of the compiler. Compilers, not programmers, should

handle the machine-specific details required to attain high performance on each particular

architecture.

The main motivation of this thesis is to develop new compilation techniques that address the

lack of performance of complex numerical codes consisting of loop nests defining non-rectangular

iteration spaces. Specifically, we focus on the loop tiling transformation (also known as blocking) and

our purpose is the improvement of the loop tiling transformation when dealing with complex

numerical codes. Our goal is to achieve via the loop tiling transformation the same or better

performance as hand-optimized vendor-supplied numerical libraries.

We will observe that the main reason why current commercial compilers perform poorly when

dealing with this type of codes is that they do not apply tiling for the register level. Instead, to

enhance locality at this level and to improve ILP, they use/combine other transformations that do not

exploit the register level as well as loop tiling. Tiling for the register level has not generally been

considered because, in complex numerical codes, it is far from being trivial due to the irregular nature

of the iteration space. Our first contribution in this thesis will be a general compiler algorithm to

perform tiling at the register level that handles arbitrary iteration space shapes and not only simple

rectangular shapes.

Our method includes a very simple heuristic to make the tile decisions for the register level. At

first sight, register tiling should be performed so that whichever loop carries the most temporal reuse

is not tiled. This way, register reuse is maximized and the number of load/store instructions executed

is minimized. However, we will show that, for complex loop nests, if we only consider reuse directions

and do not take into account the iteration space shape, the tiled loop nest can suffer performance

degradation. Our second contribution will be a proposal of a very simple heuristic to determine the

tiling parameters for the register level, that considers not only temporal reuse, but also the iteration

space shape. Moreover, the heuristic is simple enough to be suitable for automatic implementation by

compilers.

However, to be able to achieve similar performance to hand-optimized codes, it is not enough by

tiling only for the register level. With today's architectures having complex memory hierarchies and

multiple processors, it is quite common that the compiler has to perform tiling at four or more levels

(parallelism, L2-cache, Ll-cache and registers) in order to achieve high performance. Therefore, in

today's architectures it is crucial to have an efficient algorithm that can perform multilevel tiling at

multiple levels of the memory hierarchy. Moreover, as we will see in this thesis, multilevel tiling

should always include the register level, as this is the memory hierarchy level that yields most

performance when properly tiled.

Multilevel Tiling for Non-rectangular Iteration Spaces ix

When multilevel tiling includes the register level, it is critical to compute exact loop bounds and

to avoid the generation of redundant bounds. The reason is that the complexity and the amount of

code generated by our register tiling technique both depend polynomially on the number of loop

bounds. However, to date, the drawback of generating exact loop bounds and eliminating redundant

bounds has been that all techniques known were extremely expensive in terms of compilation time

and, thus, difficult to integrate in a production compiler. Our third contribution in this thesis will be a

new implementation of multilevel tiling that computes exact loop bounds at a much lower complexity

than traditional techniques. In fact, we will show that the complexity of our implementation is

proportional to the complexity of performing a loop permutation in the original loop nest (before

tiling), while traditional techniques have much larger complexities. Moreover, our implementation

generates less redundant bounds in the multilevel tiled code and allows removing the remaining

redundant bounds at a lower cost. Overall, the efficiency of our implementation makes it possible to

integrate multilevel tiling including the register level in a production compiler without having to

worry about compilation time.

The last part of this thesis is dedicated to studying the performance of multilevel tiling. We will

discuss the effects of tiling for different memory levels and present quantitative data comparing the

benefits of tiling only for the register level, tiling only for the cache level and tiling for both levels

simultaneously. Finally, we will compare automatically-optimized codes against hand-optimized

vendor-supplied numerical libraries, on two different architectures (ALPHA 21164 and MIPS

R10000), to conclude that compiler technology can make it possible for complex numerical codes to

achieve the same performance as hand-optimized codes on modern microprocessors.

AGRADECIMIENTOS

Deseo expresar mi más sincero agradecimiento a todas las personas que, con su ayuda, han hecho

posible la realización de este trabajo:

A Agustín Fernández, por dirigir esta tesis y animarme continuamente a seguir adelante.

A José M. Llabería, por supervisar todo este trabajo, por todo lo que me ha enseñado y por

todo el tiempo que me ha dedicado.

A Dolors y a Toni, por acompañarme durante todos estos años, por su ayuda y sus ánimos.

A Sergi y a Mildred, por aceptarme durante tantos años como compañera de despacho.

A todo el personal del LCAC y a los administradores de sistemas del CEPBA, por su

excelente soporte técnico.

A Anna, Luis, Montse, Enric, Jose Ramón, Pepe y a todo el departamento de Arquitectura de

Computadores, por ser magníficos compañeros de trabajo.

A Herr Huther, Herr Boyer y, muy especialmente, a Don José Cruz Santana, por todo lo que

me enseñaron durante mi infancia.

A Pau Calpe y Gonzalo Martín, por estar a mi lado en los momentos más difíciles y por todo lo

que hemos compartido y vivido juntos.

A mis tíos, Ramón y Ma. Angela, y a mis primas, Carmen, Elisabet y Angela, por acogerme

durante mis primeros años en Barcelona y hacer que me sintiera como en casa.

A toda mi familia de Barcelona, especialmente a Ramón Espasa, Carme Sans, Marina

Espasa y Carme Alfonso, por todo su cariño y por su apoyo continuo durante todos estos años.

A mi hermana Carmen, por hacerme reír cada día con sus divertidísimos e-mails y por ser

algo más que una hermana.

A mis padres, José Luis y Carmen, y a mis hermanos, José Luis, Ching Lee, Isaac, Cristian y

Carmen, por su infinito amor, por su incesante apoyo y por mucho más de lo que puedo expresar

con palabras.

Finalmente, y con todo mi cariño, a Roger. Sin ti, este trabajo no habría sido posible.

XI

xii AGRADECIMIENTOS

This work was supported in part by the Ministry of Education of Spain under contracts TIC-92-0880,

TIC-95-0429 and TIC-98-0511 and by the CEPBA (European Center for Parallelism of Barcelona).

CONTENTS

1 INTRODUCTION 17

1.1 Motivation 18

1.2 The Memory Latency Problem 21

1.3 Coping with Memory Latency 22

1.3.1 Hardware Strategies 22

1.3.2 Compiler Strategies 24

1.4 Loop Tiling in Commercial Compilers 27

1.5 Thesis Overview 30

1.6 Related Work 31

1.7 Thesis Organization 33

2 LOOP TILING BASICS 35

2.1 The Loop Tiling Transformation 36

2.2 Preliminary Concepts 38

2.3 Automatic Loop Tiling 44

2.3.1 Dependence Analysis 45

2.3.2 Locality Analysis 48

2.3.3 Code Updating Phase 55

2.4 Non-rectangular Iteration Spaces 62

2.5 Summary 63

3 TILING FOR THE REGISTER LEVEL 65

3.1 Introduction 66

3.2 Implementation of Register Tiling 68

Xlll

xiv CONTENTS

3.2.1 Overview 68

3.2.2 A Step-by-step Example of Register Tiling 71

3.2.3 Index Set Splitting Algorithm 74

3.2.4 Complexity and Code Expansion 86

3.3 Benefits of Register Tiling 89

3.3.1 Reducing Load/Store Instructions 90

3.3.2 Improving Instruction Level Parallelism 92

3.3.3 Register Tiling vs. Outer Unrolling 93

3.4 Locality Analysis for the Register Level 94

3.4.1 Tile Directions : 95

3.4.2 Iteration Space Shape 98

3.4.3 Heuristic 102

3.5 Performance Evaluation 107

3.5.1 Evaluation Process 107

3.5.2 Performance Results 109

3.6 Related Work 120

3.7 Summary 122

4 SIMULTANEOUS MULTILEVEL TILING 123

4.1 Introduction 124

4.2 Conventional Tiling Implementation 126

4.2.1 Implementation 126

4.2.2 Complexity 128

4.3 Simultaneous Multilevel Tiling 130

4.3.1 Framework 130

4.3.2 Strip-mining all Loops at all Levels 134

4.3.3 Loop Permutation 134

4.3.4 SMT Summary 145

4.3.5 SMT Example 145

Multilevel Tiling for Non-rectangular Iteration Spaces xv

4.4 Efficient Implementation of SMT 147

4.4.1 Computing the Bounds of TI-loops 147

4.4.2 Examining fewer Simple Bounds 148

4.4.3 Steps of the Efficient SMT Implementation 152

4.4.4 SMT Algorithm 156

4.5 Complexity of the Efficient SMT Implementation 160

4.6 Redundant Bounds 165

4.7 Comparing SMT vs. Conventional Techniques 178

4.7.1 Complexity 178

4.7.2 Redundant Bounds 180

4.8 Related Work 182

4.9 Summary 184

5 MULTILEVEL TILING EVALUATION 185

5.1 Introduction 186

5.2 Effects of Loop Tiling 187

5.2.1 Tiling for the Register Level 187

5.2.2 Tiling for the Cache Level 190

5.2.3 Tiling for the Cache and Register Levels 192

5.3 Evaluation Process 194

5.3.1 Benchmarks Programs 194

5.3.2 Target Architectures 195

5.3.3 Code Generation 195

5.4 Performance Evaluation 198

5.5 Hand vs. Automatically-Optimized Codes 209

5.5.1 Evaluation Process 209

5.5.2 Performance Results 211

5.6 Related Work . .216

5.7 Summary 217

xvi CONTENTS

6 CONCLUSIONS AND FUTURE WORK 219

6.1 Conclusions 220

6.2 Future Work 223

A FOURIER-MOTZKIN ALGORITHM 225

A.1 Introduction 226

A.2 Implementation 226

B PROOF 229

B.I Introduction 230

B.2 Proof 232

B.3 Back to the Notation of Chapter 3 234

C BENCHMARK PROGRAMS 235

D PROOF 239

BIBLIOGRAPHY 243

l
INTRODUCTION

Summary
In this chapter we present the motivation behind this thesis. Our goal is to improve current compiler

technologies to achieve high performance on complex numerical codes. The main reason numerical

codes perform poorly on modern microprocessors is that they do not utilize the memory system

effectively, specially the register level. In this chapter, we review different hardware and compiler

techniques developed to maximize the effectiveness of the memory system and we explain why

current commercial compilers still perform poorly when dealing with complex codes. Finally, we

conclude with a thesis overview, a summary of related work and the thesis organization.

17

18 CHAPTER 1

1.1 MOTIVATION

Microprocessor-based systems are increasingly becoming the workhorse for all scientific and

engineering computation. They have numerical processing capabilities that already rival older

generations of supercomputers and the microprocessors used in these systems will continue to

improve due to every-increasing clock rates and new architectural advances. In contrast to the

vector-based machines that have long dominated high performance computing, these new scalar

systems are considerably more cost-effective since they contain commercial microprocessors that are

mass-produced for the large general-purpose computing market. In addition, these microprocessors

can be used to build large-scale multiprocessors capable of aggregate peak rates sometimes improving

that of current vector machines.

The performance of a microprocessor-based computer is determined by the performance of its

memory system. While on-chip operation speeds have improved dramatically, the performance of

memory has not. Thus as the processor cycle time comes down, the latency to main memory has been

increasing. To ameliorate these problems, machine designers have turned to complex memory systems

based on a hierarchy of levels. The idea behind a Memory Hierarchy is to place a small high-speed

memory close to the processor which is backed up by increasingly larger but slower memories. The key

issue for high performance under a memory hierarchy is the minimization of data transfers between

the different memory levels.

Unfortunately, modern microprocessors using such memory hierarchies perform poorly on

numerical applications. Numerical codes tend to operate on very large data sets that do not fit in the

small high-speed memories that are close to the processor. The result is a large amount of data being

transferred between the different memory levels, yielding poor memory system performance.

However, numerical codes tend to have patterns of data usage that are regular in structure and that

include opportunities for data reuse. These regularities have led many programmers to restructure

their algorithms by hand to increase data reuse and better exploit the memory hierarchy. The

drawback of this approach is that manually optimized codes are difficult to write, difficult to debug

and, even worse, hardly understandable once finished. Moreover, manually optimizing a certain code

introduces machine parameters that have nothing to do with the problem being solved and which

must be adjusted for each computer where the algorithm must be run if good performance is to be

achieved.

Manufacturers have tried to minimize the complexity of writing optimized code by providing

numerical libraries that attain high performance under their particular memory hierarchy. The

BLAS3 library [38] [39], for example, provides a set of standard linear algebra operations which are

highly optimized for each specific machine. On top of the BLAS standard interface, higher level library

packages such as LAPACK1[9] have been built. These higher level packages provide a rich variety of

Introduction 19

mathematical algorithms that take advantage of the BLAS3 vendor-optimized routines. However, not

all applications can take advantage of these libraries and there are many situations in which none of

the routines provided can specifically solve the task at hand.

We believe that restructuring a code to better exploit the memory hierarchy should be the job of

the compiler. Although the library approach just described can handle some situations, in general we

believe that compilers should take the responsibility of optimizing code to exploit the memory

hierarchy. Compilers, not programmers, should handle the machine-specific details required to attain

high performance on each particular architecture. Algorithms should be expressed in a natural,

machine-independent form and the compiler should apply the appropriate transformations to

optimize the resulting code.

In the past few years, compilers have provided some support to optimize code for complex

memory hierarchies. Compiler algorithms to manage the memory hierarchy automatically have been

developed and shown through experimentation to be effective. However, existing compiler technology

is oriented mostly towards simple numerical codes containing simple loop nests with constant loop

bounds. This is understandable since transformations are easy to apply on this type of loop nests.

Nevertheless, several linear algebra algorithms typically used in numerical codes consist of complex

loop nests that have complex functions as their loop bounds. Current commercial compilers are unable

to restructure and optimize these types of codes and, therefore, poor performance is achieved on these

complex loop nests.

As an example, Fig. 1.1 shows the performance (in Mflop/s) obtained by the linear algebra

problem STRMM, varying the problem size. Measurements were taken on a R10000 processor. The

STRMM problem is a matrix by matrix multiplication with one of the matrices being triangular. The

circle curve shows the performance obtained if we directly compile the code of STRMM using the f77

BLAS3

COMPILER

100

°IO 30 50

Figure 1.1: Performance of STRMM on the R10000 processor, varying the problem size.

70 90 100 400 700 1000 1300
Problem size

l.LAPACK, "Linear Algebra Package", is a project originated by Jack Dongarra. This project put together a new set of linear
algebra functions, supposed to supplant both the LINPACK and EISPACK packages. To achieve maximum efficiency across all
types of hardware, the LAPACK routines are based on the BLAS3 routines.

20 CHAPTER 1

- BLAS3

o-o COMPILER

30 50 70 90 100 400 700 1000 1300
Problem size

Figure 1.2: Performance of SGEMM on the R10000 processor, varying the problem size.

compiler with maximum level of optimization. The star curve shows the performance obtained if we

call the vendor-optimized BLAS3 library [38] to perform the operation. It is well known that the

BLAS3 library is highly hand-optimized to properly exploit the machine characteristics. We can see

how current compilers achieve poor performance compared with the hand-optimized code provided by

the BLAS3 library.

In contrast, let's now look at how commercial compilers behave on simple numerical codes.

Figure 1.2 shows the performance obtained by the linear algebra problem SGEMM. SGEMM consists of

a very simple loop nest, performing a rectangular matrix by matrix multiplication. We can see how, in

this case, the native compiler is able to achieve higher performance than in the STRMM problem.

Nevertheless, the hand-optimized BLAS3 library still performs better for large problem sizes.

The conclusion is that, despite all the effort put in current compilers to achieve high performance

in numerical codes, hand-optimized codes still outperform them. Moreover, this performance

difference between hand-optimized codes and automatic-optimized codes is more noteworthy in

complex numerical codes as seen in the STRMM problem.

The goal of this thesis is to develop new compilation techniques that address the lack of

performance of complex numerical codes when run under a memory hierarchy. Compiler algorithms to

restructure complex numerical codes are developed and shown through experimentation to be

effective.

The remainder of this chapter reviews different hardware techniques developed for coping with

the memory latency problem and different compilers strategies proposed for fully realizing the

architectural advances. Then we will explain why current commercial compilers still perform poorly

when dealing with complex scientific applications. Finally, we conclude this chapter with a thesis

overview, a summary of related works and the thesis organization.

Introduction 21

1.2 THE MEMORY LATENCY PROBLEM

Over the last decade, microprocessor design strategies have focused on increasing the computational

power available on a single chip. This advances in power have been achieved by reducing cycle time

and also via architectural changes such as pipelined floating-point functional units, multiple

instruction issue and out-of-order execution.

Unfortunately, a high computation bandwidth is meaningless unless it is matched by a similarly

powerful memory subsystem. Although microprocessor speed has been increasing dramatically the

speed of memory has not kept pace. Figure 1.3 shows the evolution, in relative terms, of

microprocessors and DRAM speeds over the past 16 years. As it can be seen, from 1986 onward the

microprocessor cycle time has been improving at a rate of 60% per year, approximately. Meanwhile,

DRAM speeds have been slowly improving at a rate of only 7% per year. Producers of DRAM's have

mostly focused on improving cost per bit and density per chip rather than favoring faster cycle times.

The result is that, although density has gone from 16 Kbits in a chip in 1976 to 64 Mbits in a chip in

1996 (a 4000-fold improvement), these chips have only moved from a 400ns cycle time down to a 80ns

cycle time (a 5-fold improvement). Today, memory chips are on the order of 10 to 100 times slower than

CPUs.

Also, the instruction level parallelism available in recent microprocessors has increased. Since

several instructions are being issued in the same processor cycle, the total amount of data requested

per cycle to the memory system is much higher. This increase in requested data can be partially

supported by an adequate increase in the number of memory ports. However, while most of current

microprocessors are able to issue up to 4 instructions per cycle, the number of memory ports has not

increased enough to support this degree of instruction parallelism.

These factors have led to a situation where each off-chip memory access can have extremely

large latencies. As a result, and depending on the degree of cache-friendliness, the total execution time

of a program can be greatly dominated by average memory access time.

1000

100-3

10-:

60 % per year

uProc
DRAM

l l l I 1

O O O O O O O O O O O O O O O O O O C Q

Figure 1.3: Relative evolution of microprocessor and DRAM speeds (source [101]).

22 CHAPTER 1

1.3 COPING WITH MEMORY LATENCY

The memory latency problem has been attacked from two different fronts. First, computer architects

have proposed several hardware mechanisms that ameliorate the memory latency problem:

lockup-free caches, memory hierarchies, prefetching, out-of-order execution, etc. Second, compiler

techniques have been developed to fully utilize the hardware structures available. In this section we

will briefly review different hardware techniques developed for coping with the memory latency

problem and different compilers strategies proposed for fully realizing these hardware proposals.

1.3.1 Hardware Strategies

To reduce the memory latency problem, computer architects have proposed several strategies that can

be divided into two categories: those for tolerating memory latency and those for avoiding latency.

Latency tolerance means doing "something else" while data is being fetched from memory while

latency avoidance tries to approximate memory access time to processor cycle time. The result of both

techniques is a reduction on the number of processor cycles spent waiting for memory accesses to

complete. Hardware strategies for tolerating latencies include write buffers, non-blocking loads,

lockup-free caches, prefetching, out-of-order execution and multithreading, and the most common

hardware mechanisms for latency avoidance are memory hierarchies, victim caches and

pseudo-associative caches.

One way to tolerate memory latency is to allow memory references to be buffered. This technique

was initially applied only to writes in the form oí write buffers. Using write buffers, the processor does

not have to wait for a write to complete. Instead, it performs a write by simply issuing it to the write

buffer, a simple operation that is performed in one cycle. The advantage of a write buffer is not only

that the processor does not stall when executing a write, but also that bus contention is reduced by

delaying writes until idle bus cycles occur [61].

Buffering read accessed is more difficult because, unlike writes, the processor typically cannot

proceed until the read access completes, since it needs the data that is being read. With non-blocking

loads and lockup-free caches it is possible to buffer read accesses. A non-blocking load [43] allows the

CPU to continue executing on a cache miss. That is, rather than stalling at the time a load is

performed, the processor postpones stalling until the data is actually used, thus hiding the latency of

the memory request with the following independent instructions. Non-blocking loads were later

combined with lockup-free caches [75] to escalate their potential benefits. A lockup-free cache is able to

supply data resulting from a cache hit even while processing a prior miss. Also, lockup-free caches

typically allow multiple outstanding cache misses, thus giving the processor more possibilities to

continue executing instructions while the misses are being served.

Introduction 23

Another hardware advance to tolerate memory latencies is hardware prefetching

[12] [47] [100] [114]. It tolerates memory latency by performing data requests sufficiently far in advance

of the use of the data in the execution stream. Obviously, this approach requires lockup-free caches so

that processors can proceed while prefetched data are being fetched. Prefetching also requires the

ability to predict which data items are needed ahead of time, a difficult task to be done in hardware

and that can yield to a high rate of useless prefetching that can actually lower performance. An

alternative to hardware prefetching is for the compiler to insert prefetch instructions to request the

data before they are needed [72] [93] [102] [119]. Issuing prefetch instructions incurs an instruction

overhead, thus, care must be taken to ensure such overhead does not exceed the benefits.

Besides these hardware mechanisms, in the last decade there has also been important

architectural improvements, such as out-of-order and multithreaded execution, to attack the memory

latency problem. Out-of-order architectures [8] [68] [117] [130] attack the memory latency problem by

allowing memory accessing instructions to precede while other instructions are waiting for memory

data. That is, memory instructions are allowed to slip ahead of execution instructions. Multithreaded

processors [2] [41] [118], however, deal with the memory latency problem by switching between threads

of execution every time a long latency operation (such as a cache miss) threatens to halt the processor.

All previous strategies cope with the memory problem by tolerating latencies. Another way of

dealing with this problem consists of avoiding latencies. Memory hierarchies [53] are the most

widespread approach for latency avoidance. It consists of placing small high-speed memories close to

the processor and larger slower memory further from the processor. If data that will be used multiple

times are stored in the fast memory closer to the processor, then they can be retrieved more quickly in

following requests, thus reducing the average memory latency.

The likelihood of finding data in the faster memory levels depends not only on the size,

replacement policies and organization of the levels, but also on the inherent locality of reference

within the applications. The principle of locality says that if a program refers to any given word in

memory, there is a high likelihood that in the near future the program will refer to the same location

in memory (temporal locality) or a nearby location (spatial locality). Since most applications exhibit a

reasonable amount of locality, memory hierarchies are generally quite useful. The whole hierarchy in

a modern virtual memory system may include up to six different memory levels: disk-backing store,

main memory, one, two or even three levels of high speed cache memory and the register file2.

More recent approaches to avoid memory latency are victim caches and pseudo-associative

caches. Victim caches [62] improve the performance of direct-mapped caches through the addition of a

small, fully associative cache between the first level cache and the next level in the hierarchy.

Pseudo-associative caches [3] [19] [64] [112], however, consist in cache organizations that modify a

2. Registers sore often considered separate from the rest of the memory hierarchy, because they are managed explicitly by the
compiler, however we think, and so we do in this work, that registers can be fruitfully treated as part of the hierarchy.

24 CHAPTER 1

set-associative cache to achieve an average access time close to that of a direct-mapped cache, thus

obtaining the miss rate of set-associative caches and the hit speed of direct-mapped. Basically, victim

and pseudo-associative caches both promise to improve miss rate without affecting the processor clock

rate.

1.3.2 Compiler Strategies

Due to design and technology limitations, the efficiency of all previous hardware mechanisms and

architectural improvements depends on the compiler ability to change the structure of programs for

taking full advantage of them. For instance, mechanisms that tolerate memory latencies are effective

if the compiler can schedule instruction streams with enough parallelism between the instructions,

while latency avoidance mechanisms are effective only when a compiler can determine that values

will be reused and should be kept in the fastest level of the memory hierarchy. Thus, to fully realize all

recent architectural advances and, therefore, achieve high performance on modern superscalar

processors, compilers need to find ILP to utilize machine resources effectively, and they also need to

transform the program to achieve a high degree of data locality to maximize the effectiveness of the

memory system.

When optimizing a program, the most gains will come from optimizing the regions of the

program that require the most time. These regions usually are the repetitive regions that correspond

to iterative loops whose loop body contains n-dimensional array variables. In this work we focus on

this type of regions.

Several compiler strategies have been developed to exploit a program's ILP and/or to improve the

memory hierarchy utilization inside loop nests. These strategies can be classified into two different

classes: strategies that change the original data layout of the array variables and strategies based on

loop restructuring transformations that reduce the number of executed instructions and/or change the

order in which statements are executed.

Strategies that change the original data layout of array variables are padding (or data

alignment) and data transformations. Padding [11] [82] [107] is a technique that involves the insertion

of dummy elements in a data structure, while data transformations [10] [63] [66] [92] [99] consist on

simply reorganizing the original data layout. The goal of both techniques is avoiding self and cross

interferences, thus reducing conflict misses and improving the memory hierarchy utilization. These

techniques are usually combined with loop restructuring transformations to yield high performance.

Next, we review the most relevant loop restructuring transformations that aim at improving ILP

and/or the memory hierarchy utilization [24] [79] [124]; we note that most of these transformations can

be combined together to maximize the effectiveness of the memory system and, at the same time,

improve ILP.

Introduction 25

Compiler transformations such as inner unrolling^ [129] and software pipelining [56] [79] [106]

were proposed to improve ILP, but they do not aim at enhancing data locality. Both techniques draw

out parallelism between iterations of the original loop body, but they are implemented in different

ways. Inner unrolling replaces the body of the loop by several copies of the body and adjusts the

loop-control code accordingly. Software pipelining reorganizes loops such that each iteration in the

software-pipelined code is made from instructions chosen from different iterations of the original loop.

Both transformations, in addition to yielding a better scheduled inner loop with a good degree of

parallelism, each reduce a different type of overhead. Inner unrolling reduces the overhead of the loop

(the branch and counter-update code) and software pipelining reduces the number of times that the

loop is not running at peak speed to once per loop at the beginning and end. Because these techniques

attack two different types of overhead, the best performance is usually obtained by combining them.

There are other compiler transformations whose goal is to enhance data locality at the cache

level, but not to improve program's ILP. These transformations are loop permutation, loop fusion and

loop fission [96][129]. Some programs have nested loops that access data in memory in non-sequential

allocated order. Simply permuting the loops in the nest can make the code access the data in the order

it is stored, thus improving spatial locality. Loop fusion enhances temporal locality by combining loops

when they use the same data [88] [113]. Some programs have separate sections of code that access the

same arrays, performing different computations on the common array. By fusing the code into a single

loop, the data that are loaded into the cache can be used repeatedly before being swapped out. Finally,

loop fission (the inverse of loop fusion) can also improve memory locality by breaking up a loop that

refers to a large amount of data into a sequence of smaller loops, each of which has disjoint or smaller

data requirements. This way, the program's working set is reduced ad therefore data locality

improved.

Scalar replacement [20] [23] is a code transformation that also enhances data locality, but at the

register level. One concern in generating good object code for loops that manipulate subscripted

variables is that very few compilers even try to allocate such variables to registers, despite the fact

that register allocation is often done very effectively for non-subscripted scalar variables. Scalar

replacement finds opportunities to reuse array elements and replaces the reuses with references to

scalar temporaries, hence making them available for register allocation.

A compiler transformation which is able both to improve ILP and to enhance data locality is

outer unrolling (also called unroll-and-jam) [20] [23]. Outer unrolling draws out parallelism between

iterations of the original loop body and enhances data locality at the register level in the unrolled

dimension of the iteration space. It consists in unrolling an outer loop in a nest and then jamming the

resulting inner loops back together. Outer unrolling can introduce more computation into an

innermost loop body without a proportional increase in memory references. We note that outer

3. We use the term inner unrolling to refer to unrolling to clearly distinguish it from outer unrolling.

26 CHAPTER 1

unrolling can be applied repeatedly to several loops in a nest and, in this case, data reuse is exploited

in all the unrolled dimensions. It is well known that exploiting data reuse in several dimensions of the

iteration space, whenever possible, improves the performance of the memory hierarchy [80] [97].

Finally, another compiler transformation, and perhaps the most famous one, to enhance data

locality is Loop Tiling (also called Blocking) [97] [110] [121] [128]. Loop tiling has been typically used to

enhance data locality at the cache level. It consists in dividing the iteration space defined by the loop

structures into regular tiles, creating a blocking of the data arrays. The order in which the tiles are

traversed determines the order in which the data blocks are accessed. The idea is to shorten the

distance between successive references to the same memory location, so that the probability of finding

the associated data in the memory level being exploited is higher.

Futhermore, loop tiling has other interesting properties. First, it exploits data reuse in several

dimensions of the iteration space [98] [121]. As mentioned before, this capability can improve the

effectiveness of the memory level being exploited. Second, by performing multilevel tiling, data locality

can be enhanced in several memory levels simultaneously. Multilevel tiling consists in repeatedly

applying loop tiling for each level, dividing a tile of a higher level into subtiles. Each level of tiling

exploits one level of the memory hierarchy. And third, loop tiling for the register level has the

desirable property that it always increases ILP.

Thus, loop tiling is a very powerful transformation that has the potential of outperforming the

other code transformations mentioned above since it is capable to achieve the three main

optimizations mentioned so far:

• improves a program's ILP, when it is applied at the register level,

• exploits data reuse in several dimensions of the iteration space and

• enhances data locality at several memory levels simultaneously.

We want to note that loop tiling is implemented by combining other loop transformations, such

as loop permutation, unrolling and scalar replacement. Although loop tiling can be seen as a

combination of other transformations, we refer to it as a single transformation because it is a

particular combination that yields to blocked algorithms.

As a quick summary, Table 1.1 presents all previous mentioned compiler transformations

specifying for each one its main goals (improves ILP and/or data locality), at which level data locality

is enhanced and in how many dimensions data reuse is exploited. We want to note that most of the

transformations may indirectly achieve other benefits; for instance, scalar replacement might improve

ILP by reducing the number of memory instructions executed in the loop body. In Table 1.1, however,

we only indicate the main goals of each transformation, ignoring secondary effects that the

transformation might have.

Introduction 27

Compiler
Transformation

inner unrolling

software
pipelining

loop permutation

loop fusion

loop fission

scalar
replacement

outer unrolling

loop tiling

Improves
ILP

Yes

Yes

No

No

No

No

Yes

Yes

Improves
Data Locality

No

No

at cache level

at cache level

at cache level

at register level

at register level

at several memory level
simultaneously

Number of reuse
dimensions exploited

1

1

1

1

several*

several

Table 1.1: Summary of the goals of different compiler transformations. (*) Outer unrolling can
be applied to more than one loop in a nest and, in this case, it exploits data reuse in all the
unrolled dimensions.

There are several works that focus on combining all these transformation to achieve high

performance [24] [27] [108] [122] [124]. They try to select the best combination of transformations that

yield better performance. The set of transformations that they manipulate to select a good

combination is limited by its legality4 and also by the ability of being able to generate the transformed

code.

In this thesis we will focus on the loop tiling transformation, since it is the transformation that

individually achieves more performance. The other loop transformations, if taken individually, realize

some of the goals that loop tiling achieves, but not as many. Therefore, the main motivation of this

thesis will be the improvement of the loop tiling transformation. Of course, loop tiling can sometimes

be combined with some of the previous transformations to further improve its performance. For

instance, loop fusion can be applied before loop tiling to enhance temporal locality. However, this

thesis will look at the performance of the loop tiling transformation in isolation.

1.4 LOOP TILING IN COMMERCIAL COMPILERS

With today's architectures having complex memory hierarchies, it is necessary that the compiler

performs tiling at three or more levels (L2-cache, Ll-cache and registers) to achieve high performance.

Previous work has shown that, when tiling for multiple memory levels, the register level is the most

important one, more so than the cache levels [23] [58] [80], although for loop nests with very large

working sets, tiling for various cache levels is also important. Being able to enhance data locality at

4. A loop transformation is legal if it does not violate the original data dependences.

28 CHAPTER 1

the register level is extremely important in today's superscalar microprocessors, since the register

level directly feeds the processor functional units. The typical bandwidth provided between the

register file and the functional units is three or four times larger than the bandwidth provided by the

first level cache. Typically, one can find at least 6 ports in the floating point register file whereas only

one or two ports in the first level cache are provided. If the register level is not properly exploited, then

the number of first level cache ports bounds processor performance. In general, when performing

multilevel tiling the compiler should always include the register level in order to achieve high

performance.

How do current commercial compilers deal with these issues? First of all, let's define a simple

loop nest as a set of nested loops whose bounds are constant and, therefore, describe a rectangular

iteration space. On the other hand, we define a complex, loop nest as a set of nested loops whose

bounds are maximum or minimum of affine functions of the surrounding loops iteration variable. This

kind of loop nests describe non-rectangular iteration spaces. As an example, Fig. 1.4 shows the code

and its associated iteration space for both a simple and a complex loop nest. The codes correspond to

the SGEMM and the STRMM problems used in Section 1.1.

We have observed that current commercial compilers perform quite well when dealing with

simple loop nests. For these codes, compilers essentially perform loop tiling for several memory levels.

For small problem sizes they perform tiling only for the register level and, for large problem sizes,

where cache levels affects processor performance, they also perform tiling for these other levels. Only

when loop tiling is not a legal transformation, compilers use combinations of other transformations,

such as inner and outer unrolling, software pipelining, loop fusion and loop fission, that are less

restrictive from the legality point of view.

do J = 1 , N
do K = 1 , N

(a) do l = 1 , N

enddo

D(K,J)

(b)

do j = 1, N
do K = 1 , N

do i = 1, K-1
D(I.J) = D(i,j) + D(K,J) * A(l,K)

enddo

Figure 1.4: a) Simple loop nest code and its iteration space shape (SGEMM)
b) Complex loop nest code and its iteration space shape (STRMM).

Introduction 29

For complex loop nests, however, current compilers perform poorly. For these codes, compilers

only perform loop tiling at the cache level. They do not apply tiling to the register level, despite it is

legal. Instead, to enhance locality at the this level, they use or combine other transformations, that do

not exploit the register level as well as loop tiling.

Now, our question is why compilers do not apply loop tiling at the register level in complex loop

nests despite being legal? Tiling for the register level is not generally considered because the

transformed loop nest is not easy to rewrite. Generating a transformed tiled loop nest for the register

level consists of two steps: rewriting the body of the loop nest and rewriting the loop bounds.

At the register level, after dividing the original iteration space into tiles, it is necessary to

rewrite the loop body by fully unrolling the loops that traverse the iterations inside the register tiles,

because registers are only addressable using absolute addresses. In complex loop nests, the action of

fully unrolling the loops is far from being trivial due to the irregular nature of the iteration space[121].

Currently, production compilers can only perform this unrolling for simple loop nests. In this thesis,

we propose an implementation of tiling for the register level that handles arbitrary iteration space

shapes and not only rectangular shapes.

Rewriting the loop bounds is also more difficult in complex loop nests than in simple loop nests.

The bounds of a tiled loop nest can be exact or not. We say that a loop nest has exact bounds if it never

executes an empty iteration. As an example, the code of Fig. 1.5a has exact loop bounds while the code

of Fig. 1.5b has not. Every time K is equal to N, loop I does not perform any iteration. In addition, a

loop nest can have redundant bounds. We say that a loop bound is redundant if it can be removed from

the loop and the resulting loop nest executes exactly the same iterations as the original loop nest. In

Fig. 1.5c, the lower bound J of loop I is redundant.

Computing exact bounds and avoiding the generation of redundant bounds is critical when

multilevel tiling includes the register level. As mentioned before, when tiling is being applied at the

register level, it is necessary (after dividing the original iteration space into tiles) to fully unroll the

loops that traverse the iterations inside the register tiles. The complexity of these second step of

register tiling and the amount of code generated depend on the number of bounds of the loops that

have to be fully unrolled, and thus, it is convenient to compute exact and non-redundant bounds when

multilevel tiling includes the register level.

d o j = 1 , N doj = 1 , N doj = 1 , N
do K = 1, J do K = j, N do K = J, N

do i = K, N do i = K+1, N do i = max(j, K), N

enddo enddo enddo
(a) (b) (c)

Figure 1.5: a) Loop nest with exact bounds b) Loop nest without exact bounds. Every time K
is equal to N, loop I does not perform any iteration, c) Loop nest with redundant bounds. The
lower bound J of loop I is redundant.

30 CHAPTER 1

Moreover, another advantage of computing exact and non-redundant bounds is to avoid

increasing a program's execution time. If the compiler does not compute exact bounds and generates

redundant bounds, a fraction of a program's execution time is wasted in evaluating useless bounds

(redundant bounds or bounds of loops that will end up in empty iterations). This fraction of time is

usually insignificant, but it can become important if loop tiling is applied to several levels of the

memory hierarchy.

Traditionally, exact loop bounds computation has not been performed because its complexity is

doubly exponential and, therefore, for certain classes of loops, can be extremely time consuming. Of

course, for simple loop nests that define rectangular iteration spaces, the cost of computing exact

bounds is "reasonably" cheap. However, this is not the case for complex loop nests defining

non-rectangular iteration spaces. In this thesis, we also propose an implementation of multilevel tiling

that computes exact bounds, tries to avoid redundant bounds and its cost is sufficiently low that is

viable to be implemented in a production compiler.

1.5 THESIS OVERVIEW

This thesis is focused on the study of a code transformation to enhance data locality and to extract ILP

from numerical codes. More precisely, we center on the loop tiling transformation applied to loop nests

that define non-rectangular iteration spaces. For this kind of loop nests, that commonly appear in

numerical applications, current compilers are not able to perform multilevel tiling and, thus, high

performance is not achieved. In this thesis we show that multilevel tiling can also be applied to loops

defining non-rectangular iteration spaces so that they achieve high performance on modern

microprocessors.

The primary contributions of this thesis are the following:

• The proposal of a general compiler algorithm to perform tiling at the register level in

arbitrary iteration space shapes.

• The proposal of a very simple heuristic to make the tile decisions for the level register

level when dealing with non-rectangular iteration space.

• The proposal of a new compiler algorithm to compute exact loop bounds when multilevel

tiling is performed. This algorithm improves upon conventional techniques on its cost,

therefore making possible the inclusion of multilevel tiling in production compilers.

• A study of the effects of (1) tiling only for the register level, (2) tiling only for the cache

level and (3) tiling for both the register and cache levels and a performance comparison

between hand-optimized codes and automatic-optimized codes.

Introduction 31

1.6 RELATED WORK

Several other researchers have also worked on code transformation to enhance the data locality and to

extract ILP. This section summarizes their work and relates it to ours.

The first work on compiler transformation for maximizing cache locality was from Gallivan et al.

[48] [49] [50]. They present a technique to describe the amount of data that must be in the cache for

reuse to be possible. They call this the reference window. The window for a dependence describes all of

the data that is brought into the cache for the two references from the time that one datum is accessed

at the source until it is used again at the sink. A family of reference windows for an array represents

all of its elements that must fit in the cache to capture all of reuse. To determine if the cache is large

enough to hold every window, the window sizes are summed and compared against the size of the

cache. If the cache is too small, blocking transformation can be used to decrease the size of the

reference window. Their work basically is focused on analysis of cache and local memory behavior in

loop nests to decide if loop tiling is profitable, and they do not give an algorithm for choosing the best

tile sizes. Additionally, they do not explain how the tiled code is generated.

Wolfe's memory performance work [125] [126] [127] [128] has concentrated on developing

transformations to reshape loops to improve their cache performance. His loop transformation

approach consists of individual loops and statements which can be transformed by a sequence of

simple transformations that operate on one or two loops at time. The effectiveness of applying a

specific transformation to a given goal is usually easy to measure. Unfortunately, it is often the case

that several transformation will need to be applied successively. In this case, the best first

transformation to apply is not obvious and the search of the best sequence of transformations must be

performed exhaustively. The weakness in his approach is the lack of a decision algorithm to choose

which transformation to apply to a nest. Wolfe also shows how tiling (or blocking) can be used to

improve the memory performance of program loops and shows that his techniques for advanced loop

permutation can be used to tile loops with non-rectangular iteration spaces and loops that are not

perfectly nested. In particular, he discusses blocking at the cache level for triangular and trapezoidal

shaped iteration spaces, but he does not present an algorithm and does not discuss tiling at the

register level.

Wolf et al. [121] [122] [123] use an alternate approach to Wolfe's proposal based on matrix

transformations. They model loop transformations such as loop permutation, reversal and skewing as

unimodular transformations on the iteration space. A compound transformation is just a unimodular

transformation, being a product of several elementary transformations. This model makes it possible

to determine the best compound transformation directly by maximizing some objective function. They

also provide a framework for determining memory usage within loop nests and use that framework to

apply loop permutation, loop skewing, loop reversal and loop tiling. They give algorithms for

32 CHAPTER 1

computing the tile size and the best order of the tiles and present a method for determining the

bounds of a transformed loop nest after applying a unimodular transformation or loop tiling. Their

"compute bound" algorithm is very fast and simple. However the resulting code may contain

redundant bounds and the loop bounds are not exact. As mentioned before, not computing exact

bounds and the presence of redundant bounds can be negative if the register level is being exploited.

Their method is able to perform tiling on several levels of the memory hierarchy, but, at the register

level, they only exploit data reuse in one dimension of the iteration space and indicate that tiling more

than one dimension is not trivial for complex loop nests. Moreover, they do not propose a method to

determine tile sizes at the register level.

Carr et al. [23] [24] [25] [27] discuss promotion of array references into registers (scalar

replacement), and tiling for the register level via the unroll-and-jam transformation. As mentioned

before, unroll-and-jam enhances data locality at the register level in the unrolled dimension, and it

can be applied repeatedly to several loops in a nest to exploit data reuse at several levels. Indeed,

applying unroll-and-jam to several loops in a nest is comparable to applying loop tiling at the register

level. They use unroll-and-jam for exploiting reuse at the register level and improving ILP and discuss

how to implement unroll-and-jam in the presence of triangular and trapezoidal loop nests. For these

complex cases, they give the code transformation directly. To this end, they use pattern recognition

techniques on the bounds of the loops and when the loop bounds do not match one of his patterns, no

general algorithm to split the iteration space into simple ones that could be recognized through

patterns is presented. Moreover, to decide the loops to be unrolled-and-jammed, they examine the

dependence graph and search which loops carry most true and input dependences. They do not

consider other parameters such as iteration space shape.

Porterfield's dissertation [102] contains a study of compiler techniques for improving data cache

performance. His work is focused on how the application of various transformations - fission, fusion,

permutation, unrolling, loop tiling - change the cache behavior, but he does not study the register

level. He also does not deal with the code updating phase. He was also the first to explore software

controlled prefetching for uniprocessors [22] [102]. He proposed a compiler algorithm for inserting

prefetches into dense-matrix codes. Then, Mowry [93] [94] [95] extended his work by automating the

whole process and exploring prefetching for multiprocessors. Techniques for tolerating memory

latency such as software prefetching can be combined with loop tiling to cope with whatever memory

latency cannot be reduced through locality optimizations.

Two main differences can be pointed out between this thesis and previous work. First, we mostly

focus on the "code updating" phase of the optimizing compilers, instead of the "decision algorithms"

that determine the best tile sizes and the order of the tiles. Second, we also pay special attention to the

register level instead of the cache level while previous work in the literature regarding loop tiling has

mostly focused on enhancing data locality at the cache level and exploiting coarse-grain parallelism.

Introduction 33

1.7 THESIS ORGANIZATION

This work is organized as follows:

• Chapter 2 gives some background on the loop tiling transformation and presents

transformations and assumptions on which our compiler strategies are based.

• Chapter 3 describes our algorithm to perform tiling for the register level in complex loop

nests and presents our locality analysis to make the tiling decisions at this level. We also

present experiments to validate the effectiveness of our algorithm and compare against

other transformations performed by current production compilers.

• Chapter 4 describes our efficient implementation of multilevel tiling to compute exact

bounds, that we refer to as Simultaneous Multilevel Tiling. We compare our

implementation against conventional techniques in terms of complexity and redundant

bounds generated and present some experimental results.

• Chapter 5 presents a detailed evaluation of loop tiling. First, we discuss and evaluate

the effect of tiling for one memory level (cache or registers) and tiling for multiple memory

levels. In the second part of this chapter, we compare our automatic-optimized codes

against the vendor hand-optimized codes and we show how compiler technology can make

it possible for complex numerical codes to achieve high performance on modern

microprocessors.

• Finally, Chapter 6 summarizes the contributions of this thesis and present open areas

for future research.

2
LOOP TILING BASICS

Summary
In this chapter we gives some background on the loop tiling transformation. We review previous

work related to loop tiling and presents the framework and assumptions on which our compiler

strategies are based on. The chapter is organized as follows: In Section 2.1 we explain in what loop

tiling consists and illustrate it with an example. In Section 2.2 we give some preliminary concepts

needed for a better understanding of the following sections. Section 2.3 explains the three challenges

that confront a compiler to apply loop tiling to a loop nest: dependence analysis, locality analysis

and generating the transformed code. Finally, Section presents the assumptions on which our

compiler strategies are based on and Section 2.5 summarizes this chapter.

35

36 CHAPTER 2

2.1 THE LOOP TILING TRANSFORMATION

Loop Tiling is a well known loop transformation that a compiler can use to automatically create block

algorithms. The advantage of block algorithms is that, while computing within a block, there is a high

degree of data locality, allowing better register, cache or memory hierarchy performance

[1][39][48][67][121][127]. Tiling is also a good paradigm for multiprocessors [123][128], If tiling can be

done so that different blocks are independent of each other, then different blocks can be assigned to

different processors. In this chapter, however, we only focus on the loop tiling ability to enhance data

locality.

To illustrate tiling and its importance, we present a simple example program and show how loop

tiling enhances data locality. The example used is a matrix multiplication program, shown in

Fig. 2.la. In this code, the same row of A is used repeatedly by iterations of the middle (j) loop. If N is

large relative to the cache size, so that an entire row of an array does not fit into the cache, then

elements of the row may not be in the cache between reuses. For the D matrix, reuses of array

elements occur in the outermost (I) loop. Between reuses of elements in D, the whole array is brought

into the cache, which means that references to D will not hit in the cache. In the case of improving

register utilization, it suffices to note that a register file is typically much smaller than N, so that the

nest will not significantly benefit from register allocation of elements of either D or A.

Loop tiling consists of dividing the iteration space defined by the loop structures into regular

tiles (or blocks) of some size and shape (typically squares or cubes), and then traversing the tiles to

cover the whole iteration space. Loop tiling alters the order in which individual iterations are executed

so that iterations from loops of the outer dimensions are executed before completing all the iterations

of the inner loop. Thus, the distance between successive references to the same memory location is

shortened and the probability of finding the associated data in the memory level being exploited is

higher.

(a) Original code (b) Tiled code

do 1 = 1, N d o J j = 1 , N , BJJ
do j = 1, N do KK = 1, N, BKK

do K = 1, N do i = 1, N
C(l,J) = C(i,J) + A(I,K) *D(K,J) do J = JJ, min(N, jj+Bja-1)

enddo do K = KK, min(N, KK+BKK-1)
enddo C(i,j) = C(i,j) + A(I,K) * D(K,J)

enddo enddo
enddo

enddo
enddo

enddo

Figure 2.1: (a) Original code of matrix multiplication C=A x D. (b) Code after loop tiling.

Loop Tiling Basics 37

Figure 2.1b shows the matrix multiplication program after loop tiling. Tiling reduces the number

of intervening iterations between data reuses. Therefore, reuses of data occur more closely in time and

the amount of data fetched between data reuses is reduced. This allows reused data to still be in the

cache or register file, and hence reduces memory accesses. The tile size BJJ x B^ can be chosen to

allow maximum reuse for a specific level of the memory hierarchy.

Figure 2.2a shows how data items are accessed in the non-tiled matrix multiplication previously

shown in Fig. 2.1a. The same element C(I,J) is used by all iterations of the innermost (K) loop; it can

be register allocated and is fetched from memory only once. The same row of A accessed in the

innermost loop is reused in the next iteration of the middle (j) loop, and the same column of D is

reused in the outermost (I) loop. Whether the data remains in the cache at the time of reuse depends

on the size of the cache. Unless the cache is large enough to hold at least one NxN matrix, the data D

will have been displaced before reuse. If the cache cannot hold even one row of the NxN matrix, then A

data in the cache will also not be reused. In this latter case (worst case), 2N3+N2 words of data need to

be read from main memory in N3 iterations. This high ratio of memory fetches to numerical operations

significantly degrades machine performance, since memory fetches are of high latency.

By comparison, Fig. 2.2b shows how data items are accessed in the tiled matrix multiplication of

Fig. 2.1b. Essentially, the patterns are the same as before, but operations are only performed on a

BJJ x BKK submatrix of D. If BJJ and B^ are chosen properly, this submatrix fits in the cache and can

be reused over and over. This allows all three matrices to have excellent reuse; ignoring interferences

in the cache, the total main memory words accessed will be (N3/BJJ)+(N3/BKK)+N2, which is an

improvement of about a factor of BJJ (assuming Bjj^B^) over the non-tiled case.

(a)

(b) • K

g i
H'KK

D JJ
C A D

Figure 2.2: Data access pattern in (a) untiled and (b) tiled matrix multiplication.

38 CHAPTER 2

Loop tiling is a powerful transformation that enhances locality of reference. Although we have

only shown how loop tiling enhances locality at the cache level, loop tiling can also be applied at other

memory levels, including the register file. For instance, by taking a small blocking size such that the

block can be held in registers, we can reduce the number of loads and stores in a program. Chapter 3

deals with tiling for the register level.

2.2 PRELIMINARY CONCEPTS

In this section, we give a brief overview of some important concepts that are used throughout this

thesis. In particular, concepts that are useful for program analysis and program restructuring.

Loop Nest Representation

We consider algorithms specified by a number of nested loops with the following form:

do lx = Lj, D!

do 1 2 = 1-2, U2

do in = Ln, \Jn

loop body

enddo

The bounds of the loops are of the form:

Li = max(li,Q>li,l'li,2>-) Ui = "»'"<"/, 0 ' " ¿ , l ' u ¿ , 2 > " - >

and I • • , u. . are linear functions that can be expressed as follows:
'J 'J

where a^ .,6^ • e Z (! < £ < i - l) , Y . .and (p. . are constants or parameters (problem size) and I,l t j ljj 1>J itj «
(! < & < i - l) are loop control variables.

Iteration Space

Any single iteration of the n-deep loop nest can be represented by a n-dimensional vector,

1= (I r. ..,!„)'

where each component of this vector is associated with one of the loops. The leftmost component of the

vector is associated with the outermost loop and the rightmost component with the innermost loop.

Loop Tiling Basics 39

do ij = 0, 4
do I2 = 0, 6

enddo
enddo

o o e o e

o o e o ©

o o

A(lr1 , o e

(a) (b)

Figure 2.3: (a) Example loop nest, (b) Bounded Iteration Space (BIS).

The set of iterations determined by the bounds of the n nested loops is a convex subset of Z . We

call this set the Bounded Iteration Space (BIS):

BIS = {ì = (1,,..,!

Figure 2.3 shows an example of a loop nest (2.3a) and the corresponding BIS (2.3b).

The BIS can be specified in matrix form [54] [77]. Taking into account the semantics of a do-loop,

each of the linear functions /. - and u- • defines an inequality of the form:

i-l

Putting all these inequalities together, the following matrix inequality can be built:

Every row of matrix A defines a lower bound component / . . (or an upper bound component u. •)
*»j v *'j

and it is built from coefficients a^ . and -1 (or -6^ . and 1). The n elements of vector I are the

iteration control variables I . , and ß is a vector whose components are the coefficients -T . . (or (p • .).

As an example, the bounds of the BIS shown in Fig. 2.3 are represented by the following matrix

inequality:

- X2

I 1 <4

I2<6 **

1 0
0 1
-1 0
_ 0 -1

_ -
II
I2

4
6
0
q

40 CHAPTER 2

Data Dependences

Data dependence relations are used by the compiler to represent the essential ordering constraints

among statements and the reuse of values in a program. We say that a dependence exits between two

references if there exits a control-flow path from the first reference to the second and both references

access the same memory location [76]. A dependence is

• a true dependence if the first reference writes to the location and the second reads from it,

• an anti-dependence if the first reference reads from the location and the second writes to it,

• an output dependence if both references write to the location, and

• an input dependence if both references read from the location.

When a code is transformed for optimization, the relative order of reads and Writes to a

particular memory location must be preserved; if not, the transformed code could produce incorrect

results. In particular, true, anti and output dependences must be preserved. Input dependences,

however, do not need to be preserved, but it is important to identify them when evaluating reuse of

values in a program. Next, we introduce the terminology and notation used to represent data

dependence relations in loops.

In loops, the data dependence relations are represented by «-dimensional vectors called

dependence vectors: d - (ô,, ...,ô) .

Each component of a dependence vector is associated with one of the n nested loops, from the

outermost to the innermost loop (left to right). The dependence vectors can provide different types of

information (distances (5. e Z) , directions (5. ={<, >, =, #}), etc.) depending on the goals of the

dependence analysis [125].

If the dependence vector provides distances, then each component of the vector is the number of

iterations of the corresponding loop that separates two consecutive accesses to the data item

associated to the dependence. For example, given the loop nest of Fig. 2.3a, the true dependence from

A(I1(I2) to A(I1-1,I2) has a distance vector of (1,0), the true dependence from D(I1,I2) to D(I1-1,I2+'')

has a distance vector of (1,-1), the anti-dependence from D(I1,I2+1) to 0(1!,I2) has a distance vector of

(0,1) the true dependence from A(I1,I2) of the first statement to A(I1,I2) of the second statement has a

distance vector of (0,0) and the input dependence from A(I1,I2) of the second statement to A(lj-1,12) of

the first statement has a distance vector of (1,0).

If the dependence vector provides directions, then each component of the vector is the sign of the

data dependence distance. Using the notation proposed by Wolfe [125], a forward direction "<" means

that the dependence crosses an iteration boundary forward (from iteration i to iteration i+1, for

example), that is, the sign of the distance is positive. A backward direction ">" means that the

dependence crosses an iteration boundary backward (from iteration i to iteration i-1), that is, the sign

Loop Tiling Basics 41

of the distance is negative. An equal direction "=" means that the dependence does not cross an

iteration boundary, that is, the dependence distance is zero. And an asterisk "#" is used when the

direction is unknown or when all three of <, >, = apply. This annotation for data dependence relations

is simpler but less precise than distance vectors.

The loop associated with the outermost (leftmost) non-zero distance vector entry is said to be the

carried loop and if all distance vector entries are zero, the dependence is loop independent. In the

example above, there are three dependences carried by loop I1? one dependence carried by 1% and one

loop independent dependence.

Given a loop nest, all dependence vectors are always lexicographically positive I 3>OJ . This

means that, if the dependence vector provides distances, then, the first non null component of the

vector is positive and, if the dependence vector provides directions (following the previous notation),

the first component different from =, must be equal to <.

Another concept is the iteration space dependence graph [129] that represents the constraints

that prevent reordering of iterations of a loop. The iteration space associated with a loop contains one

point for each iteration of the loop. If any statement in one iteration of the loop depends on any

statement in a different iteration of the loop, that is, if there is a true, anti or output dependence that

is not loop independent, the dependence would be represented by an arrow from the source iteration to

the target iteration (input dependences do not prevent reordering of iterations). The iteration space

dependence graph of the example in Fig. 2.3a is shown in Fig. 2.4. Note that the original execution

order preserves dependences.

Figure 2.4: Iteration space dependence graph of the code in Fig. 2.3a

42 CHAPTER 2

o—o—o—o—

I O
I1 2M = 1

Figure 2.5: TIS obtained through the unimodular transformation T^.

Unimodular Transformations

A unimodular transformation [13] [121] is a transformation that can be represented by a'unimodular

matrix T (its determinant is ±1) and maps each iteration (l = (I.,,..., I)) o f a n-dimensional

iteration space to one iteration (J = (J,,..., J)) of the transformed n-dimensional iteration space

(TIS):

TIS = {J = T-î\îeZn} .

Since T is unimodular, both T and T"1 map points with integer coordinates (integer points for

short) into integer points. As an example, Fig. 2.5 shows a piece of the TIS obtained when we apply the

unimodular transformation matrix 2\ to the iteration space shown in Fig. 2.4. Note that the

dependence vectors in the transformed iteration space have also changed according to the

transformation matrix TI.

A unimodular transformation T is a legal transformation only if true, anti and output

dependences are preserved, which means that dependences in the transformed loop nest must be

lexicographically positive. Let D be the set of true, anti and output dependence vectors of a loop nest.

A unimodular transformation T is legal if and only if:

de D :T-d>0

In the example above, 7\ is a legal transformation because the three true dependences and the

anti-dependence are preserved:

10. 1
1 1 -1

I 0
I1

>0 I 0
I1

The image of the bounds of the BIS when applying a transformation T can be put in a matrix

form, using the transformation matrix T and the matrix inequality which represents the bounds of the

BIS:
A-I<ß A-T

A - J < ß

Loop Tiling Basics 43

Since the BIS is convex, the above matrix inequality also delimits a convex space. This space is

the minimum convex space which contains all the points of the TIS whose antiimage belongs to the

BIS. We refer to this minimum convex space as the Bounded Transformed Iteration Space (BTIS).

The bounds of the BTIS can be extracted from the matrix inequality A • J < ß . There are two

different approaches to compute the bounds of BTIS. One approach, proposed by Kühn [77] and also

used by Ancourt and Irigoin [7], computes the exact loop bounds in the transformed code. Recall from

Chapter 1 that a loop nest has exact bounds if it never executes an empty iteration. They use the

Fourier-Motzkin elimination algorithm [7] [54] [77] (shown in Appendix A) to find solutions to the

systems of linear inequalities A • J < ß . In this scheme, the system of inequalities is solved by

projecting it onto a reduced number of unknowns and then eliminating, one by one, each unknown.

The unknowns are the n loop control variables of vector J and the order in which these unknowns are

solved is important to obtain the exact bounds. They must be solved from the innermost to the

outermost loop.

Continuing with the same example, the bounds of the BTIS are represented by the following

matrix inequality:
1 0
0 1
-1 0
0 -1

•MLUL, -

-1 Jl
J02

<

4
6
0

_0

=^

1 0
-1 1
-1 0
1 -1

Jl
J02

<

4
6
0
0

By applying the Fourier-Motzkin elimination algorithm to this system the following bounds of the

BTIS are obtained:
0< J.,^4

J 1 <J 2 <6 +J x

The transformed loop nest must scan all the integer points of the BTIS. Since T is a unimodular

matrix, all the integer points of the BTIS have an integer antiimage in the BIS, and therefore, the

bounds given by the Fourier-Motzkin algorithm can be directly used to build the loop nest required to

scan the BTIS. In Fig. 2.5, the black dots represent the points of the BTIS.

Ancourt's approach is effective but, for certain classes of loops, it can be extremely time

consuming, since this approach leads to a large number of constraints and Fourier-Motzkin operates

in a pairwise fashion over these constraints. However, as mentioned in Chapter 1, computing exact

bounds is critical when multilevel tiling, including the register level, is being applied.

An alternative approach to compute the bounds of BTIS was proposed by Wolf in [121]. By using

projection information about the system before applying the unimodular transformation, he is able to

more directly generate correct bounds. His approach is simpler and faster than Ancourt and Irigoin's,

but the loop bounds are not exact, that is, bounds on the non-innermost loops may be wider than

necessary or contain unnecessary minima and maxima computations.

44 CHAPTER 2

At last, when a loop nest is transformed by a unimodular transformation, it is also necessary to

rewrite the body of the loop nest. Suppose we have the loop nest

do TÍ = . . .

do 12 = . . .

do in = . . .

enddo

to which we apply the unimodular transformation T. The transformation of the body S only requires I¿

(1 < i < n) be replaced by the appropriate linear combination of j¿ (1 < i < n), where J¿'s are the loop

iteration variables for the transformed loop nest; that is:

,-1
= f

Performing this substitution is all that is required to correctly transform the loop body.

Loop permutation, reversal and skewing are three well known transformations that can be

represented as unimodular matrices [121]. Moreover, because of the properties of unimodular

transformations, combinations of them are also unimodular transformations.

2.3 AUTOMATIC LOOP TILING

Three challenges confront a compiler that tries to apply loop tiling to a loop nest. First, the loop tiling

transformation must not alter the computation performed by the loop nest. Determining whether the

transformation is legal or not is the domain of dependence analysis. Second, it is difficult to choose for

a given loop nest which are the tile sizes and shapes at each memory level and the arrangement of the

tiles with respect to each other that deliver the best performance. Determining these tiling

parameters is the domain of locality analysis. And third, once the tiling parameters have been

decided, the loop nest has to be transformed appropriately. Figure 2.6 shows a diagram that specifies

the sequence of compiler phases required to perform loop tiling. In this section, we explain in more

detail each of these three phases.

dependence
analysis

X locality
analysis J

code updating
phase

Figure 2.6: Compiler phases to perform loop tiling.

Loop Tiling Basics 45

DEPENDENCE ANALYSIS

dependence
testing

transformation
legality

Figure 2.7: Phases of the dependence analyzer.

2.3.1 Dependence Analysis

The first challenge that confronts a compiler that tries to apply loop tiling to a loop nest is determining

whether the transformation is legal or not. As mentioned before, a loop transformation is legal if true,

anti and output dependences are preserved.

Two different phases can be distinguished in the dependence analysis. The first phase of the

dependence analyzer consists in determining all array accesses that refer to the same array elements

and computing their associated dependence distance (or direction) vectors. This task is known as

dependence testing. Once all data dependence relations have been computed, the second step of the

dependence analyzer is to determine whether a particular transformation is legal or not. Figure 2.7

shows a diagram of the dependence analyzer's phases.

Dependence Testing

An important point of the dependence analyzer in optimizing compilers is the accuracy, or the

precision, of the dependence tests. In general, the dependence testing problem can be cast as an

integer programming problem, where exact tests may be very expensive. There has been much work

related to dependence testing that has considered different characteristics of the proposed tests such

as cost (the speed of the test itself), applicability (subset of subscripts it is able to handle) and

precision (number of false dependence computed) [14] [51] [77] [86] [89] [103].

In optimizing compilers, it is very important to have dependence tests with high precision, since

a false dependence can prevent the compiler from applying loop transformations that actually improve

performance. For subscripted variables, the dependence analyzer must formulate a data dependence

system and solve it as a system of linear equations and inequalities. The data dependence system is

built with the dependence equations and a set of inequalities that add additional constraints to the

system [129]. For instance, for a dependence to exist, a solution must lie within the limits of the

induction variables imposed by the loop bounds. By considering the loop limit constraints, the

dependence analyzer can reduce the number of false dependences and can compute the dependence

distances and directions with more exactness, thus, increasing the opportunities to apply

transformations such as loop tiling.

46 CHAPTER 2

do J = 1 , N
d o K = 1, N

do i = 1, K-1
D(I,J) = D(I,J) + D(K,J) *

enddo

Figure 2.8: Code of the STRMM problem, extracted from BLAS.

As an example, consider the code of the STRMM problem shown in Fig. 2.8. If the data

dependence system does not include the loop limit constraints, the dependence analyzer must assume

that there is a data dependence between D(I,J) and D(K,j) and that the corresponding direction vector

is (=, <, #). The '#' in the third dimension of this data dependence prevents the compiler from

performing loop tiling. However, if the data dependence system includes loop limit constraints, it can

be deduced that the direction of the dependence in dimension I is <, because one of the loop limit

constraints is I < K-1. Now, the direction vector of the dependence is (=, <, <) and this dependence does

not prevent the compiler from performing loop tiling.

Transformation Legality

Loop tiling is a transformation that increases the depth of a loop nest. Given an n-deep nest, tiling can

turn it into a nest that is anywhere from (n+l)-deep to 2n-deep, depending on how many of the loops

are tiled. Tiling one or more loops of a loop nest rearranges its iteration space traversal so that it

consists of a series of small polyhedra executed one after the other. Thus, loop tiling alters the order in

which individual iterations are executed, and therefore, it cannot be a legal transformation for certain

classes of loop nests. Figure 2.9 illustrates how loop tiling changes the order in which the original

iterations are executed. The arrows in the figure represent the execution order.

Loop tiling is a legal transformation only if the n nested loops of the original code are fully

permutable [121]. We say that n nested loops are fully permutable if all of the n\ possible

permutations of the n nested loops are legal. This means that, if dependence vectors provide distances,

all components (5. with l<j<n) of all dependence vectors (d¿) are greater or equal to 0 and, if

dependence vectors provide directions, all components (S-) of all dependence vectors (d .) are = or <.

We note that non fully permutable loop nests can always be turned into fully permutable nests

by applying a unimodular transformation [121], such as loop skewing. This means that we can always
-»

find a unimodular transformation T so that T • d is positive (i.e. all vector components are greater or

equal to 0) for all dependence vectors.

Loop Tiling Basics 47

Original loop nest
do I = O, N

do J = O, N
loop body

enddo
enddo

Tiled loop nest
do II = 0, N, BIZ

do JJ = O, N, BJJ
do I = II, min(il+BII-1, N)

do j = jj, min(jJ+Bjj-1, N)
loop body

enddo
enddo

enddo
enddo

Figure 2.9: How loop tiling changes the order in which the iterations are executed.

Loop skewing is an unimodular transformation that changes the shape of the original iteration

space. More precisely, skewing a loop J with respect to loop I by a factor f consists of changing the

iteration vectors for each iteration (I, J) to (I, J+f*l). As an example, Fig. 2.10a shows again the non

fully permutable loop nest used before in Fig. 2.3a and its iteration space dependence graph. Recall

that the set D of dependence vectors (input dependences are not included) for this code is:

Note that the dependence vector (1,-D implies that the loop nest is not a fully permutable nest.

However, by skewing loop J by a factor /=! with respect to loop I, the transformed loop nest becomes

fully permutable. The set D of dependence vectors in the transformed code is:

D = {(1,1), (1,0), (0,0), (0,1)}

Fig. 2.10b shows the loop nest after loop skewing and its iteration space dependence graph.

Note that loop skewing is always legal. It does not even change the execution order of the

iterations, that is, iterations in the skewed iteration space are executed in the same order as the

corresponding iterations in the original iteration space. It does only affect the data dependence

vectors. Thus, although loop skewing does not generally improve code performance, it may enable

other optimizations, such as loop tiling, that do so. However, for some kinds of loop nests, loop skewing

can ruin data locality which means loop tiling won't be a profitable transformation. In these cases, it is

preferable not to perform loop skewing and exploit data locality using a combination of other

transformations that are less restrictive than loop tiling from the legality point of view.

48 CHAPTER 2

(a) Original loop nest

do i = 0, 4
do J = 0, 6

enddo
enddo

(b) Loop nest after loop skewing

do I = 0,4
do J = O+i, 6+1

enddo
enddo •̂ J

Figure 2.10: Loop nest and its iteration space dependence
graph of (a) the original code, and (b) the transformed code.

2.3.2 Locality Analysis

Once the legality of the loop tiling transformation has been established, the second challenge that

confronts a compiler is determining the tile sizes and shapes at each memory level and the

arrangement of the tiles with respect to each other that deliver the best performance.

The first step to carry out this task is to identify data reuse within a loop nest. This field is the

domain of reuse analysis. Several data reuse models can be found in the literature [23] [71] [83] [121]

that differ on the accuracy and applicability. This section shows how data reuse can be identified,

using the reuse analysis proposed by Wolf [121] (we will use this reuse model later in Chapter 3). More

precisely, we will explain the notion that reuse is carried by a specific loop. This reuse analysis is

applicable to all memory hierarchy levels, although for concreteness we focus on the cache level. Once

data reuse has been identified, the next step consists in determining the tiling parameters that deliver

the best performance. In this section we also review previous work related to this second topic.

Figure 2.11 shows the two main phases corresponding to the locality analysis.

LOCALITY ANALYSIS

reuse
analysis

determining
tiling parameters

Figure 2.11: Phases of the locality analysis.

Loop Tiling Basics 49

Reuse Analysis

We say that a data item is reused if the same data is used in multiple iterations of a loop nest. Thus,

reuse is a measure that is inherent to the computation at hand and not dependent on the particular

way the loop nest is written. Reuse may not lead to saving a main memory access if intervening

iterations flush the data out of the cache between uses of the data. If the reused data actually remains

in the cache, we say that the reference that enjoys the cache hit has locality. Therefore, it is important

to realize that reuse does not necessarily result in locality. Instead, the references with data locality

are a subset of the references with data reuse.

Reuse analysis attempts to discover those instances of array accesses that refer to the same

cache line. There are four types of reuse: self-temporal reuse, self-spatial reuse, group temporal reuse

and group spatial reuse. Self-temporal reuse occurs when a reference within a loop accesses the same

data location in different iterations. Likewise, if a reference accesses data on the same cache line in

different iterations, it is said to have self-spatial reuse. Furthermore, since a loop may have multiple

references to the same array, different references may access the same locations. We say that there is

group-temporal reuse if the references refer to the same memory location, and group-spatial reuse if

they refer to the same cache line.

Wolf's reuse analysis represents the shape of the set of iterations that use the same data by a

reuse vector space. He focuses on the common case of array references with affine subscript

expressions, that is, subscript expressions that are affine functions of the loop induction variables.

Each such array can be modeled by a ç x n coefficient matrix H and an offset vector c, where n is the

depth of the loop nest and q is the dimensionality of the array. As an example, a reference A(I,J+1) in

a 2-deep loop nest is represented by A(H • 1 + c), where 1 -I;]
Let us first consider reuse that arises from single references. Given the previous representation,

self-temporal reuse occurs between iterations i j and I2 whenever H• I^ + c = H • I2 + c, i.e. when

H - (I, -10 = 0. Rather than worrying about individual values of I, and I0, we say that reusev i ¿j i ¿t
occurs along the direction r when H • r = 0 . The solution to this equation is the null-space of H, or

kernel H, which is a vector space in R . I f the null-space is empty, the reference does not exhibit

self-temporal reuse.

Computing self-spatial reuse requires a slight variation of how self-temporal reuse is computed.

Assuming data elements are stored in column major order, accesses to the same cache line will only

occur when the same column is accessed. In addition, the column index expressions must be different,

but still fall within the size of a cache line.

50 CHAPTER 2

do i = 1, N
do J = 1 ,N

do K = 1, N
C(I,J) = C(I,J) + A(l,K) * D(K,J)

enddo
enddo

enddo

Figure 2.12: Code of the matrix multiplication.

Thus, self-spatial reuse occurs between iterations I., and !„ whenever all but the column index

are equivalent. This is in contrast with self-temporal reuse, where all indices, including the column,

must be equivalent. To extract this self-spatial reuse vector space, the row for stride-1 dimension in H

(assuming column major order, it is the first row of H) is simply replaced with zeros to create H , and
S

then we solve for the null-space of H .To check whether different elements are being accessed within
S

the same column, it is necessary to compare whether the self-temporal and self-spatial reuse vector

spaces are identical. This can occur since reusing the same data item is a degenerate case of reusing

the same cache line. If the self-temporal and self-spatial reuse vector spaces are identical, then there

is strictly self-temporal reuse. If they differ, then there is self-spatial reuse along the vectors that are

unique to the self-spatial reuse vector space. Once accesses to different elements within the same

column have been identified, the final step is to check whether the stride is less than the cache line

size. If so, then the reference has self-spatial reuse.

As an example, consider the matrix multiplication loop nest shown in Fig. 2.12. The reference

C(I, J) in the matrix multiplication nest yields

|_0 1 Oj ° [O 1 Oj

If we compute the null-space of H and H g, we obtain: kernel H = span {(0, 0, 1)} and kernel

Hg =span{(l,0,0), (0,0,1)}. Thus, we say that the reference C(I, J) has self-temporal reuse in direction K

and self-spatial reuse in direction I. A similar analysis shows that reference A(I,K) has self-temporal

reuse in direction J and self-spatial reuse in direction I, and that reference D(K,J) has self-temporal

reuse in direction I and self-spatial reuse in direction K.

We now consider group reuse, reuse among different references. Wolf's model [121] focuses on

uniformly generated references [50], that is, references whose array index expressions differ in at most
^ —»

the constant term. Two uniformly generated references can be written as A(H-l + c,) and

-> — • » ~
Two distinct references A(H • I + c,) and A(H • I + c2) access the same data item if and only if

-,» „ » -» ->3r : H • r = c-, -c„

Loop Tiling Basics 51

—>* ^ — —To determine whether such an r exists, the system of equations H • r = c, -c„ is solved to get a

particular integer solution r , if one exists. Then, the group-temporal reuse vector space is the

null-space of if plus span {r }.

Finally, to detect group-spatial reuse between two uniformly generated references, the previous
-> —»

equation must be slightly modified by replacing the first rows in H, c.. and c„, with zeros to form H„,

Cr, i and cc 0, respectively (remember that we assume data are stored in column major order). Thus,
u > 1 ü>¿ .» -» ^ -»

two distinct references A(H • I + c^) and A(H • I + c2) have group-spatial reuse if and only if

_

~CS, 1~CS,2'
—»

and also provided that the constant difference between the first rows of c, and c2 is less than the

cache line size divided by the element size. Then, the group-spatial reuse vector space is the null-space
—> —>

of Hf, plus span {r }, where r is a particular solution of the above system of equations.
O r* P

As an example, consider the code of Fig. 2.13. The references A(2*I,J) and A(2*I,J+1) in the

nest yield
rr f"20] T» [01 T» |0|
H = \ C n = C9 =

[pj 2 [ij
In this example, kernel H=0 and r = (0,-1) . Thus, the group-temporal reuse vector space is

span{(0,-l)} and we say that there is group-temporal reuse between references A(2*I,J) and

A(2*I,J+1) in direction J.

However, the references A(2 * I, J) and A(2 *I+1,J) in the nest yield

"6a ï-iï s-:1.
—» —» -» —»

In this case, there is no integer solution r , such that H • r = c, -c0 , since there is no integer r,
P p J. ¿à J.

such that 2 • r.. = 1. Thus, there is no group-temporal reuse between references A(2*I,J) and

A(2*I+l,j). Nevertheless, there is an integer solution to the system HS • r = cs i~cs 2' wnere

tfo = |U°
0 1| °'1 |0| °'* |0

that is r = (1, 0) . Thus, given a cache line size of at least two array elements, group-spatial reuse

does occur between references A(2*I,J) and A(2*I+1,J).

do I = 1, N
do J = 1 , N

A(2*I,J) = A(2*I,J) + A(2*I,J+1) + A(2*I + 1,J)
enddo

enddo
Figure 2.13: Example loop nest.

52 CHAPTER 2

reuse
analysis

LOCALITY ANALYSIS

loops to
be tiled •̂

loop
order X̂

tile
sizes

determining tiling parameters

Figure 2.14: Expanded phases of the locality analysis.

Thus far, we have concentrated on reuse analysis of loop nests in the presence of caches.

Considerations for registers, local memory, virtual memory and so on are similar, and the differences

between these memory hierarchy levels are simple enough to be easily taken into account. For

example, registers typically cannot take advantage of spatial reuse, so we can only identify temporal

reuse at this level. On the other hand, exploiting spatial locality is very important when optimizing for

virtual memory, where the 'line size" is the page size, which may be very large.

We want also to outline that for loop nests having complicated data access pattern, data reuse

can occur along directions not parallel to the iteration space axes. For example, in banded matrix

computations [4] [33] [40] [52], arrays are usually traversed along the diagonals, thus consecutive

referenced elements are not in the same cache line. This yields large working sets and little reuse of

cache lines, clearly a bad situation if one desires to exploit cache locality. W. Li in [83] proposed a loop

transformation called height reduction that improves cache locality by modifying the data access

pattern such that reuse occurs along directions parallel to the iteration space axes. Thus, by applying

height reduction, data accesses are within a small working set and cache lines are reused. For banded

matrix problems, this transformation should be applied before loop tiling.

Determining Tiling Parameters

Now that we have shown how the various types of reuse can be computed, the next step in the locality

analysis is determining the tiling parameters that maximize data locality. The tiling parameters are

the loops to be tiled at each level, their tile sizes and the relative order of the loops. Figure 2.14 shows

a diagram of the different phases of the locality analysis.

Previous work on determining the tiling parameters has mostly targeted the cache level, while

less attention has been paid to the register level. Although the basic principles in memory hierarchy

optimization are similar for all levels, each level has slightly different characteristics, requiring

slightly different considerations. For instance, caches usually have low set associativity, so cache

conflicts can cause desired data to be replaced. The choice of tile size for cache optimization is actually

more difficult than for other memory hierarchy levels, because the data mapping and the cache

replacement policy makes it difficult to predict whether a data item will be in the cache. Another

Loop Tiling Basics 53

major difference between cache and registers is their capacity. For registers, the tile size is smaller

than for caches, since registers set size is smaller than the cache size.

One step of the locality analysis is determining which loops of a nest should be tiled for

maximizing data locality. Exploiting data reuse in more than one dimension of the iteration space,

whenever possible, improves the performance of the memory hierarchy [98] [122]. To determine which

loops should be tiled, it is necessary to quantify the data locality provided by various permutation of

the loop nest to select the permutation that yields the maximum locality. In [122], the authors provide

a framework to quantify data locality at the cache level and propose an algorithm to select the loops to

be tiled.

Once the loops to be tiled have been decided, the relative order of the loops must be determined.

If we are tiling only for cache locality, for example, the loops that traverse the iterations inside a tile

should be reordered to enhance temporal locality as much as possible, which may allow register

allocation to resolve some of the data references from values already in registers. Spatial locality in

these loops is also important for taking immediate advantage of a cache line. The order of the loops

that traverse the tiles should be chosen to enhance reuse between tiles [83]. If we select the best

arrangement of the tiles with respect to each other in the looping structure, we may be able to reduce

the number of compulsory1 misses for a tile by taking advantage of reuse between consecutive tiles.

Finally, given the loops to be tiled and the relative order of the loops in the tiled nest, the tile

sizes have to be computed. We apply tiling to a loop nest to force it to operate on subarrays of any

desired size. If the tile sizes are chosen optimally, each fragment of the work may be completed

without any cache misses other than compulsory ones.

The organization of the data cache can make a dramatic difference in the overall effectiveness of

tiling and on the effectiveness of a particular tile size for a given problem size. Suppose we have a

direct-mapped cache and some particular loop nest. While the cache may be large enough to hold most

of the data being processed, it may not be able to do so because of interferences between contents of

different arrays (cross-interference), or even between two parts of the same array (self-interferences).

Even if we fully tile the loop nest, sometimes we need to make the tile sizes surprisingly small

compared to the size of the cache to avoid interferences. Having a set-associative cache obviously

reduces the frequency of such interferences, but the more arrays we are processing in a single loop

nest, the less effective it does so. Choosing a fixed tile size independent of the array sizes can prove

disastrous, especially for direct mapped caches [80], because a fixed tiles size can dramatically

increase interferences. Meanwhile, if we allow variable tile sizes, it is possible to choose an

appropriate combination of array sizes and tile sizes that can be very effective for reducing conflict

misses, while changing the array sizes by as little as 1% or 2%. Thus, it is essential that tile sizes be

allowed to change with the array sizes.

l.Compulsory misses occur when a cache line is referenced for the first time

54 CHAPTER 2

Several works have been done in this domain. Lam et. al. [80] present an algorithm for

computing the tile size, which selects the largest square tile that does not incur self-interference

conflicts. Esseghir [42] presents a tile size selection algorithm for one-dimensional tiling, which

chooses the maximum number of complete columns that fit in the cache. This algorithm leaves one

large gap of unused cache, it cannot exploit the benefits of multi-dimensional tiling, and also does not

consider cross-interference among arrays. Coleman et. al. [31] present a technique based on the

Euclidean g.c.d. computation algorithm for selecting a tile size that attempts to maximize the cache

utilization while eliminating self-interferences within the tile. They also try to minimize

cross-interferences conflicts. Finally, Moon and Saavedra in [92] introduce hyperblocking or

hypertiling, which is a novel optimization technique that reorganizes data arrays with the goal of

eliminating self and cross interference misses of tiled loop nests. In their experiments, they compared

hyperblocking against other proposed heuristics for tile size selection [31] [42] [80] and show that their

technique can effectively eliminate cache conflicts of tiled loop nests while incurring insignificant

overheads in reorganizing the arrays.

Our discussion so far has mostly been in terms of tiling for cache memory locality. In fact, the

memory hierarchy is quite a bit deeper. The processor usually has a register file, multiple levels of

cache, as well as virtual memory level. If the loops can be tiled for locality at the cache level, they can

also be tiled for locality at the register level, secondary cache level, virtual memory level, etc. In

particular, if the primary cache is very small, tiling for primary and secondary cache locality as well as

for the register level, may yield the best performance. Moreover, tiling or otherwise optimizing for

virtual memory performance might also be necessary for very large data sets [1].

To enhance data locality at several levels of the memory hierarchy, multilevel tiling has to be

performed. Multilevel tiling consists in recursively applying tiling for each level by dividing a tile of a

higher level into subtiles [28] [97] [121]. Each level of tiling exploits one level of the memory hierarchy.

When multilevel tiling is performed, the interaction between different levels must be considered.

Achieving the optimization of only one level of the hierarchy is simple, whereas the overall

optimization for several levels is complex [90]. In [97] [98] Multilevel Orthogonal Block (MOB) forms

are proposed to achieve a high degree of data reuse in all levels of the memory hierarchy. The basic

rule in the construction of a MOB form is that the direction of tiles in adjacent levels should be

different. The direction of a tile is determined by the loop that is not tiled for this level. Furthermore,

the orthogonality property of the MOB forms allows a "sequential" optimization to determine the

order in which tiles are traversed and the size of the tiles level by level. Thus, optimizing for multiple

memory hierarchy levels is simply a matter of optimizing one level at a time.

Loop Tiling Basics 55

iteration
space tiling

CO!DE UPDATING

fully
unrolling

PHAS

•x

E

scalar
replacement

Figure 2.15: Steps of the compiler's updating phase.

2.3.3 Code Updating Phase

Finally, once the tile sizes and shapes at each memory level and the arrangement of the tiles have

been determined, the loop nest has to be transformed appropriately. In this section we will describe

the transformation steps carried out by the code updating phase of the compiler to generate the

multilevel tiled loop nest.

We will distinguish between the implementation of tiling for the register level and the
implementation of tiling for other memory levels. In both cases, the iteration space is divided into

regular tiles of the same size an shape, however, the implementation of tiling for the register level

requires an extra phase not needed for other memory levels. Since registers are only addressable

using absolute addresses (the register number), after dividing the iteration space into tiles, it is

necessary to fully unroll the loops that traverse the iterations inside the register tiles. Thus, reused

array elements are exposed in the new unrolled loop body.

At last, scalar replacement can be used to expose reuse between iterations of the innermost loop

and, therefore, to reduce loads and stores in the loop body. This transformation should always be done,

independently whether tiling is being applied for the register level or not.

Thus, we can differentiate three different steps in the code updating phase when multilevel

tiling is being applied. First, the iteration space is divided into different levels of tiles (one level of

tiling exploits one level of the memory hierarchy). We will refer to this step as the iteration space

tiling phase. The second step of the updating phase consists of fully unrolling the loops that traverse

the iterations inside the register tiles. Obviously, this second step is only performed if multilevel tiling

includes the register level. Finally, the third step consists in applying scalar replacement to expose

reuse between iterations of the innermost loop. Figure 2.15 shows a diagram of the three steps

performed by the compiler's updating phase.

Iteration Space Tiling

Let's first show how to carry out the iteration space tiling phase when tiling is being applied only for

one level of the memory hierarchy. Conventional tiling techniques implement one level of tiling

combining two well-known transformations: strip-mining and loop permutation [128].

56 CHAPTER 2

Strip-mining is used to partition one dimension of the iteration space into strips. It decomposes a

single loop into two nested loops; the outer loop (the tile loop) steps between strips of consecutive

iterations, and the inner loop (the element loop) traverses the iterations within a strip. The loop

bounds after strip-mining a loop are directly obtained by applying the formula of strip-mining. The

general formula for strip mining a loop is given by the expression of Fig. 2.16,

doil = | (L -o f t I I) /B I I J*B I I + of t I I ,U, BZI
doI = L u strip-mining ^ II; IIJ JI Il! TI

do i = max(n, L), min(n+BII-1, U)

Figure 2.16: Formula for strip-mining a loop.

where II is the tile loop, I is the element loop, BII is the strip size and oftzi e Z (0 < oftjj < B IX) is an

offset. Using this expression, the strip boundaries are always parallel to the iteration space axes and

the offset determines the origin of the first strip [129].

Loop permutation is used to establish the order in which the iterations inside the tiles are

traversed. Loop ' permutation is a unimodular transformation [121] that generalizes the loop

interchange transformation. Loop interchange is the transformation that reverses the order of two

adjacent loops in a nest. Loop permutation, instead, allows more than two loops to be moved at once

and does not require them to be adjacent. A permutation o on a loop nest transforms iterations

(Ij,..., I) to (I_j , •-., I_) • This transformation can be expressed in matrix form as / , the n x n

identity matrix 7 with the rows permuted by a. For example, to permute the loop nest UK of Fig. 2. la

(page 36) into JKI, the following unimodular transformation T has to be applied:

0 1 0
T= 001

1 0 0_

The loop bounds after a loop permutation can be obtained using the theory of unimodular

transformations [122] and, to compute the exact bounds, the Fourier-Motzkin Elimination

algorithm is used when the permutation unimodular matrix is applied [16] [7] [77] (see Section 2.2).

To exploit data reuse in several dimensions of the iteration space, multi-dimensional tiling has to

be performed, that means that the iteration space has to be partitioned in more than one dimension.

In this case, conventional techniques apply strip-mining and loop permutation repeatedly, as many

times as dimensions have to be partitioned. An initial loop permutation must be performed if the loop

order of the original loop nest is not such that the outermost loop is the loop to be strip-mined first. For

each space dimension to be partitioned, conventional techniques apply first strip-mining to the

outermost element loop, and then, a loop permutation is performed to order the inner element loops

such that the next loop to be strip-mined becomes the outermost of them. Notice that the loops

involved in a loop permutation are always the innermost loops that have steps equal to one and

therefore, they define a convex iteration space. Thus, the theory of unimodular transformations can be

Loop Tiling Basics 57

Original code
do I = 1 , N

doJ=1,N
doK = 1,N

enddo

T =
0 1 0
0 0 1
1 0 0

D(K,J) Initial Loop Permutation

Strip-mining loop J

do J = 1, N
do K = 1, N

do l = 1, N
loop body

enddo

do JJ = 1 , N, BJJ
do J = max(1 ,jj) , min(N, Jj+Bjj-1) T =

d o K = 1 , N

0 1 0
1 0 0

_0 0 1

do JJ= 1, N, BJJ
do K = 1 , N

doj = max(1,jj)
(JO I — 1 , N s uu x — i , n

loop body Loop Permutation loop body

, min(N, jj+Bjj-1)

enddo

do JJ = 1, N, BJJ
do KK = 1, N, BKK

do K = max(1,KK), min(N, KK+BKK-1)
do j = max(1,jj), min(N, Jj+Bjj-1)

do I = 1, N
loop body

enddo

Strip-mining loop K

T =
0 0 1
0 1 0
1 0 0

do JJ = 1 , N, BJJ
do KK = 1 , N, BKK

do I = 1 , N
do j = JJ, min(N, JJ+Bjj-1)

do K = KK, min(N, KK+BKK-1)

enddo

Final Loop Permutation

enddo

* D(K,J)

Tiled code

Figure 2.17: Conventional implementation of one level of tiling. We show the order in which strip-mining
and loop permutation are applied to perform one level of tiling for exploiting data reuse at two dimensions of
the 3-dimensional iteration space (two-dimensional tiling). BJJ and BKK are the tile sizes in each dimension.

used to perform the loop permutation. After strip-mining all desired loops, a final loop permutation is

required to order the inner loops as wished for the final code. In the final tiled code, the loops that step

between tiles (tile loops) are the outer loops and the loops that step points within a tile (element loops)

are the inner loops.

Figure 2.17 shows how conventional techniques implement one level of tiling. In the example,

one level of tiling is applied to the matrix multiplication loop nest (shown in Fig. 2.la) to obtain the

tiled loop nest of Fig. 2.1b. The offset used in the strip-mining transformation is 1 (note that

|_(1-1)/B_|*B+1=1) and, for every loop permutation performed, we specify its corresponding unimodular

matrix. A two-dimensional tiling is performed to exploit data reuse at two dimensions of the iteration

space. BJJ and BKK are the tile sizes in each dimension. In the final tiled code, the outer loops, which

have steps different from one, are the loops that step between tiles and the inner loops, which have

steps equal to one, are the loops that traverse the points within the tiles.

58 CHAPTER 2

Finally, we note that it is not necessary to rewrite the loop body when performing loop tiling

because (1) the strip-mining transformation does not modify the loop body and (2) although the loop

permutation does, we use in the transformed code the same names for the loop iteration variables as

in the original code, thus avoiding to rewrite the loop body.

Multilevel tiling has been implemented by applying tiling level by level [28] [122], going from the

outermost (i.e. virtual memory level) to the innermost level (i.e. register level). In Fig. 2.17 another

level of tiling can be performed by applying tiling again to loops I, J and K of the resulting code.

Fully Unrolling

As mentioned before, the implementation of tiling for the register level requires an extra phase not

needed for other memory levels. Since registers are only addressable using absolute addresses (the

register number), after dividing the iteration space into register tiles, it is necessary to fully unroll the

loops that traverse the iterations inside the register tiles, so that reused array elements are exposed.

A loop is fully unrolled by replicating the loop body as many times as the loop bounds indicate,

changing the iteration variable that appears in the unrolled loop body by its different values and

eliminating the do-loop statement; a new loop body is obtained.

As an example, suppose that we want to perform two levels of tiling (i.e. cache and registers) to

the matrix multiplication code (see Fig. 2.17). Suppose also that the locality analysis has decided that,

at each level, data reuse has to be exploited in two dimensions of the iteration space. At the cache level

dimensions J and K have to be tiled with tile sizes Bjaj and BKKK, respectively, and, at the register

level, dimensions I and J are tiled with tile sizes BIZ and BJJ, respectively. After tiling the iteration

space for two level as explained previously, we obtain the code of Fig. 2.18a. The length of the loop

index variables refers to the level it is exploiting (JJ for register and JJJ for cache). For simplicity, we

assume that N is multiple of BJJJ, BKKK, BTI and Baj and, in turn, Bjaj is multiple of Baj.

To properly exploit the register level, the loops that traverse the iterations inside the register tile

(loops I and J) should be fully unrolled. Since both loops execute exactly BIT and Bja iterations,

respectively, they can be easy fully unrolled. Figure 2.18b shows the code after fully unrolling loops I

and J, assuming BII=BJJ=2.

Scalar Replacement

At last, scalar replacement can be used to eliminate redundant loads and stores in the new unrolled

loop body. Although conventional compilation systems do a good job of allocating variables to registers,

their handling of subscripted variables leaves much to be desired. Most compilers fail to recognize

even simplest opportunities for reuse of subscripted variables between iterations of the innermost

loop. For example, in the code of Fig. 2.18b, most compilers will not keep C(II,JJ), C(II,JJ+1),

Loop Tiling Basics 59

(a) iteration space tiling

do JJJ = 1, N, BJJJ
do KKK = 1 , N, BKKK

doil = 1 ,N, BH
do jj = jjj, jjj+Bjjj-1 , BJJ

do K = KKK, KKK+BKKK-1
do I = II, Il+Bir1

do J = jj, JJ+Bjj-1

enddo

D(K,J)

(c) scalar replacement

doJJJ=1,N, BJJJ
do KKK = 1 , N, BKKK

do II = 1, N, BXI

do JJ = JJJ, jjj+Bjjj-1 ,
RR1 =C(n,JJ)
RR2 =
RR3 =
RR4 =
do K = KKK, KKK+BKKK-1

RR1 = RR1 + A(II,K) * D(K,JJ)
RR2 = RR2 + A(II,K) * D(K,JJ+1)
RR3 = RR3 + A(II+1 ,K) * D(K,JJ)
RR4 = RR4 + A(II+1 ,K) * D(K,JJ+1)

enddo
C(II,JJ) = RR1

= RR3

enddo

Ob) fully unrolling
doJJJ = 1 ,N, BJJJ

do KKK = 1, N, BKKJ.
do II = 1, N, BIZ

do jj = JJJ, jjj+Bjjj-1, BJJ
do K = KKK, KKK+BKKK-1

C(II,JJ) = C(II,JJ) + A(H,K) * D(K,JJ)
1) = C(II,JJ+1) + A(II,K) * D(K,JJ+1)

1,jj) = C(II+1 ,JJ) + A(II+1 ,K) * D(K,JJ)
J-f1) = C(II+1,JJ+1) + A(II+1,K) * D(K,JJ+1)

enddo

Figure 2.18: Loop nest (a) after tiling the iteration space for two levels, cache and register, (b) after fully
unrolling the loops that traverse the iterations inside the register tile and (c) after applying scalar replacement.

C(II+1,JJ) and C(II+1,JJ+1) in registers in the inner K loop. This happens in spite of the fact that

standard optimization techniques are able to determine that the addresses of the subscripted

variables are invariant in the inner loop. The principal reason for the problem is that the data-flow

analysis used by standard compilers is not powerful enough to recognize most opportunities for reuse

of array variables. Array variables are treated in a particularly naive fashion making it impossible to

determine when a specific element might be reused. Scalar replacement, proposed by [20] [23], is a

transformation that uses dependence information to find reuse of array values and expose it by

replacing the references with scalar temporal variables. Figure 2.18c shows the code of Fig. 2.18b after

applying scalar replacement. Note that scalar replacement is used to expose reuse of array values

between different iterations of the innermost loop. For references such as A(II,K), A(II+1,K), D(K,JJ)

and D(K,JJ+1), that exhibit reuse inside the loop body (but not between iterations) current compilers

are already able to eliminate redundant loads or stores.

60 CHAPTER 2

Note that loop tiling for the register level enhances data reuse inside the loop body. In the

example above, it exploits the reuse of A(II,K), A(II+1,K), D(K,JJ) and D(K,JJ+1) inside the inner K

loop. The data reuse exploited across iterations of the inner loop (matrix C) is achieved by the scalar

replacement transformation and we note that both codes, the one not tiled for the register level

(Fig. 2.17) and the one tiled for the register level (Fig. 2.18c), achieve the same degree of reuse of

matrix C. In the cache tiled code of Fig. 2.17, even after scalar replacement, there are two loads and

zero stores per iteration, whereas in the register tiled loop nest (Fig. 2.18c) there are 4 loads and zero

stores per four iterations, which means only 1 load per iteration.

Transfonnation of Non-perfectly Nested Loops

Thus far, we have assumed that we are transforming a perfectly nested loop nest. That is, all

computation is nested within the innermost loop. Now, we focus on loop nests that are not perfectly

nested. It is possible to apply multilevel tiling to these loop nests as well. For instance, many

important non-perfectly nested loop nests such as LU decomposition without pivoting, Cholesky

factorization and Given QR factorization, can benefit from multilevel tiling.

When a loop nest is not perfectly nested, we can use a code sinking transformation [129] to

convert it into a perfectly nested loop nest. This transformation moves the statements between loops

inside the inner loop by adding one or more conditional statements. The conditional statements

protect the execution of the merged statements, so they are executed at the right time. As an example,

Fig. 2.19 shows how a general 3-deep non-perfectly nested loop nest is converted into perfectly nested.

The code sinking transformation is legal if and only if the loops in the nest never execute empty

iterations, that means, that the bounds of the loops must be exact. This ensures that if a non-perfectly

nested statement S or S' would have executed in the original (non-perfectly nested) code, then it still

will in the transformed (perfectly nested) code. On the other hand, once the nest is transformed in this

way, the data dependences can be extracted in a straightforward manner. By augmenting the set of

do li = L!, D! do ij = Llt l̂

Si do I2 = L2, U2

do li = L2, U2 do I3 = L3, U3

S2 if (i3.eq.L3) .and. (i2.eq.L2) then Sj

do I3 =L3) U3 code sinking ^ if to-eq.La) then S2

S3 S3

enddo if (i3.eq.U3) then S'2
S'2 if (i3.eq.U3) .and. (i2.eq.U2) then S'a

enddo enddo

S'i enddo
enddo enddo

Figure 2.19: How to convert a 3-deep non-perfectly nested loop into perfectly nested.

Loop Tiling Basics 61

constraints that the data dependence analyzer is solving [89] with the conditional constraints, the

data dependence analyzer has the necessary information to determine all data dependences in the

new perfectly nested loop nest.

Now that we have a set of perfectly nested loops, multilevel tiling can be applied as explained

before. However, having conditional statements in the loop body can increase execution time because,

in every iteration, the conditions of the if-statements must be evaluated. To avoid this time execution

overhead, after tiling the iteration space (i.e. after the iteration space tiling phase and before unrolling

the inner loops), the if-statements can be eliminated using index set splitting [17] [73]. Index set

splitting is used to partition the iteration space of the tiled loop nest, so that the tiled loop nest

containing if-statements is restructured into a sequence of nested loops with no if-statements.

As an example, consider the set of non-perfectly nested loops of Fig. 2.20a that corresponds to the

matrix multiplication code with initialization of matrix C. After converting the nest into perfectly

(a) Original code
do 1 = 1, N

C(i,j) = 0
d o K = 1 , N

,K) * D(K,J)

enddo

(c) Iteration space tiling
do jjj = 1 , N, BJJJ

do KKK = 1 , N, BKKK

doil = 1,N, BIT

do JJ = JJJ, jjJ+Bjjj-1 , BJJ
do K = KKK, KKK+BKKK-1

do i = il, n+Bir1
do j = JJ, jj+Bjj-1

enddo

* D(K,J)

(b) Code sinking
do 1 = 1, N

doJ=1,N
do K = 1 , N

¡f(K.eq.1)C(i,j) =

enddo

,K) * D(K,J)

(d) Index set splitting
do JJJ = 1, N, BJJJ

do KKK = 1 , N, BKKK

do n = 1, N, BH
do JJ = JJJ, JjJ+Bjjj-1 , BJJ

do K = KKK, min (1, KKK+BKKK-1)
do i = ii, n+Bir1

do j = JJ, jj+Bjj-1
C(I,J) = 0

enddo
do K = max (2, KKK) ,

do I = ii, n+Bir1
do J = JJ, jj+Bjj-1

D(K,J)

,K) * D(K,J)

enddo

enddo

Figure 2.20: (a) Code of the matrix multiplication with initialization of matrix C. (b) Loop nest after the
code sinking transformation, (c) after the iteration space tiling phase and (d) after applying index set to
eliminate the if-statements.

62 CHAPTER 2

nested, we obtain the code of Fig. 2.20b. Now the iteration space can be tiled into different levels of

tiles, obtaining the code of Fig. 2.20c. Finally, index set splitting is applied to eliminate the conditional

statement of the loop body, obtaining the code of Fig. 2.20d; now, the inner loops (l and J) inside the K

loops can be fully unrolled.

2.4 NON-RECTANGULAR ITERATION SPACES

This section summarizes the assumptions on which our compiler strategies, that will be presented in

the following chapters, are based.

First of all, we note that the codes for which loop tiling has had the greatest success so far are

the so-called numerical or scientific codes that spend most of their time executing nested loops that

manipulate matrices of numerical values. Thus, from now on we will only deal with this kind of codes.

More precisely, this thesis focuses on the loop tiling transformation applied on loop nests that define

non-rectangular iteration spaces. Thus, from now on, we also assume that the bounds of the loops in

the nest are max/min functions of affine functions of the surrounding loops iteration variables. As an

example, Fig. 2.21 shows the code for multiplying a lower triangular matrix (A) by an upper triangular

matrix (D). The result is a square matrix (C). This loop nest defines a non-rectangular iteration space.

These non-rectangular loop nests commonly appear in numerical applications and current

compilers are not capable of restructuring them into multilevel tiled loop nests. Our goal in this thesis

is to show that multilevel tiling can also be applied to non-rectangular iteration spaces to achieve high

performance on modern microprocessors. In this work we mainly deal with the code updating phase of

compilers when tiling is applied at several levels of the memory hierarchy, and specially, at the

register level. Thus, we assume that previous dependence analysis to prove the legality of tiling has

already been performed.

Since loop tiling can only be applied to fully permutable and perfectly nested loop nests, we

assume that the original loop nest is fully permutable and perfectly nested. However, recall that (a)

non fully permutable loop nests can be turned into fully permutable nests by applying a loop skewing

do I = 1, N
do j = 1,N
doK= 1,
C(I,J) = C(I,J) + A(l,K) * D(K,J)

enddo
enddo

enddo
Figure 2.21: Example of loop nest that describes a
non-rectangular iteration space. The code corresponds to the
multiplication of a lower and an upper triangular matrices.

Loop Tiling Basics 63

transformation [121] and (b) non perfectly nested loops can be converted into perfectly nested loops

using a code sinking transformation [129]. As mentioned before, to avoid the execution time overhead

introduced by the code sinking transformation, it must be undone after tiling.

There has been much work in the literature regarding loop tiling that has been mostly focused

on the locality analysis to exploit data reuse at the cache level and less attention has been paid to the

register level. In this work, we also deal with the locality analysis phase for the register level and we

assume that the locality analysis for the other memory hierarchy levels to decide (a) which loops are

the best ones to be tiled, (b) the tile size in each dimension and (c) the order of the loops that delivers

the best performance, has already been performed.

2.5 SUMMARY

In this chapter, we have given some background on the loop tiling transformation. First, we illustrated

the loop tiling transformation with a typical example and showed how tiling can improve data locality.

Thereafter, we showed how iterations in perfectly nested loops can be modeled as nodes in an iteration

space where the data dependences are the directed arcs between the nodes, representing ordering

constraints. We also summarized the theory of unimodular transformations proposed by [121],

introducing their legality constraints and different approaches to generate code using these

transformations.

Later, we have discussed the three challenges that confront a compiler to perform loop tiling.

Figure 2.22 shows the whole sequence of compiler phases for performing loop tiling.

The first challenge is the dependence analysis for determining whether loop tiling is a legal

transformation or not. We enunciated the legality of this transformation, given the general

dependence framework, and presented an example showing how the loop skewing transformation can

be used to enable loop tiling when data dependences in the original code prevent it. We also discussed

the significance of having dependence tests with high precision in optimizing compilers for avoiding

false dependences that can prevent the compiler from applying loop tiling.

The second challenge is the locality analysis for determining the tiling parameters that deliver

the best performance. To guide this analysis, it is necessary to obtain reuse information of the loop

DEPENDENCE ANALYSIS

dependence
testing

transformation
legality

LOCALITY ANALYSIS

reuse
analysis

- loops to
be tiled

determin

•̂

ng í

loops
order
Hing p

•^

arai

tile
sizes
Tieters

CODE UPDATING PHASE

space tiling -3> fully
unrolling -3>

scalar
replacement

Figure 2.22: Whole sequence of compiler phases for performing loop tiling.

64 CHAPTER 2

nest. We explained the concept of reuse vector space [121] which captures inherent reuse within a loop

nest. We also reviewed previous work related to determining the tiling parameters for best cache

performance. In order to achieve the best performance, it is important to apply the locality analysis to

all the relevant levels of the memory hierarchy simultaneously. We summarized previous works

focused on studying the interaction between the different memory levels.

Finally, the third challenge is the code updating phase to generate the transformed multilevel

tiled code. We showed how conventional techniques implement loop tiling for any memory level,

including the register file. Loop tiling is implemented by combining two transformations, namely

strip-mining and loop permutation. Moreover, when tiling for enhancing register reuse, an extra

phase in needed. In this case, after tiling the iteration space it is necessary to fully unroll the loops

that traverse the register tiles. In addition, scalar replacement should be finally applied to expose

reuse in the innermost loop. We have also showed how loop tiling can be applied to non-perfectly

nested loops by using the code sinking transformation.

We concluded this chapter by summarizing the main assumptions on which our compiler

strategies, that will be presented in the following chapters, are based on.

3
TILING FOR THE REGISTER LEVEL

Summary
Tiling is a well-known loop transformation generally used to expose coarse-grain parallelism and to

exploit data reuse at the cache level. Tiling can also be used to exploit data reuse at the register level

and to improve a programs' ILP. However, previous proposals in the literature (as well as

commercial compilers) are only able to perform multi-dimensional tiling for the register level when

the iteration space is rectangular. In this chapter we present a new general algorithm to perform

multi-dimensional tiling for the register level in both rectangular and non-rectangular iteration

spaces. We also propose a simple heuristic to determine the tiling parameters at this level. Finally,

we evaluate our method using as benchmarks typical linear algebra algorithms having

non-rectangular iteration spaces and compare our proposal against commercial compilers and

preprocessors able to perform optimizing code transformations such as inner unrolling, outer

unrolling and software pipelining.

65

66 CHAPTER 3

3.1 INTRODUCTION

The ability to exploit data reuse at the register level is extremely important in today's superscalar

microprocessors, since the register level directly feeds the processor functional units. The typical

bandwidth provided between the register file and the functional units in current superscalar

microprocessors is three or four times higher than the bandwidth provided by the first level cache.

Current superscalar microprocessors provide at least 6 floating point register file ports compared to

the one or two ports provided by the first level cache. If the register level is not properly exploited,

then the number of ports of the first level cache bounds processor performance. Much research has

been devoted to exploit data reuse at the cache level [18] [27] [28] [50] [69] [74] [83] [90] [97] [122] while,

surprisingly, little attention has been paid to the register level [21] [23].

Moreover, modern microprocessors issue multiple instructions per cycle to exploit instruction

level parallelism (ILP). To achieve high performance in these processors, compilers not only have to

deal with data reuse but they must also extract ILP from the sequential version of the program to

exploit the multi-issue capabilities of the hardware. Some compiler transformations such as

unrolling [129] and software pipelining [79] [106] have been proposed to improve ILP but,

unfortunately, do not properly exploit data reuse at the register level.

Loop Tiling [98] [110] [128] is a transformation with the desirable property that can fulfill both

goals at the same time: it exploits data reuse and, if applied to the register level, it can also extract

ILP. So far, loop tiling has been basically used to expose coarse-grain parallelism [69] [123] and to

exploit data reuse at the cache level [27] [46] [65] [122], but has seldom been applied to the register

level.

The current state-of-the-art regarding tiling for the register level (see [121] [124] and also current

commercial compilers), can only perform multi-dimensional tiling for the register level when the

iteration space is rectangular. Tiling non-rectangular iteration spaces is not generally considered

because it is far from being trivial. In non-rectangular spaces, the bounds of the loops that result from

the iteration space tiling do not determine a constant number of iterations, and therefore, the loops

that provide reuse at the register level cannot be directly fully unrolled. Recall that fully unrolling is

necessary since registers are only addressable by means of absolute addresses (register number).

In this chapter we focus on how multi-dimensional tiling can be applied to the register level for

any iteration space having loop bounds defined as compositions (max or min) of affine functions of the

surrounding loops iteration variables. This includes those iteration spaces which bounds are not

parallel to the iteration space axes, that is, non-rectangular iteration spaces. These non-rectangular

iteration spaces are commonly found in linear algebra algorithms or can arise as a result of applying

previous transformations such as loop skewing.

Tiling for the Register Level 67

Our method applies index set splitting to a previously tiled iteration space to divide it into

partitions, such that, in one of these partitions, all loops that provide data reuse at the register level

can be fully unrolled. The goal is to obtain one partition where all loops that provide data reuse at the

register level perform a constant number of iterations. These loops can then be fully unrolled. After

unrolling, we apply scalar replacement [20] [23] to remove redundant loads and stores.

Before performing any transformations to better exploit the register level, it is always necessary

to perform a locality analysis. This locality analysis will determine which loops are good candidates to

be tiled, the tile sizes in each dimension and the arrangement of the loops that deliver the best

performance. In this chapter we will also propose a very simple heuristic to determine the tiling

parameters at the register level. We will evaluate this heuristic and present results that show the

heuristic behaves well in typical linear algebra programs.

After presenting our algorithm and its associated locality analysis heuristic, we evaluate the

performance obtained by our method, using as benchmarks typical linear algebra algorithms having

non-rectangular iteration spaces. We compare our proposal against commercial compilers and

preprocessors able to perform optimizing code transformations such as inner unrolling, outer

unrolling and software pipelining. Measurements were taken on two different superscalar

microprocessors, an ALPHA 21164 and a MIPS R10000.

Finally, we want to note that unroll-and-jam [23] [26] is also known as register tiling in the

literature, because it also rearranges the iteration-space traversal of a loop nest, so that it results in a

series of small polyhedra executed one after the other. Indeed, for rectangular iteration spaces,

unroll-and-jam applied to several loops in a nest is the same transformation as register tiling.

However, for non-rectangular iteration spaces, unroll-and-jam and register tiling do not generate the

same code. Moreover, previous proposals of unroll-and-jam can only be applied to limited cases of

non-rectangular iteration spaces [23]. In this chapter we will discuss in depth the conceptual

differences between unroll-and-jam and register tiling and we will evaluate the performance obtained

from each technique.

The remainder of this chapter is organized as follows: Section 3.2 presents our general method to

perform tiling at the register level. In Section 3.3 the benefits of tiling for the register level are

explained and in Section 3.4 we propose a simple heuristic that determines the tiling parameters at

the register level. Section 3.5 presents the evaluation of our method through some experimental

results. Finally, Section 3.6 presents the previous work related to register tiling and in Section 3.7 we

summarize this chapter.

68 CHAPTER 3

3.2 IMPLEMENTATION OF REGISTER TILING

In this section we will describe our method to perform tiling for the register level and we will also

measure its complexity. The method consists in a combination of well-known transformations:

strip-mining, loop permutation, index set splitting, unrolling and scalar replacement.

As mentioned in chapter 2, we assume that the loop bounds are max/min functions of affine

functions of the surrounding loops iteration variables. We also assume that the original loop nest is

fully permutable and perfectly nested. In this particular section, we also assume that a previous

analysis to decide (a) which loops are the best ones to be tiled, (b) the tile size in each dimension and

(c) the order of the loops that delivers the best performance, has already been performed. We will deal

with the locality analysis at the register level later in Section 3.4.

3.2.1 Overview

Our method divides first the iteration space defined by the loop structures into regular tiles using the

strip-mining and loop permutation transformations [55] [59] [123]. Strip-mining is used to partition

the iteration space and loop permutation is used to order the loops in such a way that (a) the loops

that step between tiles become the outer loops (tile loops) and (b) the loops that step points within a

tile become the inner loops (element loops). After the iteration space tiling phase, we obtain a new

single loop nest that traverses all tiles that cover the entire original iteration space.

To exploit the register level it is now necessary to fully unroll the loops that step the points inside

the register tiles (the element loops). Fully unrolling is necessary because registers, as opposed to

cache memory locations, are only addressable using absolute addresses (register number). A necessary

condition for a loop to be fully unreliable is that it must always execute exactly the same number of

iterations. Unfortunately, after the iteration space tiling phase, the element loops do not fulfill this

condition, i.e., they do not always execute the same number of iterations.

As an example, Fig. 3.1 shows two iteration spaces, one rectangular and one non-rectangular,

after the iteration space tiling phase has been applied. In the figure, each register tile has been

grouped within a box. Note that there are two types of tiles: boundary-tiles (grey-shaded boxes) and

core-tiles (white-shaded boxes). We define a boundary-tile as a tile whose intersection with the original

iteration space is not equal to the tile, and we define a core-tile as a tile whose intersection with the

original iteration space is equal to the tile. When the element loops are traversing core-tiles, they

always execute as many iterations as the tile size, while when the element loops are traversing

boundary-tiles, the number of iterations is less or equal than the tile size. Therefore, the problem is

that the element loops do not always execute the same number of iterations.

Tiling for the Register Level 69

(a) Rectangular tiled iteration space (b) Non-rectangular tiled iteration space

Figure 3.1: Example of (a) rectangular and (b) non-rectangular iteration space.

This problem can be solved by taking the single loop nest resulting from the iteration space tiling

transformation and breaking it into several loop nests, one of which will traverse all (and only)

core-tiles while the remaining loop nests will traverse the different types of boundary-tiles.

In rectangular iteration spaces, it is very easy to break the original, tiled, loop nest as just

described because the intersection of a boundary-tile with the original iteration space is always a

rectangular space. As an example, consider the rectangular iteration space defined by the loop nest of

Fig. 3.2a. After tiling the iteration space in both dimensions, we obtain the loop nest of Fig. 3.2b that

traverses the entire iteration space as shown in Fig. 3.2c. Since all the boundary-tiles are rectangular,

it is possible to create a loop nest that traverses all core-tiles by simply adjusting the outer tile loops

bounds, as shown in Fig. 3.2d.

(a) Original loop nest

do 1 = 1, N
do J = 1, N

loop body
enddo

(b) Tiled loop nest
do 11 = I .N .Bj - j

do JJ = 1, N, BJJ
do i = ii, min(N, ii+Bir1)

do j=jj, min(N, jj+BJa-1)
loop body

enddo

(c) Tiled iteration-space traversal

I,
N-

(d) Tiled loop nest

doJJ=1,N-Bjj+1,Bjj
do i = II, n+Bjj-1

do J = J J, JJ+Bjj-1
loop body

enddo
do I = ii, Ii+Bir1

do J = JJ, N
loop body

enddo
doj j=1 ,N, BJJ

doi = ii, N
do J=JJ, min(N, Jj+Bjj-1)

loop body
enddo

Figure 3.2: (a) Example of loop nest that describes a rectangular iteration space, (b) Loop nest after tiling
the iteration space in both dimensions, (c) Order in which iterations are executed in the tiled iteration space,
(d) Tiled loop nest after creating the loop nest that traverses all core-tiles.

70 CHAPTERS

(a) Original loop nest
do I = 1, N

do J = 1, i
loop body

enddo

(b) Tiled loop nest
doil = 1,N, BIT

doJJ = 1,min(N, n+Bir1), BJJ
do i = ii, min(N, Ii+Bir1)

do j = JJ, min(i, JJ+Bja-1)
loop body

enddo

(c) Tiled iteration-space traversal

3JJ ..
N-L ¡̂ ~

N

Figure 3.3: (a) Example of loop nest that describes a non-rectangular iteration space, (b) Loop nest after tiling
the iteration space in both dimensions, (c) Order in which iterations are executed in the tiled iteration space.

By contrast, in non-rectangular iteration spaces the boundary-tiles might be non-rectangular

because the element loops have bounds that are affine functions of other element loop iteration

variables. Figure 3.3a shows a loop nest that defines a non-rectangular iteration space. After tiling the

iteration space in both dimensions, we obtain the loop nest of Fig. 3.3b that traverses the entire

iteration space as shown in Fig. 3.3c. Note that in this case, breaking the loop nest in Fig. 3.3b into

different loop nests that traverse core-tiles and boundary-tiles is not as trivial as it was in the

rectangular iteration space case. Here, element loop J has a bound that depends on element loop I,

and, therefore, adjusting the bounds of loops II and J J is not enough to achieve a loop nest that

traverses all (and only) core-tiles. The rest of this section will propose our strategy to tackle this

problem by using index set splitting [129].

Once the original tiled loop nest has been broken into several loop nests, we proceed to fully

unroll the element loops that traverse the core-tiles. Fully unrolling is achieved by replicating the loop

body as many times as the loop bounds indicate, changing the iteration variable that appears in the

unrolled loop body by its different values and eliminating the do-loop statement. After this process, a

new loop body is obtained.

At last, after fully unrolling the element loops, scalar replacement [20] [23] is used to eliminate

redundant loads and stores in the loop body.

Summarizing, our strategy performs the following transformations:

• Strip-mining and loop permutation to tile the iteration space into regular tiles,

• index set splitting to be able to fully unroll the element loops,

• fully unrolling, and

• scalar replacement to eliminate unnecessary loads/stores.

Tiling for the Register Level 71

We note that our strategy can be used in the context of multilevel tiling. If exploiting data reuse

in several levels of the memory hierarchy is desired, then multilevel tiling is applied in the first step,

and all other steps remain unchanged.

In the remainder of this section, we first illustrate with an example all the transformation steps

performed by our method, paying special attention to the Index Set Splitting step. Thereafter, we

formalize the complete algorithm to apply index set splitting and, finally, we give analytical

expressions both for the complexity of our method and for the amount of code generated.

3.2.2 A Step-by-step Example of Register Tiling

To see how our method works, we will show all the steps we perform in order to apply register tiling to

the triangular matrix product algorithm, shown in Fig. 3.4a, which has a non-rectangular

3-dimensional iteration space. We assume that tiling is being applied only for the register level and we

suppose that the locality analysis has already been performed. As we will see later in Section 3.4, the

locality analysis will always tile (n-1) dimensions of a n-dimensional iteration space. In our example,

we assume that the loops to be tiled are loops J and I and the tile sizes are BJJ and BIZ, respectively.

For simplicity, we suppose that N is multiple of BJJ and BTI.

Iteration Space Tiling

The first step of our method consists in dividing the iteration space defined by the original loop nest

into regular tiles. This can be done by combining the strip-mining and loop permutation

transformations as explained in Chapter 2. The code after tiling the iteration space is shown in Fig.

3.4b. We will refer to the loops that we want to unroll as Unroll Candidate Loops (UCLs). In Fig. 3.4b,

the UCLs are loops J and I.

In the next step of our method, index set splitting is used to isolate a partition were the UCLs

iterate exactly as many times as the tile size in their dimension. As we discussed in the previous

subsection, this particular partition is the partition where the UCLs can be fully unrolled.

(a) Original loop nest (b) Tiled loop nest

do K = 1, N iteration space do JJ = 1, N, Baj
do I = K, N tiling do II = 1, N, BTI

do J = K, N d o K = 1, min(jj+Bjj-1, ll+Bn-1)
G(I,J) = C(l,J) + A(I,K) * D(K,J) , do J = max(jj, K), jj+Bjj-1

enddo do i = max(n, K), n+Bir1
C(i,j) = C(i,j) + A(I,K) * D(K,J)

enddo

Figure 3.4: (a) Original code (form KIJ) of triangular matrix product,
(b) Code after tiling for the register level.

72 CHAPTER 3

Index Set Splitting

Let II be the iteration variable of a tile loop and let BIZ be the tile size in its dimension. Its associated

element loop (that is, an UCL) always has II and ll+Bjj-1 as one lower and upper bound component,

respectively. We want to achieve a partition of the tiled iteration space where those bound components

are the effective bounds of the UCL. An effective bound is the bound component that results after

evaluating a composition (max or min) of bound components. If we achieve this goal, we will be able to

fully unroll the UCLs in this partition.

Index Set Splitting (ISS) is a code transformation that splits a loop into two new loops, where

each new loop iterates over non-intersecting partitions of the original loop. We use Index Set Splitting

to split outer loops (with respect to the UCLs) with the goal of dividing the tiled iteration space into

the desired partitions.

To see how we perform ISS we will continue with the example of Fig. 3.4. The bounds of the

UCLs J and I in the tiled code of our example are:

max(jJ, K)< J< jj+Bjj-1 and max(ii, K)< I <II+BTI-1

and our goal is to achieve a loop nest where loops J and I have the following bounds:

JJ < J < Jj+Bjj-1 and II < I < II+BII:-1

The loop bounds of the UCLs in the tiled code determine the set of all conditions that must hold

in the partition where the UCLs can be fully unrolled. In our example, UCLs J and I could be fully

unrolled if the conditions J J > K and II > K did hold. Thus, we will apply ISS with each of these

conditions.

We start dealing with the condition II > K. First, we solve the condition II > K for the innermost

loop whose iteration variable appears in the inequality (loop K in our example); this loop will be the

loop to be split. The new inequality (K < II) will be referred to as a restriction. Note that a condition

and a restriction refer to different but equivalent expressions. A restriction is a condition after solving

it for the innermost loop iteration variable. Second, we split loop K using restriction K < II into two

new loops, in such a way that in one of the new loops the restriction K < II always holds and in the

other does not.

Figure 3.5a shows the loop nest before applying ISS, with the bound that has generated the

restriction and the loop to be split marked in bold. Figure 3.5b shows the code after applying ISS to

loop K and in Fig. 3.5c we can see graphically how the iteration space defined by loops I and K is split.

Tiling for the Register Level 73

(a) Before Index Set Splitting

do JJ= 1, N, BJJ
do 11 = 1, N, BH

doK = 1, min(jj+Bjj-1, n+Bn-1)
do J = max(jj, K), Jj+Bjj-1

do i = max(n, K), ii+BIT-1
C*/T ~T\ — ("VT T\ _|_ A^T TT\ * D^K TÌ

enddo
enddo index set splitting

enddo
enddo

enddo

(b) After Index Set Splitting

do jj = 1, N, BJJ
do 11 = 1, N, BH

do K = 1 1 , min(ll, Jj+Bjj-1, n+Bn-1 j
do j = max(jj, K), JJ+BJ>T-1

do I = il, 11+ Bjj-1

(c) Iteration space denned by I and K
I

II

enddo partition 1
enddo K < I I

with restriction K < 1 1 enddo

do K = max(1,n+1), min(jj+Bjj-1, ii+BI:E-1)
do j = max(jj, K), jj+Bja-1

do i = K, ii+Bn-1
C(l,J) = C(l,J) + A(l,K)*D(K,j)

enddo partition 2
enddo K>II

enddo
enddoK >ll / iteration space

boundary enddo

II

Figure 3.5: a) Loop nest before applying ISS. b) Loop nest after applying ISS
with restriction K < 11 to loop K. c) Iteration space defined by loops I and K.

After applying ISS to loop K, the bounds of loop I in both partitions can be simplified. In the

partition where K < II holds (partition 1), the lower bound of I can be simplified to II (max (II, K)=

II). In a similar way, in the partition where K < II never holds (partition 2), the lower bound of I can

be simplified to K (max (II, K)= K). In Fig. 3.5b the main changes on the loop bounds are marked in

bold.

Now loop I of partition 1 always executes Bi;r iterations and can be fully unrolled. Loop I of the

partition 2 never executes a constant number of iterations and cannot be fully unrolled. We say that

loop I of partition 2 is no longer an UCL.

We continue applying index set splitting repeatedly to the partition where all conditions that

have been previously applied hold, until we achieve a partition where all UCLs can be fully unrolled.

In Fig. 3.5b we have to apply ISS again to partition 1 with the condition JJ > K to be able to also fully

unroll UCL J.

74 CHAPTER 3

After isolating the partition where all UCLs can be fully unrolled, we obtain other partitions that

only contain boundary-tiles. In certain boundary-tiles, some (but not all) element loops can also iterate

exactly as many times as the tile size in their dimension and, therefore, they can also be fully unrolled.

In partition 2 of Fig. 3.5b, for example, loop J can be fully unrolled if ISS is applied again to this

partition. Our method also deals with all these partitions. In these partitions, it is sometimes

necessary to perform a loop permutation to make sure the UCLs become innermost loops before fully

unrolling them.

Figure 3.6a shows the final code of our example after applying ISS repeatedly to all partitions. The

first loop nest (partition 1) traverses the partition containing only core-tiles and, therefore, loops J and

I can be fully unrolled (they always execute BJJ and BIX iterations, respectively). The other three loop

nests traverse partitions containing boundary-tiles. However, in the second and third loop nests some,

but not all, element loops can be fully unrolled (loops I and J, respectively). Note also that in the third

loop nest a loop permutation has been performed to make loop J become the innermost loop in the nest.

Unrolling and Scalar Replacement

In our final steps, we fully unroll the loops and apply scalar replacement to eliminate redundant loads

and stores in each partition (see Chapter 2, Section 2.3.3). The final resulting code after all steps is

shown in Fig. 3.6b (assuming BJJ=BII=2).

3.2.3 Index Set Splitting Algorithm

In this section we formalize how to apply index set splitting repeatedly. We will first present how to

build all the conditions that must hold in the partition where all UCLs can be fully unrolled. These

conditions determine the restrictions used to split the loops. We then present how a loop is split given

one restriction. Afterwards we present the order in which we split the loops. This order is very

important to avoid code explosion and to avoid processing a loop more than once. Finally, we give the

complete ISS algorithm.

All discussion in this section assumes that the iteration space tiling phase has already been

performed. After tiling the iteration space into regular tiles we obtain an m-deep loop nest with the

following structure:

do ij = L!, UL B! 1
tile loops

do I2 = L2, U2, B2 J
. . .] non-tiled loop

doim = Lm,Um,1]uCLs

enddo

where Ij is the most external loop and Im is the most internal one.

Tiling for the Register Level 75

(a) After the Index Set Splitting process

do JJ = 1 , N, BJJ
do II = 1, N, BH
" do ¿~= irmin(ii, JJ)

do j = JJ, jj+Bjj-1
do i = II, ii+Bn

, . C(I,J)=C(I,J)
enddo

enddo
enddo,.,,, „ _J _____ ,„ ,
doK = max(1, JJ+1), min

do J = K, JJ+Bjj-1
do i = ii,

(b) After fully unrolling and
applying scalar replacement

do JJ= 1, N, Bjj
do II = 1, N, BH

RR1 =C(II,JJ)
RR2 = C(n,JJ+1)
RR3 = i

A(I,K)*D(K,J)

partition 1
n)

* D(K,J)
enddo

enddo
enddo

= max(1,
do i = K,

do J = JJ, Jj+Bjj

partition 2

-1

, n+Bir1)

* D(K,J)
enddo

enddo
enddo
doK = max(1,

do J = K, jj+Bjj-1
do i = K, Ii+Bir1

partition 3

-1,ll+Bir1)

D(K,J)
enddo

enddo
enddo

enddo
enddo

partition 4

doK = 1, min(il, JJ)
RR1 = RR1 + A(II,K) * D(K,JJ)
RR2 = RR2 + A(II,K) * D(K,JJ+1)
RR3 = RR3 + A(II+1,K)
RR3 = RR3 + A(II+1,K)

enddo
C(II,JJ) = RR1

= RR2
= RR3

D(K,JJ)
D(K,JJ+1)

do K = max(1, JJ+1), mm(jj+Bjj-1 , n)
RR1 =A(il,K)

do j = K, jj+Bjj-1
C(II,J) = G(II,J) + RR1 * D(K,J)
C(II+1 ,J) = C(II+1 , j) + RR2 * D(K,J)

enddo
enddo
doK = max(1, n+1), min(jj, n+Bir1)

RR1 = D(K,JJ)
RR2 = D(K,JJ+1)
do i = K , Il+Bir1

C(i,JJ) = C(I,JJ) + A(i,K) * RR1
C(I,JJ+1) = C(i,JJ+1) + A(I,K) * RR2

enddo
enddo
doK = max(1, n+

do J = K, jj+Bjj-1
, m¡n(jJ-fBjj-1,

RR1 = D(K.J)
do i = K, ll+Bn-1

C(I,J) = C(I,J) + A(I,K) * RR1
enddo

enddo
enddo

enddo
enddo

Figure 3.6: (a) Code after applying index set splitting repeatedly, (b) Code after fully unrolling and
applying scalar replacement (BII=BJJ=2).

76 CHAPTERS

The UCLs are always the most internal loops and their steps are always 1, and the tile loops are

always the most external loops and their steps are the tile sizes in their dimensions. As already

mentioned, we will see later in Section 3.4 that the locality analysis will always tile (n-1) dimensions

of a n-dimensional iteration space and the non-tiled loop will be placed between the tile loops and the

UCLs.

The bounds of the loops in the tiled code have the form:

Li = U¿ =

The first subscript of I • and u • identifies the loop and the second subscript enumerates the loop

bound components of the loop. Note that one loop I . has r- + 1 lower bound components and s . + 1
l ì ' • l

upper bound components.

Each bound component I • (u-) is a ceiling (floor) function of an affine function of thel> 1 l,q
surrounding loops iteration variables. The ceiling and floor functions appear in the tiled code due to

the strip mining and loop permutation transformations used in the iteration space tiling phase1. Each

bound component I , u- can be expressed as follows:i, q i, q

k q =

i-l

k =
i, q

í, 7

1.7

¿-1

i,q-Tk + l

6?

where a^ ,b^i, q i, q € Z (l<k<i) , and T- and (p. can be constants or parameters. We call L- andi, q i, q i
U . the lower and upper bounds of loop I . , respectively, and we refer to each bound component I •i l i, q
(u-) as a lower (upper) simple bound.

Conditions

Initially, we want to isolate a partition of the tiled iteration space where the effective bounds of all

UCLs are the iteration variable of the tile loop (I .) in the lower bound and the iteration variable of the

tile loop plus the tile size minus one (I . + B • - 1) in the upper bound. In this partition of the iteration
J J

space, a set C of conditions hold. The conditions are those ensuring that the lower (upper) bound

component we want to be the effective bound in each UCL is greater (smaller) than the other lower

(upper) bound components of the loop bound. Thus, from the bounds of each UCL in the tiled code we

obtain a set of conditions C¿ and the bounds of all UCLs determine the set C of all conditions that must

hold in the partition where all UCLs can be fully unrolled.

l.A floor function can be converted in a ceiling function in the following way: 2 = 2—"

Tiling for the Register Level 77

Let I¿ be an UCL, whose corresponding tile loop is I - (/ < ¿) and the tile size in its dimension is

B . . Then, the bounds of UCL I . have the following form:

and the set of conditions C¿ determined by this UCL is:

From now on, we will distinguish two kinds of conditions: conditions generated by lower bound

components of loop I . and conditions generated by upper bound components of loop I . . The

conditions generated by lower bound components of loop I have the form I . > I . and we will use
I J I, q

the notation C? (1 < q < r .) to refer to the condition generated by loop I . , when comparing the lower
I, q l l

simple bound I. with the lower simple bound I- . On the other hand, the conditions generated by

upper bound components of loop I have the form I . + B . - 1 < u • and we will use the notation

CV- (l<q<s.) to refer to the condition generated by loop I., when comparing the upper simple
I) C[I I

bound I . + B . - 1 with the upper simple bound u . .

Let m be the total number of loops in the loop nest after tiling and let w be the number of UCLs.

The w UCLs of the m total loops are always in the innermost positions after tiling the iteration space;

then, the set C of all conditions is:

C= U {C¿} = U {{C| l < g < r ¿ } u { C £ c l<q<s¿}}
i=n-w+l i=n-w+l

and the total number of conditions we have to deal with initially is:

i = n-w + l

Restrictions

Given one condition, the loop to be split is the innermost loop whose iteration variable appears in the

condition and it is always a loop that surrounds the UCL whose bounds have generated this condition.

Let's now see how the loop to be split is identified and how index set splitting is applied to this loop.

Let I . be again the UCL that generates a particular condition of the type C' (that is, a

condition generated by the lower bound of I¿), and let I . (/' < i) and B . be the corresponding tile loop

and tile size, respectively.

The condition C^ can be written into the form:

= < < - =where g q = a q (for l < A < i - l and k*j), g q = a q-a\ q (for k = j) and T¿ q = T¿

78 CHAPTERS

The most internal loop that appears in the expression (1) is identified by the last non-zero

coefficient g^ with 1 < k < i - l. This loop is the loop to be split and it can be an UCL or not.

Let I be the loop to be split (p < i - 1). We obtain the restriction used to perform ISS by solving

the condition (expression (1)) for I . Two types of restrictions can be obtained depending on the sign of

gP (the coefficient of I): when the coefficient is positive (gP > 0) we have an upper restriction that

has the following form:

P-l

, where M'¿ =
y -gk
£j °i,

gP
« i ,<

(2)

and when the coefficient is negative (gP < 0) we have a lower restriction with the following form:

vz¿,g
, where Z'¿((? =

-gPai,
(3)

We have developed the expressions using a condition of the type C¿ , but a similar analysis can

be done for a condition of the type C^ (that is, a condition generated by the upper bound of I.). A

condition of the type C" can also be written as shown in expression (1), but in this case

gk - -b^ (for 1 < & < ¿ - 1 and k#j), g^ = b'·· -b^ (for k = j) and
I , (J t j (J tj C£ t, (f ij Ç

f, = 6 j • B. -bi - cp¿ . The rest of the analysis is the same as before.

Thus, from each kind of condition (C^ or C") we can obtain both types of restriction (see

Table 3.1). Now we will explain how index set splitting is applied with each type of restriction. The

loop to be split (loop I), according to a particular restriction, is divided into two consecutive loops

that iterate over non-intersecting partitions of the iteration space: in one partition the restriction

holds and in the other the restriction does not hold. The type of the restriction determines in which of

the two partitions the restriction holds.

Restriction

UPPER
Condition

LOWER

Table 3.1: Types of restrictions obtained by each kind of conditions.

Tiling for the Register Level 79

Upper Restriction

Let I be a loop to be split according to an upper restriction (I < u'•). Recall that I. is the UCL

that has generated the condition and I • is its corresponding tile loop. Before applying index set

splitting, loop I has the following form:

enddo

We want to split loop I in such a way that in one of the two partitions the restriction

I <u'. holds, and in the other partition the restriction does not hold. Thus, loop I is split in the

following manner:

partition 1

enddo

~> p p
partition 2

enddo

In the first partition the restriction I < u'. holds (the upper bound of I is min (U , u' •)).p l,q p p i,q
In the second partition, however, it does not hold; note that in the second partition the lower bound of

I is the last value of the previous I loop. Thus, if u'. < U , then I of the second partition will be

greater than u'¿ and, if u'¿ > U , then the second partition will not be executed.

Note that, if the step of the split loop is equal to one (B = 1), the second partition can be

written as follows:

enddo

In the case that I is an UCL, we will rewrite the lower bound of the second partition this way,

because we need that in one component of the lower bound appears the iteration variable of its

corresponding tile loop (one component of L) to be able to apply ISS later on.

80 CHAPTERS

If a restriction holds in a partition, the condition that generated this restriction also holds.

Therefore in both partitions there is a component of the lower or upper bound of loop I- (I. was the

UCL that generated the condition) that is redundant and can be removed.

More precisely, if the restriction I < u'¿ comes from a condition of the form Cl (I - > I •),

in the first partition we can remove the lower bound component I . of loop I . and in the second

partition we can remove

the following structure:

partition we can remove the lower bound component I . . After eliminating these bounds the code has

= Lp,min(Up,U'i¡q),Bp

enddo

do = V

do I. = n <.',)•u*1

enddo

partition 1.

partition 2

Likewise, if the upper restriction I <u'- comes from a condition of the form CV-

(I. + B • - 1 < u.), in the first partition we can remove the upper bound component u • of loop I.

and in the second partition we can remove the upper bound component i. + B • - 1.

In partition 1, where the restriction holds, loop I¿ is still an UCL, because it can be fully

unrolled if we repeatedly apply ISS to this partition until all the necessary conditions hold.

Nevertheless, in partition 2, loop I. is no longer an UCL, because it does not have any longer one of

the bound components that we want to be an effective bound.

At this point we want to direct the reader's attention to the particular case where the loop to be

split (loop I) is also an UCL. When we apply ISS to loop I , a new upper bound component (namely,

u'.) appears in loop I of partition 1. If that loop is an UCL we will need to add a new condition to

the set C of conditions. Moreover, in partition 2, where the restriction does not hold, loop I is no

longer an UCL, because loop I¿ (that has generated the condition) has bounds that are affine

functions of I .

Tiling for the Register Level 81

Lower Restriction

Let now I be a loop to be split according to a lower restriction (I > V •). We want to split loop I in

such a way that in one of the two partitions the restriction I > I • holds, and in the other partition

the restriction does not hold. For a lower restriction, loop I is split in the following manner:

enddo

enddo

partition 1

partition 2

In this case, the restriction I > Z'¿ holds in the second partition and it does not hold in the

first partition.

As explained before, if loop I is an UCL, we need the iteration variable of its corresponding tile

loop to appear in one component of its lower bound. Thus, when I is an UCL, we rewrite the lower

bound of the second partition as follows:

enddo

Now, in both partitions there is a component of the lower or upper bound of loop I. that is

redundant and can be removed. If the restriction I > I' • comes from a condition of the form
P i,1

C' (I • > I •), in the second partition we can remove the lower bound component /. of loop I. and

in the first partition we can remove the lower bound component I.. After eliminating these bounds

the code has the following structure:

enddo

enddo

¿ > 1 í í f r J ,U . , l

Up,

do I, =

partition l

partition 2

82 CHAPTER 3

Likewise, if the lower restriction ID^/ ' - comes from a condition of the form CV

(I, + B. -1 < B •), in the second partition we can remove the upper bound component u. of loop I.
J J l> 9 M " l

and in the first partition we can remove the upper bound component I. + B. -1. In partition 2, where

the restriction holds, loop I. is still an UCL and in partition 1 loop I is no longer an UCL.

In the particular case in which the loop to be split (loop I) is an UCL, a new lower bound

component (namely, /'•) appears in loop I of partition 2. Thus, we will have to add a new condition

to the set C of conditions. Moreover, in partition 1, where the restriction does not hold, loop I is no

longer an UCL, because loop I. (that has generated the condition) has bounds that are affine

functions of I .

Processing Order

We have seen so far that the bounds of the UCLs determine the set of conditions that must hold in the

partition where all UCLs can be fully unrolled. Each condition determines the restriction used to split

the loop. The order in which we deal with each restriction, that is, the order in which we split the

loops, is very important to avoid processing a loop more than once and is also very important to reduce

code expansion.

If we split the loops from outermost to innermost, we reduce code expansion2, because this order

generates less partitions containing boundary-tiles, that is, partitions where the inner loops cannot be

fully unrolled. As an example, consider the code in Fig. 3.7a. Suppose that there are two upper

restrictions3: one splits loop I and the other splits loop J. If we split the loops from outermost to

innermost (first loop J and then loop I) we obtain the code shown in Fig. 3.7b, where the partition

inside the shaded rectangles is the partition were the applied restrictions hold. It can be seen that loop

I is only split in one partition of loop J, more exactly, in the partition where loop J can be fully

unrolled. Nevertheless, if we split the loops from innermost to outermost (first loop I and then loop J)

we obtain the code shown in Fig. 3.7c. In this case, it can be seen that loop I is split in both partition of

loop j.

Thus, splitting the loops from outermost to innermost reduces code expansion, because the loop

nests (or partitions) where the inner loops cannot be fully unrolled are written in a more compact

form.

However, when we apply index set splitting to a loop, a new component appears in the bounds of

this loop. If the loop being split is an UCL we will have to deal with a new restriction that will split an

outer loop. Therefore, splitting the loops from outermost to innermost would induce the need to split

loops that have already been processed, leading to repeated processing of some loops. As an example,

consider the code shown in Fig. 3.8a, where loops I and J are UCLs. Suppose we are dealing with the

2.Every time ISS is applied, the loop body of the loop being split is replicated.
3.The type of the restrictions is indifferent. We use upper restrictions for simplicity in the explanation.

Tiling for the Register Level 83

(a) Original loop nest

ISS to loop I

ISS to loop J

do j =
do i =

loop body

enddo

do i =

loop body

enddo

enddo

do j =

enddo

ISS to loop I

do J =

enddo

do j =

enddo

do j =

do i =

loop body

enddo

do i =

loop body

enddo

enddo

ISS to loop J

(b) from outermost to innermost (c) from innermost to outermost

Figure 3.7: (a) Example of loop nest, (b) Loop nests after splitting the loops from outermost to innermost,
(c) Loop nests after splitting the loops from innermost to outermost.

84 CHAPTERS

(a) Original loop nest

do JJ = ...
do n =.. .

do J = jj, jJ+Bjj-1
do i = max(j, n), ii+Bir1

loop body

enddo

(b) After applying ISS to loop J

do jj = ...
do II =. . .

do j = jj, min(n, jj+Bjj-1)
do i = n, n+Bjj-1

loop body
enddo
do j = max(jj, n+1), jj+Bjj-1

do I = j, Il+Bir1
loop body

enddo

enddo

Figure 3.8: (a) Example of loop nest, where loops I and J are UCLs. (b) Loop nest after applying ISS to
loop J, with restriction J < II. A new upper bound component (namely, II) has appeared in loop J.

loops from outermost to innermost and now we have to deal with the upper restriction J < II that

splits loop J. After applying ISS, we obtain the code shown in Fig. 3.8b (the restriction holds in the

first partition). We can see that UCL J has now a new upper bound component (namely, II). Therefore

we have a new restriction (il > JJ+Bjj-1) to deal with to be able to fully unroll loop J. This new

restriction splits loop 11, that has already been processed.

On the other hand, if we split the loops from innermost to outermost, we process each loop only

once since the new bound components appear on outer loops which are still pending to be processed.

However, as previously shown in Fig. 3.7c, the problem of this order is that it produces a substantial

code expansion.

Taking into account that the restrictions that split UCLs are the only ones that can introduce

new restrictions we propose the following order to deal with restrictions: We deal first with restrictions

that split UCLs from innermost to outermost. In this way we process each loop only once. Second, we

deal with restrictions that split loops that are not UCLs from outermost to innermost. This minimizes

code expansion.

This order of dealing with the restrictions could make the UCLs not to be directly surrounded by

a non-UCL loop. However, to be able to apply scalar replacement later on, it is necessary that all UCLs

are perfectly nested and directly surrounded by a non-UCL loop. To achieve this requirement, our

algorithm applies loop distribution to the innermost non-UCL loop after the ISS process. As an

example, consider the code shown in Fig. 3.9a, where loops I and J are the UCLs. After applying index

set splitting repeatedly to be able to fully unroll loops I and J, we obtain the code shown in Fig. 3.9b.

Tiling for the Register Level 85

(a) Original loop nest

do ii = LJJ, Ujj, BJJ
do K = LK, UK

do J = jj, jj+Bjj-1
do i = ii, min(j, n+Bjj-1)

loop body

enddo

(c) After distributing loop K

do jj = LJJ, Ujj, BJJ
do il = LU, min(Uji, JJ-Bjj+1), BJJ

d o K = L K , U K

do J = jj, mm(ii+Bjj-2, JJ+Bja-1)
do I = ii, J

loop body
enddo

enddo
enddo

do j = jj, jj+Bjj-1
do I = II, il+Bjj-1

loop body

enddo
do ii = ii, Ujj, BJJ

enddo
enddo

partition A

(b) After applying ISS

do JJ = LJJ, Ujj, BJJ
do II = LJJ, minOJjj, JJ-Bjj+1), BJJ

do K = LK, UK

do J = JJ, min(ii+Bjj-2, Jj+Bjj-1)
do i = ii, J

loop body
enddo

enddo
do j = jj, jj+Bjj-1

do I = II, II+Bjj-1 partition A
loop body

enddo
do ii = ii, DU, BJJ

do K = LK, UK

do J = JJ, min(ll+Bjj-2, jJ+Bja-1)
do I - II, J

loop body
enddo

enddo
do J = ii+Bjj-1, Jj+Bjj-1

do I = ii, ll+Bjj-1
loop body

enddo
enddo

Figure 3.9: (a) Example of loop nest, (b) Loop nest after applying ISS repeateoHy.
(c) Loop nest after distributing loop K.

Now UCLs I and J in partition A can be fully unrolled. However, we cannot apply scalar

replacement because they are not directly surrounded by a non-UCL loop. Thus, we have to distribute

loop K (the innermost non-UCL loop) in the first loop nest to be able, later on, to apply scalar

replacement in this partition. After distributing loop K we obtain the code shown in Fig. 3.9c (for the

sake of clarity, we only show the first partition of loop II). Now, UCLs I and J in partition A can be

fully unrolled and scalar replacement can also be applied.

86 CHAPTER 3

Putting it All Together

In this section we will explain the complete algorithm for the Index Set Splitting process. The

algorithm is shown in Fig. 3.10.

We call AN ("Active Nest") the loop nest where we want to fully unroll the UCLs, that is, the loop

nest where ISS is applied. Initially the Active Nest is the loop nest after tiling the iteration space

(variable OL in Fig. 3.10). We create the list of restrictions LL sorted according to the order described

previously and we deal one by one with all of them. Each time we apply ISS to a loop Ip, according to a

restriction R, we save the partition where the applied restriction does not hold in the list of loop nests

pending to be processed, list LB in the code. When a restriction splits a UCL a new restriction appears.

In this case, we insert the new restriction in the sorted list of restrictions (LL) we are dealing with.

In the partitions where some restrictions do not hold, not all element loops can be fully unrolled

because some of them are no longer UCLs. However, we apply ISS again to these partitions to try to

unroll the element loops that are still UCLs. When dealing with these partitions it is sometimes

necessary to perform a loop permutation transformation to make sure the UCLs become innermost

loops before fully unrolling them. This loop permutation transformation can be directly performed

because no inner element loop can have bound components that are affine functions of the UCLs.

Finally, if the loops that can be fully unrolled are not directly surrounded by another loop, loop

distribution is applied to the innermost non-UCL loop.

At the end of the process there will be one partition where all the element loops can be fully

unrolled, some partitions where some, but not all, element loops can be fully unrolled and some

partitions where no loops can be fully unrolled.

3.2.4 Complexity and Code Expansion

In this section, we give analytical expressions both for the complexity of our method and for the

amount of code generated. We measure the complexity in number of times ISS has to be performed

and the amount of code generated in number of loop nests (or partitions) generated. For simplicity, the

expressions we give in this section are developed for two UCLs in the loop nest, but they can be easily

extended for any number of UCLs. We note, however, that tiling in more than two dimensions for the

register level can be counterproductive since the number of machine registers is usually small.

Therefore, the expressions given assuming only two UCLs are likely to be the most common ones.

The number of times that our algorithm performs ISS depends on the number of bound

components of the UCLs in the tiled code (just after the iteration space tiling phase). Let R be the

number of (upper and lower) bound components of the outermost UCL, and let S+M be the number of

bound components of the innermost UCL, where the M bound components are affine functions of the

Tiling for the Register Level 87

Algorithm

INPUT: OL /* loop nest after tiling */

OUTPUT: r transformed loop nest */

LB = {OL} /* list of loop nests waiting for to be dealt with */

while (LB is not empty)

{ AN = first loop nest of LB; /* AN is the active loop nest */

LB = LB - {AN}; /* remove AN from LB V

Create the sorted list LL of restrictions determined by the UCLs in AN;

while (LL is not empty)

{ R = first restriction of list LL;

ip = loop to be split according to restriction R;

Split loop ip of AN according to R;

if (R is an upper restriction) /* R has the form ip < «' */

{ AN = 1s1 partition;

LB = LB + {2nd partition};

else /* R is a lower restriction with the form ip > /'*/

{ AN = 2nd partition;

LB = LB + {1s1 partition};

if (loop ip is an UCL) Insert new restriction into sorted list LL;

LL = LL - {R}; /* remove R from LL V

Permute loops of AN if necessary; /* UCLs must be in the innermost positions */

Distribute the innermost non-UCL loop if necessary; /* UCLs must be directly surrounded

by a non-UCL loop */

}
endAlgorithm

Figure 3.10: Algorithm for the Index Set Splitting process.

88 CHAPTER 3

outer UCL4 and the S bound components are not. Neither R nor S+M contain the bound components

that we want to be the effective ones.

As seen in the previous section, our algorithm applies first ISS to UCL loops. If the innermost

UCL has M bound components that are affine functions of the outer UCL, we have M restrictions that

split the outer UCL, and therefore, ISS has to be applied M times to this UCL. After dealing with these

M restrictions, the iteration space is divided into M+l partitions.

In only one of the new M+l partitions the bound components of the inner UCL do not depend on

the iteration variable of the outer UCL, therefore this is the only partition where the UCLs can be

fully unrolled. In this particular partition, the outer UCL will have its R original bound components

and M new ones that have appeared. The inner UCL will only have S bound components. Recall that

every time index set splitting is applied to a loop, a bound component of a UCL disappears and a new

component appears in the loop being split.

Nevertheless, the M new bound components that appear in the outer UCL might make other

bound components become redundant. In the best case, the outer UCL will only have R bound

components after dealing with the M restrictions and, in the worst case, it will have R+M bound

components. We will develop the expressions for the worst case and, at the end of this section, we give

the expressions for both the worst and the best cases.

After dealing with the M restrictions, we deal with the restrictions that do not split UCLs, from

outermost to innermost. We apply R+M+S times ISS to achieve the partition where both UCLs can be

fully unrolled and the number of loop nests obtained is (R+M+S+1). Each one of these loop nests has

(M+l) loop nests inside (the partitions generated when dealing with the first M restrictions).

In only one of the (R+M+S+1) loop nests both UCLs can be fully unrolled. In the other loop nests,

we will be able to unroll one (or none) of the two innermost loops by applying again ISS (repeatedly) to

each of these loop nests. The total number of times that ISS is applied to each of these loop nests is

(M+R) * S times. At each of the loop nests ISS is performed different number of times; it depends on the

number of bound components that the UCL has. However, it can be demonstrated that the sum of the

number of times ISS is performed on all these loop nests is (M+R) *S. The demonstration is shown in

Appendix B.

Thus, at the end of the process, ISS has been performed M+(R+M+S) + ((M+R) *S) times, in the

worst case. The total number of loop nests generated is the number of loop nests generated when

dealing with the M first restrictions ((M+l) loop nests) multiplied by the number of loop nests

generated when dealing with restrictions that do not split UCLs ((R+M+S) + ((M+R) *S) +1 loop nests),

that is, (M+l)*((R+M+S) + ((M + R) * S) + 1) .

4.From now on, we will say that a bound component depends on a particular loop iteration variable if it is an affine function of
the loop iteration variable.

Tiling for the Register Level 89

Times ISS has been
performed (Niss)

Number of
loop nests

worst case

best case

Total (Nloop_nests)

fully
unrolled

loops

2

1

0

worst case

best case

worst case

best case

M+R+M+S-MR+M) *S

M+R+S+R*S

(M+DMNfcs-M+l)

1
R+M+S

R+S

Nh^nests-i-^+M+Si

NÏoop.nests-i-ÍR+S)

Table 3.2: Expressions to compute the maximum (worst case) and minimum (best case) number of times
that ISS can be performed (rows 1 and 2), the total number of loop nests generated, as a function of N¡ss,
(row 3), the number of loop nests where the two innermost loops can be fully unrolled (row 4), the
maximum and minimum number of loop nests where only one loop can be fully unrolled (rows 5 and 6) and
the maximum and minimum number of loop nests where no loop can be fully unrolled (rows 7 and 8).

Table 3.2 shows the expressions to compute the maximum (worst case) and minimum (best case)

number of times that our algorithm performs ISS (Niss) to achieve that the UCLs in all partitions can

be fully unrolled. Table 3.2 also shows the total number of loop nests generated (Njoop_nests) as a

function of Njss and the number of loop nests where two, one or no inner loop can be fully unrolled.

We conclude this section by indicating that our method increases code size and this fact could

increase the instruction cache misses and potentially decrease performance. Nevertheless, we will see

later in Section 3.5 that the generated code has a good degree of locality and that the overall

instruction cache misses are insignificant. In Section 3.5 we will also present some experimental data

on the number of times ISS has to be applied and the number of loop nests generated using as

benchmarks typical linear algebra programs.

3.3 BENEFITS OF REGISTER TILING

Tiling is a loop transformation that has been mostly used to exploit data reuse at the different memory

levels. The desired effect of applying tiling to a certain memory level is to reduce the number of

requests issued to the next level in the hierarchy. For example, when applying tiling to a certain cache

level, we are reducing the number of misses in that level, i.e., reducing the number of requests that

this level makes to the following level in the hierarchy.

When applying tiling to the register level, what we achieve is to reduce the number of requests to

the first cache level, that is, to reduce the absolute number of loads/store instructions performed by a

program. Moreover, tiling for the register level has an extra advantage that can not be achieved by

tiling for the cache levels: it improves the intra-iteration ILP. In this section we show how tiling for the

register level can expose both advantages.

90 CHAPTERS

(a) Original code

do I = 1, N
do J = 1,N

RR1 =C(l,J)
doK = 1,N

RR1 =RR1 +A(I,K)*D(K,J)
enddo
C(i,j) = RR1

enddo
enddo

(b) Tiled code

do II = 1, N, BIZ

do JJ = 1, N, BJJ
RR1 =C(ll,JJ)
RR2 =
RR3 =

do K = 1 , N
RR1 = RR1 + A(II,K) * D(K.JJ)
RR2 = RR2 + A(II,K) * D(K,JJ+1)
RR3 = RR3 + A(ll+1 ,K) * D(K,JJ)
RR4 = RR4 + A(II+1,K) * D(K,cfJ+1)

enddo
C(n,JJ) = RR1

enddo
enddo

Figure 3.11: Code of the matrix product (a) after applying scalar replacement, (b) after tiling for the
register level at two dimensions of the iteration space.

3.3.1 Reducing Load/Store Instructions

Data reuse at the register level essentially translates into a reduction of the number of load/store

instructions. Reducing the number of load/store instructions reduces the pressure on the fetch unit,

reduces data memory traffic and, indirectly, might also decrease data cache misses. To illustrate this

reduction of load/store instructions we will use as an example a square matrix product code.

Figure 3.11a and 3.lib present the original code after applying scalar replacement and the code after

tiling for the register level at two dimensions of the iteration space, respectively. For simplicity, we

assume that N is multiple of BIX and BJJ and BII=BJJ=2.

In the original code (Fig. 3.11a) 2 loads are performed in each iteration of the loop body. One

iteration of the loop body in the tiled code (Fig. 3.lib) performs 4 iterations of the original loop body

and, yet, only 4 loads are executed. This represents an average of only 1 load per iteration of the

original loop body. Note that tiling for the register level also exploits data reuse inside the loop body. In

the example, it exploits the reuse of A(II,K), A(II+1,K), D(K,JJ) and D(K,JJ+1). The data reuse

exploited across iterations of the inner loop (matrix C) is achieved by the scalar replacement

transformation and we note that both codes (original and tiled) achieve the same degree of reuse of

matrix C.

Tiling for the Register Level 91

An important consequence of reducing the number of loads and stores instructions is an

improvement in loop balance. The relation between memory accesses and floating-point operations

inside the loop body determines the machine resource that is the bottleneck when the loop is executed.

High performance can be achieved in a particular machine if it can operate in a steady manner with

both memory accesses and floating-points operations being performed at peak speed. To quantify this

relationship, Callahan et. al. [21] define the notion of machine balance (ßM) as the rate at which data

can be fetched from memory (MM), compared to the rate at which floating-point operations can be

performed (FM):

n _ max words/cycle _ M
M max flops/cycle F.,

The values of MM and FM represent peak performance, where the size of a word is the same as the

precision of the floating-point operations.

Just as machines have balance ratios, so do loops. The balance ratio of a specific loop is denned

as follows:

a _ number of memory references _ L
L number of flops F.

Comparing ßM to ßL can give us a measure of the performance of a loop running on a particular

architecture. If ßn/pßt.» the loop is balanced for the machine and will run well on that particular

machine. If ßM<ßi.> then the loop needs data at a higher rate than memory system can provide and idle

computational cycles will exist. Such a loop is said to be memory bound and its performance can be

improved by lowering ßL. If ßM>ßi_, then data cannot be processed as fast as it is supplied to the

processor and memory bandwidth will be wasted. Such a loop is said to be compute bound and its

performance cannot be improved since floating-points operations usually cannot be removed.

To achieve high performance on a particular machine it is convenient to have balanced or

compute bound loops. Tiling for the register level is a transformation that can improve the

performance of memory-bound loops by converting them into balanced or compute-bound loops. Tiling

for the register level introduces more computation into the loop body without a proportional increase

in memory references, and therefore, it has the potential to improve loop balance.

As an example, consider the original code of the matrix product of Fig. 3.11a, after applying

scalar replacement. In this code, we have two floating-point operations and two memory references,

giving a loop balance of 1. On a machine that can perform twice as many floating-point operations as

memory accesses per clock cycle, such as the MIPS R10000, this loop is memory-bound and does not

run at peak machine speed. However, after tiling for the register level (see Fig. 3.lib), we obtain a new

loop body that contains 8 floating-point operations and only 4 memory accesses, giving a loop balance

of 0.5. Now, the transformed loop is balanced for an R10000 processor and would perform better than

the original code.

92 CHAPTERS

Having balanced or compute-bound loops is not enough for running at peak speed. It is also

necessary to have enough parallelism at the instruction level, so that the processor can issue memory

accesses and floating-point instructions in parallel. In the next section, we show how tiling for the

register level also exposes ILP.

3.3.2 Improving Instruction Level Parallelism

In single loops, compilers can extract ILP by performing software pipelining and/or unrolling the

innermost loop. Both techniques draw out parallelism between iterations of the original loop body, but

they are implemented in different ways. Inner unrolling replaces the body of the loop by several copies

of the body and adjusts the loop-control code accordingly. Software pipelining, instead, reorganizes

loops such that each iteration in the software-pipelined code is made from instructions chosen from

different iterations of the original loop. Nonetheless, these two transformations are limited by the

recurrences5 of the loop body.

In nested loops, however, there are more opportunities to expose ILP. In particular,

multi-dimensional tiling for the register level always exposes ILP, regardless if the unrolled loops add

new dependences or not in the new loop body. We illustrate this fact with the following example.

Suppose we have a 3-deep loop nest that has been tiled in two dimensions with a tile size of 4x4

(Fig. 3.12). The code after tiling and fully unrolling the loops contains in its body 16 instances of the

original loop body. Three different situations can happen: 1) None of the unrolled loops adds a

dependence. In this case, the 16 instances in the unrolled loop body can be performed in parallel;

2) One of the unrolled loops adds dependences. In this case every 4 instances can be performed in

parallel; 3) Both unrolled loops add dependences. In this case we have a non-uniform parallelism, but

some of the instances can be performed in parallel.

Figure 3.12 shows the unrolled loop body and, for each of the three previous cases, we show the

dependences and mark with a filled rectangle the original iterations that can be performed in parallel.

Each point represents one iteration of the original loop body. For simplicity we consider all operations

(a)

£ ¿
£

/ 1 /

(b)

Figure 3.12: ILP obtained when (a) none of the fully unrolled loops carried dependences, (b) one of
the unrolled loops carried dependences and (c) both of the unrolled loops carried dependences.

S.There is a recurrence in the loop body if the innermost loop carries a dependence.

Tiling for the Register Level 93

performed in one iteration of the original loop body as a unit. However, the instruction scheduler can

also extract ILP between multiple operations of one iteration. Finally, recall that we are assuming

fully permutable loop nests (if not, loop tiling is not a legal transformation). Therefore, all components

of all dependence vectors are greater or equal to 0 (see Chapter 2, Section 2.3.1).

Thus, tiling more than one dimension for the register level, regardless of the loops being tiled,

always achieves a certain amount of ILP. Moreover, the cases where maximum ILP is not achieved are

caused by true, anti or output dependences which intrinsically limit ILP. However, having more

dependences indicates that we have more data reuse and therefore, the loss of ILP in these cases can

be compensated by the increase in data reuse. We will see later in Section 3.5 that the amount of ILP

achieved is sufficient for obtaining high performance in modern processors.

3.3.3 Register Tiling vs. Outer Unrolling

There is another loop transformation which is able both to improve ILP and to enhance data locality,

namely outer unrolling (also called unroll-and-jani) [20] [23] [26]. It consists in unrolling an outer loop

in a nest and then jamming the resulting inner loops back together. Thus, outer unrolling enhances

data locality at the register level in the unrolled dimension of the iteration space. Actually, applying

outer unrolling is equivalent to tiling only one dimension of the iteration space.

How does tiling for the register level compare to outer unrolling? Outer unrolling can also

exploit data reuse inside the loop body, but, since it only enhances locality in the unrolled dimension,

it needs more registers to achieve the same reuse as tiling more than one dimension. Figure 3.13a

shows the code of the matrix product previously presented in Fig. 3.11, after applying outer unrolling

(a) Outer unrolling
do il = 1, N, BH

doj=1,N
RR1 =C(n,j)
RR2 = C(II+1,J)
RR3 = C(n+2,J)
RR4 = C(II+3,J)
doK=1,N

RR1 = RR1 + A(II,K) * D(K,J)
RR2 = RR2 + A(n+1 ,K) * D(K,J)
RR3 = RR3 + A(n+2,K) * D(K,J)
RR4 = RR4 + A(n+3,K) * D(K.J)

enddo
C(H,J) = RR1

C(II+2,J) = RR3
C(II+3,J) = RR4

enddo
enddo

(b) Register Tiling
do li = 1, N, BH

doJJ=1,N, BJJ
RR1 =C(H,JJ)
RR2 =

doK=1,N
RR1 = RR1 + A(II,K) * D(K,Jj)
RR2 = RR2 + A(li.K) * D(K,JJ+1)
RR3 = RR3 + A(II+1,K) * D(K,JJ)
RR4 = RR4 + A(ll+1 ,K) * D(K,JJ+1)

enddo
C(n,Jj) = RR1
C(n,JJ+1) = RR2
C(li+1,JJ) = RR3
C(n+1,JJ+1) =

enddo
enddo

Figure 3.13: Code of the matrix product (a) after applying outer unrolling with an unroll factor
of 4 (BII=4) and (b) after tiling for the register level at two dimensions of the iteration space.

94 CHAPTER 3

to loop I with an unrolling factor of 4 (BXI=4) (for easing the comparison, we also include again the

tiled code). In this code (Fig. 3.13a), 1.25 loads per iteration of the original loop body are performed,

achieving less data reuse than the tiled code of Fig. 3.lib. Moreover, outer unrolling needs 9 registers

(1 for D(K,J), 4 for A(li:il+3,K) and 4 for C(li:il+3,J)) while the tiled code only needs 8 registers (2

for A(li:ii+1,K),2for D(K,jj:jJ-f1)and4forC(li:il+1,JJ:JJ+1)).

The important point to note is that using less registers, multi-dimensional tiling achieves more

data reuse than outer unrolling, that is, multi-dimensional tiling achieves more data reuse that tiling

only one dimension of the iteration space. This is especially important at the register level, since being

able to fully exploit the (small) storage space available at this level can mean a big performance

difference. Moreover, multi-dimensional tiling reduces the register pressure and, therefore, the use of

aggressive scheduling techniques for exploiting instruction level parallelism is not overly limited.

Finally, we want to note that outer unrolling can be applied repeatedly to several loops in a nest

and, in this case, data reuse is exploited in all the unrolled dimensions. Thus, applying unroll-and-jam

to several loops in a nest is comparable to multi-dimensional tiling. However, to the best of our

knowledge, there is no previous work proposing a technique to apply outer unrolling to several loops in

arbitrary, non-rectangular, loop nests. Later, in Section 3.6, we will discuss this claim more deeply.

3.4 LOCALITY ANALYSIS FOR THE REGISTER LEVEL

One challenge that confronts a compiler that tries to apply loop tiling is determining which loops are

the best ones to be tiled, the tile sizes in each dimension and the order of the loops that deliver the

best performance. Previous work on determining the tiling parameters has been mostly focused at the

cache level [31] [80] [83] [110] [121], and less attention has been paid to the register level. Although the

basic principles in memory hierarchy optimization are similar for all levels, each level has slightly

different characteristics, requiring slightly different considerations. For example, registers typically

cannot take advantage of spatial reuse6, so we only have to consider the temporal locality of the

references and we must take into account both read and write references when optimizing for them.

In this section we discuss how the locality analysis for the register level has to be carried out and

propose a simple heuristic to decide the tiling parameters for this level. Note that the algorithm

proposed in previous sections to perform register tiling is a high-level (source to source)

transformation. Of course, working at the source level prevents us from controlling many of the low

level transformations typically performed by the compiler's back-end (instruction scheduling, register

allocation, etc.). Therefore, the heuristic presented has been geared towards simplicity rather than

trying to find optimal tiling parameters, since there are too many aspects of the code generation

process that escape from our control.

6.The intel i860 can load two registers with adjacent memory locations, which allows for some exploitation of spatial locality.

Tiling for the Register Level 95

3.4.1 Tile Directions

Exploiting data reuse in more than one dimension of the iteration space, whenever possible, improves

the performance of the memory hierarchy [122]. Previous work on tiling for the cache level [122] [128]

has almost always assumed that, if in a n-dimensional iteration space all loops cany reuse, then all

loops should be tiled and the tile size has to be chosen so that all data being referenced inside the tile

fits in the memory level being exploited. This way of selecting the tile sizes results in all possible

orders of the element loops yielding the same degree of locality. However, there are other works

[98] [97] that state that if in a n-dimensional iteration space all loops carry reuse, then n-1 loops

should be tiled. Not tiling one loop that carries data reuse and establishing a proper order of the inner

loops yields bigger tile sizes and, therefore, more data locality, than tiling all loops that carry reuse.

This fact is especially important at the register level, since being able to fully exploit all the (small)

storage space available at this level can make a big performance difference.

Let's now see how bigger tile sizes can be achieved (and thus, more data reuse) by taking into

account the ordering of the element loops and by not tiling all directions that carry reuse. We will use

an example to illustrate this point. Figure 3.14a shows the code of the square matrices product, where

all three loops carry self-temporal reuse. Since registers typically cannot take advantage of spatial

reuse, we only need consider temporal reuse when optimizing for them. In direction I matrix D is

reused, in direction J matrix A is reused and in direction K matrix C is reused. After tiling the

iteration space at all three dimensions we obtain the code of Fig. 3.14b. The tile size is BXI X BJJ X B^

and, for simplicity, we assume N is multiple of BII; Bja and BKK. For properly exploiting the register

level, it is necessary to fully unroll the element loops and to apply scalar replacement. The resulting

code, assuming BII=BJJ=BKK=2, is shown in Fig. 3.14c.

The tiled code of Fig. 3.14b works well for any order of the element loops since the following

submatrices fit into the memory level being exploited:

-1 , JJ : JJ+Bjj-1), A(II : II+BTI-1 ,KK : KK+BKK-1), D(KK : KK+BKK-1 , JJ : JJ+Bjj-1)

In particular, at the register level and with BII=BJJ=BKK=2, we need 12 register to keep all the

data that is referenced inside the tile. As shown in Fig. 3.14c, we need 4 registers for RR1 , RR2, RR3,

RR4, and 8 more registers to keep the data belonging to matrices A and D that are referenced in the

loop body.

The order of the tile loops or, more exactly, the most internal tile loop, determines which of the

previous data blocks are reused in the next tile. In Fig. 3.14c, we select loop KK to be the innermost tile

loop for achieving maximum data reuse. The registers holding RR1 , RR2, RR3 and RR4 (matrix C) are

reused in every iteration of loop KK. Thus, they are only loaded and stored (N/2) x (N/2) times. The

other 8 registers are only reused inside each iteration of loop KK and, therefore, they are loaded in

each iteration. The total number of loads and stores of code of Fig. 3.14c is N3+N2 loads and N2 stores.

96 CHAPTERS

(a) Original code
do I = 1 , N

do J = 1 , N
do K = 1 , N

enddo

,K) * D(K,J)

(b) Three-dimensional iteration space tiling
do II = 1, N, BU

do JJ = 1, N, BJJ
doKK= 1, N, BKK

do I = II, Il+Bir1
do j = jj, jj+Bjj-1

do K = KK, KK+BKK-1
,K) * D(K,J)

enddo

(c) Register tiling
do II = 1, N, BJ.J

do JJ= 1, N, BJJ
RR1 =C(li,JJ)

d o K K = 1, N, BKK

RR1 = RR1 + A(II,KK) * D(KK,JJ)
RR1 = RR1 + A(II,KK+1) * D(KK+1,JJ)
RR2 = RR2 + A(II,KK) * D(KK,JJ+1)
RR2= RR2 + A(II,KK+1) * D(KK+1 ,JJ+1)
RR3 = RR3 + A(II+1 ,KK) * D(KK,JJ)
RR3 = RR3 + A(ii+1,KK+1) * D(KK+1,JJ)
RR4 = RR4 + A(II+1 ,KK) * D(KK,JJ+1)
RR4 = RR4 + A(II+1,KK+1) * D(KK+1,JJ+1)

enddo
C(n,jj) = RR1

J) = RR3
C(n+1,JJ+1) =

enddo
enddo

Figure 3.14: (a) Form I JK of the square matrix product, (b) Code after tiling the iteration space at all
three dimensions, (c) Code after fully unrolling and applying scalar replacement (register tiling).

Now we will show that, if we fix the order of the element loops so that the outermost loop is the

one corresponding to the innermost tile loop, we can do the tile size bigger [97]. In the code of

Fig. 3.141), we can select the order KIJ for the element loops. Using this order, it is not necessary to

keep all data referenced inside the tile into the memory level being exploited. It is sufficient to keep

C(II : II+Bn-1 ,JJ : JJ+Bjj-1), A(II : ll+BIT-1 ,KK) and D(KK, JJ : JJ+Bja-1), that is, a submatrix of C, a

subrow of D and a subcolumn of A. Each subcolumn of matrix A referenced inside the tile can share

the same registers (or even the same memory locations if applying this idea to a cache level) and each

row of D can also share the same registers (or memory locations). Therefore, in our example, we would

only need 8 registers. The 8 register are: Four for C(II.JJ), C(II,JJ+1), C(II+1,JJ), C(II+1,JJ+1),

two for D(KK,JJ) and D(KK,JJ+1) (D(KK+1 ,JJ) and D(KK+1 ,JJ+1) would share the same registers) and

two for A(II,KK) and A(ll+1,KK) (A(ll,KK+1) and A(II+1,KK+1) would share the same registers).

Figure 3.15a shows the tiled code of the square matrix product with the order of the element loops

fixed to KIJ, and without unrolling loop K. The 4 different rectangles indicate the data references that

share the same registers inside the loop body. Note that even A(ll,KK) and A(II+1 ,KK) could share the

same register, reducing even more the number of registers used.

Tiling for the Register Level 97

(a) Register tiling without unrolling loop K (b) Code after coalescing loops KK and K

do 11 = 1, N, BU do 11 = 1, N, BU
doJJ = 1,N, Bjj d o j j = 1 , N , BJJ

RR1 = C(li,JJ) RR1 = C(ll,jj)
RR2 = C(II,JJ+1) RR2 =
RR3 = C(II+1,JJ) RR3 =
RR4 = C(II+1 ,JJ+1) RR4 =
do KK = 1, N, BKK do K = 1, N

do K = KK, KK+BKK-1 RR1 = RR1 + A(II,K) * D(K,JJ)

RR1 = RR1 +jÍ%|jrffi;· D(K,JJ) RR2 = RR2 + A(ll,K) * D(K,JJ+1)

RR2 = RR2 4ftfrCKr* D(K,JJ+1) RR3 = RR3 + A(ll+1 ,K) * D(K,JJ)

RR3 = RR3 + A(IX+1,K) * D(K,JJ) RR4 = RR4 + A(n+1,K) * D(K,JJ+1)
RR4 = RR4 + A(n+1 ,K) * D(K,JJ+1) enddo

enddo C(n,JJ) = RR1
enddo C(u,JJ+1) = RR2
C(ll,JJ) = RR1 C(li+1 ,JJ) = RR3
C(II,JJ+1) = RR2 C(li+1,JJ+1) = RR4
C(n+1,jj) = RR3 enddo
C(II+1,JJ+1) = RR4 enddo

enddo
enddo

Figure 3.15: (a) Code of the square matrix product after tiling for the register, fixing the order
KIJ of the element loops, (b) Code after coalescing loops KK and K.

Note now that loop KK (the innermost tile loop) and loop K (the outermost element loop) are

adjacent and therefore they can be coalesced; thus, it was not necessary to tile loop K in the original

code. Figure 3.15b shows the code if we do not tile loop K in the original code. Note that in this code we

only need 8 registers to keep all data that is reused and four of the 8 registers are reused in every

iteration of loop K (the non-tiled loop). In this case, the total number of loads and stores is again N3+N2

loads and N2 stores. The important point to note is that, using less registers, we have achieved the

same degree of reuse as the code in Fig. 3.14c. Therefore, not tiling a loop that carries reuse reduces

register pressure while maintaining the same degree of locality than tiling all loops. Moreover, since

we need less data in registers, we could do the tile size bigger if there are registers in excess, and thus,

we could increase data locality. For example, if we chose a tile size such as BXI=2 and Bjj=3, we would

need 11 registers and the total number of loads and stores would be (5/6)N3+N2 loads and N2 stores.

Now, the locality analysis for the register level consists on determining which loop should not be

tiled. Once we decide which loop should not be tiled, the order of the loops must be the following: the

tile loops are the outermost loops, the non-tiled loop is the next loop and the element loops are the

innermost ones (see Fig. 3.16). Note that, at the register level, once the non-tiled loop is chosen, the

relative order of the remaining tile and element loops is indifferent. The order of the tile loops is not

important, because there is no reuse between iterations of the tile loops. The order of the element

loops is no longer relevant, since they will be later fully unrolled.

98 CHAPTER 3

do ii = 1, N, BIZ ~]
„ Tue loops

doJJ = 1 ,N, BJJ J
do K = 1, N H Non-tiled loop

do i = ii, ii+Bir1 ~|
Element loops

do J = jj, jj+Bjj-1 J
C(I,J) = C(i,J) + A(i,K) * D(K,J)

enddo

Figure 3.16: Example of loop nest.

3.4.2 Iteration Space Shape

At first sight, register tiling should be performed so that whichever loop carries the most reuse is not

tiled. This way, register reuse is maximized and the number of load/store instructions executed is

minimized. However, if we only consider reuse directions and do not take into account the iteration

space shape, the tiled loop nest can suffer performance degradation due to the time wasted executing

boundary-tiles. In this section, we will show how the iteration space shape can affect processor

performance.

As shown in Section 3.2, after applying 2-dimensional register tiling to a 3-deep loop nest, we

obtain a new code that contains: one loop nest where the two element loops are fully unrolled (we will

refer to it as the fully unrolled loop nest), some loop nests where only one of the element loops is fully

unrolled (we will refer to them as partially unrolled loop nests) and some loop nests where no loop is

fully unrolled (non-unrolled loop nest). The fully unrolled loop nest only traverses core-tiles, while the

other nests traverse boundary-tiles. Obviously, boundary-tiles cannot be executed at the same speed

as core-tiles, because in boundary-tiles less ILP and less data reuse is achieved. Moreover,

boundary-tiles traversed by partially unrolled loop nests are executed at higher speed than

boundary-tiles traversed by non-unrolled loop nest. Thus, to reduce the execution time of

boundary-tiles it is preferable to traverse them using partially unrolled loop nests.

How the boundary-tiles are traversed after register tiling depends on the non-tiled loop selected

in the locality analysis. As an example, consider the code of the SSYRK routine from BLAS, shown in

Fig. 3.17a, that describes the non-rectangular iteration space shown in Fig. 3.17b. In the SSYRK

routine, the loop that provides more temporal reuse is loop K. If we make loop K innermost and apply

scalar replacement, the loop body only executes two loads per iteration, while making loops I or J

innermost will generate a loop body performing two loads and one store per iteration.

Tiling for the Register Level 99

(a) SSYRK routine

doj = 1,N
do K = 1 , N

do i = j, N

enddo

(b) Iteration space

A(J,K)

Figure 3.17: (a) Code of the SSYRK routine from BLAS, (b) Iteration space described by the SSYRK routine.

Let's now see what happens if we select loop K (the loop carrying most reuse) to be the non-tiled

loop. After register tiling, the iteration space is divided as shown in Fig. 3.18a. Figure 3.18b shows the

code after the iteration space tiling phase. Directions I and J are tiled and the tiles are executed along

direction K. Each square tile is a core-tile that is fully unrolled in both directions I and J. The

remainder of the tiles are boundary-tiles that cannot be unrolled in both directions. Two different

types of boundary-tiles have been generated: One of them (type 1 in Fig. 3.18c) has been generated

because N might be a non-multiple of the tile size in the I dimension and the other one (type 2) has

been generated because, in the tiled code, there is a bound of loop I that depends on loop j that makes

the space defined by these two loops to be non-rectangular. The boundary-tiles of type 1 are traversed

by a. partially unrolled loop nest. Note that in those tiles, loop J always executes as many iterations as

the tile size in its dimension, and therefore, it can be fully unrolled. However, all boundary-tiles of

type 2
boundary

tile

core-tile

(b) Tiled code

do ii = max(1, jj), N, Bri
doK = 1 ,N

do J = max(1, JJ), min(N,
do i = max(j, n), min(N, ii+Bir-1)

loop body

(c)

type 1

enddo

Figure 3.18: (a) Iteration space of the SSYRK routine after applying register tiling. Loop K is
the non-tiled loop and directions I and J are tiled, (b) Code after the iteration space tiling phase,
(c) Boundary-tiles of the tiled iteration space.

100 CHAPTERS

core-tile

(b) Tiled code
doKK = 1, N, BKK

do JJ= 1, N, BJJ
do i = max(1, Jj), N

do K = max(1, KK), min(N, KK+BKK-1)
do J = max(1, JJ), min(i, Jj+Bjj-1)

loop body

enddo

Figure 3.19: (a) Iteration space of the SSYRK routine after applying register tiling. Loop I is
the non-tiled loop and directions K and J are tiled, (b) Code after the iteration space tiling phase.
(c) Boundary-tiles of the tiled iteration space.

type 2 are traversed by non-unrolled loop nests, since neither J nor I execute as many iterations as

the tile size in their dimensions. All these boundary-tiles of type 2 are executed without an increase in

ILP and data reuse (with respect to the original code), therefore performance might not be improved if

the number of boundary-tiles traversed by non-unrolled loop nests is large.

Let's now see what happens if we select loop I to be the non-tiled loop. After register tiling, the

iteration space is divided as shown in Fig. 3.19a. Figure 3.19b shows the code after the iteration space

tiling phase. Directions K and J are tiled and the tiles are executed along direction I. In this case,

there are three different types of boundary-tiles: two of them (types 2 and 3 in Fig. 3.19c) are

generated because N might be a non-multiple of the tile sizes and the other one (type 1) is generated

because, in the tiled code, there is a bound of loop J that depends on the non-tiled loop I that makes

the space defined by these two loops to be non-rectangular. In this example, the boundary-tiles of

types 1 and 2 are traversed by partially unrolled loop nests. In those tiles, either loop J (type 2) or loop

K (type 1) always execute as many iterations as the tile size in their dimension, and therefore, they

can be fully unrolled. However, the boundary-tiles of type 3 are traversed by a non-unrolled loop nest,

since neither J nor K execute as many iterations as the tile size in their dimensions. In this case, only

these boundary-tiles of type 3 are executed without an increase in ILP and data reuse with respect to

the original code.

Comparing both examples of Fig. 3.18 and 3.19, it can be seen that depending on the non-tiled

loop selected in the locality analysis, the number of boundary-tiles traversed by non-unrolled loop

Tiling for the Register Level 101

nests varies significantly. How does this fact affect processor performance? Figure 3.20 shows the

performance obtained in the SSYRK program using different enterions to select the non-tiled loop at

the register level. TRL-I selects loop I as the non-tiled loop, so that the number of boundary-tiles

executed by non-unrolled loop nests is minimized, while TRL-K selects loop K, so that maximum

register reuse in the core-tiles is achieved. The tile sizes in both cases are 4x4 and the problem size is

varied from 10 to 100. We use small problem sizes to avoid that higher memory levels affect processor

performance. Measures were taken on two different processors: an ALPHA 21164 and a MIPS R10000

processor.

It can be seen that for almost all problem sizes, not tiling loop I yields better performance. Only

for medium problem sizes (between 70 and 100) and only for the MIPS processor, TRL-I yields less

performance than TRL-K, but the performance difference is very small. We note in passing that this

loss in performance for this particular problem sizes is mostly due to the selected tile sizes. As we will

see later, TRL-I can be still improved by choosing tile sizes according to the reuse carried by the tiled

loops.

We can also see in Fig. 3.20 that the difference in performance between the two versions is

greater for very small problem sizes than for medium problem sizes. For problem sizes that are very

small and/or not multiple of the tile sizes, the execution time wasted on boundary-tiles is a significant

fraction of the total execution time. If the boundary-tiles are mostly traversed by partially unrolled

loop nests (like TRL-I version) instead of using non-unrolled loop nests (like TRL-K version), better

performance is achieved. However, as the problem size increases, the execution time of boundary-tiles

becomes less significant.

SSYRK

300

250

- TRL-I

e-0 TRL-K

10 30 50 70 90
Problem size

Figure 3.20: Performance of SSYRK on the ALPHA 21164 and the MIPS R10000 processor,
varying the problem size from 10 to 100. TRL-I corresponds to register tiling selecting loop i as the
non-tiled loop and TRL-K corresponds to register tiling selecting loop K as the non-tiled loop. The
tile sizes in both cases are fixed to 4x4.

102 CHAPTER 3

Moreover, the performance difference is more noticeable on the ALPHA processor than on the

MIPS processor. The MIPS processor, due to its capability of issuing instructions out of order and

speculating instructions beyond branches (four branches), unrolls loops dynamically. Therefore, the

MIPS processor is able to unroll the element loops of boundary-tiles dynamically, extracting more ILP

from these tiles, and thus, executing the boundary-tiles faster.

Summarizing, we can conclude that for small problem sizes and/or for very irregular iteration

space shapes, it is more important to execute boundary-tiles as fast as possible than to increase

register reuse in the core-tiles. In the next section we propose a simple heuristic that considers the

iteration space shape to decide which loop should be the non-tiled loop at the register level.

3.4.3 Heuristic

We have seen in Section 3.3 that register tiling provides two different advantages (register reuse and

ILP) that vary depending on the tiling parameters. Finding the optimal tiling parameters for a given

loop nest is a very complex and time-consuming problem that depends upon machine and program

characteristics. Moreover, our proposal of register tiling is a source to source optimizing

transformation that helps compilers generate efficient machine code. It does not control other low

level compiler's optimizations such as instruction scheduling and register allocation, making it more

difficult (if not impossible) to find the optimal tiling parameters. In this section, we develop a very

simple heuristic to select the tiling parameters at the register level that behaves well for typical linear

algebra problems.

To simplify the analysis we make the following assumptions:

First, we only consider ra-dimensional iteration spaces with all loops carrying temporal data

reuse. As mentioned in Chapter 2, this thesis only deals with numerical codes for which loop tiling has

had the greatest success. Numerical codes, and specially linear algebra algorithms, usually consist of

a n-deep loop nest while using (rc-Jj-dimensional data structures, yielding data reuse in several

(typically all) dimensions of the iteration space. Anyway, if there were loops not carrying temporal

reuse, it would be necessary to discard them (making them outermost) and apply register tiling to the

other loops providing reuse.

Second, we always tile (n-1) dimensions of the n-dimensional iteration space. As shown

previously, not tiling one loop that carries data reuse reduces register pressure while maintaining

data locality. Moreover, we have also seen that by tiling more than one dimension of the iteration

space, regardless of the dimensions being tiled, a reasonable amount of ILP is achieved. However, we

note that tiling more than two dimensions for the register level can be self-defeating in modern

microprocessors, since the number of machine registers is usually small (typically 32), and tiled loop

nests that spill floating-point registers excessively may suffer performance degradation. Thus, for loop

Tiling for the Register Level 103

nests deeper than 3, it would be necessary to discard the loops carrying less temporal reuse (making

them outermost) and apply register tiling to the three loops providing most reuse.

Finally, we also assume that by tiling (n-1) dimensions, regardless of the dimensions being tiled,

we obtain a balanced or compute-bound loop nest, so that the transformed loop nest can be run at peak

speed. Since all loops carry data reuse, it is reasonable to assume that the fully unrolled loop nest

generated after register tiling will be balanced or compute-bound. Thus, in our heuristic, we will not

explicitly consider the amount of ILP and the loop balance that can be achieved. Instead, we focus on

selecting the non-tiled loop that generates less boundary-tiles traversed by non-unrolled loop nests, so

that the overhead of executing boundary-tiles is minimized. Only if there are several alternatives, we

will select the loop that provides more temporal data locality, so that register reuse is improved.

Our heuristic to determine the tiling parameters is the following one:

1. Determine all different self and group temporal reuse vectors as proposed by [121]

(explained in Chapter 2), discarding all reuse vectors that are not parallel to the

iteration space axes.

2. Give each reuse vector a weight. This weight is the number of references in the

original loop body that have generated this reuse vector, considering reads and

writes. For group temporal reuse vectors, only one of each pair of references is

counted.

3. For each loop in the nest being the non-tiled loop, determine the amount of

boundary-tiles traversed by non-unrolled loop nests. Then, pick the loops that

generate less boundary-tiles traversed by non-unrolled loop nests.

4. From all loops picked in step 3, select as non-tiled loop, the loop that carries most

temporal reuse. This is determined by the weight of its corresponding reuse vector.

5. Compute the tile sizes in proportion to the quantity of reuse carried by each tiled

direction, taking into account the number of available machine registers.

We only take into account reuse directions that are parallel to the iteration space axes, because

the strip-mining and loop permutation transformations used to divide the iteration space into regular

tiles, generate tiles whose boundaries are always parallel to the iteration space axes. For a

3-dimensional iteration space, for example, we can only exploit data reuse in directions (1,0,0), (0,1,0)

or (0,0,1). Anyway, if the reuse vector with greater weight happened to be not parallel to the iteration

space axes, we could apply a unimodular or non unimodular transformation [84] before tiling to make

this direction become parallel to the iteration space axes.

104 CHAPTERS

Reuse vector
(J,K,I)

(0,1,0)

(1,0,0)

(0,0,1)

Weight

2

1

1

References

C(I,J) (read and write)

A(I,K) (read)

A(K,J) (read)

Table 3.3: Reuse vectors, weight and references involved in the SSYRK routine.

Our heuristic computes first the temporal data reuse carried by each loop in the nest, giving to

each reuse vector a weight. This weight is telling us how many load/store instructions will be saved if

each loop is made the innermost loop in the nest. As an example of how to compute the weight,

consider the SSYRK example used before (see Fig. 3.17). There are four memory references, namely

C(I,J) (read), C(l,j) (write), A(l,K) and A(J,K). The self-temporal reuse vectors are (0,1,0), (1,0,0) and

(0,0,1) and there is no group-temporal reuse vector (we note that the loop ordering is (j, K, I)).

Table 3.3 shows the weight of each reuse vector and the references that have generated them. The

reuse vector (0,1,0) has a weight of 2, since there are two references that have this reuse vector. Thus,

the loop that carries most temporal reuse is loop K.

After computing the reuse carried by each loop in the nest, our heuristic determines the amount

of boundary-tiles traversed by non-unrolled loop nests for each loop in the nest being the non-tiled

loop. We will only count the number of (n--Z)-dimensional hyperplanes where the boundary tiles cannot

be unrolled. For a 3-dimensional iteration space, for example, we only count the number of

(2-dimensional) planes. We will not consider the number of (1-dimensional) edges, because the time

consumed executing edges is very small with respect to the total execution time. However, the

execution time wasted on non-unrolled planes is a significant portion of the total execution time and

they are the cause of performance degradation.

Given a loop nest and a particular non-tiled loop, the number of (rt-I)-dimensional hyperplanes

(containing non-unrolled boundary-tiles) that will be generated after tiling can be easily computed by

projecting the iteration space along the non-tiled direction and counting the number of bounds of the

inner loops that are affine function of outer loops.

As an example consider the SSYRK routine of Fig. 3.17a (page 99). Figure 3.21 shows, for each

loop in the nest, the projection of the iteration space along its direction. The projection along direction

I (and also along direction J) defines a rectangular space, and thus, there is no bound of the innermost

loop that is affine function of the outermost loop. If we tile the projected iteration space at two

dimensions, all tiles generated can be unrolled in one or both directions, except the tile at the

bottom-right corner (marked in grey in Fig. 3.21). This means that there will be an edge in the tiled

code traversed by a non-unrolled loop nest. However, the projection along direction K defines a

non-rectangular space, because a lower bound of the innermost loop I is affine function of the

Tiling for the Register Level 105

(a) Direction I

do K = 1, N
do j = 1, N

i *

(b) Direction J

do K= 1, N
do I = l, N

(c) Direction K

do j = 1 , N
do i = J, N

enddo

Figure 3.21: Projection of the SSYRK iteration space along (a) direction I,
(b) direction J and (c) direction K.

outermost loop J. If we tile the projected iteration space at two dimensions, all tiles crossing the

hypotenuse cannot be unrolled in any direction (marked in grey in Fig. 3.21c). This means that there

will be a plane in the tiled code traversed by non-unrolled loop nests. Our goal is to reduce the number

of planes of the iteration space where the boundary-tiles cannot be unrolled in any direction. Thus, in

this example, we will discard loop K to be the non-tiled loop and pick loops I and J as the loops that

generate less non-unrolled boundary-tiles.

To choose between loop I and j to be the non-tiled loop, our heuristic looks at their corresponding

reuse vectors and selects the one that provides more temporal data locality for register reuse. In the

SSYRK example, both loops carry the same amount of reuse (both reuse vectors have a weight of 1)

and, therefore, we can select any of them as the non tiled loop.

Finally, once we have decided the non-tiled direction, the heuristic computes the tile sizes in

proportion to the quantity of reuse carried by each tiled direction, so that the loop nest traversing

core-tiles is either balanced or compute-bound and so that the amount of spill code is moderated. At

this point, we want to note that using large tile sizes increases register pressure and, therefore, spill

code might be generated in the loop body of the fully unrolled loop nest. However, if this increase of

memory instructions due to spill-loads/ stores is less than the reduction of memory instructions due to

register tiling, then it is preferable to use bigger tile sizes that generate a certain amount of spill code

than to use smaller tile sizes.

We use the weight of the reuse vectors corresponding to the tiled directions to determine the

ratio between the sizes in each dimension. For example, if one of the tiled directions had a weight of 2,

106 CHAPTERS

and the other a weight of 1, we will try to pick a size for the first direction of the tile that will be twice

the size of the second direction. We choose the tile sizes taking into account the number of registers

needed for each reference in the loop body and the available number of machine registers as described

in [23].

In the SSYRK example, and selecting loop I as the non-tiled loop, the ratio between the tile size

in each dimension is 2/1. The K-direction has a reuse weight of 2, while the J-direction has a reuse

weight of 1. A tile size of 4x2 needs 14 registers and a tile size of 6x3 needs 27 registers. On a 32

register machine, we would choose the 6x3 tile. At this point, we want to note that if a certain amount

of ILP is achieved and register pressure is controlled then experimental results have shown that

processor performance is not very sensible to the tile sizes. As an example, consider the SSYRK

routine after selecting loop I as the non-tiled loop. Figure 3.22 shows the performance obtained using

different tile sizes (5x3, 5x4 and 6x3). Again, measures were taken on two different processors: an

ALPHA 21164 and a R10000 processor. As it can be seen, the performance obtained using different tile

sizes is very similar. Moreover, the R10000 processor, due to its out-of-order nature, is even less

sensible to the tile sizes than the ALPHA processor.

Summarizing, when performing the locality analysis for the register level it is important to

consider the iteration space shape to decide the non-tiled loop, because the non-unrolled

boundary-tiles can limit processor performance. However, it is not that important to be precise when

selecting the tile sizes, if a certain amount of ILP can be guaranteed and register pressure is

controlled.

SSYRK

TRL-5x3

TRL-5X4

— TRL-6X3

30 50 70 90 10 30 50 70 90
Problem size

Figure 3.22: Performance of SSYRK on the ALPHA 21164 and the MIPS R10000 processor after
register tiling, varying the problem size from 10 to 100 and using different tile sizes. The non-tiled loop
in all cases is loop I.

Tiling for the Register Level 107

3.5 PERFORMANCE EVALUATION

In this section we will present the performance results obtained by tiling for the register level, and we

will compare it against the native compilers and preprocessors on two different superscalar

microprocessors. Since this work extends upon previous work on register tiling by handling arbitrary

non-rectangular iteration spaces, we use as benchmarks typical linear algebra algorithms having

non-rectangular iteration spaces. We will first describe our evaluation process and then present the

performance results.

3.5.1 Evaluation Process

Benchmark Programs

As benchmark programs, we have used 9 linear algebra algorithms having non-rectangular,

3-dimensional iterations spaces. Table 3.4 contains a short description and the characteristics of each

of them. Column labeled "Ref" indicates from where the algorithms were extracted. The fourth column

indicates whether the loops being transformed were perfectly nested or not. As pointed out in

Chapter 2 (Section 2.3.3), for those programs having non-perfectly nested loops, we transformed them

into a perfectly nested version using a code sinking transformation that is undone after loop tiling.

Column labeled "affine bounds" indicates the total number of bound components in the original code

that are affine functions of the surrounding loops iteration variables. The other bound components are

integer or symbolic constants. Column labeled "loop limit constraints" indicates whether the

dependence analyzer needs to consider the loop limit constraints to determine if the loop is fully

Ref

[57]

[122]

[27]

[121]

BLAS
[39]

Name

MMtri

LU

CHOL

QR

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

Description

Triangular matrix product

LU decomposition without pivoting

Cholesky factorization

Givens QR-decomposition

symmetric rank 2k update

symmetric rank k update

symmetric matrix-matrix operation

product of triangular and square matrix

solve a matrix equation

perfect
nested

Yes

No

No

No

Yes

Yes

No

Yes

No

affine
bounds

2

2

2

2

1

1

1

1

1

loop limit
constraints

No

Yes

Yes

Yes

No

No

No

Yes

Yes

Table 3.4: Description and characteristics of several linear algebra algorithms.

108 CHAPTERS

permutable or not [14][51][89]. In one case (programs QR), we were forced to apply loop skewing,

before tiling, to convert the loops into a fully permutable loop nest [121]. All results presented for QR

were measured using the code once skewed (we note that the skewed codes obtain the same or better

performance, depending on the problem size, than the non-skewed codes).

Code Generation

To perform tiling for the register level, we have developed a tool that implements our technique. To all

programs evaluated we always tile two dimensions of the 3-dimensional iteration spaces [98]. The

non-tiled loop was selected using the heuristic proposed in Section 3.4.3 and the tile sizes were chosen

taking into account the available number of machine registers in order to reduce the register pressure

and not overly constrain the job of the register allocator of the native compilers. We want to remark

that we do not consider the problem size when selecting the tile sizes. Hence, we use the same tile

sizes for different problem sizes. However, better performance can be achieved if we consider it and

select the tile sizes so that problem size becomes a multiple of the tile sizes, and thus, less

boundary-tiles are executed. This fact is specially important for small problem sizes where the time

wasted on boundary-tiles is a significant fraction of the total execution time.

Table 3.5 summarizes for each program the non-tiled dimension and the tile sizes selected for the

register level. For each benchmark program we show: the main loop body7 of the original loop nest

Program

MMtri

LU

CHOL

QR

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

Main Loop Body

C(I,J)=C(I,J)+A(I,K)*B(K,J)

A(I,J)=A(I,J)-A(I,K)*A(K,J)

A(I,J)=A(I,J)-A(I,K)*A(J,K)

T1=A(J-I-1,K)
T2=A(J-I,K)
A(J-I-1,K)=C(I,J)*T1-S(I,J)*T2
A(J-I,K)=S(I,J)*T1+C(I,J)*T2

C(I,J)=C(I,J)+B(J,K)*A(I,K)+A(J,K)*B(I,K)

C(I,J)=C(I,J)+A(J,K)*A(I,K)

C(K,J)=C(K,J)+A(K,I)*B(I,J)
C(I,J)=C(I,J)+A(K,I)*B(K,J)

B(I,J)=B(I,J)+A(I,K)*B(K,J)

B(I,J)=B(I,J)-A(I,K)*B(K,J)

Tiling Parameters at
the Register Level

non-tiled
loop

K

K

K

J

I

I

K

K

K

tile sizes

(Jx l) - (4x4)

(Jxl) - (4x4)

(Jx l) - (4x4)

(IxK)- (3x6)

(KxJ)-(4x4)

(KxJ)-(6x3)

(Jxl)-(2x4)

(Jx l) - (4x4)

(Jx l) - (4x4)

loop order

JR-IR-K-J-I

JR-IR-K-J-I

JR-IR-K-J-I

IR-KR-J-I-K

KR-JR-I-K-J

KR-JR-I-K-J

JR-IR-K-J-I

JR-IR-K-J-I

JR-IR-K-J-I

Table 3.5: Non-tiled dimension, loop order and tile sizes selected for each program.

T.For the non-perfectly nested programs (LU, CHOL, QR, SSYMM and STRSM), we are not showing the additional statements
outside the innermost loop.

Tiling for the Register Level 109

Architecture

ALPHA 21164

MIPS
R10000

MHz

266

250

issue rate
(instr/cycle)

4
(in-order)

4
(out-of-order)

L/Sper
cycle

2/1

1/1

int/fp
units

2/2

2/2

int/fp
regs

32/32

32/32

LI

8KB
direct mapped

32KB
(2-way)

TLB
entries

64

64

Table 3.6: Characteristics of the architectures ALPHA AXP 21164 and MIPS R10000.

(column 2), the non-tiled dimension (column 3), the tile size in each tiled dimension (column 4), and

the order of the loops used in our measurements (column 5). The loops that are fully unrolled in the

core-tiles are marked in bold, and IR, JR and KR are the iteration variables for the tile loops. Note that

although the main loop bodies of different programs look very similar, they have different iteration

space shapes (Appendix C shows the original code of all our benchmark programs). The iteration space

shape differences force the commercial compilers to apply widely different optimizations, as we shall

see later.

Target Architectures

All our measurements were taken on a uniprocessor system with an ALPHA 21164 processor [15] and

on a single R10000 processor [130] of a multiprocessor system (SGI Origin 2000 [81]). The two

different architectures are shortly described in Table 3.6. We will use the MFLOP/s metric as our

indicator of performance and we note that operations such as DIV and SQRT, that appear in

statements outside the innermost loop in programs LU, CHOL, QR and STRSM (see Appendix C), are

counted as only one operation.

3.5.2 Performance Results

To compare tiling for the register level against other optimizing code transformations performed by

commercial compilers and preprocessors, such as software pipelining and outer unrolling, we evaluate

three different versions of each program: one is the original version (ORI) with no previously

restructuring transformation. A second one is generated using the KAP8 preprocessor [78] to

restructure the code (KAP) and the third one is generated using our tool, also as a preprocessor, to tile

for the register level (TRL). For the ORI version we always select the loop order that achieves, in

average, the best performance and we feed the KAP preprocessor with the ORI version. It is worth

noting that the best loop order for small problem sizes that fit in the cache level cannot be the best

loop order for large problem sizes.

8.KAP is a commercial source to source preprocessor from Kuck and Associates capable of restructuring code to exploit both the
different levels of the memory hierarchy and the program's ILP. We have used version 3. la of the KAP preprocessor.

110 CHAPTER 3

After generating the different versions for each program, we use the standard Fortran

77 compiler9 to generate the final executables. For the ORI and KAP versions, the F77 compiler was

used with the scalar optimizations recommended by the manufacturer turned on (-05 on the ALPHA

and -03 on the MIPS). It is worth noting that, at these optimization levels, the F77 compiler unrolls

the innermost loop when the loop body has a small number of operations in order to increase the

instruction level parallelism and it also perform software pipelining. For the TRL-version, however,

the F77 compiler was used with the software pipelining flag turned off (-O4 on the ALPHA and

-SWP:=OFF on the MIPS) because we want to isolate the benefits of tiling for the register level

against other transformations, including software pipelining.

To evaluate the performance improvement of tiling for the register level, we will show the

MFLOP/s obtained on both processors for the 9 benchmark programs when compiled using the

different versions of the codes. On the R10000 machine, only the ORI and TRL versions are presented,

since the MlPSpro compiler by itself already uses a loop nest optimizer (LNO) that performs

high-level optimizations that improve program performance by exploiting ILP and caches. LNO is

integrated into the compiler back end and is not a source-to-source preprocessor. We will first present

results for small-to-medium problem sizes10 (from 10 to 100), where high memory levels does not

affect processor performance, and then we present results for medium-to-large problem sizes (from

100 to 1500), where cache levels and TLB harm processor performance.

Small-to-Medium Problem Sizes

Figure 3.23 shows the performance obtained on the ALPHA 21164 processor by the three versions of

the programs with matrix sizes varying from 10 up to 100.

As it can be seen, tiling the register level is, in general, better than the optimizations performed

by the KAP and F77 compilers for all problem sizes. Moreover, KAP performs better or equal than ORI

in almost all programs (only for the MMtri program with small problem sizes (between 10 and 50) and

for the SSYR2K program with medium problem sizes (between 90 and 100) KAP performs worse than

ORI).

The KAP preprocessor was able to perform certain optimizations for some, but not all, program

benchmarks. For example, it applies unroll-and-jam (in only one dimension) for five programs (QR,

SSYR2K, SSYRK, STRMM and STRSM). It also applies other transformations such as scalar

replacement, loop permutation, cache tiling and operation reordering. Operation reordering is used to

help the compiler to perform an efficient instruction scheduling and KAP applies it to three programs

(QR, STRMM and STRSM). Table 3.7 summarizes the transformations performed by KAP for each of

the nine programs.

9-Version 4.1 of Digital Fortran on the ALPHA processor and version 7.2.1 of MlPSpro Compiler on the MIPS processor.
10.A matrix size (or problem size) of N means that we are using matrices of N by N elements.

Tiling for the Register Level 111

30 50 70 90 10 30 50 70 90 10 30 50 70 90
Problem size

70 90 10 30 50 70 90 10 30 50 70 90
Problem size

Figure 3.23: Performance obtained on the ALPHA 21164 processor by the ORI, KAP and TRL versions for
the nine benchmark programs, varying the problem size from 10 to 100.

Comparing KAP with respect to ORI, it can be seen that KAP only performs better in the five

programs it was able to apply unroll-and-jam (QR, SSYR2K, SSYRK, STRMM and STRSM). The

performance improvement is due to a reduction in the number of load/store executed caused by the

unroll-and-jam transformation. Moreover this transformation also increases ILP since the unrolled

loop, in the five programs, does not carry a dependence.

Another interesting point to note is the different levels of performance obtained by KAP and ORI

in programs SSYR2K, SSYRK, STRMM and STRSM despite all of them having a similar loop body (see

Table 3.5). In STRMM and STRSM, less performance (compared to SSYR2K and SSYRK) is achieved

because of the references B(l,j) and B(K,J) that appear in the loop body. For these programs, the

112 CHAPTERS

Program

MMtri

LU

CHOL

QR

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

Optimizing Transformations performed by KAP

loop
permutation

YES
—

—

—

YES

YES
—

YES

YES

scalar
replacement

YES
—

—

—

YES

YES

YES
—

—

unroll
& jam

—

—

—

YES

YES

YES
—

YES

YES

operation
reordering

—

—

—

YES
—

—

—

YES

YES

cache
tiling

—

—

—

—

YES

YES

—

—

—

Table 3.7: Transformations performed by KAP for each benchmark program.

dependence analyzer needs to consider the loop limit constraints to determine that there is not a

dependence between the two references. However, we think that the dependence analyzer of the

native compiler does not consider loop limit constraints and assumes that the dependence exists, thus

limiting the degree of ILP that could be achieved by the software pipelining transformation.

In SSYR2K and for medium problem sizes, KAP performs worst than ORI, due to a bad

exploitation of the cache level. For this program, KAP performs tiling for the cache level. However, the

tiling parameters were not properly selected since the ORI version has more data locality at the cache

level than the KAP version. We will see this fact more clearly in the next subsection, when dealing

with large problem sizes.

For the remainder 4 programs (MMtri, LU, CHOL and SSYMM) KAP performs worse or equal than

ORI. In LU and CHOL, KAP does not modify the original code. In SSYMM, it applies scalar

replacement to move invariant references outside the innermost loop. However, the native compiler by

itself is already capable to do this same optimization and, therefore, no performance difference is seen.

Finally, in MMtri, KAP applies loop permutation to increase data locality and also adds a zero-trip11

test to the innermost loop [129]. The execution time overhead due to the zero-trip test is significant for

small problem sizes, since the innermost loop does not execute enough iterations to hide the cost of the

test, thus degrading processor performance. On the other hand, the benefits of the loop permutation

transformation will be slightly perceived for larger problem sizes.

11. A conditional statement to prevent execution of the innermost loop with zero-trip count.

Tiling for the Register Level 113

Note that KAP was not able to apply unroll-and-jam to MMtri, LU and CHOL programs, although

they have loop bodies similar to SSYR2K, SSYRK, STRMM and STRSM. The problem here is the

irregularity of the iteration space shape that prevents KAP to perform unroll-and-jam. In the former

programs there are two bound components in the original code that are affine functions of the

surrounding loops iteration variables, while in the later there is only one (see Table 3.4).

Tiling the register level outperforms compiler optimizations such as inner unrolling,

unroll-and-jam and software pipelining used in commercial compilers and preprocessors due to two

main reasons: 1) it always achieves ILP in the loop body and 2) the number of load/store instructions

is significantly reduced. Transformations such as inner unrolling and software pipelining can also

achieve good levels of ILP in most of the cases. However, they do not exploit register reuse and thus,

they do not reduce memory instructions. On the other hand, unroll-and-jam exploits data reuse at the

register level, but only in one dimension of the iteration space. Register tiling, however, exploits data

reuse in more than one dimension. As shown in Section 3.3, exploiting data reuse in more than one

dimension achieves more data locality than exploiting data reuse in only one dimension, without

increasing register pressure. This is especially important at the register level, since being able to fully

exploit the (small) storage space available at this level can make a big performance difference.

In general, on the ALPHA processor, the performance improvement of TRL is much better for

medium problem sizes (80-90) than for very small problem sizes (10-30) and it is also much better for

problem sizes multiple of the tile sizes than for problem sizes not multiple of the tile sizes. For

problem sizes that are very small and/or not multiple of the tile sizes, the execution time wasted on

boundary-tiles is significant and these tiles have less ILP and less data reuse than core-tiles. The

spikes in the TRL curves that can be seen in Fig. 3.23 for almost all programs correspond to problem

sizes not multiple of the tile sizes. Note that these spikes become less noticeable as the problem size

increases.

In LU, CHOL, QR and STRSM programs, there is another reason that explains the small

performance improvement achieved for small problem sizes. These programs perform very time

consuming, non-pipelined operations (SQRT and/or DIV)12 and only when the matrix size increases,

the execution time spent in these operations can be hidden by the other operations in the loop body.

Let's now see what happens on the RlOOOO processor. Figure 3.24 shows the performance

obtained on the RlOOOO processor by the ORI and TRL versions of the programs with matrix sizes

varying from 10 up to 100. Recall that the MlPSpro compiler by itself already performs high-level

optimizations.

The results on the RlOOOO processor are similar to the results on the ALPHA processor. Tiling

the register level is also better than the optimizations performed by the native F77 compiler, except

for very small problem sizes (between 10 and 30) and for only 4 programs (MMtri, LU, CHOL and

12.These operations appear in statements outside the innermost loop, that is, they are not in the main loop body.

114 CHAPTERS

400

300

«a 200
S

100

MMtri LU CHOL — TRL
+-t-ORI

°IO 30 50 70 90 10 30 50 70 90 10 30 50 70 90
Problem size

400 SSYR2K SSYRK

30 50 70 90 10 30 50 70 90 10 30 50 70 90
Problem size

400 STRMM STRSM

30 50 70 90 10 30 50 70 90 10 30 50 70 90
Problem size

Figure 3.24: Performance obtained on the MIPS R10000 processor by the ORI and TRL versions for the
nine benchmark programs, varying the problem size from 10 to 100.

STRMM). There are two reasons why ORI performs better than TRL for small problem sizes. On one

hand, as already mentioned, for problem sizes that are very small and/or not multiple of the tile sizes,

the execution time wasted on boundary-tiles is significant and these tiles have less ILP and less data

reuse than core-tiles. On the other hand, the TRL version uses the same tile sizes for different problem

sizes. That is, we do not consider the problem size for selecting the tiling parameters despite the fact

that, in our programs, the problem size is known at compile time. Note that better performance could

be achieved by considering it and selecting tile sizes divisible by the problem size; doing so, less

boundary-tiles would be executed. By contrast, the MlPSpro compiler does take into account the

problem size when performing optimizations such as unroll-and-jam. For example, it unrolls loops by

different factors depending on the problem size. This fact is specially important for small problem

sizes where the time wasted on boundary-tiles is a significant fraction of the total execution time.

Tiling for the Register Level 115

Program

MMtri

LU

CHOL

QR

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

Optimizing Transformations performed by the MlPSpro compiler

loop
permutation

....

Yes

....

—

....

—

—

....

Yes

scalar
replacement

Yes

Yes

Yes

—

Yes

Yes

Yes

Yes

Yes

unroll
& jam

Yes

Yes

Yes

—

Yes

Yes

—

Yes

Yes

operation
reordering

—

—

—

—

—

—

—
—

—

cache
tiling

Yes

Yes

—

Yes

Yes

Yes

—

Yes

Yes

Table 3.8: Transformations performed by the MlPSpro compiler for each benchmark program.

Table 3.8 summarizes the transformations performed by the MlPSpro compiler for each of the

nine programs13. As already mentioned, the compiler performs different optimizations for different

problem sizes. Basically, the main difference between codes using different problem sizes are the

unrolling factors and the tile sizes selected for the cache levels (for small problem sizes, it does not

perform tiling for the cache levels). In Table 3.8 we show the transformations performed for a problem

size of 700.

Note that the MlPSpro compiler is able to apply unroll-and-jam to MMtri, LU and CHOL

programs, while the KAP preprocessor was not. However, similarly to KAP, the MlPSpro compiler

only applies unroll-and-jam in one dimension of the iteration space, and therefore, it does not exploit

the register level as well as TRL. It also applies scalar replacement and cache tiling to more programs

than the KAP preprocessor. Moreover, while KAP performs tiling only for the first level cache, the

MlPSpro compiler also performs tiling for the second level cache in four programs (MMtri, SSYR2K,

SSYRK and STRMM). However it does not perform operation reordering. Operation reordering can be

a beneficial transformation in in-order processors like the ALPHA 21164, because it helps the compiler

to perform a more efficient instruction scheduling. However, in out-of-order processor, like the R10000,

this type of optimizations are not so important, since the out-of-order execution solves the instruction

scheduling limitations.

13.To see the optimizing transformations performed by the MlPSpro compiler, we used the -FLIST:=ON option that invokes a
translator, integrated into the back end stage of the compiler, that converts the compiler's internal representation into the
original source language, showing the transformed code in the original source language after performing the transformations.

116 CHAPTERS

ALPHA
TRL/KAP

MIPS
TKL/ORI

MMtri

1.6

1.3

LU

1.2

1.1

CHOL

1.1

0.8

QR

1.1

2.0

SSYR2K

1.1

1.2

SSYRK

1.2

1.8

SSYMM

1.5

1.4

STRMM

1.8

1.2

STRSM

1.3

1.4

Table 3.9: Speedups obtained by TRL over the KAP and ORI versions on the ALPHA and MIPS
processors, using small-to-medium problem sizes (10-100).

Summarizing, experimental results show that transformations such as unroll-and-jam, scalar

replacement and software pipelining, alone or combined, cannot achieve as high performance as

register tiling. In Table 3.9 we have summarized the speedups of TRL over KAP (for the ALPHA

processor) and over ORI (for the MIPS processor) for small problem sizes. For each program version

the harmonic mean of the MFLOP/s obtained for different matrix sizes is computed (we used 21

different problem sizes, going from 10 to 100). Then, we compute the speedup of TRL over KAP and

ORI versions by dividing these harmonic means. On the ALPHA, the speedups over the KAP

preprocessor are in the range 1.1 to 1.8 and on the MIPS, the speedups over the MlPSpro compiler,

vary between 0.8 and 2.0.

Medium-to-Large Problem Sizes

Now, we will show the behavior of TRL for medium-to-large problem sizes where high memory levels,

such as cache and TLB, might negatively affect performance. Figure 3.25 shows the performance

obtained on the ALPHA 21164 processor by the three versions of the programs with matrix sizes

varying from 100 up to 1500.

As expected, the performance obtained by the three versions of the programs (TRL, KAP and

ORI) decreases with large problem sizes. However, it can be seen that TRL performs better than the

other versions, although tiling for higher levels of the memory hierarchy has not been performed. A

side effect of tiling the register level is a reduction of the overall cache misses because reducing the

number of load/store instructions reduces data memory traffic.

Another point to notice is the performance obtained by KAP in the SSYR2K program. As shown

in Table 3.7, KAP performs tiling for the cache level in the SSYR2K and SSYRK programs. While in

the SSYRK program, KAP performs better than ORI, the same does not happen for SSYR2K. We

believe the reason behind this performance degradation is the tile size and loop ordering chosen by

KAP, which happen to decrease performance rather than increase it.

Finally, we note that in 6 programs (MMtri, LU, CHOL, QR, STRMM and STRSM) the performance

of TRL decreases faster than in SSYR2K, SSYRK and SSYMM. In these 6 programs, there is at least

one array reference that is traversed in row major order by the non-tiled loop. Thus, for these

Tiling for the Register Level 117

900 400 700 1000 1300 100 400 700 1000 1300 100 400 700 1000 1300
Problem size

250

9oO 400 700 1000 1300 100 400 700 1000 1300 100 400 700 1000 1300
Problem size

250

V \i ^v^^^^V+ -̂t-N-̂

900 400 700 1000 1300 100 400 700 1000 1300 100 400 700 1000 1300
Problem size

Figure 3.25: Performance obtained on the ALPHA 21164 processor by the ORI, KAP and TRL versions
for the nine benchmark programs, varying the problem size from 100 to 1500.

references spatial locality is not being exploited14, and TLB misses increase considerably. For large

problem sizes, tiling only for the register level can substantially increase TLB misses when spatial

locality is not being exploited. However, we will see in Chapter 5 that this problem can be solved by

performing tiling also for higher levels of the memory hierarchy.

Results for the R10000 processors .are shown in Fig. 3.26. Note that the behavior of all programs

on the MIPS processor is, more or less, the same as on the ALPHA processor. However, we note that on

the MIPS processor, performance begins to decrease at much larger problem sizes, because the MIPS

processor has a first level cache four times bigger than the ALPHA processor. Moreover, MIPS's cache

is two way associative while ALPHA'S cache is direct mapped, thus reducing conflict misses.

14.Programs are written in FORTRAN, that stores matrices in column major order.

118 CHAPTERS

400 CHOL _ TRL

ORI

900 400 700 1000 1300 100 400 700 1000 1300 100 400 700 1000 1300
Problem size

400

900 400 700 1000 1300 100 400 700 1000 1300 100 400 700 1000 1300
Problem size

400

300

is. .
¿200

100

SSYMM STRMM STRSM

900 400 700 1000 1300 100 400 700 1000 1300 100 400 700 1000 1300
Problem size

Figure 3.26: Performance obtained on the MIPS R10000 processor by the ORI and TRL versions for nine
the benchmark programs, varying the problem size from 100 to 1500.

Notice also that ORI performs better than TRL in SSYR2K. In this program (and also in MMtri,

SSYRK and STRMM), the MlPSpro compiler not only performs tiling for the first level cache, but also

for the second level, thus achieving a stable performance for all problem sizes. TRL, however, do not

exploit data locality for higher levels of the memory hierarchy and thus, performance decreases. We

note that in MMtri, SSYRK and STRMM programs and for problem size larger than 1500, ORI also

performs better than TRL.

Summarizing, results show that tiling for the register level also achieves good performance for

medium-to-large problem sizes, despite the fact that tiling for higher levels of the memory hierarchy

has not been performed. However, tiling only for the register level must be applied with care since it

Tiling for the Register Level 119

ALPHA
TRL/KAP

MIPS
TRL/ORI

MMtri

1.7

1.6

LU

2.9

2.2

CHOL

1.5

1.6

QR

1.5

1.4

SSYR2K

2.4

0.9

SSYRK

1.8

1.7

SSYMM

1.5

1.6

STRMM

1.2

1.5

STRSM

1.1

2.3

Table 3.10: Speedups obtained by TRL over the KAP and OKI versions on the ALPHA and MIPS
processors, using medium-large problem sizes (100-1500).

can heavily increase the overall TLB misses if spatial locality is not properly exploited, resulting in a

performance degradation. Table 3.10 summarizes the speedups of TRL over KAP (for the ALPHA

processor) and over ORI (for the MIPS processor) for large problem sizes. As before, we used the

harmonic mean of the MFLOP/s obtained for different matrix sizes (we used 29 different problem

sizes, going from 100 to 1500) to compute the speedups. On the ALPHA, the speedups over the KAP

preprocessor are in the range 1.1 to 2.9 and on the MIPS, the speedups over the MlPSpro compiler,

vary between 0.9 and 2.3.

Cost of Performing ISS

We conclude this section by presenting some experimental data on the number of times that ISS has

been performed and the number of loop nests generated for our 9 benchmark programs.

As shown in Section 3.2.4, the number of times that our algorithm performs ISS (and also the

number of loop nests generated) depends on the number of bound components of the UCLs in the tiled

code (just, after the iteration space tiling phase). Thus, we have divided the 9 benchmark programs

into three groups according to the number of loop bound components of the UCLs after the iteration

space tiling phase. Programs MMtri, LU, SSYMM, STRMM and STRSM belong to group A, QR, SSYR2K

and SSYRK belong to group B and CHOL forms group C.

Since the number of bound components of the UCLs increment with the number of memory

levels being exploited, we will present the cost of applying our method when tiling has been applied

only to the register level and when it has been applied to both the cache and register levels. At each

level, two dimensions of the 3-dimensional iteration spaces were tiled.

Table 3.11 presents the results for each group. Columns 2 to 8 shows data when tiling has been

applied only at the register level. Columns 2 and 3 (labeled "R" and "S+M", respectively) indicate the

number (and type) of loop bound components of the UCLs in the tiled code (recall the notation used in

Section 3.2.4). Column 4 (labeled "Niss") indicates the number of times that ISS has been performed.

We note that, for all programs, the actual number of ISSs performed is exactly the minimum number

of necessary ISSs (as computed using the formula of Table 3.2 on page 89). Column 5 (labeled

120 CHAPTERS

Program
Group

A

B

C

Tiling only register level

UCL's bound
components

R

2

2

3

S+M

2+0

2+0

1+1

NÎSS

8

8

8

•^loop_nests

9

9

16

UCLs
unrolled

2

1

1

1

1

4

4

4

0

4

4

11

Tiling cache and register levels

UCL bound
components

R

2

4

4

S+M

4+0

2+0

3+1

Niss

14

14

20

•̂ loop_nests

15

15

40

UCLs
unrolled

2

1

1

1

1

6

6

7

0

8

8

32

Table 3.11: Number of loop bound components, number of times that ISS has been performed and
number of loop nests generated for each benchmark group, when tiling has been applied only to the
register level, and when it has been applied to both the cache and register levels.

"Nioop nests") gives the total number of loop nests generated at the end of the process and columns 6, 7

and 8 indicate how many of them are fully-unrolled loop nests, partially-unrolled loop nests or

non-unrolled loop nests, respectively. Columns 9 to 15 are the same as columns 2 to 8 but, in this case,

tiling has been applied to both the cache and register level. Note that when two levels are tiled (cache

and registers) the number of bounds in the UCLs is greater and, therefore, the final number of loop

nests generated increases.

Finally, we want to indicate that tiling for the register level increases code size and this fact

could increase the instruction cache misses. However, on the ALPHA processor, we have seen by

instrumenting the executables with the ATOM tool [36], that the overall instruction cache misses is

insignificant for all benchmark programs. The reason is that the generated code has a good degree of

locality; in average for all programs, 97% of the referenced instructions are done by only 10% of the

executed code. Register tiling increases the static code size considerably because all different types of

boundary-tiles have to be considered, however, in execution time, only some of all loop nests in the

code are actually executed (obviously, the fully-unrolled loop nest that traverses the core-tiles is the

one that is executed the most).

3.6 RELATED WORK

There has been much discussion in the literature regarding memory hierarchy management

[23] [25] [27] [98] [122], but it has mostly focused on exploiting data reuse for the cache level and little

attention has been paid to the register level.

M. Wolf in [121] presents a method to perform loop tiling on all levels of the memory hierarchy,

but, at the register level, he only exploits data reuse in one dimension of the iteration space and

indicates that tiling more loops at the register level is "not trivial". Our method, however, is able to

exploit data reuse at the register level in more than one dimension of the iteration space.

Tiling for the Register Level 121

Carr in [23] and [24] uses unroll-and-jam for exploiting reuse at the register level and

improving ILP. He handles limited cases of non-rectangular iteration spaces. In particular, he only

allows one inner loop to have bounds that are affine function of only one iteration variable of tiled

loops. Our work extends that of [23] and [24] by allowing several inner loops to have affine bounds of

multiple tiled loops iteration variables.

Moreover, for a set of different iteration space shapes, Carr gives the code transformation

directly. To this end, he uses pattern recognition techniques on the bounds of the loops and when the

iteration space shape does not match one of his patterns, no general algorithm to split these iteration

spaces into simpler ones that could be recognized through patterns is presented. In some special cases,

he uses index set splitting before applying unroll-and-jam to split the original iteration space into

simpler ones. Our method, however, uses index set splitting after applying loop tiling. This fact makes

unroll-and-jam and register tiling generate different transformed codes for non-rectangular spaces. In

particular, unroll-and-jam generates more boundary tiles than our proposed method.

Wolf, Maydan and Chen in [124] developed an algorithm that combines tiling for the cache level,

unroll-and-jam and software pipelining in an attempt to select a set of transformations that lead to

high performance. They handle non-perfectly nested loops and loops with non-rectangular iteration

spaces, but they do not give details in [124]. To exploit the register level, they use unroll-and-jam as

described by Carr and, as mentioned before, it can only be applied in limited cases of non-rectangular

iteration spaces.

There has been also much work regarding locality analysis, but, again, it is mostly focused on the

cache level. K. Kennedy and K. Kinley in [69] propose an easy algorithm to determine a good order of

the loops that exploits locality at the cache level, but they don't explicitly indicate which loops could be

tiled. They also need to know the number of iterations of each loop. Usually the number of iterations of

each loop is unknown either because it is an input parameter to the program or because the iteration

space is non-rectangular and the number of iterations varies each time it is executed. M. Wolf and

M. Lam in [123] propose an algorithm that determines which loops carry reuse at the cache level and

then, they tile all of them. They do not provide a specific ordering of the loops, since they assume that

all data referenced inside a tile will fit into the memory level being exploited. The implication of this

assumption is that their tiles must be smaller and, therefore, cannot take advantage of the full

memory size. Being able to use as much as possible of a memory level capacity is very important at the

register level because the number of registers is small. In Section 3.4 we have seen that, by properly

establishing an ordering among the loops, it is not necessary to keep all data in the memory level

being exploited and, therefore, we can have bigger tile sizes. Finally, S. Carr in [23] proposes an

heuristic to determine which loops should be unrolled and jammed and the unrolling factors. He

considers the amount of reuse carried by each loop, but does not take into account the iteration space

shape. However, as shown in Section 3.4.2, for small problem sizes and/or very irregular problems, it

122 CHAPTER 3

is important to consider the iteration space shape for reducing the time wasted executing

boundary-tiles.

Finally, we note that current commercial compilers and preprocessors are not always able to

perform tiling for the register level when the bounds of the loops are affine functions (or compositions

of affine functions) of the surrounding loops iteration variables. These types of bounds are commonly

found in linear algebra algorithms or arise as a result of applying transformations such as loop

skewing.

3.7 SUMMARY

Tiling for the register level in more than one dimension of the iteration space has two main goals: (1) it

exploits temporal data reuse that translates into a significant reduction of the number of load/store

instructions issued (and, in most cases, this can lead to a reduction of the critical path length) and (2)

it always improves the ILP of the original loop.

In this chapter we have presented a new general method that performs tiling for the register

level. The proposed method is distinguished from previous work primarily by being able to block in

several dimensions of the iteration space in both rectangular and non-rectangular iteration spaces.

Our method divides first the original iteration space into regular tiles, using the strip-mining and loop

permutation transformations. Afterwards it applies index set splitting repeatedly to distinguish loop

nests that traverse boundary-tiles of the tiled iteration space from loop nests that traverse core-tiles.

We have presented an algorithm to perform index set splitting repeatedly so that each loop in the nest

will be processed only once and so that code expansion is reduced. We have also given analytical

expressions to evaluate the complexity of our method and the amount of code generated.

We have also proposed a simple heuristic that determines the loops to be tiled at the register

level. Our heuristic considers not only temporal reuse, but also the iteration space shape. Moreover,

the heuristic is simple enough to be suitable for automatic implementation by compilers.

Finally, we have evaluated the performance of our method applied to several linear algebra

algorithms having non-rectangular iteration spaces. Our compilation technique has been compared

against native compilers and against the commercial KAP preprocessor, on two different superscalar

microprocessors. In general, our method has outperformed the native compilers and the KAP

preprocessor, showing speedups up to 2.9.

	TMJC00001.pdf
	TMJC00002.pdf
	TMJC00003.pdf
	TMJC00004.pdf
	TMJC00005.pdf
	TMJC00006.pdf
	TMJC00007.pdf
	TMJC00008.pdf
	TMJC00009.pdf
	TMJC00010.pdf
	TMJC00011.pdf
	TMJC00012.pdf
	TMJC00013.pdf
	TMJC00014.pdf
	TMJC00015.pdf
	TMJC00016.pdf
	TMJC00017.pdf
	TMJC00018.pdf
	TMJC00019.pdf
	TMJC00020.pdf
	TMJC00021.pdf
	TMJC00022.pdf
	TMJC00023.pdf
	TMJC00024.pdf
	TMJC00025.pdf
	TMJC00026.pdf
	TMJC00027.pdf
	TMJC00028.pdf
	TMJC00029.pdf
	TMJC00030.pdf
	TMJC00031.pdf
	TMJC00032.pdf
	TMJC00033.pdf
	TMJC00034.pdf
	TMJC00035.pdf
	TMJC00036.pdf
	TMJC00037.pdf
	TMJC00038.pdf
	TMJC00039.pdf
	TMJC00040.pdf
	TMJC00041.pdf
	TMJC00042.pdf
	TMJC00043.pdf
	TMJC00044.pdf
	TMJC00045.pdf
	TMJC00046.pdf
	TMJC00047.pdf
	TMJC00048.pdf
	TMJC00049.pdf
	TMJC00050.pdf
	TMJC00051.pdf
	TMJC00052.pdf
	TMJC00053.pdf
	TMJC00054.pdf
	TMJC00055.pdf
	TMJC00056.pdf
	TMJC00057.pdf
	TMJC00058.pdf
	TMJC00059.pdf
	TMJC00060.pdf
	TMJC00061.pdf
	TMJC00062.pdf
	TMJC00063.pdf
	TMJC00064.pdf
	TMJC00065.pdf
	TMJC00066.pdf
	TMJC00067.pdf
	TMJC00068.pdf
	TMJC00069.pdf
	TMJC00070.pdf
	TMJC00071.pdf
	TMJC00072.pdf
	TMJC00073.pdf
	TMJC00074.pdf
	TMJC00075.pdf
	TMJC00076.pdf
	TMJC00077.pdf
	TMJC00078.pdf
	TMJC00079.pdf
	TMJC00080.pdf
	TMJC00081.pdf
	TMJC00082.pdf
	TMJC00083.pdf
	TMJC00084.pdf
	TMJC00085.pdf
	TMJC00086.pdf
	TMJC00087.pdf
	TMJC00088.pdf
	TMJC00089.pdf
	TMJC00090.pdf
	TMJC00091.pdf
	TMJC00092.pdf
	TMJC00093.pdf
	TMJC00094.pdf
	TMJC00095.pdf
	TMJC00096.pdf
	TMJC00097.pdf
	TMJC00098.pdf
	TMJC00099.pdf
	TMJC00100.pdf
	TMJC00101.pdf
	TMJC00102.pdf
	TMJC00103.pdf
	TMJC00104.pdf
	TMJC00105.pdf
	TMJC00106.pdf
	TMJC00107.pdf
	TMJC00108.pdf
	TMJC00109.pdf
	TMJC00110.pdf
	TMJC00111.pdf
	TMJC00112.pdf
	TMJC00113.pdf
	TMJC00114.pdf
	TMJC00115.pdf
	TMJC00116.pdf
	TMJC00117.pdf
	TMJC00118.pdf
	TMJC00119.pdf
	TMJC00120.pdf
	TMJC00121.pdf

