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4
SIMULTANEOUS MULTILEVEL TILING

Summary
This chapter presents a new cost-effective algorithm to compute exact loop bounds when Multilevel

Tiling is applied to a loop nest having a/fine functions as bounds. Traditionally, exact loop bounds

computation has not been performed because its complexity is doubly exponential on the number of

loops in the multilevel tiled code and, therefore, for certain classes of loops, can be extremely time

consuming. Although computation of exact loop bounds is not very important when tiling only for

cache levels, it is critical when tiling includes the register level. As shown in Chapter 3, both the cost

of tiling for the register level and the amount of code generated depend on the number of loop

bounds in the multilevel tiled code. This chapter presents a new Multilevel Tiling technique that

computes exact loop bounds whose complexity is much lower than the complexity of conventional

techniques. To achieve this lower complexity, our technique deals simultaneously with all levels to

be tiled, rather than applying tiling level by level as is usually done. This chapter will compare our

implementation against conventional techniques in terms of complexity and loop bounds generated

and present some experimental results.
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4.1 INTRODUCTION

Loop Tiling is a transformation that a compiler can use not only to achieve data locality in different

levels of the memory hierarchy [27] [83][97] [122], but also to exploit parallelism [69][84][123]. With

today's architectures having complex memory hierarchies and multiple processors, it is quite common

that the compiler has to perform tiling at four or more levels (parallelism, L2-cache, Ll-cache and

registers) in order to achieve high performance.

Multilevel tiling consists of dividing a tile of a higher level into smaller subtiles, where each level

of tiles exploits one level of the memory hierarchy or one level of parallelism. As shown in Chapter 2,

conventional tiling techniques implement one level of tiling using repeatedly the strip-mining and the

loop permutation transformations [129]. Then, to implement multilevel tiling several researchers

propose applying tiling level by level [28][121], going from the outermost (parallelism) to the

innermost level (registers).

Previous research in multilevel tiling code generation can be divided in two main groups:

techniques that compute the resulting tiled loop nest with exact loop bounds [7] [77] and techniques

that do not compute exact loop bounds [122]. We say that a loop nest has exact bounds if it never

executes an empty iteration (recall the example of Fig. 1.5 on page 29). Clearly, a loop nest with exact

bounds is more efficient because the loop will not waste time in empty iterations. However, to date, the

drawback of generating exact loop bounds was that all techniques known were extremely expensive

and, thus, difficult to integrate in a production compiler.

Another problem related to the generation of multilevel tiled loop nests is the generation of

redundant bounds [5] [16]. We say that a loop bound is redundant if it can be removed from the loop

and the resulting loop nest executes exactly the same iterations as the original loop nest. Current

techniques able to eliminate redundant bounds are also very expensive in terms of compilation time

and, as above, have not been included in production compilers.

Solving the problems of exact and redundant bounds would be very beneficial for two main

reasons: first, as just mentioned, it avoids increasing a program's execution time. If the compiler does

not compute exact bounds and generates redundant bounds, a fraction of a program's execution time is

wasted in evaluating useless bounds (redundant bounds or bounds of loops that will end up in empty

iterations). This fraction of time is insignificant if tiling is applied to rectangular iteration spaces or

for one or two levels of the memory hierarchy. However, it can be very important if tiling is applied to

non-rectangular iteration spaces and for several levels of the memory hierarchy.

Second, and most important, computing exact bounds and avoiding the generation of redundant

bounds is critical when multilevel tiling includes the register level. The reason is that, as shown in

Chapter 3, the number of times that Index Set Splitting is applied and the amount of code generated

both depend polynomially on the number of bounds of the loops that have to be fully unrolled (the
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innermost loops after tiling). If the number of generated loop nests increases excessively, the compiler

might waste a lot of time performing the instruction scheduling and the register allocation of loop

nests that will be never executed. Thus, when multilevel tiling includes the register level, it is

convenient to compute exact bounds and to eliminate redundant bounds, at least in the innermost

loops.

Traditionally, exact loop bounds computation has not been performed because its complexity is

doubly exponential on the number of loops in the multilevel tiled code and, therefore, for certain

classes of loop nests, can be extremely time consuming. Of course, simple loop nests that define

rectangular iteration spaces, incur in the best-case complexity and, for this type of loop nests, the cost

of computing exact bounds is linear on the number of loops in the multilevel tiled code. However, this

is not the case for complex loop nests defining non-rectangular iteration spaces. These complex loop

nests are commonly found in linear algebra programs or can arise as a result of applying

transformations such as loop skewing1. Moreover, conventional multilevel tiling implementations

generate many redundant bounds in the innermost loops and eliminating these redundant bounds is

also a very time consuming job that can increase a program's compile time significantly [5] [16].

In this chapter we present a new implementation of multilevel tiling that computes exact loop

bounds at a much lower complexity than traditional techniques. Moreover, our implementation

generates less redundant bounds in the multilevel tiled code and allows removing the remaining

redundant bounds in the innermost loops at a much lower cost than traditional implementations.

Using our algorithm, tiling for the register level becomes viable even in the face of complex loop nests

and/or when tiling for many levels. The main idea behind our algorithm is that we deal with all levels

to be tiled simultaneously, instead of applying tiling level by level as traditional implementations do.

We evaluate analytically the complexity of our implementation and show that it is proportional to the

complexity of performing a loop permutation in the original loop nest, while conventional techniques

have much larger complexities. We then compare our implementation against traditional techniques

for typical linear algebra codes having very simple affine functions as bounds and show that our

method is between 1.5 and 2.8 times faster. Moreover, for loop nests having not so simple bounds2 (but

still bounds commonly found in linear algebra programs), the speedups achieved can be as high as

2300. We also compare both implementations in terms of redundant bounds generated and cost of

eliminating these redundant bounds. We show that eliminating redundant bounds in a multilevel

tiled code generated with our proposal is between 2.2 and 11 times faster than in a code generated

with conventional techniques.

The rest of this chapter is organized as follows. In Section 4.2 we briefly review how conventional

techniques implement multilevel tiling and evaluate their complexity. In Section 4.3 we show how

multilevel tiling can be performed dealing with all levels simultaneously. In Section 4.4 we give our

I.AS shown in Chapter 2, loop skewing is sometimes necessary to allow loop tiling to be applied.
2,Bounds that are affine functions of multiple outer loop index variables
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efficient implementation of multilevel tiling and in Section 4.5 we evaluate its complexity. In

Section 4.6 we show how our technique avoids the generation of some special redundant bounds and

reduces the cost of eliminating the remaining redundant bounds. In Section 4.7 we compare our

implementation against conventional techniques in terms of complexity, number of redundant bounds

generated and cost of eliminating redundant bounds. In Section 4.8 we present the previous work

related to multilevel tiling and, in Section 4.9, we summarize this chapter.

Finally, we want to note that, in this chapter, multilevel tiling implementation refers only to the

compilation phase of updating the transformed loop nest, that is, it refers to computing the loop

bounds in the final tiled code.

4.2 CONVENTIONAL TILING IMPLEMENTATION

In this section we briefly review how a conventional technique implements multilevel tiling and we

evaluate its complexity.

From now on, we assume that the loop bounds in the original code are max or min functions of

affine functions of the surrounding loops iteration variables. We will refer to each affine function as a

simple bound. We also assume that the loop nest to be tiled is fully permutable and perfectly nested.

Extensions to handle non-perfectly nested loops were explained in Chapter 2. Another important

assumption is that the bounds in the original code are exact. If they were not exact, it would be

necessary to apply the Fourier-Motzkin Elimination algorithm3 to obtain the exact bounds [16] [77].

4.2.1 Implementation

As shown in Chapter 2, conventional tiling techniques implement one level of tiling using two

well-known transformations: strip-mining and loop permutation [123] [129]. Strip-mining is used to

partition one dimension of the iteration space into strips and the loop permutation is used to establish

the order in which the iterations inside the tiles are traversed. To perform one level of tiling, it is

usually necessary to partition the iteration space in more than one dimension (multi-dimensional

tiling). Conventional techniques apply strip-mining and loop permutation repeatedly, as many times

as dimensions have to be partitioned4.

Figure 4.1 reviews how conventional tiling implementations work. We are tiling two dimensions

of the 3-dimensional iteration space (two-dimensional tiling) where BJJ and BIZ are the tile sizes in

each dimension. Conventional implementations perform both transformations (strip-mining and loop

permutation) as many times as dimensions have to be partitioned. Strip-mining decomposes a loop

3.By applying the Fourier-Motzkin Elimination algorithm to the original code, independently of whether a loop permutation is
performed or not, the bounds of the Minimum Convex Space described by the loop structure are obtained.
4.A previous loop permutation must be performed if the loop order of the original loop nest is not such that the outermost loop is
the loop to be strip-mined first.
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Original code
do i = ,1 do J = ...,..., 1

doj = 1 doK = 1

~ Initial Loop Permutation ~ '
loop body > loop body

enddo enddo
Strip-mining loop J I

i
do jj = ...,..., BJJ do JJ = BJJ

do J = max(..., jj), min(..., JJ+Bjj-1 ) do K = 1
do K = 1 do j = max(..., jj), min(..., JJ+Bjj-1)

do I = . . . , . . . , 1 Loop Permutation^ do I = ...,..., 1
loop body loop body

enddo enddo
Strip-mining loop K |

y Tiled code
do JJ = BJJ do JJ = , BJJ

do KK = . . . , . . . , BKK do KK = BKK

do K = max(..., KK) , min(..., KK+B^-I) do i = ...,..., 1
do J = max(..., JJ), min(..., jj+Bja-1) do J = max(..., JJ), min(..., JJ+Bjj-1)

do I = 1 doK = max(..., KK) , min(... ,KK+BKK-1)
loop body Final Loop Permutation

enddo enddo

Figure 4.1: Conventional implementation of one level of tiling. We show the order in which
strip-mining and loop permutation are applied to partition two dimensions of the 3-dimensional
iteration space (two-dimensional tiling). BJJ and BIX are the tile sizes in each dimension.

into two loops where the outer loop steps between tiles and the inner loop traverses the points within

a tile. After strip-mining, a loop permutation is performed to order the inner loops (the loops that

traverse the points within a tile) such that the next loop to be strip-mined becomes the outermost of

them. After strip-mining all desired loops, a final loop permutation is required to order the inner loops

as desired for the final code. In the final tiled code, the outer loops are the loops that step between tiles

(from now on, we will refer to them as tile-loops or TI-loops for short) and the inner loops are the loops

that traverse the points within the tiles (from now on, we will refer to them as element loops or

EL-loops5 for short). For further details refer to Chapter 2, Section 2.3.3.

The loop bounds after strip-mining are directly obtained by applying the formula of strip-mining

(see Fig. 4.5 on page 134). The loop bounds after a loop permutation can be obtained using the theory

of unimodular transformations [13][121], since the loops involved in the permutation are always loops

5.1n Chapter 3, we distinguished between the non-tiled loop and the element loops that traverse the iterations inside the
register tiles. In this chapter, however, we refer to the non-tiled loop as an EL-loop.
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that have steps equal to 1 and, therefore, they define a convex iteration space. To compute the exact

bounds, the Fourier-Motzkin Elimination algorithm is used when the loop permutation

unimodular matrix is applied [121] [129]. Finally, recall that it is not necessary to rewrite the loop

body because (1) the strip-mining transformation does not modify the loop body and (2) although the

loop permutation does, we use in the transformed code the same names for the loop iteration variables

as in the original code.

Multilevel tiling has been implemented by applying tiling level by level [28] [121], going from the

outermost (i.e., parallelism) to the innermost level (i.e., register level). As an example, in Fig. 4.1

another level of tiling can be performed by applying tiling again to loops I, J and K of the resulting

code.

4.2.2 Complexity

The most expensive steps of conventional implementations of tiling are the loop permutation

transformations or, more precisely, the steps needed to compute the exact bounds using the

Fourier-Motzkin Elimination algorithm (FM algorithm) [7] [16] [77]. To better clarify the context of this

section we first briefly review how the Fourier-Motzkin algorithm is applied to compute the exact

bounds and we also review its complexity. The FM algorithm is explained in Appendix A.

Fourier-Motzkin Elimination Algorithm

Let Ip and bd be the number of loops and simple bounds in a loop nest before applying a loop

permutation transformation, respectively. The FM algorithm is an algorithm that iterates lp-1 times6

and computes the exact loop bounds in the transformed code from innermost loop to outermost loop. In

each iteration of FM, two different steps are performed:

• In the first step, all simple bounds of the yet-to-be-processed loops are examined. All

simple bounds that are affine functions of the loop iteration variable being solved become

simple bounds of this loop.

• In the second step, each of the lower simple bounds of the iteration variable solved in

the first step is compared with each of the upper simple bounds. These comparisons

generate inequalities that might become new simple bounds of the yet-to-be-processed

loops. Note that in the second step of the FM algorithm, the number of simple bounds in

each iteration can grow quadratically in the worst case [129].

Let's now examine the complexity of the FM algorithm. In the worst case, the first loop iteration

variable to be solved is involved in the bd simple bounds of the loop nest. After the first step of FM, the

loop iteration variable can have bd/2 lower simple bounds and bd/2 upper simple bounds. Comparing

6.The bounds of the outermost loop are obtained directly after the FM algorithm has finished.
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each of the lower simple bounds with each of the upper simple bounds may give rise to (od/2)2 new

inequalities. If half of the (od/2)2 new inequalities were lower simple bounds of the next loop iteration

variable to be solved and the other half were upper simple bounds, comparing all of them would result

in (6ci2/8)2 inequalities. Therefore, since all bd simple bounds could potentially involve all Ip iteration

variables, the complexity of the FM algorithm is:

CP>, = O

Thus, the complexity of the FM algorithm depends doubly exponentially on the number of loops

involved in the permutation.

Complexity of Conventional Implementations of Multilevel Tiling

We now turn to the cost analysis of conventional implementations of multilevel tiling. Let n and q be

the number of loops and simple bounds in the original loop nest, respectively, and let m be the number

of loops in the code after multilevel tiling.

A conventional implementation of multilevel tiling executes (m-ri) times the FM algorithm on a

set of n loops (the n innermost loops). In the worst case, the number of simple bounds involved the first

time the FM algorithm is executed is q+2 (q simple bounds of the original code and 2 simple bounds

introduced by the previously applied strip-mining). Thus, after the loop permutation, the n innermost

EL-loops together can potentially have ql simple bounds, where:

9 I 2 - 2 2 -22 ) 2 2

The next execution of the FM algorithm will deal with q^ + 2 ~ q^ simple bounds. Note that each

time the FM algorithm is executed, the total number of simple bounds in the n innermost loops

together could increase, in the worst case, doubly exponentially. Therefore, the complexity of

conventional multilevel tiling techniques is:

Rounding off this expression to the complexity of the last execution of the FM algorithm, it can

be expressed by the following formula:

Note that the complexity of conventional multilevel tiling depends doubly exponentially not only

on the number of loops involved in the loop permutation, but also on the number of times the FM

algorithm is executed (number of TI-loops in the final code).
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4.3 SIMULTANEOUS MULTILEVEL TILING

In this section we will show how multilevel tiling can be implemented to deal with all levels

simultaneously. The idea behind our Simultaneous Multilevel Tiling algorithm (SMT) consists in

applying first strip-mining to all loops at all levels and, afterwards, performing once a single loop

permutation transformation to obtain the desired order of the loops.

After applying strip-mining to all loops at all levels, we will obtain a new loop nest that describes

a non-convex iteration space. Then, we want to apply a loop permutation transformation to this new

loop nest. Although there has been much work [45] [85] [87] [105] addressing the problem of rewriting

in a systematic way a loop nest according to a non-singular transformation7, we cannot make a direct

use of these non-singular transformation theories, because they always assume that the source

iteration space is a convex space. In our case, however, the source iteration space is non-convex. In

this section, we will describe a method to obtain the transformed iteration space when applying a loop

permutation transformation to the non-convex space obtained after applying strip-mining to all loops

at all levels.

This section is organized as follows: First, we present the framework where we develop our

technique. Second, we show how strip-mining is applied to all loops at all levels. Third, we will

describe the method needed to obtain the transformed iteration space when applying the loop

permutation transformation to the non-convex space. Fourth, we summarize all steps performed by

the SMT algorithm and, finally we give an example to illustrate the whole transformation process.

4.3.1 Framework

As we have already explained in Chapter 2, the set of iterations determined by the bounds of n nested

loops is a convex subset of Zn, and we will refer to it as BIS (Bounded Iteration Space):

B I S = {I = (Ir ...,!,

where I is a n-dimensional vector which represents any single iteration of the n-deep loop nest and L¿

(U¿ ) is the lower (upper) bound of loop l¿. The bounds of the loops are max or min functions of affine

functions of the surrounding loops iteration variables (i.e. they define a non-rectangular iteration

space).

The BIS can be specified in a matrix form [54] [77] as follows: A • I < ß, where each row of matrix

A and vector ß has the coefficients of the loop iteration variables and the independent term of each

lower or upper simple bound, respectively. The n elements of vector I are the loop iteration variables

(Ir ...,!„).

7. A transformation represented by a matrix T is non-singular if T has an inverse ( | T\ * 0).
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A transformation, represented by matrix T, maps each iteration I of BIS into one iteration J of

the Bounded Transformed Iteration Space (BTIS):

BTIS = {J = r- î | îe BIS}

The Minimum Convex Space (MCS) which contains all the points of the BTIS can be put in

matrix form, using the transformation matrix T and the matrix inequality which represents the

bounds of the BIS: , , . .
A • i < ß l A • r • j < ß
T-î = J J A - J < ß

The exact bounds of the MCS can be extracted from the matrix inequality A • j < ß, using the
Fourier-Motzkin algorithm [16] [77].

When T is unimodular, all the integer points of the BTIS have an integer antiimage in the BIS.

Therefore, the transformed loop nest must scan all the integer points of the BTIS. In this case, the

bounds of the MCS can be directly used to build the loop nest required to scan the BTIS.

However, when T is non-unimodular (its determinant is different from ±1 ) there are holes

(integer points without integer antiimage) in the BTIS and, in particular, in the boundaries of the

BTIS. In this case, to scan correctly the BTIS, all these holes must be skipped. In particular, the

bounds of the MCS obtained through the FM algorithm must be corrected to obtain the precise bounds

of the BTIS. As an example, consider the loop nest shown in Fig. 4.2a and its corresponding BIS
(Fig. 4.2b). After applying the non-unimodular transformation T (Fig. 4.2c) to BIS, we obtain the BTIS

shown in Fig. 4.2d.

The grey lines represent the bounds of the MCS and the continuous black lines that bound the

shadowed area are the precise bounds of BTIS. Finally, the black dots are the points of BTIS with

integer antiimage in BIS.

(a) Original loop nest
do I, = 0,4

do I2 = 0, 6
S(i1t I2)

enddo
enddo

(b) BIS (d) BTIS
(0,

* i
> '

r 5 :
* i

e ~m

t :

--¿.-•i-

: ;
• *

4
ti

(c) Non-unimodular
transformation

T = 2 1
1 2

m =

Figure 4.2: (a) Example loop nest, (b) Bounded Iteration Space (BIS) for this loop nest, (c) Non-unimodular
transformation T. (d) BTIS obtained after applying the non-unimodular transformation T to BIS. The black
dots represent the points in BTIS with integer antiimage in BIS.
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Fernández et al. [45] address the problem of correcting in a systematic way the bounds of the

MCS given by the FM algorithm, in order to produce the precise bounds of the BTIS. To characterize

the BTIS, they use the Hermite Normal Form H of the transformation matrix T [111]. Both H and T

generate the same lattice in Z". Since H is lower triangular, it permits an easy characterization of the

BTIS. The holes of the BTIS are skipped using steps greater than 1 in the loops. These steps are just

the elements on the diagonal of matrix H. And the precise bounds of the BTIS are obtained by

combining the bounds of the MCS obtained through the FM algorithm with some special non-linear

functions [44] [115] that involve the non-diagonal elements of H.

Let LT and Uf ( 1 < i < n ) be the bounds of the MCS of the BTIS, obtained by the FM algorithm,

along dimension J¿ and let A - - and A'- be the elements of H and H~ respectively.. Then, the

transformed code is:

do J2 =

gap2 = (h2í·h'n·I1)

• h22+gap2, U%,

n-l r

E h'r mod h

d°

loop body

enddo

n/hnn\ ' hnn + SaPn'
 Ul hnn

and the transformation of the loop body only requires I¿ ( 1 < i < n ) (the loop iteration variables in the

original loop nest) be replaced by the appropriate linear combination of J¿ ( 1 < i < n ) (the loop iteration

variables for the transformed loop nest); that is:

= T

Figure 4.3 shows the transformed code of the example of Fig. 4.2, the Hermite Normal Form H of

the transformation matrix T and its inverse H~ .
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(a) Hermite Normal form of T

[2 3J 3 [_2 i

(b) Transformed loop nest

do ̂ =0 ,14

gap2 = (2 • Jj) mod 3

do J9 = ( maxi2-J. -12, fi )-gapJ/3 • 3 +gap9,min{ 2 • j.,\—Ifi 1,3
Z | V V i | 2 K ' I ^ L 2 j ^

S( (2 - Jj-JgJ/S, (2-J2-J1)/3)

enddo

Figure 4.3: (a) Hermite Normal Form H (and its inverse IT1) of the
transformation matrix T used in Fig. 4.2. (b) Transformed loop nest.

Summarizing, the result of applying a non-unimodular transformation to a convex iteration

space is a non-convex space. To obtain the precise bounds of the non-convex transformed space two

different steps have to be performed. First, the bounds of the MCS of the transformed space are

computed using the Fourier-Motzkin algorithm and, second, these bounds are corrected using the

Hermite Normal Form (HNF) of the transformation matrix [111]. Figure 4.4 shows a diagram of the

steps performed when a non-unimodular transformation is applied.

In the next subsections, we will show how Simultaneous Multilevel Tiling can be performed

using the theory of non-unimodular transformations and we will give an example to illustrate it. As

already mentioned, Simultaneous Multilevel Tiling consists of applying first strip-mining to all loops

at all levels and, afterwards, performing the loop permutation transformation only once to obtain the

desired order of the loops. Let's see how both steps are carried out.

T (non-unimodular)
BIS .> BTIS

convex non-convex

HNF (D j

compute bounds convex correct bounds
(FM algorithm)

Figure 4.4: Steps performed when a non-unimodular transformation T
is applied. HNF(T) is the Hermite Normal Form of T.
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4.3.2 Strip-mining all Loops at all Levels

Strip-mining is a loop transformation that divides a set of consecutive points of the iteration space into

strips. It decomposes a loop into two loops where the outer loop steps between the strips and the inner

loop traverses the points within the strips. The strip-mining transformation [129] is defined by the

formula of Figure 4.5, where II is the TI-loop that steps between the strips, I is the EL-loop that

traverses the points within the strips, BXI is the strip size and oftzz e Z (O < oftzi < BXI) is an offset that

determines the origin of the first strip [129]. Using this formula, the tile boundaries are always

parallel to the iteration space axes.

dO II = I (L - Oftii) / BuJ * BU + Oft-TT, U, BTT
doi = L U strip-mining ^ n/ zu n u- n ,

doi = max(ii, L

Figure 4.5: Formula for strip-mining a loop.

To strip-mine one loop at several levels, strip-mining is applied repeatedly to the inner EL-loop

resulting from the previous round of strip-mining, going from the outermost level to the innermost

level. In Fig. 4.5 strip-mining would be applied again to loop I in the resulting code. Note that

strip-mining is always applied to loops with a step equal to one. Finally, recall that the strip-mining

transformation does not modify the loop body of a loop nest.

As an example, Figure 4.6 shows how strip-mining is applied twice to loop I; it shows the code of

the nested loops and the points traversed by loops III, II and I after strip-mining at each level. The

points on each line indicate the values of the loop index variables. The strip sizes at each level are

BIIZ=11 and BIZ=4 and, for simplicity, we assume null offsets (oftIII=oftII=0). The shadowed

rectangles indicate the values of a loop index variable for fixed values of outer loop indices. Note that

for a fixed value of loop indices III and II, loop I always iterates inside the tiles determined by them,

that is III < I < III+BZII -1 and II < I < II+BZZ -1 always hold. However, for a fixed value of III,

loop II can iterate over some points outside the tile determined by III. In particular, III < II does

not hold, if Bril is not multiple of BIZ. Notice also that loop index II can iterate over the same point

for different values of III.

4.3.3 Loop Permutation

The iteration space defined by the original loop nest is a convex subset of Zn, that we call the Bounded

Iteration Space (BIS). After applying strip-mining to all loops at all levels, we obtain a new loop nest

that describes a non-convex iteration space. We will refer to this non-convex iteration space as NCBIS

(Non-Convex Bounded Iteration Space). At this point, we want to apply to NCBIS a unimodular loop

permutation transformation (T ) [121] to obtain the Bounded Transformed Iteration Space (BTIS).

The BTIS is the desired multilevel tiled iteration space (see Fig. 4.7).
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do I = L, U loop i

strip-mining loop I
with strip size BIIT

= LL/BIIIJ*BIII,U,BIII

do i = max(m, L), min(iii+BIIi:-1, U)

strip-mining loop I
with strip size BIT

LUBTTTJ *

loop

loop x

max(L, in)

doill=LL/BIIIJ*BIII,U,BIII

do II = |_(max(m, L) / BZIJ * BZI, min(lll+BIir1, U), BTI

do i = max(ii, in, L), miniii+Bn-l, m+Bm-1, U)

U)

LL/BTIIJ

loop x

max( L, II,in)

Figure 4.6: How strip-mining is applied to loop I at two levels. The strip sizes at the
outermost and innermost level are 8!!!=!! and Bl:r=4, respectively. We assume a null offset.
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loop
permutation

PBIS
convex

BIS
convex

strip-mining all loops
at all levels

{H-\oft}
BTIS

non-convex

{H,oft}

Figure 4.7: Diagram of the Simultaneous Multilevel Tiling transformation process.

There has been much work [45] [85] [87] [105] addressing the problem of rewriting in a systematic

way a loop nest according to a non-singular transformation. All these works assume that the source

iteration space, to which the transformation is applied, is a convex space. In our case, however, the

source iteration space (NCBIS) is non-convex and hence, the theory of non-singular transformations is

not directly applicable. The NCBIS is non-convex because some of the loops (the TI-loops) have

non-unit steps, and therefore, there are holes in the iteration space. In this section, we will describe a

method to obtain the transformed iteration space (BTIS) when applying a unimodular loop

permutation transformation to the non-convex space NCBIS.

The development of our work is based on the characterizations of the space NCBIS and of a

general space obtained after applying a non-unimodular transformation to a convex space [45]. The

expressions of the bounds of the loops that traverse both spaces (NCBIS and a general transformed

space) are similar. This fact allows us to deduce a transformation {H , oft} that transforms NCBIS

to a convex space. We will refer to this convex iteration space as PBIS (Previous Bounded Iteration

Space). In fact, H~ is a semi-normalization transformation [129] that makes all loops in PBIS have a

step equal to one and oft is an offset. Next, the multilevel tiled iteration space BTIS can be obtained

by applying a non-unimodular transformation T = T • [H, oft} to PBIS. This transformation

performs the loop permutation and undoes the previous semi-normalization applied to NCBIS.

Figure 4.7 shows a diagram of the Simultaneous Multilevel Tiling (SMT) transformation process.

In the remainder of this section we will show how the loop bounds of the loop nest that traverses

BTIS can be computed in a systematic way and, at the end of this section, we will show that the loop

body does not need to be rewritten. For simplicity, from now on, we will use the abbreviations NCBIS,

PBIS and BTIS to refer, indistinctly, to the iteration space or to the loop nest that traverses the

iteration space.
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Loop Bounds Computation

We start by giving some definitions to characterize the spaces NCBIS and PBIS and we present a

lemma that shows how NCBIS can be obtained from the convex space PBIS. Then, we give two

corollaries showing how the bounds of the Minimum Convex Space of NCBIS can be computed.

Finally, we enounce a theorem that allows us to compute the bounds of BTIS in a systematic way.

In this section, we use a slightly different notation with respect to previous sections. Unless it

were necessary for readability, from now on we will not use any more the arrows above the vectors

representing loop iteration variables as we have been doing so far.

Definition 1

Let H and oft be an mxm diagonal matrix and a /n-dimensional column vector, respectively:

H =

0

0

oft,

oft.

where oft, B, e Z and O < oft, < B, ( l < k < m ).

Definition 2

The m-deep loop nest obtained after the strip-mining phase defines the m-dimensional non-convex

space NCBIS and a loop INCBIS in NCBIS can be written, in the general case, into the following

form:

do _ oft, /B¿ J - B, + oft,, (1)

where

• Bk is the kth diagonal element of a matrix H,

• oft¿ is the kth element of a vector oft, and

. LNCBIS and \jNCBIS have the forms max(lk QJk vlk 2,...) and

min (uk 0, uk j, uk 2, ...) , respectively, and lk-, uk • are linear functions of the

loops iteration variables, that can be expressed as follows:

7 _ / í -rNCBIS -rNCBIs] _ / frNCBIS
k,j - 'k, j\ -4 > · · " I m J - i k, j t-1

rNCBIS
J

NCBIS\ = C'(I
NCBIS\

, where INCBIS
TNCBISLl

TNCBIS
m

By construction, a loop lk with step equal to one (Bk = 1 ) always has a null offset (oft¿ = 0).
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Definition 3

A loop ifrBIS of the m-deep loop nest that defines the convex iteration space PBIS can be written, in

the general case, into the following form:

do IÍBIÍ} = LïBlt>-ott, /B, Ufß / 0-oft t /B. (2)K LI « kJ A J' LI « «y «J

where

• B¿ is the £th diagonal element of a matrix H,

• oft¿ is the Âth element of a vector oft, and

, \_PBIS ajjj \jPBIS have the forms maxfikto,lk, i^k,2- • • • ) "and

k O'ü-k v ü k 2' •••) ' respectively, and

>s/S
, PBIS

, where I =
jPBIS

and /. ; and f, • are the same linear functions as in NCBIS.
«>J K,J

From these definitions one important lemma follows.

Lemma 1

The non-convex iteration space NCBIS (1) can be obtained from the convex iteration space PBIS (2)

using the following transformation:

NCBIS „ PBIS ,.
I = H • I + oft

Proof
p pro PRT^ PR 7^

Let A - I < ß be the bounds of PBIS specified in matrix form. By applying the
PBIS —1 ítransformation (I = H • I I - oft ), we obtain the following system of linear inequalities:

APBIS

Let's now add two new inequalities to the system that can be assimilated to a new (outermost)

loop that only performs one iteration and its value is always one:
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Since IQ is equal to 1, the new extended system can be written into the following form:

-1 °
rA

PBIS.H-l.oft APBIS.H-\

*Q
NCBIS

<

' ßo "

-ßo
RPBIS

and this system can also be rewritten as follows:

1 0
1

0 A I

.PBIS
AE

i 0
_-H~l-oft H~l]

»ï

NCBIS

NCBIS
TE

' ß o "
RPO

ßPBIS

ßPBIS

(3)

Let's refer as AE • HE • IE < &FBIS to the extended system. The matrix transformation

HE is a non-iniimodular lower triangular matrix, therefore HNFCH^ )=-0£ . Then, using the method

proposed in [45] (see Section 4.3.1) to compute the exact bounds of NCBIS, we have that:

(a) The bounds of the MCS of NCBIS are computed by solving the system (3). The two first

inequalities give us:

and the remainder inequalities can be written as follows:

NCBIS

-1 NCBIS.PBIS
• \-H Ì* (4)

From Definition 3 we have that thej'th (lower or upper) bound of loop
, * PBIS PBIS^,0PBIS, ., ,. ,, . csystem A - I < p has the following form:

• if it is a lower bound8: /J . (H • IPBIS + oft) - Bk • I™
18 - oftA - Bk + 1 < 0

• if it is an upper bound: -/£ j (H • IPBIS + oft) + Bk • IPBIS + oft¿ < 0

represented in the

S.The floor function in the lower bound must be converted in a ceiling function in the following way: Lo/6 J = \(a-b+l)/b 1
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Moreover, the proposed transformation I = H • I I

rewritten in the extended space as follows, because IQ = ßQ = 1 :

-oft ) of Lemma 1 can be

PBIS „-1 (
=H - Iv

NCB1S ... } , , . . PBIS l í NCBIS ,.
-o/*-I0 Lthatis, I , = — - l i , - o f t . - l

j v
. .. „ , _ .
(\<k<m)

Then, it can be deduced after some algebraic manipulations, that they'th (lower or upper) bound

along dimension XNCBIS ((l<k<m) ) of the system (4) has the following form:

_NCBIS _ 1 í _NCBIS 1 „ , 7 „
• if it is a lower bound: I,

..... , , NCBIS
• if it is an upper bound: I¿ :

NCBIS}
= U k,j

Therefore, the solution to the system (3) is:

i MCS _ ijMCS _ iLo - uo - i

i MCS _ i NCBIS o , iL·k * *-k ~ °k+ L

\jMCS _ \jNCBIS
k k

where Lj^cs and U^cs (0 < k < m ) are the lower and upper bounds of the MCS of NCBIS along

dimension xNCBIS ^ respectively.

(b) The HNF of the extended matrix HE is used to correct the bounds of the MCS of NCBIS,

HNF(HE) =HE =

where:

1
oft

o " -1
1

oft
o"
H

Then, the exact loop bounds in NCBIS are:

Io = LI

L^CB7S_ BA + 1- ( (oftA -10) mod Bk)
do

Now, loop I Q can be eliminated and the loop nest can be rewritten into the following form:

do j-NCBIS =
LATCB/S_oft¿

+ Oftt>U^B/SB. (l<k<m)

bearing in mind that IQ = 1, oft^ < B¿ (therefore, (oft¿ • I0) mod B^ = oft¿ ) and r a ~ ò + 1j = I g I •

This is the general form of a loop in NCBIS (Definition 2). •
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Let's now see the two corollaries that show how the bounds of the MCS of NCBIS can be

computed.

Corollary 1

The bounds of the Minimum Convex Space (MCS) of the m -dimensional non-convex space NCBIS can

be obtained from the following system of inequalities:

NCBIS NCBIS < „NCBIS

, .NCBIS APBIS „-1 , „NCBIS aPBIS .PBIS „-1 ,,where A = A -H and ß = ß +A -H - o f t .

Proof

From Lemma 1 we know that the following system represents the MCS of NCBIS:

•nPBIS

Substituting IQ = 1 and rewriting the expression we obtain:

APBIS „-1 NCBIS ^ „pcre .PBIS „-1 fi .NCBIS NCBIS ^, „NCBIS
A • H • I < ß^*"0 +A -H - o f t =* A - I < ß

Corollary 2

The lower and upper bounds of the MCS of NCBIS along dimension i^CBIS ( [_AfCS ^^ \jMCS >

respectively) can be directly obtained from the loop bounds of NCBIS (Definition 2) as follows:

LMCS = LNCBIS_B +1
k k k (l<k<m)

\jMCS _ \jNCBIS ^ '

Proof

See proof of Lemma 1. •

Until now, we have proven that NCBIS can be obtained from the convex iteration space PBIS by

applying a particular transformation and we have shown how the bounds of the MCS of NCBIS can be

directly obtained from the loop bounds of NCBIS. Now we enounce a theorem that allows us to

compute the bounds of BTIS in a systematic way.
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Theorem 1

Let BTIS be the transformed iteration space obtained after applying a unimodular loop permutation

transformation T to the m-dimensional space NCBIS. The m-deep loop nest that traverses BTIS has

the following form:

do If 7YS = LBTIS _ of tP oftP

where

and U^riS (1 < k < m ) are obtained by solving the following system using the

Fourier-Motzkin algorithm:

)Where

• oftf is the'Ath elements of a vector oft = T • oft,

• and Bf is the kth diagonal element of a matrix a = T • H • I TP I .

r BTIS

Proof

From Lemma 1 we have that NCBIS can be obtained from the convex iteration space PBIS
.FBI S PBIS^0PBIS ,, , . ,. NCBIS „ PBIS fj_A - I < p using the transformation I = H • I + oft.

Let's now extend PBIS in one dimension ( I Q ) that represents a new (outermost) loop that only

performs one iteration and its value is always one ( ß0 = 1 ). The new extended system can be written

in matrix form into the following manner:

1 0
-1
.0 APBIS \

Io
PBIS

-ï J

f "1

<

" Po "

-Po
ßPBIS

.PBIS PBIS

As shown in proof of Lemma 1, the transformation matrix that transforms the extended PBIS

into the extended NCBIS is:

1 0
oft H
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Then, the matrix transformation that transforms the extended PBIS into an extended BTIS is
BTIS = TP .Ft.. -rPBIS WV,PT.P.= TP-HE-IPBIS, where:

\ o
0 TP

By applying this transformation

APBIS

i O
oft H

, BTIS, and IE =
jBTIS

to the extended PBIS the following system is obtained:

-l. ( Tp}~1. jBTIS < p.PBIS (6)E* I •* E» í -*-c* — Mr* v»-1/fi, ^ &) A --¿

To compute the exact bounds of the extended BTIS, we use the method proposed in [45]: first the

bounds of the MCS are computed and, second, the bounds are corrected using the Hennite Normal

Form of TE-H£.

(a) The bounds of the MCS of the extended BTIS are computed by solving system (6). The two

first inequalities give us:

and the remainder inequalities can be written as follows:

.PBIS
•[-H^-oft (Tp-H)~\

"•o
BTIS

To rewrite this expression in terms of NCBIS, we use Corollary 1. From Corollary 1 we have that
APBIS .NCBIS „ , „PB/S ..NCBIS .PBIS rr-l , . . , , . u ... .. . ,„,. ,A = A -H and p = p -A -H • oft, therefore, substituting in (7) we have

that the bounds of the MCS of BTIS are obtained from the following system using the Fourier-Motzkin

algorithm:

, NCBIS NCBIS

(b) The HNF of T£ • H- is used to correct the bounds of the MCS of the BTIS. Since H~ is a[E'"E
lower triangular matrix, HNF T% • HE = TP

S·HE· TJ, , that is:1

HN.'F(TE.H

\ o "
0 TP

E} =Ej

. f i Ol
LO/'Í F

i 0
pftP HP_

"i 0

o (V)'1
i 0

f -oft TP-H-(TP)'\

, where oftP = T^-o/í andí/ = ^-/Í-ÍT^J"1
\ X

, then
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Then, the exact loop bounds in BTIS are:

do I0 = 1,1

do ifTIS =
B

• Bf + ( ( of tf -1J mod B? l UF/S, Bf

where Lfr/s and Ufns (l<k <m ) are the bounds of the MCS of BTIS along dimension if775,
P P P D

oft¿ is the küi element of vector oft and B¿ is the kth diagonal element of Hp.

Now, loop I0 can be eliminated and the loop nest can be rewritten into the following form,

do if TIS =

B
(\<k<m)

P P í P } P P
bearing in mind that I0 = 1 and oft¿ < B¿ (therefore, I oft¿ • I0 I mod Bk = oft^ ).

Rewriting the Loop Body

The loop body of the original iteration space (BIS) does not need to be rewritten after the

Simultaneous Multilevel Tiling transformation because (1) the strip-mining phase does not modify the

loop body and (2) although the loop permutation phase does, we use in the transformed code (BTIS)

the same names for the loop iteration variables as in the strip-mined code (NCBIS), thus avoiding a

rewrite of the loop body.
3U-/"*T>rc

Let I and I

transformation of the loop body after applying the loop permutation transformation

be the loop iteration variables of NCBIS and BTIS, respectively. The

^ to NCBIS,

only requires I¿ ( 1 < k < m ) be replaced by the appropriate linear combination of Ik

(l<k<m); that is:

NCBIS
• "

j B TIS

BTIS

Since ̂  is the identity matrix with rows permuted, each row of ̂  has one unit element and

zeros elsewhere. Thus, we can name the loop iteration variables in BTIS as in NCBIS according to the
B 71S ««P NCBIS

permutation, that is I = T • I . This way, the loop body does not need to be modified.
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4.3.4 SMT Summary

Summarizing the previous sections, in order to transform a n-deep loop nest (BIS) into a m-deep

multilevel tiled code (BTIS), the following steps have to be performed:

Step 1: Apply strip-mining to all desired loops in BIS at all desired levels, obtaining a

m-deep loop nest (NCBIS).

Step 2: Compute matrix H, vector oft and the bounds of the MCS of NCBIS directly from

the bounds of NCBIS. Recall from Corollary 2 that L^cs and UJJ*cs ( 1 < k < m ) (the

lower and upper bounds of the MCS along dimension i^cBlS ^ respectively) can be

directly obtained from the bounds of NCBIS as follows:

II MCS _ n NCBIS
k k

on. TIÍ/-.O rvrn-DTC. u -^ ¿ - f .NCBIS NCBIS ^ „NCBISThe MCS of NCBIS can be written m matrix form as A - I <ß

Step 3: Compute the bounds of the MCS of the BTIS. They are extracted from the matrix

inequality A • l T \ • 1 < ßNCBIS t using the Fourier-Motzkin algorithm

(Theorem 1). T is the unimodular loop permutation transformation.

Step 4: Correct the bounds of the MCS of the BTIS using the vector oftP

(oftP = T P - o f t ) and the matrix if (if = TP·íí·[rPJ" ). At this point we have

obtained the exact bounds of the BTIS.

4.3.5 SMT Example

To exemplify the transformation process we will use the code shown in Fig. 4.8a and we assume that

tiling has to be performed at two levels. Suppose that, at the innermost level, dimensions I and J have

to be tiled and, at the outermost level, only dimension I has to be tiled. After strip-mining all loops at

all levels, using all offsets equal to 1, we obtain the code shown in Fig. 4.8b (the NCBIS). The length of

the loop index identifiers (III-II-I) refers to the level of the tiles that they are traversing. Suppose

that the desired loop order in the transformed code is III-JJ-II-J-I, from outermost to innermost.

Figures 4.8c to 4,8h show the loop permutation process. First, we compute matrix H, vector oft

(Fig. 4.8c) and the bounds of the MCS of NCBIS (Fig. 4.8d) directly from the bounds of the NCBIS

(Fig. 4.8b). Second, we compute the bounds of the MCS of BTIS (Fig. 4.8f), using the FM algorithm.
J\T/"^ D 7 O / P l ~ l D T* J Ç

These bounds are extracted from the matrix inequality A • I T \ • I < ß^CB/S ; where

ANCBIS ^ ^ ß N C B i s ^ ̂  bounds of the Mcg of NCBIS (Fig. 4-8d) and j is the

unimodular loop permutation transformation (Fig. 4.8e). Finally, we correct the bounds of the MCS of

BTIS (Fig. 4.8h) as explained in Section 4.3.1 (page 132), using if and off (Fig. 4.8g).
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Step 1; Strip-mining phase

(a) BIS

do 1 = 1, N
do j= i, N

loop body
enddo

strip-mining phase

(b) NCBIS

do in =1, N, BIIZ

do II = |_max(in-1, 0)/B IZJ* BIZ+1, min(un-BIZI-1, N), Bzz

do I = max(n, III, 1), min(ii+BZI-1, iii+BIIZ-1, N)

do JJ = I I-1/ BTJJ * Bjj+1, N, BJJL OvJJ UU • ' • ' JJ

do j = max(i, JJ), min(N, Jj+Bjj-1)

loop body

enddo

; Compute H, oft and MCS of NCBIS

(c) Matrix H and vector oft

H =

BIII
»x, 0

1

0 B„
1

oft =

1J.

1
0
1
0

Step 3: Compute MCS of BTIS using Tp

(e) Matrix Ie

10000
00010
01000
00001
00100

(d) MCS of NCBIS

max(iii-Biri-1 , 2-Bjj) < il < min(lli+BIi:r-1 , N)

max(ii, in, 1) < i < mirXii+Bjj-l, iin-B^j-1, N)

l-Bjj+1 < JJ < N

j) < j< min(N, Jj+Bjj-1)

(f) MCS of BTIS

(2-B I IX)< ni < N

max(iil, 1)-Bjj+1 < JJ < N

max(ni, 1)-BZI+1 < li Smin(iin-BIIZ-1,

max(in, il, JJ.1) < j <min(jj+Bjj-1,N)

max(lli, n,1)< I <min(lll+B I I I-1, Ii+Bir1, Jj+Bjj-1, j, N)

Step 4; Correct the bounds using off and matrix Hp

(g) Matrix Hp and vector off

P
IT=

0

0

do ill=1, N,B I I Z

do JJ = |_(max(lll-1, O)/ BjjJ-Bjj+1, N, Baj

do II = l_max(in-1,0)/BIIJ*BII+1,

miniiii+Bjjj-l.jj-i-Bjj-I.N), BIZ

do j = max(lll, II, JJ, 1), min(jj+Bjj-1, N)

do i = max(in, n, 1),

min(lll+BIi:i:-1, Il+Bir1, Jj+Bjj-1, j, N)

loop body
enddo

Figure 4.8: (a) Example of loop nest (BIS), (b) Loop nest after applying strip-mining to loop I at two
levels and to J at one level (NCBIS). (c) Matrix H and vector oft, obtained from NCBIS. (d) Minimum
Convex Space of NCBIS, directly obtained from (b). (e) Loop permutation matrix T^ used in the example.
(f) Minimum Convex Space of BTIS, obtained using the FM algorithm, (g) Matrix Hp and vector oft1" used
to correct the bounds of the MCS of BTIS. (h) Exact loop bounds in the BTIS.



Simultaneous Multilevel Tiling 147

4.4 EFFICIENT IMPLEMENTATION OF SMT

In the previous section we have shown how multilevel tiling can be implemented to deal with all levels

simultaneously. Of all the steps required to implement our multilevel tiling technique, the most

expensive one is the loop permutation transformation (step 3) or, more precisely, the step that

computes the bounds of the MCS of the BTIS using the Fourier-Motzkin algorithm. Recall from

Section 4.2.2 that the complexity of the FM algorithm depends doubly exponentially on the number of

loops involved in the permutation.

In this section we propose an efficient implementation of SMT that allows us to demonstrate

(later in Section 4.5) that the whole SMT process has a much lower complexity than traditional

techniques. The idea behind our SMT implementation consists in reducing the number of simple

bounds9 examined in each iteration of the FM algorithm by representing with a single loop a set of

loops that are related by the strip-mining transformation. Moreover, besides having a much lower

complexity, our implementation also generates fewer redundant bounds. We will show this fact later

in Section 4.6.

The remainder of this section is organized as follows: First, we present a theorem that holds in

the SMT context and allows us to establish the complexity of the SMT implementation. Second, we

show how the number of simple bounds examined in each iteration of the FM can be reduced. Third,

we summarize the steps of the efficient implementation of SMT and give some implementation details

and, finally, we present the SMT algorithm and illustrate how it works with an example.

4.4.1 Computing the Bounds of TI-loops

As stated in Section 4.2.2, the Fourier-Motzkin algorithm computes the exact loop bounds in the

transformed space from innermost to outermost. Each iteration of FM performs two steps. In the

second step, each of the lower simple bounds of the loop being solved is compared with each of the

upper simple bounds. These comparisons generate inequalities that might become new simple bounds

of the yet-to-be-processed loops and, in the worst case, the number of new simple bounds added grows

quadratically in each iteration [129].

In a multilevel tiled code, the inner loops are always the loops that traverse the points within the

tiles (the EL-loops) and the outer loops are the loops that step between tiles (the TI-loops). Thus, in

our SMT algorithm, the bounds of the EL-loops are always computed before the bounds of the

TI-loops. The following theorem holds when computing the loop bounds in the transformed space.

O.Recall that the loop bounds are max or min compositions of affine functions of the surrounding loop iteration variables and
that we refer to each affine function as a simple bound.
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Theorem 2

In SMT, the second step of the FM algorithm does not need to be performed when the loop being solved

is a TI-loop.

Proof

In Appendix D, we demonstrate that, when computing the bounds of a TI-loop, all new simple bounds

generated by the second step of the FM algorithm are redundant. Therefore, the second step of the FM

algorithm does not need to be performed when the loop being solved is a TI-loop. •

This theorem is very important because it allows us to demonstrate that the number of simple

bounds does not increase quadratically when computing the bounds of TI-loops.

4.4.2 Examining fewer Simple Bounds

To compute the bounds of a certain loop, the FM algorithm examines, besides its own simple bounds,

the simple bounds of the loops that are between its original position (before moving) and its final

position (after moving). We note that it is not necessary to examine the bounds of other outer loops

because they cannot have simple bounds that are affine functions of the loop being solved. In the

example of Fig. 4.8, to compute the bounds of the innermost loop (loop I) in Fig. 4.8f, the FM algorithm

examines the simple bounds of loops I, JJ and J in Fig. 4.8d. Note that the examined loops can

be either contiguous TI-loops associated to the same EL-loop or contiguous TI -loops followed by their

associated EL-loop.

In our implementation of SMT, we represent with a single loop (called C-loop; Cluster loop) all

the contiguous TI-loops associated to the same EL-loop that must be examined by the FM algorithm.

A C-loop traverses the same iteration space as the loops it is representing but uses a fewer number of

simple bounds. Then, the idea of our implementation consists in stripping10 the TI and EL-loops of the

final code from their associated C-loops as late as possible, that is, just before their bounds have to be

computed. Initially, all the loops in the original code are C-loops.

For example, assume that after strip-mining all loops of a loop nest I-J-K at all desired levels, we

obtain the loop nest III-I-JJ-J-KKK-KK-K. The length of the loop index identifiers (KKK-KK-K) refers to

the level of the tiles that they are traversing. Suppose that we want loop I to be in the innermost

position in the final code. When computing its new bounds, the FM algorithm needs to examine all

simple bounds of loops I, JJ, J, KKK, KK and K. By contrast, in the efficient implementation, we start

with the loops in the original code I-J-K. These three loops are C-loops because they represent

contiguous associated TI and EL-loops of the final code. Just before computing the bounds of EL-loop I

lO.In this context, "to strip" means extracting the innermost TI (or ED-loop from a C-loop.
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in the final code, it is stripped from its associated C-loop, obtaining the loops ll-I-J-K (loop II is now

the new C-loop). Now, to compute the bounds of EL-loop I, the FM algorithm only examines the

bounds of the loops I, j and K.

To implement this "stripping" process, the efficient SMT algorithm has to be able to strip from a

C-loop the EL-loop and its associated TI-loops, one by one, from the innermost to the outermost level.

Note that this order is just the reverse order of what strip-mining does. Thus, we need a backward

transformation of strip-mining, that we will refer to as strip-clustering.

Strip-clustering

We define strip-clustering as a loop transformation that clusters a set of strips together. It decomposes

a C-loop into two loops where the outer loop steps between clusters of inner strips and the inner loop

steps between the initial points of the inner strips. The outer loop is a new C-loop and the inner loop is

the TI or EL-loop being stripped. In strip-clustering, the boundaries of the tiles are parallel to the

iteration space axes as in the strip-mining transformation.

The strip-clustering transformation applied to a C-loop with a step equal to one is defined by the

expressions shown in Fig. 4.9, where II is the new C-loop, I is the EL-loop being stripped, Bn is the

strip size of the new C-loop and oftjj eZ (0 < oftzi < Bn) is an offset that determines the origin of the

first strip. Note that these expressions are exactly the same expressions as used in strip-mining.

. . , . . do 11= I (L-ott I I)/B I I j*B I I + oftII, U, BZIdo T - 1 U strip-clustering L íí 11-J il Xi •Li

^ doi = max(n, L

Figure 4.9: Formula for strip-clustering a C-loop with a step equal to one.

The strip-clustering transformation applied to a C-loop with a step different from one is defined

by the expressions in Fig. 4.10, where III is the new C-loop, II is the TI-loop being stripped, Biri is

the strip size of the new C-loop, BI:r is the strip size of the TI-loop (BIII»BII) and oftir, oftlix eZ (0 <

oftzl < BZI, 0 < oftjjj < BIIX) are the offsets of each strip.

do II = [(L - oftu) / BuJ * Bn + oftllf U, BZI

do i = max(n, L), min{ii+Bi:i:-1, U)

Strip-clustering loop II

do in = [(L - oftITI) / BiriJ * BZII + oftlllf U, BIXI

do II =L(max(m, L) - oft I I) /B I IJ* Bn + oftiz, min(U, ni+Bm-1), Btl

do I = max(lll, II, L), mirXlii+Bm-l, li+Bjj-1, U)

Figure 4.10: Formula for strip-clustering a C-loop with a step different from one.
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Two different phases can be distinguished when strip-clustering is applied to a C-loop with a

step different from one:

• Creating phase: This phase consists in creating the new C-loop and the TI-loop being

stripped. The bounds of the C and TI-loops are computed directly using the expressions of

Fig. 4.10.

• Broadcasting phase: This phase consists in modifying the simple bounds of all

earlier stripped TI and EL-loops (generated by strip-clusterings applied previously). In

the general case, the TI-loop II being stripped (see Fig. 4.10) can iterate over some points

outside the tiles determined by the new C-loop III (that is, III < II and

II+Bjj -1 < lll+Bjn-1 does not hold in the general case). Therefore, two new simple

bounds (the lower simple bound III and the upper simple bound III + BZII -1 ) have to be

added to the bounds of all previous stripped TI and EL-loops (loop I in Fig. 4.10). Note

that adding these simple bounds is equivalent to substituting iteration variable II by

max(lll,il) in the lower bound and by mindl+Bjj-l, III+BII::-1) -BIZ+1 in the

upper bound of all previous stripped TI and EL-loops.

Note also that when strip-clustering is applied to a C-loop with a step equal to one (Fig. 4.9) only

the creating phase is performed since there are no inner TI or EL-loops previously stripped.

Figure 4.11 shows graphically how the bounds of previously stripped TI and EL-loops have to be

modified in the broadcasting phase. Figure 4. lla shows how the iteration space is traversed before

applying the strip-clustering transformation to a C-loop II with a step different from one and

Fig. 4. lib shows the iteration space after applying the transformation. The points on each line

indicate the values of the loop index variable and the shadowed rectangles indicate the values of a loop

index variable for fixed values of outer loop indices. The strip sizes at each level are BIZI=17 and

Bri=5 and, for simplicity, we assume null offsets (oftIII=oftII=0).

Computing the Minimum Convex Space after Strip-Clustering

Finally, we want to clarify that the FM algorithm is executed using the bounds of the MCS of the

NCBIS that are directly obtained from the NCBIS. Then, the new bounds obtained after the execution
P

of FM are the bounds of the MCS of the BTIS, that must be corrected using the vector oft and the

matrix n to obtain the exact bounds of the BTIS.

Recall from Definition 2 (Section 4.3.3) that a loop i^CBlS in NCBIS can be written, in the

general case, into the following form:

do ¡NCBI8 = LNCBIS _ oft
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max( L, II, in) min(m+BIII-1,

Figure 4.11: (a) Iteration space before strip-clustering a C-loop II with a step different from one.
(b) Iteration space after strip-clustering a C-loop II with a step different from one.

and recall from Corollary 2 that the bounds of the MCS of NCBIS along dimension x^CBIS can be

directly obtained from the bounds of NCBIS as follows:

(jMCS - (jNCBIS
K K

Therefore, in our implementation of SMT, we will directly work with the bounds of the MCS of

the NCBIS. This means that when we apply strip-clustering to a loop, we do not directly use the

bounds obtained using the expressions in Figures 4.9 and 4.10. Instead, we use the bounds of the

MCS.
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4.4.3 Steps of the Efficient SMT Implementation

Our implementation of SMT will generate the EL and TI loops of the final multilevel tiled code, one by

one, from the innermost to the outermost one, by integrating the strip-clustering transformation with

the loop bounds computation.

Firstly, the loops of the original code are the initial C-loops. In each iteration, the SMT algorithm

performs two different actions:

• First, it applies the strip-clustering transformation to a C-loop, generating the new

C-loop and the TI or EL-loop whose bounds are going to be computed.

• Second, the exact bounds of this just stripped TI or EL-loop are computed performing

one iteration of the FM algorithm. If the just stripped loop is an EL-loop both steps of the

FM algorithm are performed and if it is a TI-loop, only the first step is performed

(Theorem 2).

As an example, suppose that we have a 3-deep loop nest (I-J-K) and we want to obtain the

multilevel tiled code (KKK-lll-JJ-ll-K-j-l). Figure 4.12 shows the order in which strip-clustering and

the computation of the bounds are performed by our implementation of SMT. The loop list written in

the rows labelled "strip-clustering" indicates which C-loop (in bold) and which TI or EL-loop (in

bold+oblique) appear after strip-clustering. In rows labelled "compute bounds", we indicate that the TI

or EL-loop just stripped is moved to the innermost position and that its bounds are being solved

performing one iteration of FM.

original code multilevel tiled code

I - J - K —

Simultaneous
Multilevel

Tiling

> KKK - III - JJ - II - K - J - 1 loops to be dealt with
-^

— 1>

J. • 1 1. * 1 — Isstnp-ciustenng loop I \?

d. * 1 ¿ ' 1 -r Is- •»• -rstnp-ciustenng loop u \s 11

l

>ii-i

II- J

JJ- J

JJ-K

strip-clustering loop K >li- J J -KKK-K

compute bounds of K > 1 1 - JJ - KKK K

strip-clustering loop II —t> in - II - JJ - KKK K -

compute bounds of 1 1 — > 1 1 1 - J J - KKK

compute bounds of J J — î> III - KKK J J

compute bounds of III — £> KKK -fill J J -

II K-

II - K -

I I - K -

- J

-J

- K

• K

J

J

J

J

J

J-

J-

-K

-K

I

I

loops whose bounds
are already computed

J Original code

1st iteration of SMT

2nd iteration1 J ~

- I

- I

I

I

3rd iteration

** iteration

I ] 5th iteration

l ] 6th iteration

r—i loop whose bounds
I—> are being computed

Figure 4.12: Example of how the implementation of SMT works.
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In the three first iterations of SMT only the creating phase of strip-clustering is performed,

because the C-loops have steps equal to one. In the fourth iteration, strip-clustering is applied to a

C-loop that has a step different from one (loop II), and therefore, both the creating and the

broadcasting phases are performed.

In the broadcasting phase we have to take into account that there could be other loops between

the just stripped TI-loop (II) and its associated EL-loop (I). These loops can have simple bounds that

are affine functions of the just stripped TI-loop and, therefore, their bounds must also be modified in

the broadcasting phase. In Fig. 4.12, 4th iteration of SMT, the bounds of loops JJ, KKK, K, J and I must

be modified.

Theorem 3

Let III and II be the loop index variables of a C-loop and the just stripped TI-loop and let BXII and

BIZ be the strip sizes of III and II, respectively. The bounds of the loops between the just stripped

TI-loop II and its associated EL-loop (including the EL-loop) must be modified in the broadcasting

phase in the following manner: iteration variable II has to be substituted by max(lll, II) if it appears

in a lower (upper) simple bound and the coefficient that multiplies II is positive (negative) and by

min ( II+Bjj-l, III+Bjjj-l ) -BZI+1 if it appears in an upper (lower) simple bound and the coefficient

is positive (negative).

Proof

Lets consider the following loop nest:

do I = L, U

do J = a1 • i + G! , a2 • i + 92

enddo

where a^ a2, QV 02, L and U are integer constants or program parameters (variables unchanged

within the loops). Let assume that ocj, a2 > 0 and ai < cc2.

Let's perform multilevel tiling using our efficient implementation of SMT to achieve the tiled

code III-II-J-I (from outermost to innermost). First, strip-clustering is applied to loop I, obtaining

the following code:

do II = [O- - oftn) / B„J * BZI + oftn, U, BIX

do I = max(ll, L), min(ii+Bi:¡:-1, U)

do J = a1 • i + Ql, a2 • i + 92

enddo

Let FL and Fu be the lower and upper simple bounds added by the strip-clustering

transformation to EL-loop I. In loop nest (1), FL = II and Fu = II+Bjj-1.
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Then, loop nest (1) can be rewritten as follows:

do II = [(L - oftTI) / B„J * BH + oftllt U, BTI

do i = max(FL, L), min(Fu, U)
(2)

do J = ctj • i + 0J , a2 • i + 62

enddo

Second loops I and j in (2) are permuted performing one iteration of the FM algorithm. After the

loop permutation, the following code is obtained:

do II = [(L - oftn) / BuJ * BZI + oftix, U, BXI

I et - 0 — ct - 6 I
doJ = max(a1-FL + 61 , c c . - L + e, , 2 * l 2 ). ™¡n(» • pU + fl c c „ - U + 90) .1 1 l L a 2 ~ a i J

do i = max(FL, L, (" ( j - 02) /a2"| ), min(Fu, U, [ ( J - 6j) /al J )

enddo

And third, strip-clustering is applied to loop II. The strip-clustering transformation applied to a

loop with a step different from one consists of two phases: the creating phase and the broadcasting

phase. After the creating phase of strip-clustering, the following loop nest is obtained (where FL = II

do ill = L(L - oftliz) / BmJ * BIIX + oftm, U, BIZI

do II =[(max(m, L) - oftI3:) / BIXJ * Bn + oftn, min(U, iii+BIir1), BII:

do J = max(a.í • FL + 9j , a.^ • L + G j ,
a0-6,-a.

) ,min(cc 2 -F u + e2, c x 2 - U + e2) (3)

do I = max(FL, L, |" ( J - 92) /a2"| ), min(Fu, U, [ ( j - 01) /a1 j )

enddo

If strip-clustering were applied to loop II before performing the loop permutation, that is, in loop

nest (2), FL and Fu would be FL = max (ill, II) and Fu = min(lIn-BIIi:-1, Il+Bir1) by definition of

strip-clustering and, the bounds of loops I and J after the loop permutation would be the same as in

loop nest (3) but with the new values of FL and Fu.

Therefore, in the broadcasting phase of strip-clustering, the bounds of the loops between the just

stripped TI-loop II and its associated EL-loop I (including the EL-loop) must be modified as follows:

• FL = II must be substituted by max (III, II) in the lower bounds and

• Fu = II+Bjj-1 must be substituted by min(III+Bi;i;I-1, II+Bjj-1) in the upper bounds

that is, iteration variable II must be substituted by max(lll, n) in the lower bounds and by

min(ll+Bi:i-1, lll+Bm-IJ-Bn+l in the upper bounds.

To demonstrate the substitution in the presence of negative coefficient, assume oCj, «2 < 0 and

perform in a similar way. •
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I - J - K Original Code
I I - I - J - K

ist., .. f oTv/rrp i J.J. - .1 - o - K. i—i Broadcasting-phase of
1 iteration of SMT ¡ n - j. K J71 I—I strip-clustering II

! I I - J J - J - K - I
2nd iteration i—i

L II - J J - K jjjj I

i" II - J J - K K K - K - J - I
3rd iteration I i—i

[ I I - J J - K K K ^ K j - J - I

f III - JJ - JJ - KKK - K - J - 1 strip-clustering loop II (creating-phase)
4th iteration i III JJ - KKKl· II - K - J -1 compute bounds of II

Figure 4.13: Modifications of loop bounds due to the broadcasting phase of strip-clustering loop II.

Notice that, in the broadcasting phase of strip-clustering, for each simple bound that is an affine

function of the just stripped TI-loop, one and only one simple bound that is an affine function of the

new C-loop is added.

Implementation Details

We have seen that when strip-clustering is applied to a particular loop for stripping a TI-loop, the

bounds of the loops between the just stripped TI-loop and its associated EL-loop (including the

EL-loop) must be modified (broadcasting phase). In each iteration of SMT we perform one iteration of

the FM algorithm and, in each iteration of the FM algorithm, the bounds of the yet-to-be processed

loops are examined. In this section, we present an efficient implementation of the broadcasting phase

that essentially consists in joining together the broadcasting phase with the bounds inspection

performed in the FM algorithm.

To illustrate the implementation we will use the example shown in Figure 4.13 (same example

shown in Fig. 4.12). Figure 4.13 shows, with a shadowed rectangle, when the modification of bounds due

to the broadcasting phase of strip-clustering loop II (4th iteration of SMT) is done for each loop.

When strip-clustering is applied to a C-loop having a step different from one, the loops between

the just stripped TI-loop and its associated EL-loop can be divided into two groups: a) loops that have

already been processed and, therefore, their bounds have already been computed and b) loops that are

not yet processed and, therefore, their bounds are not yet computed. In Fig. 4.13 (4th iteration of

SMT), when strip-clustering is applied to C-loop II, loops K, J and I have already been processed,

while loops J J and KKK are not yet processed. Then, the implementation of the broadcasting phase

consists in performing the modification of bounds for the inner loops in the following manner:

• The modification of bounds for loops that have already been processed could

be done just when their bounds were computed, because the number of levels and the tile

sizes that each space dimension is partitioned are known before starting the execution of

SMT. In Fig. 4.13, the modification of bounds for loops I, J and K due to the broadcasting
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phase of strip-clustering II is performed just after the bounds of I, J and K have been

computed in the 1st, 2nd and 3rd iteration of SMT, respectively. Note that the new bounds

added by the broadcasting phase will never be involved in later iterations of the SMT

algorithm because these loops have already been processed.

• The modification of bounds for loops that are not yet processed can be done at

the same time as the bounds of the just stripped TI-loop are computed. To compute the

bounds of the just stripped TI-loop, the first step of one iteration of the FM algorithm is

performed. In this step, all simple bounds of the yet-to-be-processed loops are examined

and all simple bounds that are affine functions of the TI-loop being solved become simple

bounds of the TI-loop. Then, for each of these simple bounds that are affine functions of

the stripped TI-loop, we can add (to the corresponding loop) the new loop bound due to the

broadcasting phase. These extra new bounds do not need to be examined by the FM

algorithm because they are not affine functions of the stripped TI-loop (they are affine

functions of the associated C-loop). Therefore, the number of bounds examined in the

current execution of the FM algorithm does not increase. In Fig. 4.13, the modification of

bounds for loops J J and KKK due to the broadcasting phase of strip-clustering II is done

at the same time as the bounds of the stripped TI-loop II are computed.

4.4.4 SMT Algorithm

Summarizing, our implementation of the SMT algorithm consists in integrating the strip-clustering

transformation inside the FM algorithm to compute the bounds of the MCS of the BTIS (the multilevel

tiled iteration space). In each iteration, the SMT algorithm executes the following steps:

• First, it performs the creating phase of the strip-clustering transformation, generating

the new C-loop and the TI or EL-loop whose bounds are going to be computed.

• Second, it computes the bounds of the just stripped TI or EL-loop performing one

iteration of FM algorithm. If the loop is an EL-loop, the SMT algorithm performs both

steps of the FM algorithm. However, if the loop is a TI-loop, it only performs the first step

of FM (Theorem 2) and, at the same time, it does the modification of bounds for the loops

whose bounds are not yet computed (due to the broadcasting phase of the just applied

strip-clustering).

• Third, it does the modification of bounds for the loop being solved (due to the

broadcasting phases of strip-clusterings that will be later applied).

Finally, at the end of the SMT process, the bounds of the MCS of BTIS are corrected using vector

oft and matrix íT , as shown in Section 4.3.3 (Theorem 1), to obtain the exact bounds of BTIS.
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Algorithm
INPUT: TL /* ordered list (from inner to outermost) with the names of the loop indices in the tiled loop nest. TL[0] is

the innermost loop "I
OL /* ordered list (from inner to outermost) of the loops in the original code 'I
m /* total number of loops in the multilevel tiled loop nest "/
n /* total number of loops in the original loop nest */
Hp /* mxm diagonal matrix where the tfh diagonal element is the step of the tfh loop in the tiled loop nest */
oftp /* m-dimensional column vector where the /c"7 element is the offset of the /c"7 loop in the tiled loop nest */

OUTPUT: FL f loop nest after Multilevel Tiling */

FL = OL;

s = n; /* number of loops in FL */
r = 0; /* number of loops that have already been processed */
for(i = 0; i<m-1; i++)
{ j = position of TL[ i ] in FL;

AL = Extract ( j , FL); /* extract from FL the loop in position ]. AL is the active loop */
/* apply creating phase of strip-clustering to AL */

if (ALIevels > 0)
{ (C-loop, AL) = apply creating phase of strip-clustering to AL; /* AL ¡s now the stripped TI or EL-loop "I

C-loop.levels = C-loop.levels-1;
insert (C-loop , j , FL); /* insert the C-loop in position j of FL */
str_cl = TRUE; /* indicates that strip-clustering has been performed in this iteration */

}
else str_cl = FALSE;
/* compute bounds of AL and modify bounds of not-yet processed loops due to the broadcasting phase of the

just applied strip-clustering */
if (AL is an EL-loop)
{ solve AL from the simple bounds of loops ¡n FL ¡n positions r to j-1 ; /* 1st step of FM'*/

compare lower and upper bounds of AL and add the new bounds to loops in FL; /* 2nd step of FM */

}
if (AL is a Tl-loop)
{ if (str_cl==TRUE)

/* 1st step of FM+modification of bounds due to broadcasting phase of the just applied strip-clustering */
solve AL from the simple bounds of loops in FL in positions r to j-1 and, at the same time, add to these
loops in positions r to j-1 the simple bounds due to the broadcasting phase of just applied strip-clustering;

else /* perform only the 1st step of FM */
solve AL from the simple bounds of loops ¡n FL in positions r to j-1 ;

}
/* modify bounds of the loop being solved due to later applied strip-clusterings'/
add simple bounds to AL due to broadcasting phases of later applied strip-clusterings;
insert (AL, r, FL); /* insert AL in the innermost position */
if(str_cl==TRUE)s=s+1;
r=r+1;

}
correct the bounds of the loops in FL using Hp and oftp;

endAlgorithm
Figure 4.14: Code of the efficient SMT algorithm.
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The complete SMT algorithm is shown in Figure 4.14. List OL contains all the information

related to the n loops in the original loop nest (simple bounds, name of the iteration variable, number

of levels being exploited by this loop (field levels), etc.). List TL contains the names of the m iteration

variables in the resulting tiled loop nest, ordered from innermost to outermost. We want to obtain the

ordered list FL that contains all loops in the final tiled code with all the simple bounds computed. Fl_ is

initialized to OL and at the end of the algorithm it will contain the multilevel tiled code. Other

variables used in the algorithm are: a) variable s that indicates the number of loops in list FL, b)

variable r that indicates the number of loops that have already been processed and c) variable str_cl

that indicates, in each iteration, if strip-clustering has been performed or not.

List TL gives the order in which the loops are processed. Thus, for each of the first m-1. iteration

variables in TL11, the algorithm begins by finding the position j in FL where the associated C-loop of

the TI or EL-loop we want to deal with is. This C-loop is then assigned to AL (Active Loop) and

removed from FL.

Next, the creating phase of strip-clustering is applied to AL, obtaining the new C-loop and the TI

or EL-loop whose bounds are going to be computed; the new C-loop is inserted in list FL in position j

and the TI or EL-loop is assigned to AL. Thereafter, the SMT algorithm computes the bounds of AL

(the just stripped TI or EL-loop). If AL is an EL-loop, both steps of the FM algorithm are performed. If

AL is a TI-loop, only the first step of FM is performed and, at the same time, the modification of bounds

due to the broadcasting phase of the just applied strip-clustering is done.

Then, the SMT algorithm performs the modification of bounds for loop AL (due to the

broadcasting phases of strip-clusterings that will be later applied). Finally, loop AL is inserted in FL in

position r (the innermost position).

At the end of the SMT process, the bounds of the loops in FL are corrected to obtain the exact

bounds of the multilevel tiled code.

Execution Example

To exemplify our implementation of SMT, we will use the same example as in Section 4.3.5 (Fig. 4.8a).

Again, we assume that tiling has to be performed at two levels (at the innermost level, dimensions I

and J have to be tiled and, at the outermost level, only dimension I has to be tiled) and we use all

offsets equal to 1 in the strip-clustering transformation. The desired loop order in the multilevel tiled

code is III-JJ-II-J-I, from outermost to innermost.

We will show the bounds of the loops at intermediate iterations of the SMT algorithm. Recall

that our SMT implementation works with the MCS defined by the bounds of the loops. For clarity, we

present this information in loop nest form. However, we note that these loop nests are not

11.The bounds of the outermost loop are obtained directly after the SMT algorithm has finished.
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1st iteration of SMT:

(a) Original Code (b) Strip-clustering I

doi = 1 , N do II ={2-BZI , N }
doj = i, N doi = {max(ii, 1), n

loop body

enddo

(d) Modification of bounds for loop I
due to broadcasting phase of 11

do II = {2-BIZ, N }
do J = {max(ii, 1), N }

do i = { max(ii, ill, 1), min(ii+BIZ-1,

2nd iteration of SMT;

(e) Strip-clustering J

doil = {2-BII, N }
do JJ = { max (n, 1)-Bjj+1,N}

do J = { max(n, 1 , jj), min(N, JJ+Bjj-1) }
do i = {max(ii, in, 1),

r1, N, J)

3rd iteration of SMT;

(g) Strip-clustering II

doi I I={2-B I I I ,N}
do n = {max(in, 1)-BTI+

do Jj = { max (n, 1)-B j : r+1,N}
do J = {max(n, in, 1, jj), min(N, jj+Bja-1) }

do i = {max(n, in, 1),
min(n+BIi;-1, ni+Bm-1, N, J) }

r1, N)

(c) Computing bounds of I

do II = {2-BZI, N }
!-1,N)} doj = {max(ii, 1), N }

do i ={ max(ii, 1), miniii+Bjj-l, N, j)}

-1, N, j)}

(f) Modification of bounds for loop J
due to broadcasting phase of II

don = {2-BII, N }
do JJ = { max (n, 1) -Bjj+1, N }

do J = { max(ii, in, 1, JJ), min(N, JJ+Bjj-1)}
do i = { max(ii, in, 1),

min(ii+Bir1, III+BUJ-I, N, j)}

(h) Computing bounds of II (only 1st step of FM) and
modification of bounds due to broadcasting phase of II

doili = {2-BIII, N }
do JJ = { max (in, 1)-Bjj+1, N }

do n = { max(ni, 1) -BIT+1,
miníili+Bm-l, N, JJ+Bjj-1)}

do J = { max(ii, in, 1, jj), min(N, JJ+Bjj-1)}
do i = {max(ii, in, 1),

min(n+Bir1, ill+Bm-1, N, J)}

(i) Correcting bounds. Multilevel Tiled Code

do III =1, N, BIZI

do JJ = L(max(in-1, O)/ BjjJ'Bjj+l, N, Bja

do II =(_max(iii-1, 0)/BIIJ*BII+1, min(lli+BIi:i:-1, N, JJ+Bjj-1), B^
do J = max(ii, in, 1, JJ), min(N, JJ+Bja-1)

do i = max(ii, in, 1), min(ii+Bi:i:-1, iii+BIir1, N, j)
loop body

enddo

Figure 4.15: (a) Original code, (b) Loop nest after strip-clustering loop I. The braces on the loop bounds
indicate that they are representing the MCS. (c) Loop nest after performing one iteration of the FM algorithm
to compute the bounds of I. (d) Loop nest after modifying the bounds of loop I due to later applied
strip-clusterings, (e) Loop nest after strip-clustering loop j. (f) Loop nest after modifying the bounds of J due to
later applied strip-clusterings, (g) Loop nest after strip-clustering loop II. (h) Loop nest after performing the
first step of the FM algorithm to compute the bounds of 11 and after modifying the bounds of JJ due to the
broadcasting phase of the just applied strip-clustering, (i) Loop nest after correcting the bounds of the MCS of
the BTIS. This is also the final multilevel tiled code.
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semantically correct until the SMT algorithm finishes (we use braces on the loop bounds to indicate

that they are representing the MCS). The loops whose bounds have already been computed are the

innermost loops in the nest while the not-yet-processed loops are the outermost loops.

Initially, loops I and J in the original code are the C-loops (Fig. 4.15a). In the first iteration of

SMT, strip-clustering is applied to loop I (the innermost loop in the final code), obtaining the bounds

shown in Fig. 4.15b. Then, the bounds of loop I are computed performing both steps of the FM

algorithm (Fig. 4.15c) and, finally, the bounds of loop I are modified due to the broadcasting phase of

the strip-clustering transformation that will be later applied (in the 3 iteration of SMT) to loop II

(Fig. 4.15d).

In the second iteration of SMT, strip-clustering is applied to loop J (the next innermost loop in

the final code), obtaining the bounds shown in Fig. 4.15e. Then, the bounds of loop J are modified due

to the broadcasting phase of the strip-clustering transformation that will be later applied to loop II

(Fig. 4.15f). Note that in this iteration it is not necessary to perform one iteration of the FM algorithm

to compute the exact bounds.

In the third iteration of SMT, strip-clustering is applied to loop 11 (only the creating phase),

obtaining the bounds shown in Fig. 4.15g. Then, the bounds of loop II are computed performing only

the first step of the FM (loop 11 is a TI-loop). Moreover, at the same time as the bounds are computed,

we add to loop JJ the new bounds due to the broadcasting phase of the just applied strip-clustering.

(Fig. 4.15h). At this point we already have the bounds of the Minimum Convex Space of BTIS.

Finally, the bounds must be corrected as shown in Section 4.3 to obtain the exact bounds of the

final multilevel tiled code. Figure 4.15Í shows the bounds after they have been corrected.

4.5 COMPLEXITY OF THE EFFICIENT SMT IMPLEMENTATION

In this section we analyze the complexity of the efficient SMT algorithm (Figure 4.14). We will first

present two lemmas that establish the complexity of computing the bounds of the EL-loops and of the

TI-loops. Then, we enounce a theorem that yields the complexity of the SMT algorithm.

Let n and q be the number of loops and simple bounds in the original loop nest, respectively, and

let m be the number of loops in the resulting multilevel tiled code. Our implementation of SMT

computes the bounds of the EL and TI loops of the final multilevel tiled code, one by one, from the

innermost to the outermost one. Thus, the bounds of the n EL-loops are always computed before the

bounds of the m-n TI-loops. Let's first look at the complexity of computing the bounds of the EL-loops.
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Lemma 2

The complexity of computing the bounds of the n EL-loops is the same complexity as performing a loop

permutation in the original code, that is:

Proof

To compute the bounds of an EL-loop, the SMT algorithm performs the following steps: first, the

creating phase of strip-clustering is applied to a C-loop for stripping the EL-loop whose bounds are

going to be computed; second, one iteration (first and second step) of the FM algorithm is executed;

and third, the bounds of the EL-loop being solved are modified due to the broadcasting phases of

strip-clusterings that will be later applied

In the worst case, the first loop iteration variable to be solved is involved in the q simple bounds

of the original loop nest. Therefore, the number of simple bounds involved the first time that one

iteration of the FM algorithm is executed is q + 2 (q simple bounds of the original code and 2 simple

bounds introduced by the creating phase of previous applied strip-clustering). We can round off q + 2

to q (that is, q + 2 = q ), because q » 2 .

Then, after performing the second step of the FM algorithm the number of simple bounds of the

next loop iteration variable to be solved can be, in the worst case, (c/2)2. Recall that the second step of

FM makes the number of simple bounds of the yet-to-be processed loops to increase quadratically.

Finally, after executing the FM algorithm, the bounds of the EL-loop being solved are modified

due to the broadcasting phases of strip-clusterings that will be later applied. This step, however, does

not introduce new bounds to the yet-to-be processed loops.

Therefore, since all q original simple bounds could potentially involve the n original iteration

variables, the worst-case complexity of computing the bounds of the n EL-loops is:

This is also the complexity of performing a loop permutation in the original code.

Let's now see the complexity of computing the bounds of the TI-loops.
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Lemma 3

The worst-case complexity of computing the bounds of the m-n TI-loops is:

Cfpr = O\ (m — n — l)
11 V

Proof

From Theorem 2, we have that the second step of the FM algorithm does not need to be performed

when computing the bounds of a TI-loop. Then, to compute the bounds of a TI-loop, the SMT algorithm

performs the following steps: first, the creating phase of strip-clustering is applied to a C-loop for

stripping the TI-loop whose bounds are going to be computed; second, the first step of the FM

algorithm is executed and, at the same time, the modification of bounds for the yet-to-be-processed

loops (due to the broadcasting phase of the just applied strip-clustering) is done; and third, the bounds

of the TI-loop being solved are modified due to the broadcasting phases of strip-clusterings that will be

later applied

After computing the bounds of the n innermost EL-loops, the outer C-loops together can

potentially have q^ simple bounds (see Fig. 4.16), where:

2ír¿ ^¿

In the worst case, the first TI-loop to be solved is involved in the q^ simple bounds. Therefore,

the number of simple bounds involved in the first step of the FM algorithm is Cj + 2 (the q^ simple

bounds and 2 simple bounds introduced by the creating phase of strip-clustering). Again, we can

round

At the same time as the first step of FM is executed, the modification of bounds for the

yet-to-be-processed loops (due to the broadcasting phase of the just applied strip-clustering) is done. In

this step, we introduce a new simple bound for each simple bound that is an affine function of the

TI-loop being solved (Theorem 3). These extra new bounds do not need to be examined by the FM

algorithm because they are not affine functions of the TI-loop (they are affine functions of the

associated C-loop). Therefore, the modification of bounds does not increase the number of bounds

examined in the current execution of the FM algorithm.

Finally, the bounds of the TI-loop being solved are modified due to the broadcasting phases of

strip-clusterings that will be later applied. This step, however, does not introduce new bounds to the

yet-to-be processed loops.
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After computing the bounds of a TI-loop, the outer C-loops together will still have q^ simple

bounds because (1) for each simple bound that was an affine function of the TI-loop we have

introduced one, and only one, new simple bound that is an affine function of its associated C-loop, (2)

all simple bounds that were affine functions of the TI-loop become simple bounds of the TI-loop and (3)

the second step of the FM algorithm is not performed.

Then, for each TI-loop to be solved, there are always q^ bounds involved in the execution of the

FM algorithm. There are m-n TI-loops in the multilevel tiled code. However, only m-n-1 TI-loops are

solved by the SMT algorithm. Recall that the bounds of the outermost TI-loop are directly obtained

after the SMT algorithm has finished (Section 4.4.4). Thus, the worst-case complexity of computing

the bounds of the TI-loops is:

Theorem 4

The worst-case complexity of SMT is:

CS M r=o[(m-n).(j)2 J

Proof

Directly from Lemma 2 and Lemma 3. The complexity of SMT is the sum of the complexity of

computing the EL-loops and the complexity of computing the TI-loops. Therefore,

£
2

Notice that the complexity of SMT depends linearly on the number of TI-loops in the final code,

rather than doubly exponentially, and it depends doubly exponentially only on the number of loops in

the original code (before tiling). Thus, the complexity of SMT is proportional to the complexity of

performing a loop permutation in the original loop nest.

Figure 4.16 shows, using the same example as in Figure 4.12, how the total number of simple

bounds increases in each iteration of SMT (worst case). We give for each iteration the maximum

number of simple bounds in different sets of loops (those enclosed in the arrows).
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original code «MT
I - J - K
n loops

q simple bounds

multilevel tiled code
-C>KKK- III-JJ-II - K - J - I

m loops
r simple bounds

1st iteration
ofSMT

II - I - J - K (strip-clustering loop I)

I I - J - K - I (compute bounds of I)

(g/2)2 (g/2)2

L I I - J J - J - K - I (strip-clustering loop J)

rand

II- J J - K - J - I (compute bounds of J)

3rd

í<?2/8)2 (ç2/8)2

II - JJ - KKK - K - J - I (strip-clustering loop K)

q. = q+(q/2)2+(q2/8)2

•» - >•
II - JJ - KKK - K - J - I (compute bounds of K)

4th

III - II - JJ - KKK - K - J - I (strip-clustering loop II)

III - JJ - KKK - l i - K - J - I (compute bounds of li)

5th in - KKK - J J - I I - K - J - I (compute bounds of JJ)

6th KKK - III - J J - I I - K - J - I (compute bounds of III)

= 0 („-„-I).(2)'
„n-l

Figure 4.16: Complexity of the efficient implementation of SMT.
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4.6 REDUNDANT BOUNDS

The Fourier-Motzkin algorithm used to compute the exact loop bounds can generate redundant

bounds in the transformed loop nest [5] [17]. The presence of redundant bounds in the transformed

tiled code can be negative if index set splitting (ISS) is used after tiling to exploit the register level

[60], because the number of times that ISS has to be performed and the amount of code generated both

depend polynomially on the number of bounds the innermost loops have after tiling.

Every time ISS is performed, a loop nest is duplicated. If the number of generated loop nests

increases excessively, the compiler might waste a lot of time performing the instruction scheduling

and the register allocation of loop nests that will be never executed. Thus, the elimination of

redundant bounds, at least in the innermost loops, is important to generate efficient code and to

reduce compile-time when the register level is being exploited.

Futhermore, another advantage of eliminating redundant bounds is to avoid increasing program

execution time. If the compiler generates excessive redundant bounds, a fraction of a program's

execution time can be wasted in evaluating useless bounds (redundant bounds or bounds of loops that

will end up in empty iterations12). This fraction of time is insignificant if tiling is applied to

rectangular iteration spaces and/or for one or two levels of the memory hierarchy. However, it can

become significant if tiling is applied to non-rectangular iteration spaces and for several levels of the

memory hierarchy.

In this section we show how our implementation of Simultaneous Multilevel Tiling generates

fewer redundant bounds than a conventional implementation. Moreover, we also show how our

implementation allows removing the remaining redundant bounds in the innermost loops at a much

lower cost than traditional implementations.

We distinguish two kinds of redundant simple bounds: trivial and non-trivial. A simple bound of

a particular loop I is a trivial redundant simple bound if it can be deduced that it is redundant by only

looking at the other simple bounds of loop I. These bounds can be eliminated as soon as they appear in

an easy way [5]. A simple bound of a particular loop I is a non-trivial redundant simple bound if it is

necessary to look at the simple bounds of outer loops to deduce that it is redundant. As an example,

consider the code of Fig. 4.17a. Figure 4.17b shows the loop nest after applying a loop permutation

transformation. The exact loop bounds of the transformed code have been computed using the

Fourier-Motzkin algorithm. The upper simple bound N of loops J and K is a trivial redundant bound.

However, the lower simple bounds 1 and J of loop I are non-trivial redundant bounds because it is

necessary to know the bounds of J and K to deduce that they are redundant.

12.The FM algorithm computes exact bounds and therefore, the tiled loop nest never executes an empty iteration. However, if it
contains redundant bounds and ISS is used after tiling, the final code can contain loop nests executing empty iterations.
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(a) Original loop nest (b) Transformed loop nest

do 1 = 1, N do j = 1,min(N, N-1)
do J = 1, min(i, N-1 ) do K = j, min(N, N-1 )

do K = j, min(i, N-1 ) do I = max(1, j, K), N
loop body loop body

enddo enddo

Figure 4.17: (a) Original loop nest, (b) Loop nest after applying a loop
permutation transformation. The exact loop bounds have been computed using
the Fourier-Motzkm algorithm.

To eliminate these non-trivial redundant bounds, several researchers [5] [7] [16] propose the use

of the FM algorithm to check if a simple bound is redundant with respect to the potential values of

outer loops. The idea consists in creating a system of inequalities with all the simple bounds of outer

loops, replacing the simple bound to be checked by its negation. If the new system is inconsistent, the

simple bound is redundant and can be eliminated (to check if a system is inconsistent, the FM

algorithm is used). Therefore, to eliminate all non-trivial redundant simple bounds of a loop, they

apply the Fourier-Motzkin algorithm as many times as the number of simple bounds present in the

loop. Thus, the complexity of eliminating redundant bounds is the complexity of executing the FM

algorithm as many times as bounds have to be checked. As it can be observed, this technique, named

Exact Simplification in [16], is very time-consuming.

Let's now see both why our implementation of Simultaneous Multilevel Tiling generates fewer

non-trivial redundant bounds than a conventional implementation and why our implementation

allows reducing the cost of eliminating the remaining redundant bounds in the innermost loops when

the Exact Simplification technique is used.

Generating Fewer Non-trivial Redundant Bounds

Simultaneous Multilevel Tiling generates less redundant bounds than conventional techniques due to

the way in which the bounds of the EL-loops are computed. Non-trivial redundant simple bounds can

be generated by conventional implementations from the second loop permutation transformation

performed onwards. They are generated when a loop I is moved inside another loop J that has been

previously strip-mined and J has simple bounds that are affine functions of I. Moreover, a redundant

bound generated due to a loop permutation is propagated to other loops in later loop permutations.

By contrast, our implementation of SMT does not generate these particular non-trivial

redundant simple bounds, because it always computes the bounds of an EL-loop before applying

strip-clustering to the C-loops associated to not-yet-processed EL-loops.
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Types of Redundant Simple Bounds
(how is their redundancy deduced)

Trivial

looking at the loop's own simple bounds

Non-Trivial

looking at the simple bounds of outer loops

Special

looking at the inequalities
imposed by the strip-mining or
strip-clustering transformation

Table 4.1: Types of redundant simple bounds according to the way their redundancy is deduced.

Let's now examine these assertions more formally. We start by giving a definition to characterize

a special type of non-trivial redundant bound that appears in the multilevel tiling context and we

present a lemma that shows how this special type of redundant bounds are generated. Then, we give a

corollary showing how other non-trivial (and non-special) redundant bounds can additionally be

created. Finally, we enounce a theorem that shows why the SMT implementation generates fewer

redundant bounds than a conventional implementation of multilevel tiling.

Definition 4

Let II be a TI-loop associated to the EL-loop I and let BIX be the strip size of II. By definition of

strip-mining (or strip-clustering), loop I always iterates inside the tiles determined by II. Therefore

the inequalities II < I and I < II+BIZ -1 always hold. We refer as special redundant simple bounds to

non-trivial redundant simple bounds whose redundancy can be deduced by looking at the inequalities

imposed by previously applied strip-mining (or strip-clustering) transformations (Table 4.1

summarizes the different types of redundant bounds according to the way their redundancy is

deduced).

T>ftTTITTia 4

Let I be a loop that has been strip-mined and has simple bounds that are affine functions of J. Then,

moving loop J inside loop I produces special redundant simple bounds in loop J.
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Proof

Let's consider the following loop nest:

do J = L, U

do I = a, • J+ 6, , a0- J + 601 1 2 2 (l)
loop body

enddo

where a,, a2, 0j, 62, L and U are integer constants or program parameters (variables unchanged

within the loops). Let assume that ccj, a2 > 0 and a^ < a2. For other values of a^ and a2 the

demonstration would be done in a similar way. We also assume that loop nest (1) has exact bounds,

therefore the inequality L > _î
0 — 0
«2-

holds.

To demonstrate Lemma 4 we will first apply strip-mining to loop I, second we will permute loops

J and II (the TI-loop generated in the strip-mining transformation) and third, we will perform

another loop permutation to move loop J to the innermost position13. For simplicity and without loss

of generality, we use a null offset in the strip-mining transformation.

We perform this sequence of transformations because, in a later theorem (Theorem 5), we will

use Lemma 4 to demonstrate that a conventional tiling implementation generates redundant bounds.

In a conventional implementation, an EL-loop is never moved inside a TI-loop (recall that, by

construction, the EL-loops are always the innermost loops in the nest) but EL-loops can be moved

inside other EL-loops that have been previously strip-mined. In this demonstration we will see that

moving an EL-loop inside another .EL-loop that has been previously strip-mined (the second loop

permutation) produces special redundant simple bounds.

By definition, every time strip-mining is applied to a loop, it is decomposed into two loops (the

TI-loop and the EL-loop) and new simple bounds appear (recall Fig. 4.5, Section 4.3.2). After

strip-mining loop i of (1) the following code is obtained:

do j = L, U

do u = L (ctj • J + ep /BXIJ*BIT, cc2 • j + 62, BH

do i = max (n, ctj • j + e^^ ), min(ii+Bir1, «2 • J + 62 ) (2)

loop body

enddo

loop permutation tw' P Orm * '°°P permutation only once to move loop J to the innermost position, instead of performing a
are eenerated >i V* ** mentioned above. However, we will perform a loop permutation twice to show that redundant bounds

g tea wnen loop j is moved inside loop I (the second loop permutation) but not when J is moved inside loop II.
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Now, loop I in (2) has the same simple bounds as in (1) plus two new simple bounds: the lower

simple bound (II) and the upper simple bound (lI+Bi:r-1). Thus, the inequalities II < I and

I < ii+Bri -1 hold.

Let's now perform a loop permutation to move loop J inside loop II. To perform the loop

permutation we apply Theorem 1 (Section 4.3.3), because the iteration space defined by loops J and II

in (2) is non-convex. Recall that Theorem 1 uses the FM algorithm to compute the exact bounds in the

transformed code and we note that trivial redundant bounds will be directly eliminated. After the loop

permutation, the following code is obtained (note that this loop permutation does not produce any

redundant bound):

do II = I (a, • L - t -GJ /B I 'Bjj, a2 • U + 6 2 > BIZ

"il — 8 1 I l l + B — 1 6doJ = max(L, I ? K min(Uj | n ~ l
ai1 J (3)

do i = max (n, a, • J + 9, ), min(n+BTT-1, a0 • J + 60)
-L J. £t ¿t

loop body

enddo

Let's now perform a loop permutation to move loop J to the innermost position. Now, to perform

the loop permutation, we can directly apply the theory of unimodular transformations [121] because

the iteration space defined by loops J and I in (3) is convex. After the loop permutation, the following

code is obtained:

do 11= I (a1-L + Q1)/BII \*BIIt ct2- U + 62, BIX

do i = max (ii, ctj •

do J = max(L,
| «2 | | «2 | L "l J L "l J

loop body *• '

enddo

Now, loop J has two simple bounds (one upper and one lower simple bound) that depend on I,

I I — 9 I f l — 9 1
namely J < i and J > ? . These bounds have been obtained in the following manner:

L «1 J «2 | -
before the loop permutation (code (3)), the relations between I and j were described by the simple

bounds a. • J + 9. and a2 • J + 92 of I. Then, the FM algorithm solved these relations I > ctj • J + 9j

I I — 9 1 f i — 9 ~l
and I < cu • J + 9,, for J, obtaining the bounds I and ? of J (code (4)).

L «1 J I «2 I

r a j - (ii-92)
L ' ° l ' | a2

 l 9

I 6 1 Til 9 12 , 2 h . m i n f l J .

j ),min(il+B ir1, a 2 - U + 82

I i-e, l l n + BT T-i-8, l1 II 1

[a^dl + B^-l-ep Q

L ai *.
)

l >
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j _ _ , p -i _ n l

Loop J also has two simple bounds that depend on II, namely J < _ £í _ 1 and
i i - e i • L «i J

J > - ? . These bounds were obtained in the first loop permutation (code (2)) by solving J from
«2 I

j • J + G! - BXI + 1 and II < a2 • J + 92 .II >

Since I and 1 1 were obtained by strip-mining loop I in the original code, the inequalities II < I

and I < II+B -1 hold and therefore:

Thus, the simple bounds

min(

nds

max( ï , £ )
1 a2 1 a2 1

L «i J U
i n + B-.-i-e, 1 , "11 í and

L «i J

= i - — i
1 «2 I

1 | ) = | I ~ 0 1

J L ai

ii -e,] ,¿ nf

«2

of J in code (4) are redundant

bounds. Moreover, they are special redundant bounds because (1) they are non-trivial (it is necessary

to look at the simple bounds of loop I to deduce that they are redundant) and (2) their redundancy can

be deduced by looking at the inequalities imposed by the strip-mining transformation.B

Corollary 3

Let I be a loop that has been strip-mined and has, at least, one lower simple bound and one upper

simple bound that are affine functions of another loop J. Then, moving loop J inside loop I produces

non-trivial redundant simple bounds in loop I.

Proof

In the second step of the Fourier-Motzkin algorithm, each of the lower simple bounds of the iteration

variable being solved is compared with each of the upper simple bounds. These comparisons generate

inequalities that might become new simple bounds of other loops.
"a.-(11-65,) 1 I ov (II + B -1-6,) I

In (4), the bounds | — — + 6, | and | — ^ — + 62 of I were generatedou ,i
*2 | L "1

by comparing each lower simple bound of J with each one of its upper simple bounds. More precisely,

they were generated by comparing

respectively.
« «

and
« a.
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Taking into account that:

it can be trivially deduced that:

a2-ai

max(n,

and II > a,

04 • (n-92)

cu- (ii + BT T-i-e,)
minín+Bn-l, I — — — + 6n

Therefore the simple bounds
oto

and
a

a.
3,J
— + 69 of l in (4)

are redundant. Moreover, they are non-trivial redundant bounds because it is necessary to look at the

simple bounds of loop II to deduce that they are redundant. However, they are not special redundant

bounds because their redundancy cannot be deduced by looking at the inequalities imposed by the

strip-mining transformation.

Finally, these redundant bounds have been generated in the second step of the Fourier-Motzkin

algorithm, by comparing ? < I and ? < ïí î . Thus, these
I «2 I L «1 J I «2 l L «l J

redundant bounds can only be generated if there are at least one lower simple bound and one upper

simple bound in the original code that are affine functions of loop J. •

So far, we have seen different situations in which special redundant simple bounds and other

non-trivial redundant bounds can be generated. Now, we will show why the SMT implementation

generates fewer redundant bounds than a conventional multilevel tiling implementation. In

particular, we will see that the SMT implementation does not generate special redundant bounds and

other non-trivial redundant bounds, while a conventional implementation generates them.

Theorem 5

The SMT implementation generates fewer non-trivial redundant simple bounds in the tiled code than

a conventional implementation of multilevel tiling.
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Proof

Let the following loop nest be the original code:

do J = L, U

doi = a1-J + e 1 ,c t 2 · J + 92

loop body

enddo

where ocj, «2, BI; 62, L and U are integer constants or program parameters (variables unchanged

within the loops). Let's assume that ctj, a2 > 0 and 04 < a2. For other values of 04 and a2 the

demonstration would be done in a similar way. We also assume that loop nest (5) has exact bounds,

therefore the inequality L > 0-2-04 holds.

To demonstrate Theorem 5 we will first apply loop tiling using a conventional implementation

and we will see how non-trivial redundant bounds are generated from the second loop permutation

transformation performed onwards. Then, we will apply loop tiling using the SMT implementation

and we will see that these non-trivial redundant bounds are not generated.

Let assume that the desired loop order in the final tiled code is II-JJ-I-J. A conventional

implementation applies strip-mining and loop permutation repeatedly until the desired code is

obtained (see Section 4.2), computing the bounds of the loops in the final code from outermost to

innermost. For simplicity and without loss of generality, we use null offsets in the strip-mining

transformation.

Let's first apply strip-mining to loop I and perform a loop permutation of loops I and J using the

FM algorithm14. In the loop permutation, we are moving loop I inside loop J and loop J has not yet

been strip-mined. Thus, this loop permutation does not introduce any special redundant bound. After

these transformations, the following loop nest is obtained (trivial redundant bounds have been

directly eliminated):

do 11= [jaj • L + Gí )/ BnJ'Bn, cc2 • U + 02, BXI

do a = max (L, |ill!§],, min(U, I "^ix-1"9! I ,
I «2 l l «i j (6)

do i = max(n, otj • L + 0j , ctj • j + 9j}, min(ii+Bir1, a2 • U + 02, a2 • j + 82 )

loop body

enddo

14.Note that, before strip-mining loop I, it is necessary to perform a loop permutation in the original code because the original
loop order is not such that the outermost loop is the loop to be strip-mined first.
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Let's now apply strip-mining to loop J in (6) and perform again a loop permutation of loops J and

I using the FM algorithm. After performing these transformations the following code is obtained:

do 11= \_(al • L + 9j )/ BU J*BZI, a2 • U + 62, BXI

do JJ = [max(L, [ü^lXBjJ'Bjj, minfU, I ""^ii-1-8! I ) , Baj (7)

do I = max(n, a, • L + Q, , a. • JJ + 0. ,

a2 • U + 62 , a2 • (JJ + BJJ - 1) + 92,
a2-

«i

«2 | I «2

toop òody
enddo

In this loop permutation, loop J has been moved inside loop I that has already been strip-mined.

From Lemma 4 and Corollary 3 this loop permutation generates special redundant bounds in loop J

and other non-trivial redundant bounds in loop I. More precisely, the following bounds in (7) are

redundant:

II-0„1 I l I + B -1-8, I .
f and ü i oí J are special redundant bounds and

«2 «1 J
• the simple bounds

* i -t l J ' - L " r l J T T ~ J · ~ D l l T I ~"2 \ ~ - ' ~ T T * w I / I _• the simple bounds ¿I í and — — — + 0, of I are
L «i J L ai 2J

non-trivial redundant bounds.

Finally, it can be trivially deduced that if another level of tiling is performed in (7) the new

TI-loops will inherit these redundant bounds.

Let's now apply loop tiling to the original code (5) using the SMT implementation. The SMT

implementation computes the bounds in the tiled code from the innermost to the outermost loops,

applying the strip-clustering transformation as late as possible, that is, just before the bounds of a

loop have to be computed. Again, for simplicity and without loss of generality, we use null offsets in

the strip-clustering transformation.

The SMT implementation starts computing the bounds of J: first, strip-clustering is applied to

C-loop J of the original code (5), obtaining the EL-loop J and the new C-loop JJ; and second, one

iteration of the FM algorithm is performed to compute the bounds of J in the tiled code. After these

transformations, the following loop bounds are obtained (recall that the SMT implementation works

with the bounds of the MCS of the NCBIS to obtain the bounds of the MCS of the BTIS and we use

braces on the loop bounds to indicate it):
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strip-clustering loop J

do JJ = { L-Bjj+1, U }

do j = {max(jj, L), min(jj+Baj-1, U ) }

do I = { ctj • j + Ql, cc2 • J + 92 }

computing bounds of J

do JJ = { L-Bjj+1, U}

, min(a2 • U + 62 , a2 • (jj + Bjj-1) + 9 2 ) }

!
X — 9

'é \ ), min(JJ+Bjj-1, U,
1-6,

al

Note that the bounds of J are computed before strip-clustering loop I. Thus, loop J does not have

special redundant bounds and loop I does not either have any of the non-trivial redundant bounds

that appeared in (7).

To obtain the final tiled code, strip-clustering has to be applied to loop I. Then, the bounds of J J

must be computed by performing one iteration of the FM algorithm (only the first step) and finally, the

bounds of the loops must be corrected to obtain the exact bounds of the BTIS. The bounds of the loops

after these transformations are the following:

strip-clustering loop 3C;

il = {max(a1- L + O j , Cj- JJ + Q^-B^+I, min(a2- U + 82, a2- (Jj + Bjj-1) + 92)}

do i = {max(n, o^ • L + Oj , ccj - jj + 9j) , min(in-Bir1, o2- U + 92, a2- (JJ + BJa- 1) +9 2 )}

r T — o n i T — o i
do j = { max ( jj, L, | _ ? | ), min(jj+Bjj-1 , U, | _ i | ) }

«2 l al

computing bounds of JJ;

do II ={ cxj • L + 9J-BH+1, ov U + 92 }

ll + B I I-l-91do JJ = {max (L, l }.Bjj+1 _ min(U(

do l = {max(ll, Oj • L + QI , ax • JJ + QI ), min(n+Bir1, a2 • U + 62 , cc2 • (JJ +• BJ;J - 1) + 92 )}

do j = {max ( JJ, L,
i-e„

),min(JJ+BJJ-1,U,|ilfl|)}
«1
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correcting bounds:

do II = [(Cj • L + 6j )/ BuJ'Bn, cc2 • U + 92 , BXI

. rii-e0] , i n + B T T - i -6 1 1
do JJ = [max (L, ? y BjJ'Bjj, min(U, II Ì ), Baj

I a2 l L al J
do I = max(n, a1-L + Q1, o^ • JJ + 61 ), min(ii+Bir1, cc2 • U + 92 , oc2 • ( JJ + Bjj -1) + 92 ) (g)

/oop body
enddo

i-
do J = max (JJ, L, ? ), min(jj+Bjj-1, U,

12

i-e
a1

Note that the final tiled code (8) does not have the redundant bounds that appeared in (7). This is

because SMT always computes the bounds of an EL-loop before applying strip-clustering to the

C-loops associated to not-yet-processed EL-loops. Thus, an EL-loop is always moved inside other

EL-loops that have not yet been strip-clustered.

Finally, we note that if several levels of tiling are performed using SMT, strip-clustering will be

applied to C-loops having non-unit steps and, therefore, broadcasting phases will be performed. The

broadcasting phase of strip-clustering adds new bounds to loops whose bounds have already been

computed. However, these new bounds are never redundant bounds.•

Summarizing, moving outer loops inside the EL-loop of a previous strip-mined loop produces

some particular non-trivial redundant simple bounds. In a conventional implementation, this

situation of moving a loop inside the EL-loop of a previously strip-mined loop happens continuously.

Moreover, the redundant bounds generated in a certain loop permutation are propagated to other

loops in later loop permutations. Our implementation of Simultaneous Multilevel Tiling does not

generate these particular non-trivial redundant bounds because it computes the bounds of the

EL-loops before applying strip-clustering to the C-loops associated to not-yet-processed EL-loops.

Reducing the Cost of Eliminating the Remaining Redundant Bounds

As already mentioned, the elimination of redundant bounds in the EL-loops of the tiled code is

important to generate efficient code and to reduce compile-time when the register level is being

exploited. To this end, each of the simple bounds of the EL-loops has to be checked for redundancy

using the Exact Simplification [16] technique. This technique checks if a simple bound is redundant

with respect to the possible values of outer loops using the FM algorithm. Thus, the complexity of

checking one simple bound for redundancy is the complexity of executing the FM algorithm that, as

shown in previous sections, depends doubly exponentially on the number of loops involved. Then, the

complexity of eliminating all redundant bounds in the EL-loops is the complexity of executing the FM

algorithm as many times as bounds must be checked. From now on, we will refer to the task of

eliminating all redundant bounds in the EL-loops as the Exact Simplification Phase.
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Simultaneous Multilevel Tiling reduces the cost of eliminating the redundant bounds in the

EL-loops (with respect to conventional implementations) for two reasons. On one hand, as previously

mentioned, it generates less redundant bounds and, therefore, less bounds must be checked for

redundancy.

On the other hand, the processing order of the loops in SMT (from innermost to outermost)

allows performing the Exact Simplification Phase just after the bounds of the innermost EL-loops

have been computed. Thus, the number of loops involved in each execution of the FM algorithm is

reduced compared to performing the Exact Simplification Phase at the end of the multilevel tiling

process.

Conventional techniques, however, compute the loop bounds in the final code from the outermost

to the innermost loop15. Therefore, redundant bounds in the innermost loops cannot be eliminated

until the multilevel tiling process has been finished. However, in conventional techniques, there are

two alternatives to eliminate the redundant bounds of the final EL-loops: we can perform the Exact

Simplification Phase at the end of the process (in this case all loops in the final code are involved in the

executions of the FM algorithm) or we can perform the Exact Simplification Phase every time that a

loop permutation is done (in this case the TI-loop iteration variables can be considered as constants

and only the current EL-loops are involved in the execution of FM). Although this second alternative

performs several times the Exact Simplification Phase, it is faster than the first one because, as

already mentioned, the complexity of the Fourier-Motzkin algorithm depends doubly exponentially on

the number of loops involved. Moreover, this second alternative avoids redundant bounds to be

propagated in later loop permutation transformations.

Figure 4.18 illustrates when the Exact Simplification Phase is performed in both SMT and

conventional implementations. For the conventional implementation we show the second alternative

just given. Assume that the order of the loops in the original code is K-J-I (from outermost to

innermost) and the desired loop order in the final tiled code is JJJ-III-KK-JJ-II-K-J-I. The white

boxes indicate, for each iteration of the multilevel tiling process, the loop or loops whose bounds have

been computed, and the grey ellipses indicate that the Exact Simplification Phase is performed at this

point. The loops inside the ellipses are the loops involved in the executions of the FM algorithm and

recall that only the bounds of the EL-loops are checked for redundancy. In a conventional

implementation, the Exact Simplification Phase is performed as many times as loop permutations and

only the EL-loops are involved in the executions of FM. In a SMT implementation the Exact

Simplification Phase is performed only once but with double number of loops involved in the

executions of FM.

IS.Recall from Section 4.2 that conventional techniques implement multilevel tiling by applying tiling level by level, going from
the outermost to the innermost level.
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Figure 4.18: Exact Simplification Phase(s) in (a) a conventional implementation and (b) SMT.

Although the number of loops involved in the executions of FM is larger in SMT, the complexity

of the overall process of eliminating the redundant bounds is smaller in SMT than in a conventional

implementation. As shown in Section 4.2 the number of bounds in the EL-loops can increase doubly

exponentially every time a loop permutation is performed in a conventional implementation.

Therefore, the number of bounds to be checked for redundancy is much larger in a conventional

implementation than in SMT. In the next section we will present some experimental results showing

that SMT is also better than conventional implementations in that it allows removing the remaining

redundant bounds in the innermost EL-loops at a much lower cost.
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4.7 COMPARING SMT vs. CONVENTIONAL TECHNIQUES

In this section we compare SMT against conventional multilevel tiling techniques in terms of

complexity, redundant bounds generated and cost of eliminating the remaining redundant bounds.

For that purpose, we have implemented both SMT and conventional multilevel tiling. We note that

both techniques were implemented such that they do not generate trivial redundant bounds.

Therefore, all redundant bounds generated by both techniques are non-trivial. We have also

implemented the Exact Simplification technique to measure the time required to eliminate the

remaining redundant bounds in the innermost loops. As benchmark programs, we have used 12 linear

algebra programs such as triangular matrix product, LU, Cholesky factorization, QR decomposition,

SOR, BlasS routines, etc. These loop nests are 3-deep and have 6 simple bounds with only one of them

being affine function of one surrounding loop iteration variable. The measures were taken on a

workstation with a SuperSPARC at 155 Mhz.

4.7.1 Complexity

Let's first see the significance of having a complexity that depends doubly exponentially on the

number of loops in the original loop nest rather than in the number of loops in the tiled code. The

worst-case complexity of both SMT and conventional implementations can be represented by a unique

function, namely:

f ( X , Y) =

where g is the number of simple bounds in the original code. Using this formula, the complexity of

SMT is given by f(n-I, m-n) and the complexity of a conventional implementation is given by

f ((m-n)-(n-V), 1), where n and m are the number of loops in the original and tiled code, respectively.

Suppose that we have a 3-deep loop nest with 6 simple bounds and we perform 3 levels of tiling,

obtaining an 8-deep tiled loop nest (that is, n=3, q=6 and m=8). For this particular example, the

complexity value of SMT is f(2,5) while that of a conventional implementation is £(10,1). In Fig. 4.19

we have plotted the curves £CX,1) and f(X,5), with ç fixed to 6 (note that they are overlapped) and we

have also marked with points the complexity values of SMT and a conventional implementation for

our particular example.

With this figure we want to outline that, even for small number of loops in the original code

(n=3), there can be a very big difference in compile time. Although the depths of typical loop nests are

usually small, after applying multilevel tiling the final loop nest has a larger number of loops. For

example, tiling a 3-deep loop nest for 3 levels can yield an 8- or 9-deep loop nest. Therefore, even for

small values of n, the SMT algorithm can perform much better than conventional techniques.



Simultaneous Multilevel Tiling 179

f(X,T>

10*500'

10MOO

10A300

10A200

10A100

Conventional
(3.7x10*488)

(m-n) (rt-1)

= f ( ( m - n ) - (n-1), 1)

-") '(j)

„n-l

= f (n- l , m-n)

8 10

Figure 4.19: Complexity of SMT and conventional implementations. f(2,5) and f(10,l) represent
CSMT an<i Own» respectively, for the values n=3, m=8 and q=6.

Loop nests found in practice hardly ever incur in the worst-case complexity. However, we will

next show that, for typical linear algebra programs, SMT significantly improves upon conventional

implementations. We have measured the compile time required by each implementation to update the

transformed code when tiling is applied, at different number of levels, for our benchmark programs.

Figure 4.20 shows the average compilation time (in milliseconds) required by each technique, varying

the levels of tiling from 1 to 4 (for each tile level we always partition two dimensions of the

3-dimensional iteration spaces). Also, Table 4.1 shows the average increment percentage of

compilation time of a conventional implementation over SMT. It can be seen that, as expected, SMT

behaves linearly with respect to the number of tile levels, while the conventional technique has an

exponential behavior. This difference is very important since, if the number of memory levels in future

architectures continues increasing, the ability to tile more levels will be critical to exploit the memory

hierarchy efficiently.
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Figure 4.20: Average compile time (in milliseconds) of a
conventional implementation and SMT for 12 linear
algebra loop nests, varying the levels of tiling from 1 to 4.

Levels of
Tiling

1

2

3

4

% increment
(conv vs. SMT)

55%

77%

125%

181%

Table 4.1: Average increment
percentage of compile time of a
conventional implementation over
SMT for different levels of tiling.

We also want to mention that for more complex loop nests, the difference in compile time is even

more significant. As an example, after restructuring the rank 2k update SYR2K from BLAS as

proposed by [84] to exploit both locality and parallelism, we obtain a 3-deep loop nest having 8 simple

bounds with one of them being an affine function that depends on two loop index variables. The

compile time of a conventional implementation is 10ms for one level of tiling and 32.67 seconds for

four levels, while the compile time of SMT is 3.17ms for one level and 13.8ms for four levels. In this

case, the compilation time increment of the conventional implementation over SMT varies from 215%

for one level to over 200000% for four levels. At this point we want to outline that codes with bounds

being affine functions that depend on two loop index variables, such as the SYR2K, are typically found

in linear algebra programs that use banded matrices or can arise as a result of applying

transformations such as loop skewing.

4.7.2 Redundant Bounds

Let's now present some data showing the number of redundant bounds generated by SMT and by

conventional techniques and the cost of eliminating these redundant bounds in the innermost loops

using the Exact Simplification technique in both implementations.

The FM algorithm used to compute the exact bounds of the loops can generate non-trivial

redundant simple bounds [5]. As shown in Section 4.6, our SMT implementation does not generate

some particular non-trivial redundant bounds, because it always computes the bounds of an EL-loop

before applying strip-clustering to the C-loops associated to not-yet-processed EL-loops.

Let's first present some results showing how SMT generates less redundant bounds than

conventional techniques. We have measured the total number of simple bounds generated by SMT and
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Figure 4.21: Average number of simple bounds generated by a
conventional implementation and by SMT for 12 linear algebra loop
nests, varying the levels of tiling from 1 to 4. We also show the
average number of bounds if we eliminate all redundant bounds.

Tue
levels

1

2

3

4

% redundant bounds

conv

17.1%

15.5%

14.2%

11.7%

SMT

5.2%

3.8%

2.4%

1.9%

Table 4.2: Average percentage of
redundant bounds over the total
number of bounds generated by a
conventional implementation and by
SMT, for different levels of tiling.

conventional implementations. Both implementations compute exact bounds, that means that, if we

eliminate all redundant bounds, both implementations obtain the same final code. Figure 4.21 shows

the average number of simple bounds in the final tiled code for the 12 programs, varying the levels of

tiling from 1 to 4. We also show the average number of bounds if we eliminate all redundant bounds in

the codes. It can be seen that SMT always generates less simple bounds than a conventional

implementation and it almost does not generate redundant bounds. Table 4.2 shows the average

percentage of redundant bounds over the total number of bounds generated by a conventional

implementation and by SMT. For these loop nests, a conventional technique generates around 14% of

redundant bounds while SMT only generates around 3.5%.

Again, we want to note that, for more complex loop nests such as SYR2K, the number of

generated bounds in a conventional implementation can explode in an exponential manner. For the

SYR2K example, the conventional implementation generates 61 simple bounds for one level of tiling

and 2511 for four levels, while SMT only generates 24 for one level and 132 for four levels. Moreover,

in this case, the percentage of redundant bounds over the total number of bounds generated by a

conventional implementation varies from 60.6% for one level of tiling to 94.7% for four levels.

However, using the SMT implementation, there is 0% of redundant bounds in the tiled code. Thus, for

certain classes of loop nests, the number of generated (redundant) bounds in a conventional

implementation can increase significantly.

As already mentioned, the presence of redundant bounds in the tiled code is negative if the

register level is being exploited and, therefore, the elimination of redundant bounds, at least in the

innermost loops, is important to generate efficient code and to reduce compile-time when the register

level is being exploited. We have also measured the compile time required to eliminate these
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Figure 4.22: Average compile time (in milliseconds) required to
compute the bounds and eliminate the redundant bounds of the
innermost loops using the Exact Simplification technique in SMT
and in a conventional implementation, for 12 linear algebra loop
nests and varying the levels of tiling from 1 to 4.

Levels of
Tiling

1

2

3

4

% increment
(conv+ES vs. SMT+ES)

119%

216%

525%

1006%

Table 4.3: Average increment
percentage of compile time of conv+ES
over SMT+ES for different levels of
tiling.

redundant bounds using the Exact Simplification technique. For that purpose we integrated the Exact

Simplification technique in both SMT and conventional implementations and we measured the compile

time required to both compute the bounds and eliminate the redundant bounds of the innermost loops.

As mentioned in Section 4.6, the Exact Simplification Phase (ES) in SMT is performed just before the

bounds of the TI-loops are going to be computed and, in conventional techniques, it is done every time

that a loop permutation is performed.

Figure 4.22 shows the average compile time required by each new implementation (SMT+ES and

conv+ES), varying the levels of tiling from 1 to 4 and, Table 4.3 shows the average increment

percentage of compile time of conv+ES over SMT+ES. It can be seen that SMT+ES is significantly

better than conventional techniques (SMT+ES is between 2.2 and 11 times faster than conv+ES) and,

again, SMT+ES behaves linearly with respect to the number of tile levels, while the conventional

technique has an exponential behavior. Thus, SMT is also better than conventional implementations

in that it allows removing the remaining redundant bounds in the innermost loops (using the Exact

Simplification technique) at a much lower cost.

4.8 RELATED WORK

There has been much research regarding loop tiling [23] [27] [28] [98] [110] [122], that has been mostly

focused on locality analysis (which loops have to be tiled and which is the loop order that yields best

performance). Nonetheless, authors do not usually explain how the tiled loop nest is generated and

the cost of computing the bounds of the tiled loop nest are not usually given. This cost analysis is very
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important in order to determine if multilevel tiling is cost-effective enough to be implemented in a

commercial compiler.

Several studies propose techniques to implement tiling for only one level. Multilevel tiling is

then implemented by applying tiling level by level [28] [121], These techniques have very large

complexities because they waste time computing loop bounds that will later be changed. For each level

they compute the bounds of the TI and EL-loops. The bounds of the EL-loop, however, will be changed

when tiling is applied in the next level. In this chapter, we have presented an implementation of

multilevel tiling that deals with all levels simultaneously and that has a lower complexity.

M. Wolf and M. Lam in [123] present a method for determining the bounds of a loop nest after

applying a unimodular transformation. The cost of the algorithm is linear in the number of loops and

in the number of simple bounds. However, the resulting loop nest may contain redundant simple

bounds and the loop bounds are not exact. When the register level is exploited using Index Set

Splitting, redundant simple bounds produce a code explosion that can even prevent actual generation

of the final code.

C. Ancourt and F. Irigoin in [7] propose a method to compute the exact loop bounds after tiling at

one level but they do not evaluate precisely the complexity of their algorithm. If the method is

extended directly to handle multilevel tiling, its complexity depends doubly exponentially on the

number of loops in the tiled loop nest, while ours depends doubly exponentially on the number of loops

in the original code. Their method works for any kind of tile shape while ours is restricted to

rectangular tiles. However, most studies that focus on selecting an optimal tile shape typically end up

using rectangular-shaped tiles, so we do not view this restriction as a shortcoming.

The presence of redundant bounds in the multilevel tiled code can be negative if the register

level is being exploited. To eliminate redundant bounds, several researchers [5] [7] [16] propose the use

of the Exact Simplification technique to eliminate all redundant bounds present in a loop nest. This

technique is very time-consuming and could sometimes be not feasible to be implemented in a

compiler. Our implementation of SMT generates less redundant bounds than traditional

implementations and allows eliminating the remaining redundant bounds in the innermost loops

(using the Exact Simplification technique) at a much lower cost than conventional implementations.

Finally, we note that A. Bik and H. Wijshoff in [16] and S. Amarasinghe in [5] present other

low-cost methods to eliminate special non-trivial redundant simple bounds of a general loop nest.

These methods can be used before the Exact Simplification Phase to reduce the number of bounds in

the nest and therefore to reduce the cost of this phase.
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4.9 SUMMARY

To improve the performance of a program the compiler usually applies multilevel tiling to maximize

the effectiveness of the memory hierarchy and/or to reduce communication between processors.

Moreover, the number of memory levels in today's and future computer architectures is continuously

increasing and, thus, the ability to tile more memory levels is critical to exploit the memory hierarchy

efficiently. Conventional techniques implement multilevel tiling by applying tiling level by level and

their complexity depends doubly exponentially on the number of loops in the multilevel tiled code.

This fact makes these techniques extremely costly when dealing with non-rectangular loop nests and

when tiling for several levels.

In this chapter we have presented a new algorithm (SMT) to compute the exact loop bounds in

multilevel tiling. We have first explained the theory to be able to perform multilevel tiling dealing

with all levels simultaneously, and then we have proposed an efficient implementation of the

technique, whose complexity depends doubly exponentially on the number of loops in the original loop

nest; that is, it is proportional to the complexity of performing a loop permutation in the original code

and thus, it is cost-effective enough to be implemented in a compiler. This is a very important

achievement since, for example, it is very common to have 3-deep loop nests that have to be tiled in 3

levels (registers, cache and parallelism). This 3-deep loop nest turns into an 8-deep (or more) loop nest

when multilevel tiling is applied. The complexity of our SMT algorithm is doubly exponential in 3

rather than in 8 (or more), which makes a big difference in compile time.

Further, the elimination of redundant bounds in the innermost loops is important to generate

efficient code and to reduce compile-time when the register level is being exploited. We have also

shown that the SMT algorithm avoids the generation of some particular non-trivial redundant simple

bounds and allows eliminating the remaining redundant bounds efficiently.

Finally, we have compared our implementation of SMT against traditional techniques in terms

of complexity, redundant bounds generated and cost of eliminating the remainder redundant bounds.

We have shown that SMT is between 1.5 and 2.8 times faster than conventional implementations for

simple non-rectangular loop nests, but it can be even 2300 times faster for more complex loop nests

that are commonly found in linear algebra programs using banded matrices.

Moreover, experimental results also show that SMT generates less redundant bounds than

conventional implementations and eliminating redundant bounds in a multilevel tiled code generated

with SMT is between 2.2 and 11 times faster than in a code generated with conventional techniques.

This is an important issue if the register level is being exploited. Overall, the efficiency of SMT makes

it possible to integrate multilevel tiling including the register level in a production compiler without

having to worry about compilation time.
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MULTILEVEL TILING EVALUATION

Summary
This chapter is divided into two parts. In the first part, we present a detailed evaluation of loop

tiling. We discuss and evaluate the effect of tiling for one memory level (either cache or registers)

and then we study tiling for multiple memory levels. In the second part of this chapter, we compare

our automatically-optimized codes against hand-optimized codes. The comparison shows that

compiler technology can in most cases match the performance of hand-written vendor-supplied

numerical libraries and that complex numerical codes are also able to achieve high performance on

modern microprocessors.

185



186 CHAPTER 5

5.1 INTRODUCTION

In Chapter 1, we showed that despite all the effort put into current compilers to achieve high

performance in numerical codes, hand-optimized codes still outperform them. Moreover, the

performance difference between hand-optimized codes and automatic-optimized codes is more

noteworthy in complex numerical codes (loop nests defining non-rectangular iteration spaces). For

non-rectangular loop nests, current compilers are not able to perform multilevel tiling and, thus, high

performance is not achieved. The goal of this thesis was to show that multilevel tiling can also be

applied to loops defining non-rectangular iteration spaces so that they achieve high performance on

modern microprocessors. We bet for loop tiling to be the transformation that allows us to achieve high

performance, because it is capable to achieve the three main optimizations required in modern

microprocessors:

• improves a program's ILP, when it is applied at the register level,

• exploits data reuse in several dimensions of the iteration space and

• enhances data locality at several memory levels simultaneously (multilevel tiling).

In Chapter 3 and Chapter 4, we developed the compiler algorithms for applying multilevel tiling

to non-rectangular loop nests. In this chapter, we will show that these algorithms can make possible

that complex numerical codes achieve high performance on modern microprocessors.

This chapter is divided into two parts. In the first part, we will discuss the effects of tiling for

different memory levels and we will also present quantitative data comparing the benefits of tiling

only for the register level, tiling only for the cache level and tiling for both levels simultaneously. Since

this thesis focuses on complex numerical codes, we use typical linear algebra algorithms having

non-rectangular iteration spaces as benchmark programs. However, we note that the conclusions that

we will draw out from this first part of the chapter also hold for loop nests defining rectangular

iteration spaces.

In the second part of this chapter, we compare our automatically-optimized codes against the

vendor hand-optimized codes and we show how compiler technology can make it possible for complex

numerical codes to achieve high performance on modern microprocessors. More precisely, we will

compare our automatically-optimized codes against the BLAS3 library1 [38] [39] on two different

architectures, the ALPHA 21164 and the MIPS R10000.

l.The BLAS3 library provides a set of standard linear algebra operations which are highly optimized for each specific machine.
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The remainder of this chapter is organized as follows: In Section 5.2 the effects of tiling for

different memory levels are explained. Section 5.3 shows the evaluation process used in the following

section. Section 5.4 presents quantitative data showing the benefits of tiling only for the register level,

tiling only for the cache level and tiling for both levels simultaneously. In Section 5.5 we compare our

automatically-optimized codes against the vendor hand-optimized codes. Finally, Section 5.6 presents

the previous work related to memory hierarchy evaluation and in Section 5.7 we summarize this

chapter.

5.2 EFFECTS OF LOOP TILING

Tiling is a loop transformation that has been mostly used to exploit data reuse at the different memory

levels. Loop tiling exploits data reuse in several dimensions of the iteration space and enhances data

locality at several memory levels simultaneously. Exploiting data reuse in more than one dimension of

the iteration space, whenever possible, improves the performance of the memory hierarchy [121]. In

particular, previous work on tiling stated that if in a n-dimensional iteration space all loops carry

reuse, then n-1 loops should be tiled [97]. Not tiling one loop that carries data reuse and establishing

a proper order of the inner loops yields bigger tile sizes and, therefore, more data locality than tiling

all loops that carry reuse.

To exploit data reuse in several levels of the memory hierarchy simultaneously, Multilevel Tiling

has to be performed. As shown in Chapter 4, Multilevel Tiling consists in recursively applying tiling to

each level by dividing a tile of a higher level into subtiles [28] [98] [121]. Each level of tiling exploits one

level of the memory hierarchy. When multilevel tiling is performed, the interaction between different

levels must be considered. In this section, we present the effects of tiling for the register level, tiling

for the cache level and tiling for both cache and register levels simultaneously.

5.2.1 Tiling for the Register Level

Tiling for the register level provides two different advantages: first, it exploits registers reuse and,

second, it improves the intra-iteration ILP.

By tiling for the register level, values of recent memory access are held in registers so that data

can be reused without accessing memory. Thus, data reuse at the register level essentially translates

into a reduction of the number of load/store instructions. An important consequence of reducing the

number of loads and stores instructions is an improvement in loop balance. Tiling for the register level

improves the performance of memory-bound loops by converting them into balanced or compute-bound

loops. Moreover, reducing the number of load/store instructions reduces the pressure on the fetch unit,

reduces data memory traffic and, indirectly, might also decreases data cache misses. Futhermore, it

can also lead to a reduction of the critical path length.
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(a) Before tiling for the register level
doj = 1,N

doK = 1,N
do 1 = 1, N

C(l,j) = C(I,J) + A(I,K) * B(K,J)
enddo

(b) After tiling for the register level
do JJ = 1 , N, BJJ

do II = 1, N, Bn

RR1=C(ll,JJ)

RRn=
doK = 1,N

RR1 = RR1 + A(II,K) * B(K,JJ)

RRn = RRn + A(Il+Bir1 ,K) * B(K,JJ+Bjj-1)
enddo

-I ,JJ+Bjj-1)=RRn
enddo

Figure 5.1: Code of the square matrix product (a) before tiling for the register level and (b) after
tiling for the register level, being K the non-tiled direction.

The second goal of tiling for the register level is to improve the ILP of the original loop nest by

merging different iterations of the original loop body in a new, larger, loop body. In single loops,

compilers can exhibit inter-iteration ILP by performing software pipelining and/or unrolling the loop.

Nonetheless, they are limited by the recurrences of the loop body. In nested loops, however, there are

more opportunities to expose ILP. In particular, tiling in more than one dimension for the register

level always exposes ILP, regardless if the unrolled loops add new dependences or not in the new loop

body. These two facts (exploiting register reuse and improving ILP) were illustrated in Chapter 3

(Section 3.3).

We have reviewed so far the benefits of tiling for the register level. However, tiling only for the

register level has a drawback when dealing with large problem sizes. For large problem sizes, register

tiling can heavily increase the overall TLB (Translation Lookaside Buffer) misses if spatial locality is

not properly exploited, resulting in a performance degradation. More precisely, if there is at least one

array reference that is traversed in row major order by the non-tiled loop, for these references spatial

locality is not being exploited2, and this fact makes TLB misses increase considerably.

To illustrate this increase in TLB misses we will use as an example the square matrix product

code (Fig. 5. la). We use a rectangular loop nest, instead of a non-rectangular loop nest, because the

ulerease in TLB misses is caused by the data access patterns and not by the iteration space shape.

This way, we simplify the explanation and the following figures.

2.We assume that programs are written in FORTRAN, that stores matrices in column major order.
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(a) Before tiling for the register level (b) After tiling for the register level

Figure 5.2: Data and Computation Diagram for the square matrix product, (a) before tiling for the
register level, and (b) after tiling for the register level, being K the non-tiled direction.

To maximize register reuse, we will choose loop K as the non-tiled loop in the matrix product

code. Note that one load and one store instruction (the references to C(l,J) (read) and to C(l,J) (write))

will be saved if loop K is the innermost loop in the nest. However, only one load instruction (the

reference to A(l, K) or to B(K, J)) would be saved if loop J or loop I were the innermost loop in the nest.

Thus, the loop that carries most temporal reuse is loop K. The tiled code of the matrix product is shown

in Fig. 5.1b. BZI and BJJ are the tile sizes in dimensions I and J, respectively, and, for simplicity, we

assume N to be multiple of BXI and BJJ.

To show the iteration space and the data access patterns before and after tiling for the register

level (Fig. 5.2a and Fig. 5.2b, respectively), we use the Data and Computation Diagram (DCD)

proposed in [98] as a very powerful visual tool to understand and to design multilevel tiled algorithms.

In this diagram, the rectangular parallelepiped represents the iteration space, with the operations in

the inside and the data in the faces or in planes parallel to these faces. The arrows indicate the order

in which the data are accessed and the operations performed. To clarify data positions in this DCD,

the elements A(l,l), B(l,l) and C(l,l) are represented in dark. The darkened portions in Fig. 5.2b

show the matrix elements stored in registers at a given moment of the execution of the algorithm.

From the DCD, it is apparent that matrix A can be reused in direction J (all iterations of loop J use the

same element of A), matrix B can be reused in direction I and matrix C in direction K.

Before tiling for the register level and assuming the loop order J-K-I as shown in Fig. 5.2a, the

three matrices A, B and C are accessed in column major order, thus exploiting spatial locality. The

same element B(K,J) is used by all iterations of the innermost (I) loop; it can be register allocated and

is fetched from memory only once. The same column of C accessed in the innermost loop (l) is reused

in the next iteration of the middle (K) loop, and the same column of A is reused in the outermost (J)

loop. Let's assume that the problem size (N) is so large that one page can only hold one matrix column.

Unless the TLB has more than N+2 entries, there will be a TLB miss every time a column of A is

reused. Thus, the number of TLB-misses in Fig. 5.2a is N2+N+N.
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After tiling for the register level as shown in Fig. 5.2b, the data access patterns have changed. In

this case, the Bi:rxBjj elements of C referenced in a register tile are reused by all iterations of the

innermost (K) loop; they are register allocated and are fetched from memory only once. The same Baj

columns of B accessed in the innermost loop (K) are reused in the next iteration of the middle (II) loop,

and the same BXI elements of one column of A are reused in the next iteration of the outermost (jj)

loop. Moreover, references to the same column of A occur in each iteration of the middle (II) loop.

Thus, unless the TLB has more than N+2*Bjj entries, there will be a TLB miss every time a column of

A is referenced. The number of TLB misses in Fig. 5.2b is (N3/(BII*BJJ))+N+N) which is about N times

greater (assuming BXI, Bjj«N) than the non-tiled case. This high number of TLB misses can

significantly degrade machine performance, since TLB misses have a large miss penalty.

Summarizing, tiling only for the register level exploits registers reuse and improves ILP.

However, it can heavily increase the overall TLB misses if spatial locality is not properly exploited. We

will see later in this chapter that this TLB problem can be solved by performing tiling for two memory

levels, cache and registers.

5.2.2 Tiling for the Cache Level

For the cache level, tiling is effective for reducing the capacity cache miss rate and thus, potentially

improving average memory access time. Moreover, it allows to state predictable latencies in memory

instructions which can sometimes help in improving instruction scheduling. If a program is memory

bound and a great portion of its total execution time is due to cache misses, then tiling for the cache

level will be advantageous.

Let's illustrate how loop tiling enhances data locality at the cache level, using the square matrix

product program (Fig. 5. la and Fig. 5.2a). In this code, the same column of C is used repeatedly by

iterations of the middle (K) loop. If N is large relative to the cache size, so that an entire column of an

array does not fit into the cache, then elements of the column may not be in the cache between reuses.

For the A matrix, reuses of array elements occur in the outermost (j) loop. Between reuses of elements

in A, the whole array is brought into the cache, which means that references to A will not hit in the

cache. Whether the data remains in the cache at the time of reuse depends on the size of the cache.

Unless the cache is large enough to hold at least one NxN matrix, the data from A will have been

displaced before reuse. If the cache cannot hold even one column of the NxN matrix, then C data in the

cache will also not be reused. In this latter case (worst case), 2N3+N2 words of data need to be read

from main memory in N3 iterations. This high ratio of memory fetches to numerical operations can

significantly degrade machine performance, since memory fetches are of high latency.

Loop tiling alters the order in which individual iterations are executed so that iterations from

loops of the outer dimensions are executed before completing all the iterations of the inner loop. Thus,

the distance between successive references to the same memory location is shortened and the
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do ii=1, N,

enddo

do J = JJ, min(N, jj+Bjj-1)
do i = ix, min(N, ll+Bjj-1)

T) = C(i,j) + A(i,K) * B(K,J)

(a)

Figure 5.3: (a) Code of matrix product after tiling for the cache level, (b) Data and Computation
Diagram for the matrix product after tiling for the cache level.

probability of finding the associated data in the cache is higher. Figure 5.3a shows the matrix product

program after tiling for the cache level and Fig. 5.3b shows its corresponding BCD. The darkened

portions show the matrix elements stored in cache at a given moment of the execution of the

algorithm. The selection of the tile size BXI x Bja must attempt to maximize the cache utilization

while eliminating (or reducing) self and cross interferences within the tile [31] [42] [80].

If BJJ and BJJ are chosen properly, the submatrix of C referenced inside a tile fits in the cache

and can be reused over and over. Tiling for the cache level allows all three matrices to have excellent

reuse; ignoring interferences in the cache, the total main-memory words accessed will be

(N3/BII)+(N3/BjJ)+N2, which is an improvement of about a factor of BIZ (assuming BjjsBjj) over the

non-tiled case.

Finally, we want to point out two issues related to the TLB when tiling is applied for the cache

level. First, the TLB size must be considered when selecting the tile size at the cache level

[90] [91] [98]. In particular, the number of TLB entries used by all data referenced inside a tile must not

exceed the TLB size. In the example above, Baj columns of B, Bjj columns of C and one column of A

are referenced inside a tile. Therefore, 2*Bjj+1 must be smaller than the number of TLB entries

(assuming one page can only hold one matrix column). If not, there will be a TLB miss in each

iteration of the innermost EL-loops (loops J and I in Fig. 5.3), degrading machine performance

significantly.

Second, as it happened for the register level, tiling only for the cache level can increase the

overall TLB misses (with respect to the non-tiled code), if there is at least one array reference that is

traversed in row major order by the non-tiled loop. In the example above, the number of TLB misses is

(N3/(BII*BJJ))+N+N, which is about N/(BII*BJJ) times greater than the non-tiled case (assuming

N>BII*BjJ). However, the tile sizes for the cache level are much larger than the tile sizes for the

register level and thus, this increase in overall TLB misses is not as significant as it was at the

register level. Note that, if the factor N/fBj^Bjj) is less than 1, then the overall TLB misses of the

tiled code will decrease with respect to the non-tiled code.
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doJJJ=1,N, Bjjj
doKKK= 1, N, BRRR

doiI = 1,N, BIT

do JJ = JJJ, JJJ+Bjjj-1 ,
RR1=C(II,JJ)

RRn=
do K = KKK,

RR1 = RR1 + A(il,K) * B(K,JJ)

RRn = RRn + A(il+Bir1,K) * B(K,JJ+Bjj-1)

enddo
C(n,jj)=RR1

j-1 )=RRn
enddo (a)

Figure 5.4: (a) Code of matrix product after tiling for cache and register levels, (b) Data and Computation
Diagram for the matrix product after tiling for both levels.

5.2.3 Tiling for the Cache and Register Levels

When multilevel tiling is performed, the interaction between different levels must be considered

[29] [90]. Achieving the optimization of only one level of the hierarchy is simple, whereas the overall

optimization for several levels is complex. In [97] [98], Multilevel Orthogonal Block (MOB) forms are

proposed to achieve a high degree of data reuse in all levels of the memory hierarchy. The basic rule in

the construction of a MOB form is that the direction of blocks in adjacent levels should be different.

The direction of a block is determined by the loop that is not tiled for this level. The orthogonality

property of the MOB forms allows a "sequential" optimization to determine the order in which tiles are

traversed and the size of the tiles level by level, beginning with the lowest level.

As an example, Fig. 5.4a shows the code of the matrix product program after tiling for cache and

register levels using a MOB form and Fig. 5.4b shows its corresponding BCD. The grey portions show

the matrix elements stored in cache at a given moment of the execution of the algorithm and the black

portions show the matrix elements stored in registers. At the register level, loop K should be the

non-tiled loop for maximizing register reuse. Then, to maximize the cache utilization, loop I has been

selected as the non-tiled loop at this level. Note that MOB forms require loop K to be tiled at the cache

level. BJJJ and BKKK are the tile sizes for the cache level in dimensions J and K, respectively, and, BIX

and BJJ are the tile sizes for the register level. For simplicity, we assume N to be multiple of the tile

sizes and BJja to be multiple of BJJ.
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Tiling only for Register Level

• improves ILP

• reduces load/store instructions

X can increase TLB misses

Tiling only for Cache Level

• reduces capacity cache misses

Tiling for Cache and Register Levels

• reduces capacity cache misses

• improves ILP

• reduces load/store instructions

• moderates TLB misses

Figure 5.5: Effects of tiling for cache and register levels.

We have seen so far that tiling for the register level is effective to reduce memory instructions

and to improve ILP, but it can significantly increase TLB misses. We have also seen that tiling for the

cache level is effective for reducing cache misses. When tiling is performed for both levels

simultaneously, we achieve both types of benefits. Moreover, we achieve another goal: TLB misses are

moderated. This last goal is a consequence of using MOB forms.

Using these forms, all directions of the iteration space are bounded from the point of view of the

register level, because the non-tiled direction at the register level must be tiled at the cache level.

Thus, if the tile sizes at the cache level are properly chosen (considering the TLB size), the multilevel

tiled code will not perform more TLB misses than the code tiled only for the cache level. Thus, TLB

misses are moderated. In the example of Fig. 5.4 (assuming one page can only hold one matrix column

and 2*Bjjj+BKKK is smaller than the number of TLB entries), the overall TLB misses is

(N2/Bjjj)+N+N, which is about BJJJ times smaller than for the non-tiled case. Note that, in this case,

there is no array reference that is traversed in row major order by the non-tiled loop selected for the

cache level and thus, the overall TLB misses decrease (with respect to the non-tiled code).

To conclude this section, we have summarized in Fig. 5.5 the effects of tiling for cache and

register levels. In the remainder of this chapter we present quantitative data showing all these effects.



194 CHAPTERS

Ref

[57]

[122]

[27]

[121]

BLAS
[39]

Name

MMtri

LU

CHOL

OR

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

Description

Triangular matrix product

LU decomposition without pivoting

Cholesky factorization

Givens QR-decomposition

symmetric rank 2k update

symmetric rank k update

symmetric matrix-matrix operation

product of triangular and square matrix

solve a matrix equation

perfect
nested

Yes

No

No

No

Yes

Yes

No

Yes

No

affine
bounds

2

2

2

2

1

1

1

1

1

Table 5.1: Description and characteristics of our benchmarks programs.

5.3 EVALUATION PROCESS

In this section, we will present our evaluation process. First, we describe the set of programs used as

benchmarks; second, we give the main characteristics of the architectures where our measurements

were taken; and third we describe how the different versions of the programs were generated.

5.3.1 Benchmarks Programs

Since this thesis focuses on non-rectangular loop nests, we have used as benchmark programs 9 linear

algebra algorithms having non-rectangular, 3-dimensional iterations spaces. Table 5.1 contains the

characteristics of each of them. Column labeled "Ref indicates from where the algorithms were

extracted. Five of them were extracted from the BLÁS3 library [38] [39], and the others were taken

from several papers in the literature [27] [57] [121] [122]. The third column gives a short description of

the operation performed by each algorithm. The fourth column indicates whether the loops being

transformed were perfectly nested or not. As pointed out in Chapter 2 (Section 2.3.3), for those

programs having non-perfectly nested loops, we transformed them into a perfectly nested version

using a code sinking transformation that was undone after loop tiling. Column labeled "affine bounds"

indicates the total number of bound components in the original code that are affine functions of the

surrounding loops iteration variables. The other bound components are integer or symbolic constants.

Finally, we point out that, in program QR, we were forced to apply loop skewing, before tiling, to

convert the loops into a fully permutable loop nest [121].



Multilevel Tiling Evaluation 195

Architecture

ALPHA
21164

MIPS
R10000

MHz

266

250

issue rate
(instr/cycle)

4
(in-order)

4
(out-of-order)

L/Sper
cycle

2/1

1/1

int/fp
units

2/2

2/2

int/fp
regs

32/32

32/32

Ll-cache

8KB
direct mapped

32KB
2-way

Luì-cache

96KB
3-way

4MB
2-way

TLB
entries

64

64

Page
size*

8KB

2xl6KB

*. On the MIPS processor, one TLB entry maps two consecutive pages of 16KB.

Table 5.2: Characteristics of the architectures ALPHA AXP 21164 and MIPS RlOOOO.

5.3.2 Target Architectures

All our measurements were taken on a uniprocessor system3 with an ALPHA 21164 processor [15] and

on a single RlOOOO processor [130] of a multiprocessor system4 (SGI Origin 2000 [81]). The two

different architectures are shortly described in Table 5.2. Note that the peak performance on the

ALPHA processor is 532 Mflop/s and on the MIPS processor is 500 Mflop/s.

5.3.3 Code Generation

In Section 5.4 we will present quantitative data showing the effects of tiling only for the register level,

tiling only for the cache level and tiling for both levels simultaneously. For that purpose, we evaluate

four different versions of each program: one is the original version (UnOpt) with no restructuring

transformation applied to it. The second one is the original code after tiling only for the register level

(TRL). The third one corresponds to tiling only for the cache level (TCL) and the fourth one is the code

after tiling for both cache and register levels (TCRL).

The versions TRL, TCL and TCRL of the codes were produced using our own developed tool that

implements the method proposed in Chapter 3 to perform tiling for the register level and the

technique proposed in Chapter 4 to compute exact loop bounds when multilevel tiling is applied. We

note that this tool is able to manipulate symbolic expressions [5] [6]. After generating the different

versions for each program, we used the standard Fortran 77 compiler5 to generate the final

executables. Since we want to compare the effects of tiling for the different memory levels, the F77

compiler was used with the highest scalar optimization level that did not perform neither loop nest

transformations nor software pipelining (-04 on the ALPHA and -O2 on the MIPS). However, we note

that, at these optimization levels, the F77 compiler unrolls the innermost loop when the loop body has

a small number of operations in order to increase the instruction level parallelism.

3-The uniprocessor system runs version 4.0 of the DEC OSF/1 operating system.
4.The multiprocessor system runs version 6.5 of the IRK64 operating system.
S.Version 4.1 of Digital Fortran on the ALPHA processor and version 7.2.1 of MlPSpro Compiler on the MIPS processor.
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For the tiled versions (TRL, TCL and TCRL), we always tile, for each level, two dimensions of the

3-dimensional iteration spaces [98]. The non-tiled loop at the register level was selected using the

heuristic proposed in Section 3.4.3 of Chapter 3. Tile sizes were chosen taking into account the

available number of machine registers in order to reduce the register pressure and not overly

constrain the job of the register allocator of the native compilers. When tiling for two levels (cache and

registers) MOB forms were used. Thus, the non-tiled loop at the cache level is always one of the tiled

loops at the register level. We select the one that provides better data locality. The tile sizes for the

cache level were selected considering the available number of TLB entries and were such that less

than 60% of the cache was used [31] [80] [97]. For the TCL version we use the same cache tiling

parameters (tile sizes and non-tiled loop) as for the TCRL version. Finally, we want to stress that our

goal is not finding the optimum tile sizes and shape for each level, but showing the effects of tiling for

different memory levels. In particular, we want to show the additional benefit that can be achieved by

tiling for the register level. Hence, we use the same tiles (size and shape) for different problem sizes

and do not evaluate problem sizes that produce maximum self interference.

For the UnOpt version we always select the loop order that achieves, in average, the best

performance. It is worth nothing that the best loop order for small problem sizes that fit in the cache

level cannot be the best loop order for large problem sizes.

Table 5.3 summarizes for each program the tiled dimensions selected for the cache and register

levels as well as the order of the loops used in our measures. For each program we show: the original

loop order used in the UnOpt version (column 2), the tiled dimensions for the register level and their

corresponding tile sizes (column 3), the loop order in the TRL version (column 4), the tiled dimensions

for the cache level and their corresponding tile sizes (column 5), the loop order in the TCL version

(column 6) and finally, the loop order in the TCRL version (column 7). In column 5 we give two

different tile sizes, because our target architectures have different cache sizes. The tile sizes used on

the ALPHA processor are labelled with "A" and the tile sizes used on the MIPS processor are labelled

with "M". We use the iteration variables IR, JR and KR for the tile loops at the register level and 1C, JC

and KG for the tile loops at the cache level. The loops that are fully unrolled when tiling does include

the register level are marked in bold. Finally, Table 5.4 shows how arrays are referenced in the main

loop body of the original codes6 and recall that Appendix C shows the original code of all our

benchmark programs.

6.For the non-perfectly nested programs (LU, CHOL, QR, SSYMM and STRSM), we are not showing the additional statements
outside the innermost loop.
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Prog

MMtri

LU

CHOL

QR

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

Original
loop
order

(UnOpt)

K-J-I

K-J-I

K-J-I

J-K-I

K-J-I

K-J-I

J-I-K

K-J-I

K-J-I

Register Level

tile sizes

(Jxl)-(4x4)

(Jxl)-(4x4)

(Jxl)-(4x4)

(IxK)-(3x6)

(KxJ)-(4x4)

(KxJ)-(6x3)

(Jxl)-(2x4)

(Jxl)-(4x4)

(Jxl)-(4x4)

loop order
(TRL)

JR-IR-K-J-I

JR-IR-K-J-I

JR-IR-K-J-I

IR-KR-J-I-K

KR-JR-I-K-J

KR-JR-I-K-J

JR-IR-K-J-I

JR-IR-K-J-I

JR-IR-K-J-I

Cache Level

tile sizes

(JxK)-(24x24)A
(64x64)M

(JxK)-(24x24)A
(64x64)M

(KxI)- (36x32)A
(64x64)M

(KxJ)-(12x20)A
(54x60)M

(KxI)-(12x24)A
(40x60)M

(KxI)- (36x32)A
(66x64)M

(JxK)-(8x28)A
(40x60)M

(JxK)-(24x24)A
(64x64)M

(JxK)- (24x24)A
(64x64)M

loop order
(TCL)

JC-KC-I-J-K

JC-KC-I-J-K

KC-IC-J-K-I

KC-JC-I-K-J

KC-IC-J-K-I

KC-IC-J-K-I

JC-KC-I-J-K

JC-KC-I-J-K

JC-KC-I-J-K

Both Levels

loop order
(TCRL)

JC-KC-IR-JR-K-J-I

JC-KC-IR-JR-K-J-I

KC-IC- JR-IR-K-J-I

KC-JC-IR-KR-J-I-K

KC-IC-JR-KR-I-K-J

KC-IC-JR-KR-I-K-J

JC-KC-IR-JR-K-J-I

JC-KC-IR-JR-K-J-I

JC-KC-IR-JR-K-J-I

Table 5.3: Tiled dimensions, loop order and tile sizes selected at each level for each benchmark program.
Cache tile sizes are given both for the ALPHA (A) and for the MIPS (M).

Program

MMtri

LU

CHOL

QR

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

Main Loop Body

C(I,J)=C(I,J)+A(I,K)*B(K,J)

A(I,J)=A(I,J)-A(I,K)*A(K,J)

A(I , J)=A(I , J)-A(I ,K)*A( J,K)

T1=A(J-I-1,K)
T2=A(J-I,K)
A(J-I-1,K)=C(I,J)*T1-S(I,J)*T2
A(J-I,K)=S(I,J)*T1+C(I,J)*T2

C(I,J)=C(I1J)+B(J,K)*A(I,K)+A(J,K)*B(I,K)

C(I,J)=C(I,J)+A(J,K)*A(I,K)

C(K,J)=C(K,J)+A(K,I)*B(I,J)
C(I,J)=C(I,J)+A(K,I)*B(K,J)

B(I,J)=B(I,J)+A(i,K)*B(K,J)

B(I,J)=B(I,J)-A(I,K)*B(K,J)

Table 5.4: Main loop body of the original code for each
benchmark program.
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5.4 PERFORMANCE EVALUATION

In this section we present quantitative data showing the effects of tiling for two different memory

levels, the cache and register levels. In particular, for the four program versions mentioned previously,

we will show (1) the performance that can be achieved, (2) the number of load/store instructions

executed, (3) the number of cache misses and (4) the number of TLB misses. All these measurements

will be presented both for the ALPHA 21164 and the MIPS R10000.

Performance

We start showing the performance obtained on both processors by the four versions of our benchmark

programs. We will use the MFLOP/s metric as our indicator of performance and we recall that

operations such as DIV and SQRT, that appear in statements outside the innermost loop in programs

LU, CHOL, QR and STRSM (see Appendix C), are counted as only one operation.

Figures 5.6 and 5.7 present results for small-to-medium problem sizes7 (from 10 to 100) and

Figures 5.8 and 5.9 present results for medium-to-large problem sizes (from 100 to 1500) on the

ALPHA and MIPS processors, respectively.

Let's first point out some program's behaviors for small-to-medium problem sizes where data

does fit into the cache level. As it can be seen on both processors, the behavior of the four versions in

all programs is similar. First, TRL and TCRL achieve more or less the same level of performance.

Thus, the extra loop overhead of TCRL with respect to TRL has not a significant effect on processor

performance. Only in program SSYRK and on the MIPS processor (Fig. 5.7), there is a noticeable

difference. However, this performance difference is not due to the extra loop overhead of TCRL. We

have inspected the assembler codes of TRL and TCRL generated by the MIPS compiler and we have

found that it generates different code for the main loop body8 for each version. While the main loop

body in TRL was scheduled in 25 cycles, the main loop body in TCRL was scheduled in 26 cycles. We

note that the main loop body is exactly the same in both versions.

Second, the performance of TRL and TCRL is always much better than the performance of TCL

and UnOpt. This performance improvement achieved when tiling includes the register level is due to

two reasons: 1) tiling for the register level always achieves a certain amount of ILP in the loop body

(this is specially important in modern microprocessors capable to issue multiple instructions per cycle)

and 2) the number of load/store instructions is significantly reduced (leading to a reduction of the

critical path length).

7. A matrix size (or problem size) of N means that we are using matrices of N by N elements.
8.We refer as the main loop body to the loop body of the loop nest that traverses non-boundary tiles, that is, the loop nest where
the two innermost loops are fully unrolled. This is also the most executed loop nest.
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Figure 5.6: Performance obtained on the ALPHA 21164 processor by the UnOpt, TCL, TRL and TCRL
versions for our benchmark programs, varying the problem size from 10 to 100.
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400 TCRL
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400
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Figure 5.7: Performance obtained on the MIPS R10000 processor by the UnOpt, TCL, TRL and
TCRL versions for our benchmark programs, varying the problem size from 10 to 100.
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Finally, we want to note that, for some programs, there is a performance difference between TCL

and UnOpt. Moreover, for some programs TCL performs better (see STRMM in Fig. 5.7) and for others

UnOpt performs better (see MMtri and QR in Fig. 5.6). As already mentioned, for the UnOpt version

we select the loop order that achieves, in average, the best performance and for the TCL version we

use the same cache tiling parameters as for TCRL. Thus, these two versions of the programs have

different loops as the innermost loop (see Table 5.3); the compiler generates different codes for the

main loop body and, therefore, obtains different levels of performance. Anyway, our goal is not to

compare TCL against UnOpt, but rather show that it is very important to exploit the register level in

modern microprocessors.

Let's now see the program's behaviors for medium-to-large problem sizes (Figures 5.8 and 5.9)

where data do not fit in the cache level. As it can be seen on both processors, the behavior of the four

versions in all programs is similar: the performance obtained by the TRL and UnOpt versions

decreases with large problem sizes, while the TCL and TCRL versions maintain the same level of

performance for medium-to-large matrix sizes.

Tiling for the cache level is effective for reducing the capacity cache miss rate. Thus, for great

matrix sizes that do not fit at the cache level it achieves the same performance as for smaller sizes. We

can see that the TCL and TCRL versions achieve a stable performance level, mostly independent of

matrix size, while the Unopt and TRL versions clearly decrease their performance when matrix size is

increased. However, the TRL version achieves better performance than the TCL version even for

medium matrix sizes that do not fit inside the first level cache. This is due to two reasons: (1) the

typical bandwidth provided between the register file and the functional units in current superscalar

microprocessors is three or four times higher than the bandwidth provided by the first level cache. If

the register level is properly exploited, then the number of first level cache ports does not harm

excessively processor performance and (2) tiling for the register level reduces memory instructions

significantly, reducing therefore total data memory traffic. This reduction of total memory traffic helps

reducing cache misses.

It can also be seen, that on the MIPS processor, the performance of TRL and UnOpt begins to

decrease at much larger problem sizes than on the ALPHA processor, because the MIPS processor has

a first level cache four times bigger than the ALPHA processor (see Table 5.2). Moreover, MIPS's cache

is two way associative while ALPHA'S cache is direct mapped. It is well known that having a

set-associative cache reduces the frequency of interferences, thus reducing conflict misses [31] [42] [80].

Summarizing, the results show that it is much more important to exploit the register level than

to exploit just the cache level. Nevertheless, best performance is achieved by tiling for both levels

simultaneously, because tiling for both levels achieves 4 goals: (1) ILP is improved, (2) the number of

load/stores instructions is significantly reduced, (3) capacity cache misses are moderated and, at last,

(4) TLB misses are also moderated.
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Figure 5.8: Performance obtained on the ALPHA 21164 processor by the UnOpt, TCL, TRL and TCRL
versions for our benchmark programs, varying the problem size from 100 to 1500.
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Figure 5.9: Performance obtained on the MIPS R10000 processor by the UnOpt, TCL, TRL and TCRL
versions for our benchmark programs, varying the problem size from 100 to 1500.
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Finally, we also want to note that tiling for the register level is beneficial on both in-order

(ALPHA) and out-of-order (MIPS) processors. However, despite both processors having similar peak

performance, the MIPS processor does generally outperform the ALPHA processor. We attribute this

to three main advantages of the R10000: out-of-order execution, larger Ll cache and larger TLB9.

Load/Store Instructions

As already mentioned, an important benefit of tiling for the register level is a reduction of the number

of load/store instructions executed. Let's now see how tiling for the register level reduces the number

of load/store instructions. Table 5.5 shows the absolute number of load/store instructions (in millions)

performed by the UnOpt, TCL, TRL and TCRL versions with a problem size of 700 and the reduction

percentage of TRL with respect to UnOpt, on the ALPHA and MIPS processors. We collected these

numbers by instrumenting each executable with the ATOM tool [36] on the ALPHA processor and

with the MINTS tool [120] on the MIPS processor.

We can see that in all programs and on both processors the absolute number of load/store

instructions in TRL and TCRL is significantly reduced with respect to UnOpt and TCL. As expected,

TCRL performs slightly more load/store instructions than TRL, because, in TCRL, the non-tiled loop

at the register level is tiled at the cache level. Thus, this non-tiled loop performs less iterations in

TCRL than in TRL and, therefore, fewer loads and stores are removed. The reduction percentage of

TRL with respect to UnOpt varies from a 50% in QR up to 88% in STRMM and STRSM on the ALPHA

processor and from 31% up to 87% (in the same programs) on the MIPS processor. Note that the three

Program

MMlri

LU

CHOL

QR

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

ALPHA 21164

UnOpt

402

515

258

610

818

602

816

771

772

TCL

431

515

259

623

831

607

842

770

773

TRL

61

64

35

304

294

118

221

89

90

TCRL

71

73

40

322

313

124

239

104

104

%Red
(TRL-UnOpt)

85%

87%

86%

50%

64%

80%

73%

88%

88%

MIPS R10000

UnOpt

345

458

230

577

689

517

689

686

687

TCL

234

346

230

577

695

519

701

518

526

TRL

62

64

36

400

306

137

235

89

90

TCRL

69

71

37

404

329

142

256

95

98

%Red
(TRL-UnOpt)

82%

86%

84%

31%

55%

73%

66%

87%

87%

Table 5.5: Total number of load/store instructions (in millions) performed by each version (UnOpt, TCL,
TRL and TCRL) on the ALPHA 21164 and the MIPS R10000 processors and the reduction percentage of
TRL with respect to UnOpt. In all cases, the problem size is equal to 700.

9.Both the ALPHA and MIPS processors have the same number of TLB entries, however, the page size on the MIPS processor is
4 times lager than the ALPHA'S page size.
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programs where the reduction is smaller (QR, SSYR2K and SSYMM) are also the three programs

where the performance difference between UnOpt and TRL is smaller (see Figures 5.8 and 5.9).

Another interesting point to note is that the reduction percentage of TRL with respect to UnOpt

is smaller on the MIPS processor than on the ALPHA processor. Note that the UnOpt version, as well

as TCL, perform less memory instructions on the MIPS processor than on the ALPHA processor. This

is because the MIPS compiler usually unrolls the innermost loop with an unrolling factor greater than

the unrolling factor used by the ALPHA compiler. Increasing the unrolling factor reduces the number

of memory instructions, if the unrolled loop carries reuse. Moreover, the MIPS compiler applies scalar

replacement to almost all programs (thus removing redundant loads and stores in the loop body),

while the ALPHA compiler was able to apply scalar replacement to fewer programs.

We also want to note that, for some programs (QR, SSYR2K, SSYRK and SSYMM), the TRL and

TCRL versions execute a few more load/store instructions on the MIPS processor than on the ALPHA

processor, just the opposite of what happened with the UnOpt and TCL versions. In these four

programs, the tile size selected for the register level is quite large, forcing the compiler to generate

spill code. Note that the TRL and TCRL versions of programs QR, SSYR2K, SSYRK and SSYMM

require more registers than do the remaining programs (see Tables 5.3 and 5.4). As mentioned in

Chapter 3, using large tile sizes increases register pressure and, therefore, spill code can be generated

in the main loop body. However, if this increase of memory instructions due to spill-loads/stores is less

than the reduction of memory instructions due to register tiling, then it is preferable to use bigger tile

sizes although they generate a certain amount of spill code than to use smaller tile sizes. We have

inspected the assembler code of these four programs on both processors and we have seen that the

MIPS compiler generates more spill code in the main loop body than the ALPHA compiler and, thus,

the number of loads/stores instructions on the MIPS processor increases.

Finally, we want to indicate that tiling for the register level not only reduces load/store

instructions but also other types of instructions (such as integer arithmetic, logical, shift and branch

instructions) used in the computation of effective addresses and in loop control. On one hand, the

instructions related to the computation of effective addresses are reduced because fewer memory

instructions are executed. On the other hand, the instructions that perform loop control are reduced

because tiling for the register level uses "large" unrolling factors. With a tile size of 4 by 4, for

example, the unrolled loop body has 16 instances of the original loop body. Nevertheless, if register

tiling is not performed (and assuming that compilers usually unroll the innermost loop by a factor of

4), the unrolled loop body will only have 4 instances of the original loop body. Thus, in the main loop

body, register tiling reduces loop control instructions by a factor of 4 with respect to the not tiled code.

Of course, register tiling has a loop overhead due to the iteration space tiling phase. However, the

number of instructions introduced by this loop overhead is less than the instructions saved by

unrolling with a large factor.
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We measured for all programs the total number of executed instructions and subtracted both

memory and floating-point instructions. We collected these numbers only for the UnOpt and TRL

versions and we used a problem size of 700. We found that TRL performs around 75%-85% less

instructions than UnOpt for all programs and on both processors.

Cache misses

Let's now see how cache misses are reduced when tiling includes the cache level. Table 5.6 shows the

absolute number of first level cache misses (in millions) performed by the UnOpt, TCL, TRL and

TCRL versions of each program on the ALPHA and MIPS processors. We have used, again, a matrix

size of 700 for the measurements. We present absolute number of misses rather than cache miss rate

because the number of load/store instructions performed by each version is different. However, cache

miss rates can be computed using Tables 5.5 and 5.6 and results shows that, as expected, the cache

miss rate in TCL is reduced with respect to Unopt, and the miss rate of TCRL is reduced with respect

to TRL. However, the cache miss rate of TRL and TCRL, in almost all programs, is greater than the

cache miss rate of UnOpt, because they (TRL and TCRL) execute less load/store instructions.

In Table 5.6, we can see that the TRL and TCL versions always have fewer cache misses than the

UnOpt version but the TCRL version is the one with fewer overall misses. Although the cache level is

not being exploited in TRL, it reduces overall cache misses (with respect to UnOpt) because, as

already mentioned, it reduces significantly total memory traffic.

Note that there are programs (all programs on the MIPS processor, except SSYR2K, and

programs CHOL, QR and SSYMM on the ALPHA processors) where the TCL version performs fewer

absolute number of cache misses than the TRL version. However, the TCL version always achieves

Program

MMtri

LU

CHOL

QR

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

ALPHA 21164

UnOpt

20.1

21.5

10.2

79.9

38.8

30.3

38.6

30.6

31.2

TCL

17.3

15.2

5.2

27.5

31.6

13.6

20.1

24.9

24.7

TRL

10.4

14.3

9.4

32.1

22.1

12.7

22.6

16.7

16.8

TCRL

3.8

4.9

2.9

16.6

14.7

6.9

11.8

6.1

5.7

MIPS R10000

UnOpt

14.8

14.5

7.4

38.9

23.4

22.6

23.4

22.6

22.6

TCL

2.8

2.3

0.8

12.4

9.7

3.3

9.8

4.6

4.5

TRL

4.3

6.5

4.8

23.6

9.3

4.5

13.0

7.1

7.2

TCRL

1.2

1.3

0.5

7.1

5.3

2.5

5.2

2.4

2.4

Table 5.6: Total number of first level cache misses (in millions) performed by the four
versions (UnOpt, TCL, TRL and TCRL) for each program on the ALPHA 21164 and the MIPS
R10000 processors. In all cases, the problem size is equal to 700.
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less performance than the TRL version as seen in Figures 5.8 and 5.9. It is much more important to

reduce load/store instructions and improve ILP by exploiting the register level than to reduce only the

cache misses by exploiting the cache level. Nevertheless, best performance is achieved by tiling for

both levels simultaneously (TCRL), because it achieves the benefits of both individual levels. As can be

seen in Table 5.6, TCRL is the one with fewer overall misses.

Finally, we want to note that the absolute number of cache misses on the MIPS processor is

always smaller than the overall misses on the ALPHA processor, because, as already mentioned, the

cache of the MIPS is four times bigger than the ALPHA'S cache and MIPS's cache is two-way

associative while ALPHA'S cache is direct mapped.

TLB misses

We have seen so far that tiling for the register level decreases significantly the number of memory

operations and also reduces the overall number of cache misses. However, tiling only for the register

level can reduce the amount of spatial reuse that can be exploited, heavily increasing the overall TLB

misses.

Table 5.7 shows the absolute number of TLB misses (in thousands) performed by the UnOpt,

TCL, TRL and TCRL versions of each program on the ALPHA and MIPS processors. In this case, for

the measures we have used a problem size of 700 on the ALPHA processor and of 1000 on the MIPS

processor. We use a higher problem size on the MIPS processors because a matrix of 700x700 elements

Program

MMtri

LU

CHOL

OR

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

ALPHA 21164

UnOpt

166

247

79

168

672

503

672

503

504

TCL

5

172

16

30

707

389

767

343

343

TRL

2123

2246

1062

8848

546

364

588

3794

3822

TCRL

5

172

16

30

707

389

767

343

343

%Incr
(TRL-UnOpt)

1179%

809%

1244%

5167%

-19%

-38%

-14%

654%

658%

MIPS R10000

UnOpt

117

169

46

117

491

369

489

368

369

TCL

1.6

124

3.3

5.5

390

259

390

247

247

TRL

1320

1345

610

8840

398

266

428

3191

3103

TCRL

1.6

124

3.3

5.5

390

259

390

247

247

%Incr
(TRL-UnOpt)

1028%

696%

1226%

7455%

-19%

-28%

-12%

767%

741%

Table 5.7: Total number of TLB misses (in thousands) performed by each version (UnOpt, TCL, TRL and
TCRL) on the ALPHA 21164 and the MIPS R10000 processors and the increment percentage of TRL with
respect to UnOpt. The problem size is equal to 700 on the ALPHA processor and to 1000 on the MIPS processor.
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fits entirely in the TLB10 (recall from Table 5.2 that each TLB entry on the MIPS processor maps two

consecutive pages of 16KB) and the goal of this measurements is to show how tiling for the register

level increases TLB misses if there are not enough TLB entries.

We can see that TRL versions heavily increases the number of TLB misses (between 654% and

5167% on the ALPHA processor and between 696% and 7455% on the MIPS processor) in all

programs, except in those three (SSYR2K, SSYRK and SSYMM) in which no array reference is

traversed in row major order11 by the non-tiled loop at the register level (see Tables 5.3 and 5.4). In

these cases the TLB misses are reduced (with respect to the UnOpt version) between 14% and 38% on

the ALPHA processor and between 12% and 28% on the MIPS processor. We note that in program QR,

where this increase in TLB misses is top-heavy, there are two array references accessed in row major

order, while in MMtri, LU, CHOL, STRMM and STRSM there is only one.

As shown in Section 5.2.1, if there is at least one array reference that is traversed in row major

order by the non-tiled loop at the register level, spatial locality is not being exploited for these

references, and this fact makes TLB misses increase considerably. Nevertheless, as we have seen

previously, despite this increase in TLB misses high performance can be achieved by tiling only for the

register level.

On the other hand, as shown in Section 5.2.2, tiling only for the cache level (TCL version) can

also increase the overall TLB misses (with respect to the non-tiled code), if there is at least one array

reference that is traversed in row major order by the non-tiled loop. In programs SSYR2K, SSYRK and

SSYMM there is one array reference traversed in row major order by the non-tiled loop of the TCL

versions. In these versions, the overall TLB misses will increase (with respect to the UnOpt versions)

if the factor N/(B1*B2) is greater than 1, where Bxand B2 are the tile sizes in each tiled dimension and

NxN is the size of the matrices. Using the tile sizes presented in Table 5.3 and being N=700 on the

ALPHA processor and N=1000 on the MIPS processor, it can be seen that this factor is greater than

one only for the SSYR2K and SSYMM programs on the ALPHA processor. Thus, as can be seen in

Table 5.7, for these two programs and only on the ALPHA processor, the overall TLB misses of TCL

increases with respect to the UnOpt version. However, because the tile size for the cache level is much

larger than the tile size for the register level, this increase in overall TLB misses is not as significant

as at the register level.

Finally, by tiling for both levels (TCRL version) the TLB misses are again significantly reduced,

performing in all cases the same TLB misses as the TCL version. Tiling only for the register level can

produce excessive TLB misses. However, as shown in Section 5.2.3, when tiling also for the cache level

using MOB forms, all directions of the iteration space are bounded from the point of view of the

register level and thus, the number of TLB misses is moderated.

10. We consider a matrix to fit "in the TLB" if all virtual to physical address translations for all matrix's virtual pages fit in TLB.
11.Recall that matrices are stored in column major order.
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5.5 HAND vs. AUTOMATICALLY-OPTIMIZED CODES

In this section, we will compare our automatic-optimized codes against hand-optimized codes and we

will show how our techniques allow automatic-optimized codes to achieve the same performance level

as hand-optimized codes, even when dealing with complex numerical codes with non-rectangular

iteration spaces.

We will use as benchmark five programs extracted from the BLAS3 library [38] [39]. The

automatic-optimized codes were produced using our own developed tool that implements the methods

proposed in Chapter 3 and Chapter 4 and, as hand-optimized codes, we have used two different

libraries: the BLAS3 library provided by the manufacturers and the RISC-BIAS library proposed in

[34] [35]. The RISC-BIAS library provides an efficient and portable implementation of the Level 3

BIAS for RISC processors. This library express the BIAS as a sequence of matrix-matrix

multiplications and operation involved triangular blocks. All the codes in the RISC-BIAS are written

in Fortran, use loop unrolling, loop tiling and data copying [116] to improve performance and are

specifically tuned for RISC processors. We will first describe the evaluation process used in this

section and then we present the performance results.

5.5.1 Evaluation Process

As just mentioned, we have used as benchmark programs 5 linear algebra algorithms extracted from

the BLAS3 library [38][39]. In particular, we have used the SSYR2K, SSYRK, SSYMM, STRMM and

STRSM algorithms that have non-rectangular, 3-dimensional iterations spaces. Table 5.1 on page 194

describes each of them.

All our measurements were taken, again, on a uniprocessor system with an ALPHA 21164

processor [15] and on a single R10000 processor [130] of a multiprocessor system (SGI Origin 2000

[81]). The two different architectures are shortly described in Table 5.2 on page 195.

We evaluate four different versions of each program: one uses the original code as proposed by

[38] [39] with no restructuring transformation12 (ORI-blas); the second one uses the

manufacturer-supplied BLAS3 library to perform the operation (VENDOR-blas); the third one calls

the RISC-BIAS library13 (RISC-bias); and the fourth one is the code after tiling for both cache and

register levels using our own developed tooL(TCRL).

After generating the different versions for each program, we used the standard

Fortran 77 compiler14 to generate the final executables. In general, the F77 compiler was used with

the highest scalar optimization level (-05 on the ALPHA and -03 on the MIPS) turned on. However, in

12.The original codes are available at http://www.netlib.org/blas.
IS.The RISC-BLAS library is available using ftp anonymous at ftp.enseeiht.fr. It is located in pub/numerique/BLAS/RISC.
14. Version 4.1 of Digital Fortran on the ALPHA processor and version 7.2.1 of MlPSpro Compiler on the MIPS processor.
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Program

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

Operation

C = BETA*C + ALPHA*A*BT + ALPHA*B*AT

C is symmetric sind only the upper triangular part is to be référencée

C = BETA*C + ALPHA*A*AT

C is symmetric and only the lower triangular part is to be référencée

C = BETA*C + ALPHA*A*B
A is symmetric and only the upper triangular part is to be référencée

B = ALPHA*A*B
A is an upper unit triangular matrix

B = ALPHA*inv(A)*B
A is a lower non-unit triangular matrix

Routine Call

SSYR2K ('U', 'N', N, N, ALPHA,
A, N, B, N, BETA, C, N)

SSYRK ('U, 'N', N, N, ALPHA,
A, N, BETA.C, N)

SSYMM ('L', 'IT, N, N, ALPHA,
A, N, B, N, BETA, C, N)

STRMM ('L'.'U', 'N', 'U', N, N,
ALPHA, A, N, B, N)

STRSM ('L'.'L', 'N', 'N', N, N,
ALPHA, A, N, B, N)

Table 5.8: Operation performed in the TCRL versions and the routine calls used in the ORI-blas,
VENDOR-blas and RISC-bias versions for each benchmark program.

the TCRL version of some programs, the compiler generates a more efficient code using the -O4 (on the

ALPHA) and -O2 (on the MIPS) flags. In these cases, we have used these later flags. In addition, the

RISC-bias version was linked with the RISC-BLAS library tuned to each target architecture [34] and

the VENDOR-blas version was linked with the vendor-supplied BLAS3 library, using -Iblas on the

R10000 and -Idxml on the ALPHA processor15.

To have a fair comparison with the BLAS3 libraries, the TCRL version performs exactly the

same operations as the BLAS3 routines. Table 5.8 shows the operation performed in the TCRL version

of each program, where ALPHA and BETA are scalars, A, B and C are N by N matrices and AT and BT

denote the transpose of A and B, respectively. Table 5.8 also shows the routine calls used in the

ORI-blas, VENDOR-blas and RISC-bias versions. In the next section, we will present performance

results for only these particular routine calls. However, we want to mention that similar results are

achieved if different parameters were used. Finally, we note that in Section 5.4 of this chapter and in

Section 3.5.2 of Chapter 3, the different versions of the programs did not perform exactly the same

operations as the BLAS3 routines. In particular, they did not perform the operations where the scalar

variables ALPHA and BETA were involved (see Table 5.4 and Appendix C).

As in the previous section, for the TCRL versions, we always tile, for each level, two dimensions

of the 3-dimensional iteration spaces [98] and we use MOB forms. We have chosen the tiling

parameters for the cache and register level that provide best performance on the two different

processors. Again, we want to stress that our goal is not finding the optimum tile sizes and shape for

each level, but showing that automatic-optimized codes can achieve the same performance level as

hand-optimized codes. Hence, we use the same tiles (size and shape) for different problem sizes and do

not evaluate problem sizes that produce maximum self interference.

IS.We have used Version 3.1.1 of the Silicon Graphics Scientific Mathematical Library, CHALLENGEComplib, that contains
the extended Level 3 BLAS and Version 3.3 of the Digital Extended Math Library (DXML)
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Program

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

Register Level

tiled
directions

(KxJ)

(KxJ)

(JxK)

(Jxl)

(Jxl)

(Jxl)

tile sizes

(4x4)A
(3x4)M

(4x4)A
( 6x3 ) M

(4x4)

(4x4)

(4x4)

(4x4)

Cache Level

tiled
directions

(Kxl)

(Kxl)

(IxK)

(JxK)

(JxK)

(JxK)

tile sizes

(32x240)A
(40x60)M

(32x240)A
(66x64)M

(64x240)A
(80x60)M

(28x240)A
(40x60)M

(28x50)A
(64x64)M

(28x50)A
(64x64)M

Loop Order

KC - 1C - JR-KR- I -K- J

KC-IC-JR-KR-I-K-J

IC-KC-JR-KR-I-K-J

JC-KC-IR-JR-K-J-I

JC-KC-IR-JR-K-J-I

JC-KC-IR-JR-K-J-I

Table 5.9: Tiling parameters of the TCRL version for each benchmark program.

Table 5.9 summarizes for each program the tiling parameters selected for the cache and register

levels in the TCRL versions. In particular, we show the tiled dimensions for the register level

(column 2) and their corresponding tile sizes (column 3), the tiled dimensions for the cache level

(column 4) and their corresponding tile sizes (column 5) and the final loop order (column 6). The tile

sizes used on the ALPHA processor are labelled with "A" and the tile sizes used on the MIPS processor

are labelled with "M". When no label is given, it indicates that we have used the same tile size on both

processors. We note that, on the ALPHA processors, we have tuned the cache tiling parameters with

respect to the second level of internal cache since our experiments show this is most efficient. Finally,

we also want to note that on the SSYMM program we distributed the original loops to create two new

loop nests; each new loop nest traverses one statement of the original loop body (Appendix C shows

these two statements16). In Table 5.9 we present the tiling parameters for each of the two loop nests in

the SSYMM program.

5.5.2 Performance Results

In this section we present the performance obtained by the four versions of our benchmark programs

on the two different architectures. Figures 5.10 and 5.11 show the performance obtained for problem

sizes varied from 10 to 100 and from 100 up to 1500 on the ALPHA and MIPS processors, respectively.

We use again the MFLOP/s metric as our indicator of performance.

16.1n fact, the two statements in the loop body of the SSYMM BLASS-routine are not exactly the same as those in Appendix C.
Recall that this appendix does not contain the operations where the scalar variables ALPHA and BETA are involved.
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350

90 100 400 700 1000 1300 Problem size

70 90 100 400 700 1000 1300 Problem size

*-» VENDOR-blas

*-« TCRL

— RISC-bias

»-o ORI-blas

70 90 100 400 700 1000 1300 Problem size

70 90 100 400 700 1000 1300 Problem size

30 50 70 90 100 400 700 1000 1300 Problem size

Figure 5.10: Performance obtained on the ALPHA 21164 processor by the ORI-blas, VENDOR-blas,
RISC-bias and TCRL versions for our five benchmark programs, varying the problem size from 10 to 1500.
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90 100 400 700 1000 1300 Problem size

90 100 400 700 1000 1300 Problem size

*-* VENDOR-blas

»-•< TCRU

— RISC-bias

o-o ORI-blas

90 100 400 700 1000 1300 Problem size

90 100 400 700 1000 1300 Problem size

30 50 70 90 100 400 700 1000 1300 Problem size

Figure 5.11: Performance obtained on the MIPS R10000 processor by the ORI-blas, VENDOR-blas,
RISC-bias and TCRL versions for our five benchmark programs, varying the problem size from 10 to 1500.
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On the ALPHA processor, it can be seen that, for small-medium problem sizes (from 10 to 100),

TCRL and RISC-bias always perform better than the VENDOR-blas version, except for the SSYMM

program where the VENDOR-blas version achieves better performance. Moreover, TCRL performs

better or equal than RISC-bias (only for the SSYR2K, RISC-bias performs slightly better than TCRL).

By contrast, for medium-large problem sizes (from 100 to 1500), VENDOR-blas is always better

than TCRL and RISC-bias, probably because better use is made of the memory hierarchy. In the TCRL

version, we only perform two levels of tiling (registers and L2-cache) and we do not perform data

copying [80] [116]. We presume that the vendor-supplied BLAS3 library performs more levels of tiling

(registers, Ll-cache and L2-cache) and it also performs data copying. It is well known that data

copying reduces conflict misses and allows to select bigger tile sizes, thus enhancing data locality. Of

course, data copying may induce a large overhead that can outweigh the benefit. However, this is not

usually the case for large problem sizes and for programs having a high degree of data reuse (as our

benchmarks). Another interesting point to note is the inflection point that appears in all

VENDOR-blas curves for a problem size equal to 100. Most probably, data copying is being used by the

vendor code in problem sizes from 100 onwards.

Finally, we also want to note that, for medium-large problem sizes, TCRL is again better or equal

than RISC-bias. The hand-optimized codes in the RISC-BLAS [35] use loop unrolling, loop tiling and,

data copying. Moreover, the RISC-BLAS codes on the ALPHA processor are also tuned with respect to

the second level cache. Although the RISC-BLAS codes are optimized for the second level cache, they

do not always achieve as high performance as TCRL (see SSYMM, STRMM and STRSM). The reason is

that they do not exploit the register level as well as TCRL and, if the register level is not properly

exploited, then the number of ports of the first level cache bounds processor performance. Note that,

precisely in these three programs and for small problem sizes that fit in the cache level, the RISC-bias

version performs worst than TCRL.

On the MIPS processor, it can be seen that, for small-medium problem sizes, TCRL,

VENDOR-blas and RISC-bias achieve more or less the same performance, except for the SSYMM

program where, much like on the ALPHA processor, the VENDOR-blas version achieves better

performance and, for the SSYRK program where TCRL clearly performs better than VENDOR-blas

and RISC-bias. For the STRSM program, the RISC-bias version also performs slightly better than

VENDOR-blas and TCRL. However, in this case, the performance improvement is due to a particular

transformation performed on the RISC-BLAS STRSM code, that we also could have done in the TCRL

version. In particular, this transformation consists in substituting a set of DIV operations (a very time

consuming, non-pipelined operation), having all of them the same divisor, by one DIV and a set of

MUL operations. These DIV operations, however, appear in statements outside the innermost loop

(recall that STRSM is not perfectly nested). Therefore, the performance improvement caused by this

optimizing transformation becomes less noticeable when the problem size increases.
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Program

SSYR2K

SSYRK

SSYMM

STRMM

STRSM

ALPHA 21164

small-medium sizes

VENDOR

1.27

1.51

2.09

1.47

2.02

TCRL

1.50

2.03

1.79

2.56

/2.79;

RISC

1.72

2.06

1.63

2.23

2.70

medium-large sizes

VENDOR

2.86

2.95

2.75

3.76

4.15

TCRL

2.47

2.46

2.46

|3.9pjf

4.03

RISC

2.45

2.57

1.64

2.58

2.74

MIPS R10000

small-medium sizes

VENDOR

1.61

1.39

1.68

2.50

2.01

TCRL

• 1.72 ;

.2.18

1.49

2.56.

1.78

RISC

1.64

1.67

1.47

2.33

2.19

medium-large sizes

VENDOR

2.98

3.48

2.34

3.38

3.23

TCRL

3.36

3.56

2.28

;3.48"

3.16

RISC

3.05

3.14

1.87

2.85

2.65

Table 5.10: Average speedups obtained by VENDOR-blas, TCRL and RISC-bias over the ORI-blas version for
small-medium and medium-large problem sizes, on an ALPHA 21164 and a MIPS R10000 processor.

For medium-large problem sizes the behavior of all programs on the MIPS processor is, more or

less, the same as on the ALPHA processor: the VENDOR-blas version is better or equal than TCRL

and RISC-bias and the TCRL version is always better than RISC-bias. Finally, we also want to note

the strange behavior of the SSYR2K VENDOR-blas version for some large problem sizes. We presume

that the tiling parameters used by the vendor-supplied library incur in a significant increase in cache

and TLB misses for certain problem sizes. In fact, we have measured the overall number of Ll-cache,

L2-cache and TLB misses performed by the VENDOR-blas and TCRL versions of the SSYR2K

program for a problem size equal to 1000 and we have found that the VENDOR-blas version performs

7.5 times more TLB misses, 1.8 times more L2-cache misses and 3.6 times more Ll-cache misses than

TCRL.

To conclude this section, we have summarized the speedups obtained by VENDOR-blas, TCRL

and RISC-bias versions over the ORI-blas version on both processors. For each program version the

harmonic mean of the MFLOP/s obtained for different matrix sizes is computed (we used 21 different

small-medium problem sizes, going from 10 to 100 and 29 different large-medium sizes, going from

100 to 1500). Then, we compute the speedup of the different versions over the ORI-blas version by

dividing these harmonic means. Table 5.10 shows the average speedups for the small-medium and

medium-large problem sizes on both processors.

Results shows that automatic-optimized codes (TCRL) can almost achieve the same performance

as hand-optimized codes (VENDOR-blas and RISC-bias) and, in some cases (marked in dark in Table

5.10), TCRL achieves even better results than VENDOR-blas and RISC-bias. Thus, our techniques

allow automatic-optimized codes to achieve the same performance level as hand-optimized codes, even

when dealing with complex numerical codes having non-rectangular iteration spaces.
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5.6 RELATED WORK

There is much work in the literature regarding loop tiling evaluation [27] [31] [65] [70] [80] [92] [98], but

it has mostly focused on the cache level and little attention has been paid to the register level. Most of

these works, [27] [31] [65] [70] [92], focus on determining the tiling parameters (which loops should be

tiled, the tile sizes in each dimension and the relative order of the loops) that maximize data locality at

the cache level. To this end, these works present analysis of the performance of several programs tiled

for the cache level and study the effects of the tiling parameters on processor performance. However,

to the best of our knowledge, there is no previous work evaluating the impact of tiling for the different

memory levels (including the register level).

Lam et al. in [80] present an analysis of the performance of several programs tiled for the cache

level and study the effects of different cache parameters, such as set associativity and Une size, on

processor performance. However, they do not study the effects of tiling for the different memory levels.

Navarro et al. in [98] evaluate the Multilevel Orthogonal Block forms analytically for an ideal

memory system with M cache levels. Moreover, they also present experimental results of the MOB

forms on two different workstations and indicate the most significant aspects that can affect the

performance of the algorithms with respect to the ideal case. These aspects are (1) the need to perform

register tiling, (2) the effect of the interferences in direct-mapped and set-associative caches, (3) the

effect of TLB misses and (4) the effect on page faults. However, they only use the square matrix

product in their experiments and do not perform an exhaustive study of all these aspects.

There has been also much work discussing the performance of blocked BLAS3 linear algebra

routines [38] [39] and providing new library routines. For example, Gallivan et al. in [48] discussed the

performance of blocked BLAS3 linear algebra routines on an Alliant FX/8 and found that blocked

versions generated twice the Mflop/s for some problem sizes. Samukawa in [109] proposed two types of

matrix-matrix operation routines to be included in the BLAS standard which can be used as tools of

various band and skyline matrix factorizations. Quintana-Orti at al. in [104] developed a new block

variant of the QR factorization with column pivoting which allows the use of Level 3 BLAS and

showed how their implementation outperforms the LINPACK [37] and LAPACK [9]

implementations17 on 3 different workstation platforms. Finally, Dayde and Duff in [35] described a

new implementation of the Level 3 BLAS for RISC processors (RISC-BLAS library). The Level 3 BLAS

are expressed as a sequence of matrix-matrix multiplications and operation involved triangular

blocks. Experimental results show that their implementation compares well with the

manufacturer-supplied libraries on four different RISC processors. However, all these works

optimized the codes by hand and do not try to do it automatically.

17.LAPACK, 'Linear Algebra Package", is a project originated by Jack Dongarra. This project put together a new set of linear
algebra functions, supposed to supplant both the LINPACK and EISPACK packages. To achieve maximum efficiency across all
types of hardware, the LAPACK routines are based on the BLAS3 routines.
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5.7 SUMMARY

In the first part of this chapter we have discussed the effects of tiling for different memory level and

presented quantitative data showing the benefits of tiling only for the register level, tiling only for the

cache level and tiling for both levels simultaneously. Several conclusions can be extracted from this

part:

• Tiling for the register level provides two main benefits: (1) it exploits temporal data

reuse that translates into a significant reduction of the number of load/store instructions

issued and (2) it exploits a program's ILP.

• Moreover, tiling for the register level also diminishes the overall cache misses because

reducing the number of load/store instructions reduces data memory traffic.

• However, tiling for the register level can heavily increase the overall TLB misses if

spatial locality is not properly exploited. Nevertheless, despite this increase in TLB

misses high performance can be achieved by tiling only for the register level.

• At the cache level, tiling is effective for reducing the capacity cache miss rate and thus,

average memory access time is reduced. When tiling includes the cache level, a stable

performance level is achieved, mostly independent of the problem size.

• However, tiling only for the cache level achieves worse performance than tiling only for

the register level. It is much more important to reduce load/store instructions and to

increment ILP by tiling for the register level than to reduce the overall cache misses by

exploiting the cache level.

• Tiling for both the register and cache levels yields better performance that tiling for any

one of them alone, since it achieves 4 goals: (1) ILP is exploited, (2) the number of

load/stores instructions is significantly reduced, (3) capacity cache misses are moderated

and, finally, (4) TLB misses are also reduced.

In the second part of the chapter, we have compared automatic-optimized codes against

hand-optimized codes. The automatic-optimized codes were generated using the compiler algorithms

described in Chapter 3 and Chapter 4 for applying multilevel tiling to non-rectangular loop nests and,

as hand-optimized codes, we have used two different libraries: the BLAS3 library provided by the

manufacturers and the RISC-BLAS library proposed by [34] [35]. Results show how compiler

technology can make it possible for complex numerical codes to achieve as high performance as

hand-optimized codes on modern microprocessors.
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CONCLUSIONS AND FUTURE WORK

Summary
This chapter summarizes the main contributions of this thesis. Future lines of work opened up by

the work presented here are also discussed.
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6.1 CONCLUSIONS

We started this thesis asking ourselves why current commercial compilers still perform poorly when

dealing with complex scientific applications. In Chapter 1, we showed that, despite all the effort put in

current compilers to achieve high performance in numerical codes, hand-optimized codes still

outperform them. Moreover, the performance difference between hand-optimized codes and

automatic-optimized codes is more noteworthy in complex numerical codes.

We believe that restructuring a code to achieve high performance should be the job of the

compiler. Compilers, not programmers, should handle the machine-specific details required to attain

high performance on each particular architecture. The main motivation of this thesis were to develop

new compilation techniques that address the lack of performance of complex numerical codes

consisting of non-rectangular loop nests (loop nests defining non-rectangular iteration spaces).

To fully realize all recent architectural advances and, therefore, achieve high performance on

modern superscalar processors, compilers need to find ILP to utilize machine resources effectively, and

they also need to transform the program to achieve a high degree of data locality to maximize the

effectiveness of the memory system. To this end, several compiler strategies, such as loop tiling, inner

unrolling, software pipelining, loop permutation, scalar replacement, unroll-and-jam, etc., have been

developed and combined together. From all these compiler strategies, loop tiling is the transformation

that individually achieves more performance, because it is capable to achieve three main goals:

• improves a program's ILP, when it is applied at the register level,

• exploits data reuse in several dimensions of the iteration space and

• enhances data locality at several memory levels simultaneously (multilevel tiling).

The other loop transformations, if taken individually, realize some of the goals that loop tiling

achieves, but not as many. In this thesis we have focused on the loop tiling transformation and our

goal was the improvement of the loop tiling transformation when dealing with complex numerical

codes.

We observed that the main reason why current commercial compilers perform poorly when

dealing with this type of codes is that they do not apply tiling to the register level. Instead, to enhance

locality at this level and to improve ILP, they use or combine other transformations, that do not exploit

the register level as well as loop tiling.
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Tiling for the register level has not generally been considered because the transformed loop nest

is not easy to rewrite. At the register level, after dividing the original iteration space into tiles, it is

necessary to rewrite the loop body by fully unrolling the loops that traverse the iterations inside the

register tiles, because registers are only addressable using absolute addresses. In non-rectangular

loop nests, the action of fully unrolling the loops is far from being trivial due to the irregular nature of

the iteration space.

Our first main contribution in this thesis has been a general compiler algorithm to perform tiling

at the register level that handles arbitrary iteration space shapes and not only simple rectangular

shapes.

Our method includes a very simple heuristic to make the tile decisions for the register level. At

first sight, register tiling should be performed so that whichever loop carries the most temporal reuse

is not tiled. This way, register reuse is maximized and the number of load/store instructions executed

is minimized. However, we have shown that, for complex loop nests, if we only consider reuse

directions and do not take into account the iteration space shape, the tiled loop nest can suffer

performance degradation.

Our second contribution has been a proposal of a very simple heuristic to determine the tiling

parameters for the register level, that considers not only temporal reuse, but also the iteration space

shape. Moreover, the heuristic is simple enough to be suitable for automatic implementation by

compilers.

We evaluated the performance obtained by our method, using as benchmarks typical linear

algebra algorithms having non-rectangular iteration spaces. We compared our proposal against

commercial compilers and preprocessors able to perform optimizing code transformations such as

inner unrolling, unroll-and-jam and software pipelining, on two different superscalar microprocessors

(an ALPHA 21164 and a MIPS R10000). In general, our method outperforms both the native compilers

and the KAP preprocessor, showing speedups up to 2.9.

However, to be able to achieve similar performance to hand-optimized codes, it is not enough by

tiling only for the register level. With today's architectures having complex memory hierarchies and

multiple processors, it is quite common that the compiler has to perform tiling at four or more levels

(parallelism, L2-cache, Ll-cache and registers) in order to achieve high performance. Therefore, in

today's architectures it is crucial to have an efficient algorithm that can perform multilevel tiling at

multiple levels of the memory hierarchy. Moreover, as we have shown in Chapter 5, multilevel tiling

should always include the register level, as this is the memory hierarchy level that yields most

performance when properly tiled.
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When multilevel tiling includes the register level, it is critical to compute exact loop bounds and

to avoid the generation of redundant bounds. The reason is that the complexity and the amount of

code generated by our register tiling technique both depend polynomially on the number of bounds of

the loops that have to be fully unrolled (the innermost loops after multilevel tiling). Moreover,

computing exact and non-redundant bounds would be also beneficial to avoid increasing a program's

execution time.

However, to date, the drawback of generating exact loop bounds and eliminating redundant

bounds was that all techniques known were extremely expensive in terms of compilation time and,

thus, difficult to integrate in a production compiler.

Our third contribution in this thesis has been a new implementation of multilevel tiling (SMT)

that computes exact loop bounds at a much lower complexity than traditional techniques. In fact, we

evaluated analytically the complexity of our implementation and showed that it is proportional to the

complexity of performing a loop permutation in the original loop nest (before tiling), while

conventional techniques have much larger complexities. Moreover, our implementation generates less

redundant bounds in the multilevel tiled code and allows removing the remaining redundant bounds

in the innermost loops at a lower cost.

We evaluated experimentally our implementation and compared it against traditional

techniques in terms of complexity, redundant bounds generated and cost of eliminating the remainder

redundant bounds. We have shown that SMT is between 1.5 and 2.8 times faster than conventional

implementations for simple non-rectangular loop nests, but it can be even 2300 times faster for more

complex loop nests that are commonly found in linear algebra programs using banded matrices.

Moreover, experimental results also show that SMT generates less redundant bounds than

conventional implementations and the task of eliminating redundant bounds in a multilevel tiled code

generated with SMT is between 2.2 and 11 times faster than in a code generated with conventional

techniques. Overall, the efficiency of SMT makes it possible to integrate multilevel tiling including the

register level in a production compiler without having to worry about compilation time.

The last part of this thesis was dedicated to studying the performance of multilevel tiling. We

discussed the effects of tiling for different memory levels and presented quantitative data comparing

the benefits of tiling only for the register level, tiling only for the cache level and tiling for both levels

simultaneously. The main conclusions of this discussion were that:

• tiling for the register level provides two main benefits: it significantly reduces the

number of load/store instructions issued and exploits a program's ILP. However, we also

observed that it can have the drawback of heavily increasing the overall TLB misses,

• tiling for the cache level is effective for reducing the capacity cache miss rate,
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• tiling for both the register and cache levels yields better performance that tiling for any

one of them alone, since it achieves 4 goals: ILP is exploited, the number of load/stores

instructions is significantly reduced, capacity cache misses are moderated and, finally,

TLB misses are also moderated and

• when tiling for multiple memory levels, the register level is the most important one,

more so than the cache level, although for loop nests with very large working sets, tiling

for various cache levels is also important. In general, when performing multilevel tiling

the compiler should always include the register level in order to achieve high

performance.

Finally, we compared automatically-optimized codes against hand-optimized codes, on two

different architectures (ALPHA 21164 and MIPS R10000). The automatically-optimized codes were

generated using our own tool that implements the methods proposed for applying multilevel tiling to

complex loop nests. For the hand-optimized codes, we used two different libraries: the vendor-supplied

BLAS3 library and the RISC-BLAS library. Results showed that our automatically generated codes

almost always match the performance of hand-optimized codes. Indeed, for small problem sizes, we

almost always outperformed the RISC-BLAS and the vendor-supplied libraries and, for large problem

sizes we were always very close to the vendor hand-optimized BLAS3 library. The general conclusion

is that compiler technology can make it possible for complex numerical codes to achieve the same

performance as hand-optimized codes on modern microprocessors.

6.2 FUTURE WORK

Our work has focused on the high-level (source-to-source) loop tiling transformation to achieve high

performance on modern microprocessors. Extensions to our work are the following:

Software Prefetching

One extension to our work is studying the effects of combining loop tiling with software prefetching.

Some architectures today include prefetch instructions which enable a program to fetch data into the

cache before they are used. Would it be beneficial to combine loop tiling and software prefetching in

this type of architectures? The appeal of combining both types of optimizations rests on the fact that

tiling avoids latency while software prefetching hides the leftover latency. Therefore, tiling and

software prefetching can be considered complementary optimizations and should be helpful to

eliminate the stall time completely.
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Data Transformations

Another extension to our work is investigating the interaction of data transformations with loop tiling.

It is known that applying locality-enhancing transformations, such as data layout optimizations,

before tiling is preferable as it makes performance of the tiling less sensitive to the tile sizes. Data

transformations have the advantage that they are almost always legal. However, a drawback is that

their effect is global in the sense that decisions regarding the memory layout of an array influence the

locality characteristics of every part of the program that accessed the said array. The impact of

integrating data transformations on tiling merits further investigation.

Integrating Register Tiling in a Compiler

The algorithm proposed in this thesis to perform register tiling is a high-level (source to source)

transformation that helps compilers generate efficient machine code. Working at the source level

prevents us from controlling many of the low level transformations typically performed by the

compiler's back-end (instruction scheduling, register allocation, etc.), making it difficult (if not

impossible) to find the optimal tiling parameters. By integrating our technique inside a production

compiler we could be more precise in the selection of the tiling parameters. Moreover, it would also

allow us to combine register tiling with software pipelining. Register tiling increases register pressure

and prevents compilers to perform software pipelining. An interesting question to answer is how

register tiling and software pipelining can be combined together to achieve all the goals provided by

each transformation individually.



A
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A.1 INTRODUCTION

The Fourier-Motzkin algorithm [16] [55] [77] is an algorithm that iterates n-1 times (for a n-deep loop

nest) and bounds each of the loop iteration variables from innermost to outermost. In each iteration,

two different steps are performed:

• In the first step, the bounds of the yet-to-be-processed loops are examined. All bounds

that are affine functions of the loop iteration variable being solved become simple bounds

of this loop.

• In the second step, each of the lower simple bounds of the iteration variable solved in

the first step is compared with each of the upper simple bounds. These comparisons

generate inequalities that might become new simple bounds of the yet-to-be-processed

loops.

A.2 IMPLEMENTATION

Let A • x < ß be a system of inequalities that represents the bounds of a n-deep loop nest written in

matrix form. The Fourier-Motzkin algorithm can be implemented as follows:

1 - First step:

(a) Transform the system of inequalities in such a way that all the elements in the

column of A associated with the first iteration variable to be bounded have value

+1, -1 or 0. To that end, each row of the matrix inequality is divided by the required

value. At the end of this step, the system of inequalities can be decomposed into

three systems:

where matrices A+, A_ and AQ have 1, -1 and 0, respectively, in the columns

associated with the iteration variable to be bounded.

(b) Let Xj be the iteration variable to be bounded. Then, the first two systems of

inequalities can be rewritten as follows:

V**ß+=»*./Sß+-(4+ - x )

A_ -x<ß_ =» (A_ -x) -ß_ <xj

where A+ is matrix A+ without the column associated with x¡ and x is vector x

without component x.. Note that this transformation is possible since the elements

of A+ which multiply x- are 1. Analogously, A_ and ÂQ are denned.
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(c) The bounds for x- are:

max! (A_ - x ) -ß_ Ja*.<mini ß+- (Â+ - x ) j (1)

The bounds expressed in this way may take non-integer values and only integer

values are allowed for loop iteration variables. Therefore, we take the ceiling

function for the lower bound and the floor function for the upper bound.

2 - Second step:

(d) From (1) we build the following matrix inequality:

(e) We take now each row on the left hand of matrix inequality (1) and combine it with

every row on the right hand of this matrix inequality. In this way we obtain a set of

new inequalities which, when put together with the system AQ • x < ß0 and

removing the redundant inequalities, form the new system:

A - x < ß

Steps (a) to (e) are repeated to obtain the bounds for the next iteration variables, until vector x

has a single component.
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B.I INTRODUCTION

After dealing with the restrictions that split UCLs, we obtain a set of loop nests (or partitions). In only

one of these partitions the bound components of the inner UCL do not depend on the iteration variable

of the outer UCL and therefore, this is the only partition where the UCLs can be fully unrolled. Let A

and B be the number of (upper and lower) bound components of the outermost and innermost UCLs in

this particular partition, respectively. Neither A nor B contain the bound components that we want to

be the effective ones1.

Every time index set splitting is applied to a loop, it decomposes it into two new loops, generating

two partitions. In the two generated partitions, a new bound component appears in the loop being split

and there is a bound component of an UCL that is redundant and can be removed. The loop being

split cannot be an UCL, because we have already dealt with the restrictions that split UCLs. Thus, the

number of bound components in the UCLs will never increase. Then, to achieve the partition where

both UCLs can be fully unrolled, ISS must be applied A+B times, that is, as many times as bound

components are in both UCLs, ignoring the bound components that we want to be the effective ones.

Moreover, the number of loop nests obtained after applying ISS A+B times (to achieve the

partition where both UCLs can be fully unrolled) is A+B+1 and in only one of these loop nests both

UCLs can be fully unrolled. In the other A+B loop nests, we will be able to unroll one (or none) of the

two innermost loops by applying again ISS (repeatedly) to each of these loop nests. At each of the loop

nests ISS is performed different number of times; it depends on the number of bound components that

the UCL has.

As an example, Figure B.I shows how the loop nests are generated when ISS is applied

repeatedly in order to fully unroll the UCLs in all partitions. Alt A2 and B^ B2 are the number of lower

and upper bound components of the outermost and innermost UCL, respectively, and JJ, JJ+Bjj-1

and II, li+Bjj-1 are the lower and upper bound components of the outermost and innermost UCLs,

respectively, that we want to be the effective ones. We have assumed A1=A2=B1=B2=1, thus A=AX+A2=2

and B=B1+B2=2. To represent the ISS process we use a binary tree. Each node represents a loop nest

and its two sons are the partitions obtained after applying ISS with a particular restriction. At each

node, we only show the loop bounds of the UCLs. The first row shows the loop bound components of

the outermost UCL and the second row shows the loop bound components of the innermost UCL. The

lower and upper bound components are in the first and second column, respectively. The leafs of the

tree are all the partitions we get at the final code and the loops marked in bold are the loops (UCLs)

that can be fully unrolled.

l.RecaJl from Section 3.2.4 that, for simplicity, the expressions are developed for two UCLs in the loop nest, but they can be
easily extended for any number of UCLs.
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JJ,A!
li, B!

JJ+Bjj-l,A2

IH-Bir-l,B2

NodeS
JJ, A!
li, B!

JJ+Bjj-l,A2

B2

Leaf 1 Leaf 2 LeafS Leaf 4

Figure B.I: Example of how the loop nests are generated when Index Set Splitting is applied repeatedly
in order to fully unroll the UCLs in all partitions.

The order in which the loop bound components of the UCLs are eliminated, depends on the order

in which the restrictions are applied. In Section 3.2.3 of Chapter 3 we show that the order in which we

deal with each restriction, that is, the order in which we split the loops is very important to avoid

processing a loop more than once and to reduce code expansion. We propose to deal with the

restrictions that split loops that are not UCLs from outermost to innermost. In Fig. B.I we have

assumed that, using this processing order of the restrictions, the loop bound components are

eliminated in the following order: first ¡B2}, second {A2K third {B]J and finally {A .̂ At each node we

have marked in bold the loop bound component that is going to be eliminated from one of the two

partitions after applying ISS.

To achieve the partition where both UCLs can be fully unrolled (Leaf 1), ISS has been applied

A+B=4 times (dark lines) and A+B+1=5 partitions (or loop nests) have been obtained (Leaf 1, Leaf 2,

Node 1, Node 2 and Node 3). In A+B=4 loop nests (Leaf 2, Node 1, Node 2 and Node 3) only one of the

UCLs can be fully unrolled. From now on, we will refer to these loop nests as partially unrolled loop
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nests. In Node 1 and 3 the outermost loop is still an UCL and in Node 2 and Leaf 2 the innermost loop

is still an UCL. Thus, we can apply ISS again to these loop nests (dashed lines in Fig. B.I) to be able to

unroll the corresponding UCLs.

On each of the partially unrolled loop nests, ISS is applied a different number of times. In

Node 2, for example, ISS is applied only once, while in Node 3 it is applied twice. In this appendix, we

will demonstrate that the sum of the number of times ISS is applied on all the partially unrolled loop

nests is always A*B.

B.2 PROOF

Definition 1

The loop nest obtained after dealing with the restrictions that split UCLs can be written, in the

general case, into the following form:

do JJ = . . .
do ii = ...

[ do J = max (jj,
do i = max({B

loop body
enddo

enddo
do j = ...
do i =...

loop body
enddo

enddo

^), min(jj+BJir1 , {A2})
il), min(n+Bir1, {B2}) partition where the bound

components of I are not
affine functions of J

partitions where at least
one bound component of I
is an affine function of J

enddo

where loops I and J, in the first partition, are the UCLs and A1; A2 and B1; B2 are the number of (lower

and upper) bound components of the outermost and innermost UCLs, respectively. Neither A1( A2 nor

B!, B2 contain the bound components that we want to be the effective ones. Moreover, since we have

already dealt with the restrictions that split UCLs, the B1+B2 bound components of I cannot be affine

functions of J.

Definition 2

Let A and B be the total number of bound components of the outermost and innermost UCLs,

respectively, ignoring the bound components that we want to be the effective ones. Thus, A=A1+A2 and

B=B1+B2.
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Theorem

Let's define f (A, B) as the total number of times that ISS is applied to be able to unroll the UCL in all

partially unrolled loop nests, then f (A, B) =A*B.

Proof (by induction)

Clearly, f(0, 3) = f(A, 0) = 0, because in all partially unrolled loop nests, the UCL can be directly fully

unrolled. Also clearly, it can be seen that, if A=B=1, then:

. . _ f l + / X O , l ) = 1 if the bound component of loop J is eliminated first
^ 1 + /( 1, 0) = 1 if the bound component of loop I is eliminated first

Thus, the basis is trivial, since f(0, Bj = 0 *B = 0, f(A, Q) = A* 0 = 0 and f(l, 1) = 1 * 1 = 1.

Let's assume that the proof holds for /(A, B-l) and/"(A-l, B) , that is,/"(A, B-l) =A*(B-l)and

f(A-I, B) = (A-1)*B.

Suppose that the first time ISS is applied to the original code, a bound component of loop J is

eliminated. After applying ISS, two partitions are generated. In one of them, both UCLs (I and J) can

still be fully unrolled and loop J has one fewer bound component. In the other partition (the partially

unrolled loop nest), only loop I can still be fully unrolled and it still has the same bound components

as before applying ISS, that is, B bound components. Therefore, ISS has to be applied B times to the

partially unrolled loop nest to achieve the partition where loop I can be fully unrolled.

Let's now suppose the other case, that is, the first time ISS is applied to the original code, a

bound component of loop I is eliminated. As before, after applying ISS, two partitions are generated.

In one of them, both UCLs (I and J) can still be fully unrolled and now loop I has one bound

component less. In the other partition (the partially unrolled loop nest), only loop J can still be fully

unrolled and it still has the same bound components as before applying ISS, that is, A bound

components. Therefore, ISS has to be applied A times to the partially unrolled loop nest to achieve the

partition where loop J can be fully unrolled. Therefore,

( B + f ( A - 1, B) if the first eliminated bound component corresponds to loop J
V A + /"(A, B-l) if the first eliminated bound component corresponds to loop I

Replacing f (A, B-l) and/"(A-l, B) by their values, we obtain:

'B+/(A-1,B) = B+ (A-l) - B = A - B

/"(A,B-1) = A+ (B-l) • A = A - B
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B.3 BACK TO THE NOTATION OF CHAPTER 3

Turning to the notation used in Section 3.2.4 of Chapter 3, after dealing with the M restrictions that

split UCLs, we obtain one partition where the bound components of the inner UCL do not depend on

the iteration variable of the outer UCL. In this partition, the outer UCL has, in the worst case, M+R

bound components and the inner UCL has S bound components. Therefore, the sum of the number of

times ISS is performed on each of the loop nests where one UCL can still be fully unrolled (partially

unrolled loop nests) is, in the worst case, (M+R) *S.
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MMtri: Triangular Matrix Product

do K = 1 , N

do J = K, N

do i = K, N

,K) * B(K,J)

enddo
enddo

enddo

LU: LU Decomposition without Pivoting

doK=1,N-1
do i = K+1 , N

A(I,K)=A(I,K)/A(K,K)

enddo
do J = K+1 , N

do i = K+1 , N

A(i, j) = A(I,J) - A(I,K) * A(K,J)

enddo
enddo

enddo

CHOL: Cholesky Factorization

A(K,K)= SQRT(A(K,K))

do i = K+1 , N

,K) / A(K,K)

enddo
do J = K+1 , N

do i = j, N

A(I,J) = A(I,J) - A(l,K) * A(J,K)

enddo
enddo

enddo
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QR: Givens QR-decomposition (skewed code)

do i = J-N, -1

if (A(j-i,j) .eq. 0) then

S(I,J) = 0.0
else if (ABS(A(J-i-1 ,j)) .le. ABS(A(j-i,j))) then

T = -A(J-l-1 , J) / A(J-I, J)
S(i, J) = 1 .0 / DSQRT(1 +TT)
C(l,J) = S(I,J)*T

else

C(l,J) = 1 .0 / DSQRT(1 +T*T)
S(l,J) = C(I,J)*T

endif
T1 =A(j-i-1,j)
T2 = A(J-I,J)
A(j-i-1,j) = C(I,J) * T1 - S(I,J) * T2
A(J-I,J) = S(I,J) * T1 + C(I,J) * T2

enddo
do K = j+1 , N

do i = J-N, -1

T1 = A(J-I-1 ,K)
T2 = A(J-I,K)
A(J-l-1 ,K) = C(i, J) * T1 - S(I, J) * T2
A(J-I,K) = S(I,J) * T1 + C(l,J) * T2

enddo
enddo

enddo

SSYR2K: Symmetric Rank 2k Update

do K = 1 , N

do J = 1 , N •

do 1 = 1, j

) + B(J,K) * A(I,K) + A(J,K)

enddo
enddo

enddo



238 APPENDIX C

SSYRK: Symmetrie Rank k Update

do K = 1, N

do J=1,N

do l = j, N

enddo
enddo

enddo

SSYMM: Symmetrie Matrix-Matrix Operation

do j=1,N

do i = 1, N

do K = 1,1-1

C(K,J) = C(K,J) + A(K,I) * B(I,J)
C(I,J) = C(I,J) + A(K,I) * B(K,J)

enddo

enddo
enddo

STRMM: Product of Triangular and Square Matrix

do K = 2, N

doj=1,N

do I = 1, K-1

) + A(l,K)*B(K,j)

enddo
enddo

enddo

STRSM: Solve a Matrix Equation

doK=1,N

do J = 1 , N

B(K,J) = B(K,J)/A(K,K)

do l = K+1 , N

,K) * B(K,J)

enddo
enddo

enddo
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Theorem

In SMT, the second step of the FM algorithm does not need to be performed when the loop being solved

is a TI-loop.

Proofl

We will demonstrate that, when computing the bounds of a TI-loop, all new simple bounds generated

by the second step of the FM algorithm are redundant. Therefore, the second step of the FM algorithm

does not need to be performed when the loop being solved is a TI-loop.

Let the following loop nest be the original code:

do I = Lz, Uj

d o K = a1· l + 9 j , UK

do J = Lj, cc2 • I + 62

enddo

where a.v cx2, Qr 02 are integer constants or program parameters (variables unchanged within the

loops). To simplify the proof, we assume that LI; Lj and \J2, UK are max and min compositions of

integers constants or program parameters, respectively. We note that if Lj and UK were affine

functions that depend of outer loop index variables (I or K), the demonstration would be done in a

similar way.

Let's also assume that a1? a2 > 0 and ctj > a2 (for other values of ctj and cc2 the demonstration

is done in a similar way). Let's also assume that all loops, I, J and K, have to be strip-mined only once

with tile sizes BXI >0, Bjj>0 and BKK>0, respectively, and the desired loop order in the multilevel tiled

code (BTIS) is KK-JJ-II-K-J-I, from outermost to innermost (for more levels of tiling and different loop

orders, the demonstration is the same).

From Theorem 1 of Chapter 4, we have that the bounds of the Minimum Convex Space of the

BTIS are extracted from the matrix inequality ANCBIS •(TPJ • xBTIS < ßNCBIS using the
„ . -, , , . , ... , .NCBIS NCBIS . „NCBIS ., , , . ., -,~0 _ .,Founer-Motzkin algorithm, where A - I < p are the bounds of the MCS of the

NCBIS (the loop nest after strip-mining all loops at all levels) and T defines the loop permutation

transformation. From Lemma 4 and Corollary 3 (Section 4.6 of Chapter 4) we have that, if

strip-mining is applied first to all loops at all levels and then the loop permutation is performed,

special redundant bounds will be generated in the tiled code.

To avoid the generation of these redundant bounds, and without a loss of generality, we will

compute the bounds of the BTIS in the following way2: first, we apply strip-mining only to loop I and

perform one iteration of the FM algorithm to obtain the bounds of I in the BTIS; second, we apply

strip-mining only to loop J and perform one iteration of FM to obtain the bounds of J; third, we apply

l.For a clear understanding of some assumptions of this proof, we recommend reading first Section 4.6 of Chapter 4.
2.0ur efficient implementation of SMT (Section 4.4.4 of Chapter 4) will also compute the bounds in this way.
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strip-mining to loop K and perform one iteration of FM, obtaining the bounds of K in BTIS; and fourth,

we perform the required iterations of FM to compute the bounds of TI-loops il, jj and KK.

In the demonstration, we will present the bounds of the loops at intermediate steps of the tiling

transformation. More precisely, we will present the MCS defined by the bounds of the loops and we

will present this information in the form of a loop nest (we use braces on the loop bounds to indicate

that they are representing the MCS). Moreover, once the bounds of a particular loop have been

computed, the loop is moved to its position in the final tiled code. Thus, the loops whose bounds have

already been computed are always in the innermost positions of the nest while the not-yet-processed

loops are in the outermost positions.

After the bounds of the EL-loops have been computed as mentioned above, the following bounds

are obtained:

do ii = { LrBri+1, mi ) }

= {max(a1· LI + Q1, ̂ · )- BKK+1 , UK

min(a 2 .U 1 + 9 2 > a 2 . ( i l + B I I - l ) + e 2 , M · ( U K - e i ) +62 , -í - (KK + B^-l-9,) + 6 2 ) }
Lai J Lai

fa, l
doK = { max(KK, a, - L T - f 6, , a, • n + 6, , — • (JJ-89) +6, ) min(UK, KK+BKK-1)}1 v * i i i ' i i ' £ v \

= {max(jJ,LVJ),min(jj+Bjj-1, a 2 - U + 6 2 , a2 • (il + B -
a-
-= • (K-6^ + 6 2 ) }

do i = { maxíLj, ii,
K-8 j

a.

EL-loops

At this point, we want to compute the bounds of the TI-loop II in the BTIS. The first step of the

FM examines the simple bounds of the not-yet-processed loops and all simple bounds that are affine

functions of the loop iteration variable being solved become simple bounds of this loop. Therefore, the

simple bounds of 11 in the BTIS are its current simple bounds plus the simple bounds of loops JJ and

KK that are affine functions of II. After performing the first step of FM the following bounds are

obtained:

do KK = { cCj • LT + 8j - BKK+11 UK}

JJdo ii = { maxfLj,

do K =

do J =

do i = ..

J-Bn+l.mi/XU!, I UK ' ^K-1-9!!)}
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The second step of the FM algorithm consists in comparing each of the lower simple bounds of

the iteration variable solved in the first step with each of the upper simple bounds. These comparisons

generate inequalities that might become new simple bounds of the yet-to-be-processed loops. By

comparing the lower simple bounds of II with its upper simple bounds, we obtain the following

inequalities where loops JJ and/or KK are involved:

1-
CCo

3-
4-

L ai
i K K + B „ „ - l - e

'[' a

These inequalities generate new simple bounds on loops JJ or KK that are trivially redundant3:

1- JJ<a2 • ( U j + BZI -1) + 62 : This bound is redundant because loop JJ already has the

bound JJ < oc2 • KJ + 02 and BIX is positive.

Therefore, min(cc2 • UI + 92 , cc2 • (U j + BIt -1) + 02 ) = «2 • Ux + 92

2- J J < — • (UK-61) + 62 + a2 • (BX I - 1) : This bound is redundant because loop J J already hasI (

the bound JJ <

Therefore, min(

a,,

cc

+ 02 and a and BZI are positive.Jn aJJ-U. U-rt

a9

5-(l = U f - ( U K - e 1 ) U e

3-
a.

already has the bound J J ¿

a2- (B -1) : This bound is redundant because loop JJ

— (KK -i- BKK -1 - QI) and a2 and BJJ are positive.

Therefore, min( — • (KK + B^-l-O,) +6,, — • (KK +
Lai J Lai

B -1- (B -1) ) =

4- KK > aj • (Lj - BIZ + 1) + 9X - BKK + 1 : This bound is redundant because loop KK has the bound

cxj • Lj + 6j - BKK + 1 and BIX is positive.

01-B f t K+lTherefore, maxfc^ • Lx + 9 a-BK K + 1, a: • (L j -B j j* 1) +6 1 -B K K + 1)= a j -

Thus, all new simple bounds produced by the second step of FM when computing the bounds of

TI-loop II are redundant. •

3.A simple bound of a particular loop I is a trivial redundant simple bound if it can be deduced that it is redundant by only
looking at the other simple bounds of loop I.
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