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Abstract

Although parallel computing is increasingly common, particularly due to the

spread of multicore processors, the programming of these parallel systems re-

mains difficult. A whole new of set of problems that do not exist in sequential

programming is present in parallel programming: identification of parallelism,

work and data distribution, load balancing, synchronization and communica-

tion. Novel users, in general, do not have the necessary expertise to deal

with those problems and the help the receive from the languages, compilers

and tool is still not enough. As a result, the productivity of most programmers

in parallel systems is severely hampered.

One possible way to ease the problem is have adaptive runtime compo-

nents as a part of a parallel environment. This components would obtain

information about the application and the execution environment and based

on their embedded expertise can take decision that maximize the performance

of the applications reducing the burden put into the programmer. The goal is

not to develop methods that outperform a hand-tuned applications for specific

architectures but come as close as possible with a minimum effort from the

programmer.

In this thesis, we develop self-tuned algorithms for three different aspects

of parallel exploitation of the OpenMP parallel language: parallel loop schedul-
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thank the Barcelona SuperComputing Center (BSC) for the use of their machines.



ing, thread allocation in multiple levels of parallelism and task granularity

control. The algorithms are fed with information obtained from on-line pro-

filers that gathers information about the characteristics of the application.

With this information,

Our evaluation results shows that the performance obtained using the self-

tuned algorithms is in most cases as good as the one obtained by applications

optimized by hand. We think this suggests that the use of self-tuned algorithm

can help to maximize the ratio performance over effort so the entry level to

the parallel computation is lower.
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Chapter 1

Introduction

The real voyage of discovery

consists not in seeking new

landscapes but in having new

eyes.

Marcel Proust

French writer (1871 – 1922)

Abstract

This chapter overviews the context of the parallel world in

which the work has been developed. It describes how the process

of writing a parallel program works and how this thesis tries to

improve this process by using runtime self-tuned algorithms. We

briefly describe the contributions of this thesis. This chapter also

outlines the structure of the remaining of the document.

1



CHAPTER 1. INTRODUCTION

1.1 A parallel world

In recent years parallel computation has finally, after years of prophecy, be-

come ubiquitous. Lead by the spread of commodity multicore processors,

parallel programming is not anymore an obscure discipline only mastered

by a few rocket scientists but a skill required to many programmers from a

variety of fields (e.g. databases, games, systems, . . . ).

Unfortunately, the amount of able parallel programmers has not increased

at the same speed as the number of parallel systems. One of the reasons for

this increasing gap is the lack of an easy way to write parallel code.

Parallel programming is inherently different from sequential program-

ming. Programmers must deal with a whole new set of problems: identi-

fication of parallelism, work and data distribution, load balancing, synchro-

nization and communication.

At first, it seemed like compilers could help to make a seamless transi-

tion from sequential to parallel by means of automatically parallelizing the

user code. But, this approach has only produced limited results due to the

complexity of understanding the semantics of the user programs and, thus,

parallelize them properly. Meanwhile, parallel programmers have embraced

several languages designed to allow the creation of parallel applications. In

these languages, the programmer is not only responsible of identifying the

parallelism but also of specifying such low-level details as, for example, the

exact mapping of data or the way the work should be distributed across the

available computing units (i.e. scheduling).

This low-level details do not express the parallelism in the application

but how the parallelism of the application needs to be exploited (i.e. how it

needs to be mapped to the execution environment). How the parallelism of an

application will be exploited depends on several parameters (e.g. scheduling,

threads allocated, . . . ) that in most parallel languages the user needs to

set. Users usually need to spend time analyzing the different options for the

different parameters to find which values obtain the best performance for

their execution environment.

The fact that users need to take care of such details is not only a waste

2



1.2. PROGRAMMING MODELS

of time for them but it also hurts the portability of the application as the

decisions need to be reevaluated from one execution environment to another.

Even a change in the input data of the application or the number of processors

used may result in previous right decisions being erroneous.

Moreover, the trend in today’s systems is that the execution environment

keeps changing in order to comply with business considerations [SWC+07,

USR02, WLW+07, CSW+08]. This means that users will have a hard time

trying to tailor the parallel exploitation to a changing environment. Clearly,

a different method needs to be used.

For these reasons, developing mechanisms that allow the applications

to automatically decide which is the best value of the different parameters

that configure the parallel exploitation of an application with minimum user

intervention is an important line of research.

1.2 Programming models

The process of transforming a sequential execution of a program into a paral-

lel execution one consist, roughly, of two steps: first, the identification of all

the parallel units of a program and its relationships (i.e. synchronization and

communication). Second, the exploitation of these units using the resources

available in the execution environment of the application.

Ideally, the compiler using flow analysis and data dependence analysis

would be able to detect which parts of a program can run concurrently.

Unfortunately, several problems like pointer aliasing, lack of interprocedu-

ral information or memory indirections have severely hampered the ability

of compilers to understand what are the relationship of different parts of

program. This lack of knowledge forces compilers to be very conservative

in their effort to parallelize user codes which results, with a few exceptions,

in parallel versions which express far less parallelism than the amount that

really exists in the application and, as a result, the obtained performance is

not very good [ZUR04].

Instead of relying on compiler auto-parallelization, programmers who

want to take the maximum advantage from the parallelism of their appli-

3



CHAPTER 1. INTRODUCTION

cation have used an assortment of explicit parallel languages to express the

available parallelism in their applications.

Most notably, the Message Passing Interface (MPI ) [For95] has been

extensively used for distributed memory environments and, also, in shared

memory environments.MPI runs multiple replicas of the same program in

parallel and the user is responsible of distributing the work across the dif-

ferent replicas. The information exchange between the different replicas is

achieved by means of calls to explicit communication messages.

Also, the OpenMP [Org08] language has become in recent years the de

facto standard for programming in shared memory systems, particularly be-

cause it has been endorsed by all important vendors. OpenMP extends the

Fortran (by means of special comments), C and C++ (by means of #pragma

directives) languages with constructions that allow to specify regions of a pro-

gram that are executed in parallel by multiple threads. Other constructions

allow the distribution of work across multiple threads as well as their syn-

chronization. The communication between threads is implicit as OpenMP

uses a shared memory model where all the threads can see all the memory.

The Unified Parallel C (UPC ) [con05] is a global-address space language

that extends the C language. As MPI , multiple copies of a UPC program

run at the same time. UPC only provides support for work distribution for

parallel loops.UPC provides language extensions that allow the programmer

to explicitly distribute the data across the different copies (which may be in

different nodes).

The Cilk [FLR98] language extends, as well, the C language with con-

structions that allow to easily write task-parallel programs. It provides lan-

guage constructions to create parallel tasks and synchronize them but it has

no constructions for data parallelism (e.g. parallel loops). Cilk forces the

application to have a recursive structure to be efficient which means that in

many cases the programmer needs to rewrite its program.

The problem with these languages is that the specification of the paral-

lelism is tied with how the parallelism needs to be exploited. For example, if

we had a simple code, like the one in Figure 1.1, where there are three loops

i,j,k. Of these loops the i and j loops are parallel as there are no dependences

4



1.2. PROGRAMMING MODELS

between the iterations.

1 for ( i = 0 ; i < N ; i++ ) {
2 for ( j = 0 ; j < M; j++ ) {
3 r = 0 ;

4 for ( k = 0 ; k < K ; k++ ) {
5 r = f ( r ) + g (k ) ;

6 }
7 a [ i , j ] += r ;

8 }
9 }

Figure 1.1: Simple code (i and j loops are parallel)

If we were, for example, to use OpenMP (see Chapter 2 for details on

OpenMP) to parallelize that program we could write several different par-

allelizations. So, for example, we could write a very simple parallelization

like the one in Figure 1.2 where only the outer i loop is executed in parallel.

In this example, the number of threads used and which iterations will be

executed by each thread are unspecified so the implementation defaults will

be used (which are not necessarily the best).

1#pragma omp paral lel for

2 for ( i = 0 ; i < N ; i++ ) {
3 for ( j = 0 ; j < M; j++ ) {
4 r = 0 ;

5 for ( k = 0 ; k < K ; k++ ) {
6 r = f ( r ) + g (k ) ;

7 }
8 a [ i , j ] += r ;

9 }
10 }

Figure 1.2: Simple code (OpenMP version)

1#pragma omp paral lel for num threads (2) s chedu l e ( stat ic )

2 for ( i = 0 ; i < N ; i++ ) {
3#pragma omp paral lel for s chedu l e ( dynamic , 8 )

4 for ( j = 0 ; j < M; j++ ) {
5 r = 0 ;

6 for ( k = 0 ; k < K ; k++ ) {
7 r = f ( r ) + g (k ) ;

8 }
9 a [ i , j ] += r ;

10 }
11 }

Figure 1.3: Simple code (OpenMP version with nested parallelism)

5



CHAPTER 1. INTRODUCTION

Another user may, for example, choose to write a different parallelization

(see Figure 1.3) where, now, both the i and j loop will be executed in parallel

by means of using nested parallelism. The user also specifies that the number

of threads allocated to the i parallel loop should be two and that an static

assignment of iteration should be used while that for the j loop a dynamic,8

assignment of iterations to threads should be used.

Which of the two parallelizations is the best? The answer to this ques-

tion depends on several factors. Some, like the values of N and M or the

granularity of the functions f and g, depend on the application. Others, like

the cacheline size, depend on the final architecture where the program runs.

Others, like the number of available threads, depend on execution environ-

ment of the application and may change from one execution to another even

in the same architecture. So, which is the best parallelization of the two

will usually depend on so many different parameters that is difficult to know

before hand.

This forces the users to test the two versions (and possibly many others)

in their target environment. This analysis is time consuming and error prone

so users could end taking the wrong decision. Of course, experienced users

have intuitions of what things will work well and which ones will not that

allows them to simplify this analysis. But, intuition is not a rational tool and

even these users will make mistakes from time to time. Even worse, when

any of the factor mentioned before (i.e. input data, architecture or execution

environment) changes this analysis will be need to be done again. What

happens in practice many times is that users have different parallel versions

of the same sequential program: one for each specific scenario.

At least, in the OpenMP memory model the communication happens

implicitly while in models based on messages like MPI the user needs to

care, as well, of how the information flows between the threads. So in MPI

it is even more explicit how the parallelism needs to be executed.

Clearly, while these languages allow an experienced user to develop a high-

performance version of his serial application, the burden put into the casual

programmer which is just starting or needs to parallelize a small portion of a

program is too much. A better approach is needed to help these users start
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in the parallel world.

1.3 Goal of this thesis

Our philosophy is that the programmer is responsible of identifying the par-

allel parts of the program and their relations (i.e. communication and syn-

chronization) and the runtime library is responsible of automatically finding

the best way to exploit the available parallelism. So, for our simple code, the

user would mark all the parallelism by marking both the i and j loop (see

Figure 1.4). The actual decision of how to execute those loops (i.e. number

of threads, serialize them or not, assignment of iterations to threads, . . . )

should be decided by the implementation (compiler plus the runtime library

).

1#paral lel

2 for ( i = 0 ; i < N ; i++ ) {
3#paral lel

4 for ( j = 0 ; j < M; j++ ) {
5 r = 0 ;

6 for ( k = 0 ; k < K ; k++ ) {
7 r = f ( r ) + g (k ) ;

8 }
9 a [ i , j ] += r ;

10 }
11 }

Figure 1.4: Ideal parallelization of the simple code

In this thesis, we want to demonstrate that is possible for the runtime

library of a parallel environment to adapt itself to the application and the

environment and thus reducing the burden put into the programmer when

he develops a parallel program.

For this purpose we study three different parameters that are involved

in the parallel exploitation of the OpenMP parallel language, which we have

chosen as our target language:

Parallel loops scheduling Parallel loops are one of the main sources of

data parallelism but the performance that user can obtain from them

7
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depends heavily on which iterations are executed by each of the threads.

This decision is known as loop scheduling.

Thread allocation When there is just one level of parallelism all the threads

of the application are assigned to the lonely parallel region. But, now

a days, a very common technique to improve the load balance of appli-

cations is using multiple levels of parallelism. In these cases, a decision

needs to be made about how the threads of the application are allocated

across the different parallel regions.

Parallel tasks cut-off Parallel tasks are another important source of par-

allelism. One the main problems is making sure that the created tasks

have enough granularity to overcome the overheads of their creation.

Because at the same point in the program the granularity of the tasks

created will vary (e.g. recursive functions) users will, typically, embed a

cut–off function in their program that will be decide if a task is created

or not.

In all the cases, we want to understand the different alternatives of exe-

cution and understand under which circumstances is better to use each one

to propose a self-tuned algorithm that will first perform an on-line profiling

of the application and based on the information gathered it will adapt the

value of the parameter to the one that maximizes the performance of the

application.

Our goal is not to develop methods that outperform a hand-tuned appli-

cation for a specific scenario, as this is probably just as difficult as compiler

code outperforming hand-tuned assembly code, but methods that get close

to that performance with a minimum effort from the programmer. In other

words, what we want to achieve with our self–tuned algorithms is to maxi-

mize the ratio performance over effort so the entry level to the parallelism is

lower.

8
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1.4 Contributions of this thesis

To demonstrate our ideas, we have developed several mechanisms in a real

system that based on information gathered at execution time adapt different

parameters related to the exploitation of the parallelism in the OpenMP

language.

The following list summarizes the contributions of this thesis:

• An self–tuned loop scheduler for parallel loops like the OpenMP DO

workshare.

• An self–tuned algorithm to decide the allocation of threads for an hy-

brid MPI+OpenMP application.

• An self–tuned algorithm to decide the allocation of threads in innermost

level of an OpenMP application with multiple levels of parallelism.

• An extensive analysis of scheduling strategies in the new OpenMP task

model.

• An self–tuned cut–off for OpenMP tasks that serializes them based on

granularity prediction to increase the granularity of parallel tasks.

1.5 Organization of this thesis

The remaining of this thesis is organized as follows:

Chapter 2 describes the main elements (programming models, hardware

model and the runtime library ) of the environment where we have developed

our thesis.

Chapter 3 describes a feedback technique to adapt the parallel loop sched-

uler at execution time to improve the load balance of the application. The

mechanism adapts to the dynamic characteristics of the application (i.e. in-

put data) and of the execution environment (e.g. number of processors).

Chapter 4 describes a feedback technique to adapt the distribution of

the threads available to the application across different parallel regions in

9
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order to improve the load balance of the application.The mechanism adapts

to the dynamic characteristics of the application (i.e. input data) and of the

execution environment (e.g. number of processors).

Chapter 5 presents our initial evaluation of the new OpenMP task model.

We describe our parallelization of different benchmarks with this model and

our evaluation of different scheduling strategies for it. This allows us to

identify areas that users will need to optimize manually so we can provide

self-tuning algorithms.

Chapter 6 describes an analysis of the performance of different scheduling

policies for OpenMPtasks and, based in that analysis, a feedback-guided

policy that dynamically increases the granularity of parallel tasks by means

of serializing small tasks to generate coarser tasks.

Chapter 7 presents the conclusions of this thesis and discusses some pos-

sible lines of future work.

10



Chapter 2

Background and Context

If you don’t crack the shell, you

can’t eat the nut.

Persian Proverb

Abstract

This chapter presents some important concepts that will be

used in the following chapters of this thesis. It also describes our

execution environment. We present a brief introduction to the

OpenMP language and to the MPI+OpenMPhybrid model that

we use in part of our work. We present the concept of OpenMP

runtime library and why is important for us. Finally, we discuss

how we can retrieve information from the applications to feed our

self-tuned algorithms.

11
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2.1 Introduction

In this chapter, we introduce several key concepts to the work presented in

the following chapters of this thesis.

The target execution environment of our techniques are multiprocessors

with a global shared memory address space. We, briefly, describe the most

important characteristics of these architectures.

There are several parallel programming languages available for these ar-

chitectures but we decided to focus in the OpenMP language as it widely

viewed as a de facto standard for shared memory programing. We describe

its main features: parallel regions, worksharings and synchronization con-

structs. We also explain two other OpenMP advanced features that are

important for our work: nested parallelism and task parallelism. We then

explore the MPI+OpenMP hybrid model that we have used for part of our

work.

We describe what the OpenMP runtime library is and why is a key com-

ponent in all of our proposed algorithms. We, also, give a brief description

of the two runtime libraries we have used to implement our proposals: IBM’s

XL runtime library and the NANOS NthLib runtime library .

For our self-tuned algorithms we need to obtain information from the

applications at runtime to use it as input. We discuss how we can obtain

such information and which are the limitations of the different information

retrieval options. These limitations, in turn, impose the structure that we

expect from the application in order to apply the self-tuned methods that

will be presented in the following chapters.

2.2 Execution environment

Through the work of this thesis we have used different execution environ-

ments (POWER3 [PDM+98], POWER4 [Cor01], POWER5 [KST04] and

Itanium-2 [Cor04]) but all them have a common characteristic: they are

multiprocessor architectures with hardware shared memory. This means,

that all the processors in the system have a global view of the memory of the

12
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Architecture
(Vendor model)

Frequency Number of
Processors
(Cores)

L2
Cache
Size

Memory Operating
System

POWER3
(IBM Nighthawk-2)

375 MHz 16 (16) 8 Mb 64 Gb AIX 5.1

POWER4
(IBM Regatta)

1.1 GHz 16 (32) 1.44 Mb 128 Gb AIX
5.1/5.2

POWER5
(IBM eServer p5 595)

1.6 GHz 32 (64) 1.92 Mb 514 GB AIX 5.3

Itanium-2
(SGI Altix 4700)

1.6 GHz 64 (128) 8 Mb 986 Gb SUSE
Linux En-
terprise
10

Table 2.1: Summary of the execution environments of this thesis.

system and they can access any memory location with a regular load/store

operation. The cost of accessing different memory locations does not nec-

essarily need to be the same. In fact, many shared memory systems are

NUMA (Non-uniform Memory Access) systems where the access to time to

a memory location varies from processor to processor.

In Table 2.1, we summarize the main characteristics of the execution en-

vironments we have used for our experiments. Because all our execution

environments are shared memory architectures we chose as our target pro-

gramming model one that was designed with this kind of architectures in

mind: OpenMP .

2.3 OpenMP

OpenMP [Org08] has emerged in recent years as the de facto standard for

parallel programming in shared memory systems. OpenMP is based on the

idea of an execution environment with a global shared address space. Pro-

grammers define which loops and sections of code can be executed in parallel.

OpenMP works by inserting directives in the sequential source code. In

fact, the same code can generate a sequential or parallel version just activat-

ing or deactivating the OpenMP directives using a compiler flag. OpenMP

13
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also defines a set of intrinsics and environment variables that allow to con-

figure the behavior of the parallel execution. The OpenMP elements provide

the application programmer with the tools to run multiple threads in parallel,

distribute work among them and synchronize them.

Another advantage of this programming model is that parallelization can

be done incrementally. Users can perform a profile of their sequential pro-

gram and just parallelize the most time consuming parts of their code. The

program can then be tested and evaluated. If the program achieves enough

speedup, the parallelization can be finished at this point. Otherwise, users

can parallelize additional code.

2.3.1 Parallel regions

OpenMP uses a fork-join execution model. This means that an OpenMP

program starts the execution as a single threaded program and at some point

it generates parallelism by creating multiple threads which are afterwards

terminated and the single threaded execution continues until the next fork

point. The region between the fork and the join point is called a parallel

region. Figure 2.1 illustrates the OpenMP fork-join model.

To create a parallel region in an OpenMP program we need to use the

parallel construct. Figure 2.2 shows the syntax of this construct for the

C and C++ languages while Figure 2.3 shows the syntax for the Fortran

language.

When the initial thread (also known as serial thread) encounters a para-

llel construct it creates new group of OpenMP threads (known as a team of

threads) and it becomes the master of it. All the threads of the team start

executing the code of the parallel region (i.e. all of them are doing the same).

The number of threads that will be created can be determined by the user

using the OMP NUM THREADS environment variable, the omp set num threads

intrinsic, or the num threads clause in the parallel construct. If the user

does not specify a number of threads the implementation will choose the num-

ber. It is important to note that once a parallel region starts the number

of threads remains fixed until the end of the region. But, between different
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Figure 2.1: OpenMP fork-join model

1#pragma omp paral lel [ c l au s e s ]
2 s t ructur ed−block

Figure 2.2: C/C++ parallel construct syntax

1 !$OMP PARALLEL [ c l au s e s ]
2 statements
3 !$OMP END PARALLEL

Figure 2.3: Fortran parallel construct syntax

15
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parallel regions the number of threads can change. This fact gives OpenMP

applications, unlike other programming models, the characteristic that they

can adapt the parallelism that they spawn to the number of processors avail-

able (malleability) each time they cross a parallel boundary.

At the end of the parallel region there is an implicit barrier that acts as a

synchronization point for all threads of the team. When all the threads of the

team reach the barrier all but the master thread will be logically1 destroyed.

Another useful clause is the if clause. When the user specifies an if

clause the expression contained in the clause will be evaluated before the

team is created. If it evaluates to false the parallel region is executed only

by the serial thread and no other threads are created. Otherwise the team is

created as usual.

The remaining clauses are used for data scoping and they will be discussed

in Section 2.3.3.

2.3.2 The worksharing constructs

All threads in a parallel region are initially executing the same code and thus

doing exactly the same work. But, in general, our interest in having multiple

threads is, that instead of all of them computing the same, they can split the

work between them so the overall computation goes faster.

In OpenMP , this is achieved by means of the worksharing constructs.

The most important worksharing constructs are the sections workshare,

the loop worksharing constructs and the single workshare.

The SECTIONS construct

The sections construct allows the programmer to specify that several parts

of his program can be executed in parallel and that they should be distributed

among the threads of the team of the parallel region where the sections

construct appears.

1Most implementations will keep them alive to be reused afterwards for efficiency pur-
poses but from the OpenMP point of view they are terminated.
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1#pragma omp sections [ c l au s e s ]
2 {
3 [#pragma omp section ]
4 s t r u c tu r ed block
5 [#pragma omp section
6 s t r u c tu r ed block
7 ]
8 . . .
9 }

Figure 2.4: C syntax of the sections construct

1 !$OMP SECTIONS [ c l au s e s ]
2 [ !$OMP SECTION]
3 statements
4 [ !$OMP SECTION
5 statements
6 ]
7 . . .
8 !$OMP END SECTIONS [ nowait ]

Figure 2.5: Fortran syntax of the sections construct

Figure 2.4 shows the syntax of the sections construct for the C/C++

languages. Figure 2.5 shows the syntax for Fortran language.

Each of the section directives defines a region of code that can be ex-

ecuted independently of the others by a thread. When the threads reach

the sections construct they start executing all the defined section in a

dynamic order. There is an implicit barrier at the end of the sections

construct unless the nowait clause is specified.

The remaining clauses of the sections construct are used for data scoping

and they will be discussed in Section 2.3.3.

Figure 2.6 shows a simple example with the sections construct. In this

1#pragma omp paral lel
2#pragma omp sections nowait
3 {
4#pragma omp section
5 f oo ( ) ;
6#pragma omp section
7 bar ( ) ;
8 }

Figure 2.6: Example of a SECTIONS construct
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1#pragma omp for [ c l au s e s ]
2 for−l oop

Figure 2.7: Syntax of the for construct

1 !$OMP DO [ c l au s e s ]
2 do l oop
3 !$OMP END DO [ nowait ]

Figure 2.8: Syntax of the do construct

example, we defined two different sections: the foo section and the bar section

that can be executed in parallel by any thread of the team. When threads

finish the execution of the section they skip the implicit barrier at the end

of the construct because the nowait clause is specified.

The loop worksharing constructs

Most commonly, the different parts of the program that a programmer would

like to execute concurrently are the different iterations of a loop. In this case,

two worksharing constructs exist: the for construct for C/C++ and the do

construct for Fortran. They are basically the same and only differ in some

minor issues related to the base language. We can see the syntax for the for

construct in Figure 2.7 and for the do construct in Figure 2.8.

When threads reach one of the loop worksharing constructs they start

executing all the iteration of the loop in parallel. The schedule clause

determines which iterations will be executed by each thread of the team.

OpenMP defines the following loop schedules:

static The static schedule specifies that the iterations are to be divided

proportionally between of the threads of the team. Also, all iterations

assigned to a thread must be contiguous.

static,n Also known as interleave schedule, the static,n schedule specifies

that the iterations are grouped into chunks of size n. Then, these

chunks are distributed giving one to each thread. If there are still
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unassigned chunks we start giving another to the first thread and so

on.

dynamic With the dynamic schedule, iterations form chunks of size n as in

the previous schedule but instead of a fixed assignment of chunks they

are distributed on a first-come first-serve approach. This means that in

two instances of the same loop the actual assignment can be different.

guided The guided schedule, assigns iterations in chunks dynamically as

the threads request them but the size of each chunk is proportional to

the number of iterations remaining to assign. So, initially the chunks

will be big but the last ones will be small.

auto The auto schedule gives implementations the ability to decide any

possible assignment of iterations to threads. This can range from simple

static schedules to complex feedback guided schedules. In part, this

schedule has been inspired by our work described in Chapter 3.

runtime When a programmer specifies a runtime schedule it delays the

decision of the actual schedule until the application is executed. This

allows the programmer to change the schedule of the loops (to one of

the previous ones) using an API call or an environment variable.

As in the sections construct there is an implicit barrier at the end of

the loop worksharing region unless the programmer makes use of the nowait

clause.

Other clauses of the loop worksharing constructs are used for data scoping

and they will be discussed in Section 2.3.3.

The SINGLE construct

The single construct allows the programmer to specify a section of his

program that while is the middle of the parallel region it will be only executed

by on the threads of team. This allows to serialize some parts of the code

(e.g. input/output) without having destroy the team and create it again

afterwards.
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1#pragma omp single [ c l au s e s ]
2 {
3 s t r u c tu r ed block
4 }

Figure 2.9: C syntax of the single construct

1 !$OMP SINGLE [ c l au s e s ]
2 statements
3 !$OMP END SINGLE [ nowait ]

Figure 2.10: Fortran syntax of the single construct

Figure 2.9 shows the syntax of the single construct for the C/C++

languages. Figure 2.10 shows the syntax for Fortran language.

When the threads reach a single construct only one of them will execute

the code associated to the single region. The other threads wait at an implicit

barrier at the end of the region unless the nowait clause is specified. Note,

that if the nowait clause is specified multiple threads can be in different

single regions at the same time.

The remaining clauses of the single construct are used for data scoping

and they will be discussed in Section 2.3.3.

2.3.3 Data scoping

OpenMP defines several attributes that are associated to the program vari-

ables that specify the visibility and initial value of those variables inside the

different parallel and worksharing regions of the program. We discuss here

the most important clauses that modify these attributes which are common to

the parallel and worksharing constructs: shared, private, firstprivate

and reduction.

Shared and private variables

Variables in any region (except some task regions) are shared by default.

This means that any access from any thread will be seen by the others as

they are sharing the same variable. The private clause allows to specify
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that certain variables should be private to each thread.

When threads enter a region they allocate space for all their private vari-

ables and any modification to these variables will only be visible by that

thread and not by any other thread of the team.

The shared clause allows the user to specify that some variables will be

shared .

Firstprivate variables

The firstprivate clause allows the programmer to specify a list of variables

which will be private (i.e. there will be a copy for each thread) but the initial

value of each of the private copies will be the value of the original variable

when the region is reached.

In task regions that are not directly nested in a parallel or worksharing

region variables will be by default firstprivate.

Reduction variables

The reduction clause allows the programmer to specify a list of variables

where the program performs a reduction operation.

For each variable marked as reduction a new private variable will be

created in the region for each thread. The initial value of this private vari-

able will be the neuter of the reduction operation (e.g. 0 for the addition

operation). At the end of the region, all the private reduction variables of

the threads will be combined into a single value that will be then stored in

the original variable.

2.3.4 Communication and synchronization in OpenMP

Besides being able to cooperatively execute work, threads will eventually

need to synchronize and communicate information between them. Because

OpenMP uses a shared memory model all the communication happens im-

plicitly when a thread writes to a shared variable and another reads it. The

user is still responsible to ensure that all threads have the same view of the
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1#pragma omp ba r r i e r

Figure 2.11: C barrier syntax

1 !$OMP BARRIER

Figure 2.12: Fortran barrier syntax

memory because the OpenMP memory model is a relaxed one that does not

ensure a coherent memory view from different threads. This is accomplished

using the flush directive. To help the user, OpenMP defines a number of

implicit flush operations that cover most common use cases.

For thread synchronization, OpenMP defines three main constructs that

we describe next: the barrier, critical and atomic constructs.

Barrier construct

As we have seen many OpenMP constructs have an implicit barrier at the

end of their regions that acts a synchronization point for all the threads of a

team.

The barrier construct allows to insert explicit barrier synchronizations

that will act in exactly the same way: no thread is allowed to go beyond the

barrier construct until all the threads of the team have reached it.

The barrier construct syntax for the C/C++ languages is shown in

Figure 2.11 and for the Fortran language in Figure 2.12.

Critical construct

The critical constructs allows to specify that a certain sections of code can

only be executed by one thread at a time. This allows to protect sensitive

data structures from multiple simultaneous manipulations (i.e. data races).

The syntax for the C/C++ languages is shown in Figure 2.13 and for the

Fortran language in Figure 2.14.

When a thread reaches the beginning of a critical region it waits until

no other thread is inside any other (or the same) critical region and then it
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1#pragma omp cr i t i ca l [ ( name ) ]
2 {
3 s t r u c tu r ed block
4 }

Figure 2.13: C/C++ critical syntax

1 !$OMP CRITICAL [ (name) ]
2 block o f statements
3 !$OMP END CRITICAL [ (name) ]

Figure 2.14: Fortran critical syntax

1#pragma omp atomic
2 statement

Figure 2.15: C/C++ atomic syntax

1 !$OMP ATOMIC
2 statement

Figure 2.16: Fortran atomic syntax

tries, to atomically, gain access to it. When it exits it signals that it has

exited so other threads can try to gain access to the critical regions.

Optionally, a name can be specified in a critical region. This allows

to have multiple threads inside multiple critical regions as long as all of

them have different names (one of them can be unnamed).

Atomic construct

The atomic construct avoids that multiple threads update the same memory

address at the same time. The syntax for the C/C++ languages is shown in

Figure 2.15 and for the Fortran language in Figure 2.16.

Only a limited number of statements are allowed to be protected with an

atomic construct: arithmetic operations and assignment (e.g. x = x + n),

logic operations and assignment (e.g. x <<= 2 ), increment, decrement,

post-increment, post-decrement and, in Fortran, some intrinsics like max

and min.

The atomic construct is restricted to simple statements so the compiler
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1#pragma omp paral lel num threads (2)
2#pragma omp sections
3 {
4 #pragma omp section
5 #pragma omp paral lel num threads (2)
6 f oo ( ) ;
7 #pragma omp section
8 #pragma omp paral lel num threads (3)
9 bar ( ) ;

10 }

Figure 2.17: Example of nested parallel regions

Figure 2.18: Teams of threads in nested parallel regions

can use special atomic operations from the architecture to improve the per-

formance of the application.

2.3.5 Nested parallelism

OpenMP parallel regions can be nested inside other parallel regions. This

means that new teams of threads are created. The master of the new parallel

region is the thread that encountered the nested parallel construct but all

other threads will be new OpenMP threads. By doing so, we obtain a tree

structure of teams of threads. For example, the code in Figure 2.17 would

create an outer parallel region with two threads. Then each of those threads

would create an inner parallel region one with two threads that will execute

foo and another with three threads that will execute bar. A tree representing

this structure of teams is shown in Figure 2.18 where each thread has a

different color. Note how the master threads are reused in the inner teams.
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1#pragma omp task [ c l au s e s ]
2 s t ructur ed−block

Figure 2.19: C/C++ task construct syntax

1 !$OMP TASK [ c l au s e s ]
2 statements
3 !$OMP END TASK

Figure 2.20: Fortran task construct syntax

Nested parallelism is particularly useful in situations where there is not

enough work for all threads in an outer level but exploiting only the inner

level would not yield a good performance because of the overheads of creating

the inner parallel regions. Nested parallelism offers a compromise in those

situations [AML+99,AGMJ04]. Nested parallelism , as we will see in Chapter

4, can also be used to improve the performance when there is unbalance in

the outer levels of parallelism.

2.3.6 OpenMP tasks

The latest specification of OpenMP (3.0) has shifted from a thread–centric

to a task–centric execution model, based on the fork-join paradigm where

threads are execution vehicles that have access to the shared memory [ACD+07].

The task construct

The task construct allows the programmer to explicitly specify a unit of

parallel work called a task. Tasks are useful for expressing unstructured

parallelism and for defining dynamically generated units of work.

Figure 2.19 shows the syntax of the task construct for the C/C++ lan-

guages and Figure 2.20 for the Fortran language.

A task construct may be lexically or dynamically nested inside an outer

task construct. Tasks created by this construct may be executed by any

thread in the team immediately or they may be deferred until a later time.

The major difference from the OpenMP task model compared to other ex-

isting ones is that tasks are created tied by default. Tied tasks can be
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1 void t r ave r s e ( struct t r e e ∗ t r e e )
2 {
3 i f ( t r ee−> l e f t )
4 #pragma omp task

5 t r ave r s e ( t r ee−> l e f t ) ;
6 i f ( t r ee−>r i gh t )
7 #pragma omp task

8 t r ave r s e ( t r ee−>r i gh t ) ;
9 #pragma omp taskwait

10 pr oc e s s ( t r ee−>data ) ;
11 }

Figure 2.21: Simple tree traversal with OpenMP tasks

executed by any thread but if, after the execution start, the task is sus-

pended, execution can only be resumed by that same thread that suspended

it. So, it is said that the task is tied to the thread that started the execution.

The untied clause allows the programmer to change this behavior if that

does not cause any problem (e.g. use of threadprivate in untied tasks is

discouraged). Untied tasks have no scheduling restrictions so they can be

executed at any time by any thread.

The remaining clauses of the task construct are related to the creation

of a data environment for the new task (i.e. data scoping) and another that

allows dynamic serialization of tasks based on a condition (i.e. if clause)

analogous to the if clause of the parallel construct.

The taskwait construct

The taskwait construct completes the task support. Taskwait suspends

execution of the current task until completion of all of its child tasks.

Dynamic task aggregation

OpenMP also allows an implementation to serialize tasks and execute them

immediately as part of the parent task (although they need to have their own

data environment). This allows the runtime to implement cut-off techniques

in order to reduce overheads by dynamically aggregating several tasks into a

single one.

If we had a recursive traversal in a tree like the one in Figure 2.21, where a
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OpenMP User Task

Executed Task

Figure 2.22: A possible execution for a recursive tree with OpenMP tasks

tree is visited in post-order, and we had a tree like the one show in Figure 2.22.

All nodes of the tree are potential OpenMP tasks because the programmer

used a task construct for each node of the tree. But, the runtime may decide

to aggregate them (the dashed areas in Figure 2.22) by not creating some of

the user specified tasks and execute them serially.

2.4 The Message Passing Interface

The Message Passing Interface (MPI ) [For95] is a library interface that pro-

vides a programming paradigm to parallelize applications. MPI follows an

SPMD model (Single Program Multiple Data). When the application starts

MPI allocates as many different processes as the user wants and all of them

execute the same program but on different data. The programmer controls

the distribution of work by means of primitives that allow to determine how

many total process there are in a job (mpi comm size) and the process rank

in that group (mpi comm rank). Once the application has started, unlike in

OpenMP , the number of processes remains fixed until the end.So, it is said

that MPI applications are not malleable (i.e. they cannot adapt to changes

in the resource allocation of the application).
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Figure 2.23: MPI execution model

Because these process can be in different nodes connected through a net-

work the address spaces of each process is independent and it cannot be ac-

cessed from any of the other processes of the application. Consequently, MPI

provides a set of primitives that allows the user to communicate data explic-

itly between the different processes. Some of these communication primitives

are point-to-point between a pair of processes (both synchronous and asyn-

chronous). Some others are collective operations in which multiple processes

cooperate in the communication (e.g. to make a reduction operation ). MPI

also provides some synchronization primitives like barriers.

Figure 2.23 shows how MPI works. The mpi init and mpi finalize func-

tions mark the beginning and the end of the MPI application and must be

executed in each of the processes. The mpi send primitive allows a process

to send some data to another process. Each mpi send must be paired with

an mpi recv in the receiving process. The mpi barrier allows to establish a

rendezvous point for all the processes of the application. In MPI applications,

many times the synchronization time is spent in communication primitives

rather than in more pure synchronization primitives like mpi barrier.

Although MPI was conceived to be used in distributed computations

across nodes without shared memory, it has been used in shared memory
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Figure 2.24: The MPI+OpenMP model

architectures with great success. This is because in these architectures the

library is optimized to use shared memory for the communication instead of

actually sending messages.

2.5 MPI+OpenMP

Another interesting way to obtain multiple levels of parallelism is using more

than just one parallel programming paradigm to make a hybrid model. That

is the case of the MPI+OpenMP model.

The main idea in this model is to use MPI to parallelize the outer level

of parallelism and then use OpenMP to parallelize the inner level instead of

using OpenMP for both as in the case of OpenMP nested parallelism.

Figure 2.24 shows the MPI+OpenMP execution model. When the appli-

cation begins MPI processes are started as usual. Then, they encounter an

OpenMP parallel region so each of the MPI processes will have inside a

team of OpenMP threads that will work in parallel on the data of that MPI

process. Note that MPI communication is still possible. Usually because of
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performance and thread-safety reasons the MPI communication is restricted

to the serial thread. In MPI+OpenMP , while the number of MPI processes

remains fixed during all the execution, the number of OpenMP threads that

are used in the inner parallel regions can change from one to another.

This gives MPI+OpenMP application a degree of malleability that we will

be exploiting in Chapter 4.

This model is specially suited for clusters of SMPs, which have become

increasely common over the last years. By using MPI in the outer level the

application can be distributed across different nodes of a cluster. By using

OpenMP in the inner level all the CPUs of each node can be used very easily.

This model can also be useful, as in the case of OpenMP when there is

not enough work at MPI level but exploiting only the OpenMP level can

have a very high overhead and, also, where load imbalance exists.

2.6 The OpenMP Runtime Library

To correctly understand what the runtime library is we need first some insight

into the OpenMP compilation process. Figure 2.25 shows an scheme of this

process.

Figure 2.25: The OpenMP compilation and execution process
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Once a user has parallelized his application, by means of annotating it

with OpenMP directives, he has to use an OpenMP enabled compiler. This

compiler will transform the sequential code into parallel code following the

indications of these directives. These transformations often require the use of

several different services ranging from very low-level ones (e.g locks, threads,

barriers, . . . ) to high-level ones (e.g. worksharings ). In Figure 2.27, we can

see a very simple transformation that the compiler could generate for our

Hello World example from Figure 2.26.

1 void f oo ( ) {
2#pragma omp paral lel
3 p r i n t f ( ‘ ‘ He l l o world\n’’ ) ;
4 }

Figure 2.26: OpenMP hello world example

The exact transformation will vary from one OpenMP compiler to an-

other, and it will usually be more complex than our simple example, but

typically the code affected by the OpenMP directive will be outlined to a

new function ( foo1 in the example) and then the compiler will insert a call

to a parallel primitive (nth parallel region in the example) that implements

the appropriate semantics of the OpenMP directive. So, there will be several

of these primitives each related to some OpenMP directive.

All these primitives are commonly grouped into a library that it is dis-

tributed with the compiler and it is referred as the OpenMP Runtime Library

(or just runtime library or even runtime). While the OpenMP compiler is in

charge of the static semantics of the OpenMP application the runtime library

is in charge of its dynamic semantics (i.e. the actual parallel execution of the

1 void f o o 1 ( ) {
2 p r i n t f ( ‘ ‘ He l l o world\n’’ ) ;
3 }
4

5 void f oo ( ) {
6 n t h p a r a l l e l r e g i o n ( f oo1 , . . . ) ;
7 }

Figure 2.27: Simplified transformation of an OpenMP program
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program). Because of this, some of its core services are related to parallelism

management (e.g. creation of threads, work distribution, . . . ). These run-

time library services are invoked at runtime so they can potentially adjust

their behavior to real time factors that were unknown at compile time (e.g.

the input data, the system configuration, the system load, . . . ).

In our work we have built upon this property to design our self-tuned

algorithms. We modify the appropriate parts of the runtime library so it

adapts to information that is obtained at execution time. We used the IBM

XL runtime library to implement all our proposals but the last one (i.e. the

self-tuned task granularity cut-off). Because we were experimenting with

OpenMP tasks, we used the only research OpenMP compiler that supported

them at that time: the Nanos Mercurium compiler [BDG+04] and the Nanos

runtime library that comes with it.

2.6.1 XL runtime library

The XL runtime library is the commercial OpenMP runtime library shipped

by IBM with its compilers. OpenMP threads are implemented on top of

POSIX threads (or pthreads).

These pthreads will poll a queue to find work to execute. In this queue

the runtime library places information about the different parallel regions

and worksharing that they have to execute [ZSA04].

The library offers different services (fork/join, barriers, worksharing cre-

ation, . . . ) that can provide the worksharing and structured parallelism

expressed by the OpenMP standard.

2.6.2 Nanos runtime library

The Nanos runtime library is a research OpenMP runtime library that uses

user-level threads based on the nano-threads programming model [Pol93,

GAL+99]. These nano-threads are then scheduled on top of POSIX threads

that are allocated when the program starts. This schema allows the runtime

library to be very flexible in terms of associating nano-threads to pthreads.
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The library offers different services (fork/join, synchronize, dependence

control, environment queries, . . . ) that can provide the worksharing and

structured parallelism expressed by the OpenMP standard.

We used it in on our work with OpenMP tasks as there was at the time

no other runtime library that supported the new OpenMP task model.

We implemented the OpenMP tasks as nano-threads. Because the nano-

threads can move from pthread to pthread this allows us to support task

switching and experiment with both tied and untied tasks.

2.7 Application structure

To self-tune parameters of the applications we need information about those

applications so the algorithms we design use this information to take the best

decisions. We can obtain this information from three different sources:

1. First, we can provide an interface so the programmer can directly pro-

vide the information to our algorithms. Obviously, because one of our

goals was to reduce the burden of the user we have avoided this option.

2. Then, the compiler could analyze the application and try to estimate

different parameters (e.g. execution time, size of structures, . . . ). But

as some information (e.g. size of input data, number of processors) is

unknown at compile time this approach can only achieve so much.

3. Last, we can attach some profiling mechanism to the application. When

the application runs the profiler will gather the information that will

later be used to feed the decision algorithms.

We have opted to use the third possibility as it has the potential to adapt

to changes and it avoids the need of user intervention. To profile and use

this information there are two different options:

1. First, we can profile one (or more) executions for the purpose of ob-

taining information as a training. This information will be then used

in later executions of the application. The main advantage of this
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approach is that once we have done the training the profiling can be

disabled and the applications get the benefit from it the whole execu-

tion lifetime. The drawback is that all the decisions are bound to the

details of the training (input data, available resources, . . . ) which can

hinder the flexibility of the decisions.

2. Our other option is to profile all the executions and use the informa-

tion in that same execution. With this option we can adapt to any

scenario because the “training” occurs every time the application is

executed. Of course, this is also a drawback because the profiling has

to be carefully designed so the overhead does not become significant.

The other important drawback of this approach is that we need that

the information obtained from the profiler can be actually used. That

means, that we need to find some repeatability in the application so

the information we obtain from a small part of the execution can be

used for the remaining part of the execution.

In this work we are going to focus in applications that have some part of

the code executed multiple times either because it is inside a loop region or

because it has some recursive pattern.

Figure 2.28 shows the typical pattern of an application with a repetitive

behavior inside a loop. Usually there is an initialization phase, followed

by a computation phase that is repeated multiple times and an optional

finalization phase at the end. This kind of structure is very common in

applications in the scientific domain [BBB+91, JdW06] that apply iterative

methods to find the solution to a problem.

1 ca l l i n i t i a l i z a t i o n ( )
2 do s tep =1, ns teps
3 ca l l compute s tep i ( s tep )
4 end do
5 ca l l f i n a l i z a t i o n ( )

Figure 2.28: Skeleton of an iterative application

Due to this iterative behavior, it is possible to gather information during

the execution of the first iteration (or a few more if needed) of the loop
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and from that information we can change different parameters of the parallel

execution (e.g. scheduling, number of threads, . . . ) so they are optimized

for the execution of the following iterations of the loop.

Figure 2.29 shows a pattern that is common in many recursive algo-

rithms. As in the previous case, there is usually an initialization phase at

the beginning of the computation and finalization phase at the end. Then,

the computation itself is called recursively until some condition is true. At

each computation call several new instances of the computation function can

be invoked.

1 void computation (void )
2 {
3 i f ( f i n a l c o n d i t i o n ) return ;
4 while ( cond i t i on )
5 computation ( ) ;
6 }
7

8 void main ( )
9 {

10 i n i t i a l i z a t i o n ( ) ;
11 computation ( ) ;
12 f i n a l i z a t i o n ( ) ;
13 }

Figure 2.29: Skeleton of a recursive application

This kind of application pattern generates an execution tree where there

is a computation root and this one has some computation children and so

on. What we can do in this case is gather information about the application

while executing a branch of this tree so the runtime library can adapt is

behavior to optimize the execution of the remaining branches of the tree.
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Chapter 3

Self-tuned parallel loop

scheduling

A learning experience is one

of those things that says, ’You

know that thing you just did?

Don’t do that.’

Douglas Adams

British writer (1952 – 2001)

Abstract

Parallel loops are one of the main sources of data parallelism

but their performance depends on which iterations are executed

by each of the threads (i.e. the loop scheduling). This chapter

presents a mechanism for self-tuned parallel loop scheduling that

we call adjust. The adjust scheduler works by first gathering

information about the application that allows to characterize its

loops to make a scheduling decision. Our evaluation of the adjust

scheduler shows that in most cases it can achieve a decision as

good as the one that would choose an advanced user.
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3.1 Introduction

Parallel loops are the most important source of parallelism in numerical ap-

plications. OpenMPallows the exploitation of loop-level parallelism thorough

the do work-sharing and parallel do constructs. Iterations are the work

units that are distributed among threads as indicated in the schedule clause:

static, dynamic and guided (all of them with or without the specification

of a chunk size).

While in a static schedule the assignment of iterations to threads is de-

fined before the computation of the loop starts, both dynamic and guided do

the assignment dynamically as the work is being executed. With a dynamic

schedule, threads get uniform chunks while with a guided schedule, chunks

are progressively reduced in size in order to reduce scheduling overheads at

the beginning of the loop and favor load balancing at the end.

Deciding the appropriate scheduling of iterations to threads may not be

an easy task for the programmer, specially when it depends on dynamic

issues, such as input data, or when memory behavior is highly dependent on

the schedule applied. Load imbalance or high cache miss ratios, respectively,

are usually symptoms of inappropriate iteration assignments. In OpenMP ,

the programmer can play with the predefined schedules mentioned above or

embed its own scheduling strategy in the application code if none of them

are appropriate. The chunk size (or number of contiguous iterations assigned

to a thread) is a parameter that needs to be appropriately set in order to

avoid non-friendly memory assignments of iterations and/or excessive run-

time overheads in the process of getting work. Even worse, the decisions may

depend on parameters of the target architecture (going against performance

portability, one of the key issues in OpenMP).

In order to decide a schedule strategy, some simple rules of thumb are

usually applied: static for those loops with good balance among iterations;

unbalanced loops should use an interleaved schedule (static with chunk)

or some sort of dynamic schedule (dynamic or guided depending on the

loop shape). However, the use of dynamic schedules usually incurs in high

scheduling overheads and its non-predictive behavior tends to degrade data
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locality (non-reuse of data across loops or multiples instances of the same

loop). Although these rules work for a large number of simple cases, they are

far from complete and can lead to poor decisions. Other schedules need to be

built by the user, embedding code and data structures into the application

to implement them.

We present a proposal to remove such burden from the programmer by

letting the runtime library decide which is the most appropriate schedule for

a given loop based on information gathered while the application is executing.

3.2 Motivation and related work

In order to motivate our proposal, we will consider a synthetic loop in which

the cost of each iteration is cost(i) = k/i, k being a parameter that depends

on the number of iterations of the loop. This function distributes almost all

the weight of the loop to the first iterations (the first 1% of the iteration

space accounts for 50% of the cost of the loop). During the execution, each

thread accesses a matrix indexed with its thread identifier. Therefore, the

loop only has temporal locality. The loop has been executed 500 times on

a 4-way IBM Power4 system. Figure 3.1 shows the results obtained with

different schedules (with k = 100000).

Figure 3.1: Speed-up with different schedules for a synthetic case (4 CPUs)

In this loop, using a static schedule leads to a highly unbalanced execu-

tion, with a speedup of 1.64 with respect to the execution with one thread.
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Although the use of a static schedule with a chunk size of one increases

the speedup to 1.97, it still does not achieve good balance. With k = 10000,

the work of the first thread is 1.6 times the work of the fourth. Therefore,

this is an example in which it seems appropriate to use either a dynamic or

guided schedule. Using a dynamic schedule we get a speedup of 1.82 due

to the high scheduling overheads and degradation of temporal locality. A

guided schedule, which usually tends to reduce these scheduling overheads,

is decreasing the speedup to 1.63; this is due to the fact that some threads

get excessively large chunks at the beginning that are not well balanced with

the remaining ones.

Other schedules, similar in nature to guided, have been proposed in the

literature, such as trapezoid scheduling [TN93], factoring [SHF92] and ta-

pering [Luc92]. These schedules are variations of the previous ones and are

tailored for certain load unbalance patterns. Some other schedules try to

take in account the geometric form of the iteration space. For example fold-

ing is a variation of static in which iterations i and N − i are assigned to

the same thread, N being the total number of iterations. For the previous

synthetic example, this schedule is unable to improve the behavior achieving

a speedup of 1.77. A study of the most suited schedule for different loops,

grouped by their iteration execution time variance is presented in [YL94].

Other proposals try to achieve load balancing by applying work stealing.

They usually assign iterations to threads in a static-like manner; in Affinity

Scheduling (AS) [ML94] threads steal chunks of work from other processors

as soon as they finish with the initially assigned work. This work stealing

adds a dynamic part to the work assignment that does not favor memory

behavior. Affinity Scheduling is available in the IBM OpenMP runtime li-

brary as a non-standard feature that can be specified in the OMP RUNTIME

environment variable. In our synthetic example, affinity scheduling achieves

the highest speedup of all the available schedules (2.07). Dynamically parti-

tioned affinity scheduling (DPAS) [SE94] learns from work stealing in order

to derive a new static-like schedule, to be used in subsequent instances of

the loop, in which each thread has a different chunk size. Other proposals

such as Feedback Guided Dynamic Schedule (FGDS) [Bul98] and Feedback
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Guided Load Balancing [DR00] avoid the dynamic part by simply measuring

the amount of unbalance (without applying work stealing) and they derive

a similar static schedule. Hamidzadeh and Lilja [HL94] used a different

approach where a processor is reserved to compute partial schedules based

on the load of each processor that are placed on the processors work queues.

The obvious disadvantage of this approach is that a processor needs to be

sacrificed which in small systems can be a problem.

Probably, the best schedule would be an ad-hoc schedule trying to reduce

scheduling overheads, optimize load balancing, avoid false sharing or a com-

bination of these issues that compensate them. However, in more complex

cases than a synthetic case, it may be impossible for the the programmer to

compute this ”ideal schedule” because it depends on variables only available

at run-time (architecture, input data, interaction between loops or processes,

. . . ).

Our proposal advances one step further in the use of dynamically derived

schedules and show how they can optimize the behavior of applications. The

runtime library is able to characterize the execution of a loop and learn from

past executions in the same run in order to gradually enhance the assignment

of iterations to threads. The objective is to relieve the user from the task of

deciding the best schedule for each loop and ideally lead to a performance

close to hand-tuned application. For instance, in the same synthetic example

described above, our proposed adaptive scheduler (called adjust) achieves

an speedup of 3.53. The scheduling is achieved in a completely transparent

way with no additional specification from the programmer in the source code.

New similar algorithms have been presented since our proposal [ABD+03].

Zhang et al [ZBC+04,ZV05] designed an adaptive scheduler specifically de-

signed for hyper-threaded processors [hyp] where they could disable some of

the threads in a core to obtain better performance. Tabirca et al. [TTYF04]

presented some variants of feedback-guided schedules which are unclear to

represent improvements over our work. Kejariwal et al. [KNP06] proposed an

algorithm that adjust the chunk size of a schedule as the schedule progresses

based on the variance of the iterations executed up to that point.
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1 do s tep =1, Nsteps
2 !$omp paral lel do

3 do i =1, N
4 f ( i )
5 end do

6 !$omp paral lel do

7 do i =1, N
8 g ( i )
9 end do

10 end do

Figure 3.2: Common iterative pattern in scientific applications

3.3 Objective

Our goal in this work is to show that an efficient scheduler for parallel loops

can be found by the runtime library with minimal (or no) information from

the user and/or the compiler by means of gathering information, with run-

time profiling, about the application that allows to characterize the applica-

tion and that this process can be done with a reasonable (or even negligible)

overhead.

Although the compiler could provide static information derived from the

analysis of the source code or even could be provided by the user as hints,

such as the initial schedule for the loop or the identifiers of other loops

with similar memory access and/or workload patterns, in the worst case the

information can only be gathered at run-time because the information about

the loop may not be known at compilation time. So, we have decided to take

the approach of only using run-time information to explore its feasibility.

We want to take advantage of the fact that, as we saw in Chapter 2,

in most numerical applications the same loops are executed multiple times

inside a sequential time step loop. This pattern (shown in 3.2) allows the

runtime library to gather information in the first execution of the time

step loop to characterize the application. Based on this characterization the

runtime library is able to decide a good assignment of iterations to threads

for all the parallel loops.

When deciding this assignment, the runtime library should try to max-

imize the following principles in order to improve the performance of the

application loops:
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Balance loops so that all threads get the same amount of work (i.e. com-

putational work); this does not imply the same amount of iterations.

Preserve spatial locality by assigning contiguous chunks of iterations to

the same thread whenever possible. This will optimize the access to

memory containers (cache lines or pages) and reduce the likelihood of

false sharing.

Preserve temporal locality by reusing the same schedule in subsequent

execution instances of the same loop (or an affine one). This will favor

data reuse.

It is important that even if schedule is already decided, the characteriza-

tion process continues in order to detect further opportunities for refinement

or changes in the behavior of the application (i.e. a change of phase in the ex-

ecution). Since this information gathering could have a significant impact on

performance and we want the profiling to be active all the time the runtime

library should support different levels of profiling detail (and consequently

of overhead). The most appropriate level of detail will be used depending on

the status of the characterization process.

We present in the following sections an adaptive run-time scheduler, which

we call adjust and the profiling mechanism that achieve these objectives.

3.4 Run-time profiling support

To implement an adaptive scheduler the runtime library needs to offer some

support. In particular, two things are needed: the capability to dynami-

cally profile parallel loops execution to obtain information and, being able to

propagate that information to future similar instances of the same loop.

3.4.1 Profiling

In order to decide the most suitable schedule, the runtime library needs to

collect information that characterizes the behavior of the loop that will be

later passed to our adjust scheduler.
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At run time, the profiler collects information about the iteration space

(loop bounds and number of iterations) and about the amount of work of the

iterations (i.e. execution time of the iterations).

The process of profiling the application is not free. The more detailed is

the information we obtain, the higher it will be the impact of the profiling

process in the performance of the application. Fortunately, the detail of

information that the runtime library needs to take scheduling decisions is

not always the same: the first time a loop is executed, or after detecting a high

perturbation in its current characterization, is usually the only moment when

we need very detailed information. But, once the runtime library detects a

stable characterization (see Section 3.5), it could switch to a not very detailed

profiling in order to minimize unnecessary overheads.

Our runtime library supports two different profile granularities modes:

thread granularity and subchunk granularity . When subchunk granularity is

used to avoid excessive overhead of measuring every single iteration1, groups

of iterations, which we call subchunks, are measured together. The size of

these subchunks is variable for each thread and depends of the number of

iterations that they have been assigned. That means that, if a thread has

few iterations assigned each of its subchunks will represent very few iterations

(it could even be one iteration per subchunk) but if the thread has a large

number of iterations assigned the number of iterations each subchunk will

represent will be large as well. In our current implementation we empirically

chose to measure a maximum of 25 subchunks per thread.

When thread granularity is used, the measures are done for the overall

iterations assigned to each thread (i.e. it is the same as if there was only one

subchunk per thread) so the overhead is very low.

The profiling granularity mode is controlled by the adaptive scheduler

(see Section 3.5) based on the state of the loop characterization before its

execution but the objective is to use the thread granularity as often as possible

to reduce the overheads to a minimum.

1Our initial test showed that measuring every iteration was prohibitively expensive
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3.4.2 Loop information

The runtime library needs to provide some way to associate data for each

loop in the application. To distinguish which loop is going to be executed

we use the address of the outline routine generated by the compiler to en-

capsulate the loop. But, even for the same loop we want to distinguish

different instances if they have different iteration spaces (i.e. lower and up-

per index of the loop2) because the scheduling decisions will be different for

each iteration space, and therefore, we need to save the information sepa-

rately. Furthermore, we want to have different schedules for the same loop

in environments where the number of resources allocated to the application

varies from time to time (e.g. multiprogrammed environments with resource

management [CML05]). For this reason, we also use the number of CPUs

allocated to the application when the loop is executed to find the appropri-

ate scheduling information. This way we can have different schedules if the

number of processors allocated to the application changes.

When the loop is going to be executed an identifier {F,IS,C} is generated,

where F is the address of the loop outlined function, IS is the iteration space

and C is the number of CPUs assigned to the application. This identifier is

used as index in a hash table to find the data associated to the loop in this

particular execution.

The information that is kept for each loop L{F,IS,C} is the following:

• The identifier {F,IS,C}.

• The execution time profiled for each of the subchunks (if subchunk

granularity was used) or threads (if thread granularity was used) in the

previous execution (if there was one).

• The balancing information about the loop (see Section 3.5).

• The relation of weights between iterations (see Section 3.5).

• The last schedule used.

2Loops are normalized so we do not need to take into account the loop step
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• The best schedule so far (see Section 3.5).

This information is passed to the adjust scheduler.

3.5 The ADJUST loop scheduler

In this section, we describe the prototype implementation of a self-tuned

scheduler for parallel loops that we call adjust.

The adjust scheduler uses the information gathered by the profiler to

decide which iterations will execute each of the threads. The scheduler is

invoked by the runtime library each time a parallel loop L{F,IS,C} is about to

be executed so it decides the schedule to use for that loop. It is also called

when the parallel loop finalizes to process the profile information gathered

by the runtime library during the execution of the loop.

3.5.1 The processing step

When a parallel loop finalizes its execution adjust is invoked to process the

profiling information. To reduce the overhead of this step when adjust is

invoked instead of doing the computation at that moment it enqueues the pro-

cessing request in a global processing queue. When threads are idle (e.g. in a

barrier) they dequeue the requests and process them. This allows to partially

overlap the processing computation with regular thread synchronization. If

when the parallel loop is going to be executed again the processing is still

pending it is then executed at that point.

The processing step characterizes the loop based on the profile informa-

tion and the state of the loop up to that moment. Two characteristics of

the loop are discovered: the balance of the loop and the relation of weights

between iterations.

The characterization of the balance of the loop is composed by three

different parameters:

• First, a state that indicates if adjust found a schedule that resulted in

a balanced execution of the loop L{F,IS,C} and how confident adjust is
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State Meaning

Unknown The runtime library has no balance information.
Unbalanced The runtime library found that it is unable to balance

the loop.
Balanced The runtime library found a schedule that balanced

the loop.
Highly balanced The runtime library is confident that the schedule ap-

plied is balanced.

Table 3.1: Possible balance states

that it will be a balanced execution again in the future. We summarize

the possible states and their meaning in Table 3.1.

• The number of consecutive executions that this balance state has been

maintained for the loop. The higher this number is the higher is the

confidence that adjust has that reusing past scheduling decision will

lead to the same result.

• The actual definition of balance for this loop (i.e the percent of unbal-

ance allowed). Instead of having a global threshold for all the loops one

for each loop L{F,IS,C} is kept. This allows to increase the threshold if

we are confident with the decisions of a loop to avoid variations in one

execution of the loop that are due small variations in the load of the

system. Initially, the threshold it is set to a 10% of imbalance, but as

adjust gains confidence it increases the limit to 20% and later to 25%.

If the execution time of each thread does not deviate from the aver-

age more than the actual definition of balance the execution is considered

balanced, otherwise the execution is unbalanced. Using this information, a

transition in the balance state automaton, shown in Figure 3.3, is performed.

Usually the initial balance state for a loop is the Unkown state (see next

section for more details). After a successful balanced execution the state

changes to the Balanced state. After N unsuccessful executions the state

moves to the Unbalanced state. While in this state a single balanced execu-

tion, normally due to a change in the behavior of the loop, changes the state
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Unbalanced

Unknown Balanced Highly
Balanced

Unbalanced
execution

Balanced
execution
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execution

N Unbalanced
executions

Unbalanced
execution

N Balanced
executions

Figure 3.3: Balance information transitions

to the Balanced state. While in the Balanced state any imbalanced execution

reverts the state to the Unkown state. After N successful balanced execu-

tions in the Balance state, the confidence on the decision increases and the

state changes to the Highly Balanced state. An unbalanced execution in this

last state reverts to the Balanced state. Note that when there is confidence

(i.e. Highly Balanced state) in the balance of the loop one bad execution will

not destroy it immediately but just move it to a state with less confidence

(i.e. Balanced state), but a second bad execution in the next N will revert

the state to Unknown meaning that adjust is not sure anymore and it needs

to evaluate its decisions again. This gives some tolerance to perturbations

while being able to adapt to changes in the behavior. We used 10 as the

value for N in order to obtain a fast transition to the Highly Balanced state

based on our observations of the behavior of the applications.

To find the relation of weights between iterations the average weights of

the iterations executed by each thread is computed. If it does not deviate

from a certain threshold the iterations are considered to be of constant weight

otherwise the relation between the weights is considered to be unknown. In

the current implementation only these two patterns are handled but others

patterns could be recognized if their properties are useful for scheduling.

Finally, in the processing step, the schedule decision used is saved as the

last schedule applied. If this schedule also happens to be the best schedule

so far it is saved as such.
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It is worth to mention that the processing step discards all the profiling

information (and consequently it does no processing at all) the first time a

scheduler is tried (either the initial one or after a change). The reason behind

this is that those first samples can be misleading because the first time a

schedule is used the number of cache misses, due to cold misses, is larger

than in a regular execution where the cache is already settled. This cache

effect will be reflected in the execution time of the iterations. Consequently,

any scheduling decision taken based on those times will be misleading.

3.5.2 The scheduling decision

The first time that adjust is invoked by the runtime library there is no

information about the loop so a new structure is allocated for it. First, it

tries to find the most similar structure that corresponds to the same loop

but with a different iteration space. If it finds one, then the initialization is

inherited from it: it copies the balance information, the iteration information

and a modified version of the schedule applied to the other iteration space

(adding or subtracting iterations). If it cannot find one structure that is

similar then it is initialized to the Unknown balance state and the hypothesis

that all iterations have all the same weight is tried.

Adjust decides which schedule (and its parameters) to use for a given

execution of a loop L{F,IS,C} based on the current information for the loop (i.e.

the number of iterations, available resources and past behavior). Currently,

one of two the following schedules will be chosen:

• The standard OpenMP static schedule kind. This schedule kind is a

good choice when the loop does not have load balance problems as it

has good temporal and spatial locality.

• Non-uniform static. This schedule is similar to the previous one.

Each thread is also assigned a chunk of contiguous iterations that are

determined prior to the loop execution. However, chunks assigned to

threads may be of different size. When the size of each chunk is properly

chosen the load balance that is achieved can be as good as in any

49



CHAPTER 3. SELF-TUNED PARALLEL LOOP

SCHEDULING

Balance state Iteration cost Schedule
Unknown Constant Static
Unknown Non-constant Non-uniform Static

Unbalanced * Best schedule found
Other * Reuse previous

Table 3.2: Schedule decision function

dynamic schedule. But, the temporal and spatial localities that will be

obtained will be as good as in the static case because of the assignment

of contiguous iterations and schedule reuse. Therefore, this is a good

choice for loops with load balance problems.

The scheduling decision is summarized in table 3.2. If the loop is consid-

ered to be balanced (i.e. in the Balanced or Highly Balanced states) the last

schedule applied is reused to improve temporal locality. This schedule will

be the one that previously obtained the balanced execution. If the loop is

considered unbalanceable (i.e. in the Unbalanced state) the schedule will be

the best schedule found which it will be used from there on. When nothing is

known about the balance of the loop, either because a proper schedule that

balances the loop has not yet been found or because it has not reached the

threshold to give up, a static schedule will be used if the iterations weights

are constant, otherwise a non-uniform static schedule will be used.

The assignment of iterations for each thread when the non-uniform static

schedule is used works as follows:

1. We compute the amount of work that each thread should be assigned

by dividing the total amount of work (i.e. the sum of all iterations

work) by the number of threads.

2. Subchunks of iterations are assigned sequentially to the first thread

until assigning a new subchunk to that thread will result in the amount

of work for the thread being higher than the amount of work per thread

we previously computed. In that case, the subchunk is split assuming

all iterations in the subchunk have the same weight, and the number of
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Balance state Granularity used
Unknown subchunk granularity

Other thread granularity

Table 3.3: Granularity mode decision function

iterations assigned to the first thread are adjusted consequently. The

remaining iterations of that subchunk will be assigned to other threads.

3. Next, we start assigning iterations to the second thread in the same

way, and we continue doing so until we get to the last one.

4. All the remaining iterations are assigned to the last thread.

Also when the schedule is decided, adjust also decides how much informa-

tion it will need in the future and it sets the granularity of the measurements

that the runtime library will do while the loop executes. As, we explained

in section 3.4 the runtime library supports two profiling modes: subchunk

(fine granularity) and thread (coarse granularity).

The decision is based on the balance state of the loop as shown in table 3.3.

The rationale is the following, if we are in the Unknown state adjust will need

very detailed information in order to decide a new scheduler, but if we are in

any other state that means that adjust will be reusing a previous scheduler

and then it will only need enough information to know if the execution was

well balanced or not. To know that is enough to have information about the

execution time of each thread, so coarser measurements can be used.

3.6 Evaluation

3.6.1 Environment

We run all benchmarks in a p690 32-way Power4 [BBF+01] machine at 1.1

GHz with 128 GB of RAM. We used the IBM’s XLF compiler with the -O3

-qipa=noobject -qsmp=omp flags with a modified version of the XL runtime
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library that has the adjust scheduler implemented. The operating system

was AIX version 5.1.

3.6.2 Methodology

In order to evaluate the proposed schedule, we have used some programs

from the SPEComp suite [ADE+01] (swim, ammp, gafort , apsi , wupwise

and art), the NAS OpenMP benchmarks [BBB+91] (bt , ft , cg , sp and mg)

with the class A data input, and a computational kernel that calculates the

legendre polynomial.

We compare, for each application, the regular version that comes with

the OpenMP schedule clause from the developer with a version that uses

our adjust schedule described in Section 3.5. Because, we could not modify

the compiler we made use of the runtime schedule and then we set the

environment variable OMP RUNTIME to use the adjust schedule.

The bt , ft , cg , sp, mg , swim, apsi and wupwise programs use an static

schedule in their main loops. The ammp, gafort and art applications use a

guided schedule in their main loops. The legendre kernel has two triangular

loops that are programmed with a “folding” schedule embedded in the appli-

cation code but we also tried some OpenMP schedules to compare them. It

is also interesting to note that in the mg application the amount of iterations

of the loops changes from one time step to the next.

In all the cases, we used the average of several executions to compute

the speed-up using the execution time of the serial version as the baseline

compiled with the same optimizations as the parallel version.

3.6.3 Results

Figure 3.4 shows the results for the NAS benchmarks, on the x-axis are

the different benchmarks and on the y-axis is the speedup achieved for the

default schedule and for the adjust schedule. We can observe that the speed-

up obtained with both schedules is almost equivalent (differences are always

below 5%). This is explained because the NAS benchmarks parallel loops

are well balanced and they have very good locality so there is not room
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for improvement with our adjust schedule. But, this also means that the

adjust schedule is able to decide to use a static schedule for this type of

loops, which are quite common, with a negligible overhead.
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Figure 3.4: Speedups for the NAS benchmarks

Figure 3.5 shows the results for the SPEComp benchmarks. We can

observe, again, that in those applications (swim, apsi and wupwise) that

use a static schedule the adjust schedule has no significant improvements

but it decides to use the proper schedule without a significant overhead.

In the case of ammp, the adjust schedule obtains an significant increase

of the speed-up of the application (27% with 4 processors, 22% with 16

processors). The reason for this improvement is that the non-uniform static

schedule computed by adjust has much better spatial and temporal locality

than the guided schedule, because iterations are executed contiguously and

the schedule is reused across executions of the same loop.

Figure 3.6 shows a paraver trace3 [par] of an execution of the ammp ap-

plication with the adjust scheduler. We can observe how the first execution

of the main loop is heavily unbalanced, but afterwards the executions of that

3In paraver traces, time is in the x-axis and threads are allocated in the y-axis. The
black color represents time the thread is idle. All other colors represent execution of the
different parallel loops of the application by a given thread.
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Figure 3.5: Speedups for the SPEComp benchmarks

loop are well balanced because adjust found a good non-uniform static

schedule.

Figure 3.6: Trace of a execution of ammp with the adjust scheduler

The improvement in the gafort is negligible (below 4%). Because gafort

makes random vector accesses thus we do not obtain the locality gains seen

in ammp. Even so, the adjust schedule has computed a schedule that has as

good load balance as the guided schedule. The art benchmark is the worse

case our method can find as there is just one loop executed once. Thus, we
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Figure 3.7: Speedups for the legendre kernel

Figure 3.8: Trace of a legendre execution with the adjust scheduler

cannot make use of the knowledge obtained from that first execution because

as we said, our method needs loops that are executed multiple times. To

solve these cases a schedule that is more flexible with imbalanced codes than

static should be used the first time (such as the Affinity schedule [ML94]),

but currently the guided schedule performs a 20% better than our proposal.

In figure 3.7, we can observe the results for the legendre kernel. In ad-

dition to the default folding schedule encoded in the application and our

adjust schedule, we tried several OpenMP schedules and we present the

best ones that we found: a dynamic,16 schedule for 4 processors and an

static,4 schedule for 8 and 16 processors. Note that one user that decided
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to use dynamic,16 as schedule after some basic analysis in a small system

would be fooled if later he would run it in a bigger production system. Fig-

ure 3.8 shows a paraver trace of an execution of the legendre kernel with the

adjust scheduler. We can observe that the are two triangular loops whose

first execution is heavily unbalanced but after the first execution of each

one adjust is able to find a good non-uniform static schedule that bal-

ances both loops. This leads to a performance close to the hardcoded folding

schedule (differences are below 5%) and much better than the best OpenMP

schedule (improvements range from 16% with 4 processors to 41% with 16

processors).

3.7 Influence in the OpenMP standard

This proposal was submitted to the OpenMP Language committee as feature

request and in the upcoming OpenMP 3.0 specification [Org08] there will be

a new schedule kind called auto. When user selects this schedule kind for

a loop he is specifying that the implementation should choose the schedule

kind for the loop. This selection could be done by means of any combination

of compiler and/or runtime library techniques. So, the auto schedule kind

allows to expose to the user the kind of self-tuned scheduler that we have

presented in this chapter.

A self-tuned scheduler can also be chosen by an implementation as the

default scheduler when a user does not specify a schedule clause for a parallel

loop. In this way, an OpenMP implementation can choose to use a self-tuned

scheduler as a default to help novel users to obtain better performance with

less effort. And, if a user spends time analyzing the application he can still

specify through the schedule clause an specific schedule disabling the self-

tuning mechanism.
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3.8 Conclusions

In this chapter, we have presented the adjust scheduler. The adjust sched-

uler is a feedback guided scheduler that adaptively decides a scheduling policy

for each of the loops of an application.

The adjust scheduler from the programmer (or user) removes the bur-

den of deciding which scheduler is the best one for the parallel loops in his

application.

Our evaluation showed that is able to do so in all the benchmarks we used

but one (art). With adjust, loops that would require the use of static,

dynamic, guided or even other schedule kinds not available in OpenMP ,

such as folding, can be efficiently executed.

Our algorithm main drawback is that in the first execution of a loop,

because we decided to take a pure run-time approach, adjust has no infor-

mation an can lead to a very bad decision. In the worst case, if the loop is

executed just once there is no way to mend this decision because our tech-

nique requires that loop is executed multiple times in order to take advantage

of the profiling.

Several approaches can be used to minimize the problem. First, adjust

could use as initial data, instead of a predetermined static schedule, the one

that the programmer specified through the OpenMP schedule clause. An-

other possibility is that the compiler generates information for adjust based

on code analysis. These information would be used only as a hint in the first

execution. Afterwards, adjust would decide based on the profile information

gathered during the first execution of the loop. Another possibility would be

to use information from the first iterations of the loop to dynamically adapt

the scheduler on the first execution of the loop.

Another possible way to improve our algorithm could be to adopt the

characterization for a another loop (for which a characterization has been

done) and make fine-grain measurements. This characterization reuse may

be important in order to reduce the time required to reach a stable charac-

terization state. Reuse hints could be provided by the programmer or the

compiler (e.g. providing information about affine loops). It could even be
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possible that the runtime library discovers affinity relationships between

loops (i.e. loops whose characterization is the same or change in the same

way) that are executed inside an iterative sequential loop.
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Abstract

One of the limiting factors to obtain good performance when

using multilevel parallelization schemes, like MPI+OpenMP or

OpenMP nested parallelism, is avoiding load balance issues. This

can be accomplished defining a good thread distribution that bal-

ances the total computational power across the outer level of par-

allelism. In this chapter we present a self-tuned technique that

obtains information about the computational load of the appli-

cation and based on that information computes a thread distri-

bution that balances the application correctly.

59



CHAPTER 4. SELF-TUNED BALANCED THREAD

ALLOCATION

4.1 Introduction

When parallelizing an application, the use of some sort of nested paral-

lelism paradigm is becoming increasingly common. Nested parallelism is

used mainly to increase the amount of available parallelism so applications

can scale-up beyond a small number of processors (otherwise some processors

would be idle) [JJY+03].

Usually the programmer accomplishes this by either using a mixed model

like MPI+OpenMP (where the user launches several MPI instances and each

of them will create OpenMP threads) or a more pure model like nested par-

allelism in OpenMP (where each of the threads of the initial parallel region

creates an inner parallel region).

A common problem with nested applications is deciding how to distribute

all the available threads across the different inner regions (as it is important

to avoid threads being reused in multiple regions). Although some extensions

have been proposed to the OpenMP standard [GOM+01] currently the user

needs to do this grouping manually by means of the num threads clause as

shown in Figure 4.1 for the case of nested OpenMP parallelism.

1#pragma omp paral lel num threads ( ngroups )
2 {
3 int g = omp get thread num ( ) ;
4#pragma omp paral lel num threads ( g r oup s i z e [ g ] )
5 work ( )
6 }

Figure 4.1: Nested OpenMP example with manual allocation of threads

A bad decision can lead to severe load imbalance in the application exe-

cution. To make a good decision the user needs to know how the data of the

application is going to be distributed across the different groups of proces-

sors. This requires the user to do an analysis before choosing an allocation

of threads to the different parallel regions. This analysis will need to be

done each time the data input of the application or the number of available

processors changes because the distribution usually needs to be different.

To make the decision of the allocation of threads automatically we present

two algorithms: DPB (Dynamic Processor Balancing) and DWB (Dynamic
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Weight Balancing). Both algorithms gather information at runtime of the

computational load assigned to each outer parallel region and based on that

information they compute a new allocation of threads in the inner regions

that maximizes the balance of the application.

4.2 Motivation and Related Work

We can analyze which are the limiting factors of single level parallelizations

with the help of a simplified version of the structure of BT-MZ , one of the

codes included in the NAS multizone benchmarks [JdW06], parallelized with

OpenMP .

Figure 4.2 shows the BT-MZ code that performs a computation over a

blocked data structure. For each block of data (or zone), some work is per-

formed in a subroutine called adi. A first level of parallelism appears since

all zones can be computed in parallel. This corresponds to a block level par-

allelism and is coded by the parallelizing directives parallel and do. A

static work distribution will be performed among the threads that execute

this first level of parallelism. The definition of another level of parallelism is

possible: the computation performed in each zone of data is organized in the

form of a parallel loop. The code in subroutine adi contains a parallelizing

directive for this loop. For this second level of parallelism, a static schedul-

ing is also set. A time step loop encloses the overall computation and at the

end of each iteration, there is some data movement to update zone bound-

aries. This iterative structure is common in most numerical applications and

it is necessary in any technique that dynamically improves the behavior of

an application based on its past behavior.

The programmer can choose between two parallelization strategies that

exploit a single level of parallelism. The first one exploits the inter–zone

parallelism. We will call it the outer version. The second one exploits the

intra–zone parallelism. This is the inner version. The performance for the

outer version is clearly limited by the number of zones. Using more threads

than the number of zones does not contribute to improve its performance.

In addition, zones may have different sizes and lead to an unbalanced
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1 . . .
2 do s tep = 1 , n i t e r s
3 . . .
4 C Inter−zone p a r a l l e l i sm
5 !$OMP PARALLEL NUM THREADS( num groups )
6 !$OMP DO SCHEDULE( s t a t i c )
7 do zone = 1 , num zones
8 CALL adi ( zone , . . . )
9 end do

10 !$OMP END DO

11 !$OMP END PARALLEL

12 . . .
13 C Update zone boundar ies
14 . . .
15 end do

16 . . .
17 end

18

19 subroutine adi ( zone id , . . . )
20

21 C Intra−zone p a r a l l e l i sm
22 !$OMP PARALLEL NUM THREADS( zone thr eads ( zone id ) )
23 !$OMP DO SCHEDULE( s t a t i c )
24 do j = 1 , k s i z e ( zone id )
25 . . .
26 end do

27 !$OMP END DO

28 !$OMP END PARALLEL

29 end

Figure 4.2: Main structure of BT-MZ with OpenMP nested parallelism.

execution in which some of the threads waste execution cycles waiting for

the others to finish their work. In case of important size differences, the

unbalance degree might cause a noticeable performance degradation. So,

two main factors are limiting the performance of the outer version:

• The relation between the number of available threads and the number

of zones.

• The unbalance degree expressed through the size differences between

the zones.

In both cases, the outer version will not increase its performance when an

important number of threads (32 or more) are available. Note that these fac-

tors are independent of whether the outer level is coded with with OpenMP ,

as in the example, or another language as MPI .

Other issues limit the inner version performance. The most important
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issue is granularity. Creating the work in this level of parallelism among a

large number of threads might cause that the work assigned to each thread

is too small to take profit from the parallel execution. The finest granular-

ity that can be exploited is conditioned by the runtime overheads related to

parallelism creation and termination, work distribution and thread synchro-

nizations. These overheads are going to be noticeable when executing with a

large number of threads (again, 32 or more). These problems where already

noted by Jin et al. [JJJT03]. They showed the different overheads between

parallelizing the outer or the inner loop of a Cloud Modeling Code.

Several works have tried to overcome these problems by employing a

multilevel parallelization instead of just parallelizing the outer or the inner

level.

Several research works [Smi00,Hen00,SSOB02,CE00,DMSC99,BYS+01,

KMB00,aMS00,MKB00,Smi99,LR99] present the possibility of mixing more

than one programming model for exploiting nested parallelism. Typically,

applications, which execute under such parallel strategy, define a first level

of parallelism using a distributed memory paradigm, like MPI , plus a sec-

ond level of parallelism implemented with shared memory model, usually

programmed with OpenMP .

Other researchers have worked with nested parallelism in a pure OpenMP

model [TTSY00,GAM+02,AGMJ04,AML+99,BS03,Bli02]. In this case, both

levels of parallelism are exploited with OpenMP parallel regions.

The results from these experiments show that, although not in all the

cases [Hen00,CE00,SSOB02], in most of them multilevel parallelism strate-

gies perform better than conventional single level strategies. This is particu-

larly true in applications with load balancing problems [DMSC99,AML+99].

But the use of nested parallelism is not with its own problems. By ex-

ploiting both levels of parallelism (inner and outer levels), nothing is gained,

unless threads are arranged in a way that avoids the grain size and work

unbalance problems. Regarding the grain size problem, the only solution is

to forbid that all available threads execute the inner level of parallelism. So,

thread clustering strategies are the solution. The main idea is to create, for

each block or zone, an different set of threads that will execute the work
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defined at the inner level of parallelism. The NUM THREADS clause in the

source code is used for that purpose.

This strategy solves the grain size problem, but it does nothing to solve

the possible work unbalance created in the outer level of parallelism. A

common approach has been establishing some method to partition the data

across the different threads so all have the same load [SKK00,BFL+01]. The

problem of this solution is that is often tailored to the specific data of the

application.

Another option, presented by Huang and Tafti [HT99, Taf], is defining

the thread sets that balance the computational power (i.e. the total num-

ber of threads) according to the amount of work assigned to each parallel

branch in the outer level [BS99,GOM+01,AGMJ04]. In the example, this is

done by having different values for the argument of the NUM THREADS clause,

depending on the zone that a set of threads is going to work on.

Figure 4.3: BT-MZ class A execution times on a IBM Regatta

To illustrate the impact of this thread clustering strategy, Figure 4.3

shows how the execution time of the BT-MZ application changes with differ-

ent allocations of threads in the outer level (NP) and inner level (NT). NT

represents the average value as its exact value is different for each zone since

their have different sizes in this application. For each number of processors

(2, 4, 8, 16 or 32) the best parallelization strategy is different. This difficulty

in determining the most appropriate thread distribution between the levels
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of parallelism is the main motivation for the work in this Chapter.

The thread grouping mechanism was studied and organized as a proposal

to extend the OpenMP language by Gonzàlez et al. [GOM+01,JJY+03]: some

constructs were defined to allow the programmer specify the most appropriate

thread distribution between the levels of parallelism. Also, this proposal

presented an optimal algorithm to compute the thread distribution. But

this work relies on the programmer providing the required information: the

number of branches in the outermost parallel level and the computational

weight associated to each branch.

Our proposal is to rely on runtime mechanisms to automatically derive

the optimal thread distribution. Measurements are obtained at runtime as

an approximation of the computational weight of each nest of parallelism.

From those weights we show how it is possible to obtain a suitable thread

distribution for nesting parallelism exploitation that avoids the problem of

imbalance.

4.3 Objective

The parallelism that exists in applications with multiple levels of paral-

lelism, particularly when is only two levels, can be seen as groups of threads.

The number of groups is the number of threads (or processes) in the outer

level of parallelism. This is specified by the user either with a num threads

clause in the case of nested OpenMP or through the MPI launcher in the

MPI+OpenMP case. The number of threads in each group is determined by

the number of threads in each of the inner levels of parallelism. The threads

in each of the groups are different so the sum of the threads of the groups

cannot be greater than the number of total threads.

So, a thread distribution is defined by: the number of groups in the

outer level of parallelism and the number of threads in each group in the

inner level of parallelism. These factors plus the distribution of work among

threads determine the appropriateness of a thread distribution. Depending

on the unbalance of the work distribution a thread distribution will or will

not succeed in improving the performance of the application. If the thread
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MPI Processes

Cpu Distribution

MPI time

Computation time

Redistribution

Figure 4.4: CPU redistribution example (MPI+OpenMP application)

allocation for the inner levels of parallelism is not in concordance with the

work distribution work unbalance will persist. Thus, three elements limit

the benefits that can be obtained from a thread distribution: the number of

outer groups, the number of threads assigned to each group, and the work

distribution.

Our proposal focuses only on tuning the thread distribution for the inner

levels. Our runtime implementation is not going to adjust the number of

outer groups or the work distribution. These two factors will be specified in

the application by the programmer using the appropriate OpenMP directives.

Given a work distribution and a number of groups the runtime will be able

to derive the best thread assignment for the inner level. The only requisite

for our implementation is that the program behaves in a iterative manner to

be able to adapt the number of threads in each group after gathering some

information about the application.

Figure 4.4 illustrates our objective. In this example, there is one group

with more computation time than the others. This causes the global exe-

cution time to increase as the other two groups (the ones in the left) spend

their time waiting at synchronization points ( send/receive, barriers, . . . ).

In this case, our goal is to take the decision of redistributing the processors

so we take one processor away from both of the groups on the left and give

them to the one on the right. This decision makes the two victims go slower

but the application execution time is reduced due to a better utilization of

the resources.

66



4.4. ADAPTIVE THREAD ALLOCATION

4.4 Adaptive Thread Allocation

4.4.1 General design

Initially the runtime library assumes that all groups have the same amount

of work and distributes all the available threads uniformly among them.

Then, the runtime library gathers information through a dynamic profiler

that allows to infer how the computation is distributed among the groups.

This distribution of work will in turn be translated to changes to the thread

distribution: increasing the number of threads to those groups with more

work and decreasing the number of threads to those with less work.

Figure 4.5: Framework design overview.

Figure 4.5 shows the design of our general framework for computing the

optimal size of each group. It is a typical feedback guided scenario in which

several phases can be distinguished:

• First, several profile probes are placed in the runtime library to obtain

information about the application. This information is processed to

represent the work load of each of the groups of threads of the appli-

cation.

• When enough information is gathered the distribution policy is invoked

to compute a new distribution of threads based on the data that was

obtained by the profiler.

• Last, the distribution is passed through a series of filters that validate

that the new distribution will yield some benefit. A function predicting
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the benefit of the new distribution is used to avoid unnecessary changes

in the distribution. Notice that the lack of such mechanisms would leave

the system open to undesirable effects (e.g.constantly moving threads

across the groups or even thread ping-pong).

We assume, that for each nest of parallel regions where the runtime will

automatically compute a thread distribution the programmer previously de-

fined a number of groups and a work distribution schema.

4.4.2 Run-time profiling support

To implement our adaptive method for thread distribution we need to obtain

information about the computational weight of the different groups of threads

in the outer level of parallelism. Thus, we need to dynamically profile the

application to obtain this information.

Because OpenMP and MPI have some differences the profiling strategy

needs to be slightly different depending if the outer level is one or the other.

Profiling OpenMP

We want to profile each of the outer regions of the OpenMP nest to obtain

the computation time of each group of threads.

Our runtime system places time probes at the beginning and at the end

of the execution of each thread in an outer parallel region. This allows for

a good approximation of the work each group of threads does, unless the

runtime system introduces unreasonable overheads that distort the measure-

ments. Notice that the way the probes are placed make the accumulated time

include all the overheads related to the inner parallel regions (e.g. thread cre-

ation/termination, barrier synchronizations, load imbalance, . . . ). We expect

these overheads to be low enough so they do not interfere in the sampling.

A better, but more complex, approach would be placing the probes at

the beginning of the worksharing constructs and before the implicit barrier

at the end of each worksharing construct in the inner regions. Accumulating

the time in each worksharing we would obtain a good sample of the amount

of work of each group of threads.

68



4.4. ADAPTIVE THREAD ALLOCATION

The information gathered by the profiler is associated to a region so each

the outer regions can potentially have a different distribution of threads.

Profiling MPI

In contrast to OpenMP in MPI there is no concept of region as all the threads

are always executing code. But, we need to define a region so we can sample

the work load of each of the outer groups (i.e. each MPI process).

As we have seen previously in Chapter 2, many scientific applications

have the characteristic that they are iterative, that is, they apply the same

algorithm several times to the same data. We exploit this characteristic to

accumulate meaningful times for computation and communication usage.

...

...
mpi_send()

mpi_send (...)
{
   begin_measure()
   pmpi_send(...)
   stop_measure()
   process_measure()
}

pmpi_send(...)
{
  /* mpi send code */
}

Application code Profiling library MPI library

Figure 4.6: MPI profiling mechanism.

MPI defines a standard mechanism to instrument MPI applications that

consists of providing a new interface that it is called before the real MPI

interface [For95]. Figure 4.6 shows how the standard MPI profiling mecha-

nism works. The application is instrumented using this profiling mechanism.

When a MPI call is invoked from the application the library measures the

time spent in the call and add its to a total count of time spent in MPI calls.

The iterative structure of the application is detected using a Dynamic

Periodicity Detector library (DPD) [FCL01]. DPD is called from the instru-

mented MPI call and it is fed with a value that is a composition of the MPI

primitive type ( send, receive, . . . ), the destination process and the buffer

address. With this value DPD will try detect the patterns of periodic be-

havior in the application. Each period that is detected is a different region

similar to the OpenMP ones. Our profiler will keep track of the time each

of the MPI processes spent executing in the region and how much time each

process in MPI synchronization (either explicit or implicit like in blocking
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communication calls).

Information preprocessing

A few measures from the profiler for a single region are averaged together

before further processing to avoid an unexpected interference of the system

to have a big impact in the characterization process.

Then, the execution time measurements are normalized to the minimum

sample. That is, the runtime finds the thread with the minimum execution

time and it divides the rest of values by this one with an integer division.

This normalization erases the small variations of the sampling process giving

a more meaningful collection of computational weights for each group of

threads.

All the information is then passed to the distribution policy so it can

compute, if needed, a new distribution.

In this step, the runtime could potentially compute additional metrics

from the sampled data, like the degree of unbalance, that could be useful to

future distribution policies.

4.4.3 Thread Distribution Policies

When enough information is gathered by the profiler a thread distribution

policy is invoked. With this information the goal of the policy is to gener-

ate a processor distribution where all the groups of threads spend the same

amount of time in computation, reducing the synchronization time as much

as possible.

We have developed two different policies to achieve this goal:

Dynamic Processor Balancing

Each time the Dynamic Processor Balancing (DPB) policy is invoked it tries

to improve one of the groups of threads of the application: the one with

highest computation time. It does so by increasing its thread allocation with

threads that are stolen from another group (which we call the victim group).
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The victim group is the group with the minimum computation time of those

that have more than one thread (every group has always at least one thread).

Once the victim is selected, we compute an ideal execution time for the

group we want to improve, ti+1, with the formula:

ti+1(highest) = ti(highest) − ti(sync)/2 (4.1)

Where ti(highest) represents the execution time of the group we want

to improve in the last execution of the region and ti(sync) the time that

was lost due to synchronization. This time ti+1 is what we want to achieve

with the new distribution of threads. In each step we expect to balance

both groups which means reducing the time distance between them (i.e the

synchronization time) by half.

The value ti(sync) is computed differently if the outer group uses OpenMP

or MPI:

In MPI this is computed by subtracting the time spent in MPI calls by

group that spent most time, which should be the same we are trying

to improve, to the victim group:

ti(sync) = tmpi(victim) − tmpi(highest) (4.2)

This heuristic assumes that the MPI time of the process that has more

computation time is the minimum MPI time that any of the process

can have.

In OpenMP we compute the synchronization time as the time spent in the

barriers, which can be computed subtracting the execution time of the

group that spent less time in the region to the group that spent the

most time:

ti(sync) = ti(highest) − ti(lowest) (4.3)

With this future time ti+1 the number of threads that should be moved

between the groups to obtain that time based on the last execution time, is
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computed with the following formula:

threads =
threadsi(highest) ∗ ti(highest)

ti+1(highest)
− threadsi(highest) (4.4)

Where threadsi(highest) is the current number of threads allocated to the

group we want to improve. If the threads computed value is equal to all the

threads of the victim group then all but one are stolen because every group

needs at least one thread.

One problem with this policy is that because it only interacts with two

groups at a time it make take several invocations before an stable thread

distribution is found. Because of that, we developed the Dynamic Weight

Balancing policy.

Dynamic Weight Balancing

The Dynamic Weight Balancing strategy is based on the work from Gonzàlez

et al. [GOM+01] where the user feeds the algorithm by means of annotations

in the code that specify a factor representing how much work each group of

threads has. We use largely the same algorithm but using as input the the

measures gathered by the profiler of the runtime library .

1 min=mininum( samples )
2 for i = 1 to ngroups
3 weight ( i ) = samples ( i )/min
4 howmany( i ) = 1
5 end for

6 whi le ( sum(howmany) < num threads )
7 find i such as weight ( i )/howmany( i ) i s maximum
8 howmany( i ) = howmany( i ) + 1
9 end whi le

Figure 4.7: DWB thread distribution algorithm.

Figure 4.7 shows the pseudocode of the algorithm. The variable weight

contains the proportion of the work load that each group has computed from

the profiler samples (samples variable). The variable ngroups refers to

the number of groups defined in the outer level of parallelism. The variable

howmany specifies the number of threads to be used for the execution of
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the parallelism in the inner levels (i.e the size of each group). The variable

num threads refers to the total number of threads available.

First, the algorithm assigns one thread per group. This ensures that at

least one thread is assigned for the execution of the inner levels of parallelism

that each group encounters. After that, the rest of threads are distributed

according to the proportions in vector weight so the groups with a higher

work load get more threads than those with a lower work load.

DWB in contrast to DPB , can compute a good distribution of threads in

a single invocation of the policy. Also, note that because in each invocation

threads from multiple groups can be re-allocated the impact from moving

threads between groups can be higher with this policy.

4.4.4 Validation of a thread distribution

After the policy computes a thread distribution a number of filters are used to

validate that we will be obtain a benefit after applying the new distribution.

Critical path validation filter Moving threads is not free. There is

some penalty mainly because of data movement across caches. This filter

discards those cases where moving threads between groups will not result in

a performance increment that overcomes the penalty of the movement.

1 thr esho ld= number between 0 and 1
2 find maxgroup such as samples (maxgroup )/howmany(maxgroup ) i s maximum
3

4 n ew c r i t i c a l p a t h=samples (maxgroup )/howmany(maxgroup )
5 i f ( n ew c r i t i c a l p a t h < p r e v c r i t i c a l p a t h and

6 ( n ew c r i t i c a l p a t h − p r e v c r i t i c a l p a t h ) >

7 ( thr esho ld ∗ p r e v c r i t i c a l p a t h ) ) then

8 r e turn true
9 else

10 r e turn f a l s e
11 f i

Figure 4.8: Critical path validation algorithm.

Using the time samples and the new thread distribution, this filter com-

putes an estimation of the critical path that would result if the new distribu-

tion was applied. The time samples are divided by the number of assigned
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threads in the new distribution. If the maximum value of these divisions (i.e.

the critical path) is greater than the one obtained with the current thread

distribution the distribution discarded. It is also discarded if the time differ-

ence is below a certain threshold. Figure 4.8 shows the described algorithm

pseudocode. We suggest 5% as the threshold value.

Ping-pong effect This filter is in charge on detecting ping-pong situa-

tions, where a number of distributions are applied cyclically without any

real gain. This filter uses the history of computed thread distributions to

detect this situation. When the filter detects the ping-pong effect it chooses

the distribution that worked best and it filters out any other.

More threads than chunks of work anomaly The distribution algo-

rithm is not aware of the number of chunks of work that will be defined in

the inner levels of parallelism. The parallel regions in the inner levels might

offer different degrees of parallelism translated to how chunks of work are

distributed among the threads. It is possible that one parallel region offers

enough chunks so all the threads can work, while others do not. Our im-

plementation is sensitive to this effect. But if this situation occurred it will

be reflected in the measurements and the thread distribution algorithm will

solve it.

4.4.5 Applying the new thread distribution

When the policy decides a new allocation the runtime library informs each

group of threads of their new processor availability by leaving the new in-

formation in a shared memory zone of the process associated to the region.

It also resets the profile information for that region so new data is gathered

when it is executed again.

After that, the OpenMP runtime library should adjust the parallelism

level (i.e. number of running threads ) of the inner parallel regions to comply

with the policy decision.

From the application point of view this can be done in two ways:
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Non-preemptively Two synchronization points are defined at the entrance

and exit of the inner parallel regions. When an application arrives at a

synchronization point, it checks for changes in its allocation and adjusts

its resources adequately. So, this means that while the group is inside a

parallel region could potentially run with more (or less) resources than

those actually allocated to it.

Preemptively In this version, the runtime library does not wait for the

application to make the changes but it preempts immediately the pro-

cessors stopping the running threads on them. As this can happen

inside a parallel region, the runtime library needs the capability to re-

cover the work that was doing or it has assigned to that thread in order

to exit the region. This is not an easy task as available resources may

change several times inside a parallel region leading to deadlocks if not

carefully planed. Further information of this approach can be found in

the work of Martorell et al. [MCN+00].

Our implementation, in IBM’s XL library, uses the first approach. As

the parallel regions our work focuses are small enough, the time a process

does not comply the allocation is small enough that there are no meaningful

differences between the results obtained with both approaches.

4.5 Evaluation

We used two synthetic applications and two benchmarks from the NAS Mul-

tizone benchmark suite to evaluate the Dynamic Processor Balancing and

Dynamic Weight Balancing policies. This section describes first the evalu-

ation of DPB , then the evaluation of DWB and finally some experiments

comparing both policies.

Due to external factors related to the availability and access to the ex-

ecution environments the experiments were performed in different machines

and runtime libraries . This is the reason why they are presented separately

in this evaluation.

75



CHAPTER 4. SELF-TUNED BALANCED THREAD

ALLOCATION

4.5.1 Applications

Synthetic applications

Omp parallel do
       Computational_loop()
End Do
Omp parallel do
       Computational_loop()
End Do
Synchronization()

Omp parallel do
       Computational_loop()
End Do
Omp parallel do
       Computational_loop()
End Do
Synchronization()

mpi_init()

mpi_finalize()

Figure 4.9: MPIO structure

MPIO MPIO is a synthetic MPI+OpenMP application that we used to

explore the potential of the DPB policy. Figure 4.9 shows the structure

of this synthetic application: it includes a simple external loop with two

internal parallel loops. Two MPI processes execute the external loop and

the internal loops are parallelized with OpenMP . At the beginning and at the

end of each external iteration there is a message interchange to synchronize

the MPI processes.

MPIO receives two parameters that allow to specify the workload of each

of the MPI processes. So, different imbalance scenarios can be defined and

tested.

Multi-block (Mblock) The mblock benchmark is a multi-block algorithm

that performs a simulation of the propagation of a constant source of heat in

an object. The output of the benchmark is the temperature at each point of

the object. The heat propagation is computed using the Laplace equation.

The object is modeled as a multi-block structure composed of a number of
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Groups % of imbalance

2 0%
4 0%
8 34%
16 60%

Table 4.1: Imbalance summary for the large input

rectangular blocks. Blocks are connected through a set of links at specific

positions. After an initialization phase, an iterative solver computes the

temperature of each point in the structure. Each block computation can be

done in parallel, also parallelism exist inside each block. Propagation of the

temperature between blocks can also be done in parallel. Both levels are

parallelized with OpenMP .

The size of the blocks can be defined as an input of the application. This

allows the definition of different imbalance scenarios. We used two different

inputs: one with sixteen blocks, called large, and another with eight blocks,

called large8.

The large input has twelve blocks of size 20x30x42 and four of size

40x40x60. This input generates different scenarios of imbalance (computed

as suggested by De Rose et al. [RHJ07]). Table 4.1 summarizes the imbal-

ance that exists when this input is distributed across a different number of

groups. As we see, it allow us to test for three imbalance scenarios: 0% (i.e.

no imbalance), 34% and 60%.

The large input has six blocks of size 64x64x64 and two blocks of size

128x128x128. Table 4.2 summarizes the imbalance that exists when this

input is distributed across a different number of groups. As we see, it allow

us to test for three imbalance scenarios: 0% (i.e. no imbalance), 52%, 75%

and 88%. Note that in the case with 16 groups because there are only eight

blocks it does not make sense to define 16 groups (as half of the groups would

have no work at all) but an unconscious user could still make this mistake.
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Groups % of imbalance

2 0%
4 52%
8 75%
16 88%

Table 4.2: Imbalance summary for the large8 input

NAS-MZ benchmarks

We evaluated two applications from the NAS Multizone benchmark suite

[JdW06]: BT-MZ and SP-MZ . Versions of both benchmarks exist with

MPI+OpenMP and with nested parallelism for OpenMP . These benchmarks

solve discretized versions of the unsteady, compressible Navier Stokes equa-

tions in three spatial dimensions. The two applications compute over a data

structure composed by blocks. The computation processes one block after

another. Then, some data is propagated between the blocks. Parallelism

appears at two levels. At the outermost level, all the blocks can be processed

in parallel. At the innermost level, the computation in each block can be

coded through parallel do loops. This structure allows for the definition of a

two-level parallel strategy. The main difference between the two benchmarks

is the composition of the blocks, which is going to be the main issue in the

evaluation. In the case of the BT-MZ , the input data is composed by blocks

of different sizes, while in SP-MZ all blocks are of the same size.

Both benchmarks come with a two load balancing algorithms. These

algorithms represent slightly more than a 5% of the total code. The first

algorithm is a data balancing algorithm that distributes blocks in the outer

level of parallelism trying that all groups have a similar amount of compu-

tational work. The second one assigns a number a threads in the inner level

of parallelism to each of the outer groups based on the computational load

of the zones assigned to each outer group so it works in a similar to our

DWB algorithm. Both methods are computed before the start of the com-

putation based on knowledge of the data shape and computational weight

of the application. Because they use the knowledge of the application we

call Application Data Balancing to the first one and Application Processor
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Balancing to the second one. They represent the best a programmer can do

with knowledge of the application so we consider them us the upper bound

for evaluating our automatic approach.

BT-MZ For each block, BT-MZ computes different phases. All of them

implement a nest of three do loops: one per dimension. Usually, the outer-

most loop corresponds to the K-dimension and it is parallelized. Two phases

must be parallelized on the J-dimension because of data dependences.

Applying a single level strategy forces the programmer to choose between

two possibilities. Exploiting the parallelism between blocks or exploiting the

parallelism inside the block. But both approaches have their own problems.

For example, using input class A, BT-MZ works with an input data

composed by 16 three-dimensional blocks. Table 4.3 shows the size of each

block, according to the dimension sizes.

Block I-dimension J-dimension K-dimension Size Proportions

1 13 13 16 2704 1
2 21 13 16 4368 1.61
3 36 13 16 7488 2.76
4 58 13 16 12064 4.46
5 13 21 16 4368 1.61
6 21 21 16 7056 2.61
7 36 21 16 12096 4.47
8 58 21 16 19488 7.20
9 13 36 16 7488 2.76
10 21 36 16 12096 4.47
11 36 36 16 20736 7.66
12 58 36 16 33408 12.35
13 13 58 16 12064 4.46
14 21 58 16 19488 7.20
15 36 58 16 33408 12.35
16 58 58 16 53824 19.9

Table 4.3: Block sizes for BT-MZ class A.

Applying a single level strategy forces the programmer to choose between

two possibilities. Exploiting the parallelism between blocks, which is limited
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by two factors: only 16 threads can obtain work as there are only 16 blocks,

and what is worst, the parallelism is highly unbalanced. Last column on

table 4.3 shows the proportions between the blocks. Between the the small-

est block (block 1) and the largest one (block 16) there is a factor of 19.9.

Exploiting the parallelism inside the block, the loops over the K-dimension

and J-dimension (this last one only in two phases) are parallelized. Accord-

ing to the information in table 4.3, the K-dimension is 16 for all blocks and

the J-dimension varies within 13, 21, 36 and 58. When the loop on the K-

dimension is executed in parallel, only 16 threads will obtain work. Again,

this limits the performance. Therefore, best option is to use a two-level strat-

egy, combining the inter and intra block parallelism. This strategy generates

16 per 16 chunks of work. Therefore, even with a large number of threads

all of them will get work. But, the problem of unbalance persists.

The BT-MZ class B input is very unbalanced as well but there are 64

blocks instead of just 16 as in the class A and the performance problems are

very similar.

SP-MZ The SP-MZ benchmark is very similar to the BT-MZ benchmark.

The main difference between both benchmarks is related to the sizes of the

blocks in the input data structure. In the SP-MZ benchmark all the blocks

have the same size so the outer level of parallelism is well balanced. Table

4.4 summarizes the number of blocks and the size of each one for the SP-MZ

input classes A and B.

Class Number of blocks Size of each block
A 16 32x32x16
B 64 38x26x17

Table 4.4: Description of SP-MZ inputs

The computation evolves over different phases, where each phase is im-

plemented by three nested loops, one per dimension. The outermost loop in

each phase is always parallelized. As in the case of BT-MZ , a single level

strategy can not be efficiently applied. Just exploiting the inter block paral-
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lelism is not unbalanced at all, but suffers from the same limitation regarding

the number of threads to be used. Thus, again, a two level strategy is the

best option: combining inter and intra block parallelism.

4.5.2 MPI+OpenMP experiments

Execution environment

The evaluation was performed in a single node of an IBM RS-6000 SP with 8

nodes of 16 Nighthawk Power3 @375MHz (192 Gflops/s) with 64 GB RAM of

total memory. A total of 336Gflops and 1.8TB of Hard Disk were available.

The operating system was AIX 5.1. The MPI library was configured to use

shared memory for message passing inside the node. Only the DPB policy

was implemented in this version of the runtime library . All experiments

were run in exclusive mode.

MPIO benchmark

We used the MPIO benchmark to test the potential of the DPB policy. With

MPIO we can define imbalance scenarios by defining the amount of the total

load that is assigned to first MPI process (the lower this number is the bigger

the imbalance is). Four different scenarios of imbalance were defined: 43,33%,

36,67%, 16,67% and 6,67% of the total load assigned to the first MPI .

We executed MPIO both with DPB and without it. Figure 4.10 shows

the percentage of improvement with DPB over the version without it. We can

see that as the amount of imbalance increases the improvements obtained by

using DPB also raise. This is due to the fact that when there is a high amount

of imbalance even a moderately well balanced version is a huge improvement.

In figure 4.11 the processor distribution that DPB assigned to each of

the MPI processes is shown. We can see that the percentage of processors

allocated to each MPI process is very close to the percentage of the work

that we assigned to that MPI process.
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Figure 4.10: MPIO Speed-ups versus imbalanced version (16 CPUs).

Figure 4.11: MPIO processor distribution (16 CPUs).

82



4.5. EVALUATION

Figure 4.12: SP-MZ Class A improvements (16 CPUs).

Regular applications (SP-MZ )

We want programmers to use our proposal without even having to spend

time to find if their application is balanced or unbalanced. But, this will

only be feasible if in the case that the application is not unbalanced we do

not introduce significative overheads because of the dynamic profiling.

To find out how significant are the overheads in the case of balanced

applications we have evaluated the SP-MZ benchmark.

Figure 4.12 shows the results obtained for the execution of the SP-MZ

benchmark with the class A input. We can observe that the maximum over-

head introduced by DPB is 4% which we think is quite acceptable.

We also evaluated the SP-MZ with the bigger class B input. The results

are shown in Figure 4.13. We can observe two interesting things:

• With two MPI processes, DPB has just a 1% of overhead but both of

the load balancing algorithms embedded in the application have over-

heads close to the 25%. This is not because a poor processor distribu-

tion but it was a problem of the implementation yielding the processor

too much under certain circumstances.

• In the eight MPI processes case, we can see that all the load balancing

algorithms obtain an improvement close to 10% in an application that

was supposed to be balanced.
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Figure 4.13: SP-MZ Class B improvements (16 CPUs).

From these experiments we can conclude that the overheads introduced

by DPB are small enough to be feasible to use it as a default strategy if we

do not know, or do not care to know, if the application is balanced. And,

if there happens to be an odd case where the application exhibits an small

unbalance DPB will detect it and correct the behavior of the application.

Irregular applications (BT-MZ )

The situation where the data domain is irregular in its geometry, and in

consequence in its computational load, is very frequent on scientific codes

mainly because of the nature of the entities being modelled (weather fore-

casting, ocean flow modelling, . . . ). The evaluation of the BT-MZ bench-

mark will allows to us quantify if how useful can DPB be to improve those

codes. Our goal is to be as close as possible to the Application Processor

Balancing(APB) that is coded in the BT-MZ application.

Figure 4.14 shows the improvement of the different load balancing strate-

gies over the regular version for BT-MZ with the class A data input. We can

see that DPB is closely tied with the APB algorithm. In an execution with

two MPI processes execution, DPB obtains a better improvement ( 26% vs

18% of improvement). In an execution with four MPI processes, both algo-

rithms are closely tied. But, in an execution with eight MPI processes, the
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Figure 4.14: BT-MZ Class A improvements (16 CPUs).

DPB improvement is significantly lower (a 14% less than with APB).

As we mentioned in Section 4.4.3, because DPB works with pairs of pro-

cesses as the number of MPI processes increases so it does the time that

it takes DPB to find a stable distribution. So, for longer executions DPB

should be an option as good as the Application Processor Balancing algo-

rithm.

To confirm this hypothesis we obtained the improvements of the differ-

ent algorithms over the last 20 iterations of the algorithm where the DPB

algorithm should have found a stable distribution. Figure 4.15 shows these

improvements. In this case, the difference in the improvements obtained

with DPB and the APB decreases until a very acceptable 2%, that is due

to the inherent overheads of continuous profiling of the application to detect

changes in the behavior.

Figure 4.16 shows the processor distribution that DPB chooses to over-

come that unbalance (each MPI process has a different color). We can see

that the distributions found by the algorithm are quite complex.

We also evaluated the BT-MZ benchmark with the class B input. We can

see the improvements obtained with the different load balancing algorithms

in Figure 4.17. The class B has a larger number of iterations than the class

A, and we can see that the behavior of DPB and Application Processor

Balancing is very similar to the last iterations of the class A. This means
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Figure 4.15: BT-MZ Class A improvements (last 20 time steps, 16 CPUs).

Figure 4.16: BT-MZ Class A processor distribution (16 CPUs).
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that the warm-up cost of DPB is hidden here because it is only a small

fraction of the total amount of iterations.

Figure 4.17: BT-MZ Class B improvements (16 CPUs).

Now, if we compare the improvements of DPB with the Application Data

Balancing(ADB), in many cases this algorithm obtains better improvements

than DPB . This is because data redistributions allow finer movements than

processor distribution (because each group needs at least one processor that

it can not be split). Even so, in some situations the improvements ADB

obtains are lower than DPB . Taking into account that ADB is very difficult to

apply in a transparent way we think that DPB shows that it can improve the

performance of unbalanced applications, that do not suffer from the warm-up

costs, without programmer intervention at all.

MPI vs MPI+OpenMP

Figure 4.18 shows a comparative of the execution times for different combi-

nations of MPI and OpenMP for the BT-MZ benchmark: ranging from pure

OpenMP (only one MPI process) to pure MPI (only one OpenMP thread in

each MPI process) through hybrid combinations. We can see that the pure

OpenMP approach obtains better results than the MPI approaches or the

hybrid approaches. But, when we apply our DPB policy we get even better

results because the load imbalance is further reduced.
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Figure 4.18: BT-MZ Class A. MPI vs MPI+OpenMP .

These results show that when an application is unbalanced is better to

use an hybrid approach that allows to overcome the unbalance either with

a hardcoded algorithm, as those described in Section 4.5.1, or, even better,

automatically as with our proposals. When the application is well balanced,

on the other hand, it is probably better to use a single level approach, if

enough parallelism can be generated from a single level, as noted by Cappello

et al. [CE00] (whether MPI or OpenMP is an ongoing debate).

4.5.3 Nested OpenMP experiments

Execution environment

Benchmarks using the IBM XL environment were run in a p690 32-way

Power4 machine at 1.1 GHz with 128 GB of RAM. We used IBM’s XLF

compiler with the following flags:-O3 -qipa=noobject -qsmp=omp. The oper-

ating system was AIX 5.2. The XL runtime had implemented only the DWB

policy. All experiments were run in exclusive mode.

Multi-block benchmark (Mblock)

To evaluate the DWB in different imbalance scenarios we have used the

mblock benchmark using the large input data set. As we have described
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Figure 4.19: Mblock benchmark improvements (32 CPUs)

in Section 4.5.1, this input has different load imbalances depending on the

number of groups: ranging from a 0% to a 60% of imbalance.

First, we wanted to find an “ideal” execution time for the benchmark so

we could evaluate how far we where from it with DWB . With a simulation

process we selected those combinations of groups and distributions of threads

that seemed more likely to obtain a good performance result. Table 4.5 shows

how many candidate distributions we tried for each number of groups.

Groups # of distributions tested

4 19
8 19
16 19

Table 4.5: Number of tests to find the ideal for mblock (32 CPUs)

Figure 4.19 shows the improvements we obtain using DWB over the orig-

inal version for the mblock application with input blocks defined above. We

can observe that in the cases where the application is unbalanced (i.e. with

8 and 16 groups) DWB improves considerably the performance of the ap-

plication. But, it seems there is still potential for improvement as shown

by the ideal distribution. This could be because of two reasons: either the

distribution found is not the optimal or because the overheads are too high.

To find it out we evaluated the mblock benchmark again but we used as

the distribution of threads for the execution the distribution that was found

89



CHAPTER 4. SELF-TUNED BALANCED THREAD

ALLOCATION

Figure 4.20: SP-MZ class A improvements (32 CPUs).

in a previous execution with DWB . This means, that instead of applying the

decision in the same execution in this case we are doing it in the next one

where we can disable all the profiling. The results are shown in Figure 4.19

with the DWB (preassigned) label. We can see that in this case DWB obtains

an improvement close to the ideal . So, we can conclude that distribution it

founds is quite good but the improvements, while important, are hampered

because of the time to find the distribution and the profiling overheads.

Regular applications (SP-MZ )

As in the MPI+OpenMP evaluation, we used the SP-MZ benchmark to

identify if it would be possible to use DWB as default strategy even in those

cases where the application is well balanced. In the nested OpenMP version

of SP-MZ there are no load balancing algorithms so only DWB was evaluated

against the regular version.

Figure 4.20 shows the results for the execution with the class A input and

32 processors. We can see that the overhead introduced by DWB is at most

5% which we think is a reasonable maximum overhead. In the other cases

the overhead is much lower.
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Groups # of distributions tested

4 12
8 28
16 13

Table 4.6: Number of tests to find the ideal for BT-MZ (32 CPUs)

Figure 4.21: BT-MZ class A improvements (32 CPUs).

Irregular applications (BT-MZ )

As in the MPI+OpenMP evaluation, we used the BT-MZ benchmark to

study how DWB behaves when the strategy is applied to applications with

irregular distributions of data. In this case, we only evaluated the class A,

as we know that the behavior of the classes A and B are very similar.

First, as in the mblock experiments, we wanted to find an “ideal” exe-

cution time for the benchmark so we could evaluate how far we where from

it with DWB . With a simulation process we selected those combinations of

groups and threads that seemed more likely to obtain a good performance

result. Table 4.6 shows how many candidate distributions there were for each

number of groups.

Then, we evaluated both our DWB proposal and the Application Pro-

cessor Balancing(APB) algorithm that comes embedded with the BT-MZ

benchmark. Our goal is to be as close to APB as possible.

Figure 4.21 shows the improvements of both methods for the BT-MZ

benchmark with a class A input and 32 CPUs and different number of outer

groups of parallelism. The ideal bars correspond to the best of the execution
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times from the candidate distributions. We can see that in all cases, except

with two groups, the improvement we obtain with DWB is better than APB.

In the case of having only four groups of parallelism DWB does obtain

an improvement close to a 50% but not as good as APB which improves the

unbalanced application by a 59%. This difference could be due to profiling

overheads.

To find it out, as in the mblock experiment, we evaluated the BT-MZ

benchmark again but we used as the distribution of threads for the execution

the distribution that was found in a previous execution with DWB . This

means, that instead of applying the decision in the same execution in this

case we are doing it in the next one where we can disable all the profiling.

The results are shown in Figure 4.21 with the DWB (preassigned) label. We

can see that in this case DWB obtains the same improvement as APB with

four groups.

When comparing with the ideal numbers, we see that DWB is close to it

in all cases and even in one it finds a distribution that it is better that one

of our candidate distributions.

These results suggest that DWB does a good job in finding a good distri-

bution of threads across the groups and this translates in great improvements

in the application. Even so, some results seem to indicate that the profiling

may have an impact in some situations and some extra optimizations may

be needed.

4.5.4 Dynamic Processor Balancing vs Dynamic Weight

Balancing

Execution environment

The SMP machine used for the experiments comparing DPB and DWB is

a 64-way POWER5 machine (1656MHz processors) with 514 GB of RAM

running AIX 5.3. We used IBM’s XLF compiler with the following flags:-O3

-qipa=noobject -qsmp=omp. All experiments were run in exclusive mode. We

implemented both, DPB and DWB , in IBM’s XL runtime.
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Figure 4.22: mblock improvements with the large input (32 CPUs).

Multi-block

We used two input sets of the mblock application to compare DPB and

DWB : the large input set and the large8 input set. As we described in

section 4.5.1, these inputs generate imbalances that range, depending on the

number of groups, from a 0% to a 88%.

Figure 4.22 shows the results obtained for the mblock benchmark with

the large input data set and 32 CPUs. With two and four groups neither of

the policies obtain any improvement but that was to expect as the amount

of work for all the groups is the same. In these two balanced scenarios,

the overhead of both policies is fairly similar as well between 1 to 3%, which

seems reasonable. As the imbalance increases with the number of groups both

policies start improving the performance by using better thread distributions.

DPB obtains a better improvement in both cases as it achieves a better

distribution.

Figure 4.23 shows the results obtained for the mblock benchmark with

the large8 input data set and 32 CPUs. In this case, the improvements are

even larger in the unbalanced scenarios, as the imbalance is bigger, but it is

the DWB policy that obtains a better distribution obtaining almost a 100%

more of improvement in the case with 16 groups.
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Figure 4.23: mblock improvements with the large8 input (32 CPUs).

Figure 4.24: BT-MZ class A improvements (32 CPUs).

BT-MZ

We executed the BT-MZ benchmark with a class A input with both policies.

The results are shown in Figure 4.24.

This results show that while DWB improvements are very close to our

target goal (i.e. APB), DPB came short in all cases but with two groups.

This is explained by the larger time that it takes DPB to find an stable

distribution.

From these experiments we can conclude that DWB seems to obtain

better improvements than DPB although there are some cases where DPB

wins.
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4.6 Conclusions

In this chapter, we have presented a method to compute at runtime a thread

distribution that can be used in scenarios where a multilevel parallelization

has been used in an application. We explain how to implement our algorithm

for both, MPI+OpenMP applications and pure OpenMP applications with

nested parallelism.

Our proposal works by gathering information, at runtime, about the time

each group spent doing useful work. Based on these measures, a distribution

policy computes a new thread distribution that is applied afterwards. We

have implemented two distribution policies:

Dynamic Processor Balancing works by moving processors from the less

loaded group to the most loaded one in each step of the computation.

Dynamic Weight Balancing works by distributing all the processors based

on the discovered load of each of the groups.

Our evaluation results confirmed that the proposed runtime mechanism

performs well obtaining improvements close to those of load balancing al-

gorithms implemented with knowledge of the application. Even, when ap-

plication is well balanced (as in the SP-MZ case) the mechanism shows a

low overhead. This suggests that a runtime could use our mechanism as a

default option for nested parallelism. Of the two policies, our evaluation sug-

gests that the Dynamic Weight Balancing obtains in general better thread

distributions than the Dynamic Processor Balancing .

One critical factor is the dynamic profiling overhead. The evaluation

shows that although some times the policies find an appropriate distribution

of threads the improvement obtained is reduced by the overheads of the

mechanism. So, a more careful implementation of the profiling mechanism is

very important for this approach to obtain better results.

The number of groups is a critical parameter in the performance of an

application that was not taken into account in our work. Future work will

deal with the problem of automatically deciding how many groups should
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be used at the outer level. This will allow an optimal exploitation of nested

parallelism without programmer intervention.
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Chapter 5

OpenMP Tasks evaluation

The most exciting phrase to

hear in science, the one that

heralds new discoveries, is not

’Eureka!’ but ’That’s funny...’

Isaac Asimov

Russian-american writer (1920–1992)

Abstract

OpenMP recently added a task model to allow the paralleliza-

tion of applications not based on loop parallelism. Within this

new proposal independent units of work called tasks can be cre-

ated. The details of the scheduling of these tasks are left open in

the specification. But the exact scheduling decision may have a

great impact on the performance of applications using tasks. In

this chapter, we explore the new tasking model and present an

evaluation of different scheduling strategies for it.
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5.1 Introduction

OpenMP grew out structured around parallel loops and was meant to handle

dense numerical applications. The simplicity of its original interface, the use

of a shared memory model, and the fact that the parallelism of a program is

expressed in directives that are loosely-coupled to the code, all have helped

OpenMP become well-accepted today. However, the sophistication of paral-

lel programmers has grown in the 10 years since OpenMP was introduced,

and the complexity of their applications is increasing. Therefore, the new

OpenMP 3.0 [Org08] added a new tasking model [ACD+07], that we dis-

cussed in Chapter 2, to address this new programming landscape. The new

directives allow the user to identify units of independent work, called tasks,

leaving the scheduling decisions of how and when to execute them to the

runtime system.

In this chapter, we explore the expressivity of the new proposal while we

prepare a number of different benchmarks that allows as to explore different

possibilities about the scheduling policies of these new tasks. We extended

the Nanos runtime [TMD+07] with two scheduling strategies: a breadth-first

approach and a work-first approach. We implemented several queueing and

work-stealing strategies. Then, we evaluated combinations of the different

scheduling components with the application we developed. We, also, evalu-

ated how these schedulers behave if the application uses tied tasks, which

have some scheduling restrictions, or untied ones, wich have no scheduling

restrictions.

Our aim is to discover what issues will programmers have to deal with

when they start using the new OpenMP task model.

5.2 Motivation and related work

The Intel work-queueing model [SHPT99] was an early attempt to add dy-

namic task generation to OpenMP . This proprietary extension to OpenMP

allows hierarchical generation of tasks by nesting taskq constructs. Our

Nanos group proposed dynamic sections [BDG+04] as an extension to the
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standard sections construct to allow dynamic generation of tasks.

Finally, a committee from different institutions developed a task model

[ACD+07] for the OpenMP language that was included in the latest standard

specification [Org08]. One of the things this task proposal leaves open is the

scheduler of tasks that should be used and when tasks should be immediately

executed.

Scheduling of tasks is a well studied field but their applicability to the

OpenMP model remains an open question. There are two main scheduler

families: those that use breadth-first schedulers (see for example the work

from Narlikar [Nar99] and those that use work-first schedulers with work-

stealing techniques (see for example Cilk [FLR98] and Acar et al. [ABB00]).

Korch et al. [KR04] made a very good survey of different task pool imple-

mentations and scheduling algorithms and evaluated them with a radiosity

application. Many of these works have found that work-first schedulers tend

to obtain better performance results.

Besides scheduling, task granularity is a key factor to scale up a task

parallel program. Dynamic aggregation is a common technique used by many

parallel languages to increase the granularity of tasks.

Most languages use some kind of task inlining (or lazy creation) in order

to increase the granularity of the tasks. Inlined tasks still keep the potential

to spawn a full task if needed. The most common criteria to spawn a new

task is based on the load of the processors (i.e. if some processor is idle)

[TTY99,MKRHH90,FLR98,GSC96] but some other options using level based

or priority schemes have been studied [LH95].

But even lazy task creation has problems with very fine grained tasks

[MKRHH90] because there is still some overhead associated with task cre-

ation. The other option instead of inlining lazy tasks is serializing them to

reduce even further the overhead. The problem with serializing tasks upon

creation, as noted by Kranz et al. [KRHHM89], is that it can lead to load

unbalance or deadlock because a wrong decision cannot be undone. The de-

cision is taken by a cut-off function that decides whether continue creating

parallelism or serialize the potential task. Some proposals try to achieve

this by using as cut-off the load of the thread system [KRHHM89,CLP+08].
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Another proposal, uses the size of data structures [HLA94] to control task

creation but it depends on the compiler understanding complex structures

like lists, which is difficult in the C or Fortran languages. Aharoni et al.

use the number of elements of the structure at run-time to control granu-

larity [AFB92] but for non-uniform elements they also need compiler help.

Rugina and Rinard generate a level based cut-off to serialize tasks in their

automatic approach to divide and conquer algorithms [RR99].

But, it is unclear how all these algorithms will map into the OpenMP

new task model as most of the previous work was in the context of recursive

algorithms and where there were no scheduling restrictions at all. But the

OpenMP task model allows to parallelize not only recursive applications but

also applications that mix traditional work-sharing regions with task paral-

lelism. Our goal in this work is to evaluate previous techniques in the context

of OpenMP and understand which parameters will be the programmers need

to tune in the future to obtain good performance from of their applications

using the task model.

5.3 Task programming

We parallelized several applications with the new OpenMP tasking model.

This allowed us to gain insight into the new model and have a pool of ap-

plications for evaluation purposes as there were no applications developed

using OpenMP tasks at the moment of this work.

We have worked on applications across a wide range of domains (linear

algebra, sparse algebra, servers, branch and bound, etc) to test the expres-

siveness of the proposal. Some of the applications (multisort, fft and queens)

are originally from the Cilk project [FLR98], some others (pairwise alignment,

connected components and floorplan) come from the Application Kernel Ma-

trix project from Cray [CFLM04] and one (sparseLU ) has been developed

by us. These kernels were not chosen because they were the best representa-

tives of their class but because they represented a challenge for the previous

2.5 OpenMP standard and were publicly available. We show the key parts

of those applications and present how the new OpenMP task model enables
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new parallelization strategies.

In order to organize the presentation of the examples, we divide them into

two subsections. First we describe situations showing how tasking allows one

to express more parallelism (or to exploit it more efficiently) than current

OpenMP worksharing constructs. Second, we describe situations in which

tasking replaces the use of nested parallelism.

5.3.1 Worksharing versus tasking

In this subsection we illustrate some examples where the use of the new

OpenMP tasks allows the programmer to express more parallelism (and thus

obtain better performance) than could be expressed with OpenMP 2.5 work-

sharing constructs.

SparseLU

The for worksharing construct is able to handle load imbalance situations

by using dynamic scheduling strategies. Tasking is an alternative option to

parallelize this kind of loop, as shown in the code excerpt in Figure 5.1. In this

code, the if statements that control the execution of functions fwd, bdiv and

bmod for non-empty matrix blocks are the sources of load imbalance. One

could use an OpenMP for worksharing construct with dynamic scheduling

for the loops on lines 9, 14 and 21 and 23 (for the bmod phase one can either

parallelize the outer, line 21, or the inner loop, line 23, with different load

balance versus overhead trade-offs). On the other hand, if the inner loop

is parallelized the iterations are smaller which allows a dynamic schedule

to have better balance but the overhead of the worksharing is much higher.

Using tasks, a single thread could create work for all those non-empty matrix

blocks, achieving both load balance and low overhead in the generation and

assignment of work.

It is interesting to note that, if the proposed extension included mecha-

nisms to express point-to-point dependencies among tasks, it would be pos-

sible to express additional parallelism that exists between tasks created in

lines 11 and 16 and tasks created in line 25. Also it would be possible to ex-
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1 int sparseLU ( ) {
2 int i i , j j , kk ;
3 #pragma omp paral lel

4 #pragma omp single nowait

5 for ( kk=0; kk<NB; kk++) {
6 lu0 (A[ kk ] [ kk ] ) ;
7 /∗ fwd phase ∗/
8 for ( j j=kk+1; j j < NB; j j++)
9 i f (A[ kk ] [ j j ] != NULL)

10 /∗ only creat e t a s k s f o r non−empty b l oc k s ∗/
11 #pragma omp task untied
12 fwd (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
13 /∗ bd i v phase ∗/
14 for ( i i=kk+1; i i < NB; i i ++)
15 i f (A[ i i ] [ kk ] != NULL)
16 /∗ only creat e t a s k s f o r non−empty b l oc k s ∗/
17 #pragma omp task untied
18 bdiv (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;
19 /∗ wait f o r prev ious t a s k s ∗/
20 #pragma omp taskwait

21 /∗ bmod phase ∗/
22 for ( i i=kk+1; i i < NB; i i ++)
23 i f (A[ i i ] [ kk ] != NULL)
24 for ( j j=kk+1; j j < NB; j j++)
25 i f (A[ kk ] [ j j ] != NULL)
26 /∗ only creat e t a s k s f o r non−empty b l oc k s ∗/
27 #pragma omp task untied
28 {
29 i f (A[ i i ] [ j j ]==NULL)
30 A[ i i ] [ j j ]= a l l o c a t e c l e a n b l o c k ( ) ;
31 bmod(A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
32 }
33 /∗ wait f o r a l l prev ious t a s k s ∗/
34 #pragma omp taskwait

35 }
36 }

Figure 5.1: Main code of SparseLU with OpenMP tasks
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press the parallelism that exists across consecutive iterations of the kk loop.

Instead, the taskwait reduces parallelism to ensure those dependences are

not violated.

Protein pairwise alignment

This application aligns all protein sequences from an input file against every

other sequence. The alignments are scored and the best score for each pair

is output as a result. The scoring method is a full dynamic programming

algorithm. It uses a weight matrix to score mismatches, and assigns penalties

for opening and extending gaps. It uses the recursive Myers and Miller

algorithm to align sequences [Gen97].

The outermost loop can be parallelized, but the loop is heavily unbal-

anced, although this can be partially mitigated with dynamic scheduling.

Another problem is that the number of iterations is too small to generate

enough work when the number of threads is large. Also, the loops of the

different passes (forward pass, reverse pass, diff and tracepath) can also be

parallelized but this parallelization is much finer so it has higher overhead.

1 /∗ a l l t hreads p i ck up some sequences ∗/
2#pragma omp for

3 for ( s i = 0 ; s i < nseqs ; s i++) {
4 l en1 = compute sequence length ( s i +1);
5 /∗ compare to the other sequences ∗/
6 for ( s j = s i + 1 ; s j < nseqs ; s j++) {
7 /∗ creat e a task f o r each comparison ∗/
8 #pragma omp task

9 {
10 l en2 = compute sequence length ( s j +1);
11 compute s co r e pena l t i e s ( . . . ) ;
12 f o rward pas s ( . . . ) ;
13 r e v e r s e p a s s ( . . . ) ;
14 d i f f ( . . . ) ;
15 mm score = tracepath ( . . . ) ;
16 i f ( l en1 == 0 | | l en2 == 0) mm score = 0 . 0 ;
17 else mm score /= (double) MIN( len1 , l en2 ) ;
18 /∗ pr i n t i n g in mutual e x c l u s i on ∗/
19 #pragma omp cr i t i ca l

20 p r i n t s c o r e ( ) ;
21 }
22 }
23 }

Figure 5.2: Main code of the pairwise aligment with tasks
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In Figure 5.2 we show how we used OpenMP tasks to efficiently exploit

the parallelism available in the inner loop in conjunction with the parallelism

available in the outer loop, which uses a for worksharing construct. This

breaks iterations into smaller pieces, thus increasing the amount of parallel

work but at lower cost than an inner loop parallelization because they can

be executed inmediately.

5.3.2 Nested parallelism versus tasking

In this subsection we illustrate some examples where the use of the new

OpenMP tasks allows a programmer to express parallelism that in OpenMP

2.5 would be expressed using nested parallelism. The versions of these pro-

grams using nested OpenMP, while simple to write, usually do not perform

well [ADH+07] because a variety of problems (load imbalance, synchroniza-

tion overheads, . . . ).

Multisort , FFT and Strassen

Multisort is a variation of the ordinary mergesort. It sorts a random permu-

tation of n 32-bit numbers with a fast parallel sorting algorithm by dividing

an array of elements in half, sorting each half recursively, and then merging

the sorted halves with a parallel divide-and-conquer method rather than the

conventional serial merge. When the array is too small, a serial quicksort is

used so the task granularity is not too small. To avoid the overhead of quick-

sort, an insertion sort is used for arrays below a threshold of 20 elements.

The parallelization with tasks is straight forward and makes use of a few

task and taskwait directives (see figure 5.3).

FFT computes the one-dimensional Fast Fourier Transform of a vector

of n complex values using the Cooley-Tukey algorithm. Strassen’s algorithm

for multiplication of large dense matrices uses hierarchical decomposition of

a matrix. The structure of the parallelization of these two kernels is almost

identical to the one used in multisort, so we will omit them.
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1 void s o r t (ELM ∗ low , ELM ∗tmp , long s i z e ) {
2 i f ( s i z e < qu i c k s i z e ) {
3 /∗ qu i c k so r t when reach s i z e t h r e sho l d ∗/
4 qu i ck s o r t ( low , low + s i z e − 1 ) ;
5 return ;
6 }
7

8 /∗ s p l i t in to 4 p i e c e s : A, B, C and D ∗/
9 quar ter = s i z e / 4 ;

10 A = low ; tmpA = tmp ;
11 B = A + quar ter ; tmpB = tmpA + quar ter ;
12 C = B + quar ter ; tmpC = tmpB + quar ter ;
13 D = C + quar ter ; tmpD = tmpC + quar ter ;
14

15 /∗ creat e t a s k s to so r t vec tor s p l i t s A, B, C and D ∗/
16 #pragma omp task untied
17 s o r t (A, tmpA, quar ter ) ;
18 #pragma omp task untied
19 s o r t (B, tmpB , quar ter ) ;
20 #pragma omp task untied
21 s o r t (C, tmpC, quar ter ) ;
22 #pragma omp task untied
23 s o r t (D, tmpD , s i z e − 3 ∗ quar ter ) ;
24

25 /∗ wait f o r a l l s o r t t a s k s to f i n i s h ∗/
26 #pragma omp taskwait

27

28 /∗ creat e t a s k s to merge A with B and C with D ∗/
29 #pragma omp task untied
30 merge (A, A+quarter −1, B, B+quarter −1, tmpA) ;
31 #pragma omp task untied
32 merge (C, C+quarter −1, D, low+s i z e −1, tmpC) ;
33

34 /∗ wait f o r AB and CD merge to f i n i s h ∗/
35 #pragma omp taskwait

36

37 /∗ merge AB with CD ∗/
38 merge (tmpA, tmpC−1, tmpC, tmpA+s i z e −1, A) ;
39 }

Figure 5.3: Sort function using OpenMP tasks
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Floorplan

The Floorplan kernel computes the optimal floorplan distribution of a num-

ber of cells. The algorithm is a recursive branch and bound algorithm. The

parallelization is straight forward (see figure 5.4). We hierarchically gener-

ate tasks for each branch of the solution space. But this parallelization has

one caveat. In these kind of algorithms (and others as well) the program-

mer needs to copy the partial solution up to that point to the new parallel

branches (i.e. tasks). Due to the nature of C arrays and pointers, the size of

it becomes unknown across function calls and the data scoping clauses are

unable to perform a copy on their own. To ensure that the original state does

not disappear before it is copied, a task barrier is added at the end of the

function. Other possible solutions would be to copy the array into the parent

task stack and then capture its value or allocate it in heap memory and free

it at the end of the child task. In all these solutions, the programmer must

take special care.

N Queens

This program, which uses a backtracking search algorithm, computes all

solutions of the n-queens problem, whose objective is to find a placement for

n queens on an n x n chessboard such that none of the queens attacks any

other.

In this application, tasks are nested dynamically inside each other. As

in the case of floorplan, the state needs to be copied into the newly created

tasks so we need to introduce additional synchronizations (see Figure 5.5) so

the original state is alive when the tasks start so they can copy it.

Another issue is the need to count all the solutions found by different

tasks. One approach is to surround the accumulation with a critical directive

but this would cause a lot of contention. To avoid it, we used threadprivate

variables. In this way, all threads can acumulate the solutions they find. The

variables are reduced within a critical directive to the global variable at

the end of the parallel region.
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1 void add c e l l ( int id , coor FOOTPRINT, ibrd BOARD,
2 struct c e l l ∗CELLS) {
3 int i , j , nn , area ;
4 i b rd board ;
5 coor f oo tp r i n t , NWS[DMAX] ;
6

7 for ( i = 0 ; i < CELLS[ id ] . n ; i++) {
8 nn = compute po s s i b l e l o ca t i on s ( id , i , NWS, CELLS) ;
9 /∗ f o r a l l p o s s i b l e l o c a t i on s ∗/

10 for ( j = 0 ; j < nn ; j++) {
11 /∗ creat e a task f o r each p o s s i b l e c on f i g u ra t i on ∗/
12 #pragma omp task private ( board , f oo tp r i n t , area ) \
13 shared (FOOTPRINT,BOARD,CELLS) untied
14 {
15 /∗ copy parent s t a t e ∗/
16 struct c e l l c e l l s [N+1] ;
17 memcpy( c e l l s ,CELLS, s izeof ( struct c e l l )∗ (N+1));
18 memcpy( board , BOARD, s izeof ( i brd ) ) ;
19 compute c e l l ex t en t ( c e l l s , id ,NWS, j ) ;
20 /∗ i f c e l l cannot be layed down , prune search ∗/
21 i f ( ! lay down ( id , board , c e l l s ) ) goto end ;
22 area = compute new footpr int ( f oo tp r i n t ,FOOTPRINT,
23 c e l l s [ i d ] ) ;
24 /∗ i f l a s t c e l l ∗/
25 i f ( c e l l s [ i d ] . next == 0) {
26 i f ( area < MIN AREA)
27 #pragma omp cr i t i ca l

28 i f ( area < MIN AREA)
29 s a v e b e s t s o l u t i o n ( ) ;
30 } else i f ( area < MIN AREA)
31 /∗ only cont inue i f area i s smal l e r to b e s t area ,
32 otherwi se prune ∗/
33 add c e l l ( c e l l s [ i d ] . next , f o o tp r i n t , board , c e l l s ) ;
34 end : ;
35 }
36 }
37 }
38 /∗ This t a s kwa i t ensures parent s t a t e remains a l i v e
39 f o r c h i l d ’ s to copy i t ∗/
40 #pragma omp taskwait

41 }

Figure 5.4: Floorplan kernel with OpenMP tasks
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1 void nqueens par ( int n , int j , char ∗a , int d)
2 {
3 int i ;
4

5 /∗ spawn a task f o r each po s s i b l e s o l u t i on ∗/
6 for ( i = 0 ; i < n ; i++) {
7 #pragma omp task

8 {
9 /∗ a l l o c a t e a temporary array and copy <a> in to i t ∗/

10 char∗ b = a l l o c a ( ( j + 1) ∗ s izeof (char ) ) ;
11 memcpy(b , a , j ∗ s izeof (char ) ) ;
12 b [ j ] = i ;
13 i f ( ok ( j + 1 , b ) ) {
14 nqueens (n , j + 1 , b , d+1);
15 }
16 }
17 }
18

19 /∗ This t a s kwa i t ensures parent s t a t e remains a l i v e
20 f o r c h i l d ’ s to copy i t ∗/
21 #pragma omp taskwait

22 }

Figure 5.5: N Queens kernel with OpenMP tasks

5.4 Task scheduling strategies

We extended the Nanos research runtime library [TMD+07] with two families

of task schedulers: breadth-first schedulers and work-first schedulers. These

schedulers implement the restrictions about scheduling of tied tasks (i.e.

tied tasks can only be scheduled on the thread to wich they are tied to). Also,

we implemented several cut-off strategies that we explain in this section.

5.4.1 Breadth-first scheduling

Breadth-first scheduling (BF) is a naive scheduler in which every task that

is created is placed into the team pool and execution of the parent task

continues. So, all tasks in the current recursion level are generated before a

thread executes tasks from the next level.

Initially, tasks are placed in a team pool and any thread of the team

can grab tasks from that pool. When a task is suspended (e.g. because a

taskwait), if it is a tied task it will go to a private pool of tasks of the

thread that was executing the tasks. Otherwise (i.e an untied task), it will

be queued into the team pool.
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Threads will always try to schedule first a task from their local pool. If

it is empty then they will try to get tasks from the team pool.

We implemented two access policies for the task pools: LIFO (i.e. last

queued tasks will be executed first) and FIFO (i.e. oldest queued tasks will

be executed first).

5.4.2 Work-first scheduling

Work-first scheduling (WF) tries to follow the serial execution path hoping

that if the sequential algorithm was well designed it will lead to better data

locality.

The WF scheduler works as follows: whenever a task is created, the

creating task (i.e. the parent task) is suspended and the executing thread

switches to the newly created task. When a task is suspended (either because

it created a new one or because some synchronization) the task is placed in

a per thread local pool. Again, this pool can be accessed in a LIFO or FIFO

manner.

When looking for tasks to execute, threads will look on their local pool.

If it is empty, they will try to steal work from other threads. In order to

minimize contention we used a strategy where a thread traverses all other

threads starting by the next thread (i.e. thread 0 starts trying to steal from

thread 1, thread 1 from thread 2, ... and thread n from thread 0). When

stealing from another thread pool, to comply with OpenMP restrictions, a

task that has become tied to a thread cannot be stolen (note that a tied

task that has not been yet executed can be stolen). The access to the victim’s

pool can also be LIFO or FIFO.

We also implemented a stealing strategy that first tries to steal the parent

task of the current task. If the parent task cannot be stolen (i.e. because is

either already running or waiting on some synchronization) then the default

stealing mechanism is used.

The Cilk scheduler [FLR98] pertains to this family of schedulers. In

particular, it is a work-first scheduler where access to the local pool is LIFO,

tries to steal the parent task first and otherwise steals from another thread
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pool in a FIFO manner.

5.4.3 Cutting off

In order to reduce the size of the runtime structures and, also, reduce the

overheads associated to creating tasks, the runtime can decide to start exe-

cuting tasks immediately. This is usually referred as cutting off.

This is particularly important with breadth-first scheduling as it tends

to generate a large number of tasks before executing them. In work-first

scheduling the number of tasks that exist at a given time is not so large but

it may grow over time because of tasks being suspended at synchronization

points.

It is important to note that tasks that are executed immediately because

of a cut-off policy are different than the ones that get executed immediately

with the work-first scheduler. When cutting off, the new task does not go

through to the whole creation process and in many aspects forms part of the

creating tasks (e.g. cannot be suspended on its own).

We have implemented several simple but effective cut-off policies:

Max number of tasks (max-task) The total number of tasks that can

exist at the same time is computed as a factor of the number of OpenMP

threads (i.e. k ∗num threads). Once this number is reached new tasks

are executed immediately. When enough tasks finish, tasks will be

created again. In our implementation, we use a default value for k of

8.

Max task recursion level (max-level) When a new task is created, if it

has more ancestors than a fixed limit l then the new task is executed

immediately. Otherwise it can be created. In our implementation, we

use a default value for l of 4.

Max number of ready tasks (max-ready) When a new task is created,

if the number of ready tasks in the system is more than a certain limit

l the task is executed immediately. Otherwise, the task can be created.
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In our implementation, we use a default value for l of 1 per number of

OpenMP threads.

Workload based (load-based) When a new task is created, the system

checks how many OpenMP threads are idle at that moment. If the

number is greater that zero the task is created. Otherwise it is executed

immediately.

5.5 Evaluation

5.5.1 Applications

We have used the applications described in Section 5.3 to evaluate the dif-

ferent scheduler and cut-off policies from Section 5.4.

In all applications (except Alignment) we marked all tasks as untied and

we removed any kind of manual cut-off that was there from the programmer

to leave total freedom to the scheduler. The Alignment application makes

heavy use of threadprivate and, because of that, we could not mark the

tasks as untied.

5.5.2 Methodology

We evaluated all the benchmarks on an SGI Altix 4700 with 128 processors,

although they were run on a cpuset comprising a subset of the machine to

avoid interferences with other running applications.

We compiled all applications with our Mercurium compiler [BDG+04] us-

ing gcc with option -O3 as the backend. The serial version of the application

was compiled with gcc -O3 as well. The speed-ups were computed using the

serial execution time as the baseline and using the average execution time of

5 executions.

We have executed all applications with different combinations of sched-

ulers. Table 5.1 summarizes the different schedules we have used in the

evaluation, their properties (see Section 5.4 for details) and the name we will

be using to refer to them in the next sections.
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Scheduler Name Scheduler Type Pool Access Steal Access Steal Parent

bff breadth-first FIFO - -
bfl breadth-first LIFO - -
wfff work-first FIFO FIFO No
wffl work-first FIFO LIFO No
wflf work-first LIFO FIFO No
wfll work-first LIFO LIFO No
cilk work-first LIFO FIFO Yes

Table 5.1: Summary of schedules used in the evaluation

For each schedule we have run the applications without using any cut-off

and then using the cut-offs we had implemented: the max-task , max-level ,

max-ready and load-based cut-offs.

Then, we wanted to know how the restrictions of untied tasks affected

the performance that can be obtained with the different schedulers. So, we

have also tried for those combinations that were best from each application

but with all tasks tied (we control this via an environment variable that the

runtime checks to see if it needs to honor the tied tasks semantics or not).

5.5.3 Results

In this section we present several lessons we have learned about task schedul-

ing from this evaluation.

Lesson 1: Cutting off: yes, but how?

Initially, we wanted to know whether using a cut-off function would be useful

and if so which one would be most useful. We evaluated all the applications

(some of them with different inputs) with different cut-offs and schedulers

and also with no cut-off function.

Figure 5.6 shows the speed-up of four of the applications (Alignment ,

Floorplan, SparseLU and Multisort) . For each of them, we show some

representative cut-off strategies and also the performance without a cut-off

for a fixed scheduler policy (the best one for each case). The number between

parenthesis in the cut-off name indicates a value of n for that cut-off.
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Figure 5.6: Performance of difference cutoffs
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We can see that in both SparseLU and Multisort the use of a cut-off

strategy does not improve over not using one at all. In all other applications,

the use of a cut-off does help to obtain a better performance.

In the case of the Alignment , the gain obtained is a good 20% and that

is the case where there is less improvement. In Floorplan, not using a cut-off

is so bad that we could not even finish the executions because our CPU time

expired.

Another observation is that the best cut-off strategy depends on the ap-

plication. For example, in Alignment the best strategy is a max-task strategy

but in Floorplan a max-level strategy works best. Choosing a wrong strategy

can, in fact, be worst than no using a cut-off strategy at all as it happens in

Multisort .

But, even for the same application, not always the same cut-off is going

to be the best. For example, in Floorplan we can see that if there are 15

sequences as input an strategy cutting off at level 4 works best but if there

are 20 sequences then it works best to cut off at level 5.

So, while it seems clear that using a cut-off technique is a key factor

in most cases to obtain a good performance, the decision of which to use

remains unclear because it depends on the exact application and the input

data.

Lesson 2: Work-first schedulers work best?

Figures 5.7 and 5.8 show the speed-up obtained with different schedulers with

a fixed cut-off strategy (the one that works the best).

In the Floorplan application (Figures 5.7(a) and 5.7(b)), with few threads

all the different schedulers seem to obtain about the same performance. As

the number of threads increases to 32, the work-first scheduler wfff obtains

the best performance with an input of 15 cells. With an input of 20 cells, it

is bfl the scheduler that obtains the best speed-up.

In the multisort application (Figure 5.3) two work-first schedulers obtain

a slightly better performance than the rest (cilk and wfff ). In this applica-

tion, all work-first schedulers obtain a better speed-up than the breadth-first
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schedulers. This is because of the better use of locality of work-first sched-

ulers.

In sparseLU (Figure 5.7(d)), all the scheduler obtain roughly the same

speed-up although as the number of threads is increased, we can see that bfl

and bff obtain a slightly better speed-up.

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 24 32

S
pe

ed
-u

p

# of threads

floorplan15

bff-max-level(4)
bfl-max-level(4)
cilk-max-level(4)
wfff-max-level(4)
wffl-max-level(4)
wflf-max-level(4)
wfll-max-level(4)

(a) Floorplan (15 cells)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 4 8 16 24 32

S
pe

ed
-u

p

# of threads

floorplan20

bff-max-level(5)
bfl-max-level(5)
cilk-max-level(5)
wfff-max-level(5)
wffl-max-level(5)
wflf-max-level(5)
wfll-max-level(5)

(b) Floorplan (20 cells)

 0

 2

 4

 6

 8

 10

 12

1 2 4 8 16 24 32

S
pe

ed
-u

p

# of threads

multisort32

bff-max-task(8)
bfl-max-task(8)
cilk-max-task(8)
wfff-max-task(8)
wffl-max-task(8)
wflf-max-task(8)
wfll-max-task(8)

(c) Multisort (32M integers)

 0

 5

 10

 15

 20

 25

1 2 4 8 16 24 32

S
pe

ed
-u

p

# of threads

sparseLU

bff-num-ready(4)
bfl-num-ready(4)
cilk-num-ready(4)
wfff-num-ready(4)
wffl-num-ready(4)
wflf-num-ready(4)
wfll-num-ready(4)

(d) sparseLU (50 blocks of 100x100 ele-
ments)

Figure 5.7: Speed-ups with different schedulers

In the N Queens application with a board of size 13 (Figure 5.8(a)),

the wffl scheduler obtains the best speed-up but other work-first schedulers

(wflf and wfll) and the bfl get almost the same performance. With a board

of size 14 (Figure 5.8(b)), the best speed-up is obtained by the bff and bfl

schedulers. The wffl and wfll work-first schedulers obtain almost the same

speed-up.

In Strassen (Figure 5.8(c)), all work-first schedulers obtain a slightly bet-

ter performance than breadth-first schedulers. Among them, the cilk and

wfff schedulers obtain the best results but only by a small margin.
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In FFT (Figure 5.8(d), again, all work-first schedulers get a slight better

speed-up than breadth-first schedulers with the cilk scheduler obtaining the

best speed-up among work-first schedulers.
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Figure 5.8: Speed-ups with different schedulers

Overall, we can see that there is not much of a difference between the

different schedulers. Work-first schedulers tend to get a slightly better per-

formance because they exploit data locality better but the difference in per-

formance is very small compared to the impact that the election of a cut-off

strategy has. The main reason behind this is that, because of cut-offs, most

of the tasks of an application are executed immediately and the scheduler

decision has no effect over them. Moreover, the task executed immediately

do so in a manner that is very close to work-first schedulers.
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Lesson 3: Deep-first schedulers should be the default

Figures 5.9 and 5.10 show how the same schedulers perform when the tasks

are tied instead of untied as in the previous section.

We can observe, that for the Alignment application (Figures 5.9(a) and

5.9(b)), while with a few threads all schedulers seem to get about the same

performance, both breadth-first schedulers outperform work-first schedulers

as the number of threads grows. Among the breadth-first schedulers, bfl

obtains a little bit more of performance than bff .

In the Floorplan application (Figures 5.9(c) and 5.9(d)), work-first sched-

uler performance is even worse. None of them is able to improve over the

serial version. Meanwhile, both breadth-first schedulers scale up. In this

application, the best breadth-first scheduler depends on the input: so while

with an input of 15 cells, bff works best, with the 20 cells input, it is bfl the

scheduler that obtains a better performance.

We can quickly see, that in the remaining applications, the same pattern

holds true: if the tasks are tied, the performance of the work-first schedulers

is severely degraded to the point that no speed-up is obtained. The reason

behind this behavior is because work-first schedulers switch to the newly

created tasks and no other thread can pick that task (because it is tied).

Thus, the amount of created tasks is severely reduced. In most cases, there

are no eligible tasks at all for other than the first thread which explains why

execution time remains constant.

In the light of these results, it seems a wise choice for a compiler (or

runtime library ) to choose a breadth-first scheduler because the overall per-

formance with tied and untied tasks is much better than work-first sched-

ulers. While both bread-first schedulers obtain a very similar performance, it

seems that bfl is slightly better most of the times. This happens in the align-

ment application either 20 (Figure 5.9(a)) or a 100 sequences (Figure 5.9(b)),

in Floorplan with 20 cells (Figure 5.9(d)), in sparseLU (Figure 5.10(a)), in

Nqueens with both boards sizes (Figures 5.10(b) and 5.10(c)). In contrast,

bff only clearly wins in Floorplan with a 15 cells input (Figure 5.9(c)) and

it seems to be slightly better for FFT (Figure 5.10(e)).
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(b) Alignment (100 sequences)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 24 32

S
pe

ed
-u

p

# of threads

floorplan15-tied

bff-max-level(4)
bfl-max-level(4)
cilk-max-level(4)
wfff-max-level(4)
wffl-max-level(4)
wflf-max-level(4)
wfll-max-level(4)

(c) Floorplan (15 cells)
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Figure 5.9: Speed-ups with tied tasks
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(b) N Queens (13x13 board)
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(c) N Queens (14x14 board)
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Figure 5.10: Speed-ups with tied tasks
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5.6 Conclusions

We have developed several applications from very different domains making

use of the new OpenMP tasking model which has allowed both to gain insight

inside the new model and have a group of benchmarks to conduct further

experimentation.

We have implemented several scheduling policies, based on breadth-first

and work-first families, and cut-off strategies for this tasking model and eval-

uated them with the aforementioned applications.

The evaluations shows that the impact of the cut-off function in the per-

formance of an application can be very large as it allows to reduce the over-

heads associated with the creation of more tasks than needed. But, the

appropriate cut-off to use is dependent on the application. This leaves the

user no choice but to either do some analysis of what might be better for his

application or just follow a try-and-error approach. In the next chapter, we

will introduce a self-tuned technique that will choose the right cut-off without

user intervention by gathering information about the tasks at runtime.

The evaluation of the schedulers shows that while with untied tasks

work-first schedules work slightly better that breadth-first schedules the se-

lection of a correct cut-off strategy has a much bigger impact. On the other

hand, with tied tasks breadth-first schedulers seriously outperform work-

first schedulers. This seams to indicate that the correct default scheduler

should be some kind of breadth-first scheduler as tied tasks are the default

in OpenMP .
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Chapter 6

Self-tuned task granularity

cut-off

A mind all logic is like a knife

all blade

Rabindranath Tagore

Bengali poet (1861–1941)

Abstract

In task parallel languages an important factor in achieving

good performance is the use of a cut-off strategy that reduces the

number of tasks created. Only enough tasks need to be created to

keep all the threads busy but and at the same time it is interesting

to avoid very fine grained tasks. Unfortunately, the best cut-off

strategy its usually dependent on the application structure or

even the input data of the application.

In this chapter, we describe a new cut-off technique that, using

information from the application collected at runtime, decides

which tasks should be cut-off to improve the performance of the

application.
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6.1 Introduction & Motivation

Our evaluation of different scheduling policies and cut-off strategies (that

allow to dynamically increase the granularity of tasks) in Chapter 5 showed

that both are important decisions to obtain a good performance from an

application using the OpenMP task model. But, of the two, choosing the

right cut-off strategy is by far the more critical decision. Many times the

cut-offs are hand-coded into the application by the programmer. This critical

decision can be time consuming and difficult to made as it may depend on

variable factors like the input data of the application.

We propose a runtime mechanism, that we call Adaptive Tasks Cutoff

(ATC), which dynamically decides the most convenient cut-off for the appli-

cation. This technique is based on profiling information collected at runtime

in order to discover the granularity of the tasks created by the application

and cut-off them appropriately.

We have implemented our proposal in the Nanos OpenMP environment

(although the mechanism is not based in any OpenMP or Nanos dependent

feature) and evaluated it with a set of diverse applications and benchmarks

in an Altix system. Our results show that ATC, in most cases, is able to

cut-off tasks adequately to achieve a good speed-up without the intervention

of the programmer.

6.2 Profiling tasks

To adaptively coalesce OpenMP tasks by employing a cut-off to prune excess

parallelism, we needed to gather information about the application at run-

time. To obtain this information we have implemented a dynamic profiler in

our Nanos runtime [TMD+07]. The Nanos runtime is a research OpenMP

runtime which implements most the major features. Nanos uses user-level

threads, called nano-threads [Pol93], on top of POSIX threads which are cre-

ated when the application starts. For each OpenMP task that is spawned, a

nano-thread is eagerly created. But, if a task is executed immediately only a

small context is allocated in the nano-thread stack and the same nano-thread
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that encountered the task executes it. Consequently, multiple OpenMP tasks

can be executed by a single nano-thread.

We are interested in two kinds of information: the amount of work in

each user specified task and the amount of work each nano-thread (or real

task) has done.

In particular, we want to know from a given node in a recursive tree how

much total work there is in the subtree spanning from that node (including

the node itself). Note that regular loops with tasks are just a particular case

of a recursive tree (i.e. with just one level of depth). This will allow us to

predict how much work a future task created at the same level will do.

We keep track of the time each user OpenMP task spends running. As

we are interested in the computational load we disable the timers at synchro-

nization points (such as taskwait). We have two timer counters associated

with each OpenMP task: one for the work load of the task itself and another

for the time of all its descendants (i.e. its spanning tree). Then, we have

another time counter for the total execution time of a nano-thread.

When an OpenMP task finishes, it processes its profile information. This

processing consists of three steps:

1. The task adds its time to the total time of the nano-thread.

2. The task adds its time to the tree time of its OpenMP parent task.

Note, that as the OpenMP parent task might be being executed by a

different thread this update needs to be protected by mutual exclusion.

3. The task updates a shared depth-level indexed structure where we keep

the average computational load of the subtree spanning from a given

depth level in the recursive tree. This operation also needs to be per-

formed under mutual exclusion.

As this post-processing can have a large impact in the application we

have implemented three different profiling modes:

Full mode In this profiling mode, we collect all the information so we have

a very accurate description of the application behavior.
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Minimal mode In this profiling mode, we only collect the total time of the

nano-thread. Thus, the overhead of the profiling is minimal as there are

no updates from other threads in the same memory locations (which

require extra synchronization). The problem with this mode is that it

does not obtain enough information to feed or algorithm.

Adaptive mode In this profiling mode, the application starts in full pro-

filing mode but it progressively switches to minimal mode to avoid

overheads. When enough samples (a runtime parameter currently de-

fined to 100) are collected at a given depth-level profiling in that level

is switched to minimum.

The information obtained from this profiling is used to predict the be-

havior of future tasks by our adaptive cut-off algorithm.

6.3 Adaptive tasks cut-off (ATC)

In this section we present our adaptive tasks cut-off (ATC). The cut-off uses

information obtained from the profiler to decide whether or not to allow the

creation of a new task. ATC does not need any source code modification

from the user. It will be invoked by the runtime whenever an OpenMP task

is about to be created to decide whether to prune it or not.

6.3.1 Design objectives

In order to design our cut-off we have tried to achieve the following objectives

that in our opinion will maximize the application performance:

1. Obtain profiling information quickly. For the cut-off to be effective, we

need to obtain information from the profiler quickly. This means, we

need to force threads to do a depth first execution as soon as possible

to obtain information about the spanning trees.

2. Generate enough tasks for all threads. Obviously, we do not want

threads to be idle unless absolutely necessary (i.e., unless creating tasks
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for them is too expensive ). The goal is to generate enough tasks so the

scheduler can avoid load imbalances by giving work to all the threads.

3. Do not allow an unbounded number of tasks. We want to limit the

number of task created in order to reduce the resources allocated to

the runtime.

4. Avoid fine-grain tasks. Doing this we try to reduce the overheads as-

sociated with task creation and only create tasks when their computa-

tional load pays off the overhead of creation. By reducing the overhead

we improve the performance of the application.

Several of these objectives are contradictory (e.g. objectives #1 and #

2). We have tried to balance them adequately in the design of the algorithm.

6.3.2 The ATC algorithm

Initially, as the cut-off still does not have information from the profiler we

have a decision process that, based in our previous observations [DCA08], in

most cases it will maximize our design objectives. Tasks are allowed to be

created if the following two conditions are met:

1. There are fewer ready tasks than twice the number of threads in a given

level. This condition serves two purposes: first, it forces the threads

to go deeper into the tree so the profiler get information (objective

#1); second, it restricts the number of tasks to a bound number (ob-

jective #3) while allowing a minimum number of tasks to ensure that

all threads will have work (objective #2).

2. The depth-level is less than a certain limit (defined to be 4 for us).

This condition tries to be conservative in allowing the creation of deep

tasks (which tend to be fine-grain, objective #4) at this stage of the

execution.

Note that by combining both conditions, we only generate the top level

tasks that are the most promising however we do not generate too many of
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them. Note that combining both condition, we are only generating top level

tasks which are the most promising, but we do not generate so many of them

that we later regret our decision.

Once the profiler has gathered information about a level an estimation of

computational load that the task would have is computed. The estimation,

currently, is the average computational load of all the sub-trees spanning

from the level of the tree that has been profiled (which cannot be obtained

with the minimal profile mode). This estimation assumes that all tasks of

a given level will have a similar behavior. It is a very simple approach that

can be changed in the future to use more powerful prediction techniques.

1 l e v e l = cur r ent l e v e l + 1

2 i f ( l e v e l i s c l o s ed ) then

3 not create

4 else

5 es t imate = e s t ima t e t a s k s i z e ( l e v e l )

6

7 i f no es t imate then

8 i f r eady ta sk s [ l e v e l ] < 2 ∗ number o f thr eads

9 and l e v e l < de f au l t max l ev e l then

10 create

11 else

12 not create

13 f i

14 else

15 i f es t imate > mininum size and

16 t o t a l r e ady t a s k s < 4 ∗ number o f thr eads then

17 create

18 else

19 not create

20 f i

21 f i

22 f i

Figure 6.1: Adaptive task cut-off pseudo-code

If the predicted grain size is smaller than a certain value (we use 1 mil-

lisecond1) then the task will not be created (objective #4). Otherwise, it

can be created if there are not enough ready tasks for the threads to execute.

This, again, ensures some bound on the number of tasks (objective #3) but

generates sufficient parallelism for the threads (objective #2).

The overhead of making this decision can be very large in applications

with very fine grain tasks. As an optimization, to reduce it, we allow the

1This value was obtained through microbenchmarking of task creation
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Application Description Notes

Strassen Matrix multiplication
N Queens Solves the n-queens problem Branch and bound
Multisort Sorts an array of integers
sparseLU LU matrix factorization
Floorplan Computes a floor plan distribution Branch and bound
Alignment Aligns protein sequences Tasks are tied

Table 6.1: Applications summary

profiler in the adaptive mode to mark a level as closed. When all the samples

of a level have been collected the profiler checks which is the estimated time

for that level, and as it will be constant in the future (because no more

samples will be collected), if the estimation determines the grain is to small

the level is closed. This allows the cut-off to make a decision with just a

comparison. Note, that closing a level does not preclude that all tasks in

deeper levels are cut off.

6.4 Evaluation

6.4.1 Applications

For the evaluation of our cut-off proposal we used the applications described

in Chapter 5. We summarize them in table 6.1.

In all applications (except Alignment) we marked all tasks as untied and

we removed all manual cut-offs from the programmer leaving total scheduling

freedom. The Alignment application makes heavy use of threadprivate

and, because of that, we could not mark the tasks as untied.

6.4.2 Experimental setup

We evaluated all the benchmarks on an SGI Altix 4700 inside a CPU partition

(with its own memory) of 32 processors to avoid interferences with other

running applications.
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We compiled all applications with our Mercurium compiler [BDG+04] us-

ing gcc with option -O3 as the backend. The serial version of the application

was compiled with gcc -O3 as well. The speed-ups were computed using the

serial execution time as the baseline and using the average execution time of

5 executions.

6.4.3 Profiler impact

The first question we want to address is how much overhead the profiler

introduced. This will allow us to determine if it was worth the additional

complexity of enabling and disabling the profiler instead of continuously run-

ning the profiler.

We used NQueens for this experiment because it has the finest-grained

tasks of all the benchmarks. If the overhead of the profiler is low enough

for NQueens it will most likely have a low impact for the others applications

with coarser tasks.
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Figure 6.2: Overhead of Queens (board of 13x13) with different profiling
modes

Figure 6.2 shows the overheads of the different profile methods (com-

pared against a non-profiled version) with a chess board of size 13x13. We

can see that, while only profiling the nano-thread execution (the minimal

profiling mode) time has almost no impact, profiling the whole tree structure

(full profiling mode) severely reduces the performance obtained due to the

overhead of the profiling. But, limiting the amount of samples we collect to
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Name Description

work-stealing Work-first scheduler with work-stealing.
bff Breadth-first scheduler (FIFO order).
bfl Breadth-first scheduler (LIFO order).

Table 6.2: Summary of used schedulers

Name Description

max-level=N Tasks are cut off based on their depth (N is the level where they
are cut).

max-tasks=N Tasks are cut off based on the total number of tasks in the system
(N per num-threads is the number of allowed tasks).

num-ready=N Tasks are cut off based on the number of ready tasks in the system
(N per num-threads in the number of allowed ready tasks).

load-based Tasks are only created if there is an idle thread at creation time.

Table 6.3: Summary of used cut-offs.

one hundred and then disable the full profiling (adaptive mode) reduces this

impact to a minimum barely noticeable (with the overhead being at most

around 5%).

Therefore, the adaptive profiling mode is the one we have used to obtain

the information for our adaptive cut-off mechanism.

6.4.4 Cut-off evaluation

Methodology

We wanted to compare our adaptive cut-off with the best cut-off for each

of the applications. Firs we looked for the best schedule and cut-off pair.

We executed all the applications with the cross-product of combinations of

schedulers and cut-offs (Table 6.2 and Table 6.3 summarize the schedulers

and cut-offs we have used). For those cut-off that worked well we tried several

variations with different parameters. We then fixed the schedule to the one

obtained in the previous step and we also tried variations of the cut-offs that

seemed to work worst to try to find the worst one.

For some applications we did this experiments exploring different input
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sizes to see how our algorithm performs with variations of the input data.

Table 6.4 summarizes the best and worst cut-off and the schedule (which

was the one that obtained the best speed-up) used for application and input.

Keep in mind that many times there are several cut-offs which are close to

the best and worst ones. We consider this values as the bounds to measure

the success of our adaptive cut-off: we would like to be as close as possible

to the best cut-off and as far away as possible from the worst one.

Scenario Schedule Best cut-off Worst cut-off
Multisort (32 million integers) work-stealing max-tasks=8 maxlevel=3
Alignment (20 sequences) bfl max-tasks=8 load-based
Alignment (100 sequences) bfl max-tasks=8 num-ready=4
Strassen (1280x1280 matrix) work-stealing max-level=4 num-ready=4
Floorplan (15 cells) bff max-level=4 num-ready=1
Floorplan (20 cells) bff max-level=5 num-ready=1
Queens (13x13 board) bfl max-level=3 max-tasks=8
Queens (14x14 board) bfl max-level=3 max-tasks=8
SparseLU
(50 blocks of 100x100 elements)

bfl num-ready=4 load-based

Table 6.4: Summary of best and worst cut-offs

Results

In the following results, we present for all the experiments the speed-up

obtained without using any cut-off, with the best cut-off, with the worst

cut-off, with our adaptive cut-off (labeled ATC) and with a work-stealing

scheduler (with no cut-off and no lazy creation) for comparison purposes.

For those applications (multisort ,nqueens and sparseLU ) that we have the

corresponding Cilk code we also evaluated them. For each application we

show the speed-up obtained and also the number of tasks created at each

depth level with the different cut-offs plus the potential number of tasks at

each level (i.e. the number of OpenMP tasks defined by the user). This

allows us to observe the differences in behavior among the different cut-offs.

Figure 6.4 and Figure 6.3 show the results for the Multisort and SparseLU

applications respectively. We can see that ATC does a good job and there is

almost no difference in speed-up with the best cut-off as the number of tasks
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Label Meaning

nocutoff Best schedule with no cut-off
worst Best schedule with worst cut-off
ATC Best schedule with ATC
best Best schedule with best cut-off
work-stealing Work-first schedule with no cut-off
cilk Cilk version

Table 6.5: Summary of labels used in the evaluation
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Figure 6.3: Results for sparseLU (50 100x100 blocks)

created at each level are roughly the same. Both applications have coarse

grain tasks and benefit the most by applying some bound to the number of

tasks created.

Figure 6.5 presents the performance obtained for the Strassen application.

While ATC does not do a bad job, it opens up one more level (the 5th

level) than the best cut-off and that reduces the achieved speed-up. We

have checked the profile information and the size of the tasks at depth 5 are

coarse enough to be executed. So, probably there are other factors we are not

accounting for (e.g. amount of synchronization) that affect the identification

of the right cut-off point. ATC is much better than some of the other cut-offs

so we still see this as a positive result because is much closer to the best one

than to the worst one.

Figure 6.6 and Figure 6.7 we show the results for the Alignment bench-
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Figure 6.4: Results for Multisort (32 millions integers)
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Figure 6.5: Results for Strassen (size 1280x1280)

mark with two data sets: a small one of 20 sequences and a much bigger on

of 100 sequences. In both cases, ATC makes good decisions and controls the

number of tasks created better than the best cut-offs. The size of the tasks

with the small data set is much smaller but ATC does a good job dealing with

them. Note also than the gap between the best and worst cut-offs is very

narrow for this application. In fact, because alignment uses tied tasks,

unlike in other applications, the critical factor is the schedule being used and

not as much the cut-off. For example, note how, with both inputs, that when

no cut-off is used both work-stealing and the best schedule (bfl in this case)

have the same amount of tasks to schedule. But, because tied task do not

interact well with work-stealing the performance obtained is much lower.
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Figure 6.6: Results for Alignment (20 sequences)
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Figure 6.7: Results for Alignment (100 sequences)

The results for the Floorplan benchmark are shown in Figure 6.8 and 6.9.

We have also tried two input sets: one with 15 cells and another with 20

cells. The size of the problem increases exponentially with the size of the

input and the number of potential tasks at some levels is over 40 million

which causes severe performance problems for all the versions that do not

have a cut-off (note that even the worst cut-off reduces drastically the number

of created tasks) and we run out of CPU time in many executions. That is

why there are no results for the nocutoff or work-stealing versions in many

cases. Floorplan is a branch and bound algorithm and, as such, it is highly

irregular in the size and number of tasks created at each level (see in Figure

6.9(b) for the potential number of tasks at each level). Because of this, with
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Figure 6.8: Results for Floorplan (15 cells)
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Figure 6.9: Results for Floorplan (20 cells)

one of the inputs ATC cuts the creation of tasks too soon which unbalances

the application resulting in a less than optimal speedup. The scenario where

there are many top level branches but a few of them accumulate most of the

work load is, probably, the worst for our simple prediction technique. Even

so, ATC manages to perform much better than the worst cut-offs (including

several level-based cut-offs) and even the worst cut-offs reduce the amount of

created tasks by a large amount. This allows the executions to finish which

does not always happen with no cut-off.

Figure 6.10 and 6.11 show the results for the NQueens benchmark with

two inputs: a 13x13 board and a 14x14 board. Again, the size of the problem

increases exponentially with the size of the input. Also, being a backtracking
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Figure 6.10: Results for N Queens (13x13 board)
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Figure 6.11: Results for N Queens (14x14 board)

algorithm it is very irregular. However, as the pruning increases in a regular

way as we progress down the task tree ATC does a good job in detecting it.

And we can see it obtains the same performance as the best cut-off as they

both cut task creation at level 3. The performance of the cut-offs not based

on the depth level was so poor we were not able to obtain a result with more

than a few CPUs because we ran out of CPU time (1 hour maximum) for

a baseline run of a few minutes. The number of tasks generated for those

cases are in the order of millions like in Floorplan but with even smaller

granularity. Because the tasks are so fine, this benchmark allows us to verify

that, with the optimizations we performed, the cut-off overhead can be kept

to a minimum.
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Overall, ATC makes very good decisions. In all but two cases ATC does

find an near-optimal cut-off and, in those two cases, its decisions are much

better than some of the worst decision that a user can make. Note that in

many scenarios when the level-based cut-offs obtain good results the ones

based on number of tasks do not (and vice versa) while ATC works well

overall. We think this results prove that is a good cut-off technique to be

used to save time to the average user that does not have (or does not want)

the time to explore all cut-off possibilities to find the optimal.

6.5 Conclusions and future work

We have presented an adaptive technique for task parallel languages, that

we call Adaptive Tasks Cut-off (ATC), to reduce the number of created

tasks. Tasks that are cut-off have no chance to be spawned (even lazily)

thus reducing the overhead. This is particularly in the case of very fine grain

tasks where we have seen that even lazy creation might be to costly (e.g.,

N Queens). ATC uses dynamic profiling of the application to estimate the

granularity of the tasks that are being created. The profiling is progressively

switched off dynamically to reduce the overhead it causes.

Our evaluation, with a set of applications with very different properties,

shows that ATC, in most cases, correctly discovers the granularity of the

tasks and it decides an appropriate cut-off. In all cases it behaves much

better than other possible cut-offs that can be selected by inexperienced (o

careless) users. This suggests that ATC is a good option for both a näıve

user and as a default in a parallel runtime.

Although we have implemented the ATC cut-off in the context of OpenMP ,

we think that the technique is general enough, and by no means tailored to

OpenMP , so it can be useful in other languages with support for task paral-

lelism (particularly with fine grain tasks).

At present, our profiler and cut-off estimation is näıve and should be ex-

tended in several ways. First, it should enable one to characterize different

tasks separately so that decisions for different tasks can be made indepen-

dently. Second, in some applications the same kind of task may change its

136



6.5. CONCLUSIONS AND FUTURE WORK

behavior multiple times through the lifetime of the application. Once the

detailed sampling is disabled, the profiler can use the information obtained

in the minimal mode to verify that the behavior is consistent with the predic-

tion. If an inconsistency is found then the detailed profiling can be enabled

again to collect samples again. Last, the prediction technique should be

extended to deal better with unbalanced codes like Floorplan.

Other lines of future work would try to extend the evaluation with more

applications. Particularly with application that mix both tied and untied

tasks. It would also be interesting to study how the quality of the prediction

relates to the number of sample. Another direction we would like to inves-

tigate is the resource usage by the different cut-offs because although the

performance may be similar in some cases, the number of concurrent tasks

(and thus the system resources usage) can be quite different. This might be

important in environment where resources are scarce.
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Chapter 7

Conclusions and Future Work

A life spent doing mistakes is not only

more honorable but more useful than a

life spent doing nothing

Carl Sagan

American astronomer (1934–1996)

Abstract

This chapter discusses the conclusions that can be extracted

from this thesis work as well as different research possibilities

for the future, to further explore the topic of parallel self-tuned

runtime libraries .
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7.1 Conclusions of this thesis

In this thesis we have presented several mechanisms that based on infor-

mation gathered at execution time, adapt different parameters related to

the exploitation of parallelism. From our work we can extract some general

conclusions:

7.1.1 Adaptive algorithms

The overall objective of this thesis was to prove that is feasible to develop

adaptive self-tuned algorithms for different aspects of the execution of parallel

applications. We have done so for three of them: parallel loop scheduling,

thread distribution in multilevel parallelism applications and task granularity

control in task applications.

The evaluation results of the different techniques show that these al-

gorithms obtain in most cases a performance close to a version that was

hand-tuned by the programmer.

This is encouraging as it means that the time and knowledge that most

users need to use parallel systems can be effectively reduced. A user may

still need to deal himself with complex aspects if he wants to obtain the

maximum performance out of a machine (just as sometimes programmers

need to write in assembler to obtain the maximum performance). But, if

it is just the odd case and not the general case it is a big step forward to

improve the productivity of parallel systems.

Also, while we have developed these mechanisms in the context of the

OpenMP language we believe that the general idea is applicable to any par-

allel language and that most of these mechanisms would have an easy trans-

lation to other parallel languages.

7.1.2 Profiling

From our experience in this work, we can identify one of the most important

design factors: the profiling overhead. If the profiling overhead is too hight it

does not matter how good the decisions of the algorithm are because they are
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never going to pay off. This is particularly important if we want to monitor

all the lifetime of the application to check for changes in behavior and not

make just a single decision at the beginning of the execution. So, special care

needs to be taken in the design and implementation of the profiling.

One key idea is that usually the algorithms need very detailed information

to take a decision but not so much information to verify afterwards that the

decision was correct. This opens the door to implementing in the runtime

library several profiling levels of detail with different trade-off ratios between

detail and overhead.

These profiling mechanisms must be controlled by the self-tuned algo-

rithms depending on the current state of its decisions. When they need

detailed information, they can switch high-detailed profiling on but when

minimum information is needed they can use a low-detailed low-overhead

profiling mode.

7.1.3 Language design

We hope these results increase the trend of parallel languages that focus in

specifying the parallelism of the application but leave freedom to the runtime

library to adjust factors of the parallel execution.

Some of the language features, based on our experiences with OpenMP

that help the development of self-tuned features are:

Region definitions The existence of regions of code (whether they are par-

allel regions, task regions or worksharing regions) help the runtime

library to have entities that can be easily identified and properties

attached to them. Otherwise, tricks like the DPD used in Chapter 4

to identify regions in MPI need to be used.

Malleability It is important for the language constructs to be able to adapt

to changes in the execution parameters, like for example the number

of threads, as the execution goes.

Separation of definition and execution The runtime library can only

do so much if the language fixes how the parallel exploitation needs
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to happen. We are not arguing against having ways for the advanced

user to specify exactly how things should be executed. But, having by

default flexibility in the execution of the parallelism defined in the ap-

plication allows to help the novel user to get decent performance with

a relative effort.

7.2 Future work

Several questions remain open at the end of this thesis. They are outlined

here as lines to be explored by future research:

7.2.1 More self-tuning

We have focused in the adaptation of three different aspects of the parallel

exploitation but, of course, several other for which there is no self-tuned

algorithm exist. As, an example, we list a few here:

Nested parallel regions execution When multiple parallel regions are present

in an application the programmer needs to choose whether to use a

single level of parallelism (and which of the available ones) or mul-

tiple levels. Some work to make this decision automatically already

exists [DCL04] but only works for balanced loop nests.

Number of groups In applications with nested parallelism, we have seen

that is important to choose a good thread distribution across the dif-

ferent outer groups of parallelism. But, as important, is to choose the

right number of groups. So far, this is still a burden on the programmer.

Blocking size An important optimization to improve the performance of

parallel algorithms (and also serial ones) is applying loop blocking.

While the compiler can make the transformations easily for the user

it needs to know the size of the block. This parameter depends on

application and architectural factors and could be determined by the

runtime library .
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7.2.2 Integration

One of the most obvious questions not answered by this thesis is how multiple

adaptive techniques can work together in a single runtime library .

This is a challenge that has two main issues:

• First, enough information needs to be collected for all the algorithms

but we need to keep the profiling low. To achieve this we could design

the self-tuned algorithms so they maximize the amount of information

they share (and thus minimize the amount we need to obtain from the

profiling). Or, we could the design the profiler so it only gathers a few

metrics concurrently but then rotate which metrics are profiled over

time. This may reduce the profiling overhead but it may increase the

time needed to gather information so it remains to be seen if its useful.

• Second, there is a problem of conflictive decisions. So, for example,

if we were deciding a thread distribution and at the same time trying

to adapt a loop scheduler executed by those threads neither of the

algorithms would probably take a wrong decision: a proper order of

the decisions needs to be found. It will be important as well that the

information obtained from the first algorithm is propagated to next

ones.

7.2.3 Compiler and runtime library coordination

In our work, all our algorithm have used almost exclusively information that

the runtime library gathered at runtime. While this approach guarantees

that the algorithms will work even if we had a simple compiler or a complex

application not suited for today’s state-of-the-art analysis techniques, the

compiler usually has a lot of information about the application that if coded

appropriately in the application it can be very useful to the runtime library

to take decisions.

Even, if the compiler information is not very accurate (e.g. obtained

through a model) it would still be useful as the initial input to the adaptive

algorithms. If it was inaccurate then it would later be refined with the
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information gathered by the runtime. This could allow to improve the initial

decisions of the self-tuned algorithms and reduce the warm-up effect that we

have observed in some situations.

But the coordination between the compiler and the runtime libraries can

also take other forms. It is very common that the compiler can generate

multiple optimized versions of a code but it does not have the information

to chose one over the other. For example, a compiler can generate both a

serial and a parallel version of an OpenMP parallel construct but it does

not know with how many threads the application will run.

In cases like this, we propose the compiler could generate the different

optimized versions and the runtime library can take the decision of which of

them to execute depending of runtime factors. We have started to use this

approach successfully in our task applications to reduce the overheads of the

cut-offs even further by having a version of the code without runtime calls

that gets invoked by the runtime library when it knows that further tasks

will not be created.

7.2.4 Related information

Another interesting way to reduce the warm-up time is to find ways in that

the profiled information and algorithm decisions from one unit (i.e. a parallel

region, task region, function, . . . ) is used by another. For example, a possible

option would to identify loops with the same pattern. This would allow to

reuse the scheduling decisions across several loops thus reducing both the

warm-up time and the profiling impact (as we could probably switch faster

to a low-overhead profile mode).

7.2.5 Hardware counters and new architectures

In our methods the main metric we have used to take decisions was the

execution time of profiled regions but it would interesting to explore how

to incorporate into the algorithms information obtained through hardware

counters. This is particularly interesting with emerging architectures where
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