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Aquesta tesi s’ha realitzat amb finançament del Ministerio de Ciencia y Tec-
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Abstract

This thesis provides a sound physical rationale to the analysis of indenta-

tion experiments. First, it extends the concept of the contact deformation

regimes to metallic materials exhibiting strain hardening effects. The main

outcome along these lines is the development of a contact deformation map,

which predicts the active contact regime for a given combination of mechan-

ical properties of the indented material. The map is based upon extensive

finite element simulations, elucidating the fundamental features of the plastic

flow patterns and plastic zone shape in metals deforming within the elasto-

plastic and the fully plastic contact regimes. General relations are then found

between hardness and the amount of material pileup or sinking-in develop-

ing at the contact boundary with uniaxial mechanical properties. These

relations are central in devising a novel methodology for mechanical prop-

erty extraction based on direct assessments of the imprint’s topography and

instrumented indentation applied load (P )-penetration depth (hs) curves.

Then, a general framework to the analysis of frictional effects between in-

denter and material is developed. This knowledge allows us to extend the

aforementioned methodology when dealing with frictional contacts. Finally,

a detailed analysis is made on the analogy between indentation experiments

and the problem of the expansion of a spherical cavity. Closed-form solutions

for the expansion of the cavity in strain hardening solids are first derived.

The finite element simulations are used to provide a strict parametrical anal-

ogy between contact variables and those from expanding cavity formulations.

The main outcome of this analysis is the development of new formulations



which evaluate the plastic zone size in sharp indentation experiments of strain

hardening metallic materials.
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Motivation

There is an increasing interest to design materials whose microstructures are tailored

for mechanical functionality. Fabrication of composite structures comprising, for in-

stance, multilayers, homogeneous and compositionally graded coatings, requires a de-

tailed knowledge of the mechanical response of their constituents to ensure that the

overall structure fulfills the required macroscopic behavior. Processing of such new ma-

terials fosters scientific and technological developments on specific techniques for the

assessment of the mechanical response at local (microstructural) scales. Furthermore,

the capacity for evaluating the mechanical response using small volumes of material plays

an important role when integrity assessments of structural components are at issue.

Uniaxial tests continue to be widely used in the evaluation of the mechanical response

of materials. However, when it comes to characterize small volumes of material, these

tests are difficult to perform so that one has to recourse to alternative procedures.

Indentation experiments allow one to probe the local mechanical response of the material

when it is pressed against an indenter of known shape. The magnitude of the applied

load or, alternatively, the penetration depth of the indenter into the material, sets the

length scale under evaluation. Thus, one can potentially probe the behavior of single

grains and, by increasing applied load, evaluate the global mechanical response of the

solid.

Indentation experiments are extremely dependent upon indenter’s geometry (a blunt

sphere or sharp three- or four-sided pyramidal tips are the most commonly used shapes).

The deformation state induced by the indenter may thus undergo different stages;

namely, elastic deformation, elasto-plastic transition, and fully plastic regime depending
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Motivation

on the mechanical properties of the material and tip sharpness. While spherical indenters

are instrumental in studying the evolution through these stages of deformation, sharp

tips (such as cones and pyramids) induce a severe geometrically-similar deformation

state which is in steady-state during complete load application.

In indentation experiments, the magnitude of the applied load determines the volume

of material under study. As the results depend upon such volume, one can readily

classify indentation experiments according to the applied load or penetration depth.

That is, nano-indentation covers the low-load range (applied loads usually smaller than

500 mN), where the active deformation mechanisms are dislocation emission and discrete

dislocation glide, and the imprint is fully embedded within a single grain. The micro-

indentation range is reached for applied loads of, say, between 0.5 N to less than 20 N,

where the deformation mechanisms in the material are mesoscopic, involving interaction

of a small number of grains or constituents. Finally, at the macro-indentation range

(loads typically greater than 100 N), one can evaluate the global response of the indented

material as a continuum, where deformation is averaged over a representative number

of micro-constituent units.

Although knowledge of the aforementioned length scales is central to the analysis

of indentation experiments, the present work was undertaken at a point where consid-

erable work was still needed to understand indentation experiments even within the

macroscopic (continuum) level. Computational power was becoming increasingly avail-

able as to allow one to perform systematic analysis of the contact response of materials

with distinct mechanical properties. Also, with the advent of instrumented indentation

techniques (which allowed one to obtain continuous recordings of applied load (P )-

penetration depth (hs) curves down to the pico-Newton) as well as with the excitement

brought by emerging fields in materials science which required tools to perform local

assessments of mechanical properties, indentation was becoming again a scientifically

appealing subject. While research opportunities were clear, a solid foundation to the

analysis of indentation experiments was already available because (i) contact mechanics

was a mature area, and (ii) a large body of experimental work was available. In light of
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these considerations, we decided to perform computational analysis of indentation exper-

iments backed by some experimental work, which we hoped would provide new insights

into a number of fundamental issues that, over the years, eluded analysis with more con-

ventional tools. In particular, we sought to obtain general ”hardness equations” which,

in the line of the pioneering work conducted by Tabor in the 1950s, allow one to predict

mechanical properties from indentation experiments. Since an important drawback in

instrumented indentation is that it does not account for the deformation around the

contact boundary (i.e., the development of pileup or sinking-in of the material), we had

the belief that this piece of information might become central to mechanical property

extractions from indentation experiments. This feeling came out to be correct.

This thesis is arranged following a deductive approach, which illustrates the way

present research came to fruition. Basic concepts in the application of contact mechan-

ics to indentation are first given §1. The objectives of the work are lain in §2. §3

is devoted to describe the computational and experimental tools used in this investiga-

tion. The remaining chapters provide discussions on the topics constituting the scientific

backbone of our findings. §4 gives an extensive description on the plastic flow features

developing underneath a sharp indenter. The results allow us to build a contact defor-

mation map which extends the prior work conducted by Johnson in the 1970s to the case

of strain-hardening solids. Based upon these findings, a comprehensive methodology for

mechanical property extractions from indentation experiments is devised in §5. The

influence of friction upon the current analysis is covered in §6. A fundamental approach

is regained in §7, which deals with the development of a general equation for predicting

the plastic zone size around sharp indentations. Some critical considerations are made

in this chapter regarding the pioneering work conducted, among others, by Johnson and

by Hill, on the analogy between indentation and the inflation of a spherical cavity.
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Chapter 1

Introduction

The contact response between solids of different nature has long been a topic of study

from theoretical and experimental standpoints. The theoretical background to the anal-

ysis of indentation experiments is strongly rooted in the field of Contact Mechanics. This

discipline provides a description of the stress and strain fields underneath the indenter

as well as of the contact pressure distribution existing between the indenter and the

material. In short, contact mechanics gives a mechanistic interpretation of the intrusion

of an indenter into a solid which is extremely relevant to the analysis of experimental re-

sults. Attention is given in this chapter to the parameters from indentation and contact

mechanics describing the salient features of the contact response.

1.1 Aspects from indentation and contact mechanics

Since the early work by Hertz on the elastic contact between two spherical bodies [41; 46],

considerable research efforts have been devoted to study the behavior of a wide range of

solids brought into contact against different indenter geometries. Contact mechanics thus

has evolved considerably, providing general descriptions on the link between indentation

parameters and mechanical properties. For instance, Sneddon [70] derived a theoretical

framework for the contact response attained between an elastic solid and axisymmetric

punches (e.g., sphere, cone, or flat-ended punch). He obtained correlations of indentation

parameters (such as pressure distribution p, hardness H, and the amount of surface
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1. Introduction

deformation around the indenter) in terms of the elastic properties of the solid and

the indenter. On the other hand, the slip-line field theory allowed one to examine the

contact response of rigid–perfectly-plastic solids. Characterization of the indentation

response of elastic–perfectly-plastic solids was undertaken by Johnson [47] through the

analogy between indentation and the expansion of a spherical cavity, which was originally

conceived in [10; 21; 28; 42; 46]. In spite of the limitations in such an analogy, the results

from Johnson’s analysis provided important guidelines to the analysis of indentation

experiments. Alternatively, a powerful tool to examine the contact response of elasto-

plastic materials is found in the similarity approach adopted in [6; 11; 14; 43; 62]. This

approach is illustrated in the final part of this chapter.

1.1.1 Indentation parameters

The contact response in a conventional hardness test is described with two quantities:

hardness, and the upwards or downwards deformation that develops at the periphery of

the imprint (i.e., the occurrence of the so-called pileup or sinking-in of material).

Hardness (H) is calculated as the ratio between the applied load (P ) and the pro-

jected area of the residual imprint (A), namely,

H =
P

A
. (1.1)

Although hardness is a rather elusive concept, the above equation suggests that it is

indicative of the resistance of the material to deform plastically under the action of the

indenter.

The deformation that is induced at the contact boundary is assessed through inspec-

tion of the imprint’s topography. Bulging at the sides of a pyramidal imprint indicates

development of material pile-up whereas pincushion effects at the imprint suggests at-

tainment of sinking-in, Fig. 1.1. To estimate the amount of pileup and sinking-in, one

may recourse to techniques such as profilometry, interferometrical microscopy, or atomic

force microscopy (AFM) which provide a topographical map the residual imprint. A

simple parameter quantifying the amount of surface deformation is
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Figure 1.1: Schematic of the (a) piling-up and (b) sinking-in responses and associated
nomenclature.

α =
A

As
(1.2)

where A is the true projected contact area and As is the geometrical area that measures

the imprint as if the surface would remain flat (i.e., ignoring the development of pileup

or sinking-in), see Fig.1.1. By simple geometrical arguments, As is determined as

As = fhs
2 (1.3)

where hs the penetration depth of the indenter, as measured from the undeformed surface

of the material, and f a geometrical factor which depends on the indenter’s shape (f =

24.5 for the Vickers four-sided indenter; 24.562 for the Berkovich trigonal indenter; and

f = πtan2θ for a cone with arbitrary half-apex angle θ). By virtue of the axisymmetry

of the conical tip, it follows that it is possible to substitute As by A and hs by h in

Eq. (1.3). Thus, in accordance with Eq. (1.2), one can measure the amount of pileup
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or sinking-in using the true height of the contact surface (h) and the penetration depth

from the undeformed surface to the indenter’s tip (hs). That is,

√
α =

h

hs
. (1.4)

Pileup occurs when α > 1, and sinking-in develops for α < 1.

Notice that Eq.(1.2) and Eq.(1.4) are equivalent because the apical angle in a con-

ical indentation remains constant around the z-axis so that pileup and sinking-in are

homogeneous throughout the contact boundary. Vickers and Berkovich pyramidal in-

dentations, however, have uneven heights along the periphery as a result of the different

constraints imposed to the material by the sharp edges of the indenter and its sides.

Hence, α varies throughout the contact boundary. In such cases, it becomes necessary

to estimate a mean value for the amount of surface deformation through the ratio of

contact areas Eq.(1.2) rather than with Eq.(1.4).

Although the occurrence of the above surface deformation modes (i.e., pileup and

sinking-in) is indicative of the mechanical response of the material, α cannot be taken

as an intrinsic material property because, in the same way as hardness, it is the result

of a combination of elastic and plastic uniaxial mechanical properties. Hardness H and

surface deformation parameter α are also dependant of the indenter’s geometry. It is

known that perfectly-elastic solids exhibit large sinking-in effects (α = 0.41), while rigid–

perfectly-plastic materials tend to develop pile-up [46; 70]. Investigations by Matthews

[61] and Alcalá et al. [3] also demonstrated that the amount of surface deformation is

linked to the strain hardening capacity of the solid. Materials exhibiting large strain-

hardening effects (where constant n in Eq. (A.21) is large) undergo sinking-in, whereas

pileup develops when the material presents little strain hardening effects (n → 0, see

Appendix A).

Instrumented indentation experiments evaluate the evolution of the contact response

along the loading and the unloading stages of the experiment, providing a complementary

knowledge to that given through measurement of hardness H and parameter α. This
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penetration depth, hs
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ad
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dP/dhs |maxP = K hs
2

hr he hmax

Wp

Figure 1.2: Schematic of an instrumented indentation applied load (P )–penetration
depth (hs) curve. Arrows indicate the loading and unloading paths. Note that the
material exhibits plastic deformation because hr 6= 0. Variables describing the curve are
also given in the figure (see Section 5.5).
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1. Introduction

technique thus provides continuous recordings of applied load (P )–penetration depth

(hs) curves of the indenter against the material (see Fig. 1.2).

Analysis of an instrumented indentation P–hs curve provides an indication of the the

elastic and plastic responses of the material. The elastic response, characterized through

the Young’s modulus E, can be directly obtained from the early unloading stage [65; 70].

The following closed-form solution for elastic contacts with punches of arbitrary shape

is used for the purpose of extracting Young’s modulus:

E∗ =
1

c∗
√

Amax

dP

dhs

∣∣∣∣
hmax

; (1.5)

with

E∗ =
(

1− νm
2

Em
+

1− νi
2

Ei

)−1

, (1.6)

where Em and νm are the Young’s moduli and the Poisson’s ratio of the material, and

Ei and νi are the Young’s moduli and the Poisson’s ratio of the indenter, dP/dhs is

the slope of the P–hs curve in the first part of the unloading segment, Fig. 1.2, c∗ is a

geometrical constant that depends on indenter’s geometry (c∗ = 1,142 for the Vickers

indenter; 1,167 for the Berkovich indenter; and 1.128 for a cone with 70.3◦ of included

half-angle), and Amax is the true contact area A at maximum load [3; 71]. Obviously,

since only As and not A is inferred from the P–hs curve, an important limitation in

instrumented indentation experiments becomes evident as the use of this formulation

requires a prior knowledge on the amount of pileup or sinking-in. The so-called Oliver

and Pharr method provides an empirical approach for finding true contact area A from

penetration depth hs measurements [65; 71].

The loading segment of the P–hs curve reflects the elasto-plastic response of the

material. In the absence of length scales which may be induced, for instance, by mi-

crostructural features, the relation between applied load and penetration depth is pre-

scribed through Kick’s law

P = Khs
2 , (1.7)

10



1.1 Aspects from indentation and contact mechanics

where K is a material constant which, through equations (1.3), (1.1) and (1.7), is related

to hardness H and surface deformation parameter α as

K = fHα . (1.8)

This relation demonstrates the link between parameter K from instrumented indenta-

tion experiments and hardness H. Thus, it is considered that the contact response is

completely defined by a reduced number of independent variables: hardness H, surface

deformation parameter α, and unloading slope dP/dhs. The first two parameters (H

and α) result from the elasto-plasticity developing at the contact surface (that is, they

are anticipated to be functions of yield strength σys, hardening coefficient n, and Young’s

modulus E), while dP/dhs only concerns the elastic behavior of the indented material.

The above discussion opens the question of whether it is possible to gain a com-

plete knowledge of uniaxial mechanical properties through P–hs curves analysis or, al-

ternatively, through measurements of H and α. To answer this question, it becomes

necessary to derive specific correlations between independent contact parameters and

uniaxial mechanical properties (i.e., H = H(E, σys, n) and α = α(E, σys, n)). Along

these lines, several investigations have been published focusing on novel methodolo-

gies for mechanical property extraction through analysis of indentation experiments.

[2; 3; 4; 25; 26; 30; 32; 39; 50; 51; 69; 76].

1.1.2 General background

A central quantity in contact mechanics is the pressure distribution p at the contacting

interface. When two solids become in contact, a set of punctual forces are induced along

the interface. By definition, pressure is given by the ratio between the applied load and

the load-bearing contact area. Therefore, such local forces divided by the corresponding

load-bearing surface differentials give the overall contact pressure distribution. The

schematic in Fig.1.3 shows a generic contact pressure distribution for conical indentation.

The geometry and mechanical properties of the contacting surfaces govern the pres-

sure distributions. A remark is thus to be made regarding the assumption of the indenter
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Figure 1.3: Normalized pressure distribution p/pmax and normalized mean pressure
pm/pmax for cone indentations in (a) a solid undergoing pileup (E = 200 GPa, σys =
100 MPa, n = 0.1), and (b) a solid exhibiting sinking-in (E = 70 GPa, σys = 400 MPa,
n = 0.4). These results are from the current finite element simulations described in §3.
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being a rigid tip, where the mechanical properties influencing the contact response are

taken to be exclusively those of the indented solid. While such an approximation is

generally valid provided the indenter is a much harder solid than the indented material,

indenter’s deformation is still to be considered when a detailed analysis of the experiment

is at issue (see Eq.(1.6), Section 1.1.1), [41].

Sneddon [70] thoroughly established governing relationships between indentation pa-

rameters and the elastic properties of the indenter and the material. Among other issues,

Sneddon derived integral equations for the pressure distribution, and relationships be-

tween applied load and penetration depth of the indenter into the solid. He also provided

celebrated analysis for the elastic recovery induced upon unloading (which is widely used

in the assessment of instrumented indentation experiments, see Eq. (1.5) and the work

by King [48]). The overall features of the pressure distribution in elastic contacts are

shown in Figure 1.4, which illustrates the variation of normalized pressure distribution

(p/pm) as a function of the normalized contact radius (r/a) for a conical indenter whose

semi-apical angle θ is 70.3◦ (where mean contact pressure pm is the averaged value of

the distribution through the contact surface). It is noted that pressure at r/a = 0 is

infinite because the sharp tip of the cone introduces a mathematical singularity. Figure

1.4 is clearly different to that found for the elastic contact of a spherical body into a

half-space, where the hertzian solution for p/pm is a bounded quantity equal to 3/2 at

r/a = 0 [41].

Linear elastic contact mechanics no longer applies when it comes to examine the

contact response between a rigid indenter and a plastic solid. An approximation to this

problem is obtained through the slip-line theory [42], which provides pressure distri-

butions at the contacting surfaces. Notice that the slip-line method provides discrete

values of stresses and contact pressures; however, explicit closed-form solutions cannot

be derived on the basis of this theory. An important limitation of the slip-line theory

is that it only applies to rigid–perfectly-plastic solids. Therefore, it allows one to eval-

uate the contact response in “highly plastic” solids, where such restriction is a sensible

approximation.
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Figure 1.4 shows the normalized pressure distribution obtained through the slip-

line analysis of conical indentation given in [55]. The same tendencies as in elastic

contacts are preserved: (i) the pressure is distributed over the whole surface, which

in such plastic solids includes the pileup region at the contact boundary, and (ii) the

pressure is maximum at the indenter’s tip, where in this case plastic flow removes the

singularity of the stress field. It thus follows that while in elastic contacts the stress

distribution gradually decays from infinite to almost zero, rigid–perfectly plastic solids

exhibit a quasi-constant value of pressure from the indenter’s tip to the pileup height,

where pressure falls abruptly to zero.

In light of the ongoing discussion, it is important to bear in mind that although

perfectly elastic solutions and slip-line analyses pertain to solids with extreme contact

responses, the study of linear elastic–strain hardening plastic solids is out of the scope of

these theories. Alternative techniques involving finite element simulations are however

available to provide insights into such more realistic contact responses.

A key variable that characterizes the pressure distribution is its mean value pm.

Notice that such contact pressure exactly matches the definition of hardness provided

in Section 1.1.1:

H ≡ pm =
1
A

∫
A

p(s)ds (1.9)

where A is the true projected contact area, and s is the surface differential supporting

pressure p(s). Hardness is thus linked to the mechanical properties of the indented solid.

Integration of the pressure distribution obtained by Sneddon in elastic contacts leads to

the following expression

H = pm =
E cotanθ

2(1− ν2)
, (1.10)

where E is the Young’s modulus and ν is the Poisson’s ratio of the material, and θ is

the semi-apical angle of the conical indenter. Alternatively, dimensional analysis readily

suggests that hardness of rigid–perfectly plastic solids has to be proportional to the only

material length scale of the problem. That is, the yield strength of the solid σys. Hence,
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1.1 Aspects from indentation and contact mechanics

H = pm = Cslσys , (1.11)

where proportionality constant Csl only depends on the geometry of the indenter in

accordance to the slip-line analysis. For the conical indenter whose semi-angle θ = 70.3◦,

constant Csl is found to be 2.73 [55; 80], whereas for a wedge with the same angle Csl

= 3 [42].

Slip line analysis takes into account the fact that in most strain hardened metals,

plastic flow extends outwards from the contact boundary leading to pileup effects. This

result is due to the large capacity of these solids to accumulate plastic deformations, as

n = 0 (see Fig. 1.5 and Eq. (A.21)).

Figure 1.5: Deformation patterns induced with a blunt wedge in rigid–perfectly plastic
solids for (a) frictionless contact conditions, and (b) adhesive contact conditions [from
[46]].

The experimental work by Tabor indicated that, in the spirit of Eq.(1.11), there exists

a simple relation between hardness and the uniaxial stress-strain response of strain-

hardening metals [73]. An important concept introduced by Tabor is the existence of a

material-independent characteristic strain εr, whose associated uniaxial stress level σr is

proportional to hardness. That is,
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H = pm = Cσr . (1.12)

For a Vickers indenter, Tabor found that regardless of the material under analysis,

characteristic strain εr was 0.08 and constant C was about 3. These values were obtained

from experimental results in pure copper and mild steel, both in the annealed state and

strain-hardened to different amounts.

It is emphasized that Tabor’s equation holds true in the absence of strain hardening

effects (n = 0), where Eq. (1.12) converges to the results of the slip line theory for rigid–

perfectly plastic materials, Eq. (1.11). Notice that the validity of Tabor’s approach

pends on the concept of the characteristic strain. Due to the potential use of Eq.(1.12)

in the evaluation of the uniaxial stress-strain curve, a debate on the general validity of

such concept grew over the years. Along these lines, numerical and experimental studies

focused on the determination of the plastic deformations induced at the periphery of

the imprint, leading to inconsistent conclusions concerning the actual value of εr and

its uniqueness. From experiments performed in copper, Chaudhri [22] advocated values

of εr that ranged from 0.25 to 0.36 depending on the strain-hardening coefficient of

the material. Finite element simulations of indentation experiments in highly plastic

solids led to the conclusion that Tabor’s equation was fulfilled when the characteristic

strain was taken to be 0.29 [39; 50; 51]. Finite element simulations on a wide variety of

solids obeying different mechanical responses showed that the characteristic strain was

constant and equal to 0.10 while the value of C varied from 1.5 to 2.5 [27].

To take into account the combined influence of elasticity and plasticity in hardness

values, an analogy between indentation and the problem of a spherical cavity expanding

in an infinite medium was attempted by Bishop et al. [10]. Using Hill’s governing

equations for cavity inflation [42], experimental investigations of Vickers indentation

[58] and wedge indentation [44] provided a correlation between hardness H, Young’s

modulus E, and yield strength σys:

H

σys
= A + Bln

(
E

σys

)
, (1.13)
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1.1 Aspects from indentation and contact mechanics

where constants A and B exclusively depend on indenter’s geometry.

The influence of elasticity on hardness can be readily found comparing the hardness

equation for rigid–perfectly plastic solids (Eq.(1.11)) with that for elastic–perfectly plas-

tic ones (Eq.(1.13)). Ratio E/σys is thus indicative of the sensitivity of the material to

exhibit plastic flow rather than elastic deformation. When E/σys is small, the contact

response is considered elastic and hardness is related to the yield strength as H/σys = 1.1

(linear elastic solution). On the other hand, higher values of E/σys lead to a fully-plastic

contact regime, which is described by the slip-line theory. Three contact regimes thus

emerge as E/σys increases: a purely elastic response, an elasto-plastic transition, and

the fully-plastic regime, see Fig. 1.6. In §4 we analyze the distinctive features of such

contact deformation regimes in strain hardening solids (n 6= 0).

Figure 1.6: Contact deformation regimes in elastic–perfectly plastic solids indented with
cones and spheres [from [46]].

A brief discussion on the influence of friction on the contact response is given in the

following. Qualitatively, it is known that friction leads to an increase in the value of
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hardness [42; 46; 73]. Slip-line analyses performed considering friction between indenter

and material provided a first estimate on the influence of friction coefficient µ in wedge

indentation. As a first approximation, hardness of rigid–perfectly plastic solids is related

to that existing under frictionless contact conditions (H◦) as

H = H◦ (1 + µ cotanθ) , (1.14)

where θ is the included half-apex angle. Also slip-line analysis for the extreme case of

adhesive contacts showed that pressure distributions smoothed as compared to those

attained under frictionless conditions, Fig.1.7.

Figure 1.7: Normalized pressure distribution for frictionless contact conditions with
different conical indenters [55] (solid lines), and for an adhesive 90◦ rigid cone (dashed
line) [from [46]].
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More recently, the influence of friction in spherical indentation was studied by means

of finite element simulations [17; 19; 62]. Comparison between frictionless and adhesive

contacts showed that friction has a considerable effect in the value of surface deformation

parameter α. These investigations also pointed out that friction mainly affects the

contact response of solids deforming according to Tabor’s fully-plastic regime. Notice

that these results are qualitative and only apply to spherical indentation. In §6 we

extend such analysis to sharp indentation, providing explicit formulae from where the

influence of µ on the contact response can be assessed.

1.2 Similarity analysis

A physical phenomenon is prescribed through a set of variables and their evolution in

time scale. If the problem under study has recognizable patterns, it may be possible to

define a scaling law, which prescribes the manner in which the phenomenon reproduces

itself over some time, space, or predetermined scale. This leads to the general definition

of self-similar phenomena, where “the spatial distributions of its properties at various

different moments of time can be obtained from one another by a similarity transfor-

mation” [6]. [It is noteworthy that the independent variable of time has no specific

significance, as any scale that is meaningful to describe the evolution of the phenomena

could be used instead.]

Recognition of self-similar patterns is usually linked to dimensional analysis. Pro-

vided the parametrical dependencies of the phenomenon are known, dimensional analy-

sis allows one to simplify such dependencies using sensible dimensionless parameters. If

such analyses are correctly performed, the number of experiments required to solve the

problem could be significantly minimized. Dimensional analysis pends upon a complete

knowledge of the governing parameters of the physical phenomenon. Since dimension-

less dependencies may remain hidden, application of dimensional analysis to complex

problems may not capture the complete nature of the solution.

The Π-theorem from dimensional analysis states [6; 14]:
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1. Introduction

“If a physical law is written as a relationship between some dimensional quantity and

several dimensional governing parameters, then it is possible to rewrite this relationship

as a relationship between some dimensionless parameter and several dimensionless prod-

ucts of the governing parameters; and the number of dimensionless products is equal to

the total number of the governing parameters minus the number of governing parameters

with independent dimensions.”

Or, equivalently, “every physically meaningful equation involving k variables can be

rewritten as an equation of k −m dimensionless parameters, where m is the number of

the fundamental units used” [18].

The recipe for the resolution of a problem reduces to find relationships for a generic

quantity a of the form

a = f(a1, . . . , ak, b1, . . . , bm) , (1.15)

where a1, . . . , ak, b1, . . . , bm are the governing parameters which are assumed to be given.

The set of parameters ai have independent dimensions, while the dimensions of set bi

can be expressed as products of powers of the parameters in set ai. Notice that for

m = 0 all the parameters are dimensionally independent, and if k = 0 all the governing

parameters are dimensionless. Then, the parameters are translated to dimensionless

variables, Πi, which are defined as

Πi =
bi

a1
pi . . . ak

ri
, (1.16)

where exponents pi, . . . , ri are chosen so that all the parameters Πi are dimensionless;

and the quantity a also converts to the dimensionless function Π = a/(ap
1 . . . ar

k). Thus,

Eq.(1.15) can be rewritten as a dimensionless function of the dimensional variables (ai)

and the dimensionless ones (Πi)

Π = F (a1, . . . , ak,Π1, . . . ,Πm) . (1.17)
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1.2 Similarity analysis

Since each of the dimensional parameters is independent of any other variable, it is

demonstrated that function F is in fact independent of the set of parameters ai. Then,

Π is expressed as a function Φ of m dimensionless variables

Π = Φ(Π1, . . . ,Πm) , (1.18)

so that if the normalization of variables bi is known, quantity a in Eq.(1.15) becomes a

function of a smaller number of variables,

a = f = a1
p . . . ak

r Φ
(

b1

a1
p1 . . . ak

r1
, . . . ,

bm

a1
pm . . . ak

rm

)
. (1.19)

Obviously, the key to the analysis lies in finding a set of dimensionless parameters

which makes the problem scale. Again, it is emphasized that the concept of time-

similar or geometrically-similar phenomenon already indicates that the phenomenon

is a physically-similar one. Physical phenomena often exhibit a so-called “intermediate-

asymptotic” response, where the solution is unaffected by specific initial and final bound-

ary conditions. Extensive similarity analysis can be found in the comprehensive book

by Barenblatt [6].

1.2.1 Application to spherical indentation experiments

The characteristic features of indentation experiments (see Section 1.1.2 and [46; 73]),

leads one to consider that indentation could be treated as a self-similar phenomenon.

The studies on sharp indentation in an isotropic continuum demonstrate that this process

is completely self-similar as all features scale with penetration depth hs [14; 43; 51; 73].

Hardness is therefore constant irrespective of applied load or penetration depth. This

is not so in spherical indentation, where self-similarity seems to give an intermediate

solution which only applies within a certain range of penetration depths in ideal rigid–

plastic solids [73].

In a phenomenological sense, the contact response in spherical (Brinell) indentation

evolves from an early elastic stage, to an intermediate fully-developed plastic steady-
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1. Introduction

state, to a large deformation regime. The steady state solution is thus regarded as an

intermediate one. From the early work by Tabor [73], scaling law

H = 2.8 σ◦

(
0.4

a

D

)n

(1.20)

has been shown to govern the relationship between hardness and uniaxial mechanical

properties of the solid (i.e., n and σ◦ in Eq. (A.21)) for indentation strains a/D of, say,

between 0.1 to 0.2 (where D is the ball diameter and a is the contact radius). Numerical

constants 2.8 and 0.4 in Eq.(1.20) were found from experiments in highly plastic solids.

A rationale to Eq.(1.20) was given by Hill et al. [43], Borodich [14], and Mesarovic el

al. [62] through theoretical analysis. Hill et al. [43] simplified the constitutive response

of the solid to apply self-similarity over the whole range of a spherical indentation. This

was performed assuming that the solid ideally behaves as nonlinear elastic (as prescribed

by the stress-strain relation σ = σ◦ε
n) where the dual potentials Φ and Ψ were taken

to be homogeneous functions of their arguments (see Section A.1.1). In addition, Hill et

al. [43] represented the geometry of the spherical indenter with a parabolic shape. This

assumption, valid for a/D ≤ 0.2, also provides a homogeneous function for describing

indenter’s shape. Finally, straining was taken to be infinitesimal, and induced quasi-

statically. Choosing an appropriate scale, they found that the overall solution had the

property of self-similarity; that is, the geometrical features of the problem as well as the

stress and strain fields were derivable from the solution in a previous stage. Essentially,

formulation of the reduced (scaled) problem followed from the consideration that at any

stage during loading, parameter

c2 =
a2

Dhs
, (1.21)

is constant; this assumption is in agreement with the early experimental results of Nor-

bury and Samuels [64]. (Notice that from such definition, c2 gives the amount of pileup

or sinking-in occurring around the spherical indenter). As the boundary-value problem

varies with penetration, successive configurations scale from the original ones as
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1.2 Similarity analysis

ax̃i = xi, ar̃i = ri, aũi = (D/a) ui(xk, a,D),

ε̃ij = (D/a) εij(xk, a,D) , σ◦σ̃ij = (D/a)n
σij(xk, a,D) ; (1.22)

where ∼ indicates scaled variables. Since from these relations the contours of displace-

ments (ui), stresses (σij), and strains (εij) grow uniformly with contact radius a, their

patterns are preserved as indentation proceeds.

The relation between applied load P and contact radius a was obtained through

similarity transformations. Following the definition of hardness in Eq. (1.9),

P

πa2
= −

∫ a

0

σzz(r) d
(

r2

a2

)
= −σ◦

( a

D

)n
∫ 1

0

σ̃33(r̃)d(r̃2) . (1.23)

To link Eq. (1.23) with Tabor’s hardness equation (Eq.(1.20)), one has to assume that

the integral in the right hand side of Eq. (1.23) can be written as αβn (where α and β

depend on the shape of the energy density contours, [43]). Hence, it follows that

P

πa2
≈ ασ◦

(
β

a

D

)n

. (1.24)

The finite element simulations in [43] suggest that the above assumption regarding prod-

uct αβn is consistent with Tabor’s experimental findings, Eq.(1.20), as α ≈ 2.8 and

β ≈ 0.4.

The above results are valid only within the intermediate well-developed plastic steady

state. When elasticity comes into play, some of the assumptions made by Hill and

coworkers [43] are violated. The effect of elasticity on the self-similarity conditions

was studied in [11; 14; 62; 72]. The results allowed the authors to develop maps of

indentation regimes where the range of validity of the geometrical self-similarity was

given depending on the mechanical properties of the solid. At this point it is still

uncertain whether spherical indentation could be ever treated within a single scaling

law, providing a unified treatment of the problem that covers the elastic regime, steady

state response, as well as the large deformation regime where the parabolic description

of the spherical indenter breaks down (for, say, a/D > 0.2).
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Chapter 2

Objectives

To acquire a detailed comprehension of the plastic flow
features setting the contact regimes in sharp indentation
experiments

We attempt to perform finite element simulations in materials exhibiting a wide

range of mechanical properties to establish the limits where Tabor’s fully plastic regime

rules the contact response. We thus seek to develop a detailed understanding of the

flow features around the imprint from which, depending on yield strength, Young’s

modulus, and strain hardening response, it becomes possible to predict if the indented

material deforms according to the elasto-plastic transition or if Tabor’s fully plastic

regime dominates. Furthermore, we aim at establishing the validity of the concept of the

characteristic strain, which allows one to estimate hardness values based on the uniaxial

stress-strain curve of a material indented within the fully plastic regime. Based on the

analogy of the expanding cavity, we finally seek to derive an equation providing hardness

estimates for solids whose contact response lies within the elasto-plastic transition.

To devise a novel methodology to extract the uniaxial
stress-strain curve from measurements of hardness and
surface deformation phenomena
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2. Objectives

This objective requires derivation of relationships between uniaxial mechanical prop-

erties, hardness H, and surface deformation parameter α. The relationships we seek to

find have to be sufficiently general as to capture the contact response of solids deform-

ing within both the fully plastic regime and the elasto-plastic transition. Attention is

given to the consistency of the proposed methodology in the context of instrumented

indentation P–hs curves.

To evaluate the role of friction on the contact response

The purpose of this investigation is to perform detailed finite element simulations

and analysis to compare the contact response attained under frictional conditions with

that induced in the absence of friction between a conical indenter and the material. We

thus aim at simulating the contact response of strain hardening solids whose friction

coefficient µ varies from 0 to 0.2, as well as to establish the influence of such variations

on hardness H and on the value of surface deformation parameter α. A theoretical

framework is to be derived which enables analysis of the simulations in the context of

continuum mechanics. This knowledge is pertinent to the experimental application of the

proposed methodology for mechanical property extraction, as it allows one to evaluate

the influence of µ on inferred values of yield strength σys and hardening parameter n.

To derive a general framework for the prediction of the
plastic zone size in indentation experiments

The approach adopted herein to find expressions between the plastic zone size and

uniaxial mechanical properties, resorts to the analogy between indentation and the ex-

pansion of a spherical cavity in an infinite medium. We thus seek to derive closed-form

solutions for the inflation of a cavity in strain hardening solids, as well as to find a strict

parametrical analogy between this problem and indentation experiments. Consideration

of the active regime governing the contact response of the solid is central to the present

analysis.
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Chapter 3

Computational and experimental
procedures

A multidisciplinary approach is adopted in this thesis as it combines finite element sim-

ulations, continuum mechanics analysis, and experiments to bring an overall perspective

to the study of indentation experiments. The simulations allow one to evaluate the

contact response in terms of measurable quantities such as hardness, the amount of

surface deformation, and the parameters extracted from instrumented indentation P–hs

curves. They also provide the stress and strain fields, pressure distributions, and plastic

flow patterns during contact. Indentation experiments, on the other hand, validate the

applicability of the results to metallic materials. Comparison between experiments and

simulations is therefore a necessary step in demonstrating, for instance, the applicability

of a simplified conical model to the study of pyramidal indentation, which has a truly

three-dimensional character. Finally, there is a need to develop a sound theoretical

background incorporating the knowledge gained through simulations and experiments.

3.1 Finite Element simulations

3.1.1 Definition of the model

The finite element simulations were conducted with the commercial code ABAQUS [1].

Two fundamental hypothesis were made in the simulations. First, the indenter was taken
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3. Computational and experimental procedures

as a rigid solid. Secondly, the material was modelled as a homogeneous and isotropic

solid obeying continuum mechanics. For spherical indentations ball radius R is the only

parameter needed to define the indenter whereas, for conical indentations, one has to

define a semi-apical angle θ. In the present simulations, θ is taken as 70.3◦ as it provides

the same ratio of contact area (As) – penetration depth (hs) as the Vickers and Berkovich

pyramidal indenters (see Section 3.2).

The indented solid is assumed to deform according to the J2 flow theory of plas-

ticity, which consists of a von Mises yield criterium, and a flow rule associated to this

yield condition (see Appendix A). The concepts of the von mises equivalent stress and

strain are thus used to extend a uniaxial elastic–power law plastic stress-strain behavior

(whose key parameters are Young’s modulus E, yield strength σys, and power-law strain

hardening coefficient n) to a generic three-dimensional state. Large strains and rotations

were accounted for in the analysis.

The mechanical properties of the solids comprised all combinations of Young modulus

E = 70, 110 and 200 GPa; yield strength σys = 50, 100, 400 and 1000 MPa; and strain-

hardening coefficient n = 0, 0.1, 0.2 and 0.4. In addition to these combinations, solids

with intermediate properties were considered (see Table 5.1 in §5, Table 3.1 in Section

3.2, and Table 3.2). Overall, 68 solids with a wide range of mechanical properties were

used in the simulations.

The finite element mesh employed in the simulations of conical and spherical in-

dentation comprised four regions of decreasing element density, where the indenter was

located on top of the denser region. Such density-region hierarchy owes to the need of

having a refined mesh at the contact zone, to improve accuracy and convergence, as well

as to minimize the total number of elements for the purpose of reducing computational

expense. The transition between regions of different element density is gradual so that

the stress and strain fields are rather continuous (see the detail of the transition from 3

elements to 1 in Fig. 3.1). The elements were chosen to be quadratic and axisymmetric

with eight integration points. The denser zone right in contact with the indenter had

52 × 52 elements. In total, 11.905 elements were used in the full mesh.
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3.1 Finite Element simulations

θ = 70.3º

a

Figure 3.1: Finite element mesh used in the simulations. Attention is given to the
transition from three elements to one element between consecutive mesh zones.
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3. Computational and experimental procedures

Following the considerations by Giannakopoulos et al. [39] suggesting violation of the

Saint-Venant’s principle in contact problems, the extension of the mesh was sufficiently

large as to ensure that the outer free-boundaries do not affect the solution of the problem.

Consequently, total mesh length was set to be at least 50-times greater than maximum

contact radius. Mesh independency was verified for perfectly elastic solids through

comparison with Herztian solution for spherical indentation and Sneddon’s solution for

conical indentation (see §1 and Section 3.1.2).

Imposed boundary conditions are shown in Fig. 3.2. Nodes at the axis of symmetry

can only move in direction 2. All nodes at the base are prevented to move in such

vertical direction as they are only allowed to slide freely along the horizontal direction.

The indentation process is conducted imposing a fixed displacement in the 2-direction

at the reference node of the indenter. The contact interaction is modelled as hard,

meaning that there is no allowance of the nodes at the material surface to penetrate

indenter’s surface. Although some allowance of interpenetration of the contacting sur-

faces (overclosure) may facilitate convergence, this strategy was not used to improve

the accuracy in the simulations. Convergence is herein improved through current mesh

refinement approach and by carefully imposing suitable indenter displacements between

two consecutive computational increments.

3.1.2 Validation of the model

As indicated above, the finite element simulations were confronted against linear elastic

solutions. For conical indentation, Sneddon’s theoretical solution for hardness H in

elastic solids was used [70]

pm =
Ecotanθ

2(1− ν2)
. (3.1)

For the spherical indentations, we compare the simulations against the theoretical equa-

tion by Hertz [41]

pm =
4Ea/R

3π(1− ν2)
. (3.2)
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3.1 Finite Element simulations

L > 50·aRigid solid

Elastic – plastic
solid

2

1

Figure 3.2: Reference axis, boundary conditions and total mesh length L.

As Hertz theory applies under small deformations, it may be taken to be valid only

for a/R < 0.4, where the spherical tip can be truly approximated through a parabolic

description.

Comparison between the value of hardness obtained in the simulations and the the-

oretical one allowed us to determine the minimum number of elements in contact with

the indenter to obtain reliable data. The plots in Fig. 3.3 show the relative error in

hardness in terms of the number of elements, where it is readily seen that the average

error decreases to 4.4% and to 3% when more than 15 elements become in contact in

conical and spherical indentation, respectively. Notice that the optimum number of el-

ements in contact in spherical simulations depends on tip radius R. For small values

of R, 15 elements in contact may violate the condition of a/R < 0.4. On the other

hand, large values of R may require more than 15 elements to become in contact to

capture the complete elastic solution up to a/R ∼ 0.4. In addition, R has to be small

enough to fulfill the requirement of having a total mesh length which is at least 50-times

larger than maximum contact radius a. The simulations in Fig. 3.3 are for the spherical

indenter employed in the present simulations, whose ratio of ball radius to finer element
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3. Computational and experimental procedures

size is 114 elements. In view of the relative error in Figs. 3.3(a) and (b), analysis of the

simulations was performed with at least 20 elements in contact. Along these lines, it is

worth noting that the elastic finite element simulations involved a small strain formula-

tion, whereas large strains were accounted for in the computations performed with the

J2-flow theory. Differences between the strict linear elastic solutions and the simulations

may thus be attributed to the role of large strains on the contact response.

3.2 Indentation experiments

3.2.1 Materials

The J2-associated flow plasticity theory used in the simulations is known to give a good

description of the elastoplastic response of metallic materials. To ensure that the in-

dented solid fulfills the hypothesis of the model, the former shall have well defined values

of E and σys as well to strain harden according to a unique power law hardening ex-

ponent. The latter assumption is an important one in the sense that strain hardening

parameter n is found to depend slightly on imposed deformation level in metallic ma-

terials [31]. However, a constant value of n is usually reached at intermediate levels of

uniaxial deformation. The main mechanism for plastic deformation shall be dislocation

slip which is taken to be pressure independent following the postulates of the plasticity

model. Deformation through void coalescence and twinning thus has to be negligible as

compared to dislocation slip mechanisms.

The mechanical properties of the materials used in the indentation experiments are

given in Table 3.1. The materials comprise annealed copper (99.9% pure), an AISI329

duplex stainless steel, and a SAF2507 superduplex stainless steel. Prior to indenta-

tion, the materials were sectioned and polished using diamond paste. A final polishing

step with a 1-micron alumina suspension was applied to all materials. A suspension of

colloidal silica was employed as final polishing step in the annealed copper.
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3.2 Indentation experiments
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Figure 3.3: Relative error in hardness in terms of the number of elements in contact
with the indenter. (a) conical indentation with θ = 70.3◦, and (b) spherical indentation
to a/R < 0.4. Simulations are for E = 200 GPa.
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 E (GPa) σ ys 
†
 (MPa) n Grain size (µm)  

Annealed copper 110 20 0.52 60 

AISI 329 duplex stainless steel  190 525 0.17 ferrite (62%): 9 µm, 
austenite: 6 µm 

SAF 2507 superduplex stainless steel  200 675 0.19 ferrite (44%): 9 µm, 
austenite: 9 µm 

† measured directly in the uniaxial stress-strain curve. It is noted that these values may not exactly lie within the 
power-law fit to this curve. 

 

 H (cone) * 
present 

simulations 
(GPa) 

H (Vickers)  
considering pileup  

and sinking-in 
(GPa) 

Hs (Vickers)  
regarding the imprint 

as a perfect square  
(GPa) 

K (cone) 
present 

simulations 
(GPa) 

K (Vickers)  
instrumented 
indentation 

(GPa) 

√α - 1 
present 

simulations 

√α - 1 
[3] 

Annealed copper 0.47 0.52 0.48 9.60 10  - 6 % - 5 % ϒ 

AISI 329 duplex stainless steel 2.10 2.21 2.38 55.55 60 9.5 %  8 % 

SAF 2507 duplex stainless steel 2.45 2.57 2.63 66.44 68.4 8.5 %  6 % 

Strain hardened copper, Ref. [3] 0.90 0.85 1.02 — — 17.5 % 16 % 

Annealed copper, Ref. [22] 0.45 0.48§ 0.44 — — — — 

Aluminium 6061-T6, Ref. [39] 1.17 1.10 — — — — — 

Annealed copper, Ref. [73] 0.46 0.47* 0.42 — — — — 

Mild Steel, Ref. [73] 1.56 1.47* 1.68 — — — — 
§ calculated with the sinking-in shown in Fig. 4b of Ref. [22].

 

* calculated considering piling-up and sinking-in from present simulations. 
ϒ calculated from present indentation experiments. 

Table 3.1: Materials used in the indentation experiments.

3.2.2 Conventional hardness testing

Indentation experiments were performed with a Vickers pyramidal tip. This indenter

was selected as it could provide some insights into the extension of current axisymmetric

(cone) simulations to three-dimensional (pyramidal) tips.

As explained in the following discussion, the apex angle of the cone was set at 70.3◦

as its contact area–penetration depth relation is the same as that of the Vickers pyramid.

From Fig. 3.4, the value of the equivalent cone angle θ is determined by equating areas

As for the pyramid and the cone at fixed penetration depth hs. The nominal area of the

Vickers imprint is given by

As = (2cs)
2 (3.3)

or, in terms of the penetration depth,

As = (2hstan68◦)2 . (3.4)

Equivalently, As in conical indentation is expressed as

As = π (hstanθ)2 . (3.5)

Therefore, the equivalent cone angle is obtained as
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3.2 Indentation experiments

θ = arctan

√(
2tan68◦

π

)
= 70.3◦ . (3.6)

As

0 cs

0 cs
hs 68º

0 as
hs θ

0 as

As

(a) (b)

Figure 3.4: Equivalent cone angle θ between the Vickers indenter (a) and a conical tip
(b).

Hardness values were computed as the ratio between applied load P and true pro-

jected contact area A of the imprint,

H =
P

A
, (3.7)

where contact area A includes the pileup or the sinking-in effects of the material as

indicated in Section 1.1.1. Also, nominal hardness Hs was calculated taking the imprint

as a perfect square. That is, estimating contact area As from opposite vertices of the

the imprint and assuming that bulging (pileup) or pincushion (sinking-in) effects do not

appear at the sides, Fig. 1.1 and Fig.3.5. Differences between H and Hs are shown in

Table 3.2, Section 3.3. The micrographs in Fig. 3.5 are top views of Vickers imprints

obtained through conventional optical microscopy with Nomarski interferometry, where

bulging and pincushion effects are illustrated.
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3. Computational and experimental procedures

75 µm75 µm75 µm75 µm 75 µm

(a) (b)

Figure 3.5: Indentation imprints on (a) AISI329 duplex stainless steel and (b) annealed
copper. Note the bulging and the slight pincushion shapes, respectively.

(a) (b)

Figure 3.6: Profilometry of a Vickers indentation in (a) work-hardened copper and (b)
annealed copper. Note the development of (a) pileup and (b) sinking-in. From [3].
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3.2 Indentation experiments

Following Section 1.1.1, the amount of pileup or sinking-in at the contact boundary

is evaluated through parameter α, where

α =
A

As
(3.8)

Nominal area As is directly inferred from imprint diagonals d̄ as,

As =
d̄2

2
; (3.9)

whereas contact area A is obtained through optical measurements with the aid of an

image analysis software.

The applied load in the experiments was selected to be sufficiently large to rule out

possible indentation size effects. In this regard, P was varied from 1 N to 150 N to

evaluate constancy of hardness H. A size effect was found in all materials since for

small loads, hardness increased with decreasing load. Such indentation size effects elude

continuum analysis since, for small loads, the indentation process becomes representative

of the deformation of a discrete number of grains or microstructural features. The critical

load above which hardness remains constant was of about 5 N for copper and 10 N for

the stainless steels. The micrograph in Fig. 3.7 illustrates that when applied load is

sufficiently large, microstructural length scales become an order of magnitude smaller

than imprint size, so that the contact response can be taken to represent the behavior

of the continuum.

3.2.3 Instrumented Indentation

In addition to conventional hardness testing, instrumented indentation experiments were

performed to obtain in situ recordings of applied load (P )–penetration depth (hs) curves.

The instrumented technique captures the progress of the experiment in time so that,

for instance, it allows one to examine the evolution of the contact response in light of

self-similarity analysis.

Again, the experiments shall satisfy the conditions assumed in the finite element

simulations. Hence, the applied load shall be sufficiently large as to enable a continuum
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3. Computational and experimental procedures

30 µm

Figure 3.7: Micrograph of one side of the Vickers indentation imprint in the SAF2507
superduplex stainless steel. Ferrite and austenite grains are revealed due to anisotropy
in plastic flow. Notice the development of pileup as bulging effects occur in the material
located between the corners.
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3.2 Indentation experiments

mechanics treatment of the indentation process. An instrumented indenter was set

up during the course of this work to perform the required measurements to maximum

applied loads in the range of 5–100 N. Again, a Vickers pyramidal tip was used in the

instrumented indentation experiments.

Description of the instrumented indentation device and experimental procedure

A schematic of the instrumented indentation device is depicted in Fig. 3.8. The

vertical displacement of crosshead (A) induces penetration of indenter (B) into specimen

(C). Measurement of penetration depth, hs, is performed with respect to the surface of

the material using three-legged reference table (D). Capacitive sensor (E) is employed

in such measurements of hs. Load cell (F) is used to continuously measure applied

load. The maximum load and penetration depth of the system were 300 N and 100 µm,

respectively. Load and displacement resolutions were 0.01 N and 0.01 µm.

Load cell
(F)

Specimen
(C)

Displacement gauge
(reference and lower sensor )

(E)

Vickers indenter
(B)

Clamps

Crosshead
(A)

Base table

Driving screw

Reference three-
legged table

(D)

Figure 3.8: Schematic of the instrumented indentation device.
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The P–hs curves were corrected for machine compliance to obtain accurate mea-

surements of penetration depth [32; 65]. Following Eq. (1.5), this was accomplished

by numerical fitting of the unloading segment of the P–hs curves between Pmax and

0.9Pmax to the following equation [69]

(
1− ν2

m

Em
+

1− ν2
i

Ei

)−1

=
1

1.142
√

Amax

dP

dhs

∣∣∣∣
hmax

, (3.10)

where Em and νm are the Young’s modulus and Poisson’s ratio of the indented material,

Amax is the area of the imprint, and Ei and νi are introduced to account for the Young’s

modulus and Poisson’s ratio of the Vickers diamond (i.e., Ei = 1000 GPa and νi =

0.22). The correction factor for machine compliance is then given by the difference

between experimentally measured values of dhs/dP in both the copper specimen and

in the 2.8 mol% yttria-stabilized tetragonal zirconia (Y-TZP) in [4], and the theoretical

ones computed with Eq. (3.10). In such calculations, the values of E and ν reported in

[3], and the corresponding Amax estimated through optical microscopy were employed.

This procedure is similar to the one used in nano-indentation experiments where the

plot of the total compliance (specimen plus loading frame) in terms of hmax
−1 is found

to be linear [69]. The influence of machine compliance upon the P–hs curve is significant

as illustrated in Fig. 3.9.

Upon correction for machine compliance, analysis of the loading segments of the P–hs

curves was performed fitting them to the parabolic relation, P = Khs
2 (see Kick’s law in

Eq.(1.7)). It was found that after the initial low-load range, where the contact response

is affected by indentation size effects, the value of K remained relatively constant. This

finding is consistent with the fact that, according to continuum analysis, hardness and

surface deformation parameter shall take constant values irrespectively of applied load or

penetration depth. As K = fαH, Section 1.1.1, K turns out to be a material parameter

for a fixed indenter’s geometry.
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Figure 3.9: Effect of machine compliance on an instrumented indentation P–hs curve of
the AISI329 duplex stainless steel.

3.3 Comparison between experiments and finite element
simulations

In this section, we compare the experimental results obtained in the metallic materials

with those from the finite element simulations performed with their uniaxial mechanical

properties (Table 3.1). Additional simulations were carried out considering properties

of other metallic materials referenced in the literature [22; 39; 73].

Overall, Vickers hardness values are in good agreement with those from the finite el-

ement simulations of conical indentation, where the differences lie in the range of 2–8%,

Table 3.2. These differences could be attributed to the role of friction on the contact

response (as friction may increase contact pressure up to 7% [34; 46]). The comple-

mentary simulations with the materials in the literature [22; 73] are also in good accord

with the conical simulations. Finally, we compared our conical simulations against the

three-dimensional Vickers simulations performed by Giannakopoulos et al. [39] with the

properties of a 6061-T6 aluminium alloy. Again the difference in hardness values was

smaller than 6 %.
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3. Computational and experimental procedures

 E (GPa) σ ys 
†
 (MPa) n Grain size (µm)  

Annealed copper 110 20 0.52 60 

AISI 329 duplex stainless steel  190 525 0.17 ferrite (62%): 9 µm, 
austenite: 6 µm 

SAF 2507 superduplex stainless steel  200 675 0.19 ferrite (44%): 9 µm, 
austenite: 9 µm 

† measured directly in the uniaxial stress-strain curve. It is noted that these values may not exactly lie within the 
power-law fit to this curve. 

 

 H (cone) * 
present 

simulations 
(GPa) 

H (Vickers)  
considering pileup  

and sinking-in 
(GPa) 

Hs (Vickers)  
regarding the imprint 

as a perfect square  
(GPa) 

K (cone) 
present 

simulations 
(GPa) 

K (Vickers)  
instrumented 
indentation 

(GPa) 

√α - 1 
present 

simulations 

√α - 1 
[3] 

Annealed copper 0.47 0.52 0.48 9.60 10  - 6 % - 5 % ϒ 

AISI 329 duplex stainless steel 2.10 2.21 2.38 55.55 60 9.5 %  8 % 

SAF 2507 duplex stainless steel 2.45 2.57 2.63 66.44 68.4 8.5 %  6 % 

Strain hardened copper, Ref. [3] 0.90 0.85 1.02 — — 17.5 % 16 % 

Annealed copper, Ref. [22] 0.45 0.48§ 0.44 — — — — 

Aluminium 6061-T6, Ref. [39] 1.17 1.10 — — — — — 

Annealed copper, Ref. [73] 0.46 0.47* 0.42 — — — — 

Mild Steel, Ref. [73] 1.56 1.47* 1.68 — — — — 
§ calculated with the sinking-in shown in Fig. 4b of Ref. [22].

 

* calculated considering piling-up and sinking-in from present simulations. 
ϒ calculated from present indentation experiments. 

Table 3.2: Comparison of the values of hardness and surface deformation obtained from
the simulations and the indentation experiments.

The value of surface deformation parameter α was obtained through the ratio of

contact areas in Vickers imprints (Eq. 3.8). The results, given in Table 3.2, are in good

accord with those from the simulations of conical indentation obtained under the max-

imum applied load. This finding seems to suggest an equivalency between the average

value of α measured as indicated above for the Vickers pyramid, and the constant value

attained around the contact boundary in conical indentation. Overall, the results of

parameter α are similar to those obtained by Alcalá et al. through surface profilometry

measurements in the same materials [3].

The finite element simulations confirm that while
√

α is greatly affected by surface

rebound upon unloading, the projected area of the imprint remains constant throughout

the entire unloading process [65]. This is due to the fact that the elastic rebound

produces a vertical displacement along the imprint while negligible radial displacement

occurs. The change of the imprint size between the loaded and unloaded states can

thus be neglected as it leads to a variation in hardness that is smaller than 0.5% for

the present stainless steels and copper specimens. In this regard, the results from the

overall simulations performed with a wide variety of uniaxial stress–strain curves show

that the maximum increase of the imprint size due to unloading in solids that develop
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3.3 Comparison between experiments and finite element simulations

pileup is 0.6%, and that this value increases to 1.9% in solids exhibiting sinking-in.
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Figure 1: Instrumented indentation experiments and finite element 
simulations for µ=0.15: (a) annealed copper and (b) SAF 2507 and 
AISI 329 stainless steels.
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Figure 3.10: Instrumented indentation P–hs curves for annealed copper CuAR, and
stainless steels AISI329 and SAF2507.
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3. Computational and experimental procedures

Figure 3.10 shows that the experimentally measured P–hs curves are also in good

accord with those from the finite element simulations. Variations in K between experi-

ments and simulations were about 5 % at loads that are sufficiently large as to rule out

indentation size effects (Table 3.2).
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Chapter 4

Contact deformation regimes and
the concept of the characteristic
strain

A fundamental characterization of the mechanical response by means of indentation

experiments requires to gain a precise understanding of the correlation between hardness

and the uniaxial properties of the material. As described in Section 1.1.2, relations

are given in the literature for different idealized material responses. We direct special

attention to the hardness equation proposed by Tabor [73] for metallic materials,

H = Cσr , (4.1)

which is assumed to rule indentation of elastic–strain-hardening solids. Such equation,

determined upon Vickers indentation experiments in annealed copper and a mild steel

that had been strain-hardened to different stages, indicates that hardness H is propor-

tional to a representative uniaxial stress σr. This stress level is associated with a constant

characteristic strain εr located within the uniaxial stress-strain curve of the material,

whose value depends exclusively on indenter’s shape. Tabor found that irrespectively of

the indented material, εr = 0.08 for the Vickers pyramid. The concept of the character-

istic stress transpires from slip-line analysis, where hardness is necessarily proportional
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4. Contact deformation regimes and the concept of the characteristic strain

to the only material length scale, i.e., yield strength σys. Thus, in the absence of strain

hardening effects, σr = σys.

In recent years, several numerical and experimental investigations on sharp indenta-

tion experiments of strain-hardening solids have been conducted with the aim of corre-

lating hardness with the uniaxial mechanical response [22; 26; 27; 30; 36; 39; 50; 51; 53].

However, a systematic investigation on the limit between the elasto-plastic transition

and Tabor’s fully-plastic regime (see Section 1.1.2) was still unavailable when present

work was initiated.

4.1 The concept of the characteristic strain

In contrast to Tabor’s findings, simulations and indentation experiments performed by

several authors lead to different conclusions about the value and uniqueness of charac-

teristic strain εr. The works by Giannakopoulos et al. [39] on Vickers indentation, and

by Larsson et al. [50] on Berkovich indentation, advocated a value of εr = 0.3. They

justified this value considering that the shape of the equivalent plastic strain contours

underneath the indenter exhibited a transition at about 0.3. The experimental work by

Chaudhri [22] also revealed that the maximum plastic strain level reached beneath a

Vickers indentation varied from 0.25 to 0.36 depending on the strain hardening behav-

ior of the material. Variations from Tabor’s concepts were proposed by Cheng and Li

[27] from finite element simulations of conical indentation. They considered a constant

characteristic strain of 0.10 allowing C in Eq. (4.1) to change from 1.5 to 2.5 depending

on the plastic response of the material.

In this section, we examine the validity of Tabor’s equation and the uniqueness of the

characteristic strain through the hardness values and strains fields obtained by recourse

to the present finite element simulations of conical indentation in Section 3.1. The

simulations performed in strain hardening solids, n > 0, confirm the applicability of

Eq.(4.1) where C = 2.70± 0.03 and εr = 0.10± 0.01. Fig. 4.1 shows the fluctuation in

the constant C when εr is allowed to vary in the vicinity of 0.10. (Notice that present

analysis pertains to total strains —i.e., εr is taken to be the sum of elastic and plastic
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4.1 The concept of the characteristic strain

components—) For the value of 0.08 proposed by Tabor, it can be readily seen that C

becomes slightly dependent of the strain-hardening parameter n; the same trend is found

by increasing εr to 0.12. Thus, it is only when εr = 0.10 that C becomes 2.7 regardless

of the value of n. Present results thus confirm the accuracy of Tabor’s approach as the

influence of strain hardening on hardness is captured within a 1 % error through the

concept of a unique characteristic strain, which takes a similar value as that proposed by

Tabor. Note that following Section 1.1.2, the applicability of Tabor’s equation is limited

to the fully plastic contact mode, where the contact response is plastically dominated

(see Sections 4.2 and 4.3).
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Figure 4.1: Validity of Tabor’s hardness equation in elastic–power-law plastic materials
lying within the fully plastic contact regime. Note that a constant value of H/σr is
attained only when the characteristic strain εr is taken as 0.1. Slightly different values
of εr (i.e., 0.08 and 0.12) start to indicate a dependency of H/σr on strain hardening
coefficient n.

In view of the difference between the present characteristic strain and that obtained

by Giannakopoulos et al. [39] and Chaudhri [22], we examined the equivalent plastic

strain isocontours from our finite element simulations in an attempt to provide a physical
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4. Contact deformation regimes and the concept of the characteristic strain

interpretation for such strain level. Following the considerations by Giannakopoulos et

al., εr may be associated with a strain isocontour whose shape is in transition from that

existing directly underneath the tip to that present slightly away. Nevertheless, present

simulations indicate that this transition may occur for equivalent plastic strain levels

ranging from 0.3 to 0.05 depending on Young modulus E, yield strength σys, and strain-

hardening coefficient n (Fig. 4.2 illustrates a solid where this transition occurs below

0.10). The work by Chaudhri provides experimental data for the plastic strain levels

that are attained underneath the indenter. From detailed micro-hardness measurements

beneath a macro Vickers indentation, Chaudhri showed that the maximum plastic strain

is located close to the indenter’s tip and that its value lies within the range 0.25 – 0.36,

which is consonant with the εr given by Giannakopoulos et al. Present simulations,

however, indicate that the plastic strains can reach a value of 2 directly under the

indenter’s tip, which is well above Chaudhri’s values (Fig. 4.2). In light of the present

discussion, it follows that while the simulations demonstrate the validity of Tabor’s

hardness equation and the uniqueness of the characteristic strain, it is not possible to

substantiate these findings on the basis of the plastic strain fields induced underneath

the indenter.

In addition to the present materials, we also evaluated Tabor’s hardness equation

(H = 2.7 σ0.10) in the solids whose properties were taken from the literature (Table

3.2). These simulations were performed considering point-by-point the experimentally

measured uniaxial stress-strain curves (i.e., without the approximation of power-law

hardening). The results show that within a 2% error, hardness values are in agreement

with those obtained multiplying 2.70 by the actual uniaxial stress measured at a total

deformation of 0.1. This suggests that slight experimental modifications in the power-

law stress-strain relation may not significantly affect the values of C and εr. Further

simulations performed on elastic–linear strain hardening solids, where σys ranges from

50 to 400 MPa and hardening slope m varies from 400 to 5000 MPa (see Appendix A),

show that the characteristic strain increased from 0.10 to 0.18 in the most critical cases.

To a first approximation, however, Tabor’s equation was found to be accurate for linear
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4.1 The concept of the characteristic strain

εe
p

1       0.05
2       0.16
3       0.27
4       0.38
5       0.49
6       0.61
7       0.72
8       2.50

1

2

3
456

7

8

Figure 4.2: Equivalent plastic strain isocontours around the indenter’s tip for a solid
with E = 70 GPa, σys = 400 MPa and n = 0.1.
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4. Contact deformation regimes and the concept of the characteristic strain

hardening provided (i) σ0.10/σys ≥ 4, and (ii) hardening slope and yield strength are

relatively small so that εr takes a similar value regardless the hardening model.

In an independent work, a comprehensive study on Tabor’s equation and on the in-

fluence of the strain hardening response was published by Larsson [51]. His investigation

mainly dealt with finite element simulations of rigid–power-law hardening solids, Fig.

A.4(c), concluding that Tabor’s equation was accurate when εr was taken at about 0.18,

which is considerably greater than present value for elastic–power-law hardening solids.

A remark is made concerning applicability of Tabor’s equation to elastic–perfectly

plastic solids, n = 0. The simulations in Fig. 4.3 indicate that constant C is 2.57 for n

= 0, which is slightly smaller than the value of 2.70 obtained in strain-hardening solids.

This result is in good accordance with the simulations by Larsson [51], who obtained

C = 2.55 for conical indentation of rigid–power-law hardening solids, where elasticity

is neglected. Turning to the slip-line analyses for cone indentation, which are strictly

applicable to rigid–perfectly plastic solids, it is found that C = 2.73 for θ = 70.3◦

[55; 80] (Section 1.1.2). Interestingly, this value is much closer to that obtained herein

for elastic–strain-hardening solids than that for elastic–perfectly plastic ones.

4.2 Contact deformation map

The early experimental work by Marsh [58] and by Hirst and Howse [44] already sug-

gested that hard materials do not follow Tabor’s equation. In the 1970’s, based upon

these results and using an analogy between indentation and the problem of an expand-

ing spherical cavity in an infinite solid, Johnson [47] identified three contact modes,

namely: elastic, elasto-plastic, and fully plastic. These regimes were considered to rule

the contact response depending on the value of dimensionless parameter E cotanθ/σys.

For extremely low values of this parameter, hardness is governed by linear elasticity.

When H/σys > 0.5, plasticity commences and the material deforms within an elasto-

plastic transition. Finally, when H/σys ≈ 3 and E cotanθ/σys ≈ 35, the solid is taken

to deform as fully-plastic (Tabor’s equation). The inclusion of the apex angle in the
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Figure 4.3: Correlation between hardness and yield strength σys for elastic–perfectly
plastic solids. Notice that H/σys takes a constant value of 2.57.
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4. Contact deformation regimes and the concept of the characteristic strain

above dimensionless parameter indicates that Tabor’s fully-plastic regime is more likely

to occur for acute indenters, where θ is small.

The present finite element simulations allow one to incorporate the role of strain

hardening in setting the active contact regime. Solids fulfilling Tabor’s hardness equa-

tion are identified as fully plastic, while those where hardness cannot be considered pro-

portional to the representative stress are regarded to deform within the elasto-plastic

transition. The results from the simulations allow us to build a contact deformation

map that prescribes the contact mode in terms of the elastic (E) and plastic (σys and

n) properties. The map is given in Fig. 4.4, where each band corresponds to a different

strain-hardening coefficient n setting the limit between the two contact regimes. Note

that n = 0 does not appear in the map, since all perfectly-plastic solids are found to

be fully plastic within the ranges of mechanical properties under study. Since the sim-

ulations pertain to θ = 70.3◦, the role of tip angle on the active contact regime is not

considered here. As present tip angle induces the same contact area – penetration depth

relation as pyramidal tips, the contact deformation map may be regarded to apply to

Vickers and Berkovich indentation. Interpretation of the contact deformation map is

given next on the basis of the plastic flow patterns induced underneath the indenter.

4.3 Plastic flow patterns underneath conical indenters

Important features underlying the active contact regime are the plastic flow patterns

induced around the imprint. The slip-line analysis for rigid–perfectly-plastic solids al-

ready accounted for the experimental findings in strain-hardened pure metals, where

plastic flow extends outwards from the center of the imprint generating a pileup effect

at the contact periphery. On the other hand, elastic contacts are characterized by large

sinking-in effects, exhibiting a deformation pattern that is embedded underneath the

contact surface. While the above represent limiting cases of pileup and sinking-in ef-

fects, the development of a detailed understanding of the influence of strain hardening

and yield strength in the plastic flow patterns is non-trivial.

54



4.3 Plastic flow patterns underneath conical indenters

∆ = 5%

50 100 150 200
0

200

400

600

800

1000

1200

σ ys
(M

P
a)

E (GPa)

fully plastic

elastic-
plastic

∆ = 5%

∆ = 5%

n=
0.

1
n=

0.2

n=0.4

Figure 4.4: Contact deformation map setting the boundaries between the elasto–plastic
transition and the fully plastic contact regime for elastic–power-law strain hardening
solids. Materials below each of the bands, representing different values of the strain
hardening coefficient n, exhibit a fully plastic contact response. Materials above each
of the bands undergo an elasto-plastic transition. The solid lines below the bands mark
the commencement of a fully plastic response where sinking-in still occurs. ∆ is the
relative error between the value of hardness obtained from the simulations and the value
of hardness predicted with Tabor’s equation (H = 2.7σ0.1). Solids located right below
the bands exhibit ∆ < 5%. As σys is further decreased, ∆ tends to 1 % and the solids
exhibit pileup effects rather than sinking-in. The map exclusively pertains to a conical
indenter with included half-apex angle of 70.3◦.
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4. Contact deformation regimes and the concept of the characteristic strain

The distinctive features of the equivalent plastic stress fields, which define the plastic

zone size and shape, show that the evolution towards the fully plastic mode is gradual

when moving along the map in Fig. 4.4. In the following, we describe the general trends

of this evolution.

(i) For large values of n and σys, the equivalent stress fields are concentrated right

beneath the indenter’s tip, and have a rather hemispherical shape which resembles that in

elastic contacts (see Figs. 4.5(a) and 4.6(a)). Also the effect of elasticity is demonstrated

in the flow patterns, as they are found to be considerably radial as in purely elastic solids

(Fig. 4.7(a)). The solids exhibit a tendency to sink-in, and ratio H/σys lies well below

2.70. The contact regime is thus regarded as elasto-plastic.

(ii) As n and σys decrease, the plastic zone breaks out to the free surface leading

to an uncontained deformation mode. Under such contact conditions, the plastic zone

does not bend towards the indenter close to the free surface, as in the case of the

above elastic-plastic regime (see Fig. 4.5(b) and the transition from Fig. 4.6(a) to

4.6(b)). Furthermore, a slight tendency of the plastic zone to bend outwards from the

tip is exhibited in most solids. Since Tabor’s hardness equation becomes valid with an

accuracy better than 5%, the above plastic features are regarded to set the domain for

the fully plastic contact regime. (This is the case of solids located at the lower side of

the bands in the contact deformation map —label ∆ = 5% in Fig. 4.4—.) The contact

deformation mode is still one where sinking-in occurs regardless of the uncontained

plastic flow features exhibited by the solid. The flow patterns reveal that the elasto-

plastic mode is evolving to a fully plastic one as the flow direction gradually looses its

radiality (consider solids evolving from Fig. 4.7(a) to 4.7(b)). Indeed, only the material

points lying close to the z-axis maintain a certain radial flow.

(iii) For even lower values of n and σys, the material at the contact boundary flows

primarily towards the free surface thus leading to the development of pileup (see Fig.

4.7(b)). As a result of such deformation mode, the plastic zone presents a marked

tendency to bend outwards from the indenter close to the free surface (see Figs. 4.5(c)

and 4.6(c)). In such fully plastic contact regime where sinking-in is no longer detected,
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the difference between hardness values from the finite element simulations and those from

Tabor’s equation is reduced to 1%. These trends are consistent with those assumed in

fully-plastic analysis made by recourse to the slip-line theory.

The above findings, predicated by gradually changing yield strength σys and hard-

ening coefficient n, are also observed as Young modulus E is varied and the remaining

properties are kept constant. In this sense, the fully-plastic regime predominates for

large values of E, underlying small elastic contributions to the overall contact response.

The stress fields in Fig. 4.8 illustrate the evolution of the contact regimes with E for

fixed values of σys and n.

Using the concept of the characteristic stress and strain, one may readily replace

σys by σr in the aforementioned dimensionless parameter E cotanθ/σys to evaluate the

contact response in strain hardening solids (n > 0). The simulations used to build

the contact deformation map thus indicate that E/σr > 110 ensures the prevalence

of the fully-plastic regime for θ = 70.3◦. Interestingly, Johnson anticipated that the

fully plastic regime shall commence at E cotanθ/σys > 50 (which is approximately

135 for a cone with θ = 70.3◦). Nevertheless, this limit was not confirmed through

the present simulations as all perfectly-plastic solids exhibited a fully plastic regime,

fulfilling H = 2.57σys. Finally, E/σr > 400 ensured development of the fully-plastic

regime where pileup effects prevail.

4.4 Summary

Systematic finite element simulations in elastic-strain hardening solids allowed us to ex-

amine the distinctive features of the contact deformation regimes proposed by Johnson

for perfectly plastic media. The stress fields developing underneath the indenter indi-

cate that each contact deformation regime is associated with a particular flow pattern.

The analysis of the size and shape of the plastic zone characterizes the evolution from

an elasto-plastic mode, to a fully-plastic one where sinking-in occurs, to a fully-plastic

regime where material pileup prevails. Such evolution occurs as Young modulus E is in-

creased or, alternatively, as yield strength σys and hardening coefficient n are decreased.
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Figure 4.5: Isocontours of equivalent plastic stress for solids with with σys = 400 MPa
and E = 70 GPa: (a) elasto-plastic transition for n = 0.4; (b) fully plastic contact
response for n = 0.2; (c) fully plastic regime where piling-up predominates for n = 0.1.
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Figure 4.6: Isocontours of equivalent plastic stress for solids with E = 70 GPa and
n = 0.2: (a) elasto-plastic transition for σys = 850 MPa; (b) fully plastic contact
response for σys = 200 MPa; (c) fully plastic regime where piling-up predominates for
σys = 50 MPa.
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4. Contact deformation regimes and the concept of the characteristic strain

(a) (b)

(a) (b)

Figure 4.7: Flow patterns for (a) a solid deforming within the elasto-plastic transition
with E/σys = 36, and (b) a fully plastic solid where E/σys = 521.
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Figure 4.8: Isocontours of equivalent plastic stress for solids with σys = 400 MPa and
n = 0.4: (a) elasto-plastic transition for E = 110 GPa ; (b) fully plastic contact response
for E = 200 GPa.
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4. Contact deformation regimes and the concept of the characteristic strain

These findings are the backbone of the contact deformation map developed in this chap-

ter, which predicts the actual contact regime for a given set of mechanical properties.

The map is strictly valid for conical indentation with a tip whose apical angle is 70.3◦.

Since this tip has the same penetration depth to contact area relation as Vickers and

Berkovich indenters, the results are hopefully valid to such pyramidal tips.

The plastic zone within the elasto-plastic transition is found to be contained un-

derneath the indenter and to have a rather spherical shape, resembling that in elastic

contacts. Fully plastic materials obeying Tabor’s hardness equation exhibit a spreading

of the plastic zone. Thus, while elasticity governs the elasto-plastic transition, extensive

plastic flow controls the fully plastic regime. The flow patterns in the elasto-plastic mode

are almost radial, leading to the development of sinking-in effects. However, the material

flows outwards within the fully plastic regime, usually leading to pileup development at

the contact periphery.

Hardness is found to correlate well with to the uniaxial mechanical properties through

Tabor’s equation, which is an accurate extension of slip-line analysis to strain-hardening

solids. Thus, slip-line hardness equation H = Csl σys is modified as H = 2.7 σr

to account for the strain-hardening effects (where uniaxial stress σr corresponds to a

material independent uniaxial strain εr of 0.10). It is remarked that neither C nor εr

depend on the mechanical properties of the material.

Using the concept of the representative stress σr, dimensionless parameter E/σys

is modified as E/σr to establish the limit between the fully plastic and the elasto-

plastic contact regimes. According to present simulations, E/σr < 110 comprises all

solids deforming within the elasto-plastic transition, and E/σr > 400 ensures that the

contact response is fully plastic where large pileup effects develop around the indenter.

Intermediate values of E/σr are representative of solids which, while fulfilling Tabor’s

fully plastic hardness equation within a 5% error, exhibit slight sinking-in effects. It is

remarkable that all perfectly-plastic materials used in the simulations deformed within

the fully plastic regime, so that the bounds anticipated by Johnson for n = 0 could not

be confirmed. This indicates that in elastic–perfectly plastic solids, the elasto-plastic
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4.4 Summary

transition shall occur for extremely large values of σys or small values of E, which are

not realistic to metallic materials.
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Chapter 5

Methodology for mechanical
property extraction

In the previous chapter we have established that the contact response of materials can be

evaluated through hardness measurements and the assessment of the amount of vertical

deformation (pileup or sinking-in) occurring around the imprint. With the advent of

instrumented indentation, continuous measurements of the applied load (P )–penetration

depth (hs) of the indenter into the material can be routinely performed. Although a

significant amount of research efforts have been devoted to find correlations between

the parameters describing the P – hs curves and the uniaxial mechanical properties

of the solid [2; 4; 5; 23; 24; 25; 26; 30; 32; 60; 65; 74; 78], little attention has been

given to conduct a similar line of analysis in the context of hardness H and surface

deformation parameter α. Such investigation is increasingly relevant as it is now possible

to measure contact area and the topographic features of the imprint even in the nano-

indentation range by recourse to AFM (atomic force microscopy) techniques. Knowledge

of physically-based parameters describing the imprint’s size and shape (such as H and α)

may thus provide a complementary information central to the analysis of instrumented

indentation P–hs curves.

In §4 we found that the simple hardness equation proposed by Tabor prescribes the

contact response in strain-hardening materials whose deformation features are plastically
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5. Methodology for mechanical property extraction

dominated. However, when elasticity plays a fundamental role in the contact response,

hardness deviates from this simple fully plastic relation. Hence, in this chapter we first

aim at deriving an equation which, within the elasto-plastic transition, correlates hard-

ness with the uniaxial stress-strain curve. In doing so, we rely on the findings by Johnson

for elastic–perfectly plastic solids. Based on a best fit function to the present finite ele-

ment simulations, a general hardness equation is then derived which covers both Tabor’s

regime and the elasto-plastic transition. Attention is then given to the dependency of

surface deformation parameter α with uniaxial mechanical properties. (Note that in §4

we already found that pileup and sinking-in characterize the deformation regime devel-

oping underneath the indenter, as pileup is exclusively indicative of a fully plastic mode

and sinking-in denotes the effect of elastoplasticity.) Finally, derived formulations are

used to develop a methodology for the extraction of the yield strength σys and hardening

parameter n using H, α, and the Young’s modulus E as input variables. On the final

part of the chapter, a discussion is given on the complementarity between present line

of thought and methodologies where the mechanical properties are exclusively obtained

through P–hs curve analysis.

5.1 The role of elasticity in hardness

A general framework to evaluate the effect of elasticity on indentation experiments was

given by Johnson [47]. Based upon the experimental investigations by Bishop [10], Marsh

[58], and Hirst and co-workers [44], along with the theoretical developments by Hill [42],

Johnson found that for solids deforming within the elasto-plastic transition hardness is

given by

H

σys
=

4
3

+
2
3
ln

(
1
3

E

σys
cotanθ

)
. (5.1)

Ratio H/σys thus increases with E/σys until saturation occurs at a value of about 3 in

accordance to Tabor’s findings. To derive Eq. (5.1), Johnson used an analogy between

indentation and the expansion of a spherical cavity in an infinite medium, originally

formulated in [10; 21; 28; 42; 47]. Johnson’s indentation model considers a core of
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5.1 The role of elasticity in hardness

radius as which replaces the expanding cavity. The core thus comprises the indenter

and the material encased within radius as (see Fig. 5.1). It is assumed to be hydrostatic

and to induce radial flow on the surrounding material. Also, plastic deformations are

taken to be incompressible, ν = 0.5, which simplifies the mathematical treatment. A

detailed analysis of this model is given in §7.

2 θ

core

plastic 
zone

p = H

as

Figure 5.1: Johnson’s indentation model and definition of the core of radius as exerting
a hydrostatic pressure p = H to the surrounding material.

It is important to point out that the elasto-plastic transition as well as the fully

plastic regime are influenced by the elastic properties of the indented material. Tabor’s

hardness equation derived in the previous chapter reads

H = Cσr = 2.7σ◦0.1n , (5.2)

where σ◦ = σys
1−nEn for continuity of the stress-strain curve at εys (see equation A.21

in Appendix A). Therefore, elastic modulus E affects hardness in the fully plastic

regime as it implicitly enters into Tabor’s equation. To illustrate this influence, take a

variation of E from 70 GPa to 200 GPa for fixed values of σys and n. Within the range of

mechanical properties under study, such a variation leads to a maximum variation of 30%

in σr, changing hardness H by the same amount. This finding cannot be attributed to
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5. Methodology for mechanical property extraction

the contribution of elastic deformations to the total characteristic strain εr since, in most

metallic materials, elastic deformations are insignificant as compared to εr = 0.10. The

effect of the Young’s modulus on hardness is thus intrinsic to the constitutive equation

used to parameterize the stress-strain curve (Eq.(A.21)).

In Fig. 5.2, we depict pressure distributions p of different solids deforming within

the fully plastic regime. It is readily seen that as E increases, there is an associated

increase in p. Since hardness is the mean value of the pressure distribution over the

whole contact area (see Section 1.1.2), E acts as a scaling factor for p for a fixed set of

σys and n. This aspect becomes evident from the distributions in Fig. 5.2 because as E

increases, the overall shape of the pressure distribution remains constant while its mean

value (pm) is gradually increased. The greatest influence of E on hardness is found to

occur in solids with large values of hardening coefficient n and yield strength σys. Note

that the distributions in Fig. 5.2 are plotted in terms of the normalized contact radius

r/a, where a is the contact radius and r the radial position from the center of the imprint

(see Fig. 1.3).

5.2 Hardness equations for conical indentation

In the following, we use the concept of the representative stress σr to derive a hardness

equation for the elasto-plastic transition in strain hardening solids. Thus, in the spirit

of Tabor’s findings, we seek to capture the role of strain hardening parameter n through

the concept of the representative stress σr. In addition to the solids indicated in §3, finite

element simulations were performed in solids whose contact response is anticipated to lie

within the elastoplastic transition. The mechanical properties of these solids, compiled

in Table 5.1, are relevant to titanium alloys (1), nickel-based superalloys and martensitic

steels (2, 3). Other materials (4, 5, and 6) were also modelled for completeness.

Following Johnson’s model, we use the mathematical form of Eq.(5.1), replacing

yield strength by representative stress σr to account for strain-hardening. Hence, we fit

hardness values from the simulations to an equation of the form
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5.2 Hardness equations for conical indentation
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Figure 5.2: Finite element simulations showing the influence of Young’s modulus E
on contact pressure distributions p in solids where ln(E/σr) > 4.5. The results are for
simulations with identical (a) yield stress σys, and (b) hardening coefficient n. Note that
hardness H quoted in the figure is given by the mean value of the pressure distribution
(see Section 1.1.2.
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Table I: Mechanical properties 
 
 

 
σys  

(MPa) 
n 

E  
(GPa) 

H (cone) * 
 present simulations 

(GPa) 
Ti alloys (1)  400 0.4 110 3.83 

Ti alloys (1) 1000 0.2 110 4.14 

Ti alloys (1) 1200 0.2 100 4.67 

2000 0.2 200 8.12 

1000 0.4 200 8.25 

800 0.4 200 7.36 

Nickel-based superalloys 
and martensitic steels 
(2, 3) 

2000 0.4 200 12.19 

(4) 850 0.2 110 3.73 

(5) 700 0.1 70 2.27 

(6) 1200 0.4 100 6.71 

* calculated considering surface deformation effects 
 
 

Table 5.1: Mechanical properties of the additional solids modelled to find a hardness
equation within the elasto-plastic transition.
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5.2 Hardness equations for conical indentation

H

σr
= A + B ln

(
E

σr

)
, (5.3)

where the effect of cone angle is embedded into constant A (θ was fixed at 70.3◦ in

the simulations). Constants A and B are thus found through curve-fitting, taking the

values of 1.440 and 0.264, respectively. Directing attention to Fig. 5.3, one can easily

identify the elasto-plastic transition where Eq.(5.3) rules the contact response, Tabor’s

fully plastic regime as the plateau corresponding to H/σr = 2.7, and locate the limit

between them at E/σr ' 110 as indicated in Section 4.3. The three zones in the figure

indicate the three stages of the evolution of the contact regimes: I is for the elasto-

plastic transition, II corresponds to the fully plastic mode where sinking-in occurs, and

III refers to fully plastic solids where piling-up prevails (§4).
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Figure 5.3: Correlation between hardness and the uniaxial mechanical response of
elastic–strain hardening solids. I, elasto-plastic transition; II, fully plastic regime; III,
fully plastic regime where piling-up predominates over sinking-in.

Although the concept of the representative stress σr is again key to correlate hardness

with the mechanical properties of the solid, this approach is debatable when dealing with
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5. Methodology for mechanical property extraction

solids deforming in the elasto-plastic transition. Obviously clarification is needed to use

σr, which is defined at a strain where H = Cσr, in the analysis of hardness within

the elasto-plastic transition. Nevertheless, in light of present simulations, σr is still an

applicable concept as it allows one to implicitly capture the effect of strain hardening on

hardness through the functional form of Eq. (5.3). Since the constants in Eq.(5.3) are

obtained through curve-fitting, this relation is anticipated to be valid only in the range

of 30 < E/σr < 110, to which present fit is limited.

Since hardness H does not depend on penetration depth, for a fixed cone angle θ one

may write H = H(E, σys, n), so that application of the Π theorem in functional analysis

(see Section 1.2) yields

H

σys
= f◦

(
E

σys
, n

)
. (5.4)

Interestingly, it is found that the results of the finite element simulations can be fitted

through a single equation, Fig. 5.4, which provides the ratio of hardness to representative

stress (H/σr) for all strain-hardening solids (n > 0). Hence,

H

σr
= f1

(
E

σr

)
. (5.5)

The solid line in Fig. 5.4 corresponds to the following best-fit function

H

σr
= −0.0023

[
ln

(
E

σr

)]4

+ 0.0647
[
ln

(
E

σr

)]3

− 0.6817
[
ln

(
E

σr

)]2

+3.1968
[
ln

(
E

σr

)]
− 2.9261 , (5.6)

which provides hardness estimates with an accuracy better than 3% irrespectively of

the contact regime. This equation considers the combined influence of elasticity and

plasticity in hardness, and is valid for any elastic–power-law plastic material whose

properties range within the limits of Fig. 5.4 (i.e., 3.5 < ln(E/σr) < 8).
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Fully plastic regimeElasto-plastic 
transition

Figure 5.4: General correlation between H/σr and E/σr for all strain hardening solids
(n > 0).

73



5. Methodology for mechanical property extraction

5.3 Influence of mechanical properties on the pileup and
sinking-in responses

In addition to hardness, a fundamental parameter that characterizes the contact response

is the amount vertical deformation occurring around the contact boundary. As indicated

in Sections 1.1.1 and 1.1.2, the material may pile up or sink-in at the periphery of the

imprint depending on the mechanical properties of the solid and the geometry of the

indenter. The finite element simulations suggest that such deformation modes follow

theoretical predictions in the sense that the more elastic the solid, the larger the tendency

to sink-in [46]. The evolution to the fully plastic regime (marked by small values of n

and σys) is thus followed by the development of pileup.

Parameter
√

α prescribes the ratio of material that piles up (
√

α > 1) or sinks-in

(
√

α < 1), as defined in Section 1.1.1:

√
α =

h

hs
=

(
A

As

)1/2

, (5.7)

where h is the penetration depth of the indenter as measured from the true contact

periphery, and hs is the penetration depth from the undeformed surface, Fig. 1.1. Note

that one can also define α as the ratio of the true contact area (A) to the geometrical

area (As), Section 1.1.1.

The flow patterns described in Section 4.3 underly the evolution from sinking-in to

pileup as the material becomes increasingly plastic. Solids deforming within the elasto-

plastic transition are prone to sink-in because elasticity prevents the outwards flow from

occurring. Deformation is thus more contained underneath the indenter (§4). When

the influence of elastic strains decreases, either by increasing Young’s modulus E or

decreasing hardening coefficient n and yield strength σys, the solid is free to flow outwards

from the indenter’s tip leading to the development of pileup. Following previous results

by Matthews [61] and by Alcalá et al. [3], we found that in the fully plastic regime

deformation of the indented surface depends primarily on the value of n, while it is

also affected by σys and E. These results are shown in Fig. 5.5, where the influence
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n
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Figure 5.5: Correlation between the amount of piling-up and sinking-in (
√

α − 1) and
strain hardening coefficient n. The results relate to the fully plastic contact regime.
Note the influence of σys and E on surface deformation, and that even within the fully
plastic regime it is possible to find solids undergoing sinking-in (

√
α− 1 < 0).
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of elasticity is clearly evidenced even though the simulations in the figure exclusively

concern fully plastic solids. Therefore, as it was already established in Section 4.3,

Fig. 5.5 illustrates that the development of sinking-in may not necessarily denote the

attainment of the elasto-plastic transition. Interestingly, the trends described in the

contact deformation map are also evident in Fig. 5.5, since a small E and a large σys

favor sinking-in.

Previous studies on the surface deformation modes around spherical indentations

concluded that parameter α only depended on the strain-hardening coefficient n [3;

11; 43; 61; 64]. These results are applicable to rigid–power-law hardening materials,

in which the elastic part of the deformations is neglected. The difference between the

present work and the aforementioned investigations is thus justified on the grounds that

the current simulations pertain to materials with non-vanishing σys and finite value of

E.

Using the same procedure as that employed to obtain a general hardness equation,

Section 5.2, we seek to find a general relationship for the dependency of surface deforma-

tion parameter α on the mechanical properties of the solid. For a given sharp indenter,

we thus write α = α(E, σys, n). Applying the Π theorem in functional analysis, it follows

that

α = g◦

(
E

σys
, n

)
, (5.8)

which can be equivalently rewritten as

α = g1 (E/σr, n) . (5.9)

A best-fit function to g1 for a conical indenter of θ = 70.3◦ is

√
α = R + Se−(σr/E)/T , (5.10)

where coefficients R, S and T depend on strain-hardening parameter n. The dependency

of these coefficients on n is captured through
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R = 8.7760n3 − 6.7180n2 + 1.0478n + 0.8148 ,

S = −7.7892n3 + 6.8690n2 − 2.0273n + 0.4790 ,

T = −0.35359n3 + 0.40038n2 − 0.05926n + 0.01426 . (5.11)
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Figure 5.6: Correlation between surface deformation parameter
√

α − 1 and uniaxial
mechanical properties E/σr and n for all solids deforming within the fully plastic regime
and the elasto-plastic transition.

The results in Fig. 5.6 show that Eq. (5.10) (solid lines) gives an extremely good

representation to the data from the finite element simulations (symbols). In this regard,

the maximum error in the estimation of
√

α from Eq.(5.10) is ±0.01 for all solids whose

properties are within those considered in the simulations. This error is negligible as
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5. Methodology for mechanical property extraction

compared to the values of surface deformation parameter α for metallic materials, which

range from 1.2 to 0.9.

5.4 Methodology to extract uniaxial mechanical proper-
ties

The development of general equations for hardness H (Eq.(5.6)) and for parameter α

(Eq.(5.10)) allow one to develop a reverse procedure to extract the plastic properties of

the indented solid from hardness tests. Since these equations are derived upon extensive

finite element computations where the solids are taken to obey the J2-flow plasticity

model described in Appendix A, present methodology is limited to elastic–power-law

plastic metallic materials. It is also restricted to indentations under frictionless condi-

tions (extension to frictional contacts is given in §6).

The devised procedure is as follows:

(i) Evaluate parameter
√

α as indicated in Section 1.1.1. This can be performed

through surface profilometry which maps the true area of the imprint. Notice that pileup

and sinking-in have to be obtained at maximum load, since Eq.(5.10) correlates the

mechanical properties to
√

α when the surface is deformed under maximum load. Linear

elasticity indicates that although considerable elastic rebound occurs in the vertical

direction, outwards deformation upon unloading from Pmax is negligible (Section 3.3

and [3]). Thus, while there is little change in contact areas A and As during unloading,

the same does not hold true for penetration depths h and hs. It is thus preferred to

measure α from the ratio of contact areas (Eq. (5.7)) obtained, for instance, through

conventional surface profilometry or atomic force microscopy (AFM), rather than from

the ratio of residual penetration depths (Eq. (5.7)). Alternatively, access to the P–hs

curve of the material allows one to evaluate α through measurement of constant K from

Kick’s law (P = Khs
2, Eq. (1.7) in Section 1.1.1),

α =
K

fH
, (5.12)
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5.4 Methodology to extract uniaxial mechanical properties

where hardness H is evaluated as in (ii), and f is a geometrical constant depending on

indenter’s shape (f = 24.50 for the Vickers indenter and the 70.3◦ conical indenter, and

24.562 for the Berkovich tip).

(ii) Determine hardness H as

H =
P

A
, (5.13)

where P is the applied load, and A is the true contact area accounting for pileup or

sinking-in. The value of A can be obtained through conventional microscopy (dark

areas in Fig. 3.5) or by mapping the indented surface in the same manner as described

in the evaluation of parameter α.

(iii) Measure Young’s modulus E. The elastic modulus can be obtained from un-

loading slope dP / dhs of the instrumented indentation curve, as indicated in Section

1.1.1. Alternative methods, such as ultrasound and impulse excitation techniques, can

be used in the determination of E.

(iv) Use Eq.(5.6), H, and E to obtain representative stress σr.

(v) Solve Eq.(5.10) with the values of
√

α, E, and σr to obtain n.

(vi) Calculate the value of the yield strength σys through the uniaxial strain hard-

ening model (Appendix A). That is,

σys =
σr

En0.1n

1
1−n

. (5.14)

According to the above methodology, the maximum error in inferred hardening coef-

ficient n caused by an experimental scatter in
√

α of ±0.025 lies within ±0.07 for solids

where σr/E < 0.01. This error decreases for n < 0.2. In the same lines, the reverse

methodology is more accurate in fully plastic solids than in materials with an increas-

ing amount of elastoplasticity, as for
√

α < 0.95 and σr/E < 0.015 the curve in Fig.

5.6 flattens considerably. Slight statistical scatter in measured α is thus reflected as a

considerable error in inferred properties.
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5. Methodology for mechanical property extraction

5.5 Consistency with the existing indentation methodolo-
gies

An important issue in extracting mechanical properties from indentation experiments is

the uniqueness of the solution. While the direct procedure of finding indentation param-

eters from the uniaxial properties has a straightforward solution, the reverse problem

may be ill-posed, that is, there may be various solutions for a given set of indentation

parameters [18; 26; 30]. Hence, a lack of uniqueness in inferred properties arises. Several

authors proposed methodologies to characterize the mechanical response of solids from

instrumented indentation measurements [26; 27; 30; 36; 39; 50; 74]; however, only few

recent investigations have dealt with the possible multiplicity of solutions of inferred

mechanical properties (see the discussion given by Cao and Lu [18], Cheng and Cheng

[26], and Dao et al. [30]).

It is emphasized that the reverse procedure devised in this thesis leads to only one

solution of inferred properties. That is, for a given set of E, H and α, there is only one

combination of σys and n that fulfills the equations. In this regard, functional analysis

shows that Eq.(5.6) is a single-valued function of σr for the range of materials studied in

the present work (ln(E/σr) > 2). Also, it is seen that Eq.(5.10) provides a single value

of n for any given input of
√

α and σr/E.

We now compare the present methodology with that proposed by Dao and coworkers

[30]. In that work, the authors conducted a thorough analysis of the P–hs curves from

finite element simulations upon the basis of the Π-theorem (see Section 1.2). They

derived 6 dimensionless Π functions capturing the dependencies of the parameters from

the P–hs curve which shall be used to extract the mechanical properties of the material.

The representative stress for Dao et al. is taken at a characteristic plastic strain εr
p of

0.033, which differs from our total strain of εr = 0.10. Such a difference lies in the fact

that Dao et al. define the representative stress so that ratio K/σr converges to a single

curve for all n, whereas we find such master curve for ratio H/σr.

The following set of equations were derived by Dao et al. Note that only the para-

metrical dependencies are given since explicit best-fit functions from their simulations
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5.6 Experimental application of the methodology

are of no interest to the present discussion:

Π1 =
K

σ0.033
= Π1

(
E?

σ0.033

)
Π2 =

1
E?hmax

dP

dhs

∣∣∣∣
hmax

= Π2

(
E?

σ0.033
, n

)
Π3 =

hr

hmax
= Π3

(σ0.033

E?
, n

)
Π4 =

H

E?
≈ Π4

(
hr

hmax

)
Π5 =

Wpl

Wt
= Π5

(
hr

hmax

)
Π6 =

1
E?
√

Amax

dP

dhs

∣∣∣∣
hmax

= c? . (5.15)

The instrumented indentation variables in these equations are illustrated in Fig. 1.2;

where Wt is the total work performed by the indenter during penetration (obtained

through integration of Kick’s law P = Khs
2 to maximum penetration depth hmax

2),

and Wpl is the plastic component of the total work [30]. Since H appears explicitly in

the above Π functions, one can readily find connections between the method by Dao

et al. and that proposed in this thesis. Starting with the loading slope, constant K

from Kick’s law is directly related to the product of hardness H and α as in Eq.(1.8).

Concerning the unloading part of the curve, reduced Young’s modulus E? is obtained

from the slope at peak load, dP/dhs, and the contact area at maximum load, Amax, (see

Eq. (1.5) which is the same as Π6 in the work by Dao et al.). Note that this area is the

same as that used in the calculation of hardness H. Obviously, as measured penetration

depth hs does not account for the development of pileup or sinking-in, parameter α

enters implicitly into Π6 and Π4.

5.6 Experimental application of the methodology

The methodology devised herein is validated experimentally in the annealed copper and

the two stainless steels in Table 3.1. With the procedure outlined in Section 5.4, we use
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5. Methodology for mechanical property extraction

Uniaxial properties input output 
 

σ ys 
†
 (MPa) n E (GPa) H (GPa) √α  -1 σ ys (MPa) n 

Annealed copper 20 0.52 110 0.52 - 5 % 2.5 0.51 

AISI 329 duplex stainless steel 525 0.17 190 2.21 8 % 448 0.14 

SAF 2507 superduplex stainless steel 675 0.19 200 2.57 6 % 468 0.165 
† measured directly in the uniaxial stress-strain curve. It is noted that some values may not lie within the power-law fit to this curve.  

 

Table 5.2: Comparison between the uniaxial stress-strain curve and that obtained from
the indentation methodology.

Young’s modulus E, hardness H, and parameter
√

α as input variables to extract the

uniaxial stress-strain curve of the solid.

The results of the methodology are presented in Table 5.2 and in the stress-strain

curves in Fig. 5.7. It is found that the overall indentation stress-strain curve is in

excellent agreement with the uniaxial curve. There is, however, a discrepancy between

the exact values of the yield strength σys obtained from uniaxial tests and those from the

indentation methodology. This is because the value of σys obtained through uniaxial

tests does not strictly lie within the general relation σ = σ◦ε
n, which is assumed in

present methodology. On the other hand, variations in the value of n between the

uniaxial tests and the indentation methodology are likely to be due to the presumption

that the entire post-yield behavior is described with a unique value of n. This is an

approximation which does not strictly hold in light of the present uniaxial tests. where

the value of n reported in Table 5.2 represents an average over the complete stress-strain

curve.

5.7 Summary

In this chapter we have derived relationships between uniaxial mechanical properties,

hardness, and parameter α. In view of the finite element simulations, the final rela-

tionships are considerably accurate and do not require a notion on the active contact

deformation regime ruling the indentation experiment. Using these equations, the Flow
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Figure 5.7: Stress-strain curves obtained from the uniaxial test (symbols) and from the
indentation methodology (solid lines). The indentation curve fulfils Eq.(A.21), where
the the values of σys and n in Table 5.2 have been used.

Chart given in Fig. 5.8 summarizes the procedure devised herein to extract uniaxial

plastic properties from parameters H, α and E. The procedure leads to a unique set of

yield strength σys and hardening parameter n from any given set of input parameters.

84



5.7 Summary
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Chapter 6

The role of friction on sharp
indentation

Frictional effects on sharp indentation of strain-hardening solids are examined in this

chapter. The role of friction on sharp indentation was first studied by recourse to

the theory of the slip-line field [46]. Since these early analyses concern rigid-perfectly

plastic solids indented by rigid wedges, the specific results are of limited applicability

to conventional pyramidal indentation of strain hardening materials. One shall bear

in mind that for blunt wedges whose apical angle is > 120◦, such early investigations

already indicated that an increase of an utmost of ∼ 20% in hardness occurs for adhesive

contacts as compared to frictionless ones. More recently, the finite element method has

been employed extensively to study the stress fields in frictionless contact problems,

as well as to predict hardness and the development of surface deformation effects in

indentation experiments (see, for instance, [8; 38; 39; 40; 43; 50; 51; 52]). By recourse

to finite element simulations, some investigations have also shed light into the overall

influence of friction in the contact response of strain hardening solids [19; 62]. These

analyses suggest that friction may have a significant effect on the attainment of piling-

up around the contact boundary and on the stress field underneath the indenter. They

concern spherical indentation where either frictionless or adhesive contact conditions

are at issue. Additional results for the indentation of solids exhibiting time-dependent
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6. The role of friction on sharp indentation

deformation under frictionless and adhesive conditions were obtained by Bower et al.

[17].

Although the aforementioned studies underline the characteristic features of frictional

contacts, a theoretical background to evaluate the influence of the friction coefficient on

sharp indentation of strain hardening solids is still unavailable to our present knowledge.

In this chapter we develop such a background, where the effect of the friction coefficient

on (i) hardness, (ii) the development of surface deformation—i.e., the amount of pileup

and sinking-in— and (iii) the shape of the P–hs curves is specifically addressed. This

is achieved through extensive finite element simulations where plastic flow features for

different friction coefficients are considered in detail. This chapter ends with a method-

ology that extends the one given in §5 to deal with the role of friction in mechanical

property extractions.

6.1 Experiments and computations

6.1.1 Friction experiments

The friction coefficient µ between diamond and the metallic materials was ∼ 0.15. Mea-

surement of µ was performed sliding a spherical tip of diamond, whose radius of curvature

is 100 µm, over a distance of 1 mm across the polished surfaces of the metals. The ap-

plied normal load was 1 N and the sliding velocity was ∼ 1 µm/s. Such relatively slow

sliding velocity was selected to measure a friction coefficient that is as close as possible

to the static (largest) one, which is anticipated to rule present indentation experiments

(Section 6.1.2). Upon removal of the diamond tip, it was not possible to detect scratches

at the polished surfaces of the metals. The measured friction coefficient confirms the

belief that the value of µ between well-polished metallic surfaces and diamond lies within

0.10 to 0.15 [73].

6.1.2 Finite element simulations

Frictional effects were accounted for in the finite element simulations through an isotropic

Coulomb model. Thus, the maximum local shear stress acting at the interface, τc, is
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6.2 Framework to the analysis of frictional effects

given by

τc = µpc , (6.1)

where pc denotes the local normal pressure, µ is the friction coefficient between the

surfaces in contact, and τc is the critical value of qc for which Coulomb’s law is fulfilled

(Fig. 6.1). For the sake of simplicity, the strain rate at the indented surface is taken

to be sufficiently small as to ensure that a static friction coefficient rules the interac-

tion between the solids. The finite element implementation of the contact model was

performed within a finite-sliding formulation, where any arbitrary sliding and rotation

between the surfaces can occur. In addition, the introduction of unsymmetric terms in

the system of equations was accounted for in the simulations [1].

The finite element computations were performed for solids exhibiting all possible

combinations of E = 70 and 200 GPa, with the values of σys and n described in Section

3.1. The simulations were performed under µ = 0.1 and 0.2 for each of the above

solids. As indicated in Section 6.1.1, values of µ ranging from 0.1 to 0.2 are pertinent to

indentation experiments carried out in well-polished metallic materials. Poisson’s ratio,

ν, was set constant at 0.3. In total, 64 simulations were conducted to account for the

above combinations of mechanical properties and values of the friction coefficient.

6.2 Framework to the analysis of frictional effects

Theoretical aspects along with the results from the finite element simulations are con-

sidered in this section with the aim of developing a general framework to elucidate the

influence of friction on sharp indentation.

6.2.1 Theoretical background

The influence of friction on contact stresses can be analyzed invoking load equilibrium

at the indenter’s face (
∑

dFz = 0). First, we start by writing

P =
∫ a

0

p 2πr dr , (6.2)
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6. The role of friction on sharp indentation

which relates the overall pressure distribution p(r) to the applied load P . Directing

attention to Fig. 6.1, distributions of contact pressure pc(r) and shear stress qc(r) at

the cone’s face shall follow

dP = pc dA sinθ + qc dA cosθ , (6.3)

where

dA = 2πr dr/sinθ . (6.4)

Eqs. (6.3) and (6.4) give

dP = pc 2πr dr + qc cotθ 2πr dr . (6.5)

Integrating Eq. (6.5) over the contact area and noting that the mean contact pressure

at the cone, p̄c, is given by

p̄c =
1

πa2

∫ a

0

pc2πr dr , (6.6)

it is found that

P = πa2p̄c +
∫ a

0

qccotθ 2πr dr . (6.7)

In addition, Eqs. (6.2) and (6.5) yield

p = pc + qccotθ . (6.8)

Note that the mean value of p is used to define hardness so that

H ≡ 1
πa2

∫ a

0

p 2πr dr . (6.9)

We now seek to find a relationship between hardness under frictional constraints, H, and

hardness for frictionless conditions, H◦. For this purpose, Eq. (6.7) can be rearranged

as
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Fig. 2
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Figure 2: Schematic on surface deformation effects and associated 
nomenclature. Note that h > hs implies pileup and h < hs indicates 
sinking-in.

Figure 6.1: Contact variables used in the analysis of frictional effects.
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6. The role of friction on sharp indentation

P = p̄cπa2

(
1 + cotθ

1
a2

∫ a

0

qc

p̄c
2rdr

)
. (6.10)

Writing the integral on the right hand side of Eq. (6.10) as two integrals over regions

where Coulomb’s shear stress bound (CL) is reached and non-critical ones (NC) where

the local qc < µpc, it follows that

H =
P

πa2
= p̄c

(
1 + cotθ

1
a2

[∫
NC

qc

p̄c
2rdr +

∫
CL

µpc

p̄c
2rdr

])
. (6.11)

Equation (6.11) is then rewritten as

H =
P

πa2
= p̄c (1 + µ̂cotθ ) , (6.12)

where

µ̂ =
1
a2

[∫
NC

qc

p̄c
2rdr +

∫
CL

µpc

p̄c
2rdr

]
. (6.13)

It is noted that the integration interval NC vanishes in the case where Coulomb’s law

applies throughout the whole contact area, thus
∫
NC

= 0 and µ̂ = µ.

To relate H to H◦, we aim to find variable β so that the mean contact pressure at

the cone’s face, p̄c, can be obtained through the mean contact pressure at the cone’s

face for µ = 0, p̄◦. Thus, we define

p̄c = βp̄◦ . (6.14)

Obviously, β has to be evaluated for the specific contact conditions at hand. Note that

Eq. (6.8) implies p◦ = pc◦
, so that H◦ = p̄◦ (Eq. (6.9)) and

p̄c = βH◦ . (6.15)

Hence, Eq. (6.12) becomes

H = βH◦ (1 + µ̂cotθ ) . (6.16)
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It is emphasized that frictional contacts induce shear stresses qc so that µ̂ 6= 0 and

p̄c 6= H (Eq.(6.12)). Then, from Eqs. (6.7) and (6.14), and by taking H◦ = P◦/A◦ =

P◦/πa2
◦, it follows that

β =
πa2

◦
πa2

(
P −

∫ a

0

qc2πcotθ rdr

)
1
P◦

. (6.17)

Thus,

β =
πa2

◦
πa2

κ ; κ =
(

P −
∫ a

0

qc2πcotθ rdr

)
1
P◦

. (6.18)

For indentations made under friction and frictionless conditions where identical pene-

tration depth hs is imposed, Eq. (1.4) yields

β =
α◦

α
κ (6.19)

where for consistency with the current nomenclature, subscript ◦ denotes the absence

of friction. Substituting Eq. (6.19) into Eq. (6.16), one finally obtains

H =
α◦

α
κ H◦ (1 + µ̂cotθ ) . (6.20)

6.2.2 Simulations of frictional effects on hardness

A fundamental understanding of the role of friction in the contact response of strain

hardening solids can be gained by comparing the distributions of contact pressure p(r)

for frictional contacts with those for frictionless conditions. First, the influence of elasto-

plastic properties on pressure distributions is summarized as follows. As expected, the

finite element simulations indicate that as σys, n and E increase, p(r) shifts gradually to

larger stresses. It is also found that p(r) is more sensitive to changes in σys and n than

to changes in E. Contact pressure distributions scale with E so that their overall shape

remain constant. Solids with small values of σys and n are found to exhibit the largest

decay of p from the maximum value at r = 0 to that close to the contact boundary
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Figure 6.2: (a) Normalized pressure distributions p/pmax in terms of r/a for frictionless
contacts. Note that p/pmax flattens as σys and n increase. (b) Influence of friction
coefficient µ on contact pressure distributions p/pmax for a solid with σys = 100 MPa, n
= 0 and E = 70 GPa. The value of pmax used in the figure corresponds to that for µ = 0.
Note that by raising µ, the mean value of p/pmax increases while the whole distribution
of p/pmax flattens.
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(r → a), see Fig 6.2(a). Also, pressure distributions flatten with increasing σys and n,

Fig. 6.2(a), as well as by raising the friction coefficient µ, Fig. 6.2(b).

For frictionless contacts, the combined influence of elasto-plastic properties on p(r)

may be assessed through Tabor’s hardness equation (note that hardness is given by the

mean value of p(r) as in Eq. (1.9)). Following Tabor’s equation for the fully plastic

regime, hardness is proportional to the uniaxial stress σr at a total (elastic plus plastic)

uniaxial strain of 0.1 (see §4). Therefore,

H◦ = C◦σr (6.21)

where C◦ = 2.7 (subscript ◦ is used herein to denote frictionless conditions as in the

previous section), and σr = σys
1−n(0.1E)n according to the power-law relation in Eq.

(A.21).

In the following, the finite element simulations are evaluated in the context of the

theory presented in Section 6.2. Thus, it is our aim to find simple closed-form solu-

tions for the relationship between H and H◦. First, it is important to note that solids

undergoing piling-up effects also exhibit a large tendency to slip against the indenter’s

face which is opposed by friction. In such simulations, the critical shear stress according

to Coulomb’s relation is reached in the majority of the elements that are brought into

contact. Good correspondence is thus found between the actual distribution of shear

stresses qc and the critical value of µpc, Fig. 6.3(a). This figure also shows that it

is precisely the stresses at the innermost and outermost regions of the contact surface

that may defy Coulomb’s bound. However, notice that considerable slipping occurs in

such regions which is required to accommodate the plastic deformations underneath the

indenter. In solids where
√

α > 1.12 and µ = 0.1, more than 75% of the imprint lies

within the Coulomb’s dominated (CL) region. It is also found that µ̂ varies from 0.097

to 0.094 as κ ranges from 0.98 to 1.03. Equation (6.20) thus yields

H ≈ α◦

α
H◦(1 + µcotθ) . (6.22)
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In the above simulations for
√

α > 1.12, the difference between H and H◦ is maximum

as it lies in the range of ∼ 10%–15%. The accuracy of Eq. (6.22) when µ = 0.1 is better

than 1.5%.

When
√

α < 1.12, that is, in solids exhibiting either moderate pileup or sinking-in

effects, the local contact shear stresses become much smaller than the critical stress

prescribed by Coulomb’s relation (i.e., qc < µpc), see Fig. 6.3(b). In addition, the

difference between qc and µpc increases as µ is raised from 0.1 to 0.2, indicating a larger

tendency for the suppression of slip for large values of µ. Interestingly, it is found that

κ (1 + µ̂ cotθ) varies from 0.99 to 1.01 for all values of µ. Thus, Eq. (6.20) reduces to

H ≈ α◦

α
H◦ . (6.23)

The validity of Eq. (6.23) when
√

α < 1.12 is also sustained on the pressure distributions

p(r) which are found to be almost identical to those for frictionless simulations. There-

fore, Eq. (6.23) suggests that to estimate H, it suffices to correct H◦ to account for the

influence of friction on the size of the contact area (i.e., multiplying H◦ by (πa2
◦/πa2),

see Eqs. (6.18) and (6.19)). Although the difference between H and H◦ when
√

α <

1.12 is quite small as it lies in the range of 2%–6%, Eq. (6.23) is rather accurate as

it allows to predict hardness H within a 1% error. It remains to be mentioned that in

cases where
√

α > 1.12 and µ = 0.2, Eq. (6.23) is preferred over Eq. (6.22) because the

material within the Coulomb’s dominated region is less than 30% of that brought into

contact. The error associated with the use of Eq. (6.23) is then smaller than 2.5% in

contrast to the maximum value of ∼ 4.5% obtained by using Eq. (6.22).

In view of the above findings, one may consider using Eqs. (6.22) and (6.23) to

establish the influence of friction in Tabor’s relation (Eq. (6.21)). Hence, for solids

deforming within Tabor’s fully plastic regime, we write

H = C(µ) σr (6.24)
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6.2 Framework to the analysis of frictional effects
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Figure 6.3: Distributions of normalized shear stress, q̃c, and normalized critical shear
stress according to Coulombs relation, µ̃p. Coulombs law dominates within CL regions
(q̃c = µ̃pc) whereas the critical shear stress is not reached within the NC regions. The
results are for solids exhibiting (a) extensive piling-up effects (σys = 100 MPa, n = 0.1
and E = 70 GPa, where µ = 0.1 and

√
α = 1.14); and (b) sinking-in (σys = 400 MPa, n

= 0.2 and E = 70 GPa, where µ = 0.2 and
√

α = 0.97). The solid in Fig. 6.3(a) fulfills
Eq.(6.22) while that in Fig. 6.3(b) fulfills Eq.(6.23).
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6. The role of friction on sharp indentation

where

C(µ) =

{
2.7 (α◦/α) (1 + µcotθ), if

√
α > 1.12 and µ ≤ 0.1;

2.7 (α◦/α), otherwise.

It is emphasized that these equations are regarded to apply to pyramidal indentation to

some useful extent because current simulations for θ = 70.3◦ yield hardness values that

are in agreement with experimental measurements with Vickers indenters (see Section

3.3). Note that the influence of the half-apical angle θ is not captured thoroughly in

these equations. Thus, care has to be exercised when applying Eq. (6.24) to conical

indenters other than those with θ = 70.3◦ because the value of 2.7 for constant C◦ and

the limiting value of 1.12 for
√

α are anticipated to depend on θ.

6.2.3 Plastic flow features and surface deformation effects

Figure 6.4 shows the results from the finite element simulations on the value of α◦/α

for all combinations of µ, E, n and σys under consideration. Hence, the absolute value

of α for a given µ and elasto-plastic properties can be readily obtained using Fig. 6.4 in

conjunction with the correlation given in Section 5.3 between α◦ and the elasto-plastic

properties (Eq. (5.10)). Since the attainment of an elastic-plastic transition leads to an

abrupt decrease in α◦/α, the relationship between α◦/α and n is displayed in separate

figures (Figs. 6.4(a), (b) and (c)). In doing so, we prevent the curves of α◦/α – n for

the different σys and E from crossing each other.

The results in Fig. 6.4 show that α◦/α is always > 1 in good agreement with physical

intuition. In this regard, one can visualize the indenter as a rigid body displacing the

material sideways. Frictional effects shall reduce contact radius a as shear stresses qc

build-in at the contact surface. This reduces the outward flow of material so that

a◦ > a. Therefore, the constraint imposed by qc brings about a tendency to sink-in

which necessary leads to α◦/α > 1. The plastic flow patterns from the simulations show

evidence of such suppression of radial flow as the shear distortion of the elements at the

interface is smaller as the value of µ increases, see Fig. 6.5. Consequently, for any given

set of mechanical properties, α◦/α increases as µ is raised from 0.1 to 0.2 (Fig. 6.4).
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6.2 Framework to the analysis of frictional effectsFig. 5(a)

Figure 5: Relationship between αo/α and strain hardening
coefficient n. The simulations are for µ = 0.1 and 0.2 with (a) E = 
200 GPa, (b) E = 70 GPa, and (c) either E = 70 GPa or 200 GPa 
with large values of σys. 
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Figure 6.4: Relationship between α◦/α and strain hardening coefficient n. The simula-
tions are for µ = 0.1 and 0.2 with (a) E = 200 GPa, (b) E = 70 GPa, and (c) either E
= 70 GPa or 200 GPa with large values of σys.

Figure 6.5: Frictional effects on plastic flow (a) µ = 0, and (b) µ = 0.2. Note that
friction opposes slip of the elements at the indenter’s face, which leads to a decrease in
the amount of pileup. The results are for a solid with σys = 100 MPa, n = 0.1, and E
= 200 GPa.
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6.2 Framework to the analysis of frictional effects

Overall, the simulations show that the influence of friction on surface deformation

is larger in solids exhibiting pileup and, specially, when
√

α > 1.12. This is due to the

fact that pileup develops as a result of large outward flow at the interface, which is

significantly restrained when sinking-in prevails. Therefore, frictional constraints have

little influence in the simulations where sinking-in already occurs in the absence of

friction. Indeed, for large sinking-in effects, joint motion between indenter and material

occur along the z-axis irrespective of the value of µ. Such joint motion is favored by the

tendency of the material to adhere to the indenter. It is also noticed that because of

the radial component of the plastic flow when piling-up occurs, the existence of relative

motion between indenter and material in the CL and NC regions is promoted.

Figure 6.4 shows that α◦/α departs from unity as n decreases. This finding is con-

sistent with the fact that piling-up is favored in solids with low values of n. As indicated

above, the contact response under such conditions shall be largely affected by the de-

velopment of shear stresses which tend to preclude radial flow. On the other hand, the

simulations for µ = 0 indicate that the amount of radial flow is already restricted when

sinking-in prevails (this being the case for large values of n). Thus, it follows that an

increase of µ shall not affect much in the development of plastic flow for large values of

n. This is demonstrated in Fig. 6.4, whereby α◦/α → 1 as n → 0.4 irrespective of µ.

Fig. 6.4 also shows that, for a fixed µ, the development of pileup is more sensitive to n

than to σys. In this sense, note that while α◦/α may change in 0.12 as n increases from

0 to 0.4, a variation in σys from 50 to 1000 MPa only changes α◦/α by 0.04.

Finally, the simulations show that for small values of the strain hardening coefficient

and yield strength, the plastic zone increases its size in the r-axis and z-axis as µ is raised

gradually from 0 to 0.2, see Fig. 6.6. The maximum increase in the size of the plastic

zone is about 20% in both axis. However, for large values of n and σys, an increase in µ

does not result in further growth of the plastic zone. The above-mentioned results are

coincidental with the early analyses of a distortion of a square grid underneath a wedge

indenter for adhesive and frictionless contacts in perfectly plastic solids (n = 0) [42; 46].

These analyses suggest that as friction is increased and the amount of piling-up becomes

101



6. The role of friction on sharp indentation

smaller, the volume of material that originally displaced sideways shall be accommodated

over a larger region underneath the indenter. This phenomenon increases the size of the

plastic zone in solids exhibiting pileup. For the case of solids with large values of n and

σys where sinking-in is favored, radial flow is already limited under frictionless conditions

to a point where an increase in µ does not bring significant changes to the plastic zone

size.

Figure 6.6: Increase in the plastic zone size as µ is raised from 0 to 0.2. The results are
for σys = 100 MPa, n = 0.1, and E = 200 GPa.

6.3 Implications to indentation experiments

The present results are relevant to mechanical property extractions from instrumented

indentation experiments when the friction coefficient µ is known a priori. In this regard,

it is found that friction affects mostly surface deformation and hardness values while

smaller changes occur in constant K from Kick’s law, see Section 6.1.1. Kick’s law

(P = Khs
2; K = fαH, Eq. (1.7)) thus indicates that the increase in hardness H

induced by frictional effects is compensated by a decrease in the value of α so that the

maximum increase in K due to friction is 3 %. As K describes the P–hs curves, analysis
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6.3 Implications to indentation experiments

of instrumented indentation experiments requires consideration of surface deformation

to improve accuracy in inferred mechanical properties. The purpose of this section is,

therefore, to devise a methodology that considers surface deformation to evaluate the

influence of the friction coefficient on the plastic properties σys and n extracted from

the P–hs curves. The key issue in the present methodology is to obtain the equivalent

frictionless contact parameters H◦ and α◦ from the actual experimental data, where

friction between the indenter and material occurs. Then, with such H◦ and α◦ the

procedure outlined in §5 is applied to obtain the yield strength and hardening coefficient

which truly correspond to the indented material. The methodology is as follows (Fig.

6.7):

(i) Evaluate Young’s modulus E with conventional nano-indentation procedures

where the unloading segment of the P–hs curves is fitted to Sneddon’s relation (Eq.

(1.5)). Measure hardness H considering bulging and pincushion effects at the sides of

the imprint in the calculation of contact area A. Obtain the mean value of α around

the indent as described in Section 5.4.

(ii) In the first iteration, assume H◦ = H and α◦ = α.

(iii) Use the the general hardness equation derived in Section 5.2 (Eq. (5.6)) to

estimate σr◦
.

(iv) Apply the procedure outlined in Section 5.4 to find n◦ and σys◦
using the values

of α
◦
, σr◦

and E obtained in (i) and (iii).

(v) With Fig. 6.4, estimate α◦/α for the friction coefficient µ of the experiment using

the above values of n◦, σys◦
and E. Multiply such α◦/α by the value of α obtained in

(i) to calculate a new α◦.

(vi) Compute H◦
′ with the measured µ and the value of α◦/α in (v). Use Eq. (6.22)

if
√

α > 1.12 and µ ≤ 0.1; or Eq. (6.23) either if
√

α < 1.12 for any arbitrary µ, or if
√

α > 1.12 and µ = 0.2. For intermediate values of µ, interpolate with the above results

of H◦
′ for µ = 0.1 and 0.2.
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6. The role of friction on sharp indentation

(vii) End the procedure if H◦ = H◦
′. Otherwise, take H◦ = H◦

′ and apply steps

(iii)–(vii). (Note that the current α◦ obtained in (v) has to be used in (iv) in each

subsequent iteration). The final σys◦
and n◦ correspond to the actual yield strength and

strain hardening coefficient of the indented material. Less than 4 iterations are usually

needed to obtain these properties within good accuracy.

The above methodology is relevant to the analysis of indentation experiments because

if frictional effects were disregarded, the overall contact response in terms of hardness

and surface deformation would coincide with that of a solid whose n or, alternatively,

σys are larger to the utmost of ∼ 50%. The magnitude of such overestimation depends

upon
√

α, n, σys and µ.

6.4 Summary

Present chapter provided a rationale to assess the role of friction on sharp indentation

experiments performed in strain hardening solids. Finite element simulations were con-

ducted to analyze the effect of friction coefficient µ on the main physical quantities and

features of indentation testing (such as hardness and the attainment of surface defor-

mation effects around the contact boundary), as well as instrumented indentation P–hs

curves.

The finite element simulations of pressure distributions along with the theoretical

treatment of frictional contacts provided in Section 6.2, enable derivation of two equa-

tions relating the actual hardness H with the equivalent hardness in the absence of

friction H◦. It is found that α is a useful parameter in establishing the range of appli-

cability of these equations. In this sense, it is shown that when considerable piling-up

occurs (
√

α > 1.12), Eq. (6.22) provides a good relation between H and H◦, whereas

for moderate pileup or sinking-in effects H and H◦ are better correlated through Eq.

(6.23).

Emphasis is placed in providing a detailed evaluation of the influence of the friction

coefficient µ on α in solids exhibiting a vast combination of mechanical properties. Since

solids undergoing extensive pileup require slipping of material to take place against the
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Measure E, H, α,and µ
(steps (i)–(iii) in Section 6.3)

)/( αα oWith figure 6.4 obtain
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Compute
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Take

Ho ≡ H
αo ≡ α

Use Eq. (6.22) or (6.23) to obtain σro
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Figure 6.7: Algorithm to evaluate frictional effects on mechanical properties extracted
through indentation experiments.
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6. The role of friction on sharp indentation

indenter, friction has the largest influence on their contact response as it opposes such

slip. In these solids, it is found that Coulomb’s relation gives the distribution of shear

stresses acting at the interface, simplifying the theoretical treatment of frictional effects

on hardness. On the other hand, moderate pileup or sinking-in effects (
√

α < 1.12) are

indicative of contact responses wherein the radial flow of material at the indenter’s face is

restrained even in the absence of friction. Consequently, in such solids, the introduction

of friction into the analysis does not bring much of a change in plastic flow patterns

and pressure distributions. It goes without saying that as the critical shear stress is not

reached in the latter cases, Coulomb’s law does not provide an accurate description of

contact interactions.

Finally, a methodology is proposed to account for the influence of the friction coeffi-

cient in mechanical properties evaluated through instrumented indentation experiments.

The methodology utilizes present findings of the role of friction on the development of

surface deformation, as well as the procedure devised in the §5 to infer yield strength

σys and hardening coefficient n from indentation experiments. The actual friction coef-

ficient has to be taken into account in the assessment of mechanical properties specially

in such solids exhibiting piling-up effects, where the largest influence of friction upon

the contact response is encountered. In such cases, the values of σys and n extracted

from the P–hs curves neglecting friction may be up to 50% larger than the actual ones.

From an experimental standpoint, it may be recommended that rather than using

a lubricating fluid to decrease friction in indentation experiments, one shall consider

measuring the actual friction coefficient and correct the results according to the analysis

presented herein. While the use of a lubricating fluid between the indenter and specimen

may certainly decrease µ, its effective value in the presence of such fluid may be difficult

to evaluate experimentally. In addition, large contact pressures in indentation testing

may induce evacuation of the fluid from the contact area, thus preventing formation of a

lubricating layer. It is finally noticed that indentation size effects, typically encountered

in nano- and micro-indentation, may not be related to frictional effects [7; 37; 53; 54].

In this sense, note that within present analytical framework, hardness and surface defor-
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mation remain constant irrespective of applied load range for a given friction coefficient.

Surface roughness effects in nano-indentation may defy the continuum treatment pre-

sented herein when the contact area is comparable to the characteristic length-scale of

the roughness profile at the indented surface. In addition to the current framework,

where the indented surface is characterized through a continuous (macroscopic) value

of µ, the effect of roughness on nano-indentation may be taken into account considering

the change in the angle of incidence of the indenter as it is brought into contact with

the asperities of the surface [12; 16].
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Chapter 7

The plastic zone size in
indentation experiments: the
analogy with the expansion of a
spherical cavity

A characteristic feature of indentation experiments is the development of a plastic zone,

whose size increases during load application. Among other aspects, knowledge of the

plastic zone size allows (i) extraction of the yield strength of a material; (ii) examination,

within a continuum mechanics framework, of discrete deformation processes occurring

at small loads; and (iii) assessment of possible influence of substrate effects on the

contact response of thin films and small-volume structures; see [29; 35; 36; 45; 49; 53;

66; 68; 77; 79]. In addition, the shape of the plastic zone is indicative of the plastic

flow features underneath the indenter. In this thesis we have shown that elasticity

plays a fundamental role in indentation experiments when the plastic zone is confined

underneath the indenter’s tip. On the other hand, elastic strains play a secondary effect

within the fully plastic contact regime, where the plastic zone spreads outwards from

the indenter (see §4).

Mechanistic interpretations to indentation experiments have long been based on the

analogy between indentation and the expansion of a spherical cavity [10; 28; 47]. This
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7. The plastic zone size in indentation experiments

analogy provides useful relationships between contact parameters, such as hardness and

plastic zone size, and the elasto-plastic mechanical properties of the material. In partic-

ular, Johnson’s model allows one to predict the plastic zone size c from

(
c

as

)3

=
3

E

σys
(7.1)

where as is the radius of the imprint (which is equivalent to the radius of the spherical

cavity), E is the Young’s modulus, and σys is the yield strength. Although this equation

has been employed in the analysis of indentation experiments [29; 35; 36; 45; 47; 49; 53;

66; 77; 79], the underlying analogy between indentation parameters and those ruling the

expansion of the cavity has not been thoroughly established. Furthermore, the above

indentation model requires definition of a hydrostatic core to act as the spherical cavity

[28; 47]. The rationale behind the conception of the core remains rather obscure, as it

comprises both the rigid indenter and the surrounding material within a single concept.

Also, the hydrostatic nature of the core is controversial in light of the large shear stresses

and extensive plastic flow attained underneath the indenter.

An important limitation in Eq. (7.1) is that it ignores strain hardening effects, as it is

derived for elastic–perfectly plastic solids. Formulations to incorporate strain hardening

into the analysis of the expanding cavity were given by [9; 21; 28; 33; 56]. These

investigations focused on the internal pressure existing at the cavity which, according

to Johnson’s model, is taken to be proportional to hardness. Although such analyses

on strain-hardening solids succeeded in finding integral-form relations for the internal

pressure as a function of the plastic zone size, attempts were not made to derive closed-

form relations between the plastic zone and the mechanical properties of the solid. The

main purpose of this chapter is to obtain closed-form solutions for these relations and

to ensure their applicability to the analysis of indentation experiments.

This chapter is arranged in the following sections. First, the internal pressure for

the expansion of the cavity in elastic–power-law plastic solids is solved in Section 7.1.

Through extensive finite element simulations of spherical and conical indentation, the

analogy between indentation experiments and the expansion of the cavity is examined
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7.1 Formulation of the expansion of a spherical cavity in an infinite medium

in Section 7.3. The finite element simulations allow us to elaborate on the concept of

an equivalent spherical indenter, which replaces the cavity. Based upon these findings,

parameters from indentation experiments are related to governing variables from ex-

panding cavity formulations. These formulations are then reviewed in the context of

indentation experiments in Section 7.4. Three-dimensional finite element simulations of

pyramidal indentation are used in Section 7.5 to address the issue of how to extend the

present framework to the analysis of Vickers and Berkovich indentation experiments, as

well as to evaluate the influence of load removal upon the extension of the plastic zone.

7.1 Formulation of the expansion of a spherical cavity in
an infinite medium

7.1.1 General framework

In this section, an overview is given on the existing framework for the analysis of the

expansion of a spherical cavity in strain hardening solids [42; 56]. Figure 7.1 illustrates a

cavity of instantaneous radius Ri which expands radially into an infinite space. Inflation

of the cavity exerts hydrostatic pressure which modifies the stress-strain state of the

surrounding medium.

After an initial elastic behavior of the solid, further inflation of the cavity leads to the

onset of plastic deformation at a critical value of internal pressure pcav. An elastic-plastic

boundary of radius c is thus induced, where for ρ > c the solid remains elastic. Owing

to spherical symmetry, stresses and strains are expressed in terms of radial position ρ,

Fig. 7.1. By virtue of spherical symmetry, the stress state is taken as the sum of a fully

hydrostatic state (σθ, σθ, σθ) and compressive state (σρ − σθ, 0, 0) [42]. Hence, the von

Mises yield condition implies [56],

σθ − σρ = Y (ε) , (7.2)

where Y (ε) is the uniaxial strain-hardening law of the solid, which is taken to obey a

Ramberg-Osgood relation. Therefore, see Appendix A,
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F_PZ-1

ci

pcav

ρ

Ri

Fig. 1

Figure 7.1: Expansion of a spherical cavity of instantaneous radius Ri and plastic zone
ci induced by hydrostatic pressure pcav. ρ is the radial coordinate.

σ =
{

Eε if ε ≤ εys,

Y(ε) = σ◦ε
n otherwise,

(7.3)

where ε is the total uniaxial strain (ε = εel + εpl), E is the Young’s modulus, and n is

the power-law strain-hardening coefficient. As in the previous chapters, for continuity

of the stress–strain relation at ε = εys it follows that σ◦ = σys
1−nEn.

As the stresses are continuous across the elastic-plastic boundary, the internal pres-

sure pcav leading to plastic flow is [42; 56]

pcav =
2
3
σys + 2

∫ c

R

Y (ε)
dρ

ρ
. (7.4)

The following concerns description of cavity growth in terms of the plastic zone size

and the mechanical properties of the solid. Treating the elastic-plastic boundary as

elastic and compressible, the relative plastic zone size (c/R) is given by [42; 56]

dR

dc
=

3(1− ν)Y (ε)c2

ER2
− 2(1− 2ν)Y (ε)R

Ec
. (7.5)
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7.1 Formulation of the expansion of a spherical cavity in an infinite medium

For simplicity in solving Eq. (7.5), plastic incompressibility is assumed for ρ < c (i.e.,

Poisson’s ratio, ν, = 0.5). This is a sensible approximation as ν has little influence in

the value of c [21]. The second term in the right-hand side of Eq. (7.5) thus vanishes,

leading to a separate-variable differential equation. Integration yields

R3 −R◦
3 =

3
2E

∫ c

c◦

3ρ2Y (ε)dρ , (7.6)

where R◦ is the cavity radius corresponding to a plastic zone c◦. In contrast to Eq. (7.4),

which describes an instantaneous state in the inflation of the cavity, Eq. (7.6) concerns

the evolution of the cavity from initial conditions R◦ and c◦. Therefore, finding closed-

form solutions for Eq. (7.6) requires prior knowledge of variables R◦ and c◦.

A particular case in the above analyses pertains to elastic–perfectly plastic solids

(n = 0 and Y (ε) = σys) [42]. Integration of Eq. (7.4) in such solids yields

pcav =
2
3
σys

[
1 + 3ln

( c

R

)]
. (7.7)

Under these conditions, the well-known relation for the relative plastic zone size is ob-

tained from Eq. (7.6):

c

R
=

(
2E

3σys

) 1
3

, (7.8)

where it is assumed that R◦ = c◦ = 0 [42]. Alternatively, considering that linear elas-

ticity still applies at the elastic-plastic boundary, ρ = c, substitution of elastic solutions

for σθ and σρ into Eq. (7.2) yield the same relation as Eq. (7.8) [42; 56].

7.1.2 Fully plastic response

Integration of Eq. (7.4) is performed in this section neglecting the influence of elastic

strains on the plastic zone size (i.e., ε = εpl). The closed-form solution derived herein

thus applies to the inflation of a cavity in solids whose local strains are plastically

dominated. The applicability of this approximation to indentation experiments of solids

exhibiting various degrees of elasto-plastic deformation is examined in Section 7.4.2.
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7. The plastic zone size in indentation experiments

Since the displacements are radial, plastic incompressibility allows one to find the

following equation for radial deformation ε within the plastic zone (see [42; 56])

ε = 2ln
(

ρ

ρ◦

)
=

2
3
ln

(
ρ3

ρ3 −R3

)
. (7.9)

Equation (7.9) prescribes the instantaneous deformation of a generic material-point at

distance ρ with respect to its initial position ρ◦ (ρ and ρ◦ are within plastic zones c and

c◦, respectively). In deriving Eq. (7.9), it is further assumed that R◦ = 0.

Substitution of Eq. (7.9) into Eq. (7.3) leads to a relationship for yield strength Y

in terms radial coordinate ρ. Then, from Eq. (7.4), it follows that

pcav =
2
3
σys + 2

∫ c

R

σ◦

(
2
3
ln

(
ρ3

ρ3 −R3

))n dρ

ρ
. (7.10)

Taking t = ρ/R, Eq. (7.10) transforms to

pcav =
2
3
σys + 2

∫ c/R

1

σ◦

(
2
3
ln

(
t3

t3 − 1

))n dt

t
. (7.11)

This equation provides a fundamental relationship between cavity pressure pcav; me-

chanical properties σys, σ◦ and n; and relative plastic zone size c/R. However, to our

knowledge, the integral in Eq. (7.11) lacks of analytical solution. The approach adopted

herein to solve Eq. (7.11) is thus to replace the integrand with a simple best-fit in-

tegrable function. It is remarked that although the integrand diverges for t = 1, the

integral in Eq. (7.11) is necessarily finite as σys and pcav are bounded quantities.

Hence, we seek to find f(t, n) so that

(
2
3

ln
(

t3

t3 − 1

))n 1
t

= f(t ≥ x(n), n) ' A(n) tB(n) , (7.12)

where x(n) is the value of t below which f(t, n) starts to depart from the integrand.

Functional analysis is then used to obtain constants A and B best-fitting Eq. (7.12) for

discrete values of the strain hardening coefficient n. Representation of f(t, n) = AtB

readily confirms that for optimum values of A and B, this simple functional form adjusts
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7.1 Formulation of the expansion of a spherical cavity in an infinite medium

extremely well to the integrand (provided t ≥ x(n)), Fig. 7.2. To solve the integral, we

then impose

∫ c/R

1

2σ◦

(
2
3
ln

(
t3

t3 − 1

))n dt

t
= 2σ◦N◦(n) + 2σ◦

∫ c/R

x(n)

f(t, n) dt , (7.13)

where 2σ◦N◦(n) estimates the diverging part of the integral from t = 1 to t = x(n). The

actual value of N◦(n) is herein obtained through a numerical integration scheme.

Fig. 2 F_PZ-2
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Figure 7.2: Functional analysis of the integrand in Eq.(7.12) for a value of n = 0.2. The
solid line corresponds to the integrand, and the dashed line to the fitting function AtB .

Finally, substituting Eq. (7.13) into Eq. (7.11) yields

pcav

σ◦
=

2
3

σys

σ◦
+ 2N◦(n) + 2M◦(n)

[( c

R

)P (n)

− x(n)P (n)

]
; (7.14)

M◦(n) =
A(n)

B(n) + 1
, P (n) = B(n) + 1 .
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7. The plastic zone size in indentation experiments

We now direct attention to the early work by Tabor, where hardness is normalized

with respect to the representative uniaxial stress σr [73]. This is an important issue as

the use of expanding cavity formulations in the analysis of indentation experiments relies

on the equivalency between hardness H and pressure pcav, see Section 7.3. In the spirit of

Tabor’s work, stress level σr is defined at a uniaxial material-independent representative

deformation εr of 0.1, so that H/σr happens to be of about 2.7 in solids whose contact

response is plastically dominated (see §4). Then, from the uniaxial stress-strain relation

(Eq. (7.3)) it follows that

σr = σys
1−n(0.1 E)n . (7.15)

Thus, replacing variable σ◦ for σr in Eq. (7.14), yields

pcav

σr
=

2
3

(
εys

εr

)n

+ Θ(n) + M(n)
( c

R

)P (n)

; (7.16)

Θ(n) = N(n)−M(n) x(n)P (n) , N(n) =
2N◦(n)

εrn
, M(n) =

2M◦(n)
εrn

.

Where, in accordance with Eqs. (7.12)–(7.14), it is found that

Θ(n) = 2.5968 +
0.5097

n
, (7.17)

M(n) = −2.2778− 0.5479
n

, (7.18)

P (n) = −3.0615 n− 0.005 . (7.19)

7.1.3 Elasto-plastic response

In this section, we aim at extending the above analysis for fully-plastic solids to ac-

count for the influence of elastic strains within the plastic zone. An integral equation

for pcav/σ◦ that explicitly incorporates the role of elastic strains is thus derived. As
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7.1 Formulation of the expansion of a spherical cavity in an infinite medium

described in Section 7.4.1, this analysis is relevant to indentation experiments in solids

whose contact response is significantly affected by elasticity (that is to say, those de-

forming within the elasto-plastic contact regime, see §4).

Following Eq. (7.3), the uniaxial strain-hardening law of the solid is assumed to obey

Y (ε) = σ◦(εpl + εel)
n = σ◦

(
εpl +

σ

E

)n

. (7.20)

Considering that elastic strains are smaller than plastic strains, we write

(
εpl +

σ

E

)n

' εpl
n

(
1 + n

σ/E

εpl

)
. (7.21)

So that, taking εpl ' ε, it follows that

Y (ε) ' σ◦

(
εn + nεn−1 σ

E

)
= σ◦ε

n +
σ◦

2

E
nε2n−1 . (7.22)

The same analysis as in Section 7.1.1 is then performed using the approximative

stress-strain relation in Eq. (7.22). After some rearrangements, we find

pcav

σ◦
=

2
3

σys

σ◦
+ 2

∫ c/R

1

(
2
3
ln

(
t3

t3 − 1

))n dt

t
+

2n
σ◦
E

∫ c/R

1

(
2
3
ln

(
t3

t3 − 1

))2n−1 dt

t
. (7.23)

By virtue of the approximation made in Eq. (7.22), note that the right hand side of

Eq. (7.23) is composed by three terms. A relevant feature in this formulation is that,

comparing Eq. (7.23) with Eq. (7.11), one can readily see that the first two terms in Eq.

(7.23) correspond to the fully plastic solution, so that the influence of elastic strains is

necessarily captured through the third term. The second term dominates over the third

term in metallic materials because σ◦ � E and n < 0.6. The validity of Eq. (7.23) is

questionable in stiff solids where n → 1, as one may not longer assume that εpl ' ε.
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7. The plastic zone size in indentation experiments

7.2 Finite element simulations

Finite element simulations were performed for conical and spherical indentation experi-

ments. Details of the finite element meshes and their density-region hierarchy are given

in Section 3.1. Indenter’s diameter was scaled to fulfill as/R = 0.75 at maximum depth.

Complementary three-dimensional simulations were performed for the Vickers and the

Berkovich pyramidal indenters as described in [20; 39], see Fig. 7.3. Frictionless contact

conditions were assumed.

(a)

2θ=136º

θ=65.3º

Figure 2: Indenter’s geometry and meshes used in the simulations : (a) conical 
tip, (b) Vickers pyramid and (c) Berkovich pyramid.

Fig. 3

2θ=140.6º

θ = 70.3º

(b)

Figure 7.3: Finite element mesh used in the three-dimensional simulations of Vickers
and Berkovich indentations. [From [20]].

The simulations of spherical indentation, Vickers indentation, and Berkovich inden-

tation were performed for the solids listed in Table 7.1. These solids are representative

of the wide range of mechanical properties used in the previous simulations of conical
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7.2 Finite element simulations

indentation (§3).

indenter E / σ r   E (GPa) σ ys  (MPa) n 

 V  4000 200 50 0 

S   1400 70 50 0 

  B 700 70 100 0 

S  B 500 200 400 0 

 V  275 110 400 0 

S V B 70 70 1000 0 

S V B 2197 200 50 0.1 

 V B 1177 200 100 0.1 

S  B 854 70 50 0.1 

  B 458 70 100 0.1 

S V B 338 200 400 0.1 

S  B 148 200 1000 0.1 

S V B 58 70 1000 0.1 

S   1207 200 50 0.2 

 V B 693 200 100 0.2 

 V B 521 70 50 0.2 

S V B 229 200 400 0.2 

S V B 47 70 1000 0.2 

S V B 364 200 50 0.4 

 V B 240 200 100 0.4 

S  B 194 70 50 0.4 

S V B 105 200 400 0.4 

S V B 36 70 1000 0.4 

S = sphere, V = Vickers, B = Berkovich 

 

Table-PZ

Table 7.1: Mechanical properties of the solids used in the simulations of spherical and
pyramidal indentation.
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7. The plastic zone size in indentation experiments

7.3 The analogy between indentation and the expansion
of a cavity

The purpose of this section is to propose a sensible substitution of the parameters

describing the plastic zone in sharp indentation experiments for those in expanding

cavity formulations.

We first seek to establish an equivalent penetration depth in which the plastic zone

induced by a spherical indenter (replacing the cavity) is similar to that existing around

a conical tip. Note that the sought-after similarity exclusively concerns the plastic zone

and not the stress fields or hardness values. Perhaps the main obstacle in finding such an

equivalent penetration depth is that while the plastic zone in sharp indentation has a self-

similar nature, the severity of the deformation field in spherical indentation increases

as the ratio between contact radius as to indenter’s radius R is increased. Thus, as

indentation strain as/R increases, the contact response evolves from a Hertzian perfectly-

elastic regime, to an elasto-plastic transition, to the fully plastic response examined by

Tabor. In the absence of length scales, however, the active deformation regime in conical

indentation remains constant throughout the entire penetration process by virtue of its

self-similar character. Following the work by Johnson, a contact deformation map was

devised in §4 to predict the active deformation regime in sharp indentation experiments

of strain hardening solids. The results, which are pertinent to the present discussion,

showed that the degree of elasto-plasticity increased in solids with a small E or with

large values of σys and n.

It is noteworthy that the angle of 136◦ existing between opposite faces of the Vickers

pyramidal indenter was selected based upon a geometrical analogy with the spherical

(Brinell) indentation test. In the spirit of this analogy, the equivalent sphere is taken to

be tangent to the cone at imprint radius as (Fig. 7.4(a)). It thus follows that

sin(90◦ − θ) = as/R , (7.24)

so that when θ = 70.3◦, as/R = 0.342. Nevertheless, inspection of the finite element
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7.3 The analogy between indentation and the expansion of a cavity

simulations reveals that the plastic zone size induced by the conical indenter is larger

than that which is present around the spherical tip at as/R = 0.342 (Fig. 7.5). Overall,

the evolution in plastic zone size exhibited in spherical indentation of solids with a large

degree of elasto-plasticity is more pronounced than that found in those whose contact

response is more plastically dominated (compare Figs. 7.5 (a) and (c)). The difference in

plastic zone sizes between both tips thus increases as the contact response becomes more

elasto-plastic. This indicates that, while solids indented within the fully plastic contact

regime have similar plastic zones for conical and spherical indentation provided as/R >

0.30, this is not true in elasto-plastic materials where agreement in the plastic zone size is

only encountered for larger values of as/R. Along these lines, circumspective analysis of

the finite element simulations suggests that irrespectively of the contact response, relative

plastic zone sizes measured at as/R = 0.643 are the same as those exhibited for conical

indentation with θ = 70.3◦. As illustrated in Fig. 7.4(b), this interesting finding enables

us to reformulate the aforementioned analogy of the equivalent penetration depth to

ensure that the two indenters cross each other at the free surface (as) as well as at

penetration depth hs. Simple geometrical arguments thus yield

as

R
=

2tanθ

1 + tan2θ
, (7.25)

so that when θ = 70.3◦, as/R = 0.643. Cavity radius R in expanding cavity formulations

is thus substituted by

R =
as

0.643
. (7.26)

Attention is now given to cavity pressure pcav. In the spirit of the analogy between

the hydrostatic pressure inflating the cavity and hardness measurements in a sharp

indentation experiments, we take

pcav = HL =
H

l
, (7.27)

where H is the projected hardness, HL is the Ludwick hardness computed with the

curved surface or cavity area of the indentation, and l is a projection factor. For conical
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7. The plastic zone size in indentation experiments

θ
as








 +
=

θ
θ

tan
tan

2
1 2

saR

hs

θ
90 - θas

( )θ−
=

90sin
sa

R

Fig. 4 F_PZ-4

(a)

(b)

Figure 7.4: Definition of the equivalent spherical indenter. (a) The sphere is taken to be
tangent to contact radius as. (b) Configuration where the equivalent sphere intersects
contact radius as and penetration depth hs.
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n02E200Y400

σe

1          400
2          448
3          495
4 542
5          590
6 637
7 685
8          875

1

2
3

4
5

6
7

8

4
5
67

8

3
2

1

4
5
6

7

8

3
2

1

45
67

8

3
2

1

100,=
R
as 3420,=

R
as 6430,=

R
as

Fig. 5(b)

(b)

124



7.3 The analogy between indentation and the expansion of a cavity
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(c)

Figure 7.5: Comparison of the plastic zone size between conical and spherical indenta-
tions at different as/R for: (a) a highly elasto-plastic solid (E = 200 GPa, σys = 1000
MPa, and n = 0.4), (b) an elasto-plastic solid (E = 200 GPa, σys = 400 MPa, and n
= 0.2), and (c) a fully- plastic material (E = 200 GPa, σys = 50 MPa, and n = 0.1).
Notice that for all materials, the plastic zone size in spherical indentation equals that
obtained in conical indentation at as/R = 0.643 along the z-axis.
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7. The plastic zone size in indentation experiments

indenters l = 1/sinθ. For the Vickers and the Berkovich indenters, l = 1.079 and 1.101,

respectively. In addition to assimilating a sharp indenter as the spherical tip replac-

ing the cavity, Eq. (7.27) underlies a presumed constancy of the pressure distribution

because, by definition, hydrostatic pressure pcav takes a constant value throughout the

cavity. Thus, HL may only be equated to hydrostatic pressure pcav in solids where the

contact pressure distribution is rather constant.

Finally, one has to consider that expanding cavity formulations describe inflation of

an infinite space. In this regard, comparison between such formulations and indentation

experiments is attempted here along the symmetry z-axis, where the influence of the

free surface is diminished. Thus, following Fig. 7.6,

c = zys + R− hs = zys + 1.913as , (7.28)

where the equality in the right hand side holds for the particular case of a conical tip

whose θ = 70.3◦.

7.4 Validation of the analogy

7.4.1 Elastic–perfectly plastic solids

In the following discussion, the proposed parametrical analogy between indentation ex-

periments and the inflation of the cavity is examined. Essentially, we seek to establish

the applicability of Eqs. (7.7) and (7.8) to the analysis of indentation experiments in

perfectly plastic solids (n = 0). This is performed by recourse to the finite element

simulations of conical indentation, which provide contact radius as, plastic zone size zys,

and hardness H for a given solid indented to a fixed penetration depth hs.

Substitution of Eqs. (7.26)–(7.28) into Eqs. (7.7) and (7.8) yields

H

σys
= l

2
3

+ l 2 ln
(

zys + 1.913as

as/0.643

)
, (7.29)

c

R
=

zys + 1.913as

as/0.643
=

(
2E

3σys

)1/3

. (7.30)
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n02_E200_Y50

Fig. 6 F_PZ-6

c = zys + R – hszys

as

6430,
sa

R =

hs

Figure 7.6: Illustration of the parametrical analogy between indentation and the expan-
sion of a spherical cavity.
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Since the finite element simulations for n = 0 show that H/σys = 2.57 irrespectively

of the mechanical properties of the solid (see §4), substitution of this equality into Eq.

(7.29) suggests saturation of the logarithm in the right hand side and, thus, of relative

plastic zone size c/R (see Figs. 7.7 and 7.8). The trends predicted through Eq. (7.29)

are in very good accord with the finite element simulations. Interestingly, however, Eq.

(7.30) strongly overestimates c/R and does not capture the feature of its saturation.

(Note that Eq. (7.30) predicts a monotonic increase of c/R with E/σys).

The above-mentioned discrepancy between Eqs. (7.29) and (7.30) seems to lie in the

fact that integration limits c◦ = R◦ = 0 (Section 7.1.1) are not truly acceptable solutions

from a physical standpoint. This is because the elastic-plastic boundary only appears

following some early state, where cavity inflation is perfectly elastic. As c appears after

an elastic cavity growth from R = 0, the solution c◦ = R◦ = 0 is exclusively valid in solids

whose σys = 0. (As it is only in such solids where plastic flow commences immediately

upon inflation of the cavity.) It thus follows that it is only for σys = 0 that the expansion

of the cavity has a self-similar nature in the sense that the instantaneous plastic zone

size can be obtained from any previous state, including R◦ = 0. It is noted that the

presumption of similarity was not made in deriving Eq. (7.7), from where Eq. (7.29)

originated.

It is remarked that in the analogy between indentation and the expansion of the

cavity proposed by Johnson [47], the cavity was taken to encompass the indenter and

some of the material located directly underneath the tip. In the present work, however,

the cavity has the perhaps more simple interpretation of being the indenter itself, which

applies pressure to the solid. One may argue that the present analogy is somewhat

arbitrary as it would have also been possible to take any alternative definition of R

and c in Eq. (7.7) while changing constants 2/3 and 2 to capture the trends from

the finite element simulations. In addition to strictly preserving the functional forms

of expanding cavity formulations, current parametrical analogy has the advantage of

holding true when the analysis of indentation experiments in strain hardening solids

comes into its own, see Section 7.4.2.
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Figure 7.7: Correlation between the plastic zone size c/R in conical indentation and E/σr

for the different values of n. Dotted line corresponds to the expanding cavity solution
for elastic–perfectly plastic solids in Eq. (7.29) equated to H/σys = 2.57. Solid lines
correspond to the fully-plastic solution for strain-hardening solids (equating Eq.(7.31)
to Eq.(7.33)). Dashed lines concern the elasto-plastic solution where Θep has been used.
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Fig. 8 F_PZ-8
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Figure 7.8: Comparison between the expanding cavity equations and the simulations of
conical indentation. Solid line represents the fully plastic solution in Eq. (7.31). Dashed
line corresponds to the elasto-plastic equation (Eq.(7.31) where Θep) is employed.
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7.4.2 Elastic–strain hardening solids

We now direct attention to the applicability of expanding cavity formulations to inden-

tation experiments in strain-hardening solids (n > 0). Following present parametrical

analogy (Eqs. (7.26)–(7.28)), Eq. (7.16) is rewritten as

H

σr
= l

[
2
3

( εys

0.1

)n

+ Θ(n) + M(n)
(

zys + 1.913as

as/0.643

)P (n)
]

. (7.31)

Since the influence of elastic strains was neglected in deriving Eq. (7.16), Eq. (7.31)

is in principle limited to solids whose contact response is plastically dominated. As

elasticity is incorporated through the third term in the right hand side of Eq. (7.23)

which is missing in Eqs. (7.16) and (7.31), the finite element simulations allows us to find

function Θep(n) incorporating such missing terms into function Θ(n). Θep(n) is thus to

be used replacing Θ(n) when elasto-plastic contact responses are at issue (E/σr ≤ 110

(§4)):

Θep = 3.3556 +
0.5122

n
. (7.32)

Note that Θep(n) is an approximative function in the sense that it neglects dependency

on σ◦ and E of the replaced term in Eq. (7.23).

Figure 7.8 illustrates that Eq. (7.31) is an accurate formulation in solids deforming

within the fully plastic regime (where original function Θ(n) is used), as well as in

elasto-plastic ones (where function Θep(n) is employed). A general correlation between

the uniaxial stress-strain curve and the size of the plastic zone is then found equating

Eq. (7.31) to the hardness relation obtained in §5:

H

σr
= −0.0023

[
ln

(
E

σr

)]4

+ 0.0647
[
ln

(
E

σr

)]3

− 0.6817
[
ln

(
E

σr

)]2

+3.1968
[
ln

(
E

σr

)]
− 2.9261 (7.33)

Figure 7.7 reveals that the resulting relationship is in accordance to the finite element

simulations for all fully plastic and elasto-plastic solids.
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7.5 Pyramidal indentation and surface estimates of plas-
tic zone size

The objective of this section is to illustrate how to use present framework in the assess-

ment of the plastic zone size at the indented surface, as well as to extend the current

analysis to Vickers and Berkovich indentation.

First, it is relevant to consider issues of indenter’s tip three-dimensionality in present

formulations. Following Section 7.3, the finite element simulations showed that normal-

ized plastic zone size c/R is the same for conical and spherical indentation provided

indentation strain as/D is set at 0.643. Along these lines, the present simulations indi-

cate that this similarity holds for pyramidal indenters when as is measured at an angle

of 25◦ from the corners of Vickers and Berkovich imprints (see Figs. 7.9(a) and (b) and

Fig. 7.10).

Another important aspect in the experimental application of present framework con-

cerns the fact that further plastic flow is promoted upon unloading from peak indentation

load, see Fig. 7.11 (a) and (b). In this regard, the simulations for Vickers, Berkovich,

and conical indentation show that the stress field outside the plastic zone decreases upon

unloading except for the solid lying at vicinity of the free surface, where the equivalent

von Mises stress increases facilitating plastic flow (see Fig. 11 (a)). Interestingly, the

growth of the plastic zone at the surface depends on the contact response of the solid.

Overall, it is enhanced in solids exhibiting an elasto-plastic transition rather than in

those where the fully plastic regime rules the contact response. The finite element simu-

lations indicate that when contact is elasto-plastic, further attainment of plasticity upon

load removal leads to plastic zones whose shape resemble those in fully plastic contacts.

Compare Fig. 7.11(a) with 7.11(b) where, upon load removal, the plastic zone size at

the surface in elasto-plastic contacts bends outwards from the imprint as in fully plastic

indentations. It is noted that this phenomenon is not one of reverse plasticity as plastic

flow upon unloading is not induced by residual compressive stresses but, instead, by an

increase in the magnitude of the tensile stresses close to the surface. Thus, consideration
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7.5 Pyramidal indentation and surface estimates of plastic zone size

Fig. 9
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Figure 7.9: Illustration of equivalent contact radius as for (a) Vickers and (b) Berkovich
pyramidal indentations. Solid line represents the plastic zone at peak load and dashed
line gives the plastic zone upon complete unloading. The simulations are for E = 70
GPa, σys = 50 MPa, and n = 0.2.
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7.6 Summary

of kinematic hardening effects in the plasticity model shall not bring any change to the

present results.

An interesting feature from the simulations of Vickers, Berkovich and conical inden-

tation is that the plastic zone is not continuous in solids with a strong elasto-plastic

character. As shown in Fig. 7.12, an unplastified surface region thus remains embedded

within the plastic zone. Upon unloading, plastic flow gradually occurs at the periphery

of such region, decreasing its size.

The relative increase in plastic zone size δ/cs in terms of E/σr (Fig. 7.13) is found

to be well fitted through

δ

cs
=

(
−19.754 + 1, 00974

(
E

σr

))−1/4,3

(7.34)

for Vickers, Berkovich and conical indentations where, from the geometrical construction

in Fig. 7.11,

cs

R
=

√( c

R

)2

− 0.5868 (7.35)

for the conical tip with θ = 70.3◦ as well as the Vickers and the Berkovich indenters,

where as is defined as in Fig. 7.9. Therefore, to estimate the plastic zone size rys at the

surface, one has to calculate first c/R from Eq. (7.29) in solids where n = 0, or from Eq.

(7.31) when n > 0. Then, find R through Eq. (7.26) and compute cs from Eq. (7.35).

Finally, δ is obtained through Eq. (7.34), so that the plastic zone size is calculated as

rys = cs (1− δ) . (7.36)

7.6 Summary

In this investigation, we have shown the validity of indentation models based on the

expansion of a spherical cavity. This analogy sheds light into the analysis of indentation

experiments either in perfectly plastic and in strain hardening media.

The following are the central findings of this chapter.
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7. The plastic zone size in indentation experiments

Fig. 11
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ŝ

δ

loaded
unloaded

(b)

as

R
hs

c
csrys

ẑ
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Figure 7.11: Plastic zone size for (a) an elasto-plastic solid with E = 200 GPa, σys =
1000 MPa, and n = 0.4, and (b) a fully plastic material with E = 200 GPa, σys = 50
MPa, and n = 0.1. Notice the growth in the plastic zone (dashed line) in the s-axis
whereas the plastic zone remains constant in the z-axis.
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Fig. 12
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Figure 7.12: Comparison between the plastic zone for Berkovich indentation at maximum
load (solid line) and upon load removal (dashed line) for a highly elasto-plastic solid (E
= 70 GPa, σys = 850 MPa, and n = 0.2). Notice the existence of an elastic region
embedded within the plastic zone. Arrows indicate the direction of plastic flow upon
unloading.
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7. The plastic zone size in indentation experiments

Fig. 13
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indenters.
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• Derivation of closed-form solutions for the plastic zone size cannot be strictly

based on the assumption of a vanishingly small plastic zone at the commencement

of cavity inflation. That is, one cannot take R◦ = c◦ = 0 because the early elas-

tic response during cavity expansion breaks out similarity arguments. Presently

derived solutions circumvent such an assumption, extending prior analysis for per-

fectly plastic solids to strain hardening media (n 6= 0). Overall, it is found that

strain hardening has a profound effect on the inflation of the cavity and on the

plastic zone size. Such strain hardening effects cannot be captured through a

simple substitution of yield strength σys with representative stress σr in perfectly

plastic formulations (Eq. (7.1)).

• The present analysis in conjunction with finite element simulations allowed us to

develop an accurate analogy between variables in expanding cavity formulations

and those ruling indentation experiments. This parametrical analogy is based on

the concept of an equivalent spherical indenter which, regardless of the mechanical

properties of the indented material, induces the same plastic zone size as a conical

tip. A distinctive feature of present parametrical analogy is that the plastic zone

size in indentation experiments strictly fulfills predictions from expanding cavity

formulations both in perfectly plastic solids as well as in those undergoing strain

hardening effects.

• Three-dimensional finite element simulations enabled extension of the present

framework to Vickers and Berkovich pyramidal indentation. It is found that the

full features of the plastic zones induced by a conical indenter of tip angle θ =

70.3◦ are maintained at an angle of 25◦ from the corners of Vickers and Berkovich

imprints. Interestingly, considerable plastic flow may occur at the surface upon

unloading from peak indentation load, increasing the plastic zone size. The overall

results from the simulations allowed us to develop a simple procedure for the as-

sessment of the true plastic zone remnant at the indented surface upon complete

load removal in pyramidal and conical indentation.
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Chapter 8

Summary

Comprehensive finite element simulations and analysis of conical indentation were per-

formed in this thesis to develop a detailed physical understanding on the plastic flow

features governing indentation experiments. Limited attention was also given to pyrami-

dal (Vickers and Berkovich) and spherical indentation. This work provided (i) a sound

understanding of the deformation regimes developing in sharp indentation experiments;

(ii) direct correlations between hardness and the development of pileup or sinking-in

around the contact boundary with uniaxial mechanical properties; (iii) a general frame-

work for the analysis of frictional effects in the contact response; and (iv) an improved

physically-based model for indentation predicated upon the analogy of the inflation of

a spherical cavity.

The following are the central findings of this work.

• As the yield strength (σys) and strain hardening coefficient (n) decrease or, al-

ternatively, as Young’s modulus (E) increases, the contact regime evolves from

(i) an elastic-plastic transition, to (ii) a fully plastic contact response, to (iii) a

fully plastic regime where piling-up of material prevails at the contact area. In

accordance with preliminary analyses by Johnson, it was found that Tabor’s equa-

tion, where hardness H = 2.7 σr, strictly applies within the fully plastic regime of

elastic – power-law plastic materials. The results thus confirm the concept of the
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8. Summary

uniqueness of the characteristic strain, εr, = 0.1 that is associated with uniaxial

stress, σr. A contact deformation map was then constructed to provide bounds for

the elasto-plastic transition and the fully plastic contact regimes for a wide range

of values of σys, n and E.

• Mathematical formulations were derived to correlate hardness and the amount of

pileup and sinking-in phenomena around sharp indenters with uniaxial mechanical

properties. The formulations are applicable regardless of the deformation regime

ruling the contact response of the strain hardening solid. A methodology was

devised where the use of these formulations in mechanical property assessments

from indentation experiments was demonstrated. The current results make contact

with existing methodologies using the Π theorem in functional analysis to extract

uniaxial properties from instrumented indentation load–penetration depth curves.

It is argued that since surface deformation is an essential feature of the contact

response, it enters directly or indirectly in such existing methodologies. The the-

sis illustrates how independent knowledge of surface deformation can be used to

guide mechanical property assessments from load–penetration depth curves. A

discussion on the uniqueness of mechanical characterizations through indentation

experiments is also provided.

• The results of finite element simulations in a wide range of solids allowed us to de-

rive two simplified equations accurately accounting for the influence of the friction

coefficient on hardness. Comparisons between the simulations and instrumented

micro-indentation experiments were undertaken to ensure the validity of the for-

mer to metallic materials. Quantitative estimates of the role of friction on the

development of pileup and sinking-in around the contact boundary are also given

in the thesis. These results provide a physical insight into the plastic flow features

of distinctly different solids brought into contact against sharp indenters. Overall,

the investigation shows that the amount of pileup can be used to set the range of

validity of the two hardness equations indicated above. Friction has the largest
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influence on the contact response of solids exhibiting considerable piling-up effects

(whose parameter
√

α > 1.12), whereas materials developing moderate pileup or

sinking-in are less sensitive to friction. Finally, a methodology was devised to

assess the influence of the friction coefficient on mechanical properties extracted

through instrumented experiments.

• The thesis ends with an in-depth examination of the well-known analogy between

indentation experiments and the expansion of a spherical cavity. Closed-form so-

lutions were derived for the extension of the plastic zone in perfectly plastic and

strain hardening solids. The theoretical analysis takes into account the role of elas-

tic and plastic deformations in the overall contact response, leading to accurate

solutions for cavity inflation. Presently proposed analogy is based on compre-

hensive finite element simulations of conical, spherical, and pyramidal indentation

which allows us to find a correspondence between contact parameters and those

from expanding cavity formulations. Such parametrical identification has the ad-

vantage to hold true in expanding cavity formulations for perfectly plastic solids

as well as in those derived herein for strain hardening solids. Attention is given to

the assessment of the plastic zone along the indented surface as well as to quantify

the influence of further plastic flow, induced upon load removal, on the plastic

zone size.
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Appendix A

A.1 Continuum solid mechanics

A brief background on the mechanics of continuum media is given in this section. This

knowledge is relevant in understanding the constitutive response and the plasticity the-

ory used in the finite element simulations performed in this thesis. Definition of the

theories and parameters governing the response of a given solid under load application

thus constitutes the central topic of this section. The continuum theories given next

are capable of describing the macroscopic response of the solid. Any microstructural

effects shall thus be homogenized over the continuum and incorporated in the global pa-

rameters defining the macroscopic behavior of the material. The theories are limited to

those involving temperature-independent deformation processes. We first examine the

principles and constitutive relations for elastic deformations. Then, we analyze plastic

deformations and the underlying constitutive theories. Comprehensive text books are

available providing detailed descriptions of such plasticity theories [42; 56; 57].

145



A. Appendix A

A.1.1 Elasticity theory

The constitutive theory of elasticity is based on the existence of a simple relation between

the stress tensor and the strain tensor of the form σ = σ(ε). The linearization of the

stress-strain relation leads to the generalized Hooke’s law

σij = Cijklεkl (A.1)

where σij is the ij-stress component, εkl is the kl-strain component, and Cijkl is the

tensor containing the elastic constants or stiffness matrix. By virtue of the symmetries

of the stress tensor, where the solid may be taken as homogeneous and isotropic, the 81

components in tensor Cijkl can be reduced to 2.

The simplest case of elasticity is that found in isotropic linear elastic solids, leading

to the following stiffness tensor:

λδijδkl + µδikδjl + γδilδjk , (A.2)

where δij is the Kronecker delta. To satisfy the symmetry of the stress tensor Cijkl =

Cjikl, µ = γ. Introducing this result into Eq.(A.2) leads to

σij = λδijεkk + 2µεij . (A.3)

Constants λ and µ are the Lamé coefficients. Constant µ is referred to as shear modulus

G, and both λ and µ are related to Young’s modulus E and Poisson’s ratio ν [56].

Equivalently, Eq. (A.3) is rewritten as

εij =
1
E

((1 + ν)σkk − νσkkδij) . (A.4)

A particular case is obtained under uniaxial conditions, where non-vanishing stress is

σ = σ11, and ε11 = ε, so that

σ = Eε . (A.5)
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A.1 Continuum solid mechanics

An important element in elasticity theory is due to Green, who introduced conjugate

energy functions where

εij =
∂Φ
∂σij

and σij =
∂Ψ
∂εij

. (A.6)

These functions can be taken so that a linear relation between stresses and strains

emerges (linear hyperelasticity). However, is also possible to define such functions so

that the dependency of stresses and strains becomes non-linear. The latter is employed

in the analysis of plastic flow phenomena (where it is no longer possible to assume

linearity between stresses and strains).

A.1.2 Plasticity theories

Several theories are available to describe the plastic response of solids subjected to a

complex stress state. The more complete incremental theories of plasticity are usually

referred to as flow theories. Essentially, they combine a yield condition, which prescribes

the stress combinations inducing plastic deformations; with a description of the postyield

behavior, which sets the relation between plastic strain increments and the stress com-

ponents as well as the variation in the yield condition caused by strain-hardening phe-

nomena. On the other hand, simple deformation theories prescribe the total strain as a

function of the current stress disregarding the strain history of the solid.

Flow theory

The yield condition for continuum solids whose response is rate-independent pos-

tulates that there exists a function f(Σ) of the stress Σ so that the material remains

elastic for

f(Σ) < 0 or f(Σ) = 0 and
∂f

∂Σij
Σ̇ij < 0 (A.7)

and becomes plastic for
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f(Σ) = 0 and
∂f

∂Σij
Σ̇ij ≥ 0 (A.8)

being f(Σ) ≤ 0 always.

One can visualize function f(Σ) = 0 as a surface in stress space, and interpret the

conditions in Eq.(A.8) so that all possible stress states inside the region enclosed by the

yield surface are elastic, while all the stress states at the surface are plastic. The plastic

loading condition (∂f/∂Σij) Σ̇ij ≥ 0 thus ensures that plastic deformation proceeds

over time as the stress state cannot evolve towards the elastic region. Notice that yield

surface f(Σ) contains material parameters which may vary over time, so that f(Σ)

remains equal to zero as plastic deformation proceeds.

In the present thesis, we assume that the material follows the Levy-Mises yield

condition,

f(Σ) ≡ J2 − k2 = 0 , (A.9)

where J2 is the second invariant of the stress deviator Σ′ [42; 56; 57]. While k is

constant in perfectly plastic solids, it increases during deformation of strain-hardening

materials. Figure A.1 illustrates the yield surface for the simple case of biaxial stress (Σ11

and Σ22). As plastic deformation proceeds, the isotropic-hardening Levy-Mises theory

indicates that the yield surface shall maintain its shape and enlarge in such a way that

any instantaneous stress state cannot be located outside the current yield surface.

Metal plasticity theories particularize the general yield condition in Eq.(A.8) to fulfill

the following conditions:

Yield is independent of hydrostatic pressure. This implies that the yield surface is an

exclusive function of stress deviator Σ′ (Σij
′ = Σij − 1

3Σmmδij). This assumption gives

a good description of plastic deformation processes in metallic materials, as dislocation

slip is independent of the spherical part of the stress tensor [42; 57]. Therefore, the yield

surface in Eq.(A.8) reads
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σI

σII

p
ijε&

Figure A.1: Schematic of the yield surface in the principal stresses σI–σII plane (biaxial

stress state).
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f(Σ) = f(Σ′) = 0 . (A.10)

The material is isotropic. This assumption indicates that since there are no pre-

ferred directions in the solid, function Σ has the same form in any orientation within

the material. Without considering Eq. (A.10), the yield condition in terms of stress

components Σij reads

f(Σ) = f(Σ11,Σ22,Σ33,Σ23,Σ31,Σ13) (A.11)

or, using principal stresses σ1, σ2, σ3, and principal directions n̂1, n̂2, n̂3,

f(Σ) = f(σ1, σ2, σ3, n̂1, n̂2, n̂3) . (A.12)

Isotropy indicates that (i) f cannot depend on the orientation n̂i of the principal stresses,

and (ii) the dependency of f upon the principal stress components σi is indistinguishable

so that f is a symmetric function of σ1, σ2, σ3. Hence, the yield surface can be expressed

through any linear combination of the three principal stresses σ1, σ2, σ3. Since any stress

combination is described through stress invariants I1, I2, I3, the yield condition can be

rewritten as

f(Σ) = f(I1, I2, I3) . (A.13)

Together with the assumption of the independency of yield on hydrostatic pressure,

f can then be expressed as a function of deviatoric stress invariants J2 and J3 (since

J1 ≡ 0)

f(Σ) = f(J2, J3) . (A.14)

The yield surface is symmetric. f(−Σ) = f(Σ). In accordance with the assumption

of material isotropy, yield locus has to be symmetric with respect to the axis of the stress

space. This postulate implies an additional symmetry of the yield surface with respect

to the origin. From a physical standpoint, this condition excludes materials exhibiting
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Bauschinger effects, where load reversal causes plastic flow at stresses whose magnitude

lies below those applied in the original loading path.

The von Mises yield criterion is known to fulfill the above assumptions, as well as to

consider that plastic flow is independent of the third invariant J3:

f = f(J2) =
1
6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]
− k2 = 0 , (A.15)

or using the principal deviatoric stress components s1, s2, s3,

f = f(J2) =
1
2

[
s1

2 + s2
2 + s3

2
]
− k2 = 0 . (A.16)

Figure A.2 gives a schematic representation of such yield surface on the principal stress

space, where the von Mises condition is depicted as a cylinder oriented parallel to the

hydrostatic line (σ1 = σ2 = σ3), whose section is the deviatoric plane (σ1 +σ2 +σ3 = 0).

In addition to the above postulates on the yield surface, a flow theory of plasticity

incorporates a plastic flow potential function. Such potential is described in terms of

generalized variables which prescribe the mechanical behavior of the material for any

type of external solicitations. Thus, at each material point i, the generalized stresses

Qi and their conjugate rates of deformation q̇i are defined. In the three-dimensional

formulation, the nine components of the generalized stress Qi are the nine stress com-

ponents Σij , and the deformation rate is identified as dεij/dt. These variables allow one

to define the plastic potential function as the function f of Qi that prescribes the rate

of plastic deformation q̇pl
i ,

q̇pl
i = λ̇

∂f

∂Qi
, (A.17)

where λ̇ is a scalar function. We shall note that for stable plastic solids [57] the plastic

potential function exists and it is identical to the yield function, which must represent a

convex surface in the stress space. [Quoting Drucker’s definition, a stable plastic material

is one where “(i) the plastic work done by the external agency during the application
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Figure A.2: Von Mises yield surface in the principal stresses space (σ1, σ2, σ3) for a

generic three-dimensional stress state.
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of additional stresses is positive, and (ii) the net total work performed by the external

agency during the cycle of adding and removing stresses is non-negative”.]

Geometrical interpretation of the plastic potential in Eq.(A.17) leads to the concep-

tion that the plastic rate of deformation q̇pl is parallel to the outer normal at a point Q

of yield surface f . Since the outer normal to the yield surface is parallel to the deviatoric

plane in the von Mises plasticity model described above, plastic deformations are also

deviatoric and there are no plastic volume changes.

Finally, the evolution of the yield function during plastic deformation is obtained

through the work-hardening behavior. Several simplifications can be made upon the

strain-hardening response: perfect plasticity (where yield surface is constant during

plastic flow), isotropic hardening, and kinematic hardening. Isotropic hardening is as-

sumed in this thesis so that the yield surface maintains its shape while its size increases.

This behavior is controlled by a single parameter depending on plastic deformation. On

the other hand, capturing anisotropic deformation phenomena such as Bauschinger ef-

fects necessarily requires consideration of a non-isotropic (kinematic) hardening theory.

Under the isotropic hardening hypothesis, it is possible to find the explicit form of scalar

λ̇ in Eq.(A.17) using two scalar quantities prescribing a generalized stress-strain relation.

The scalar stress is defined as the effective stress σ̄, which measures the size of the von

Mises yield surface as

σ̄ =
√

3J2 =

√
3
2
sijsij . (A.18)

The scalar strain is the effective plastic-strain increment ¯dεpl, defined as

¯dεpl =

√
2
3
dεpl

ijdεpl
ij . (A.19)

The numerical factors in Eq.(A.18) and Eq.(A.19) are chosen so that under uniaxial

stress (Σ11) one has σ̄ = Σ11 and ¯dεpl = dεpl
11. Combination of the von Mises yield

condition (Eq.(A.9)), the plastic potential function (Eq.(A.17)), and the above defini-

tions leads to
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dεpl
ij =

3
2

¯dεpl
ij

σ̄
sij , (A.20)

which determines the evolution of the plastic strains in terms of known variables.

The concepts of effective stress and effective strain are used to generalize the uniaxial

stress-strain relations to triaxial states. Stress-strain relations obtained from uniaxial

tests in metallic materials are usually well fitted through the piece-wise equation

σ =
{

Eε ε ≤ εys,
σ◦ε

n otherwise , (A.21)

where the first part accounts for the elastic response and the second part describes

plastic deformations. Parameter n is the hardening coefficient, and σ◦ = σ
(1−n)
ys En for

continuity at εys. An alternative model regards solids exhibiting linear strain hardening,

so that the stress-strain relation reads

σ =
{

Eε ε ≤ εys,
m ε otherwise , (A.22)

where m is the linear plastic hardening slope, which has dimensions of stress. Figure

A.3 is an schematic illustration of Eq.(A.21) and Eq.(A.22).

Limiting values of E, n, and σys provide idealized cases that are of special interest

in contact mechanics. These model responses are shown in Fig. A.4.

Box in Fig. A.5 summarizes the main features of the J2 flow theory where the plastic

flow potential function is taken to be associated to the von Mises yield condition. This

model is adopted in the finite element simulations performed in this thesis (§3).

Deformation theories

The principal assumption in a deformation theory of plasticity is that the correlation

between the plastic strains and the stresses is fully prescribed through a state equation.

These theories neglect strain history, as any instantaneous strain only depends on the

actual stress state. The main advantage of deformation theories of plasticity is that their

mathematical treatment is more simple than that of flow theories. Deformation theories
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Figure A.3: Stress-strain curve for an elastic–power-law plastic solid, and elastic–linear

plastic solid.
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Figure A.4: Idealized stress-strain relations. (a) Rigid–perfectly plastic, (b) elastic–

perfectly plastic, (c) rigid–power-law plastic, and (d) power-law plastic (σys = 0).
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J2 associated flow plasticity model
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Figure A.5: Main features of the J2 flow plasticity model.
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are accurate for simple loading cases in which the stresses evolve in a radial path in the

stress space.

In a deformation theory, the material can be taken to fulfill the von Mises yield

condition, and the finite strain Eij to be the sum of the elastic Eel
ij and the plastic

Epl
ij parts of the deformation. These components are obtained separately from their

corresponding stress-strain relation, where

Eij = Eel
ij + Epl

ij . (A.23)

The elastic finite deformation components Eel
ij are linked to the total stress components

Σij and deviatoric stresses Σ′
ij as

Eel
kk =

1− 2ν

E
Σkk E′el

ij =
1

2G
Σ′

ij . (A.24)

Plastic finite strains Epl
ij are taken to be proportional to the deviatoric stress compo-

nents Σ′
ij ,

Epl
ij = φΣ′

ij , (A.25)

where φ is a proportionality scalar function. This scalar is a function of the equivalent

stress σ̄ and the equivalent strain ε̄pl, defined in Eq.(A.18) and Eq.(A.19),

φ =
2
3

ε̄pl

σ̄
. (A.26)

Thus, the stress-strain relation in a simple uniaxial test provides the value for φ. Note

that there is no “plastic” unloading criterion, as this model is based on non-linear elas-

ticity formulations.
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