TESIS DOCTORAL

SOBRE EL USO Y LA GESTIÓN COMO LOS FACTORES PRINCIPALES QUE DETERMINAN EL CONSUMO DE ENERGÍA EN LA EDIFICACIÓN.

Una aportación para reducir el impacto ambiental de los edificios

Fabian López Plazas Doctorando

Albert Cuchí Burgos Tutor y director

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Departament de Construccions Arquitectòniques I

Programa Àmbits de Recerca en l'Energia i el Medi Ambient a l'Arquitectura

Barcelona, febrero de 2006

TOMO II Anexos

Índice tomo II

Anexos							
1.	1. Anexo 1. Trabajo de campo: Levantamiento de datos.						
	1.1.	Resumen de datos obtenidos por edificio	7				
	1.2.	Resumen de datos dinámicos obtenidos por edificio	16				
2.	Anex	co 2. Evaluación de la demanda energética					
	2.1.	Evaluación de la demanda por el método de los grados día	37				
	2.2.	Evaluación de la demanda con la herramienta ARCHISUN	52				
	2.3.	Evaluación de la demanda con la herramienta BALANÇ ENERGETIC	67				
	2.4.	Evaluación de la demanda con la herramienta LIDER	84				
3.	Anex	co 3. Evaluación del rendimiento medio de los sistemas					
	3.1.	Características de las instalaciones	115				
	3.2.	Evaluación del rendimiento utilizando valores de referencia	130				
	3.3.	Evaluación con la herramienta CALENER	135				
4.	Anex	co 4. Evaluación del factor de gestión					
	4.1.	Parámetros del análisis	169				
	4.2.	Resultados obtenidos por edificio	170				

1. Anexo 1. Trabajo de campo: Levantamiento de datos.

- 1.1. Resumen de datos obtenidos por edificio
- 1.2. Resumen de datos dinámicos obtenidos por edificio

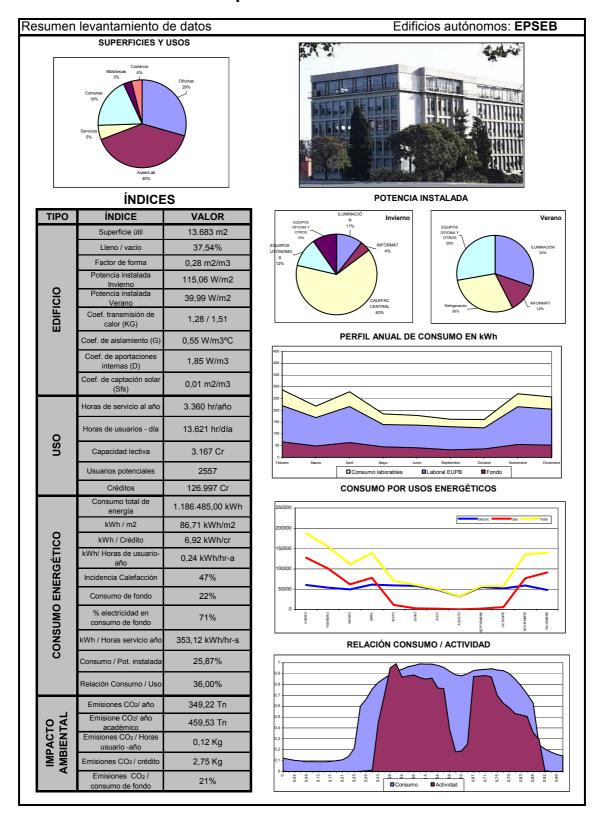
1. Anexo 1: Trabajo de campo: Levantamiento de datos

1.1. Resumen de datos obtenidos por edificio.

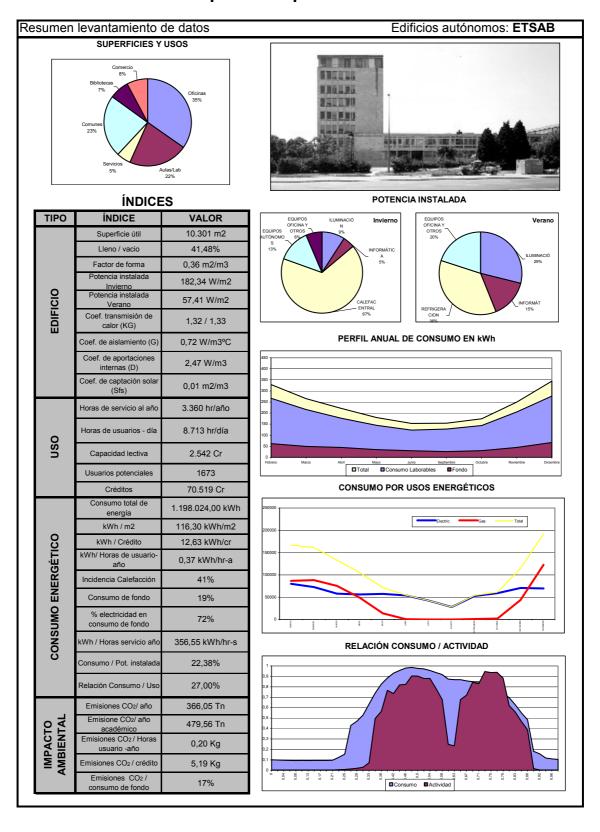
Como se explicó en el **capítulo 3**, en el trabajo de campo se obtuvieron dos tipos de datos claramente diferenciados. De un lado el levantamiento de las características de los edificios y los sistemas que poseen, referido a datos de carácter "Estático", por no variar en el tiempo o tener una variación lenta y controlable (reformas en el edificio o las instalaciones), y de otro lado el trabajo de monitorización y seguimiento del consumo y la ocupación del edificio que permite obtener datos de tipo "Dinámico" con una importante variabilidad en el tiempo.

Los datos estáticos son producto del inventario realizado en cada uno de los locales del edificio donde se identificaron las instalaciones y aparatos que consumen energía, así como las instalaciones comunes del edificio que en el caso de los sistemas de climatización permiten conocer los aparatos que generan el calor y/o frío en el edificio y los sistemas de regulación y distribución.

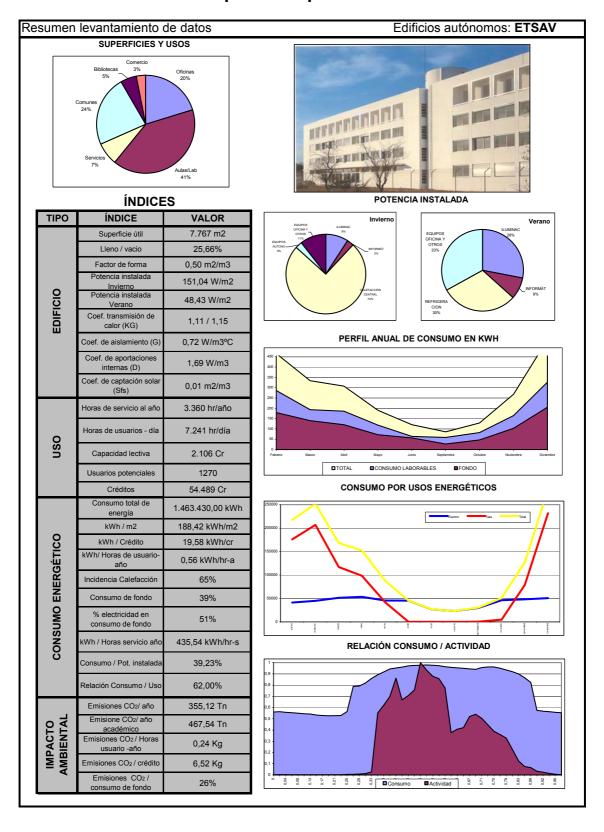
Se explica también en el apartado 3.4 que se definieron una serie de índices de referencia, para resumir toda la información obtenida, y que se agruparon en 4 categorías:


- Índices de edificio: resumen las características generales del edificio, de la envolvente y de los sistemas que posee.
- Índices de uso: resumen las características más relevantes del tipo e intensidad del uso del edificio.
- o **Índices del consumo energético:** relacionan los datos observados en el seguimiento del consumo con las características del edificio y del uso.
- Índices del impacto ambiental asociado: como primera aproximación al impacto ambiental asociado se definen algunos índices generales por usos energéticos y en relación a los principales índices de edificio y uso.

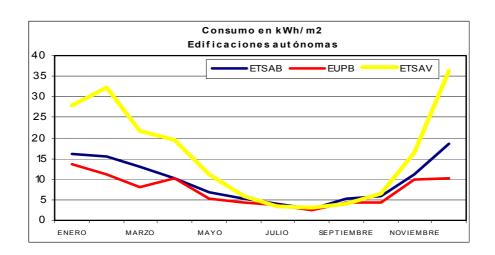
Estos índices obtenidos por edificio se sintetizan en una ficha "tipo" que incluye también un resumen de los datos dinámicos obtenidos en cada caso, representados en algunos gráficos de referencia sobre los siguientes valores obtenidos:


- Porcentaje de superficies y usos: que permite identificar los usos principales del edificio.
- o **Potencia instalada:** en invierno y en verano de aparatos y equipos que consumen energía en el edificio como resultado del inventario de todos los locales.
- Perfil anual de consumo: resumen de consumo energético anual donde se puede valorar la incidencia del consumo de fondo respecto al total.
- o **Consumo por usos energéticos:** donde se refleja la incidencia de cada recurso consumido (electricidad, gas).
- Relación consumo/actividad, que resume el perfil anual promedio de consumo de recursos con relación a la intensidad de ocupación observada en el seguimiento realizado.

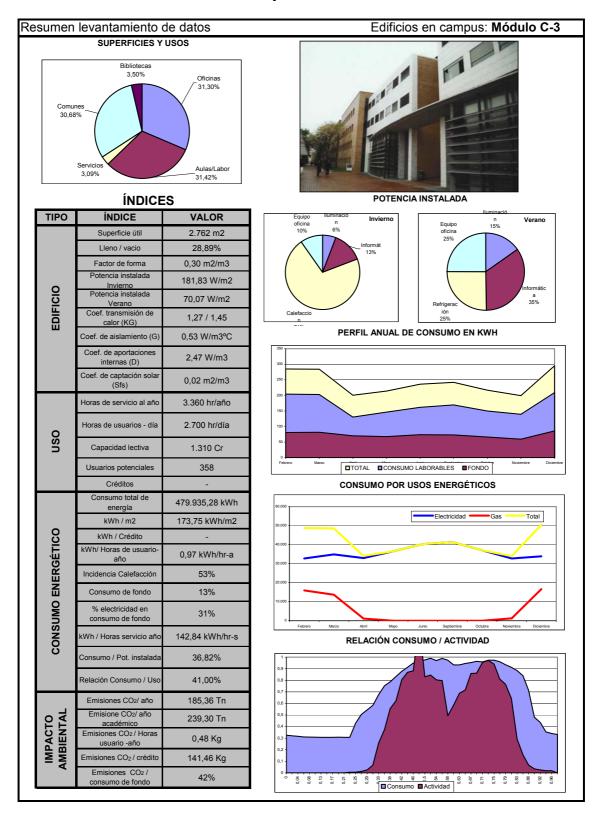
A continuación se presentan las fichas obtenidas para cada edificio estudiado con un cuadro comparativo de los valores para cada categoría.


Resumen del levantamiento de datos: Edificios autónomos Escola Politècnica Superior d'Edificació de Barcelona EPSEB

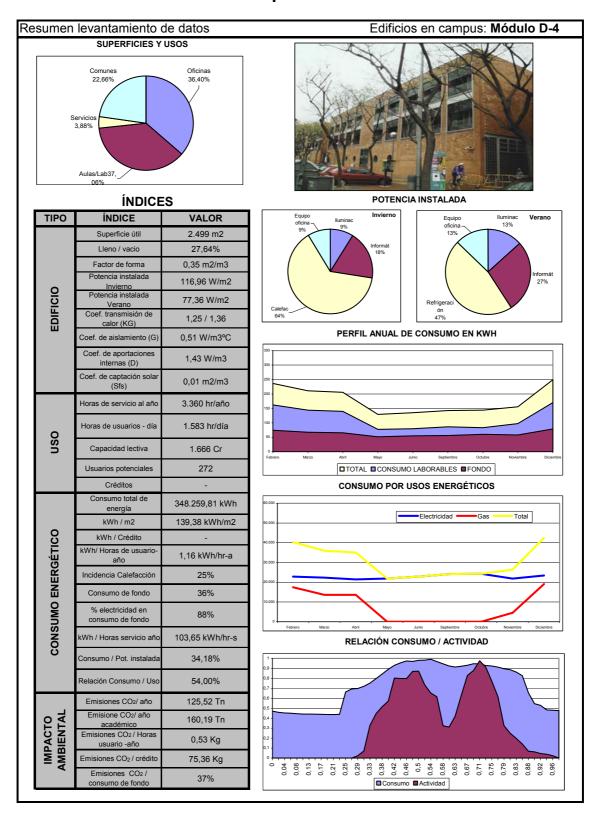
Resumen del levantamiento de datos: Edificios autónomos Escola Tècnica Superior d'Arquitectura de Barcelona ETSAB



Resumen del levantamiento de datos: Edificios autónomos Escola Tècnica Superior d'Arquitectura del Vallès ETSAV

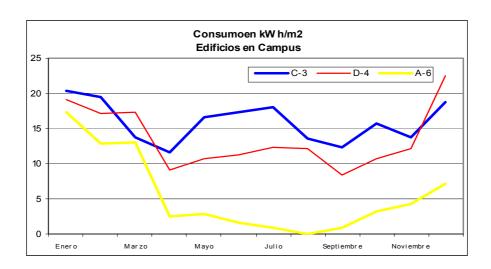


Resumen comparativo de índices obtenidos: Edificaciones autónomas


TIPO	ÍNDICE	EPSEB	ETSAB	VALOR
	Superficie útil	13.683 m2	10.301 m2	7.767 m2
	Lleno / vacio	37,54%	41,48%	25,66%
	Factor de forma	0,28 m2/m3	0,36 m2/m3	0,50 m2/m3
0	Potencia instalada Invierno	115,06 W/m2	182,34 W/m2	151,04 W/m2
ICI6	Potencia instalada Verano	39,99 W/m2	57,41 W/m2	48,43 W/m2
EDIFICIO	Coef. transmisión de calor (KG)	1,28 / 1,51	1,32 / 1,33	1,11 / 1,15
_	Coef. de aislamiento (G)	0,55 W/m3°C	0,72 W/m3°C	0,72 W/m3°C
	Coef. de aportaciones internas (D)	1,85 W/m3	2,47 W/m3	1,69 W/m3
	Coef. de captación solar (Sfs)	0,01 m2/m3	0,01 m2/m3	0,01 m2/m3
	Horas de servicio al año	3.360 hr/año	3.360 hr/año	3.360 hr/año
	Horas de usuarios - día	13.621 hr/día	8.713 hr/día	7.241 hr/día
nso	Capacidad lectiva	3.167 Cr	2.542 Cr	2.106 Cr
ے	Usuarios potenciales	2557	1673	1270
	Créditos	126.997 Cr	70.519 Cr	54.489 Cr
0	Consumo total de energía	1.186.485,00 kWh	1.198.024,00 kWh	1.463.430,00 kWh
) <u>:</u>	kWh/m2	86,71 kWh/m2	116,30 kWh/m2	188,42 kWh/m2
Ϋ́	kWh / Crédito	6,92 kWh/cr	12,63 kWh/cr	19,58 kWh/cr
CONSUMO ENERGÉTICO	kWh/ Horas de usuario-año	0,24 kWh/hr-a	0,37 kWh/hr-a	0,56 kWh/hr-a
	Incidencia Calefacción	47%	41%	65%
0	Consumo de fondo	22%	19%	39%
≥	% electricidad en consumo de fondo	71%	72%	51%
NS	kWh / Horas servicio año	353,12 kWh/hr-s	356,55 kWh/hr-s	435,54 kWh/hr-s
Ö	Consumo / Pot. instalada	25,87%	22,38%	39,23%
	Relación Consumo / Uso	36,00%	27,00%	62,00%
	Emisiones CO ₂ / año	349,22 Tn	366,05 Tn	355,12 Tn
TAL	Emisione CO ₂ / año académico	459,53 Tn	479,56 Tn	467,54 Tn
IMPACTO AMBIENTAL	Emisiones CO ₂ / Horas usuario -año	0,12 Kg	0,20 Kg	0,24 Kg
N N	Emisiones CO ₂ / crédito	2,75 Kg	5,19 Kg	6,52 Kg
_ 4	Emisiones CO ₂ / consumo de fondo	21%	17%	26%


Resumen del levantamiento de datos: Edificios en campus Módulo C-3 campus nord UPC Barcelona

Resumen del levantamiento de datos: Edificios en campus Módulo D-4 campus nord UPC Barcelona



Resumen del levantamiento de datos: Edificios en campus Módulo A-6 campus nord UPC Barcelona

Resumen comparativo de índices obtenidos: Edificaciones en campus

TIPO	ÍNDICE	C-3	D-4	A-6
	Superficie útil	2.762 m2	2.499 m2	2.268 m2
	Lleno / vacio	28,89%	27,64%	28,96%
	Factor de forma	0,30 m2/m3	0,35 m2/m3	0,37 m2/m3
0	Potencia instalada Invierno	181,83 W/m2	116,96 VV/m2	108,22 VV/m2
EDIFICIO	Potencia instalada Verano	70,07 W/m2	77,36 VV/m2	27,49 W/m2
EDI	Coef. transmisión de calor (KG)	1,27 / 1,45	1,25 / 1,36	1,23 / 1,32
	Coef. de aislamiento (G)	0,53 VV/m3°C	0,51 VV/m3°C	0,81 VV/m3°C
	Coef. de aportaciones internas (D)	2,47 VV/m3	1,43 VV/m3	2,29 VV/m3
	Coef. de captación solar (Sfs)	0,02 m2/m3	0,01 m2/m3	0,02 m2/m3
	Horas de servicio al año	3.360 hr/año	3.360 hr/año	2.280 hr/año
	Horas de usuarios - día	2.700 hr/día	1.583 hr/día	5.916 hr/día
nso	Capacidad lectiva	1.310 Cr	1.666 Cr	5.852 Cr
_	Usuarios potenciales	358	272	835
	Créditos	•	-	-
0	Consumo total de energía	479.935,28 kWh	348.259,81 kWh	151.096,00 kVVh
2	kWh7m2	173,75 kVVh/m2	139,38 kVVh/m2	66,62 kVVh/m2
一道	kWh / Crédito	-	-	-
CONSUMO ENERGÉTICO	kWh/ Horas de usuario-año	0,97 KVVh/hr-a	1,16 kVVh/hr-a	0,18 kV/vh/hr-a
E	Incidencia Calefacción	53%	25%	62%
9	Consumo de fondo	13%	36%	14%
SUL	% electricidad en consumo de fondo	31%	88%	98%
NO I	kWh / Horas servicio año	142,84 kWh/hr-s	103,65 kWh/hr-s	66,27 kWh/hr-s
Ö	Consumo / Pot. instalada	36,82%	34,18%	14,00%
	Relación Consumo I Uso	41,00%	54,00%	42,00%
	Emisiones CO2/ año	185,36 Tn	125,52 Tn	125,52 Tn
TO.	Emisione COz/ año académico	239,30 Tn	160,19 Tn	160,19 Tn
IMPACTO AMBIENTAI	Emisiones CO2/Horas usuario -año	0,48 Kg	0,53 Kg	0,53 Kg
2 Z	Emisiones CO2/ crédito	141,46 Kg	75,36 Kg	75,36 Kg
7	Emisiones CO2 / consumo de fondo	42%	37%	37%

1.2. Resumen de datos dinámicos obtenidos por edificio

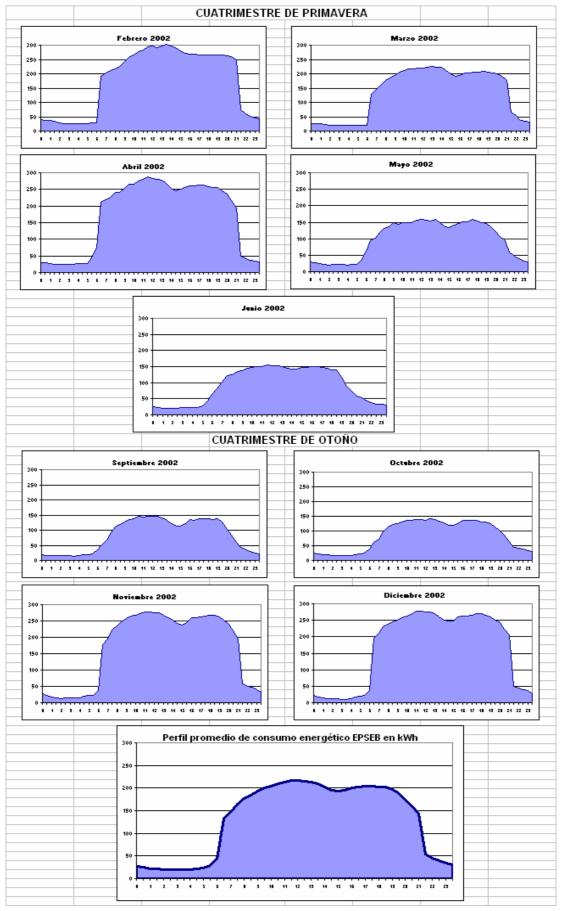
Los datos dinámicos obtenidos del trabajo de campo realizado en las seis edificaciones seleccionadas se registraron en bases de datos de consumo energético y ocupación de los edificios, que se resumen en los gráficos y tablas que se presentan a continuación para los siguientes ámbitos:

• Consumo de recursos energéticos por edificio

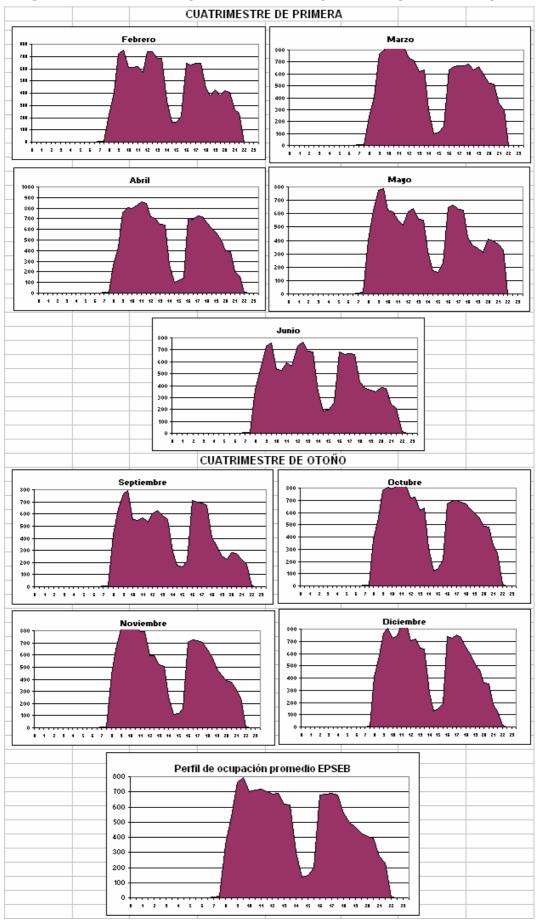
Como se explicó en el apartado 3.3.1, se realizó el seguimiento detallado del consumo de energía en los edificios. En el caso del consumo de electricidad, este seguimiento se realizó instalando, durante al menos una semana de cada mes, aparatos analizadores de red que permitieron obtener registros de consumo energético total (todos los usos energéticos del edificio incluidos, alumbrado, equipos, climatización, etc.) cada 30 minutos, a partir de los cuales se definieron perfiles de consumo de energía para "días tipo" de cada mes del año académico.

En el caso del consumo de gas se registraron lecturas de contador cada mes, y adicionalmente durante la semana en que se instalaron los analizadores de red eléctrica se realizaron medidas diarias y por franjas horarias del consumo de gas. También se realizaron estudios detallados del consumo de energía en circuitos de climatización que se utilizaron para el análisis de la gestión de recursos y que se presentarán en un anexo posterior.

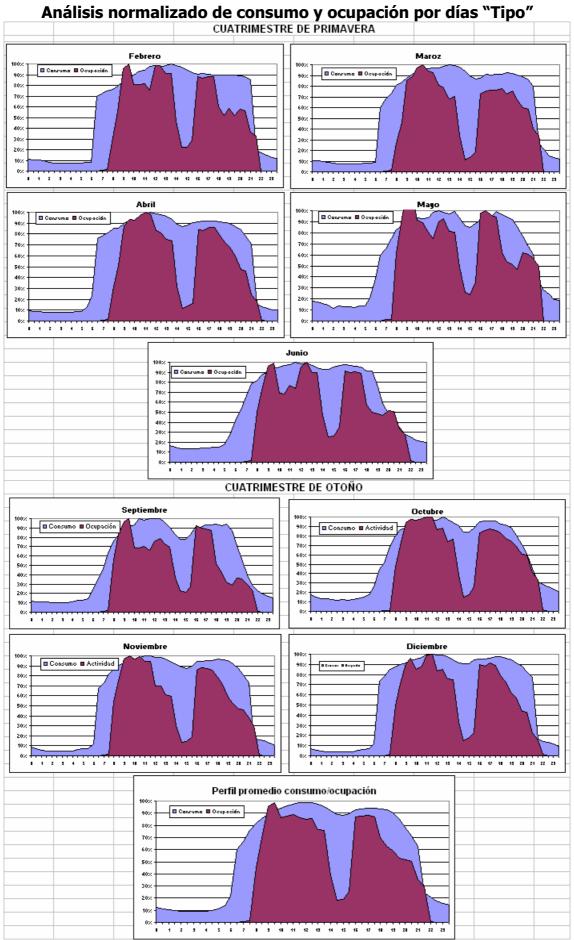
Los datos se recogieron durante el período académico por lo que no se registra seguimiento detallado de los meses de Enero, Julio y Agosto, de los cuales sí se tiene registro de consumo global a través de la lectura de contadores.

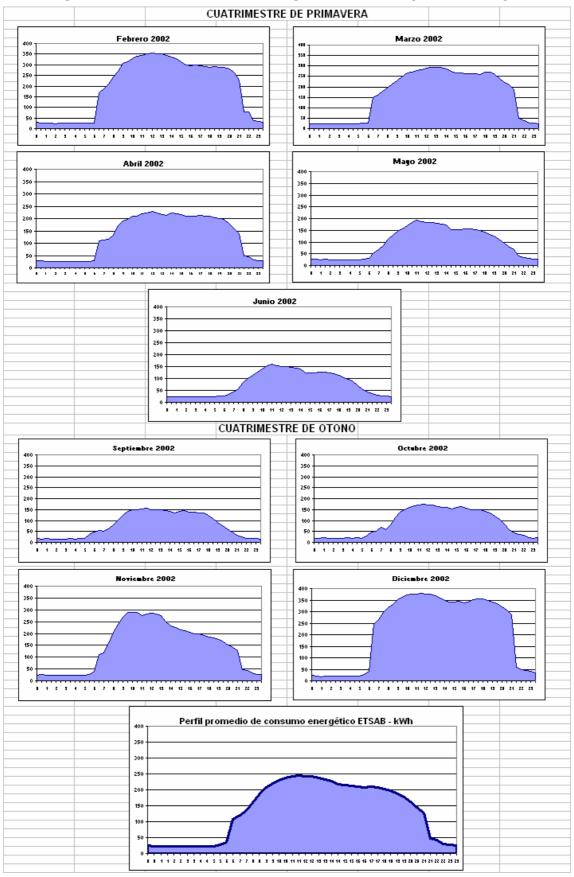

Seguimiento detallado de la ocupación de los edificios

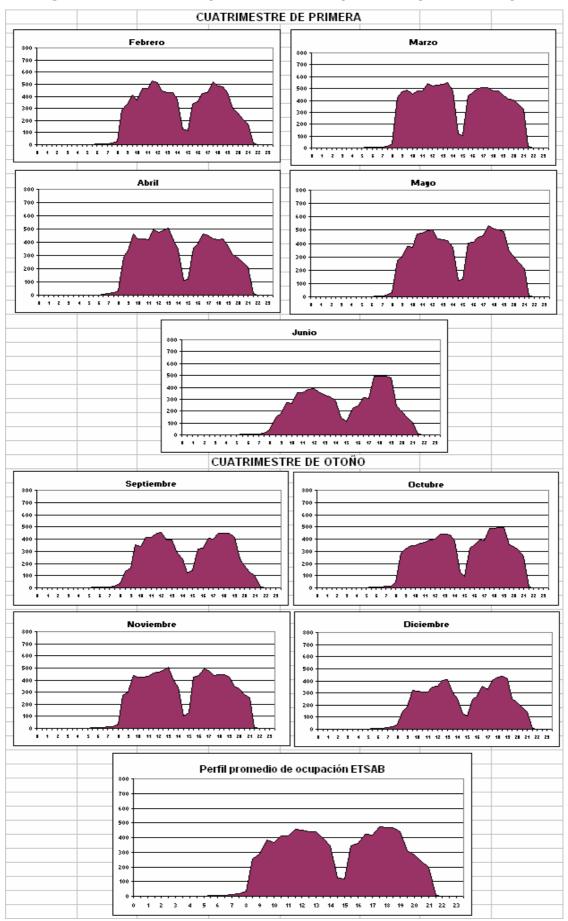
Como se explicó en el apartado 3.3.1, se realizó el seguimiento detallado de la ocupación de los edificios mediante visitas aleatorias en diferentes franjas horarias durante la misma semana tipo en que se realizó el seguimiento del consumo. Estas visitas registradas en fichas se seguimiento permitieron definir, al igual que con el consumo de energía, perfiles diarios de ocupación del edificio para cada mes del año y adicionalmente sirvieron para registrar el nivel de utilización de aparatos y usos energéticos (Iluminación, equipos de oficina, etc.) así como comentarios sobre el nivel de confort y opiniones de los usuarios.

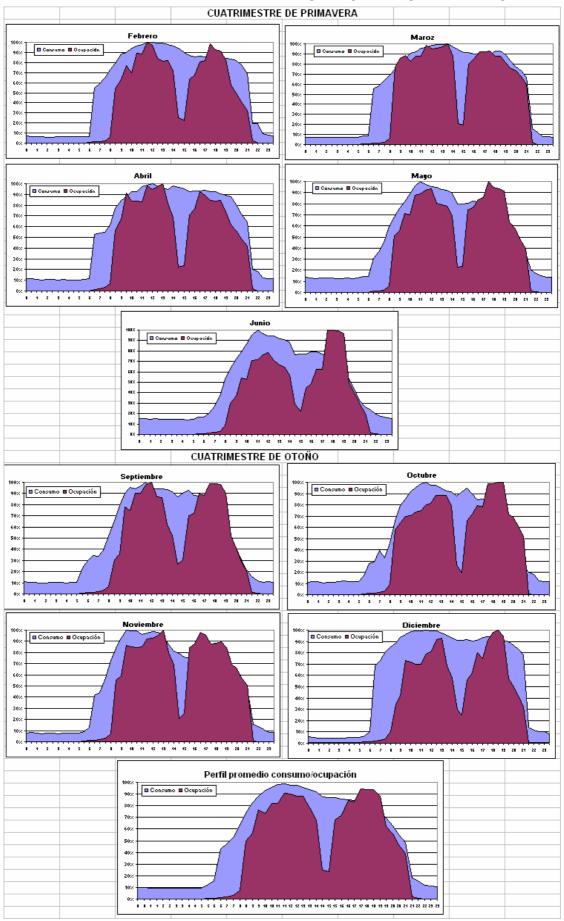

Análisis de la relación consumo / actividad

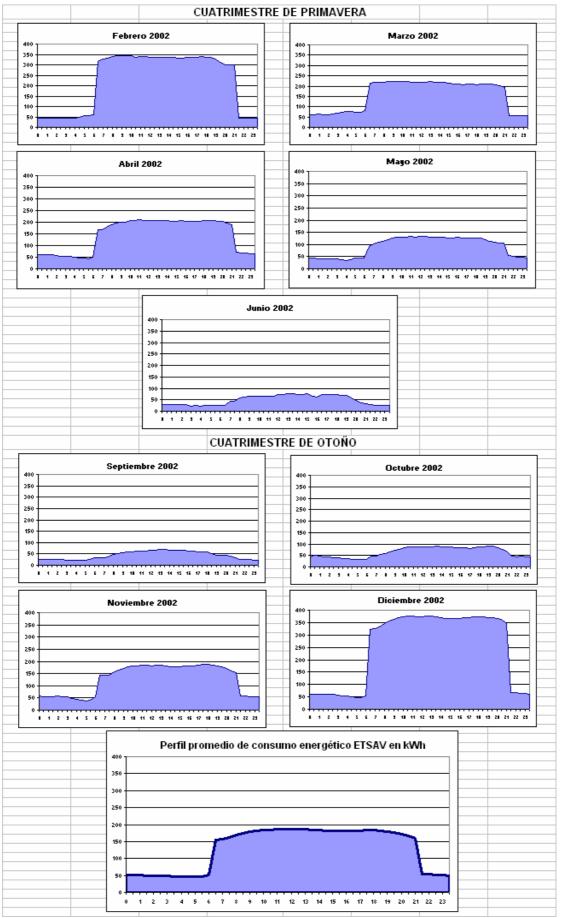
La comparación de los datos obtenidos de consumo y ocupación se realiza como se menciona en el apartado 4.3.1 a partir de los perfiles obtenidos en cada caso, comparando los valores absolutos con relación al momento del día en que se observa el 100%, y se presentan en gráficas para cada día tipo del mes y día promedio del año.

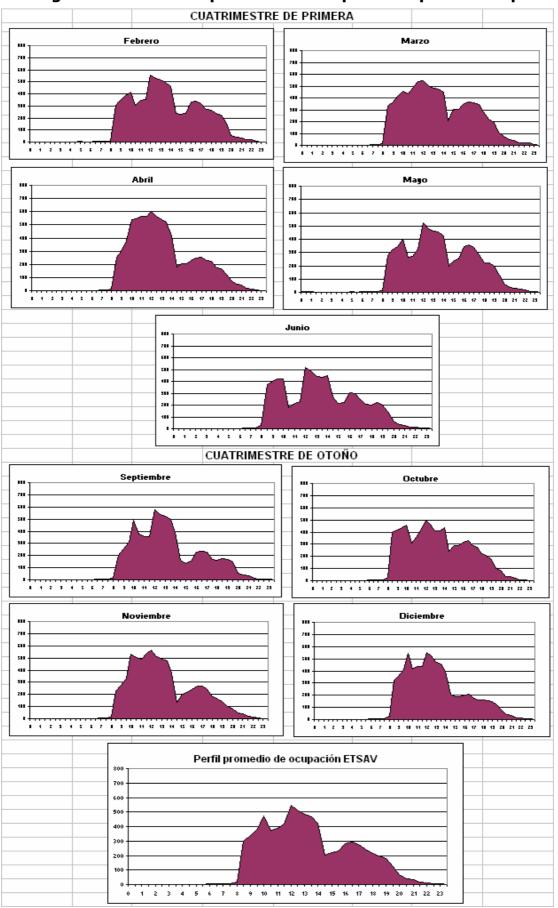

Datos dinámicos edificaciones autónomas: Edificio EPSEB Seguimiento del consumo energético en kWh por días "Tipo"

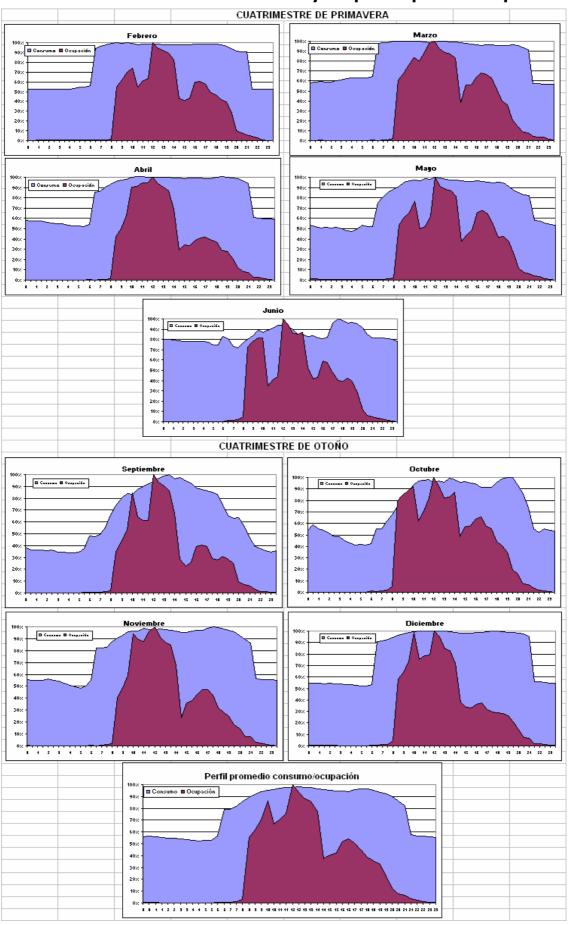

Datos dinámicos edificaciones autónomas: Edificio EPSEB Seguimiento de la ocupación en Nº de personas por días "Tipo"

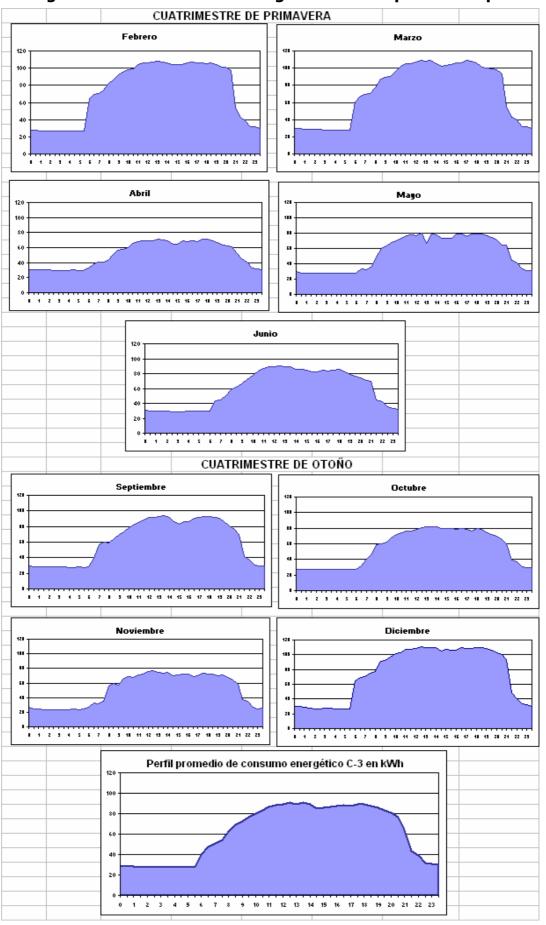

Datos dinámicos edificaciones autónomas: Edificio EPSEB

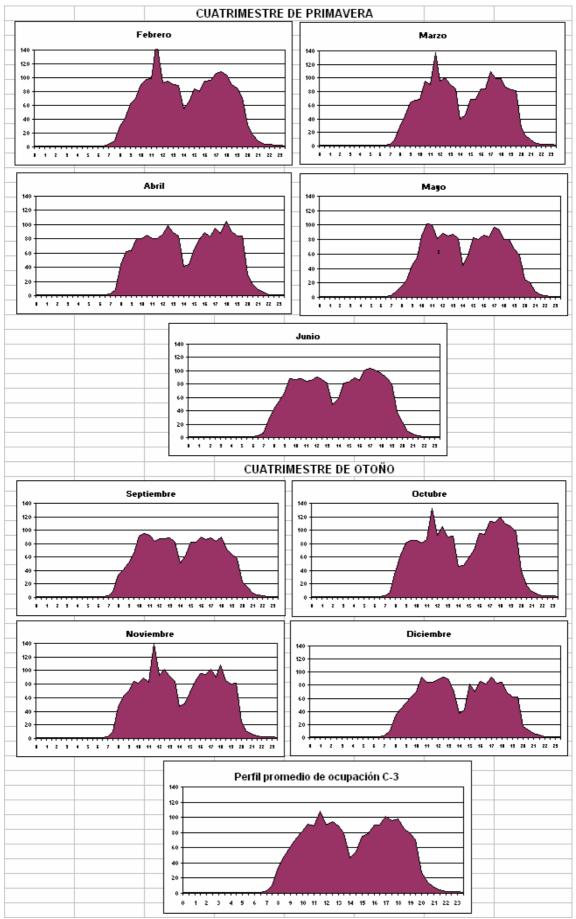

Datos dinámicos edificaciones autónomas: Edificio ETSAB Seguimiento del consumo energético en kWh por días "Tipo"

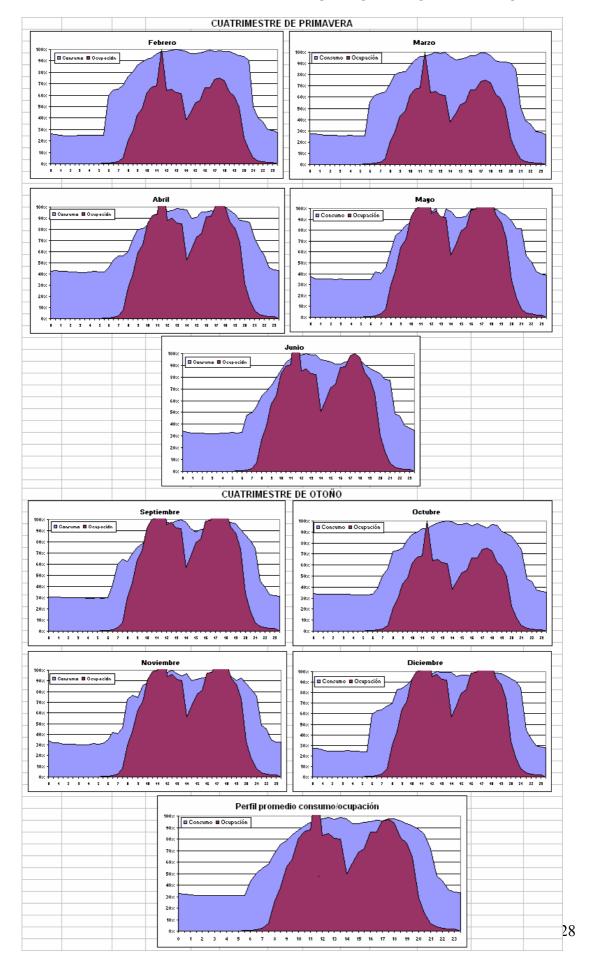

Datos dinámicos edificaciones autónomas: Edificio ETSAB Seguimiento de la ocupación en Nº de personas por días "Tipo"

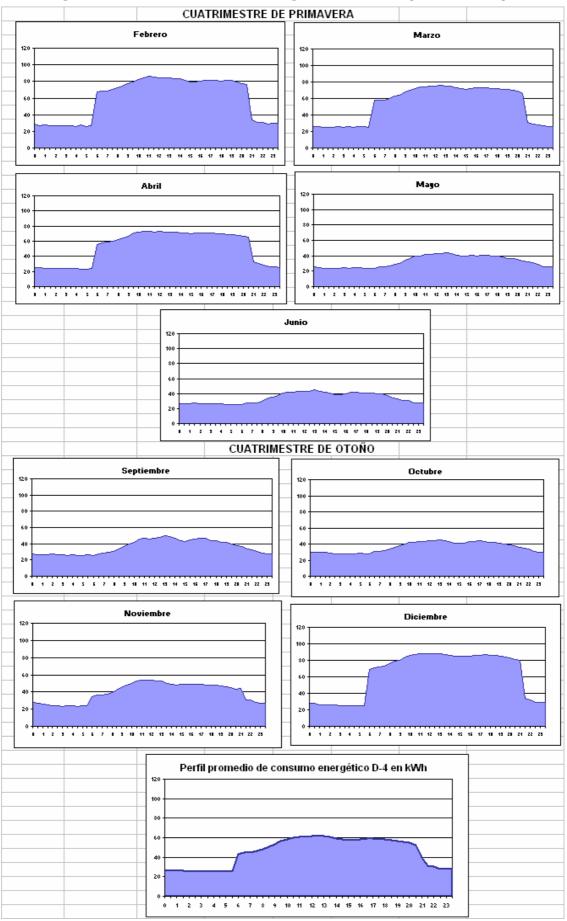

Datos dinámicos edificaciones autónomas: Edificio ETSAB Análisis normalizado de consumo y ocupación por días "Tipo"

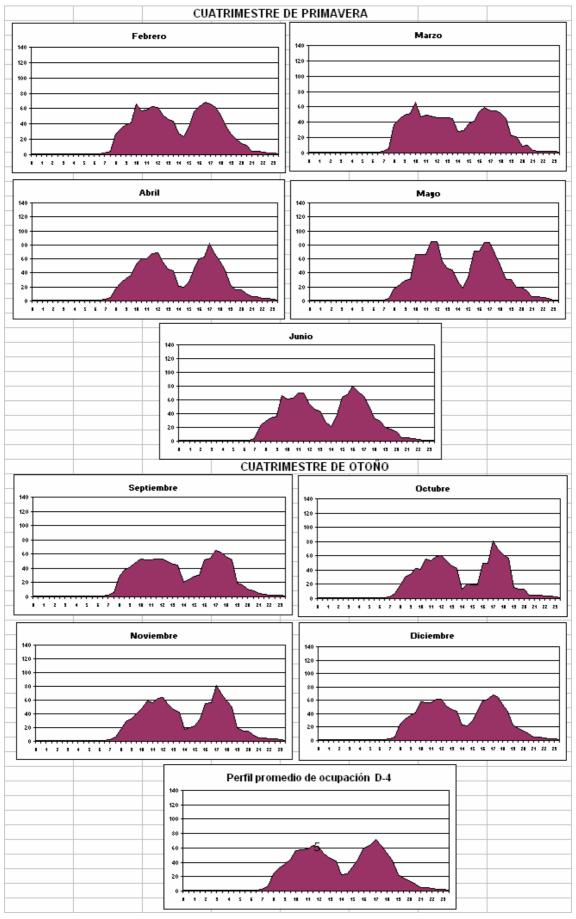

Datos dinámicos edificaciones autónomas: Edificio ETSAV Seguimiento del consumo energético en kWh por días "Tipo"

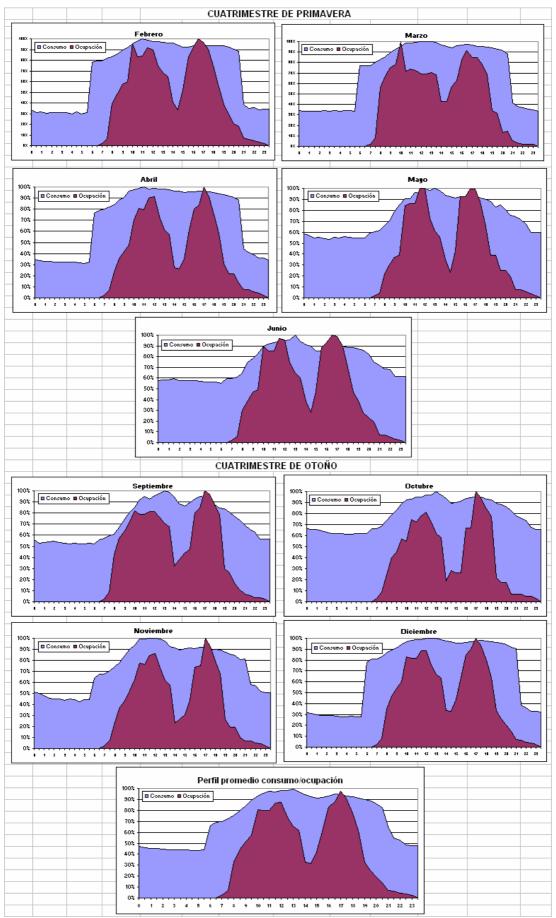

Datos dinámicos edificaciones autónomas: Edificio ETSAV Seguimiento de la ocupación en Nº de personas por días "Tipo"

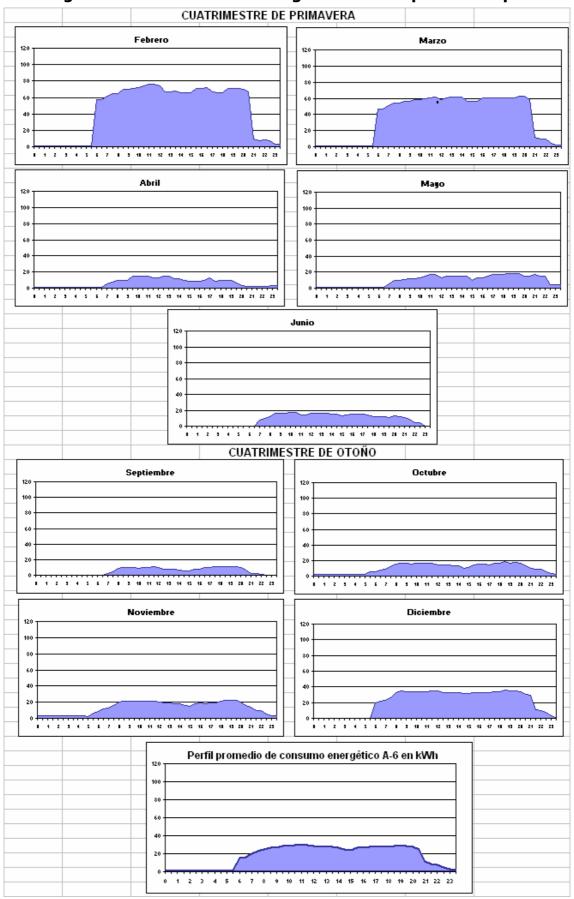

Datos dinámicos edificaciones autónomas: Edificio ETSAV Análisis normalizado de consumo y ocupación por días "Tipo"

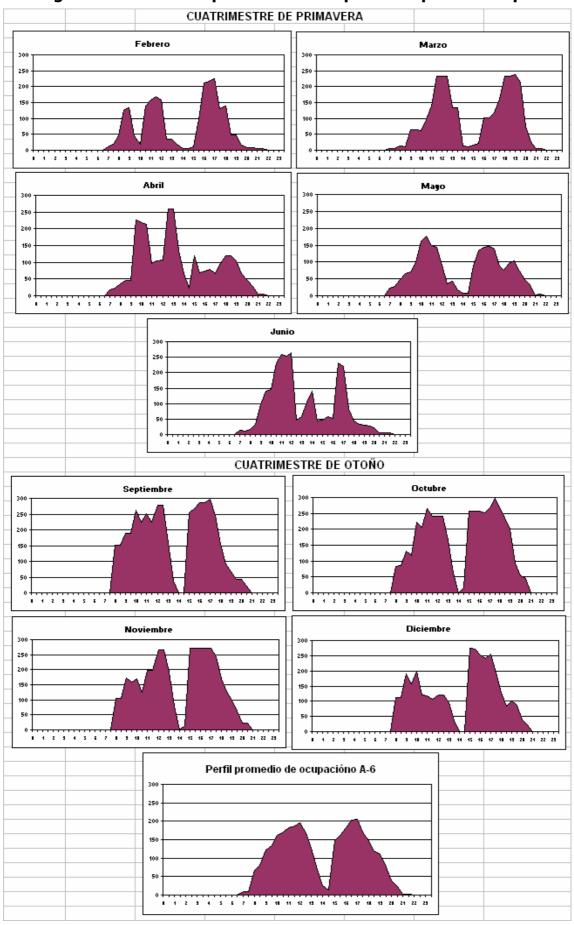

Datos dinámicos edificaciones en campus: Módulo C-3 Seguimiento del consumo energético en kWh por días "Tipo"

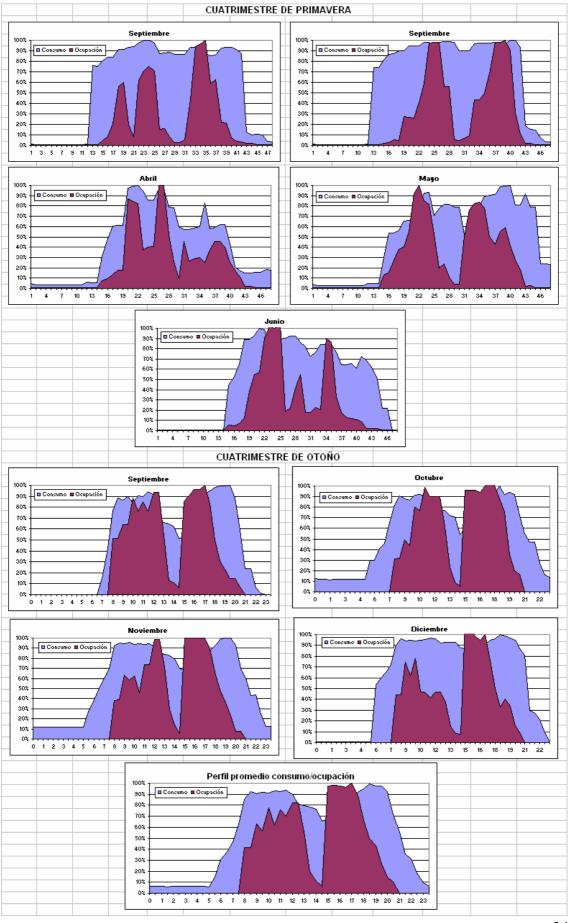

Datos dinámicos edificaciones en campus: Módulo C-3 Seguimiento de la ocupación en Nº de personas por días "Tipo"


Datos dinámicos edificaciones en campus: Módulo C-3 Análisis normalizado de consumo y ocupación por días "Tipo"


Datos dinámicos edificaciones en campus: Módulo D-4 Seguimiento del consumo energético en kWh por días "Tipo"


Datos dinámicos edificaciones en campus: Módulo D-4 Seguimiento de la ocupación en Nº de personas por días "Tipo"


Datos dinámicos edificaciones en campus: Módulo D-4 Análisis normalizado de consumo y ocupación por días "Tipo"


Datos dinámicos edificaciones en campus: Módulo A-6 Seguimiento del consumo energético en kWh por días "Tipo"

Datos dinámicos edificaciones en campus: Módulo A-6 Seguimiento de la ocupación en Nº de personas por días "Tipo"

Datos dinámicos edificaciones en campus: Módulo A-6 Análisis normalizado de consumo y ocupación por días "Tipo"

2. Anexo 2. Evaluación de la demanda energética

- 2.1. Evaluación de la demanda por el método de los grados día
- 2.2. Evaluación de la demanda con la herramienta ARCHISUN
- 2.3. Evaluación de la demanda con la herramienta BALANÇ ENERGETIC
- 2.4. Evaluación de la demanda con la herramienta LIDER

2. Anexo 2: Evaluación de la demanda energética de los edificios estudiados

2.1. Evaluación de la demanda por el método de los grados día

Como se explica en el apartado 4.1.1, se trata del cálculo de las necesidades energéticas anuales de calefacción y refrigeración de una edificación, a partir de la definición detallada de la envolvente del edificio, los aportes internos y considerando la variación de las condiciones exteriores utilizando los grados día de invierno y verano como referencia.

Para este caso se utiliza la definición del método descrita en la metodología establecida en el documento "Manuales de Auditoría energética" preparado por el Servei de medi Ambient de la Diputació de Barcelona (Julio 1986) desarrollada por el profesor Rafael Serra Florensa.

La metodología propuesta permite calcular la demanda energética a partir de la definición de coeficientes que informan del comportamiento energético del edificio, estos coeficientes son:

1. Coeficiente de aislamiento G

Indica la capacidad de intercambio energético del edificio por unidad de volumen habitable en relación con la diferencia de temperatura interior – exterior. Las unidades son W/m3°C

$$G = G_t + G_v$$

Donde:

 G_{t} = Intercambios por transmisión

 $G_{\rm w}$ = Intercambios por ventilación

$$G_t = K_G \times f$$

Kg: Aislamiento medio de la piel en W/m²oC

f: Factor de forma en m²/m³

 G_v = R x 0.33 (calor específico del aire en W/kg°c)

R: renovaciones horarias en m³/m³h

2. Coeficiente de aportaciones internas. D

Indica la densidad de energía que se desprende al interior del edificio en funcionamiento por unidad de volumen habitable. Las unidades son W/m3

$$D = \frac{Oc \times 120 + Pe}{Vh}$$

Donde:

Oc = Ocupación media de personas (Nº de pers)

Pe = Potencia electrica media (Ilumin, máquinas, etc.) en W

Vh = Volumen habitable (m³)

120= W de calor sensible por persona considerados como carga interna

3. Coeficiente de captación solar Sfs

Indica la capacidad de un edificio para captar energía de la radiación solar. Expresa la relación entre la superficie captadora y el teórico rendimiento máximo de captación (Superficie vertical orientada a sur con eficiencia = 1) con el volumen habitable. Las unidades son m2/m3.

$$S_{fs} = \frac{S_{fi} \times C_{ri} \times ri}{Vh}$$

Donde:

 $S_{\rm fi}$ = Superficie de cada paramento que recibe sol en m²

 C_{ri} = Coef de obstrucción y orientación

ri = Rendimiento de captación de cada superficie

Vh = Volumen habitable (m³)

4. Coeficiente de retardo en las aportaciones radiantes ${\it Fr}$

Indica la regularidad en la repartición en el tiempo de las aportaciones por radiación. Será nulo (Fr=0) para los valores de Sfs< 0.02 y cuando más del 70% de las superfices captoras sean de captación directa (Ventanas o similares). Solo se considerará cuando haya sistemas concretos de captación indirecta de energía solar en invierno, o grandes cerramientos opacos y expuestos al sol en verano.

5. Coeficiente de inercia térmica ${\cal M}$

Indica la capacidad del edificio para almacenar energía en períodos de ganancia energética i devolverla en periodos de baja. Influirá sobre la oscilación de temperaturas interiores (El crecimiento del índice amortigua la oscilación) y dificultará al mismo tiempo la puesta a régimen de los espacios de uso discontinuo. Las unidades serán W/m3°C.

$$M = \frac{\sum V_i \times d_i \times C_{ei} \times f_{im}}{Vh}$$

Donde:

 V_i = Volumen de los materiales contenidos al interior del edificio (de aislamiento hacia adentro) en m³

 d_i = Densidad de estos materiales en kg/m³.

 $C_{\scriptscriptstyle oi}$ = Calor específico de los materiales en Wh/kg°C

 $f_{\scriptscriptstyle im}$ = factor de situación y tipo de materiales

Vh = Volumen habitable (m³)

Cálculo de la demanda

A partir de los coeficientes obtenidos, considerando el tipo de uso, se calcula la demanda energética para calefacción y refrigeración necesaria para alcanzar las condiciones interiores de confort utilizando como referencia los grados días de invierno (18/18) y verano (27/27). Las unidades son Wh/m³ anuales

Para obtener la demanda anual de energía en el período de calefacción Dc se define la siguiente formula a resolver:

$$Dc = I_{n} \times U \times \left[24 \times \left(G \times G_{d} - N \times D\right) - S_{fs} \times N \times R_{v} \times L\right]$$

Donde:

G = Coeficiente de aislamiento (W/m 3 x $^{\circ}$ C).

 G_d = Grados-día anuales de calefacción base 18

N = Número de días al año de calefacción

D = Coeficiente de aportaciones internas (W/m³)

 S_{fs} = Coeficiente de captación solar (m²/m³)

 $R_{_{\scriptscriptstyle V}}={\rm Radiaci\acute{o}n}$ media diaria en un plano vertical a sur para invierno (Wh/día m³) según tabla.

L = Coeficiente de corrección por oscilación de la temperatura interior

 I_{ii} = Coeficiente de intermitencia según horas de funcionamiento

 $U\,$ = Coeficiente de uso según los días de funcionamiento al mes:

Demanda anual de energía para refrigeración:

Se calculan los mismos coeficientes para la condición de verano y de acuerdo a la siguiente formula se estima la demanda anual en Wh/m3 anuales

$$Dr = I_n \times U \times \left[24 \times \left(G \times G_d + N \times D \right) + S_{fs} \times N \times R_v \right]$$

Resultados obtenidos con la metodología de los grados día:

A continuación se presenta un resumen de la evaluación de los resultados obtenidos aplicando esta metodología:

Evaluación de la demanda energética por el método de los grados día

• Edificios autónomos – EPSEB

Coeficientes de referencia

		Coeficien	te de transmisio	ón Kg		
TIPO DE CERRAMIENTO	S (m2)	Aislamiento	Coficiente d	e situación (C)	SxKxC	
TIPO DE CERRAMIENTO	S (III2)	medio (K)	Invierno	Verano	Invierno	Verano
Fachada Norte						
Muros	273,69	2,07	1,1	1	623,19	566,54
Antepechos	62	2,10	1,1	1	143,22	130,20
Ventanas	180	5,80	1,1	1	1148,40	1044,00
Ventanas p-4	60	5,80	1,1	1	382,80	348,00
Entre edificios						
Muros	374	2,13	1,1	1	876,28	796,62
Ventanas	211	5,80	1,1	1	1346,18	1223,80
Fachada Sur						
General						
Muros	318,2	2,33	0,8	1	593,12	741,41
Ventanas	518	5,80	0,8	1	2403,52	3004,40
Entre edificios						
Muros	308,5	2,26	0,8	1	557,77	697,21
Ventanas	31,5	5,80	0,8	1	146,16	182,70
Fachada Oeste						
General						
Muros Antepechos	1452,38 176,25	1,81 1,89	1 1	1,2 1,2	2628,81 333,11	3154,57 399,74
· I	•	-		1		
Ventanas Ventanas p-4	716,34 145,14	5,80 5,80	1	1,2 1,2	4154,77 841,81	4985,73 1010,17
Ventanas p-4	145,14	5,80	1	1,2	841,81	1010,17
Principal Muros	1603,5	1,78	1	1,2	2854,23	3425,08
	175	1,76	1	1,2	316,75	380,10
Antepechos Ventanas	787,2	5,80	1	1,2	4565,76	5478,91
Ventanas p-4	177,27	5,80	1	1,2	1028,17	1233,80
ventarias p-4	177,27	5,00	'	1,2	1026,17	1233,60
Solera	2789,54	0,80	0,4	0,3	892,65	669,49
Cubierta Ppal	1632,7	1,20	1,2	1,3	2351,09	2547,01
Plana	1086,84	1,69	1,2	1,3	2204,11	2387,79
Transparente	70	3,00	1,2	1,3	252,00	273,00
Total superficie	13.149,05 m2				30.644 W/m2 °C	34.680 W/m2 °C

		Coeficiente	de captación so			
TIPO DE CERRAMIENTO	S (m2)	Rendimiento de captacion ri		cción y orientación Cri	Sxr	i x Cri
		captación 11	Invierno	Verano	Invierno	Verano
Fachada Norte						
Muros	273,69	0,02	0	0,2	0,00	1,09
Antepechos	62	0,15	0	0,2	0,00	1,86
Ventanas	180	0,7	0	0,2	0,00	12,60
Ventanas p-4	60	0,7	0	0,2	0,00	8,40
Entre edificios		-,-		-,-	-,	2,12
	074	0.00		0.0	0.00	4.50
Muros	374	0,02	0	0,2	0,00	1,50
Ventanas	211	0,45	0	0,2	0,00	9,50
Fachada Sur						
General						
Muros	318,2	0,02	0,9	0,9	5,73	5,73
Ventanas	518	0,45	0,9	0,9	209,79	209,79
Ventanas p-4	21,8	0,7	0,9	0,9	13,73	13,73
Entre edificios	21,0	0,,	0,0	0,0	10,70	10,70
Muros	308,5	0,02	0,7	0,7	4,32	4,32
Ventanas	31,5	0,45	0,7	0,7	9,92	9,92
Fachada Oeste						
General						
Muros Antepechos	1452,38 176,25	0,02 0,15	0,3 0,3	1,2 1,2	8,71 7,93	34,86 31,73
Ventanas	429.8	0,15	0,3	1,2	90.26	180,52
S Generales	286,53	0,45	0,3	1,2	38,68	154,73
Ventanas p-4	145,14	0,7	0,3	1,2	30,48	121,92
Fachada este						
Principal						
Muros	1603,5	0,02	0,2	1,8	6,41	57,73
Antepechos	175	0,15	0,2	1,8	5,25	47,25
Ventanas	472,32	0,7	0,2	1,8	66,12	297,56
S Generales	314,88	0,45	0,2	1,8	28,34	255,05
Ventanas p-4	177,27	0,7	0,2	1,8	24,82	223,36
Cubierta	2414,7	0,01	0,6	2,2	14,49	53,12
					564,99	1736,25
Sfs =	<u>Sfi x Cri x ri</u> Vh			Sfs =	Invierno	Verano
	VΠ	1			0,013 m2/m3	0,041 m2/i

	Coeficiente de aislam	niento G= Gt + Gv		
Invierno		Verano		
Gt = Kg * f		Gt = Kg * f		
Kg = <u>(SxKxC)</u> =	30.643,91 W/m2 °C	Kg = <u>(SxKxC)</u> = <u>34.680,26 W/m2 °C</u>		
(m2)	13.149,05 m2	(m2) 13.149,05 m2		
Kg = 2,33 w/m2 °C		Kg = 2,64 w/m2 °C		
f = <u>S (m2)</u>	Volumen Habitable Vh =	f = <u>S (m2)</u> Volumen Habitable Vh		
Vh (m3)	42.555 m3	Vh (m3) 42.555 m3		
f = 0,31 m2/m3		f = 0,31 m2/m3		
Gt = 0,72 w/m3 °C		Gt = 0,81 w/m3 °C		
Gv = R * 0,33		Gv = R * 0,33		
Renov por ventilac= Prom Usuarios * m3h (Vh	renovaciones)	Renov por ventilac= Prom Usuarios * m3h (renovac) Vh		
R = <u>386* 35</u> =	0,32	R = <u>243* 80</u> = 0,46		
42.555 m3		42.555 m3		
Renov por infiltrac= 1,66		Renov por infiltrac= 1,66		
Total renovaciones = 1,39+0,32		Total renovaciones = 1,66+0,46		
R = 1,98		R = 2,1173		
Gv = 1,97 * 0,33		Gv = 2,11173 * 0,33		
Gv = 0,653		Gv = 0,699		
G Invierno G= Gt +	Gv	G Verano G= Gt + Gv		
1,37 W/m3 °C		1,51 W/m3 °C		

Coeficiente de aportaciones inter	rnas D =	D = <u>Oc x 120 + Pe</u> Vh		
Invierno		Verano		
Oc = <u>N x Ho</u> =	386 pers x 8h/d x 5d/s	Oc = <u>N x Ho</u> =	243 pers x 8h/d x 5d/s	
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s	
Oc = 91,90	Invierno	Oc = 57,86	Verano	
Pe = <u>N x Hr</u> =	276420 W x 8h/d x 5d/s	Pe = <u>N x Hr</u> =	276420 W x 8h/d x 5d/s	
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s	
Pe = 65.814w		Pe = 65.814w		
$D = (91.90 \times 120) + 65814 \text{ w}$	76842,85714	$D = (57.86 \times 120) + 65814 \text{ w}$	72757,14286	
42.555 m3	42.555 m3	42.555 m3	42.555 m3	
D Invierno		D Verano		
1,81 w/m3		1,71 w/m3	·	

Cálculo de la demanda energética anual

INVIERNO Da = In x U x { 24 x (G x Gd - N x D) - Sfs x N x Rv x L} VERANO Da = In x U x { 24 x (G x Gd + N x D) - Sfs x N x Rv }					
Da Invierno Da Verano					
Coeficiente de intermitencia In: 0,80	Coeficiente de intermitencia In: 0,80				
Coeficiente de uso U: 0,80	Coeficiente de uso U: 0,80				
Coeficiente de aislamiento G: 1,37 w/m3 °C	Coeficiente de aislamiento G: 1,51 w/m3 °C				
Grados dia/ año de calefacción base 18 Gd: 974	Grados dia/ año de refrigeración base 27 Gd: -85				
Dias al año de calefacción N: 105	Dias al año de refrigeración N: 43				
Coeficiente de aportaciones internas D = 1 ,81 w/m3	Coeficiente de aportaciones internas D = 1,71 w/m3				
Coeficiente de captación solar Sfs= 0,013 m2/m3	Coeficiente de captación solar Sfs= 0,0408				
Radiación media en plano vertical a sur Rv: 3.584 wh/dia m3	Radiación media en plano vertical a sur Rv: 2.940 wh/dia m3				
Coef correción oscilación de Temperatura L: 0,77 Coeficiente de inercia térmica M: 43,13 wh/m3°C	Coef correción oscilación de Temperatura L: 0,00 Coeficiente de inercia térmica M: 0,00				
Demanda de Calefacción Da = 15.176,10 wh/m3	Demanda de Refrigeración Da = 2.454,11 wh/m3				

Evaluación de la demanda energética por el método de los grados día

• Edificios autónomos – ETSAB

Coeficientes de referencia

		Coeficiente	de transmisiór	n Kg		
TIPO DE OEDDAMIENTO	0 (0)	Aislamiento medio	Coficiente de	situación (C)	Sx	KxC
TIPO DE CERRAMIENTO	S (m2)	(K)	Invierno	Verano	Invierno	Verano
Fachada Norte						
Muros	772,36	1,63	1,1	1	1384,84	1258,9468
Ventanas	597,62	5,8	1,1	1	3812,82	3466,196
Ventanas p-7	47	5,8	1,1	1	299,86	272,6
Fachada Sur						
General						
Muros	751,1	1,61	0,8	1	967,42	1209,271
Ventanas	127,4	5,8	0,8	1	591,14	738,92
Lamas	244,8	5,8	0,8	1	1135,87	1419,84
Entre edificios						
Muros	166,8	1,54	0,6	0,6	154,12	154,1232
Ventanas	56,4	5,8	0,6	0,6	196,27	196,272
Fachada este						
Principal						
Muros	1235,58	1,81	1	1,2	2236,40	2683,67976
Ventanas	766,6	5,8	1	1,2	4446,28	5335,536
Ventanas p-7	160	5,8	1	1,2	928,00	1113,6
Laterales bar		0				
Muros	2	2,37	1	1,2	4,74	5,688
Ventanas	40	4	1	1,2	160,00	192
Fachada Oeste						
General						
Muros	1122,7	1,81	1	1,2	2032,09	2438,5044
Ventanas	655,51	5,8	1	1,2	3801,96	4562,3496
Ventanas p-7	160	5,8	1	1,2	928,00	1113,6
Biblioteca						
Muros	91,11	1,875	0,6	0,8	102,50	136,665
Ventanas	96	5,8	0,6	0,8	334,08	445,44
Forjados inferiores						
Solera enterrada	1294	1,00	0,4	0,3	517,60	388,2
Solera semi-enterrada	766,25	0,896	0,4	0,3	274,62	205,968
Forjado sobre local no calef.	296	0,802	0,6	0,4	142,44	94,9568
Cubiertas		0				
Cubierta ligera bar	98	0,59	1,2	1,3	69,38	75,166
Cubierta	1510,88	1,25	1,2	1,3	2266,32	2455,18
Total Superficie	11.058,11 m2				26.787 W/m2°C	29.963 W/m2°C

·		Coeficiente de	captación sol	ar (Sfs)		·
		Rendimiento de	Coefic de ob	strucción y	Sxr	i x Cri
TIPO DE CERRAMIENTO	S (m2)	captacion ri	orientaci			
		ouptuoion n	Invierno	Verano	Invierno	Verano
Fachada Norte						
Muros	772,36	0,02	0	0,2	0,00	3,09
Ventanas Ventanas p-7	597,62 47	0,7 0,35	0	0,2 0,2	0,00 0,00	41,83 3,29
Fachada Sur						
General						
Muros	751,1	0,02	0,9	0,9	13,52	13,52
Ventanas	127,4	0,7	0,9	0,9	80,26	40,13
Lamas	244,8	0,6	1	1	146,88	146,88
Entre edificios						
Muros	166,8	0,08	0,3	0,4	4,00	5,34
Ventanas	56,4	0,6	0,3	0,4	10,15	13,54
Fachada Oeste						
General						
Muros	1122,7	0,02	0,2	1,8	4,49	40,42
Ventanas	655,51	0,7	0,2	1,8	91,77	412,97
Ventanas p-7	160	0,35	0,2	1,8	11,20	100,80
Biblioteca						
Muros	91,11	0,08	0,1	1,2	0,73	8,75
Ventanas	96	0,7	0,1	1,2	6,72	40,32
Fachada este						
Principal						
Muros	1237,58	0,02	0,2	1,8	4,95	44,55
Ventanas p-7	766,6	0,35	0,2	1,8	53,66	482,96
Laterales bar						
Muros	2	0,02	0,2	1,8	0,01	0,07
Ventanas	40	0,7	0,2	1,8	5,60	50,40
Cubierta bar	98	0,03	0,6	2,2	1,76	6,47
Cubierta	1510	0,01	0,6	2,2	9,06	33,22
					444,77	1488,54
Sfs = <u>S</u>	Sfi x Cri x ri			Sfs =	Invierno	Verano
	Vh				0,014 m2/m3	0,046 m2/m3

	Coeficiente de aisla	miento G= Gt + Gv			
Invierno		Verano)		
Gt = Kg * f					
Kg = <u>(SxKxC)</u> =	26.786,74 w/m2°C	Kg = <u>(SxKxC)</u> =	29.962,70 w/m2°C		
(m2)	11.058,11 m2	(m2)	11.058,11 m2		
Kg = 2,42 w/m2 °C		Kg = 2,71 w/m2 °C			
f = <u>S (m2)</u>	Volumen Habitable Vh =	f = <u>S (m2)</u>	Volumen Habitable Vh =		
Vh (m3)	32.086,34 m3	Vh (m3)	32.086,34 m3		
f = 0,34 m2/m3		f = 0,34 m2/m3			
Gt	= 0,83 W/m3 °C		Gt = 0,93 W/m3 °C		
Gv = R * 0,33		Gv = R * 0.33			
R = Prom Usuar*m3h(renov		R = <u>Prom Usuar*m3h(renov)</u>			
Vh		Vh			
Renov por ventilac= 315*20	0,1963	Renov por ventilac= 276 * 80 =	0,6881		
32.086,34 m3		32.086,34 m3			
Renov por infiltrac= 1,93		Renov por infiltrac= 1,93			
R = 1,93+0,1963		R = 1,93 + 0,6881			
R = 2,1279		R = 2,6197			
Gv = 2,1263 * 0,33		Gv = 2,6197*0,33			
Gv = 0,70 W/m3 °C		Gv = 0,86 W/m3 °C	3		
G Invierno		G Veran	0		
1,54 W/m3 °C		1,80 W/m3	3 °C		

Coeficiente de aportacione	s internas (D)	D = <u>Oc x 120 + Pe</u> Vh	
Oc = <u>N x Ho</u> = Hs	315pers x 8h/d x 5d/s 24h/d x 7d/s	Oc = <u>N x Ho</u> = Hs	296 pers x 8h/d x 5d/s 24h/d x 7d/s
Oc = 75,00 Pe = N x Hr =	284115Wx8h/dx5d/s	Oc = 70,48 Pe = N x Hr =	269000 Wx8h/dx5d/s
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s
Pe = 67.646w D = <u>75x120+ 67618w</u>	76646,42857	Pe = 64.048w D = 70,48x120+ 64048w	<u>72504,7619</u>
32.086,34 m3 D Invierno	32.086,34 m3	32.086,34 m3 D Verano	32.086,34 m3
2,39 W/m3		2,26 W/m3	

Cálculo de la demanda energética anual

INVIERNO Da = In x U x { 24 x	(G x Gd - N x D) - Sfs x N x Rv x L}
VERANO Da = In x U x { 24 x	(G x Gd + N x D) - Sfs x N x Rv }
Invierno	Verano
Coeficiente de intermitencia In: 0,80	Coeficiente de intermitencia In: 0,80
Coeficiente de uso U: 0,80	Coeficiente de uso U : 0,80
Coeficiente de aislamiento G: 1,54 w/m3 °C	Coeficiente de aislamiento G: 1,80 w/m3 °C
Grados dia/ año de calefacción base 18 Gd: 962	Grados dia/ año de refrigeración base 27 Gd: -85
Dias al año de calefacción N: 119	Dias al año de refrigeración N: 43
Coeficiente de aportaciones internas D = 2,39 w/m3	Coeficiente de aportaciones internas D = 2,26 w/m3
Coeficiente de captación solar Sfs= 0,0139	Coeficiente de captación solar Sfs= 0,0464
Radiación media en plano vertical a sur Rv: 3.584 wh/dia m3	Radiación media en plano vertical a sur Rv: 2.940 wh/dia m3
Coef correción oscilación de Temperatura L: 0,76	Coef correción oscilación de Temperatura L: 0,00
Coeficiente de inercia térmica M: 40,98 wh/m3°C	Coeficiente de inercia térmica M: 0,00
Da Invierno	Da Verano
Demanda de Calefacción Da = 15.460,72 Wh/m3	Demanda de Refrigeración Da = 2.898,08 Wh/m

Evaluación de la demanda energética por el método de los grados día

• Edificios autónomos – ETSAV

Coeficientes de referencia

		Coeficient	te de transmis	ión Kg		
TIPO DE CERRAMIENTO	S (m2)	Aislamiento		e situación (C)		KxC
THE O'DE CERTICALMIENTO	3 (III2)	medio (K)	Invierno	Verano	Invierno	Verano
Fachada Norte						
Principal						
Muros	558,2	1,100	1,1	1	675,42	614,02
Ventanas	271,8	5,800	1,1	1	1734,08	1576,44
Patio Aulas						
Muros	321,93	1,289	0,6	0,4	248,98	165,99
Ventanas	101,52	5,800	0,6	0,4	353,29	235,53
Patio acceso						
Muros	716,38	1,195	0,8	0,6	684,86	513,64
Ventanas	299,47	5,800	0,8	0,6	1389,54	1042,16
Paredes lucernarios	96	0,534	1,1	1	56,39	51,26
Fachada Sur						
Principal						
Muros	780,61	1,058	0,8	1	660,71	825,89
Ventanas	473,58	5,600	0,8	1	2121,64	2652,05
Patio Aulas						
Muros	321,93	1,409	0,6	0,4	272,16	181,44
Ventanas	101,52	5,800	0,6	0,4	353,29	235,53
Patio acceso						
Muros	479,58	0,991	0,8	0,6	380,21	285,16
Ventanas	94,92	5,800	0,8	0,6	440,43	330,32
Ventanas bib	91,2	3,700	0,8	0,6	269,95	202,46
Paredes lucernarios	96	0,534	0,8	1	41,01	51,26
Fachada Oeste						
Principal						
Muros	467	0,920	1	1,2	429,64	515,57
Patios						
Muros	43,5	1,331	0,7	0,6	40,53	34,74
Ventanas	11,2	5,800	0,7	0,6	45,47	38,98
Paredes lucernarios	691,2	0,534	0,8	1	295,28	369,10
Fachada este						
Principal						
Muros	467	0,920	1	1,2	429,64	515,57
Patios					ĺ	
Muros	43,5	1,331	0,8	1	46,32	57,90
Ventanas	11,2	5,800	0,8	1	51,97	64,96
Paredes lucernarios	691,2	0,534	1	1,2	369,10	442,92
Forjado inferior	3155	0,800	0,4	0,3	1009,60	757,20
Cubierta	4391,83					
General	3947,96	0,600	1,2	1,3	2842,53	3079,41
Departaments	250,12	0,650	1,2	1,3	195,09	211,35
Claraboyas	193,75	3,000	1,2	1,3	697,50	755,63
Total Superficie	19.169,10 m2				16.135 w/m2°C	15.806 w/m2°C

			Coeficiente	de captación	solar (Sfs)		
TIPO DE CERR	AMIENTO	S (m2)	Rendimiento de	Coefic de obstru	cción y orientación Cri	S x r i x Cri	
THE O DE CENTR	AMILITIO	3 (III2)	captacion r i	Invierno	Verano	Invierno	Verano
Fachada Norte							
Principal	Muros	558,2	0	0	0,2	0,00	0,00
	Ventanas	271,8	0,7	0	0,2	0,00	38,05
Patio aulas	Muros	321,93	0	0	0,2	0,00	0,00
	Ventanas	101,52	0,7	0	0,2	0,00	14,21
Patio acceso	Muros	716,38	0	0	0,2	0,00	0,00
	Ventanas	299,47	0,7	0	0,2	0,00	41,93
Paredes lucernarios	3	96	0	0	0,2	0,00	0,00
Fachada Sur							
Principal	Muros	780,61	0	1	0,95	0,00	0,00
	Ventanas	473,58	0,7	1	0,95	331,51	314,93
Patio aulas	Muros	321,93	0	0,3	0,2	0,00	0,00
	Ventanas	101,52	0,7	0,3	0,2	21,32	14,21
Patio acceso	Muros	479,58	0	0,6	0,45	0,00	0,00
	Ventanas	186,12	0,7	0,6	0,45	78,17	58,63
Paredes lucernarios	3	96	0,01	0,6	0,45	0,58	0,43
Fachada Oeste							
Principal	Muros	456,25	0	0,2	1,8	0,00	0,00
tios	Muros	287,39	0,01	0,1	1,2	0,29	3,45
	Ventanas	32,1	0,7	0,1	1,2	2,25	26,96
Paredes lucernarios	3	691,2	0,01	0,1	1,2	0,69	8,29
Fachada este							
Principal	Muros	456,25	0	0,2	1,8	0,00	0,00
os	Muros	287,39	0	0,1	1,2	0,00	0,00
	Ventanas	32,1	0,7	0,1	1,2	2,25	26,96
Paredes lucernarios	3	691,2	0	0,1	1,2	0,00	0,00
Cubierta							
	Forjado	4391,8	0,01	0,6	2,2	26,35	96,62
	Claraboyas	193,75	0,2	0,6	2,2	23,25	85,25
					Sfi x Cri x ri	486,64	729,93
	Sfs =	Sfi x Cri x ri				Invierno	Verano
		Vh			Sfs =	0,017 m2/m3	0,026 m2/m3

	Coeficiente de aislamie	ento G= Gt + Gv		
Invierno			Verano	
Gt = Kg * f		Gt = Kg *	f	
Kg = (SxKxC) =	16.134,64 w/m2°C	Kg = (SxK	(xC) =	
(m2)	19.169,10 m2	(m	2)	
Kg = 0,84 w/m2 °C		Kg =	0,82 w/m2 °C	
f = <u>S (m2)</u>	Volumen Habitable Vh =	f = <u>S (n</u>	<u>n2)</u>	Volumen Habitable Vh =
Vh (m3)	27.821 m3	Vh (ı	m3)	27.821 m3
f = 0,69 m2/m3	f = 0,69 m2/m3		f = 0,69 m2/m3	
	Gt = 0,58 w/m3 °C			Gt = 0,57 w/m3 °C
Gv = R * 0,33		Gv = R * 0	0,33	
Renov por ventilac= Prom Usuarios * m3h	(renovaciones)	Renov por ventilac= Prom Usuarios * m3h (renovaciones)		
Vh			Vh	
R = <u>268*40</u>	0,39	R = <u>226</u>	* 80 =	0,6499
27.821 m3		27.8	21 m3	
Renov por infiltrac= 0,48		Renov por infiltrac= 0,48		
R = 0,87		R = 0,48	+0,6499	
R = 0,8653		R = 1,12	99	
Gv = 0,8653 * 0,33		Gv = 1,12	99* 0,33	
Gv = 0,286	Gv = 0,286		3	
G Invierno			G Verano	1
0,87 w/m3 °	С		0,94 w/m3 ^c	PC .

Coeficiente de aportacio	nes internas D =	D = <u>Oc x 120 + Pe</u> Vh	
Invierno		Verand)
Oc = <u>N x Ho</u> =	268pers x 10h/d x 5d/s	Oc = <u>N x Ho</u> =	246pers x 10h/d x 5d/s
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s
Oc = 13400	79,76	Oc = 12300	73,21
168		168	
Pe = <u>N x Hr</u> =	192280 W x 8 h/d x 5d/s	$Pe = N \times Hr =$	192280 W x 8h/d x 5d/s
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s
Pe = <u>7691200</u>		Pe = <u>7691200</u>	
168		168	
Pe = 45.781w		Pe = 45.781w	
D = 85,71 x 120 + 45781	<u>w</u>	D = <u>73,21x120+ 45781</u>	
27.821 m3		27.821 m3	
D Inviern		D Verar	10
1,99 w/m3	3	1,96 w/n	n3

Cálculo de la demanda energética anual

INVIERNO D	c = In x U x { 24 x (G	x Gd - N x D) - Sfs x N x Rv x L}			
VERANO D	or = In x U x { 24 x (G	x Gd + N x D) - Sfs x N x Rv }			
Invierno		Verano			
Coeficiente de intermitencia In: 0,80		Coeficiente de intermitencia In: 0,80			
Coeficiente de uso U:	Coeficiente de uso U: 0,85		Coeficiente de uso U: 0,85		
Coeficiente de aislamiento G:	0,87 w/m3 °C	Coeficiente de aislamiento G: 0,94 w/m3 °C			
Grados dia/ año de calefacción base 18 Gd:	1173	Grados dia/ año de refrigeración base 27 Gd: -61			
Dias al año de calefacción N:	124	Dias al año de refrigeración N: 44			
Coeficiente de aportaciones internas D =	1,99 w/m3	Coeficiente de aportaciones internas D = 1,96 w/m3			
Coeficiente de captación solar Sfs=	0,0175	Coeficiente de captación solar Sfs= 0,0262			
Radiación media en plano vertical a sur Rv:	3.400 wh/dia m3	Radiación media en plano vertical a sur Rv : 2	2.780 wh/dia m3		
Coef correción oscilación de Temperatura L:	0,60	Coef correción oscilación de Temperatura L: (0,00		
Coeficiente de inercia térmica M :	34,88 wh/m3°C	Coeficiente de inercia térmica M : (0,00		
Demanda anual de Calefacción Dc=	9.557,47 wh/m3	Demanda anual de Refrigeración Dr = 2.653,93 wh/m			

Evaluación de la demanda energética por el método de los grados día

Edificios en campus – Módulo C-3 Campus Nord.

Coeficientes de referencia

Coeficiente de transmisión Kg						
TIPO DE CERRAMIENTO	S (m2)	Aislamiento medio (K)	Coficiente de	situación (C)	Sx	K x C
CERRAMIENTO	10	(K)	Invierno	Verano	Invierno	Verano
Fachada Norte		1				
Fachada Norte Muros	286	0,73	1,1	1	229,66	208,78
Ventanas	161,7	5,80	1,1	1	1031,65	937,86
Pavés de vidrio	60,48	3,40	1,1	1	226,20	205,63
Fachada Sur						
Muros fabrica	287,5	0,73	8,0	1	167,90	209,88
Muros mixtos	154,8	0,95	0,8	1	117,65	147,06
Ventanas	59,47	5,80	0,8	1	275,94	344,93
Pavés de vidrio	45	3,40	0,8	1	122,40	153,00
Fachada Oeste						
Muros	193,32	0,68	1	1,2	131,46	157,75
Ventanas	62,32	5,80	1	1,2	361,46	433,75
	62,32					
Fachada este						
Muros	188,36	0,68	1	1,2	128,08	153,70
Ventanas	60,92	5,80	1	1,2	353,34	424,00
Sostre sanitari	999,22	0,80	0,4	0,3	319,75	239,81
Cubierta						
General	700,9	0,41	1,2	1,3	344,84	373,58
Plana entre edificios	298,32	0,65	1,2	1,3	232,69	252,08
Total superficie	3.620,63 m2			I	4.043 W/m2 °C	4.242 W/m2 °C

Coeficiente de captación solar (Sfs)						
TIPO DE CERRAMIENTO	S (m2)	Rendimiento de captacion ri	Coefic de obstrucción y orientación Cri		S x ri x Cri	
CERRAMIENTO		Captacion n	Invierno	Verano	Invierno	Verano
Fachada Norte						
Muros	286	0,02	0	0,2	0,00	1,14
Ventanas	161,7	0,7	0	0,2	0,00	22,64
Pavés de vidrio	60,48	0,6	0	0,2	0,00	3,63
Fachada Sur						
Muros fabrica	287,5	0,02	0,6	0,8	3,45	4,60
Muros mixtos	154,8	0,03	0,8	0,9	3,72	4,18
Ventanas	59,47	0,7	0,6	0,8	24,98	33,30
Pavés de vidrio	45	0,6	0,8	0,9	21,60	24,30
Fachada Oeste						
Muros	193,32	0,02	0,3	1,2	1,16	4,64
Ventanas	62,32	0,7	0,3	1,2	13,09	52,35
Fachada este						
Muros	188,36	0,02	0,2	1,8	0,75	6,78
Ventanas	60,92	0,7	0,2	1,8	8,53	76,76
Cubierta						
General	700,9	0,01	0,6	2,2	4,21	15,42
Plana entre edificios	298,32	0,01	0,6	2,2	1,79	6,56
					77,27	234,32
Sfs =	<u>Sfi x Cri x ri</u> Vh			Sfs =	Invierno 0,008 m2/m3	Verano 0,024 m2/m3

	Coeficiente de aislam	iento G= Gt + Gv			
Invierno		Verano			
Gt = Kg * f		Gt = Kg * f			
Kg = (SxKxC) =	4.043,01 w/m2 °C	Kg = <u>(SxKxC)</u> =	4.241,81 w/m2 °C		
(m2)	3.620,63 m2	(m2)	3.620,63 m2		
Kg = 1,12 w/m2 °C	Volumen Habitable Vh =	1,17 w/m2 °C	Volumen Habitable Vh =		
f = <u>S (m2)</u>	9.708 m3	f = <u>S (m2)</u>	9.708 m3		
Vh (m3)		Vh (m3)			
f = 0,37 m2/m3		f = 0,37 m2/m3			
Gt =	Gt = 0,42 W/m3 °C		Gt = 0,44 W/m3 °C		
Gv = Renovac * 0,33		Gv = Renovac * 0,33			
Renov por ventilac= Prom Usuarios * m3h (renov	aciones)	Renov por ventilac= Prom Usuarios * m3h (renovac)			
	Vh	Vh			
Renov por ventilac= 130* 35 =	0,47	R = <u>96* 50</u> =	0,49		
9.708 m3		9.708 m3			
Renov por infiltrac= 0,37		Renov por infiltrac= 0,37			
Renovac total = 0,37+0,47	0,84	R = 0,37+0,49 =	0,8652		
Gv = 0,84 * 0,33		Gv = 0,8652 * 0,33			
Gv = 0,277	•	Gv = 0,286			
G Invierno	0,69 W/m3 °C	G Verano	0,72 W/m3 °C		

Coeficiente de aportaciones i	nternas D =	D = <u>Oc x 120 + Pe</u> Vh	
Invierno		Verano	
Oc = <u>N x Ho</u> =	130 pers x 8h/d x 5d/s	Oc = <u>N x Ho</u> =	96 pers x 8h/d x 5d/s
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s
Oc = 30,95		Oc = 22,86	
Pe = <u>N x Hr</u> =	75000 W x 8h/d x 5d/s	Pe = <u>N x Hr</u> =	880000 W x 8h/d x 5d/s
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s
Pe = 17.857w		Pe = 20.952w	
D = (30.95 x 120) + 17857 w	21571,42857	D = (22,86 x 120) + 20952 w	23695,2381
9.708 m3	9.708 m3	9.708 m3	9.708 m3
D Invierno	2,22 W/m3	D Verano	2,44 W/m3

Cálculo de la demanda energética anual

DEMANDA ENERGÉTICA ANUAL Da				
INVIERNO Da = In x U x { 24 x (G x Gd - N x D) - Sfs x N x Rv x L}				
VERANO Da = In x U x { 24 x (G x Gd + N x D) - Sfs x N x Rv }				
Invierno Verano				
Usuarios promedio U = 130	Usuarios promedio U = 96			
Coeficiente de intermitencia In: 0,75	Coeficiente de intermitencia In: 0,80			
Coeficiente de uso U: 0,80	Coeficiente de uso U: 0,85			
Coeficiente de aislamiento G: 0,69 w/m3 °C	Coeficiente de aislamiento G: 0,72 w/m3 °C			
Grados dia/ año de calefacción base 18 Gd: 1071	Grados dia/ año de refrigeración base 27 Gd: -135			
Dias al año de calefacción N: 89	Dias al año de refrigeración N: 53			
Coeficiente de aportaciones internas D = 2,22 w/m3	Coeficiente de aportaciones internas D = 2,44 W/m3			
Coeficiente de captación solar Sfs= 0,0080	Coeficiente de captación solar Sfs= 0,0241			
Radiación media en plano vertical a sur Rv: 3.584 wh/dia m3	Radiación media en plano vertical a sur Rv: 2.940 wh/dia m3			
Coef correción oscilación de Temperatura L: 0,73	Coef correción oscilación de Temperatura L: 0,00			
Coeficiente de inercia térmica M: 45,25 Wh/m3°C	Coeficiente de inercia térmica M: 0,00			
Demanda de Calefacción Da = 6.741,09 Wh/m3	Demanda de Refrigeración Da = 3.077,00 Wh			

Dem	nanda total en kWh calefacción:	65.443 kWh/año	Demanda total en kWh refrigeración:	29.871 kWh/año
-----	---------------------------------	----------------	-------------------------------------	----------------

Evaluación de la demanda energética por el método de los grados día

• Edificios en campus — Módulo D-4 Campus Nord.

Coeficientes de referencia

Coeficiente de transmisión Kg						
TIPO DE CERRAMIENTO	S (m2)	Aislamiento medio	Coficiente de situación (C)		SxKxC	
CERRAINIENTO		(K)	Invierno	Verano	Invierno	Verano
Fachada Norte		1				
Muros	347,25	0,69	1,1	1	263,56	239,60
Ventanas/puerta	181,72	5,80	1,1	1	1159,37	1053,98
v omanao paona	101,72	0,00	.,.	·	1100,01	1000,00
Fachada Sur						
Muros fabrica	395,56	0,72	0,8	1	227,84	284,80
Ventanas	199,1	5,80	0,8	1	923,82	1154,78
Fachada Oeste						
Muros	323,25	0,71	1	1,2	229,51	275,41
Ventanas	18,1	5,80	1	1,2	104,98	125,98
Moros paves	22,03	3,40	1	1,2	74,90	89,88
Fachada este						
Muros	323,25	0,71	1	1,2	229,51	275,41
Ventanas	18,1	5,80	1	1,2	104,98	125,98
Moros paves	22,03	3,40	1	1,2	74,90	89,88
Sostre sanitari	750,5	0,80	0,4	0,3	240,16	180,12
Cubierta						
General	750,5	0,39	1,2	1,3	351,23	380,50
Total superficie	3.351,39 m2				3.984,78 W/m2 °C	4.276,32 W/m2 °

Coeficiente de captación solar (Sfs)						
TIPO DE CERRAMIENTO	S (m2)	Rendimiento de captacion l'i	Coefic de obstrucción y orientación Cri		S x l'i x Cri	
		cuptucion 11	Invierno	Verano	Invierno	Verano
Fachada Norte						
Muros	347,25	0,02	0	0,2	0,00	1,39
Ventanas/puerta	181,72	0,7	0	0,2	0,00	25,44
Fachada Sur						
Muros fabrica	395,56	0,02	0,8	0,9	6,33	7,12
Ventanas	199,1	0,7	0,7	0,8	97,56	111,50
Fachada Oeste						
Muros	323,25	0,02	0,15	1,5	0,97	9,70
Ventanas	18,1	0,7	0,15	1,5	1,90	19,01
Moros paves	22,03	0,6	0,15	1,5	1,98	19,83
Fachada este						
Muros	323,25	0,02	0,15	1,5	0,97	9,70
Ventanas	18,1	0,7	0,15	1,5	1,90	19,01
Moros paves	22,03	0,6	0,15	1,5	1,98	19,83
Cubierta						
General	750,5	0,01	0,6	2,2	4,50	16,51
					113,59	242,50
Sfs =	Sfi x Cri x ri			Sfs =	Invierno	Verano
	Vh				0,013 m2/m3	0,027 m2/m3

	Coeficiente de aislam	iento G= Gt + Gv		
Invierno		Verano		
Gt = Kg * f		Gt = Kg * f		
Kg = <u>(SxKxC)</u> =	3.984,78 w/m2 °C	Kg = <u>(SxKxC)</u> =	4.276,32 w/m2 °C	
(m2)	3.351,39 m2	(m2)	3.351,39 m2	
Kg = 1,19 w/m2 °C	Volumen Habitable Vh =	1,28 w/m2 °C	Volumen Habitable Vh =	
f = <u>S (m2)</u>	9.001 m3	f = <u>S (m2)</u>	9.001 m3	
Vh (m3)		Vh (m3)		
f = 0,37 m2/m3	f = 0,37 m2/m3			
	Gt = 0,44 w/m3 °C	Gt = 0,48 w/m3 °C		
Gv = Renovac * 0,33		Gv = Renovac * 0,33		
Renov por ventilac= Prom Usuarios * m3h (r	enovaciones)	Renov por ventilac= Prom Usuarios * m3h (renovac)		
	Vh	Vh		
Renov por ventilac= 63*35 =	0,24	R = <u>56* 50</u> =	0,31	
9.001 m3		9.001 m3		
Renov por infiltrac= 0,51		Renov por infiltrac= 0,51		
Renovac total = 0,41+0,5124	0,76	R = 0,31+0,41 =	0,8233	
Gv = 0,65 * 0,33		Gv = 0,7209 * 0,33		
Gv = 0,250		Gv = 0,272		
G Invierno	0,69 W/m3 °C	G Verano	0,75 W/m3 °C	

Coeficiente de aportaciones ir	nternas D =	D = <u>Oc x 120 + Pe</u> Vh Verano		
Invierno				
Oc = <u>N x Ho</u> =	63 pers x 8h/d x 5d/s	Oc = <u>N x Ho</u> =	56 pers x 8h/d x 5d/s	
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s	
Oc = 15,00		Oc = 13,33		
Pe = <u>N x Hr</u> =	38000 W x 8h/d x 5d/s	Pe = <u>N x Hr</u> =	51000 W x 8h/d x 5d/s	
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s	
Pe = 9.048w		Pe = 12.143w		
D = (15 x 120) + 11143 w	10847,61905	D = (22,86 x 120) + 108712 w	13742,85714	
9.001 m3	9.001 m3	9.001 m3	9.001 m3	
D Invierno	1,21 W/m3	D Verano	1,53 W/m3	

Cálculo de la demanda energética anual

DEMANDA ENERGÉTICA ANUAL Da				
INVIERNO Da = In x U x { 24 x (G x Gd - N x D) - Sfs x N x Rv x L}				
VERANO Da = In x U x { 24 x (G x Gd + N x D) - Sfs x N x Rv }				
Invierno	Verano			
Coeficiente de intermitencia In: 0,75	Coeficiente de intermitencia In: 0,80			
Coeficiente de uso U: 0,80	Coeficiente de uso U : 0,85			
Coeficiente de aislamiento G: 0,69 w/m3 °C	Coeficiente de aislamiento G: 0,75 w/m3 °C			
Grados dia/ año de calefacción base 18 Gd: 1071	Grados dia/ año de refrigeración base 27 Gd: -135			
Dias al año de calefacción N: 89	Dias al año de refrigeración N: 53			
Coeficiente de aportaciones internas D = 1 ,21 w/m3	Coeficiente de aportaciones internas D = 1,53 w/m3			
Coeficiente de captación solar Sfs= 0,0126	Coeficiente de captación solar Sfs= 0,0269			
Radiación media en plano vertical a sur Rv: 3.584 wh/dia m3	Radiación media en plano vertical a sur Rv: 2.940 wh/dia m3			
Coef correción oscilación de Temperatura L: 0,72	Coef correción oscilación de Temperatura L: 0,00			
Coeficiente de inercia térmica M : 43,21 wh/m3°C	Coeficiente de inercia térmica M: 0,00			
Demanda de Calefacción Da = 7.408,29 Wh/m3	Demanda de Refrigeración Da = 2.530,01 Wh/			

Demanda total en kWh calefacción:	66.682 kWh/año	Demanda total en kWh refrigeración:	22.773 kWh/año

Evaluación de la demanda energética por el método de los grados día

• Edificios en campus — Módulo A-6 Campus Nord.

Coeficientes de referencia

Coeficiente de transmisión Kg						
TIPO DE CERRAMIENTO	S (m2)	Aislamiento medio (K)	Coficiente de	situación (C)	SxKxC	
CERRAMIENTO		(N)	Invierno	Verano	Invierno	Verano
Fachada Norte						
Muros	353,13	0,53	1,1	1	205,87	187,16
Ventanas/puerta	176,28	5,80	1,1	1	1124,67	1022,42
Fachada Sur						
Muros	294,86	0,53	0,8	1	125,02	156,28
Ventanas	166,3	4,30	0,8	1	572,07	715,09
Fachada Oeste						
Muros	151,09	0,53	1	1,2	80,08	96,09
Ventanas	69,76	5,80	1	1,2	404,61	485,53
Fachada este						
Muros	239,47	0,53	1	1,2	126,92	152,30
Ventanas	10,93	5,80	1	1,2	63,39	76,07
Sostre / p.soterrani	790	1,30	0,4	0,3	410,80	308,10
Cubierta						
General	790	0,45	1,2	1,3	426,60	462,15
Total superficie	3.041,82 m2				3.540,03 W/m2 °C	3.661,20 W/m2 °C

Coeficiente de captación solar (Sfs)						
TIPO DE S (m2)		Rendimiento de captacion ri	Coefic de obstrucción y orientación Cri		S x ri x Cri	
OERI CAMILLATO	Captacion n	Captacion II	Invierno	Verano	Invierno	Verano
Fachada Norte						
Muros	353,13	0,02	0	0,2	0,00	1,41
Ventanas/puerta	176,28	0,7	0	0,2	0,00	24,68
Fachada Sur						
Muros	294,86	0,02	0,6	0,8	3,54	4,72
Ventanas	166,3	0,49	0,6	0,8	48,89	65,19
Fachada Oeste						
Muros	151,09	0,02	0,1	1,5	0,30	4,53
Ventanas	69,76	0,49	0,1	1,5	3,42	51,27
Fachada este						
Muros	239,47	0,02	0,1	1,5	0,48	7,18
Ventanas	10,93	0,7	0,1	1,5	0,77	11,48
Cubierta						
General	790	0,01	0,6	2,2	4,74	17,38
					57,39	170,47
Sfs =	<u>Sfi x Cri x ri</u> Vh			Sfs =	Invierno 0,006 m2/m3	Verano 0,017 m2/m3

	Coeficiente de aislami	iento G= Gt + Gv		
Invierno		Verano		
Gt = Kg * f		Gt = Kg * f		
Kg = <u>(SxKxC)</u> =	3.540,03 w/m2 °C	Kg = <u>(SxKxC)</u> =	3.661,20 w/m2 °C	
(m2)	3.041,82 m2	(m2)	3.041,82 m2	
Kg = 1,16 w/m2 °C	Volumen Habitable Vh =	1,20 w/m2 °C	Volumen Habitable Vh =	
f = <u>S (m2)</u>	10.200 m3	f = <u>S (m2)</u>	10.200 m3	
Vh (m3)		Vh (m3)		
f = 0,30 m2/m3		f = 0,30 m2/m3		
	Gt = 0,35 W/m3 °C	Gt = 0,36 W/m3 °C		
Gv = Renovac * 0,33		Gv = Renovac * 0,33		
Renov por ventilac= Prom Usuarios * m3h (ı	renovaciones)	Renov por ventilac= Prom Usuarios * m3h (re	m Usuarios * m3h (renovac)	
	Vh		Vh	
Renov por ventilac= 267* 30 =	0,79	R = 108* 30 =	0,32	
10.200 m3		10.200 m3		
Renov por infiltrac= 0,40		Renov por infiltrac= 0,40		
Renovac total = 0,40+0,79	1,19	R = 0,40+0,53 =	0,7219	
Gv = 1,19 * 0,33		Gv = 0,933 * 0,33		
Gv = 0,393		Gv = 0,238		
G Invierno	0,74 W/m3 °C	G Verano	0,60 W/m3 °C	

Coeficiente de aportaciones i	nternas D =	D = <u>Oc x 120 + Pe</u> Vh		
Invierno		Verano		
Oc = <u>N x Ho</u> =	267 pers x 10h/d x 5d/s	$Oc = N \times Ho =$	108 pers x 10h/d x 5d/s	
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s	
Oc = 79,46		Oc = 32,14		
Pe = <u>N x Hr</u> =	18080 W x 10h/d x 5d/s	Pe = <u>N x Hr</u> =	18080 W x 10h/d x 5d/s	
Hs	24h/d x 7d/s	Hs	24h/d x 7d/s	
Pe = 5.381w		Pe = 5.381w		
$D = (63,57 \times 120) + 4,305 \text{ w}$	14916,66667	$D = (32,14 \times 120) + 5381 \text{ w}$	9238,095238	
10.200 m3	10.200 m3	10.200 m3	10.200 m3	
D Invierno	1,46 W/m3	D Verano	0,91 W/m3	

Cálculo de la demanda energética anual

DEMANDA ENERGÉTICA ANUAL Da			
INVIERNO Da = In x U x { 24 x (G x Gd - N x D) - Sfs x N x Rv x L} VERANO Da = In x U x { 24 x (G x Gd + N x D) - Sfs x N x Rv }			
Coeficiente de intermitencia In: 0,70	Coeficiente de intermitencia In: 0,70		
Coeficiente de uso U: 0,80	Coeficiente de uso U: 0,80		
Coeficiente de aislamiento G: 0,74 w/m3 °C	Coeficiente de aislamiento G: 0,60 w/m3 °C		
Grados dia/ año de calefacción base 18 Gd: 719	Grados dia/ año de refrigeración base 27 Gd: -72		
Dias al año de calefacción N: 56	Dias al año de refrigeración N: 45		
Coeficiente de aportaciones internas D = 1,46 w/m3	Coeficiente de aportaciones internas D = 0,91 w/m3		
Coeficiente de captación solar Sfs= 0,0056	Coeficiente de captación solar Sfs= 0,0167		
Radiación media en plano vertical a sur Rv: 3.584 wh/dia m3	Radiación media en plano vertical a sur Rv: 2.940 wh/dia m3		
Coef correción oscilación de Temperatura L: 0,80	Coef correción oscilación de Temperatura L: 0,00		
Coeficiente de inercia térmica M : 31,23 wh/m3°C	Coeficiente de inercia térmica M: 0,00		
Demanda de Calefacción Da = 5.539,17 Wh/m3	Demanda de Refrigeración Da = 1.208,08 Wh/m3		

Demanda total en kWh calefacción:	56.500 kWh/año	Demanda total en kWh refrigeración:	12.322 kWh/año

2.2. Evaluación de la demanda con el Programa ARCHISUN

Este software, como se comentó en el apartado 4.1.1, ha sido desarrollado por el Grupo de Arquitectura y Energía de la Escuela Técnica Superior de Arquitectura de Barcelona, de la Universidad Politécnica de Cataluña (UPC), en el marco del programa THERMIE de la Comisión Europea. En el proyecto también han colaborado el Instituto Catalán de Energía, el Politécnico de Milán, de Italia, la Universidad de Hannover, de Alemania, y la empresa Tombazis and Ass., de Grecia.

La entrada de datos en el programa se ha dividido en dos grupos. El primero está compuesto por datos generales -volumen global de edificio, tipos de usos y número de ocupantes-, mientras que el segundo grupo está formado por datos específicos divididos a su vez en 5 áreas: localización, ubicación, entorno, forma, piel e interior.

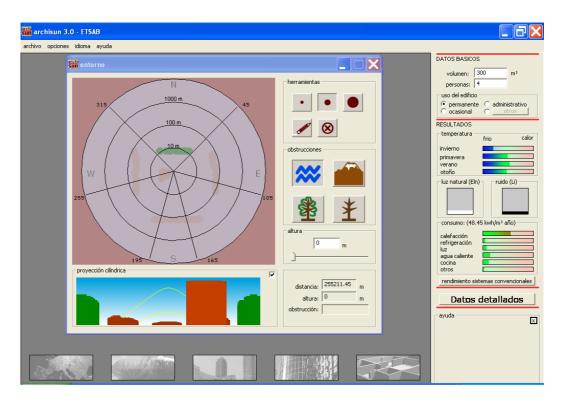


Fig. 2.2.1. ARCHISUN entrada de datos

En el área de Localización se pueden introducir datos sobre el lugar donde se va a ubicar el edificio. Entre estos datos figuran el clima de la zona, altitud, distancia del mar y grado de urbanización.

Los datos climáticos pueden ser modificados si se tienen datos específicos,(como en nuestro caso) y aproximarse de forma detallada a la realidad de las condiciones específicas del entorno en que funciona el edificio.

En la definición del entorno, es posible indicar gráficamente los elementos que rodean el edificio, como vegetación, barreras sólidas o agua. Con esta información el programa corrige los datos climáticos del área de localización. En este apartado también se incluyen, dependiendo de las estaciones, las oscilaciones de temperaturas, la radiación del sol que incide en el edificio, la humedad relativa, la intensidad del viento y los niveles de ruido del lugar donde se construirá el edificio.

La definición de la forma permite establecer relaciones entre el edificio y sus alrededores a

través de las proporciones, en planta y elevación. Con estos datos, el programa realiza un reparto básico de las superficies de sus cerramientos en distintas orientaciones.

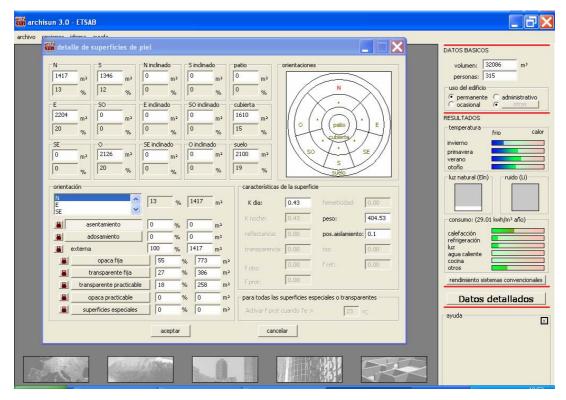


Fig. 2.2.2. ARCHISUN Definición de la piel

La descripción de la Piel permite definir las partes del edificio que tienen relación con el medio ambiente externo, calculando los coeficientes de pérdida de calor, la absorción de las radiaciones solares y la infiltración del aire, entre otros parámetros.

El Interior permite definir las principales características internas del edificio que determinan, en parte, su respuesta térmica dinámica y las corrientes de aire desde unas partes a otras. El programa utiliza estos datos para dar indicaciones sobre el consumo y la iluminación.

El cálculo de las cargas internas se hace según las ecuaciones de transferencia y conservación del calor, en un modelo de referencia que tiene en cuenta las ganancias solares al interior del edificio, las ganancias solares en los cerramientos opacos, la generación o la disipación interiores, y las transferencias del interior directamente al exterior (la ventilación y la transferencia a través de las superficies vidriadas),así como la acumulación de energía solar directa en el interior que se pueden generar (I. Marincic, 1999).

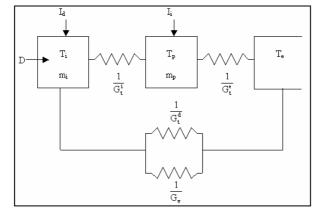


Fig. 2.2.3. ARCHISUN modelo de cálculo

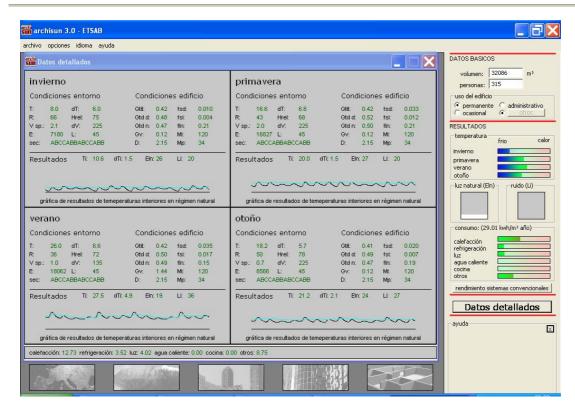


Fig. 2.2.3. ARCHISUN resultados

Los cálculos térmicos se llevan a cabo en el espacio de frecuencia (Fourier). Una vez que se conocen los datos externos (la temperatura, la radiación, etc.), las características del edificio y las características funcionales, la temperatura interior y el balance energético se obtienen aplicando la transformada inversa de Fourier.

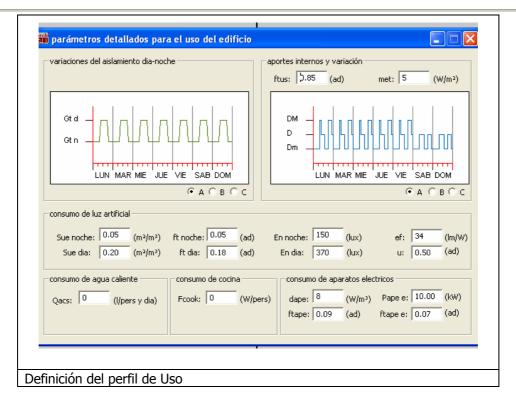
Los algoritmos se utilizan para introducir los parámetros que intervienen en las ecuaciones básicas, que permiten el cálculo de su valor en cada caso en base a los datos climáticos y arquitectónicos escogidos por el usuario.

Los resultados de demanda en ARCHISUN se expresan en kWh/m3 anual para los diferentes usos energéticos del edificio, y el programa permite simular el consumo energético introduciendo como dato el rendimiento de los equipos que atenderán la demanda. Para el caso de los edificios estudiados en este trabajo, y considerando que se ha utilizado la herramienta ARCHISUN para evaluar la demanda energética del edificio, los valores de rendimiento de los sistemas considerados han sido de 1.0 tanto en calefacción como en refrigeración.

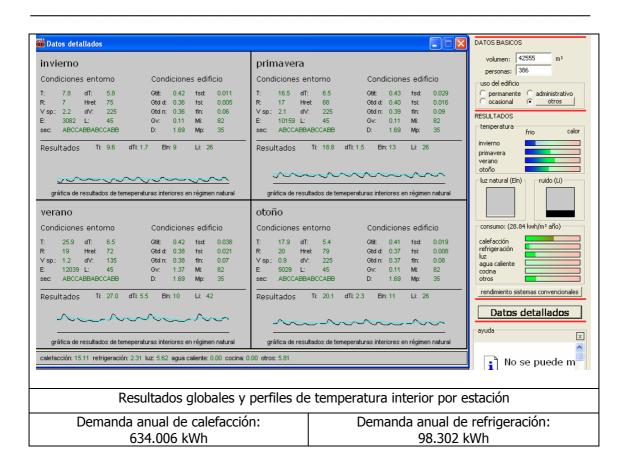
El programa también informa (gráfica y numéricamente) de la temperatura interior para cada estación del año y los valores más significativos de aislamiento, aportes internos, etc.

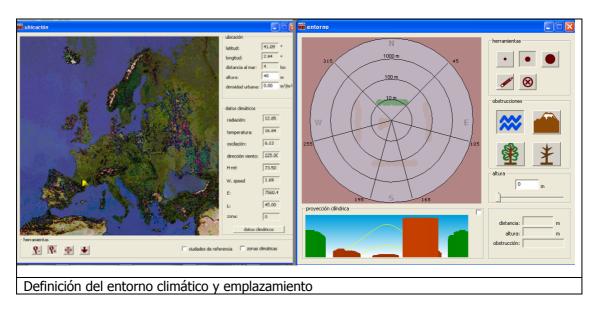
Resultados obtenidos con ARCHISUN:

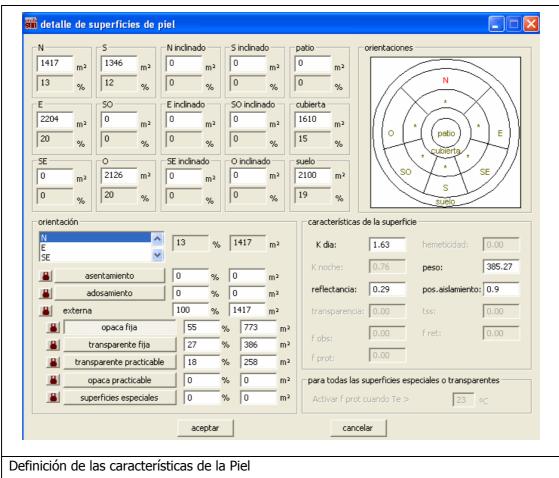
A continuación se presenta un resumen de los resultados obtenidos de demanda energética de los edificios estudiados, utilizando el software ARCHISUN:

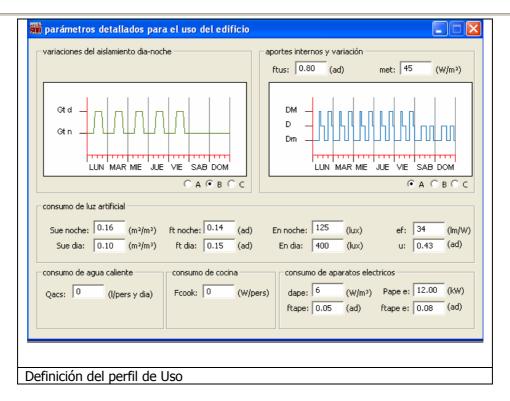

Evaluación de la demanda energética con ARCHISUN

Edificios autónomos – EPSEB

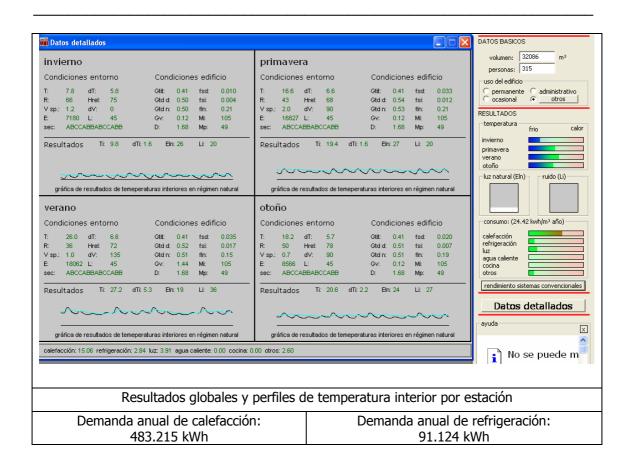

Definición del edificio


RESULTADOS:

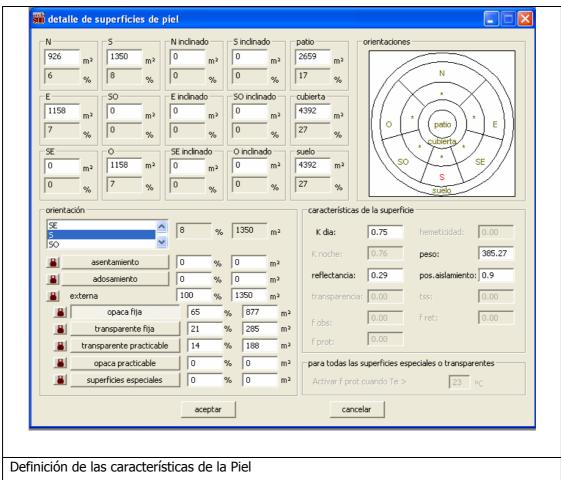


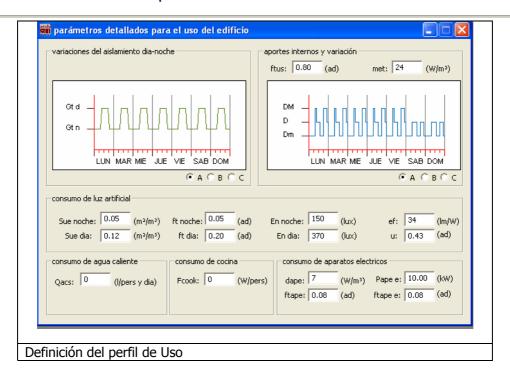

Evaluación de la demanda energética con ARCHISUN

• Edificios autónomos – ETSAB

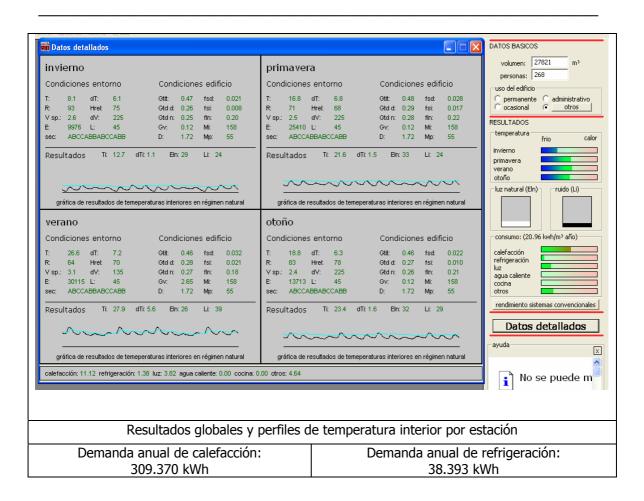

Definición del edificio

RESULTADOS:

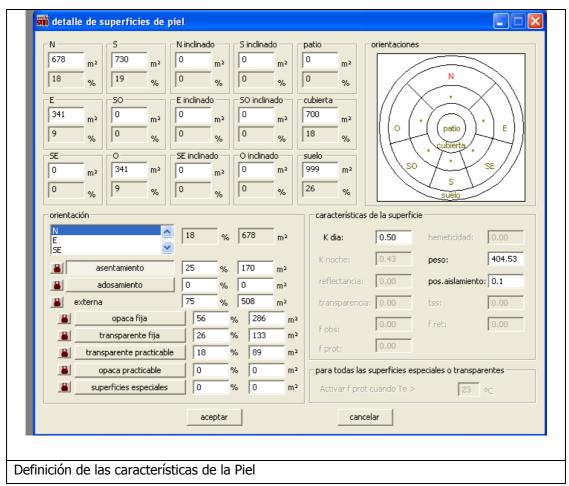


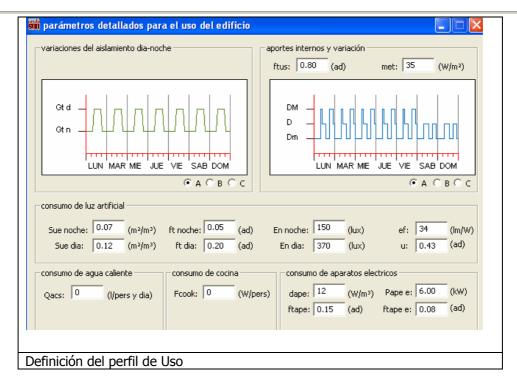

Evaluación de la demanda energética con ARCHISUN

Edificios autónomos – ETSAV

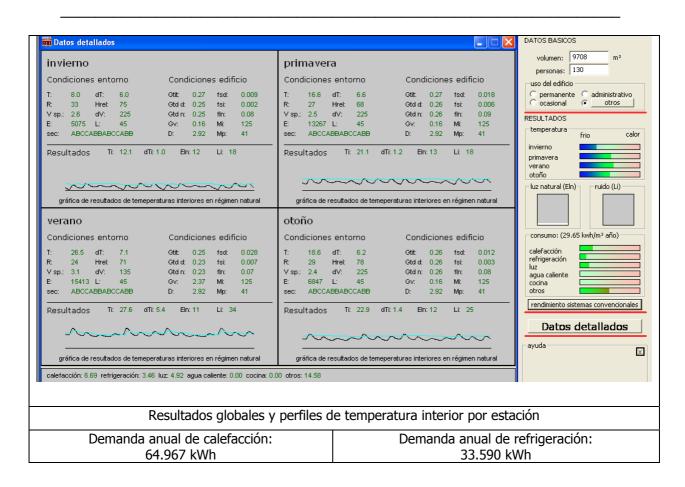

Definición del edificio

RESULTADOS:

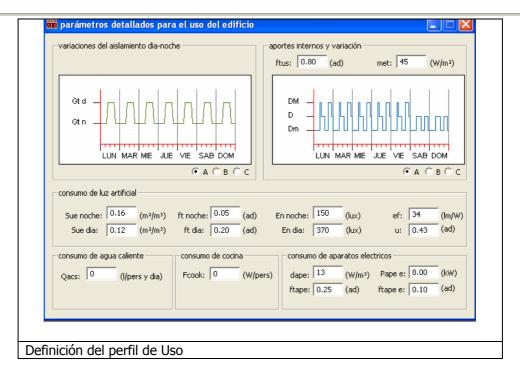



Evaluación de la demanda energética con ARCHISUN

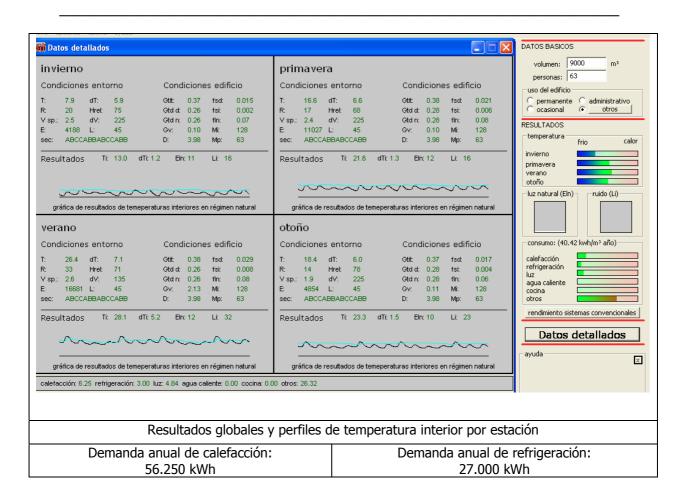
• Edificios en campus – Módulo C-3 campus nord


Definición del edificio

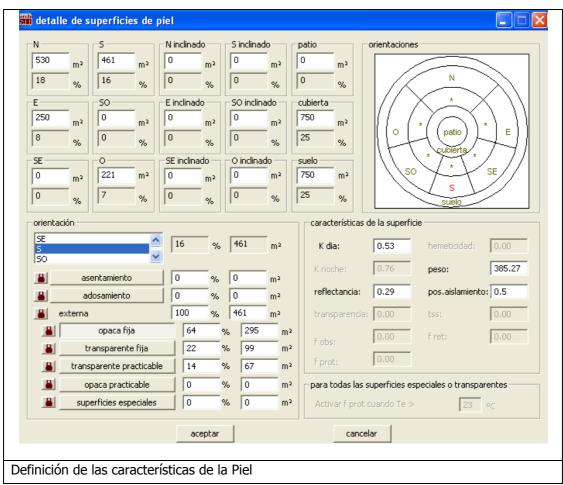
RESULTADOS:

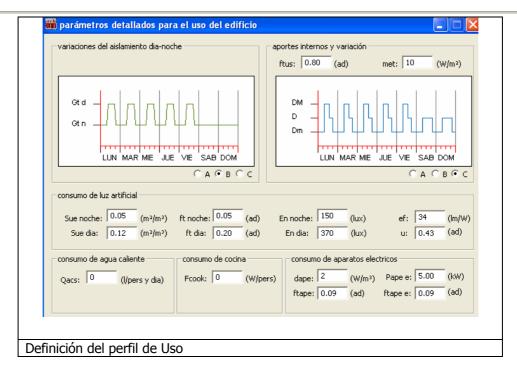

Evaluación de la demanda energética con ARCHISUN

Edificios en campus – Módulo D-4 campus nord

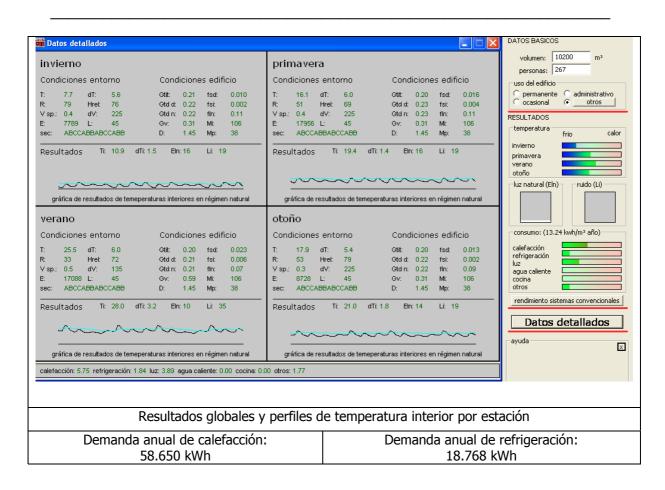

Definición del edificio

RESULTADOS:




Evaluación de la demanda energética con ARCHISUN

Edificios en campus – Módulo A-6 campus nord


Definición del edificio

RESULTADOS:

2.3. Evaluación de la demanda con la herramienta BALANÇ ENERGÈTIC

Como se explicó de forma resumida en el apartado 4.1.1, esta herramienta parte de la base de que el incremento de temperatura interior de un edificio depende fundamentalmente del balance energético durante un determinado período (una hora p. ejem.) y la capacidad térmica del edificio que se expresa en la siguiente fórmula¹:

$$\Delta t(^{\circ}C) = \frac{\Delta E}{C_t}$$
 (1)

Donde:

 $\Delta E = \text{Balance energ\'etico}$ $C_{\scriptscriptstyle t} = \text{Capacidad t\'ermica}$

$$\Delta E = \pm C + A + O + R \pm T \pm V \tag{2}$$

 $\pm C$ = Aporte energético en calefacción o refrigeración

+ A = Aportes aparatos

+ O = Aportes ocupantes

+R = Ganancias por radiación solar

 $\pm T = Ganancias/pérdidas por transmisión$

 $\pm V = Ganancias/pérdidas por ventilación$

$$C_{t} = \sum C_{ei} x M_{i} \tag{3}$$

 C_{i} = Calor específico de los materiales

 $M_i = \text{Masa de los materiales}$

La temperatura final para cada período analizado simplemente será la diferencia respecto a la temperatura inicial del mismo período:

$$t_{fin} = t_{inicial} + \Delta t \tag{4}$$

Teniendo en cuenta cada una de las variables mencionadas la herramienta calcula la variación interior de la temperatura y define para un período de 24 horas la energía total necesaria (en frío o en calor) para mantener el balance energético en 0, considerando que la temperatura interior se mueva dentro de la banda de confort correspondiente para cada período del año y el edificio termine el período con la misma temperatura con que lo comenzó. Las unidades energéticas que utiliza el programa son los Wh.

La herramienta Excel consta de 8 hojas de cálculo:

 La hoja "DADES" es donde se introducen las características básicas propias del edificio: Superficies, materiales, etc. y se van calculando automáticamente; el peso, el factor de forma, la KG etc. También se resume el incremento de temperatura al final del período cuando se han introducido todos los datos.

¹ © 1.999-2003 - ARCADI DE BOBES - SECCIÓ TECNOLOGIA - E.T.S. ARQUITECTURA VALLÉS - UPC.

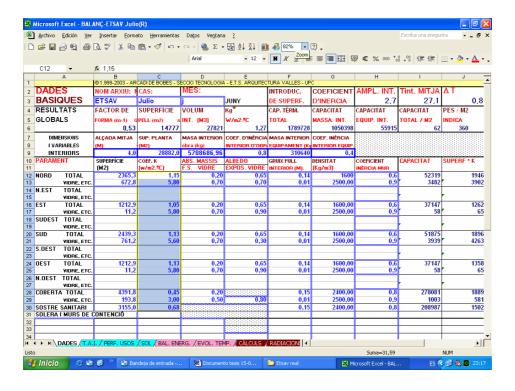


Fig. 2.3.1. BALANÇ ENERGÈTIC entrada de datos

 En la segunda hoja denominada T.A.I se introducen las variables climáticas y de aportes internos del edificio: T^o exterior, infiltraciones, calefacción/refrigeración, aparatos, ocupantes, etc. y se presentan los resultados que se van obteniendo a partir de estos datos.

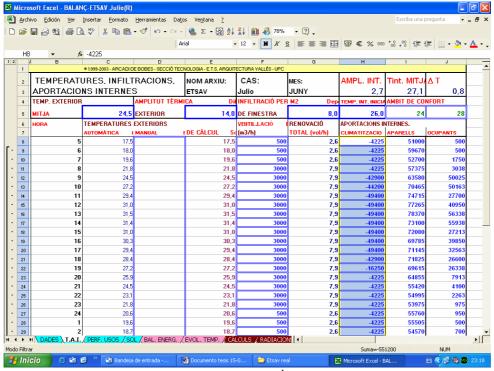


Fig. 2.3.2. BALANÇ ENERGÈTIC hoja T.A.I

 En la tercera hoja "PERFIL USOS" se introducen hora a hora los perfiles de uso: número de ocupantes, grado de actividad, aparatos eléctricos en marcha e iluminación. Estos datos se envían automáticamente a la hoja anterior.



Fig. 2.3.3. BALANÇ ENERGÈTIC. Perfil de usos

 En la hoja SOL se introducen las condiciones globales de asoleamiento del edificio y, cuando se introducen los datos correspondientes, se presentan los resultados de radiación e incremento de temperatura al final del período.

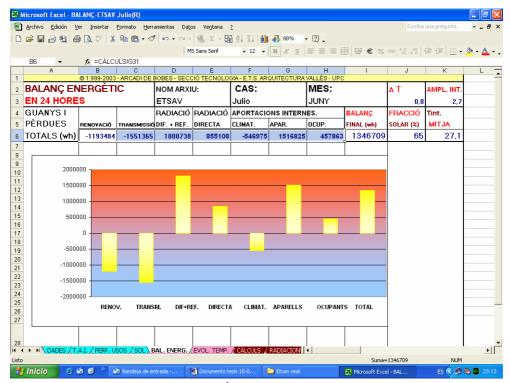


Fig. 2.3.4. BALANÇ ENERGÈTIC. Hoja de balance energético diario.

- La hoja "BAL. ENERG" es solamente de resultados y es donde se representan gráfica y numéricamente los datos del balance energético del período diario y el incremento de temperatura al final del período.
- En la hoja "EVOL. TEMP" se representa gráfica y numéricamente la evolución de las temperaturas interiores y exteriores y un resumen de las características básicas del edificio. Esta hoja es también solo de resultados.
- En la hoja "CÀLCULS" se realizan todos los cálculos de la herramienta
- La hoja "RADIACIONS" contiene los datos de radiación que se utilizan en los cálculos de la herramienta.

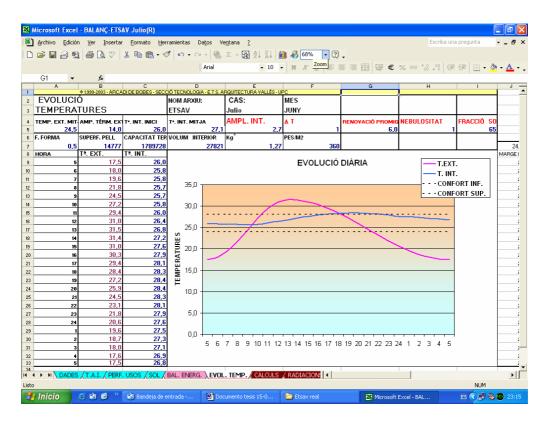


Fig. 2.3.5. BALANÇ ENERGÈTIC evolución de las temperaturas

No obstante la aclaración de su autor, donde establece las limitaciones de la herramienta, se trata de una instrumento de mucha utilidad para estudios de las características como el presente, ya que permite introducir las modificaciones de las diferentes variables hora a hora, tanto de la variación de las condiciones exteriores del edificio, como de los valores de consumo energético y volumen de usuarios que se levantaron en el trabajo de campo realizado.

Si bien BALANÇ ENERGÈTIC no es una herramienta de la precisión de un programa informático que realice un análisis en régimen transitorio o tipo multizona, si es una herramienta que permite conocer de forma aproximada las tendencias en la variación de las condiciones de confort interior, y estimar la incidencia del aporte energético en forma de frío o de calor para diferentes épocas del año. Esta condición, sumada al carácter "abierto" de una herramienta Excel como esta, le hace marcar una diferencia importante respecto a programas más desarrollados pero "herméticos" en cuanto a la visualización de los datos que consideran y la singularización que pueda requerir el usuario.

Teniendo en cuenta que Balanç Energétic permite obtener los valores de demanda para períodos de 1 día, fue necesario realizar para cada edificio el estudio de 12 días diferentes, uno

por cada mes del año, consignando la variación de las condiciones exteriores de temperatura, los parámetros de confort, los registros de consumo energético y seguimiento del volumen de usuarios realizados.

Considerando que un "día tipo" representa a todos los días del mes que se analiza, para cada mes del año se analizó cuantas veces se podría repetir este día y se distinguieron días laborables de no laborables. A partir de esta información se proyectó la demanda mensual y anual como se presenta en la **Fig. 2.3.6.**

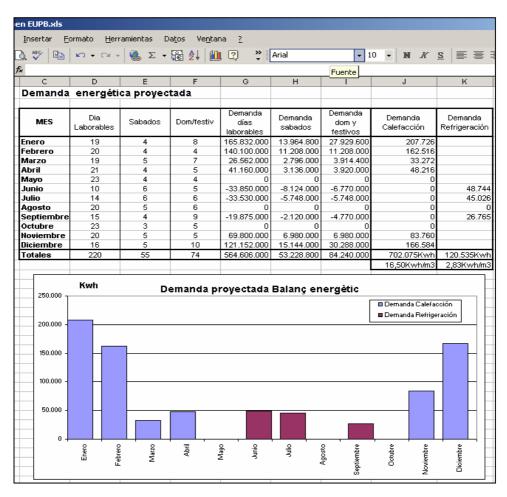
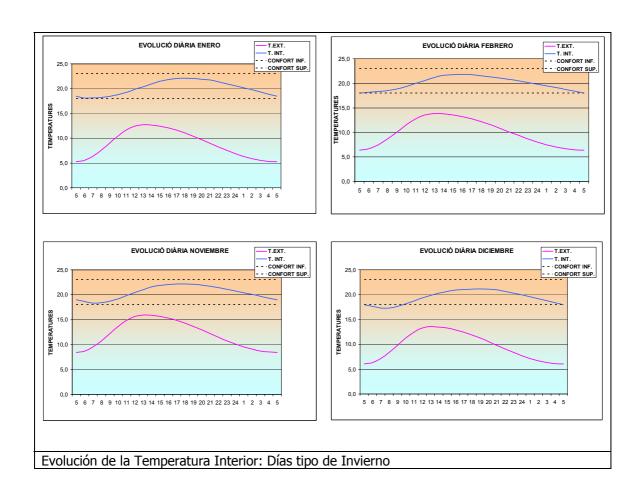
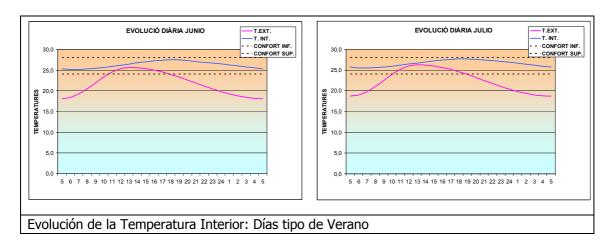


Fig. 2.3.6. BALANC ENERGÈTIC proyección de la demanda

Resultados obtenidos con BALANÇ ENERGÈTIC.

A continuación se presenta un resumen de los resultados obtenidos de demanda energética de los edificios estudiados, utilizando la herramienta BALANÇ ENERGÈTIC. Se presenta la siguiente información:

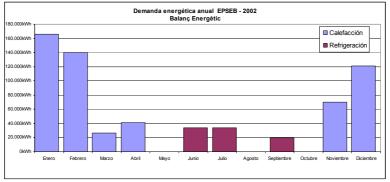

- la hoja de introducción de datos donde se definen las características generales de cada edificio.
- las gráficas de evolución de temperaturas de los días tipo de los meses más representativos del año (por la demanda energética que suponen), 4 del período de invierno y 2 del período de verano.
- datos de balance energético mensual y la proyección demanda anual que también se incluye


Con relación a los meses de primavera y otoño, aunque las gráficas correspondientes a estos meses no se incluyen en este documento, la demanda energética calculada en cada caso si se incluye en los resúmenes de balance energético y demanda anual.

Evaluación de la demanda energética con la herramienta BALANÇ ENERGÈTIC

• Edificios autónomos - EPSEB

	S	NOM ARXIU: N	CAS:	MES:		INTRODUC.	COEFICIENT	AMPL. INT.	Tint. MITJA	ΔΤ
BASI	QUES	EPSEB	Abril	е	MARÇ / SET.	DE SUPERF.	D'INERCIA F	4,0	18,8	-1,1
RESUL	TATS	FACTOR DE	SUPERFICIE	VOLUM	Kg [*]	CAP. TÈRM.	CAPACITAT	CAPACITAT	CAPACITAT	PES / M2
GLOBA	ALS	FORMA (m-1) Q	PELL (m2) su	INT. (M3) v	W/m2.°C m	TOTAL q	MASSA. INT.	EQUIP. INT.	TOTAL / M2	INDICA
		0,31	13025	42055	2,30	1559959	848695	98510	646	3572
DIM	IENSIONS	ALÇADA MITJA	SUP. PLANTA	MASA INTERIOR	COEF. D'INÈRCIA	MASA INTERIOR	COEF. INÈRCIA			
I VA	ARIABLES			obra (kg)	INTERIOR D'OBRA		INTERIOR EQUIP.			
	TERIORS	3,5	2414,7	4612473	0,8	547280	0,4			
PARAME	ENT	SUPERFÍCIE	COEF. K		ALBEDO I	GRUIX FULL	DENSITAT	COEFICIENT	CAPACITAT DE	SUPERF * K
		(M2)			EXPOS. VIDRE			INÈRCIA MUR Seg	0111	440
IORD	TOTAL	1160,7 451,0	2,07 5,80			0,05 0,01	1400,00 2500,00	0,8 0,9	9141 2334	146 261
LEST '	VIDRE, ETC.	451,0	5,00	0,70	0,70	0,01	2500,00	0,9	2334	201
i.E31	VIDRE, ETC.									
ST	TOTAL	2738,8	1,78	0,70	0,65	0,05	1400,00	0,8	22853	315
	VIDRE, ETC.	964,5	5,80	0,70	0,70	0,01	2500,00	0,9	4991	559
SUDEST	TOTAL									
	VIDRE, ETC.									
SUD	TOTAL	1198,0 571.3				0,05 0.01	1400,00		8072 2956	133
S.OEST	VIDRE, ETC.	5/1,3	5,80	0,70	0,70	0,01	2500,00	0,9	2956	331
5.UE31	VIDRE, ETC.									
DEST '	TOTAL	2490.1	1,82	0,70	0,50	0,05	1400.00	0,8	20977	296
	VIDRE, ETC.	861,5				0,01	2500,00	0,9	4458	499
I.OEST	TOTAL									
	VIDRE, ETC.									
COBERTA		2718,0				0,30	1100,00	0,8	160787	317
	VIDRE, ETC.	70,0	2,80	0,60	0,50	0,05	2500,00	0,9	1811	19
	SANITARI MURS DE CON	2719.5	0,80			0.30	2400,00	0,8	360285	108
CLLINAI	UNO DE 30N	2, 10,0	0,00	H		0,00	2-700,00	0,0	000200	100

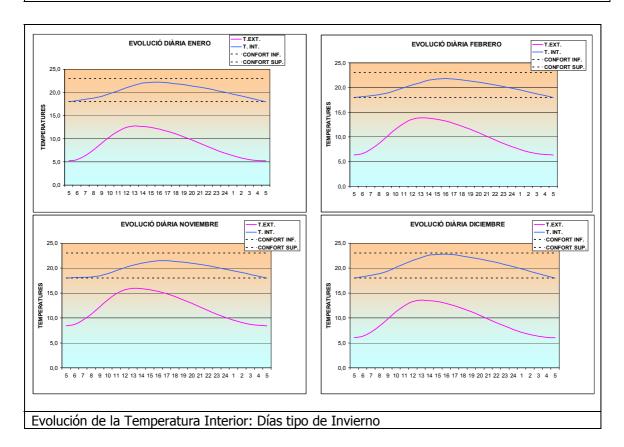


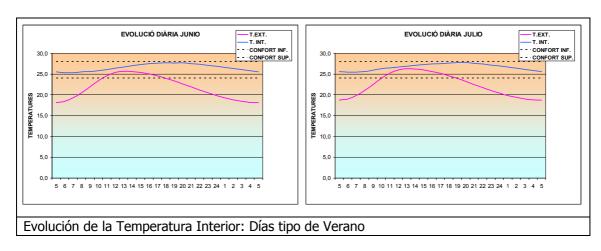
Resumen de resultados del balance energético para cada mes

MEO	PENOVACION	TRANSMISION	RADIACIÓN	RADIACIÓN	APO	RTES INTERN	IOS.	BALANÇ			
MES	RENOVACION	TRANSMISION	DIF. + REF.	DIRECTA	CLIMAT.	APAR.	OCUP.	FINAL (wh)			
Enero	-5.875.659	-8.154.857	1.150.278	1.552.888	8.728.000	1.871.436	728.040	0Wh			
Febrero	-5.187.678	-7.283.056	1.150.278	1.552.888	7.005.000	2.058.580	703.450	0Wh			
Marzo	-4.491.158	-4.921.153	2.758.051	2.341.728	1.398.000	2.058.580	856.350	0Wh			
Abril	-4.841.954	-5.388.160	2.866.978	2.452.162	1.960.000	2.298.702	651.290	0Wh			
Mayo	-3.809.283	-4.054.333	2.592.678	2.114.669	0	2.703.015	453.024	0Wh			
Junio	-2.295.320	-1.377.223	3.091.570	1.946.632	-3.385.000	1.671.621	347.530	0Wh			
Julio	-2.132.117	-1.154.567	2.848.770	1.632.203	-2.395.000	891.531	308.292	0Wh			
Agosto	0	0	0	0	0	0	0	0Wh			
Septiembre	-2.620.743	-2.564.272	2.183.985	1.610.568	-1.325.000	2.032.352	683.050	0Wh			
Octubre	-3.655.466	-3.842.197	2.592.678	2.114.669	0	1.945.650	844.930	0Wh			
Noviembre	-3.806.319	-5.444.960	1.106.731	1.503.806	3.490.000	2.479.885	671.520	0Wh			
Diciembre	-5.419.352	-7.578.349	1.150.278	1.552.888	7.572.000	1.911.168	810.692	0Wh			
Totales	-44.135.048	-51.763.126	23.492.273	20.375.100	23.048.000	21.922.519	7.058.168	0Wh			

Demanda anual de Calefacción / Refrigeración en kWh -año

MES	Dia Laborables	Sabados	Dom/festiv	Demanda días laborables	Demanda sábados	Demanda dom/festiv	DEMANDA ANUAL CALEFACCIÓN	DEMANDA ANUAL REFRIGERACIÓN
Enero	19	4	8	165832000	0	0	165.832	
Febrero	20	4	4	140100000	0	0	140.100	
Marzo	19	5	7	26562000	0	0	26.562	
Abril	21	4	5	41160000	0	0	41.160	
Mayo	23	4	4	0	0	0	0	
Junio	10	6	5	-33850000	0	0	0	33.850
Julio	14	6	6	-33530000	0	0	0	33.530
Agosto	20	5	6	0	0	0	0	0
Septiembre	15	4	9	-19875000	0	0	0	19.875
Octubre	23	3	5	0	0	0	0	0
Noviembre	20	5	5	69800000	0	0	69.800	
Diciembre	16	5	10	121152000	0	0	121.152	
Totales	220	55	74	564606000	0	0	564.606kWh	87.255kWh

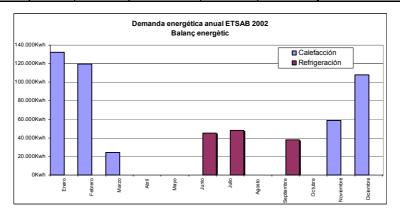



Nota: En el período de estudio (Año académico 2002-2003) la actividad en este edificio los fines de semana y festivos era prácticamente nula, sin clases programadas y sin servicio de Biblioteca. Solo se identificaron horas de presencia de usuarios en conserjería y labores de mantenimiento esporádicas.

Evaluación de la demanda energética con la herramienta BALANÇ ENERGÈTIC

• Edificios autónomos - ETSAB

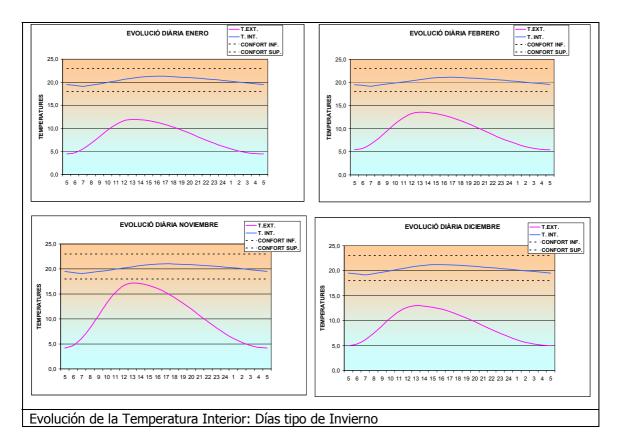
DAD	FC	NOM ARXIU: N	CAC	MES:		INTRODUC.	COEFICIENT	AMDL	Tint. MITJ.	ΑТ
							_			۵.
		ETSAB	Enero	d	DESEMB.		D'INERCIA F	4,2	•	
RESU	LTATS	FACTOR DE	SUPERFÍCIE	VOLUM	Kg [*]	CAP. TÈRM.	CAPACITAT	CAPACI	CAPACITA	PES / M2
GLOB.	ALS	FORMA (m-1) Qu	PELL (m2)	INT. (M3)	W/m2.°C	TOTAL	MASSA. INT.	EQUIP. IN	TOTAL / M2	INDICA
		0,34	11058	32086	2,50	1495768	1044550	55915	1156	6395
DIMENSIONS		ALÇADA MITJA	SUP. PLANTA	MASA INTERIOR	COEF. D'INÈRC	MASA INTERIOR	COEF. INÈRCIA			
I VA	RIABLES	(M) ve	(M2)	obra (kg)	INTERIOR D'OE	EQUIPAMENT (K	INTERIOR EQUIP.			
	ERIORS	3,6	1294,0	5676903	0,8	310640	0,4			
PARAM	IENT	SUPERFÍCIE	COEF. K	ABS. MASSIS	ALBEDO	GRUIX FULL	DENSITAT	-	CAPACITAT	SUPERF *
		(M2)	(w/m2.°C)	F.S. VIDRE	EXPOS. VIDRI		()	INÈRCIA MI		
NORD	TOTAL	1417,0	1,68	0,70	0,65			- , -		1298
	VIDRE, ETC.	644,6	5,80	0,70	0,70	0,01	2500,00	0,9	3336	3739
N.EST	TOTAL									
	VIDRE, ETC.	2204.2	4.00	0.70	0.05	0.05	4400.00		15940	2252
EST	TOTAL	2204,2 966,6	1,82 5,80	0,70 0,70	0,65 0,70	0,05 0,01	1400,00 2500,00	0,8 0,9		5606
SUDEST	VIDRE, ETC.	900,0	3,00	0,70	0,70	0,01	2300,00	0,3	3002	3000
OODLOI	VIDRE, ETC.									
SUD	TOTAL	1346,5	1,62	0,70	0,65	0,05	1400,00	0,8	11823	1487
	VIDRE, ETC.	428,6	5,80	0,70	0,70		2500,00	0,9		2486
S.OEST	TOTAL	ŕ	Í	ŕ	ĺ	Í	ŕ			
	VIDRE, ETC.									
OEST	TOTAL	2125,3	1,82	0,70	0,65	0,05	1400,00	0,8		2209
	VIDRE, ETC.	911,5	5,80	0,70	0,70	0,01	2500,00	0,9	4717	5287
N.OEST										
	VIDRE, ETC.	4000	4.05				4000.00		450050	0044
COBERT	A TOTAL	1608,9	1,25	0,60	0.00	0,30	1800,00	0,8		_
000755	VIDRE, ETC.	0,0	0,00	0,00	0,00	0,00	0,00	0,0		632
	SANITARI	1062,3 1294,0	0,85 1,00			0,15 0,15	2400,00 2400,00	0,8 0,8		
	ducción o	,	,			0,15	2400,00	0,0	05/15	047

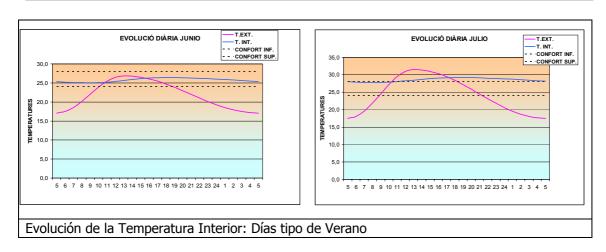


Resumen de resultados del balance energético para cada mes

	BENOVACION	TRANSMISION	RADIACIÓN	RADIACIÓN	APO	RTES INTERN	IOS.	BALANÇ
MES	RENOVACION	TRANSMISION	DIF. + REF.	DIRECTA	CLIMAT.	APAR.	OCUP.	FINAL (wh)
Enero	-5.095.425	-7.536.730	1.242.131	1.354.454	6.882.000	2.494.080	658.850	0Wh
Febrero	-4.325.855	-6.656.187	1.242.131	1.354.454	5.970.000	2.095.743	319.600	0Wh
Marzo	-4.236.107	-5.198.766	3.132.705	2.226.996	1.290.000	2.177.890	606.850	0Wh
Abril	-3.569.478	-4.314.261	3.132.705	2.226.996	0	1.995.668	527.950	0Wh
Mayo	-3.384.195	-3.980.325	2.895.757	1.908.853	0	2.021.076	539.200	0Wh
Junio	-2.158.371	-1.579.085	3.579.225	1.901.214	-4.517.000	2.353.290	421.150	0Wh
Julio	-1.809.987	-1.268.869	3.516.851	1.870.011	-3.425.000	941.316	175.200	0Wh
Agosto	0	0	0	0	0	0	0	0Wh
Septiembre	-2.175.441	-2.322.417	2.785.514	1.817.887	-2.525.000	1.965.120	454.240	0Wh
Octubre	-3.223.534	-3.723.219	2.677.958	1.749.782	0	1.988.960	531.360	0Wh
Noviembre	-3.410.981	-5.126.774	1.242.131	1.354.454	2.950.000	2.326.311	665.475	0Wh
Diciembre	-4.798.754	-7.187.404	1.242.131	1.354.454	6.625.000	2.338.200	425.600	0Wh
Totales	-38.188.127	-48.894.037	26.689.239	19.119.554	13.250.000	22.697.656	5.325.475	0Wh

Demanda anual de Calefacción / Refrigeración en kWh -año

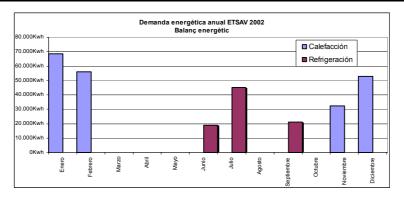

MES	Dia Laborables	Sabados	Dom/festiv	Demanda días laborables	Demanda sábados	Demanda dom/festiv	DEMANDA ANUAL CALEFACCIÓN	DEMANDA ANUAL REFRIGERACIÓN
Enero	19	4	8	130758000	1651680	0	132.410	
Febrero	20	4	4	119400000	0	0	119.400	
Marzo	19	5	7	24510000	0	0	24.510	
Abril	21	4	5	0	0	0	0	
Mayo	23	4	4	0	0	0	0	0
Junio	10	2	2	-45170000	-542040	-451700	0	45.170
Julio	14	4	4	-47950000	0	0	0	47.950
Agosto	20	5	6	0	0	0	0	0
Septiembre	15	4	9	-37875000	-606000	0	0	37.875
Octubre	23	3	5	0	0	0	0	0
Noviembre	20	5	5	59000000	0	0	59.000	
Diciembre	16	5	10	106000000	1987500	0	107.988	
Totales	220	49	69	439668000	3639180	0	443.307 kWh	130.995 kWh



Evaluación de la demanda energética con la herramienta BALANÇ **ENERGÈTIC**

• Edificios autónomos - ETSAV

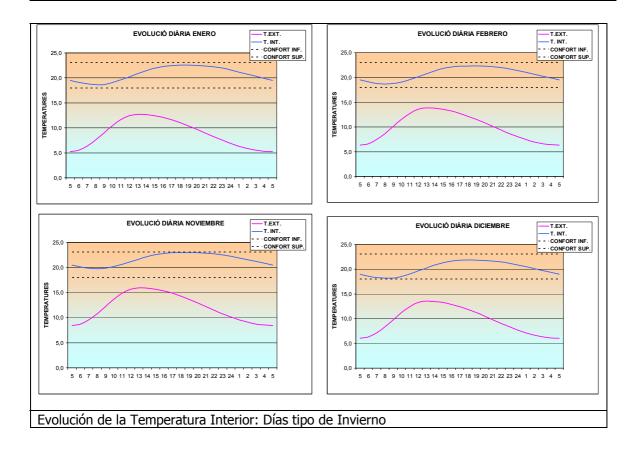
DAD	ES	NOM ARXIU:	CAS:	MES:		INTRODUC.	COEFICIENT	AMPL, INT.	Tint, MITJA	ΔT
BAS	QUES	ETSAV	Enero	d	DESEMB.	DE SUPERF.	D'INERCIA F	2,2	20,4	0,0
		FACTOR DE	SUPERFICIE	VOLUM	Kg^	CAP. TÈRM.	CAPACITAT		CAPACITAT	
GLOB	ALS	FORMA (m-1)	PELL (m2)	INT. (M3)	W/m2.°C	TOTAL	MASSA, INT.	EQUIP. INT.	TOTAL / M2	INDICA
		0,53	14777	27821	1,34	1789728	1050398	55915	62	360
DIME	NSIONS	ALÇADA MITJA	SUP. PLANTA	MASA INTERIOR	COEF. D'INÈRCIA	MASA INTERIOR	COEF. INÈRCIA			
I VAF	RIABLES	(M)	(M2)	obra (kg)	INTERIOR D'OBRA	EQUIPAMENT (K	INTERIOR EQUIP.			
INTERIORS		4,0	28882,0	5708686,96	0,8	310640	0,4			
PARAMENT		SUPERFÍCIE	COEF. K	ABS. MASSIS	ALBEDO	GRUIX FULL	DENSITAT	COEFICIENT	CAPACITAT	SUPERF * K
		(M2)	(w/m2.°C)	F.S. VIDRE	EXPOS. VIDRE	. ,		INÈRCIA MUR		
NORD	TOTAL	2365,3					1600	0,6		1946
	VIDRE, ETC.	672,8	5,80	0,70	0,70	0,01	2500,00	0,9	3482	3902
N.EST	TOTAL VIDRE, ETC.									
EST	TOTAL	1212,9	1,05	0,20	0,65	0,14	1600,00	0,6	37147	1262
	VIDRE, ETC.	11,2		0,70			2500,00		58	65
SUDEST	TOTAL VIDRE, ETC.									
SUD	TOTAL	2439,3	1,13	0,20	0,65	0,14	1600,00	0,6	51875	1896
	VIDRE, ETC.	761,2	5,60	0,70	0,70	0,01	2500,00	0,9	3939	4263
S.OEST	TOTAL VIDRE, ETC.									
OEST	TOTAL	1212,9	1,13	0,20		0,14	1600,00			1358
	VIDRE, ETC.	11,2	5,80	0,70	0,90	0,01	2500,00	0,9	58	65
N.OEST	TOTAL VIDRE, ETC.									
COBERT	A TOTAL	4391,8	0,65	0,20		0,15	2400,00	0,8	278081	2729
	VIDRE, ETC.	193,8		0,50	0,80		2500,00		1003	581
	SANITARI	3155,0	0,80			0,15	2400,00	0,8	208987	1767
SOLERA	I MURS DE	CONTENCIÓ								

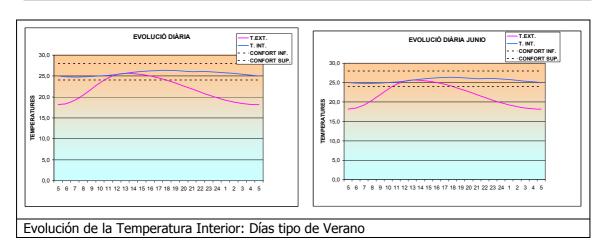


Resumen de resultados del balance energético para cada mes

RENOVACION	TRANSMISION	RADIACIÓN	RADIACIÓN	APO	RTES INTERN	IOS.	BALANÇ
RENOVACION	IRANSWISION	DIF. + REF.	DIRECTA	CLIMAT.	APAR.	OCUP.	FINAL (wh)
-1.161.450	-5.829.894	647.696	1.210.915	3.135.000	1.572.480	425.850	0Wh
-1.082.870	-5.280.997	647.696	1.210.915	2.540.000	1.416.666	548.775	0Wh
-1.043.424	-4.448.811	1.576.507	1.393.467	0	1.933.826	588.738	0Wh
-997.838	-4.551.139	1.576.507	1.393.467	0	2.032.945	546.553	0Wh
-871.877	-3.941.582	1.427.800	1.090.548	0	1.782.342	512.905	0Wh
-601.351	-2.831.272	1.914.028	907.060	-1.000.000	1.213.460	457.863	0Wh
-108.463	-1.688.044	1.808.738	855.108	-2.505.900	1.213.460	457.863	0Wh
0	0	0	0	0	0	0	0Wh
-224.994	-2.236.227	1.353.446	939.088	-1.245.000	991.040	422.250	0Wh
-504.343	-3.248.635	588.391	902.801	0	1.725.020	537.350	0Wh
-827.483	-4.593.560	647.696	1.210.915	1.443.000	1.598.240	520.678	0Wh
-1.073.320	-5.470.793	647.696	1.210.915	2.707.000	1.598.240	380.521	0Wh
-8.497.415	-44.120.953	12.836.204	12.325.200	5.074.100	17.077.720	5.399.344	0Wh

Demanda anual de Calefacción / Refrigeración en kWh -año

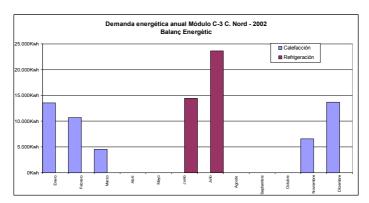

MES	Dia Laborables	Sabados	Dom/festiv	Demanda días laborables	Demanda sábados	Demanda dom/festiv	DEMANDA ANUAL CALEFACCIÓN	DEMANDA ANUAL REFRIGERACIÓN
Enero	19	4	8	59565000	5016000	3762000	68.343	
Febrero	20	4	4	50800000	4064000	1016000	55.880	
Marzo	19	5	7	0	0	0	0	
Abril	21	4	5	0	0	0	0	
Mayo	21	4	4	0	0	0	0	
Junio	19	6	5	-19000000	0	0	0	19.000
Julio	18	6	4	-45106200	0	0	0	45.106
Agosto	20	5	6	0	0	0	0	0
Septiembre	17	4	9	-21165000	0	0	0	21.165
Octubre	23	3	5	0	0	0	0	
Noviembre	20	5	5	28860000	2886000	721500	32.468	
Diciembre	16	5	10	43312000	5414000	4060500	52.787	
Totales	233	55	72	182537000	17380000	9560000	209.477 kWh	85.271 kWh



Evaluación de la demanda energética con la herramienta BALANÇ ENERGÈTIC

• Edificios en campus - Módulo C-3 campus nord

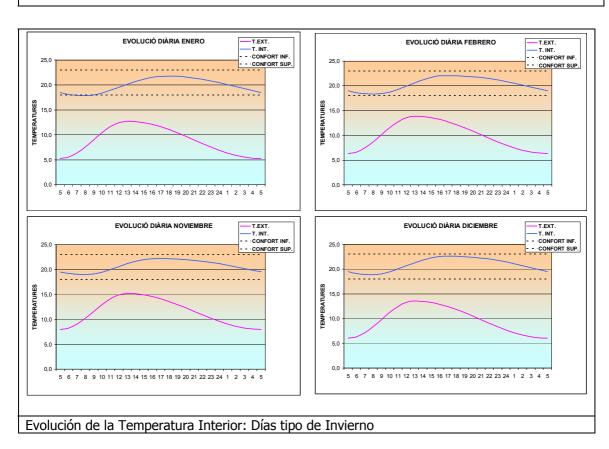
DAD	EC		© 1.999-2003 - ARCADI DE BOBES - SECCIO TECNOLOGIA - E.T.S. ARQUITECTURA VALLES - UPC NOM ARXIU: NCAS: MES: INTRODUC, COEFICIENT AMPL, INTIN, MITJAT											
DAD	_		CAS:	WES.		INTRODUC.	COEFICIENT		1					
		C-3	Enero	d	DESEMB.	DE SUPERF.	D'INERCIA	3,9	20,8	0,0				
RESU	LTATS	FACTOR DE	SUPERFICIE	VOLUM	Kg [*]	CAP. TÈRM.	CAPACITAT	CAPACITA	CAPACITA	PES / M2				
GLOB.	ALS	FORMA (m-1)	PELL (m2)	INT. (M3)	W/m2.°C	TOTAL	MASSA. INT.	EQUIP. INT.	TOTAL / M2	INDICA				
		0,27	2632	9708	2,06	247548	40332	9720	330	1826				
DIMI	ENSIONS	ALÇADA MITJA	SUP. PLANTA	MASA INTERIOR	COEF. D'INÈRCIA	MASA INTERIOR	COEF. INÈRCIA							
I VARIABLES		(M) v	(M2)	obra (kg)	INTERIOR D'OBR	EQUIPAMENT (K	INTERIOR EQUIP.							
INT	ERIORS	3,5 750,0 21		219195	0,8	54000	0,4							
PARAMENT		SUPERFÍCIE	COEF. K	ABS. MASSIS	ALBEDO	GRUIX FULL	DENSITAT	COEFICIEN	CAPACITAT	SUPERF * K				
		(M2)	(w/m2.°C)	F.S. VIDRE	EXPOS. VIDRE		•	INÈRCIA MUR						
NORD	TOTAL	508,2				0,05		0,8		209				
	VIDRE, ETC.	222,2	4,50	0,60	0,65	0,01	2500,00	0,9	1150	1000				
N.EST	TOTAL													
	VIDRE, ETC.													
EST	TOTAL	188,4	- /			0,05		0,8	1641	87				
	VIDRE, ETC.	60,9	5,80	0,70	0,65	0,01	2500,00	0,9	315	353				
SUDEST	TOTAL VIDRE, ETC.													
SUD	TOTAL	546,8	0,85	0,80	0,20	0,05	1400,00	0,8	3703	244				
	VIDRE, ETC.	259,3	4,50	0,60	0,65	0,01	2500,00	0,9	1342	1167				
S.OEST	TOTAL VIDRE, ETC.													
DEST	TOTAL	193,3	0,68	0,80	0,20	0,05	1400,00	0,8	1680	89				
	VIDRE, ETC.	62,9	5,80	0,70			2500,00	0,9	326	365				
N.OEST	TOTAL VIDRE, ETC.	·	,	,	,	,	,	·						
COBERT	A TOTAL	999,2	1,20	0,80		0,20	1800,00	0,8	66188	1199				
	VIDRE, ETC.	0,0	0,00	0,00	0,00	0,00		0,0	0	0				
SOSTRE	SANITARI	999,2	0,80			0,20	2400,00	0,8	88249	560				
SOLERA	I MURS DE C	196,0	1,40			0,30	2400,00	0,8	25966	137				

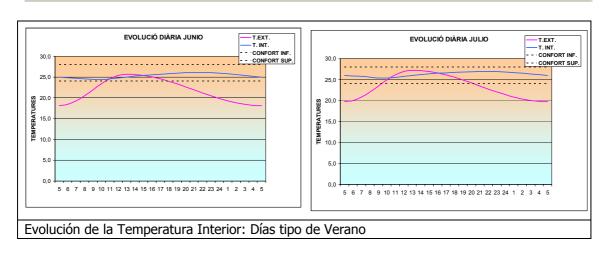


Resumen de resultados del balance energético para cada mes

MES	RENOVACION	TRANSMISION	RADIACIÓN	RADIACIÓN	APO	RTES INTERN	IOS.	BALANÇ
MES	RENOVACION	IRANSMISION	DIF. + REF.	DIRECTA	CLIMAT.	APAR.	OCUP.	FINAL (wh)
Enero	-609.106	-1.690.728	105.416	310.725	658.000	1.106.104	119.454	0Wh
Febrero	-569.161	-1.522.899	105.416	310.725	495.000	1.017.819	162.624	0Wh
Marzo	-541.692	-1.281.936	195.689	271.889	215.000	1.031.962	109.918	0Wh
Abril	-519.130	-1.192.206	209.561	310.730	0	1.031.962	109.918	0Wh
Mayo	-519.130	-1.192.206	209.561	310.730	0	1.031.962	109.918	0Wh
Junio	-152.218	-146.764	167.061	113.804	-1.162.000	1.017.819	162.624	0Wh
Julio	-77.330	85.475	155.336	98.068	-1.442.000	1.017.819	162.624	0Wh
Agosto	0	0	0	0	0	0	0	0Wh
Septiembre	-469.391	-1.299.703	105.416	310.725	0	1.003.628	109.918	0Wh
Octubre	-469.391	-1.299.703	105.416	310.725	0	1.003.628	109.918	0Wh
Noviembre	-486.770	-1.342.340	105.416	310.725	300.000	1.003.628	109.918	0Wh
Diciembre	-592.415	-1.607.636	105.416	310.725	760.000	913.992	109.918	0Wh
Totales	-5.005.734	-12.490.648	1.569.706	2.969.571	-176.000	11.180.325	1.376.752	0Wh

Demanda anual de Calefacción / Refrigeración en kWh -año

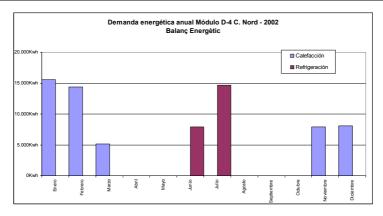

MES	Dia Laborables	Sabados	Dom/festiv	Demanda días laborables	Demanda sábados	Demanda dom/festiv	DEMANDA ANUAL CALEFACCIÓN	DEMANDA ANUAL REFRIGERACIÓN
Enero	19	4	8	12502000	1052800	0	13.554.800	
Febrero	20	4	4	9900000	792000	0	10.692.000	
Marzo	19	5	7	4085000	430000	0	4.515.000	
Abril	21	4	5	0	0	0	0	
Mayo	23	4	4	0	0	0	0	
Junio	10	6	5	-11620000	-2788800	0	0	14.408.800
Julio	14	6	6	-20188000	-3460800	0	0	23.648.800
Agosto	20	5	6	0	0	0	0	0
Septiembre	15	4	9	0	0	0	0	0
Octubre	23	3	5	0	0	0	0	0
Noviembre	20	5	5	6000000	600000	0	6.600.000	
Diciembre	16	5	10	12160000	1520000	0	13.680.000	
Totales	220	55	74	44647000	4394800	0	49.041.800 kWh	38.057.600 kWh



Evaluación de la demanda energética con la herramienta BALANÇ ENERGÈTIC

• Edificios en campus - Módulo D-4 campus nord

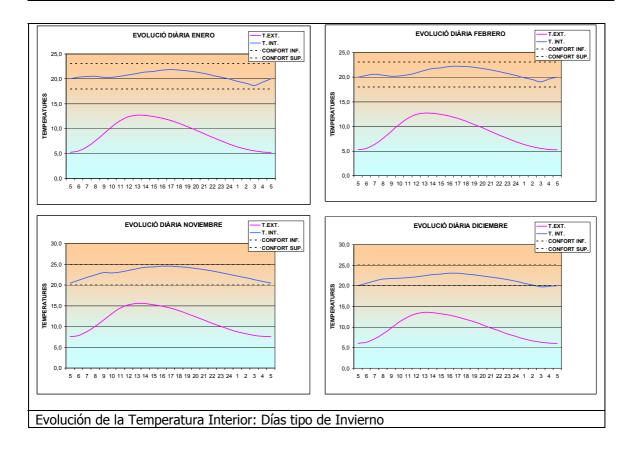
DAD	ES	NOM ARXIU:	CAS:	MES:		INTRODUC.	COEFICIENT	AMPL. INT.	Tint. MITJA	ΔT
BAS	IQUES	D-4	Enero	d	DESEMB.	DE SUPERF.	D'INERCIA	3,9	19,9	0,0
RESU	LTATS	FACTOR DE	SUPERFICI	VOLUM	Kg [*]	CAP. TÈRM.	CAPACITAT	CAPACITAT	CAPACITAT	PES / M2
GLOB	ALS	FORMA (m-1)	PELL (m2)	INT. (M3)	W/m2.°C	TOTAL	MASSA. INT.	EQUIP. INT.	TOTAL / M2	INDICA
		0,29	2771	9708	1,58	191750	30348	7740	256	1469
DIME	NSIONS	ALÇADA MITJA	SUP. PLANTA	MASA INTERIOR	COEF. D'INÈRCIA	MASA INTERIOR	COEF. INÈRCIA			
I VAF	RIABLES	(M)	(M2)	obra (kg)	INTERIOR D'OBR	EQUIPAMENT (Kg	INTERIOR EQUIP.			
INTE	RIORS	3,0	750,0	164936	0,8	43000	0,4			
PARAN	IENT	SUPERFÍCIE	COEF. K	ABS. MASSIS	ALBEDO	GRUIX FULL	DENSITAT	COEFICIENT	CAPACITAT	SUPERF * K
		(M2)	(w/m2.°C)	F.S. VIDRE	EXPOS. VIDRE		(Kg/m3)	INÈRCIA MUR		
NORD	TOTAL	529,0		0,80	0,20	0,05		- 7	3914	240
	VIDRE, ETC.	181,7	5,80	0,60	0,65	0,01	2500,00	0,9	940	1054
N.EST	TOTAL									
	VIDRE, ETC.									
EST	TOTAL	363,4		0,80	0,20	0,05	1400,00		3644	230
LIDEGE	VIDRE, ETC.	40,0	4,50	0,70	0,65	0,01	2500,00	0,9	207	180
SUDESI	VIDRE, ETC.									
SUD	TOTAL	594.7	0,72	0,80	0,20	0,05	1400.00	0,7	4458	285
JOD	VIDRE, ETC.	199,1	5,80	0,60	0,65		2500,00	0,9	1030	1155
S.OEST	TOTAL	100,1	5,55	5,55	5,55				1000	
	VIDRE, ETC.									
DEST	TOTAL	363,4	0,71	0,80	0,20	0,05	1400,00	0,7	3644	230
	VIDRE, ETC.	40,0	4,50	0,70	0,65	0,01	2500,00	0,9	207	180
N.OEST	TOTAL									
	VIDRE, ETC.									
COBERT	A TOTAL	750,0		0,80	0.00	0,20	1800,00	0,7	43470	300
	VIDRE, ETC.	0,0 750.0			0,00	0,00	0,00 2400.00	0,0	66240	420
	SANITARI					0,20	2400,00	-7-	22654	103
JULERA	I MURS DE	de datos	1,20			0,30	2400,00	0,8	22054	103

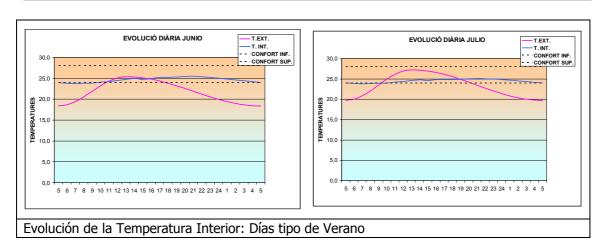


Resumen de resultados del balance energético para cada mes

MEO	DENOVACION	TRANSMISION	RADIACIÓN	RADIACIÓN	APO	RTES INTERN	IOS.	BALANÇ
MES	RENOVACION	IRANSMISION	DIF. + REF.	DIRECTA	CLIMAT.	APAR.	OCUP.	FINAL (wh)
Enero	-434.356	-1.292.461	79.857	234.000	755.000	570.912	86.426	0Wh
Febrero	-439.565	-1.288.777	79.857	234.000	665.000	652.446	98.014	0Wh
Marzo	-369.264	-934.067	148.242	200.805	245.000	611.270	98.014	0Wh
Abril	-519.130	-1.192.206	209.561	310.730	0	1.031.962	109.918	0Wh
Mayo	-519.130	-1.192.206	209.561	310.730	0	1.031.962	109.918	0Wh
Junio	-117.957	-150.630	125.964	81.329	-638.000	600.062	99.721	0Wh
Julio	-49.136	37.270	125.964	81.329	-895.000	600.062	99.721	0Wh
Agosto	0	0	0	0	0	0	0	0Wh
Septiembre	-469.391	-1.299.703	105.416	310.725	0	1.003.628	109.918	0Wh
Octubre	-469.391	-1.299.703	105.416	310.725	0	1.003.628	109.918	0Wh
Noviembre	-351.019	-1.037.597	79.857	234.000	360.000	625.052	90.216	0Wh
Diciembre	-410.854	-1.200.112	79.857	234.000	450.000	754.116	93.368	0Wh
Totales	-4.149.193	-10.850.192	1.349.551	2.542.373	942.000	8.485.101	1.105.152	0Wh

Demanda anual de Calefacción / Refrigeración en kWh -año


MES	Dia Laborables	Sabados	Dom/festiv	Demanda días laborables	Demanda sábados	Demanda dom/festiv	DEMANDA ANUAL CALEFACCIÓN	DEMANDA ANUAL REFRIGERACIÓN
Enero	19	4	8	14345000	1208000	0	15.553	
Febrero	20	4	4	13300000	1064000	0	14.364	
Marzo	19	5	7	4655000	490000	0	5.145	
Abril	21	4	5	0	0	0	0	
Mayo	23	4	4	0	0	0	0	
Junio	10	6	5	-6380000	-1531200	0	0	7.911
Julio	14	6	6	-12530000	-2148000	0	0	14.678
Agosto	20	5	6	0	0	0	0	0
Septiembre	15	4	9	0	0	0	0	0
Octubre	23	3	5	0	0	0	0	0
Noviembre	20	5	5	7200000	720000	0	7.920	
Diciembre	16	5	10	7200000	900000	0	8.100	
Totales	220	55	74	46700000	4382000	0	51.082 kWh	22.589 kWh



Evaluación de la demanda energética con la herramienta BALANÇ ENERGÈTIC

• Edificios en campus - Módulo A-6 campus nord

DAD	ES	NOM ARXIU:	CAS:	MES	5:		INTRODUC.	COEFICIENT	AMPL. INT.	Tint. MITJA	ΔT
	QUES	A-6	Enero	d		•	DE SUPERF.	D'INERCIA	3,2	20,6	0,0
	LTATS	FACTOR DE			JM	Kg*	CAP. TÈRM.	CAPACITAT	•	CAPACITAT	PES / M2
GLOB	AI S	-		INT. (I		·	TOTAL	MASSA. INT.	EQUIP. INT.		INDICA
GLOB	ALS	0,23	2252	1141. (1	9708	1,85		20166	19800	230	
DIME	NSIONS			MASAI			MASA INTERIOR		10000	200	1000
	RIABLES		(M2)	obra (k				INTERIOR EQUIP.			
	ERIORS	3,5	. ,		109597	0,8	110000	0,4			
PARAM		SUPERFÍCIE	COEF. K		ASSIS	ALBEDO	GRUIX FULL	DENSITAT	COEFICIENT	CAPACITAT	SUPERF * K
		(M2)	(w/m2.°C)		/IDRE	EXPOS. VIDR		(Kg/m3)	INÈRCIA MUR		
NORD	TOTAL	529,4	0,73		0,80	0,20		1400,00	0,7	7164	258
	VIDRE, ETC.	176,3	4,50		0,60	0,65	0,01	2500,00	0,9	912	793
N.EST	TOTAL										
	VIDRE, ETC.										
EST	TOTAL	250,4	0,68		0,80	0,20		1400,00	0,7	4858	
	VIDRE, ETC.	10,9	5,80		0,70	0,65	0,01	2500,00	0,9	57	63
SUDEST	TOTAL										
	VIDRE, ETC.	404.0	0.05		0.00	0.00	0.00	4400.00		5000	054
SUD	TOTAL	461,2	0,85 4,50		0,80	0,20		1400,00 2500.00	0,7	5982 861	251 748
S.OEST	VIDRE, ETC.	166,3	4,50		0,60	0,65	0,01	2500,00	0,9	861	/40
3.UE31	VIDRE, ETC.										
DEST	TOTAL	220,9	0,68		0,80	0,20	0,09	1400.00	0,7	3065	103
0201	VIDRE, ETC.	69,8	5,80		0.70	0,65		2500.00	0,9	361	405
N.OEST			-,		-,		-,		-,-		
	VIDRE, ETC.										
COBERT	A TOTAL	790,0	1,20		0,80		0,20	1800,00	0,7	45788	948
	VIDRE, ETC.	0,0	0,00		0,00	0,00	0,00	0,00	0,0	0	0
	SANITARI	790,0	0,80				0,20	2400,00	0,8	69773	442
SOLERA	I MURS DE	CONTENCIÓ	0,00				0,00	2400,00	0,8		



Resumen de resultados del balance energético para cada mes

CUP. FINAL (wh) 47.226 OWh
17 226 OWb
77.220
55.456 OWh
94.239 OWh
9.918 OWh
9.918 OWh
5.665 OWh
5.471 0Wh
0 0Wh
6.648 0Wh
9.918 OWh
94.239 OWh
36.412 0Wh 55.108 0Wh
9

Demanda anual de Calefacción / Refrigeración en kWh -año

MES	Dia Laborables	Sabados	Dom/festiv	Demanda días laborables	Demanda sábados	Demanda dom/festiv	DEMANDA ANUAL CALEFACCIÓN	DEMANDA ANUAL REFRIGERACIÓN
Enero	19	4	8	14155000	0	0	14.155	
Febrero	20	4	4	12900000	0	0	12.900	
Marzo	19	5	7	6270000	0	0	6.270	
Abril	21	4	5	0	0	0	0	
Mayo	23	4	4	0	0	0	0	
Junio	10	6	5	-10180000	0	0	-10.180	10.180
Julio	10	9	8	-10270000	0	0	-10.270	10.270
Agosto	20	5	6	0	0	0	0	0
Septiembre	15	4	9	-10665000	0	0	-10.665	10.665
Octubre	23	3	5	0	0	0	0	0
Noviembre	20	5	5	14400000	0	0	14.400	
Diciembre	16	5	10	13440000	0	0	13.440	
Totales	216	58	76	61165000	0	0	61.165 kWh	31.115 kWh

2.4. Evaluación de la demanda con el programa LIDER (Limitación de la Demanda Energética)

Como se mencionó en el apartado 4.1.1, se trata de la herramienta informática asociada a la implementación del Código Técnico de la Edificación. Este programa realiza una simulación de la demanda en base horaria y en régimen transitorio de transferencia de calor considerando todas las zonas que tiene el edificio (análisis multi-zona).

Al ser una herramienta asociada al cumplimento de la normativa en lo referente a la limitación de la demanda energética, centra el análisis en las características de la envolvente del edificio (cerramientos verticales, cubiertas, soleras, etc.). Los parámetros de confort para las diferentes épocas del año son prefijados por el programa, y los aportes internos derivados de la ocupación y los aparatos se establecen por valores de referencia previamente definidos de acuerdo a 2 tipos de uso (baja carga interna; residencial, y alta carga interna; el resto de usos).

El programa integra un conjunto de subprogramas y documentos para el cálculo de la demanda de los que vale la pena mencionar los siguientes:

- Una interfaz gráfica que permite realizar la definición geométrica y la definición formal del edificio.
- El motor de cálculo que contiene los algoritmos que permiten calcular la demanda del edificio como ya se explicó en base horaria y en régimen transitorio multizona y la compara con un edificio de referencia que crea automáticamente el programa y que no es otro que el mismo edificio definido pero con unas características que le permitiría cumplir como mínimo con las exigencias del Código Técnico de la Edificación.
- Las librerías o base de datos que facilitan al usuario la definición de los diferentes elementos constructivos del edificio (materiales, composición de cerramientos, acristalamientos, etc.).

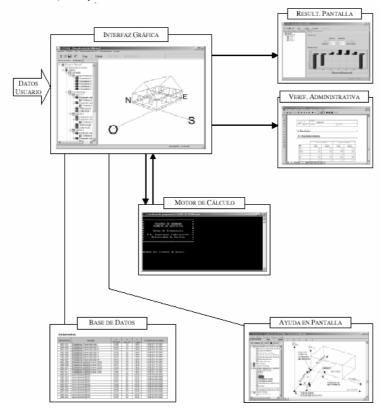


Fig. 2.4.1. Elementos de LIDER para el cálculo de la demanda.

Metodología de cálculo:

A partir de la información levantada de las características de los edificios ya sea desde planos existentes o mediante verificación in-situ se realiza la definición geométrica y se asignan los materiales utilizados en las diferentes soluciones constructivas.

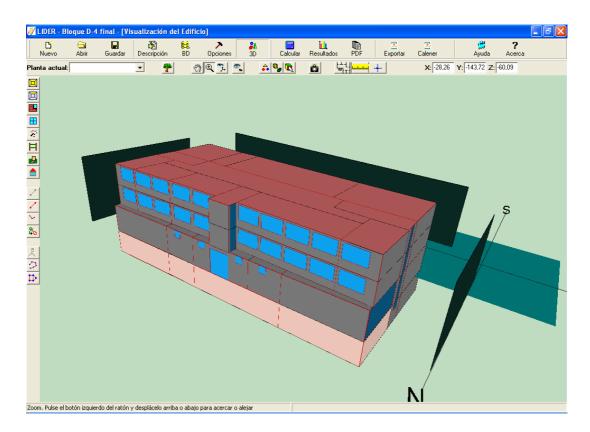


Fig. 2.4.2. Programa LIDER Modelización del edificio

Una vez definido totalmente el edificio el programa calcula la demanda de acuerdo a la siguiente secuencia descrita por sus autores:²

"La respuesta global del edificio se calcula a partir de lo que se denomina respuestas unitarias, lo cual conlleva un proceso diferido que supone las siguientes etapas:

- 1. Cálculo de las ganancias o pérdidas de calor del edificio frente a cada una de las solicitaciones exteriores (una a una), suponiendo que la temperatura interior es constante.
- 2. Cálculo de las ganancias o pérdidas de calor del edificio frente a cada una de las solicitaciones exteriores (una a una), suponiendo que la temperatura interior es constante.
- 3. Cálculo de la respuesta del edificio en términos de carga térmica para cada una de las solicitaciones unitarias (Funciones de transferencia) que caracterizan las ganancias o pérdidas instantáneas.
- 4. Cálculo de la carga térmica a temperatura constante, aplicando los resultados de la etapa tercera a las dos primeras.

² LOS PROGRAMAS INFORMÁTICAS DEL CÓDIGO TÉCNICO DE LA EDIFICACIÓN: LIDER Y CALENER. José L. Molina, Servando Álvarez, Ramón Velásquez, Grupo de Termotecnia. Escuela Superior de Ingenieros de Sevilla

- 5. Cálculo de la respuesta del edificio frente a una excitación unitaria de la temperatura interior.
- 6. Cálculo de la carga térmica a temperatura variable (aplicando los resultados de la etapa quinta a la cuarta) y teniendo en cuenta el comportamiento del equipo acondicionador."

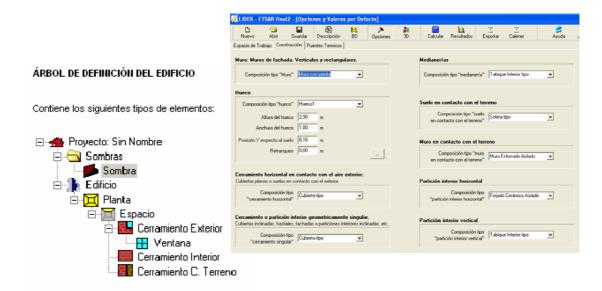


Fig. 2.4.3. Programa LIDER esquema de introducción de datos

Definición de elementos:

Para la definición de cada uno de los elementos que conforman la envolvente del edificio (Muros exteriores, suelos, techos, cubiertas), se deben especificar las diferentes capas que conforman el cerramiento con sus materiales y características.

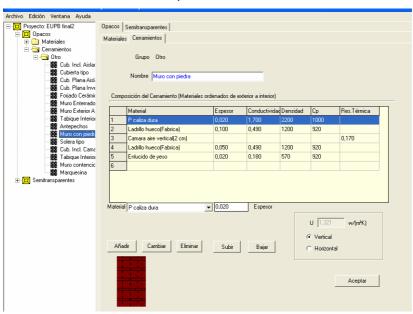


Fig. 2.4.4. Programa LIDER definición de cerramientos

El programa identifica de forma automática los puentes térmicos del proyecto y permite definir los valores de transmisión térmica lineal en cada caso (Frentes de forjado, Pilares, Jambas, etc.)

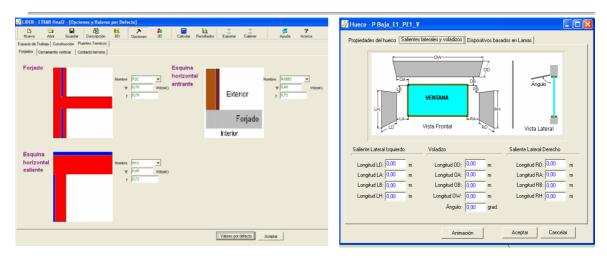


Fig. 2.4.5. Programa LIDER definición de ventanas y puentes térmicos

Cargas internas y equipo de climatización:

Como se ha mencionado, las cargas internas asociadas a los ocupantes y los aparatos que producen calor en el edificio, así como el sistema de acondicionamiento de aire que el programa pre-supone atenderá la demanda, son valores fijos que no se pueden modificar por el usuario de LIDER.

En cuanto a los parámetros de confort de referencia, el programa considera como temperaturas de referencia para el período de invierno 20°C y para el de verano de 25°C:

Para las cargas por ventilación e infiltración vale la pena citar la explicación textual del manual de referencia del programa: "se calculan del mismo modo para todos los tipos de espacios habitables salvo para residencial. Para este último se considera una ventilación más infiltración de 0.5 renovaciones/hora durante todo el año excepto de 2 de la mañana a 8 de la mañana en verano, período en el que se tienen 4 renovaciones/hora. Y en los restantes tipos habitables, en las horas en las que hay ocupación se considera nula la infiltración y la ventilación igual al valor indicado por el horario de ventilación/infiltración; y en las horas sin ocupación, la ventilación es nula y la infiltración se calcula a partir del área exterior expuesta, etc. En este cálculo se considera como máxima área exterior expuesta la formada por las dos fachadas consecutivas que suman un área vidriada mayor. A partir de este valor y de la permeabilidad de las ventanas, se calcula el valor anterior de ventilación más infiltración para invierno y para verano.

Resultados:

	Calefacción (KWh/m²)		Refrigeración (KWh/m²)			
Mes	Edificio objeto	Edificio referencia	Edificio objeto	Edificio referencia		
Enero	-12,01	-8,92	0,00	0,00		
Febrero	-8,64	-6,03	0,00	0,00		
Junio	0,00	0,00	2,83	2,80		
Julio	0,00	0,00	7,50	7,42		
Agosto	0,00	0,00	6,93	7,12		
Septiembre	0,00	0,00	3,48	3,88		
Diciembre	-10,76	-7,80	0,00	0,00		
Total	-31,41	-22,75	20,74	21,22		

Fig. 2.4.6. Programa LIDER. Resultados globales.

Los resultados que aporta el programa LIDER permiten valorar la demanda energética global de calefacción y refrigeración en términos de kWh/m2, y establecer la comparación con el edificio de referencia que el programa crea de forma automática, y que como se ha explicado supone un edificio con las mismas características de forma, volumen, orientación y uso, pero con unas soluciones constructivas que le permitirían cumplir con las exigencias mínimas del Código Técnico de la Edificación. Esta valoración será de gran utilidad a la hora de evaluar las posibilidades de mejora de las edificaciones.

Los resultados de demanda energética también se presentan para cada zona definida en el edificio y para cada componente de la zona (paredes, suelos, ventanas, etc.) lo que permite identificar los elementos que pueden estar contribuyendo a elevar la demanda y valorar las posibles alternativas de mejora.

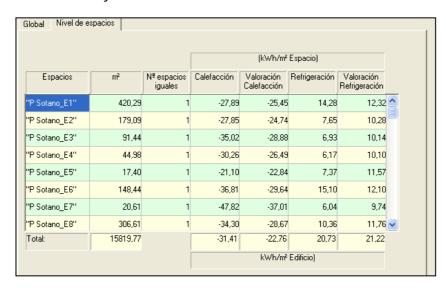
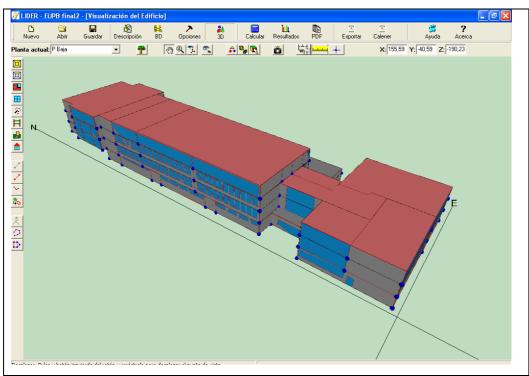
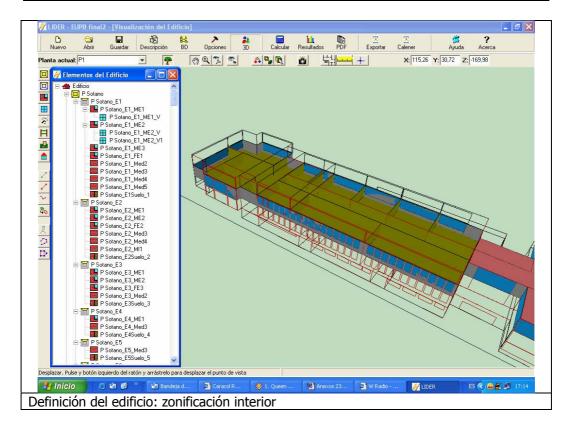


Fig. 2.4.7. Programa LIDER. Resultados detallados por espacio.


Fig. 2.4.8. Programa LIDER resultados detallados por elementos

Resultados obtenidos con el programa LIDER para los edificios estudiados


A continuación se presenta un resumen de los resultados obtenidos de demanda energética de los edificios estudiados, utilizando el programa LIDER

Evaluación de la demanda energética con el programa LIDER

• Edificios autónomos - EPSEB

Definición del edificio: Volumen general. Se han utilizado la opción que ofrece LIDER de multiplicadores para definir las plantas 1, 2 y 3 del edificio.

• Definición de soluciones constructivas:

Nombre	U (W/m³K)	Peso (kg/m²)	Material	Espesor (m)
Muro con piedra	1,67	235,40	Enlucido de yeso	0,02
Solera tipo	1,03	584,30	Terrazo(Horm.dens.media)	0,03
			Mortero de cemento	0,03
			Forjado de hormigón	0,20
			Poliestireno expandido Tipo III	0,02
			Grava rodada o de machaqueo	0,10
Cub. Incl. Camara de Aire	0,52	414,20	Teja arcilia	0,01
			Impermeabilizante(Betun fieltro)	0,00
			Mortero de cemento	0,01
			Horm celular aridos siliceos 2	0,05
			Camara aire horizontal(>15cm)	0,00
			Lana mineral MW42	0,06
			Forjado de hormigon	0,20
			Enlucido de yeso	0,01
Tabique Interior Alsiado	0,51	204,60	Enlucido de yeso	0,01
			Ladrillo hueco(Fabrica)	0,08
			Poliuretano Proyectado	0,04
			Ladrillo hueco(Fabrica)	0,08
			Enlucido de yeso	0,01
Muro contencion	2,08	743,60	Enlucido de yeso	0,02
			Mortero de cemento	0,03
			Horm masa aridos ord sin vibrar	0,25
			Impermeabilizante(Betun fieltro)	0,00
			Grava rodada o de machaqueo	0,10

Forjado Cerárnico Alsiado	0,67	385,20	Pollestireno extruido C 0.034	0,04
			Forjado ceramico	0,21
			Enlucido de yeso	0,01
Muro Enterrado Alsiado	0,48	157,00	Poliestireno expandido Tipo VI	0,06
			Impermeabilizante(Betun fieltro)	0,00
			Bloque hueco de hornigon 2	0,12
			Enlucido de yeso	0,01
Muro Exterior Alsiado	0,57	290,95	Ladrillo mactzo(Fabrica)	0,12
			Mortero de cemento	0,01
			Pollestireno extruido C 0.034	0,05
			Ladrillo hueco(Fabrica)	0,04
			Enlucido de yeso	0,01
Tabique Interior tipo	3,64	107,40	Enlucido de yeso	0,01
			Ladrillo hueco(Fabrica)	0,08
			Enlucido de yeso	0,01
Antepechos	1,89	207,00	Acero	0,00
			Panel de particulas con cemento	0,03
			Camara aire vertical(2 cm)	0,00
			Ladrillo perforado(Fabrica)	0,09
			Enlucido de yeso	0,02
Muro con piedra	1,67	235,40	P caliza dura	0,02
			Ladrillo hueco(Fabrica)	0,10
			Camara aire vertical(2 cm)	00,0
			Ladrillo hueco(Fabrica)	0,05

Resultados

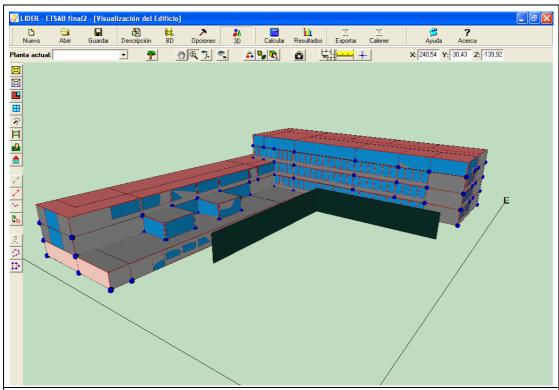
2. CONFORMIDAD CON LA REGLAMENTACIÓN

El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación.

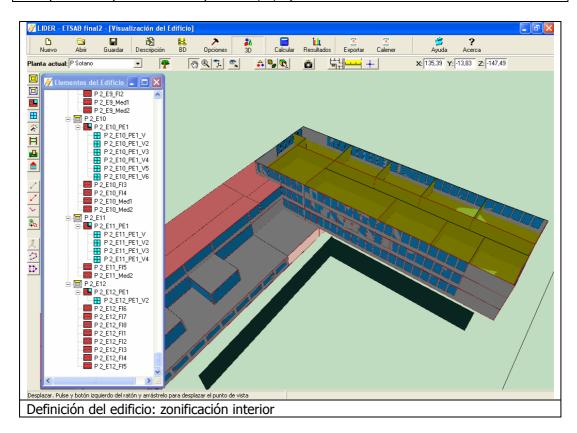
	Calefacción KWh/m²	Refrigeración KWh/m²
Demanda Edificio Objeto	-31,41	20,73
Demanda Edificio Referencia	-22,76	21,22

De acuerdo a la valoración que hace el programa respecto al edificio de referencia que cumpliría la normativa, el edificio de la EPSEB (edificio objeto) no cumpliría las exigencias del Código Técnico del la Edificación.

Los resultados globales de demanda para cada mes del año son los siguientes:


	Calefacción	(KWh/m²)	Refrigeración (KWh/m²)		
Mes	Edificio objeto	Edificio referencia	Edificio objeto	Edificio referencia	
Enero	-12,01	-8,92	0,00	0,00	
Febrero	-8,64	-6,03	0,00	0,00	
Junio	0,00	0,00	2,83	2,80	
Julio	0,00	0,00	7,50	7,42	
Agosto	0,00	0,00	6,93	7,12	
Septiembre	0,00	0,00	3,48	3,88	
Diciembre	-10,76	-7,80	0,00	0,00	

A partir de los resultados obtenidos, considerando la superficie construida, y en el caso de la refrigeración sustrayendo la demanda del mes de agosto en el que no hay actividad en el edificio, se obtienen los valores de demanda energética anual para calefacción y refrigeración:


Edificio	Calefacción	Refrigeración
EPSEB	505.935 kWh	203.642 kWh
Edif. de referencia	335.324 kWh	207.918 kWh

Evaluación de la demanda energética con el programa LIDER

• Edificios autónomos - ETSAB

Definición del edificio: Volumen general. Se han utilizado la opción que ofrece LIDER de multiplicadores para definir las plantas 3, 4,5 y 6 del edificio.

• Definición de soluciones constructivas:

Nombre	U (W/m²K)	Peso (kg/m²)	Material	Espesor (m)
Tabique Interior tipo	3,64	107,40	Enlucido de yeso	0,01
			Ladrillo hueco(Fabrica)	0,08
			Enlucido de yeso	0,01
Muro tipo	1,13	359,40	Ladrillo hueco(Fabrica)	0,15
			Camara aire vertical(10 cm)	0,00
			Ladrillo hueco(Fabrica)	0,14
			Enlucido de yeso	0,02
Muro con pledra	1,47	283,40	P catza dura	0,02
			Ladrillo hueco(Fabrica)	0,14
			Camara aire vertical(2 cm)	0,00
			Ladrillo hueco(Fabrica)	0,05
			Enlucido de yeso	0,02
Solera tipo	0,67	584,60	Terrazo(Horm.dens.media)	0,03
			Mortero de cemento	0,03
			Forjado de hormigón	0,20
			Poliestireno expandido Tipo III	0,04
			Grava rodada o de machaqueo	0,10
Cub. Incl. Camara de Aire	0,52	414,20	Teja arcilia	0,01
			Impermeabilizante(Betun fieltro)	0,00
			Mortero de cemento	0,01
			Horm celular aridos siliceos 2	0,05
			Camara aire horizontal(>15cm)	00,0
			Lana mineral MW42	0,06
			Forjado de hormigon	0,20

Nombre	U (W/m²K)	Peso (kg/m²)	Material	Espesor (m)
Cub. Incl. Alslada	0,42	415,20	Teja arcilla	0,01
			Impermeabilizante(Betun fieltro)	00,0
			Mortero de cemento	0,01
			Horm celular aridos siliceos 2	0,05
			Camara aire horizontal(>15cm)	0,00
			Lana mineral MW42	80,0
			Forjado de hormigon	0,20
			Enlucido de yeso	0,01
Cublerta tipo	1,17	779,70	Tejahormigon	0,06
			Impermeabilizante(Betun fieltro)	80,0
			Mortero de cemento	0,03
			Horm masa aridos ord sin vibrar	0,10
			Carnara aire horizontal(>15cm)	0,00
			Forjado de hormigon	0,20
			Enfucido de yeso	0,01
Cub. Plana Alslada	0,49	427,90	Baldosin catalan(Plaquetas)	0,02
			Horm masa aridos ord sin vibrar	0,05
			Impermeabilizante(Betun fieltro)	0,00
			Poliestireno expandido Tipo IV	90,0

Nombre	U (W/m³K)	Peso (kg/m²)	Material	Espesor (m)
Cub. Incl. Camara de Aire	0,52	414,20	Enlucido de yeso	0,01
Tabique Interior Alsiado	0,51	204,60	Enlucido de yeso	0,01
			Ladrillo hueco(Fabrica)	80,0
			Poliuretano Proyectado	0,04
			Ladrillo hueco(Fabrica)	80,0
			Enlucido de yeso	0,01
Muro contencion	2,08	743,60	Enfucido de yeso	0,02
			Mortero de cemento	0,03
			Horm masa aridos ord sin vibrar	0,25
			Impermeabilizante(Betun fieltro)	0,00
			Grava rodada o de machaqueo	0,10

Resultados

2. CONFORMIDAD CON LA REGLAMENTACIÓN

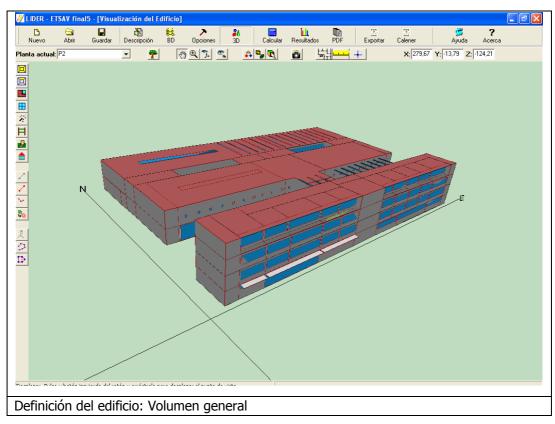
El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación.

	Calefacción KWh/m²	Refrigeración KWh/m²
Demanda Edificio Objeto	-34,68	20,33
Demanda Edificio Referencia	-24,35	16,48

De acuerdo a la valoración que hace el programa respecto al edificio de referencia que cumpliría la normativa, el edificio de la ETSAB (edificio objeto) no cumpliría las exigencias del Código técnico del la Edificación.

Los resultados globales de demanda para cada mes del año son los siguientes:

4.1.	Resultados	glo	ba	es


	Calefacción (KWh/m²)			Refrigeración (KWh/m²)		
Mes	Edificio objeto	Edificio referencia	Edificio objeto	Edificio referencia		
Enero	-13,26	-9,42	0,00	0,00		
Febrero	-9,51	-6,65	0,00	0,00		
Junio	0,00	0,00	2,57	1,78		
Julio	0,00	0,00	7,38	5,94		
Agosto	0,00	0,00	6,94	5,77		
Septiembre	0,00	0,00	3,44	2,98		
Diciembre	-11,92	-8,27	0,00	0,00		
Total	-34,69	-24,34	20,33	16,47		


A partir de los resultados obtenidos, considerando la superficie construida, y en el caso de la refrigeración que en el mes de agosto no hay actividad en el edificio, se obtienen los valores de demanda energética anual para calefacción y refrigeración:

Edificio	Calefacción	Refrigeración
ETSAB	378.190 kWh	145.978 kWh
Edif. de referencia	265.354 kWh	116.651 kWh

Evaluación de la demanda energética con el programa LIDER

• Edificios autónomos – ETSAV

• Definición de soluciones constructivas:

Nombre	U (W/m³K)	Peso (kg/m²)	Material	Espesor (m)
Muro Exterior Alsiado	0,57	290,95	Enlucido de yeso	0,01
Tabique Interior tipo	3,64	107,40	Enlucido de yeso	0,01
			Ladrillo hueco(Fabrica)	0,08
			Enfucido de yeso	0,01
Fachada lateral	0,64	392,48	Ladrillo hueco(Fabrica)	0,14
			Poliestireno expandido Tipo II	0,04
			Camara aire vertical(2 cm)	0,00
			Ladrillo perforado(Fabrica)	0,14
Muro tipo	1,35	336,00	Ladrillo hueco(Fabrica)	0,14
			Camara aire vertical(2 cm)	0,00
			Ladrillo hueco(Fabrica)	0,14
Forjado sanitario	0,47	754,90	Terrazo(Horm.dens.media)	0,03
			Mortero de cemento	0,03
			Forjado de hormigón	0,20
			Poliestireno expandido Tipo III	0,06
			Grava rodada o de machaqueo	0,20
Cub. Incl. Camara de Aire	0,52	414,20	Teja arcilia	0,01
			Impermeabilizante(Betun fieltro)	0,00
			Mortero de cemento	0,01
			Horm celular aridos siliceos 2	0,05
			Carnara aire horizontal(>15cm)	0,00
			Lana mineral MW42	80,0
			Forjado de hormigon	0,20
			Enlucido de yeso	0,01

Nombre	U (W/m²K)	Peso (kg/m²)	Material	Espesor (m)
Cub. Plana Alslada	0,49	427,90	Poliestireno expandido Tipo IV	0,06
			Impermeabilizante(Betun fiettro)	0,00
			Mortero de cemento	0,01
			Forjado ceramico	0,20
			Enlucido de yeso	0,01
Cub. Plana Invertida Alslada	0,54	447,45	Grava rodada o de machaqueo	0,05
			Poliestireno extruido C 0.034	0,05
			Impermeabilizante(Betun fieltro)	0,00
			Horm masa aridos ord sin vibrar	0,05
			Forjado ceramico	0,20
			Enlucido de yeso	0,01
Forjado Cerámico Alslado	0,67	385,20	Terrazo(Horm.dens.media)	0,02
			Mortero de cemento	0,04
			Poliestireno extruido C 0.034	0,04
			Forjado ceramico	0,21
			Enlucido de yeso	0,01
Muro Enterrado Alsiado	0,48	157,00	Poliestireno expandido Tipo VI	0,06
			Impermeabilizante(Betun fieltro)	0,00
			Bloque hueco de hormigon 2	0,12
			Enlucido de yeso	0,01
Muro Exterior Alsiado	0,57	290,95	Ladrillo mactzo(Fabrica)	0,12
			Mortero de cemento	0,01
			Poliestireno extruido C 0.034	0,05
			Ladrillo hueco(Fabrica)	0,04

Resultados

2. CONFORMIDAD CON LA REGLAMENTACIÓN

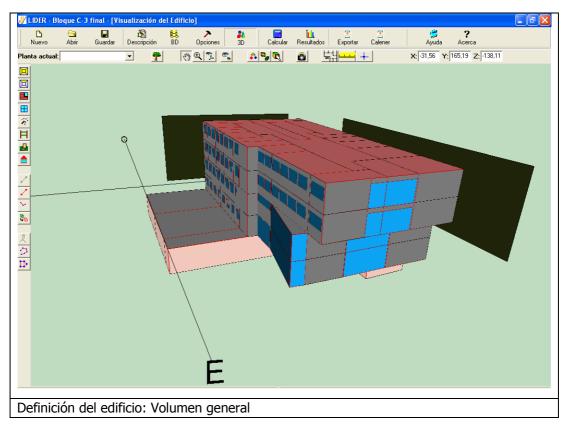
El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación.

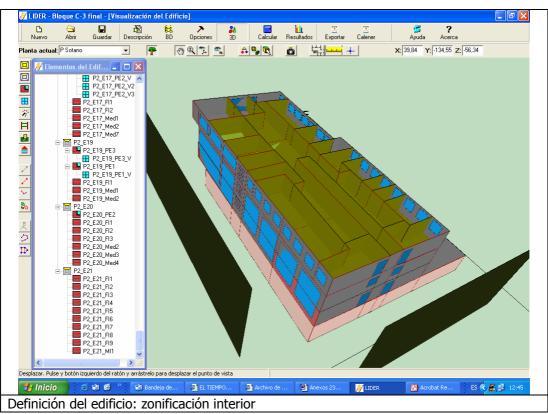
	Calefacción KWh/m²	Refrigeración KWh/m²
Demanda Edificio Objeto	-35,09	19,22
Demanda Edificio Referencia	-20,72	36,51

De acuerdo a la valoración que hace el programa respecto al edificio de referencia que cumpliría la normativa, el edificio de la ETSAV (edificio objeto) no cumpliría las exigencias del Código técnico del la Edificación.

Los resultados globales de demanda para cada mes del año son los siguientes:

4.1. Resultados globales


	Calefacción	(KWh/m²)	Refrigeración (KWh/m²)		
Mes	Edificio objeto	Edificio referencia	Edificio objeto	Edificio referencia	
Enero	-13,36	-8,16	0,00	0,00	
Febrero	-9,80	-5,40	0,00	0,00	
Junio	0,00	00,0	2,19	6,82	
Julio	0,00	00,0	6,88	11,51	
Agosto	0,00	00,0	6,72	11,24	
Septiembre	0,00	0,00	3,43	6,95	
Diciembre	-11,93	-7,16	0,00	0,00	
Total	-35,09	-20,72	19,22	36,52	


A partir de los resultados obtenidos, considerando la superficie construida, y en el caso de la refrigeración que en el mes de agosto no hay actividad en el edificio, se obtienen los valores de demanda energética anual para calefacción y refrigeración:

Edificio	Calefacción	Refrigeración
ETSAV	317.810 kWh	113.212 kWh
Edif. de referencia	187.661 kWh	228.960 kWh

Evaluación de la demanda energética con el programa LIDER

• Edificios en campus - Módulo C-3

• Definición de soluciones constructivas:

Nombre	U (W/m²K)	Peso (kg/m²)	Material	Espesor (m)
Cub. Plana Invertida Alslada	0,54	447,45	Horm masa aridos ord sin vibrar	0,05
			Forjado ceramico	0,20
			Enlucido de yeso	0,01
Forjado Cerámico Alslado	0,67	385,20	Terrazo(Horm.dens.media)	0,02
			Mortero de cemento	0,04
			Poliestireno extruido C 0.034	0.04
			Forjado ceramico	0,21
			Enlucido de yeso	0,01
Muro Enterrado Alslado	0.48	157,00	Poliestreno expandido Tipo VI	0,06
ma o Emarado Aladao	0,40	157,00	Impermeabilizante(Betun fieltro)	0,00
			Bloque hueco de hornigon 2	0,12
Blues Caladas Alabada	0.57	202.05	Enlucido de yeso	0,01
Muro Exterior Alsiado	0,57	290,95	Ladrillo macizo(Fabrica)	0,12
			Mortero de cemento	0,01
			Pollestireno extruido C 0.034	0,05
			Ladrillo hueco(Fabrica)	0,04
			Enlucido de yeso	0,01
Tabique Interior Aislado	0,51	204,60	Enlucido de yeso	0,01
			Ladrillo hueco(Fabrica)	80,0
			Poliuretano Proyectado	0,04
			Ladrillo hueco(Fabrica)	80,0
			Enfucido de yeso	0,01
Muro tipo	0,67	361,50	Ladrillo hueco(Fabrica)	0,15
			Espuma de poliuretano	0,03

Nombre	U (W/m²K)	Peso (kg/m²)	Material	Espesor (m)
Muro tipo	0,67	361,50	Camara aire vertical(10 cm)	0,00
			Ladrillo hueco(Fabrica)	0,14
			Enlucido de yeso	0,02
Muro con piedra	0,73	333,50	P caliza dura	0,02
			Ladrillo hueco(Fabrica)	0,14
			Espurna de poliuretano	0,03
			Camara aire vertical(2 cm)	0,00
			Ladrillo hueco(Fabrica)	0,09
			Enlucido de yeso	0,02
Solera	0,56	700,20	Terrazo(Horm.dens.media)	0,03
			Mortero de cemento	0,03
			Forjado cerámico	0,22
			Poliestireno expandido Tipo VI	0,04
			Grava rodada o de machaqueo	0,15

Resultados

2. CONFORMIDAD CON LA REGLAMENTACIÓN

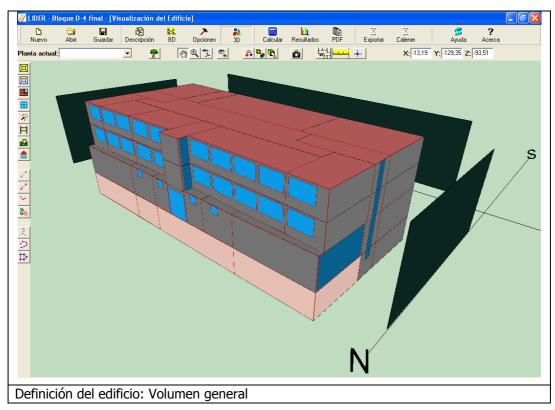
El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación.

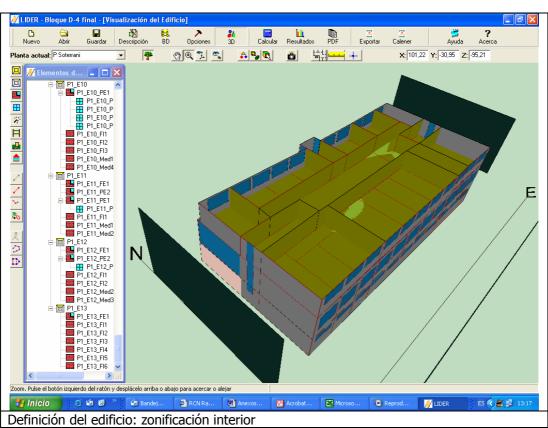
	Calefacción KWh/m²	Refrigeración KWh/m²	
Demanda Edificio Objeto	-25,61	22,46	
Demanda Edificio Referencia	-23,46	20,02	

De acuerdo a la valoración que hace el programa respecto al edificio de referencia que cumpliría la normativa, el módulo C-3 (edificio objeto) no cumpliría las exigencias del Código técnico del la Edificación.

Los resultados globales de demanda para cada mes del año son los siguientes:

4.1.	Resultados	globales


	Calefacción	(KWh/m²)	Refrigeración (KWh/m²)		
Mes	Edificio objeto	Edificio referencia	Edificio objeto	Edificio referencia	
Enero	-9,92	-9,11	0,00	0,00	
Febrero	-7,06	-6,48	0,00	0,00	
Junio	0,00	0,00	2,84	2,42	
Julio	0,00	0,00	7,70	6,87	
Agosto	0,00	0,00	7,56	6,79	
Septiembre	0,00	0,00	4,36	3,94	
Diciembre	-8,63	-7,87	0,00	0,00	
Total	-25,61	-23,46	22,46	20,02	


A partir de los resultados obtenidos, considerando la superficie construida, y en el caso de la refrigeración que en el mes de agosto no hay actividad en el edificio, se obtienen los valores de demanda energética anual para calefacción y refrigeración:

Edificio	Calefacción	Refrigeración	
Módulo C-3	70.735 kWh	41.153 kWh	
Edif. de referencia	64.769 kWh	36.541 kWh	

Evaluación de la demanda energética con el programa LIDER

• Edificios en campus - Módulo D-4

• Definición de soluciones constructivas:

Nombre	U (W/m³K)	Peso (kg/m²)	Material	Espesor (m)
Cub. Plana Alslada	0,49	427,90	Impermeabilizante(Betun fieltro)	0,00
			Poliestireno expandido Tipo IV	0,06
			Impermeabilizante(Betun fieltro)	0,00
			Mortero de cemento	0,01
			Forjado ceramico	0,20
			Enfucido de yeso	0,01
Cub. Plana Invertida Alslada	0,54	447,45	Grava rodada o de machaqueo	0,05
			Pollestireno extruído C 0.034	0,05
			Impermeabilizante(Betun fieltro)	0,00
			Horm masa aridos ord sin vibrar	0,05
			Forjado ceramico	0,20
			Enfucido de yeso	0,01
Forjado Cerámico Alslado	0,67	385,20	Terrazo(Horm.dens.media)	0,02
			Mortero de cemento	0,04
			Pollestireno extruido C 0.034	0,04
			Forjado ceramico	0,21
			Enfucido de yeso	0,01
Muro Enterrado Alstado	0,48	157,00	Poliestireno expandido Tipo VI	0,06
			Impermeabilizante(Betun fieltro)	0,00
			Bloque hueco de hormigon 2	0,12
			Enlucido de yeso	0,01
Muro Exterior Alsiado	0,57	290,95	Ladrillo mactzo(Fabrica)	0,12
			Mortero de cemento	0,01
			Poliestireno extruido C 0.034	0,05

Nombre	U (W/m²K)	Peso (kg/m²)	Material	Espesor (m)
Muro Exterior Alsiado	0,57	290,95	Ladrillo hueco(Fabrica)	0,04
			Enlucido de yeso	0,01
Tabique Interior Alsiado	0,51	204,60	Enlucido de yeso	0,01
			Ladrillo hueco(Fabrica)	80,0
			Poliuretano Proyectado	0,04
			Ladrillo hueco(Fabrica)	80,0
			Enlucido de yeso	0,01
Muro tipo	0,53	432,40	Ladrillo mactzo(Fabrica)	0,14
			Camara aire vertical(5 cm)	0,00
			Poliestireno expandido Tipo V	0,04
			Ladrillo hueco(Fabrica)	0,14
			Enlucido de yeso	0,02
Muro tipo lateral	0,59	287,88	Ladrillo hueco(Fabrica)	0,14
			Camara aire vertical(2 cm)	0,00
			Poliestireno expandido Tipo II	0,04
			Ladrillo hueco(Fabrica)	90,0
			Enlucido de yeso	0,02

Resultados

2. CONFORMIDAD CON LA REGLAMENTACIÓN

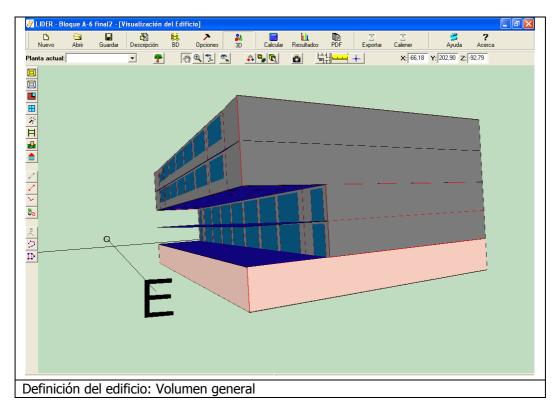
El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación.

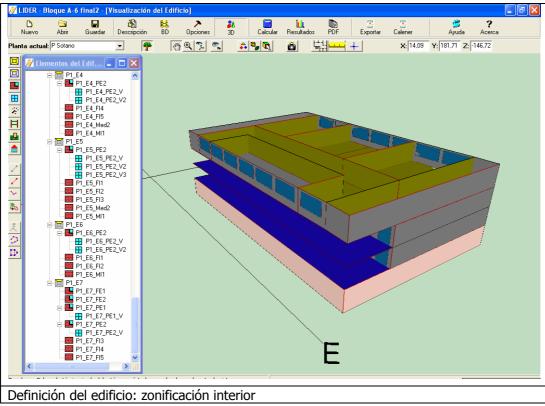
	Calefacción KWh/m²	Refrigeración KWh/m²
Demanda Edificio Objeto	-25,16	17,03
Demanda Edificio Referencia	-23,70	18,80

De acuerdo a la valoración que hace el programa respecto al edificio de referencia que cumpliría la normativa, el módulo D-4 (edificio objeto) no cumpliría las exigencias del Código técnico del la Edificación.

Los resultados globales de demanda para cada mes del año son los siguientes:

4.1. Resultados globales


	Calefacción (KWh/m²) Refrigeración (KWh/m²)		on (KWh/m²)	
Mes	Edificio objeto	Edificio referencia	Edificio objeto	Edificio referencia
Enero	-9,69	-9,19	0,00	0,00
Febrero	-6,91	-6,39	0,00	0,00
Junio	0,00	0,00	1,74	2,22
Julio	0,00	0,00	5,95	6,46
Agosto	0,00	0,00	5,99	6,49
Septiembre	0,00	0,00	3,34	3,62
Diciembre	-8,56	-8,12	0,00	0,00
Total	-25,16	-23,70	17,02	18,79


A partir de los resultados obtenidos, considerando la superficie construida, y en el caso de la refrigeración que en el mes de agosto no hay actividad en el edificio, se obtienen los valores de demanda energética anual para calefacción y refrigeración:

Edificio	Calefacción	Refrigeración
Módulo D-4	62.849 kWh	27.553 kWh
Edif. de referencia	43.490 kWh	19.559 kWh

Evaluación de la demanda energética con el programa LIDER

• Edificios en campus - Módulo A-6

• Definición de soluciones constructivas:

Nombre	U (W/m³K)	Peso (kg/m²)	Material	Espesor (m)
Cub. Plana Alslada	0,49	427,90	Forjado ceramico	0,20
			Enlucido de yeso	0,01
Cub. Plana Invertida Alslada	0,54	447,45	Grava rodada o de machaqueo	0,05
			Poliestireno extruido C 0.034	0,05
			Impermeabilizante(Betun fieltro)	0,00
			Horm masa aridos ord sin vibrar	0,05
			Forjado ceramico	0,20
			Enfucido de yeso	0,01
Forjado Cerárnico Alsiado	0,67	385,20	Terrazo(Horm.dens.media)	0,02
			Mortero de cemento	0,04
			Poliestireno extruido C 0.034	0,04
			Forjado ceramico	0,21
			Enlucido de yeso	0,01
Muro Enterrado Alsiado	0,48	157,00	Poliestireno expandido Tipo VI	0,06
			Impermeabilizante(Betun fieltro)	0,00
			Bloque hueco de hormigon 2	0,12
			Enlucido de yeso	0,01
Muro Exterior Alsiado	0,57	290,95	Ladrillo mactzo(Fabrica)	0,12
			Mortero de cemento	0,01
			Poliestireno extruido C 0.034	0,05
			Ladrillo hueco(Fabrica)	0,04
			Enlucido de yeso	0,01
Tabique Interior Alsiado	0,51	204,60	Enlucido de yeso	0,01
			Ladrillo hueco(Fabrica)	0,08

Nombre	U (W/m²K)	Peso (kg/m²)	Material	Espesor (m)
Tabique Interior Alsiado	0,51	204,60	Poliuretano Proyectado	0,04
			Ladrillo hueco(Fabrica)	0,08
			Enlucido de yeso	0,01
Muro tipo	0,67	361,50	Ladrillo hueco(Fabrica)	0,15
			Espurna de poliuretano	0,03
			Camara aire vertical(10 cm)	0,00
			Ladrillo hueco(Fabrica)	0,14
			Enlucido de yeso	0,02
Muro con chapa	0,48	298,05	Chapa grecada de acero(Acero)	0,00
			Poliestireno extruido C 0.040	0,03
			Ladrillo hueco(Fabrica)	0,14
			Espuma de poliuretano	0,03
			Camara aire vertical(2 cm)	0,00
			Ladrillo hueco(Fabrica)	0,09
			Enfucido de yeso	0,02
Solera	0,56	700,20	Terrazo(Horm.dens.media)	0,03
			Mortero de cemento	0,03
			Forjado cerámico	0,22
			Poliestireno expandido Tipo VI	0,04
			Grava rodada o de machaqueo	0,15

Resultados

2. CONFORMIDAD CON LA REGLAMENTACIÓN El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación. Calefacción Refrigeración KWh/m² Retrigeración KWh/m² Demanda Edificio Objeto -20,01 14,25 Demanda Edificio Referencia -17,43 12,61

De acuerdo a la valoración que hace el programa respecto al edificio de referencia que cumpliría la normativa, el módulo A-6 (edificio objeto) no cumpliría las exigencias del Código técnico del la Edificación.

Los resultados globales de demanda para cada mes del año son los siguientes:

	Calefacción	(KWh/m²)	Refrigeración	(KWh/m²)
Mes	Edificio objeto	Edificio referencia	Edificio objeto	Edificio referencia
Enero	-7,68	-6,72	0,00	0,00
Febrero	-5,68	-4,93	0,00	0,00
Junio	0,00	0,00	1,53	1,42
Julio	0,00	00,0	5,00	4,51
Agosto	0,00	0,00	4,95	4,36
Septiembre	0,00	0,00	2,77	2,32
Diciembre	-6,65	-5,79	0,00	0,00

A partir de los resultados obtenidos, considerando la superficie construida, y en el caso de la refrigeración que en el mes de agosto no hay actividad en el edificio, se obtienen los valores de demanda energética anual para calefacción y refrigeración:

Edificio	Calefacción	Refrigeración
Módulo D-4	61.747 kWh	31.996 kWh
Edif. de referencia	53.459 kWh	28.033 kWh

3. Anexo 3. Evaluación del rendimiento medio de los sistemas

- 3.1. Características de las instalaciones
- 3.2. Evaluación del rendimiento utilizando valores de referencia
- 3.3. Evaluación con la herramienta CALENER

3. Anexo 3: Evaluación de rendimiento de los sistemas:

3.1. Características de las instalaciones de los edificios estudiados.

Edificios autónomos: EPSEB.

Sistema de calefacción:

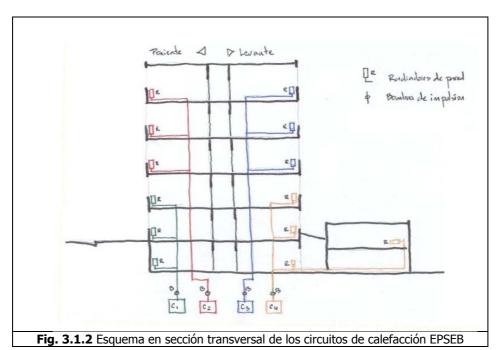

La generación de calor se realiza con 2 calderas estándar marca Ygnis modelo WA de potencia calorífica 650 kW, con rendimiento nominal del 85% alimentadas con gas natural como combustible, y con quemador de tiro forzado de 0.80 kW de consumo eléctrico. Estas calderas no funcionan bajo esquema de escalonamiento y solamente se regulan por control de temperatura de entrada y salida.

Fig. 3.1.1 Cuarto de calderas EPSEB

El sistema se distribuye por 8 circuitos que alimentan a cada fachada (N, S, E y O) en 2 niveles; uno para las plantas inferiores (planta semisótano, la zona de talleres y aula master, planta baja y primera) y el otro para las plantas superiores (plantas 2, 3 y 4). También hay 2 circuitos adicionales; uno para zonas comunes, y otro independiente para la sala de actos de la planta baja.

Los emisores a nivel de cada local son radiadores de fundición de diferente nº de elementos, de potencia calorífica nominal desde 1.500 hasta 2.840 W, montados sobre un circuito de agua caliente bitubular de cobre visto y sin aislamiento térmico.

Control y regulación del sistema de calefacción:

El edificio dispone de sondas de temperatura exterior, ubicadas en la cubierta del edificio y sondas interiores en algunas aulas y pasillos que desafortunadamente no se utilizan y por su estado y mantenimiento no sirven de referencia al sistema.

La regulación del sistema de calefacción solo se realiza como se mencionó, a partir de la temperatura de entrada y retorno del agua del circuito a las calderas centrales.

Todo el sistema de generación y distribución se activa en días laborables a las 7h y funciona de forma continua, salvo interrupciones voluntarias. El apagado es a discreción de la conserjería sobre las 20 – 21 horas dependiendo la actividad del centro³. No se tiene constancia de que se realice apagado selectivo de circuitos y el sistema se enciende y se apaga en su totalidad generando importantes despilfarros energéticos.

En cuanto a los emisores, no se utilizan válvulas termostáticas o aparatos de regulación automática y solamente se realiza regulación que pueda hacer cada usuario abriendo o cerrando la válvula de paso en el emisor correspondiente.

Sistema de refrigeración

La demanda de refrigeración es atendida de forma individual en cada local del edificio con aparatos de ventana, (38 Unidades en total de los modelos Glassier/Interclisa 041-A 13-A o ACK 16^a) con potencias nominales de 3.600W y 2.320W respectivamente, y aparatos tipo Split o Bombas de Calor de diferentes marcas y referencias que tienen potencias nominales para refrigeración entre 2.400 – 3.600W.

La gestión y control de los parámetros de confort para estos aparatos se hace de forma individual en cada local.

De acuerdo a las políticas de la UPC ⁴ respecto a la climatización de los espacios, que por el tipo de uso que tienen requieren de sistemas de calefacción y/o refrigeración, para el caso de la EPSEB, se observa que todos los espacios que "requieren" sistema de calefacción lo disponen, y en el caso de la refrigeración solo el 48.77% de los que la requieren están siendo atendidos⁵:

REFRIGERACIÓN EDIFICIO EPSEB	SUPERFICIE	%
Espacios con refrigeración	4.908,87	48,77%
Espacios sin refrigeración	5.156,39	51,23%
TOTAL	10.065,26	100,00%

-

³ Datos extraídos directamente de entrevista con el Responsable de Mantenimiento de la escuela.

⁴ Plan Plurianual de Inversiones en edificios existentes PPIEE 2004-2006, Comisión de aire acondicionado. Vicerrectoría adjunta de edificaciones UPC.

⁵ Base de datos de Aire Acondicionado UPC. Servei de Patrimoni. Marzo de 2.005

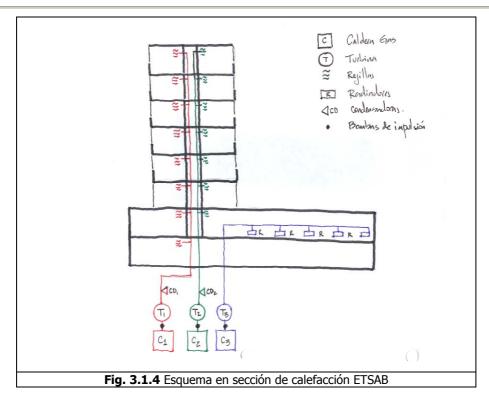
Edificios autónomos: ETSAB

Sistema de calefacción:

La generación de calor se realiza mediante 3 calderas estándar marca Ygnis modelos W 450 y 610kW, con rendimiento nominal del 85% y 78% (2 de ellas). El combustible que utilizan es el gas natural con un quemador de tiro forzado por caldera de 0.80, 1,2 y 1.0 kW de consumo eléctrico respectivamente. Estas calderas no funcionan bajo esquema de escalonamiento y solamente se regulan por control de temperatura de entrada y salida.

A partir de la generación centralizada de calor el sistema se divide en dos:

- De un lado está el circuito de aire que aprovecha la generación de calor de 2 de las calderas y mediante turbinas de impulsión de aire, atiende la climatización de la "torre" de aulas y despachos desde la planta 1 a la 7ª.


Fig. 3.1.3 Cuarto de calderas y turbinas ETSAB

La distribución se hace por conductos verticales con importantes problemas de aislamiento y pérdidas en el recorrido. Este sistema vertical se concentra en la zona de ascensores y escaleras en cada planta, y se distribuye en horizontal por conductos galvanizados ocultos en el falso techo, con aislamiento (deficiente en muchos puntos) de lana de roca, que tiene 2 ramales paralelos al pasillo de distribución de cada planta: uno para las aulas y otro para los despachos que entregan el aire por sistema de rejilla convencional de 30 x 90cm en las aulas y despachos del edificio.

- De otro lado está el sistema por agua que atiende la calefacción de las plantas semisótano, baja y primera. Este sistema distribuye el calor generado por la tercera caldera mediante un circuito bitubular de tuberías de acero negro y cobre visto sin aislamiento y térmico.

Los emisores a nivel de cada local son radiadores de fundición de diferente nº de elementos, de potencia calorífica nominal desde 750 hasta 1.480 W.

NOTA: Este edificio ha tenido una modificación importante de las instalaciones de calefacción, cambiando el sistema alimentado por aire en las aulas de la Torre Segarra por circuitos de radiadores que se ha realizado en el segundo semestre de 2004. La descripción de las instalaciones que aquí se hace corresponde al período del estudio 2002- 2003.

Control y regulación del sistema de calefacción:

Se dispone de sondas de temperatura exterior, ubicadas en la cubierta del edificio y sondas interiores en algunas aulas en desuso. La regulación por tanto solo se realiza al igual que en la EPSEB, a partir del control de temperatura de entrada y retorno del agua del circuito a las calderas centrales.

Como es gestionado por el mismo personal de mantenimiento de la EPSEB el régimen de funcionamiento es similar; todo el sistema de generación y distribución se activa en días laborables sobre las 7 a.m. y funciona de forma continua salvo interrupciones voluntarias. El apagado es a discreción de la conserjería sobre las 20 – 21 horas dependiendo la actividad del centro⁶. Solo se realiza encendido/apagado selectivo en el caso del circuito que alimenta la biblioteca que se habilita los fines de semana (sábados) y el resto de circuitos se encienden y apagan de forma simultánea.

En cuanto a los emisores tipo radiador, no se utilizan válvulas termostáticas o aparatos de regulación automática y solamente la regulación que pueda hacer cada usuario se realiza abriendo o cerrando la válvula de paso en el emisor correspondiente.

Sistema de refrigeración

La demanda de refrigeración también es atendida de forma individual en cada local del edificio: con aparatos en la mayoría de los casos tipo Split , (16 Unidades en total de los modelos Fujitsu / Mitsubishi) con potencias nominales entre 2.800W y 3.400W, algunos aparatos de ventana y Bombas de Calor de diferentes marcas y referencias que tienen potencias nominales para refrigeración entre 1.300-3.500W.

La gestión y control de los parámetros de confort para estos aparatos se hace de forma individual en cada local.

⁶ Datos extraídos directamente de entrevista con el Responsable de Mantenimiento de la escuela.

De acuerdo a las políticas ya mencionadas de la UPC, para el caso de la ETSAB se observa que todos los espacios que "requieren" sistema de calefacción lo disponen, y en el caso de la refrigeración tan solo el 22,58% de los espacios son atendidos:

REFRIGERACIÓN EDIFICIO ETSAB	SUPERFICIE	%
Espacios con refrigeración	2.368,32	22,58%
Espacios sin refrigeración	8.122,55	77,42%
TOTAL	10.490,87	100,00%

Edificios autónomos: ETSAV

Sistema de calefacción⁷:

Se trata de un sistema centralizado con generación de calor a partir de 2 calderas estándar marca Ygnis Ibérica S.A tipo W.A 405 de 517.000 Kcal/h de potencia nominal cada una, que utilizan gas natural como combustible, con quemador de tiro forzado de 1,5 kW de potencia eléctrica y un rendimiento nominal del 87%.

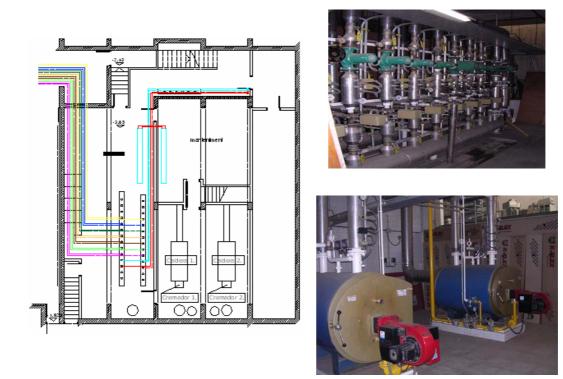


Fig. 3.1.5 Cuarto de calderas ETSAV

La distribución se realiza con 9 circuitos que alimentan las diferentes zonas del edificio y que se reparten por el edificio según el esquema de la **Fig. 3.16**

Se utilizan emisores estáticos tipo panel formado por tubos hidráulicamente independientes soldados a colectores de distribución situados en sus extremos.

⁷ Datos tomados a partir de la memoria de instalaciones del edificio . Lluis Nadal Oller, Arquitecte. Març de 1.989. y verificada "in situ".

L1.	Servio utilitat.	
L2.	Serse utilitat.	
L3.	Savia utilitat.	
L4.	Entrada. Sortida.	Aula P1.
L5.	Entrada. Sortida.	Autos Todi quos.
L6.	Entrada. Sortida.	Aula P4.
L7.	Entrada. Sortida.	Aula PS.
L8.	Entrada. Sortida.	Bibliotoca.
L9.	Entrada. Sortida.	Sala d'actes i centre de cálcul.
L10.	Entrada. Sortida.	Aula P2.
L11.	Entrada. Sortida. Sortida auxiliar.	Seminario Sud.
L12.	Entrada. Sortida. Sortida auxiliar.	Seminaria Nord.
C 1.	Calidora 1.	
C 2.	Calidora 2.	

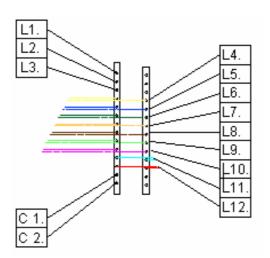


Fig. 3.1.6 Esquema de distribución de circuitos de calefacción ETSAV

De acuerdo al tipo de local al que atienden se distinguen 3 situaciones en el edificio:

- Aulas de dibujo en el edificio docente: Los paneles se sitúan suspendidos bajo jácena configurando unidades de 2 paneles y una luminaria lineal. La alimentación es bitubular con

sentido de flujo alterno, un solo circuito hidráulico por panel. Retorno invertido (excepto en los paneles terminales).

Alimentación a baja temperatura. Cesión térmica por radiación-convección y radiación principal por lámina de aire caliente en el techo.

El control previsto de temperatura ambiente no funciona correctamente y simplemente se realiza una limitación de la temperatura de impulsión.

Fig. 3.1.6. Emisores en aulas y pasillos ETSAV

- Nivel inferior del edificio docente: Los paneles se sitúan suspendidos bajo techo anexos a los ventanales. La alimentación es monotubular con doce circuitos hidráulicos por panel.

Cesión térmica por radiación combatiendo pérdidas en zona perimetral. Control sobre temperatura del agua en impulsión por compensación según condiciones exteriores y limitación de máxima.

- Edificio despachos: Los paneles se sitúan de forma convencional en los antepechos de las ventanas. La alimentación es bitubular, con un circuito por panel y retorno invertido en distribución horizontal.

Cesión térmica por convección – radiación. Control sobre temperatura del agua en impulsión y compensación del retorno según condiciones exteriores .

Control y regulación del sistema de calefacción:

El edificio dispone de sondas de temperatura exterior ubicadas en la cubierta del edificio y sondas interiores en algunas aulas y pasillos que desafortunadamente no se utilizan y por su estado y mantenimiento no sirven de referencia al sistema.

La regulación del sistema de calefacción solo se realiza como se mencionó a partir de la temperatura de entrada y retorno del agua de cada circuito a las calderas centrales.

Todo el sistema de generación y distribución se activa en días laborables sobre las 7 am y funciona de forma continua salvo interrupciones voluntarias. El apagado es a discreción de la conserjería sobre las 20 – 21 horas dependiendo la actividad del centro⁸. No se tiene constancia

⁸ Datos extraídos directamente de entrevista con el Responsable de Mantenimiento de la escuela.

de que se realice apagado selectivo de circuitos y el sistema entra y sale en su totalidad generando importantes despilfarros energéticos.

En cuanto a los emisores no se utilizan válvulas termostáticas o aparatos de regulación automática, y solamente se puede realizar la regulación abriendo o cerrando la válvula de paso en el emisor correspondiente que pueda hacer cada usuario es la que puede darse.

Sistema de refrigeración

La demanda de refrigeración, al igual que la ETSAB y EPSEB también es atendida de forma individual en cada local del edificio: con aparatos en la mayoría de los casos tipo bomba de calor de diferentes marcas y referencias que tienen potencias nominales para refrigeración entre 1.300 – 3.500W.

De acuerdo a las políticas ya mencionadas de la UPC, para el caso de la ETSAV, se observa que todos los espacios que "requieren" sistema de calefacción lo disponen, y en el caso de la refrigeración presenta un porcentaje bajo de espacios atendidos con tan solo el 13,23%:

REFRIGERACIÓN EDIFICIO ETSAV	SUPERFICIE	%
Espacios con refrigeración	692,43	13,23%
Espacios sin refrigeración	4.542,17	86,77%
TOTAL	5.234,60	100,00%

• Edificios en campus: Módulo C-3 Campus Nord.

Tanto la calefacción como la refrigeración funcionan en un esquema centralizado que aprovecha la misma infraestructura (Red de distribución vertical y horizontal) para los dos usos energéticos.

Sistema de calefacción:

Se trata de un sistema de 3 calderas marca Chaffoteaux et Maury Mod 105GRSC, de 122 kW de potencia cada una de tipo estándar ubicadas en la cubierta del edificio, cada una de ellas con quemador atmosférico, las cuales se encuentran divididas internamente en 3 módulos que, de acuerdo a la demanda, van funcionando por separado o en forma simultánea.

Fig. 3.1.7 Generación centralizada de calor: Calderas en la cubierta del módulo C-3

La distribución se hace por 5 circuitos de agua caliente de 2 tubos de acero negro,con aislamiento de espuma elastomérica, que alimentan a cada una de las orientaciones (N, S, E, O) y un circuito central para la planta baja. Esta infraestructura alimenta una red de emisores tipo FAN-COIL, la mayoría de ellos modelo DAIKIN FW-VM4, con unidades dispuestas en todos los locales del edificio.

Las unidades FAN-COIL (78 unidades en todo el edificio) tienen un consumo eléctrico aproximado (ventilador) entre 84-250W, y una potencia calorífica de 4.300 W para los elementos estándar.

Fig. 3.1.8 Unidades FAN-COIL en despachos, y sondas de temperatura módulo C-3.

En algunos laboratorios y aulas de la planta sótano hay dispuestas unidades tipo SPLIT (2un de 5 kW de potencia c/u) o Bombas de Calor (1 Un de 12 kW de potencia) que funcionan de forma independiente.

Sistema de refrigeración:

Para la producción centralizada de frío, se utilizan 4 enfriadoras marca TRANE modelo CXA 060, con un rendimiento nominal de 1.8. La distribución se realiza utilizando la misma infraestructura de calefacción con 5 circuitos que alimentan a cada una de las orientaciones (N, S, E, O) y un circuito central para la planta baja. Cada circuito tiene asociadas las bombas de impulsión y circulación con una potencia nominal de 450- 1000 W.

A nivel de emisores se utilizan las mismas unidades FAN- COIL dispuestas en el edificio que para su funcionamiento en régimen de frío tienen una potencia nominal de 3.890 W.

Fig. 3.1.9. Cuarto de calderas y refrigeración edificio C-3

En cuanto a los espacios que deberían y tienen atendidas sus necesidades de climatización, para el caso del módulo C-3 se observa que todos los espacios que "requieren" sistema de calefacción lo disponen, y en el caso de la refrigeración el 96.24 % están siendo atendidos:

REFRIGERACIÓN EDIFICIO C-3	SUPERFICIE	%
Espacios con refrigeración	1.727,97	96,24%
Espacios sin refrigeración	67,46	3,76%
TOTAL	1.795,43	100,00%

Control y regulación del sistema de calefacción:

En cuanto al control, el edificio dispone de sondas de temperatura ubicadas en los pasillos interiores, que registran el comportamiento de la temperatura interior respecto a las temperaturas de referencia, e informan a un software centralizado de la marca SAUTER que permite realizar el seguimiento de la operación del sistema, las temperaturas de consigna y las diferentes fases en que trabaja el sistema (escalonamientos de carga, programación de interrupciones, etc.).

Es importante considerar que el sistema tiene problemas de "respuesta lenta" a las variaciones de las condiciones interiores en situaciones habituales. Por ejemplo una vez el sistema deja de generar calor / frío al recibir información de una de las sondas del edificio, el liquido caliente o frío sigue circulando por la red de distribución. Como las terminales FAN-COIL no pueden individualizarse, (By-pass) los ventiladores siguen impulsando aire caliente/frío durante unos minutos y los usuarios terminan por actuar por su cuenta (abrir ventanas), con lo cual el sistema recibe contraordenes.

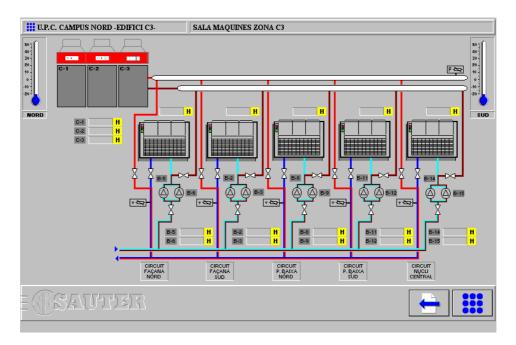


Fig. 3.1.10. Esquema de distribución y control con SAUTER para el módulo C-3.

Todo el sistema de generación y distribución se activa en días laborables sobre las 6:30- 7 am y funciona de forma continua salvo interrupciones voluntarias que se coordinan desde el servicio de mantenimiento del campus⁹. El apagado suele realizarse a diferentes horas dependiendo la actividad del centro pero, usualmente sobre las 19:30 - 20h.

⁹ Datos extraídos directamente de entrevista con la coordinación de Mantenimiento del campus nord

Edificios en campus: Módulo D-4 Campus Nord.

Sistema de calefacción:

Se trata de un sistema centralizado con generación de calor a partir de 2 calderas estándar marca Ygnis Ibérica S.A de 114 kW de potencia cada una, ubicadas en la cubierta del edificio, con quemador atmosférico y un rendimiento nominal del 87%.

Fig. 3.1.11. Cuarto de calderas edificio D-4

El sistema de distribución se divide en 3 circuitos; uno para la fachada norte, otro para la fachada sur y un circuito central para las zonas comunes y de circulación del edificio. Cada circuito tiene sus bombas de impulsión correspondientes de 420 W de consumo nominal c/u.

Los emisores a nivel de cada local son radiadores de fundición, de diferente nº de elementos siendo los más comunes los modelos ROCA DUBA 61/2D y 80/2D de potencia calorífica nominal 2.480W, que están montados sobre un circuito de agua caliente bitubular de acero negro y sin aislamiento térmico.

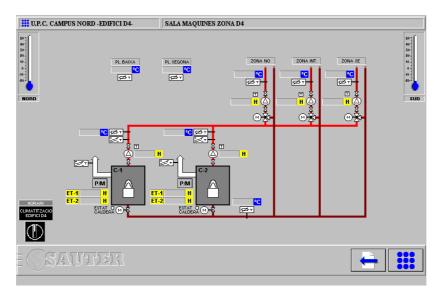


Fig. 3.1.12. Esquema de distribución y control con SAUTER para el módulo D-4

Sistema de refrigeración:

La demanda de refrigeración es atendida de forma individual en cada local del edificio, con aparatos tipo Split o Bombas de Calor individuales que tienen potencias nominales para refrigeración entre 1,6-2,8 kW y que cubren en total un 73,70% del total de espacios que lo requieren.

La gestión y control de los parámetros de confort para estos aparatos se hace de forma indivual en cada local.

Fig. 3.1.13. Equipos de refrigeración en cubierta módulo D-4

REFRIGERACIÓN EDIFICIO D-4	SUPERFICIE	%
Espacios con refrigeración	1.323,58	73,70%
Espacios sin refrigeración	472,33	26,30%
TOTAL	1.795,91	100,00%

Control y regulación del sistema de calefacción:

En cuanto al control, el edificio dispone de sondas de temperatura ubicadas en los pasillos interiores que informan al sistema de control centralizado sobre las temperaturas de referencia.

Al igual que la mayoría de edificios del Campus Nord la gestión de las instalaciones de climatización se realiza mediante software centralizado de la firma SAUTER que permite realizar el seguimiento de la operación del sistema, las temperaturas de consigna y las diferentes fases en que trabaja el sistema.

• Edificios en campus: Módulo A-6 Campus Nord.

En este edificio las instalaciones de climatización solamente atienden las necesidades de calefacción. En algunos locales de la planta semi-sótano hay unidades individuales de refrigeración, pero estas zonas no han sido objeto del presente estudio por lo que no se consideran en la descripción.

Sistema de calefacción:

Se trata de un sistema centralizado con generación de calor a partir de 1 caldera estándar marca Ygnis Suiza de 250.000 kcal/h de potencia, con quemador atmosférico y un rendimiento nominal del 92%.

Se encuentra ubicada en la cubierta del edificio en un cuarto compartido con la caldera del aulario contiguo (A-5).

Fig. 3.1.14. Cuarto de calderas edificios A-5 y A-6

El sistema de distribución se divide en 2 circuitos, uno para la fachada norte y otro para la fachada sur. Cada circuito tiene sus bombas de impulsión correspondientes de 385 W de potencia nominal.

Los emisores en los diferentes locales y áreas comunes del edifico son radiadores de fundición montados sobre un sistema de distribución de agua caliente bitubular de tubería de acero negro y sin aislamiento térmico.

Control y regulación:

Para el control y regulación, el edificio dispone de sondas de temperatura ubicadas en algunas aulas y en los pasillos interiores, que informan al sistema de control centralizado sobre las temperaturas de referencia. Este sistema presenta inconvenientes importantes ya que el sistema de regulación, aunque toma el valor promedio de varias sondas, no tiene suficientes instaladas en todos los locales y se da el caso que, por ejemplo mientras en un aula a plena

ocupación la temperatura interior puede ser elevada, en otra aula vacía y en pasillos la temperatura es muy diferente y el valor promedio puede no ser representativo.

Fig. 3.1.15. Sondas de temperatura interior módulo A-6

El sistema también esta controlado mediante software centralizado de la firma SAUTER que permite realizar el seguimiento de la operación del sistema, las temperaturas de consigna y las diferentes fases en que trabaja el sistema.

El esquema general de la instalación es el siguiente:

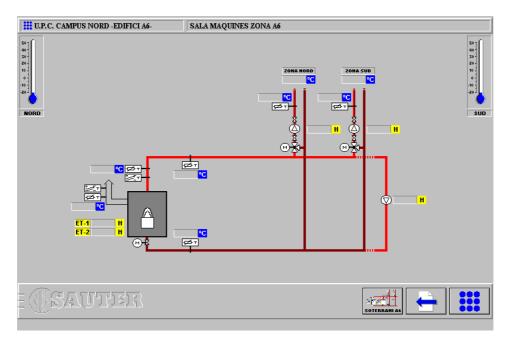


Fig.3.1.16. Esquema de distribución y control con SAUTER para el módulo A-6

3.2. Evaluación del rendimiento utilizando valores de referencia

Tal como se mencionó en el apartado 4.2.1; teniendo en cuenta las características de los sistemas de climatización empleados en cada edificio, obtenidas del levantamiento de datos realizado y de acuerdo a documentación técnica de referencia (RITE, normas ASHRAE, etc.) se estima el rendimiento del sistema considerando la ecuación planteada para la evaluación del rendimiento global:

$\eta = \eta g x \eta d x \eta r$

Donde:

η: rendimiento global

ηg : rendimiento de generaciónηd : rendimiento de distribuciónηr : rendimiento de regulación

Existe documentación de referencia que permite realizar una valoración del rendimiento global, según las características generales del sistema y los rendimientos nominales de los elementos dispuestos en cada sistema.

Un ejemplo de este tipo de valoraciones es el realizado en el marco de los proyectos HIADES y EDAC bajo la coordinación del Institut Cerdá que se resume en la Guía de la Edificación Sostenible:

RENDIMIENTO GLOBAL DE LAS INST	TALACIONES
Instalaciones colectivas de Gas	η: ηg X ηd X ηr
Calefacción	<u> </u>
Caldera con quemador atmosférico	0,79
Caldera con quemador con aire forzado	0,81
Caldera de recuperación	0,85
Caldera de,90 condensación	0,90
Bomba de calor de gas con recuperación	1,44
Bomba de calor de gas sin recuperación	1,26
Máquina de absorción	0,90
Refrigeración	
Bomba de calor de gas	1,10
Absorción de efecto simple	0,54
Absorción de doble efecto	0,81
Instalaciones colectivas eléctricas	η: ηg X ηd X ηr
Calefacción	
Caldera de acumulación	0,84
Bomba de calor	2,50
Refrigeración	
Bomba de calor	2,25
Instalaciones individuales eléctricas	η: ηg X ηd X ηr
Calefacción directa. Sistemas unitarios	
Convectores	1,0
Radiadores	1,0
Refrigeración	
Equipos de ventana	2,3
Sistemas partidos	2,3

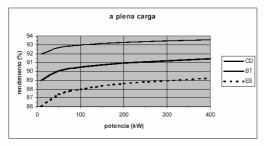

Instalaciones individuales de Gas	η: ηg X ηd X ηr
Calefacción sistemas individuales	
Caldera con quemador atmosférico	0,79
Caldera de alta eficiencia	0,85
Caldera de condensación	0,93
Generadores de aire	0,71
Calefacción sistema unitario	
Convectores murales	0,80

Tabla 3.2.1. Valores de referencia rendimiento global de las instalaciones ¹⁰

Cuando se dispone de información detallada sobre los aparatos y sistemas dispuestos en el edificio, como es el caso de este trabajo, es posible realizar una valoración un poco mas detallada de cada una de las variables de la ecuación planteada.

Rendimiento de los sistemas centralizados de calefacción:

Para valorar el rendimiento de generación se dispone de los datos de rendimiento nominal de cada una de las calderas de los edificios. Adicionalmente se han considerado como referencia los valores establecidos en los documentos de revisión del Reglamento de Instalaciones Térmicas en los Edificios (RITE) donde se evalúan las prestaciones de los diferentes tipos de calderas que suelen disponerse en los edificios.

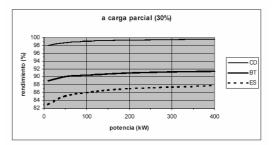


Fig. 03.18- Rendimiento a carga parcial

RENDIMIENTO A PLENA CARGA (100%)						
tipo de caldera	POTENCIA en kW					
	10 50 100 200 300 400					
estándar	86,0	87,4	88,0	88,6	89,0	89,2
de baja temperatura	89,0	90,0	90,5	91,0	91,2	91,4
de gas de condensación	92,0	92,7	93,0	93,3	93,5	93,6

RENDIMIENTO A CARGA PARCIAL (30%)						
tipo de caldera	POTENCIA en kW					
	10 50 100 200 300 400					
estándar	83,0	85,1	86,0	86,9	87,4	87,8
de baja temperatura	89,1	90,0	90,5	91,0	91,2	91,4
de gas de condensación	98,0	98,7	99,0	99,3	99,5	99,6

Fig. 3.2.1 Rendimiento medio de calderas de baja temperatura condensación y estándar a plena carga y a carga parcial según Directiva Europea 92/44/CEE Fuente: IDAE Libro de comentarios al RITE

131

¹⁰ INSTITUT CERDA. Guía de la Edificació Sostenible, Barcelona Febrer de 1.999

Es necesario tener en cuenta que de todas las calderas se conoce el rendimiento teórico nominal y que se trata de calderas con potencias superiores a 400 kW que se encuentran en dentro del rango superior de las que se especifican en el RITE.

En los edificios estudiados, salvo en el módulo C-3, se trata de calderas de tipo estándar, en ningún caso se trabaja bajo esquemas de escalonamiento de carga, y hay un mínimo nivel de regulación y control. A partir de los valores de rendimiento teórico nominal, se tomarán como referencia los valores de rendimiento a carga parcial, por ser posiblemente los que mas se acerquen a la realidad del rendimiento de las instalaciones estudiadas.

En cuanto a los rendimientos de distribución se tomará como referencia las consideraciones del manual de calefacción del COAC¹¹ que establece un rango de rendimientos para el caso de edificios de viviendas, de los cuales se consideran equiparables los bloques multifamiliares, que utilizan radiadores como elementos emisores en los locales y que tienen la siguiente valoración:

Sistemas de calefacción por agua	Rendimiento de Distribución
Edificios con una red de distribución pequeña y aislamiento adecuado en las tuberías.	0.94 a 0.96
Edificios con una red de distribución grande y aislamiento adecuado en las tuberías.	0.90
Sin aislamiento en las tuberías	0.88

Para el rendimiento por regulación, en este mismo manual se establece el siguiente caso para la misma tipología de edificios:

Tipo de regulación	Rendimiento
Edificios con regulación en base a la temperatura exterior	0.93
Edificios sin regulación	0.78

Teniendo en cuanta que siempre existe algún tipo de elemento de regulación en los edificios, en la valoración del rendimiento global es importante considerar la referencia que se presenta en el Manual de fundamentos técnicos CEV¹², realizada sobre un total de 244 casos en diferentes tipologías de edificios y variando las condiciones de emplazamiento, ubicación geográfica y uso, entre otros. Para los 3 casos que se consideran más habituales en los sistemas utilizados en la edificación: con termostato ambiente en un local, con centralita de regulación y con válvulas termostáticas en los locales.

Los valores propuestos para el factor corrector por el tipo de regulación que se realice son:

Tipo de regulación	Rendimiento
Termostato ambiente	0.90
Centralita de regulación	0.95
Válvulas termostáticas	1.00

En el caso de los sistemas de distribución, salvo en el caso del edificio C-3 que posee un sistema centralizado del cual es posible valorar cada variable de forma individual, para el resto de los casos por tratarse de soluciones individuales que no suponen redes de distribución o sistemas centralizados de regulación y control, el rendimiento del sistema es simplemente el

¹¹J.M. Millán. Manual de Calefacción COAC.

¹² IDAE . Fundamentos de la calificación energética de viviendas. 1999

COP o rendimiento individual de los aparatos dispuestos en el edificio. En el caso del módulo A-6 como se ha explicado no existe sistema de refrigeración en ningún local.

El resumen de la evaluación del rendimiento de los sistemas utilizando valores de referencia es el siguiente:

Edificio	ηд	ηd	ηr	Rendimiento global η: ηg X ηd X ηr	Observaciones
Calefacción EPSEB	0.878	0.90	0.93	0.73	Rendimiento promedio estimado de las calderas a partir de valor nominal. Nivel de aislamiento adecuado a la infraestructura, regulación por temperatura de entrada y salida de caldera (valor estimado)
ETSAB	0.80	0.88	0.85	0.60	Rendimiento promedio de las 3 calderas, estimado a partir de valores nominal. Deficiente nivel de aislamiento, regulación por temperatura de entrada y salida de calderas (valor estimado)
ETSAV	0.870	0.90	0.85	0.67	Rendimiento promedio estimado de las calderas a partir de valor nominal. Nivel de aislamiento adecuado a la infraestructura, regulación por temperatura de entrada y salida de caldera (valor estimado)
C-3	0.880	0.90	0.95	0.75	Rendimiento promedio estimado de las calderas considerando que a su vez, son módulos de 3 calderas. Nivel de aislamiento adecuado a la infraestructura, regulación por termostatos de ambiente y centralita SAUTER.
D-4	0.870	0.90	0.93	0.73	Rendimiento promedio estimado de las calderas considerando que a su vez, son módulos de 3 calderas. Nivel de aislamiento adecuado a la infraestructura, regulación por termostatos de ambiente con problemas de compensación y centralita SAUTER.
A-6	0.86	0.90	0.90	0.70	Rendimiento estimado de la caldera a partir del teórico nominal. Nivel de aislamiento adecuado a la infraestructura, regulación por termostatos de ambiente con problemas de ubicación y compensación. Centralita SAUTER.

Edificio	ηg	ηd	ηr	Rendimiento global η: ηg X ηd X ηr	Observaciones
Refrigeració	n				
EPSEB	-	-	-	2.1	Valor promedio del COP de las máquinas dispuestas en el edificio (Aparatos de ventana, splits y Bombas de calor)
ETSAB	-	-	-	2.0	Valor promedio del COP de las máquinas dispuestas en el edificio (Aparatos de ventana, splits y Bombas de calor)
ETSAV	-	-	-	2.3	Valor promedio del COP de las máquinas dispuestas en el edificio (Aparatos de ventana, splits y Bombas de calor)
C-3	2,16	0.88	0.90	1.71	Rendimiento estimado a partir del teórico nominal de las enfriadoras y FAN-COILS. Nivel de aislamiento adecuado a la infraestructura, regulación por termostatos de ambiente con problemas de ubicación y compensación. Centralita SAUTER.
D-4	-	-	-	2.2	Valor promedio del COP de las máquinas dispuestas en el edificio (Unidades split y Bombas de calor)
A-6	-	-	-	-	No hay sistemas/aparatos de refrigeración dispuestos en la zona de aulario estudiada.

3.3. Evaluación del rendimiento utilizando la herramienta CALENER

Tal como se ha mencionado en el apartado 4.1.2, en el ámbito español se viene trabajando en el desarrollo de la herramienta CALENER por el grupo de investigación AICIA de la cátedra de Termotecnia de la ETS de Ingenieros Industriales de Sevilla, que en el marco de la transposición de la directiva europea 2002/91/CE de Eficiencia Energética en los Edificios, esta llamada a ser la herramienta de calificación de ámbito estatal.

Para el desarrollo del trabajo aquí presentado se ha trabajado con le versión 2.02 del programa.

CALENER es una herramienta de calificación energética que evalúa el consumo de energía del edificio objeto de estudio, y lo califica en función de las emisiones de CO2 asociadas al tipo de combustible que emplee. Para ello analiza en primer lugar la demanda a atender en el edificio, y en segundo lugar, de acuerdo a los sistemas que se definan para atender dicha demanda y su rendimiento establece el consumo energético que supondrá mantener unas condiciones de confort determinadas. Para que el programa pueda calcular el consumo y las emisiones asociadas es necesario definir en detalle las características de los equipos, el diseño de la instalación (sectorización) y el nivel de control y regulación de cada local, lo que permite que el programa informe también del rendimiento medio estacional de los sistemas del edificio **que para efectos de este trabajo es la información más relevante.**

Evaluación del rendimiento en CALENER:

La consideración del rendimiento en la herramienta CALENER se establece a partir de una ecuación similar a la definida de forma genérica para el rendimiento global de los sistemas, pero que incorpora algunas variables y definiciones que vale la pena analizar en detalle en palabras de sus autores¹³:

El rendimiento medio global se define como el producto de los rendimientos medios de los diferentes bloques,

η: ηg×ηt×ηe×ηr

Donde:

η : rendimiento medio global

ηg : rendimiento medio de generación
 ηt : rendimiento medio de transporte
 ηe : rendimiento medio de emisión
 ηr : rendimiento medio de regulación

El **rendimiento medio de generación** tiene en cuenta la eficiencia de conversión de la energía del combustible en energía térmica. No siempre es un valor inferior a la unidad y depende del tipo de generador, del combustible utilizado, del fraccionamiento de potencia del generador, de su rendimiento nominal, de su curva de rendimiento a carga parcial y de las condiciones de funcionamiento del generador que determinan su régimen de funcionamiento a carga parcial. El régimen a carga parcial depende a su vez de los factores que determinan la carga térmica de la instalación: la localidad geográfica y las características del edificio.

El **rendimiento medio del transporte** considera las pérdidas de calor en la red de distribución que no se recuperan. Dependen de la longitud de la red de distribución, del nivel de aislamiento, de la temperatura del fluido que hacen circular y de la temperatura de los locales que atraviesa la red de transporte. El rendimiento de transporte es siempre inferior a la unidad y solo se considera igual a la unidad cuando las pérdidas contribuyen a combatir la carga de calefacción.

135

¹³ IDAE. Fundamentos de la calificación energética de viviendas. 1999

El **rendimiento medio de emisión** considera las pérdidas de calor en la cesión de energía en las unidades terminales de los locales. En los sistemas de calefacción y refrigeración depende fundamentalmente del tipo de unidad Terminal y de su ubicación en el local. En las instalaciones donde se impulsa directamente el aire tratado a los locales, este rendimiento es igual a la unidad.

El **rendimiento medio de regulación** mide la capacidad del sistema y de sus elementos de regulación para suministrar a los locales en cada instante de tiempo la carga térmica correspondiente.

En una instalación real, el tiempo de respuesta del sistema de control, la variación temporal de la carga y la inercia del sistema hacen prácticamente imposible que las unidades terminales suministren exactamente la carga térmica, dando lugar a sobrecalentamientos o sobreenfriamientos en los locales. En estas condiciones, el rendimiento de regulación definido como el cociente entre la energía cedida a los locales y la energía que se cedería si el control fuera ideal, puede ser mayor o menor que la unidad. Un rendimiento de regulación diferente de la unidad supone siempre oscilaciones de temperatura del aire de los locales.

El rendimiento de regulación depende básicamente del propio sistema de regulación (control individual o centralizado, situación del termostato ambiente, no de elementos de control, etc., de la calidad de sus componentes y de las características de los locales que determinan la curva de carga.

Metodología de cálculo:

CALENER al igual que LIDER define de forma automática un edificio de referencia con el que compara las prestaciones del edificio objeto y determina la calificación energética.

De acuerdo a la descripción de sus propios autores¹⁴: Una vez que el usuario ha introducido el proyecto (epidermis edificatoria, sistemas de calefacción y aire acondicionado, agua caliente sanitaria e iluminación), CALENER califica energéticamente mediante los siguientes pasos:

- 1. Simulación horaria del edificio introducido por el usuario, "edificio objeto", para obtener su consumo de energía final.
- 2. Cálculo de las emisiones asociadas al edificio objeto, considerando todos los tipos de energía.
- 3. Definición del edificio de referencia. CALENER modifica el "edificio objeto" para crear el "edificio de referencia".
- 4. Simulación horaria del edificio de referencia para obtener el consumo.
- 5. Cálculo de las emisiones asociadas al edificio de referencia.
- 6. Finalmente la Calificación Energética se obtiene mediante la comparación entre las emisiones del edificio objeto y las del edificio de referencia.

La calificación energética se realiza en porcentaje de mejora del edificio objeto respecto al de referencia (**Fig. 3.3.1**)

LOS PROGRAMAS INFORMÁTICOS DEL CÓDIGO TÉCNICO DE LA EDIFICACIÓN Y LA CERTIFICACIÓN ENERGÉTICA DE EDIFICIOS: MÉTODO GRÁFICO EG, LIDER Y CALENER José L. Molina, Servando Álvarez, Ramón Velásquez Grupo de Termotecnia. Escuela Superior de Ingenieros de Sevilla. Jornades IDAE 01/12/2004

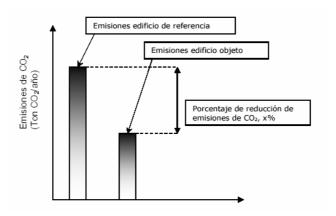


Fig. 3.3.1. Proceso de calificación energética de CALENER

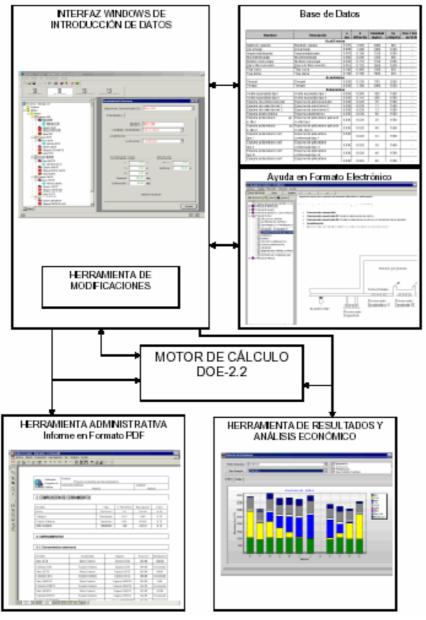


Fig. 3.3.2. Esquema general de funcionamiento de CALENER

Como se ha mencionado para el análisis planteado en esta tesis, de la información que aporta el programa CALENER se consideran **solamente los valores de rendimiento de los sistemas,** ya que el cálculo de la demanda y el consumo en términos absolutos que hace el programa son sólo un resultado intermedio sin interés final en CALENER.

La demanda energética de calefacción y refrigeración se calcula según sus autores "a temperatura y humedad constante todo el año en todos los espacios, usando la misma temperatura para todos los meses del año (20°C). Es por esto que aparecen demandas de calefacción y refrigeración en casi todos los meses y que los espacios no acondicionados también tienen demanda."

Definición de componentes:

La versión de CALENER con que se ha trabajado no permite una entrada gráfica del edificio a estudiar, pero si permite importar los datos de entrada gráfica (definición volumétrica, orientación, emplazamiento, sombras, etc.) y definición de componentes (cerramientos, materiales, etc.) realizados con la herramienta LIDER.

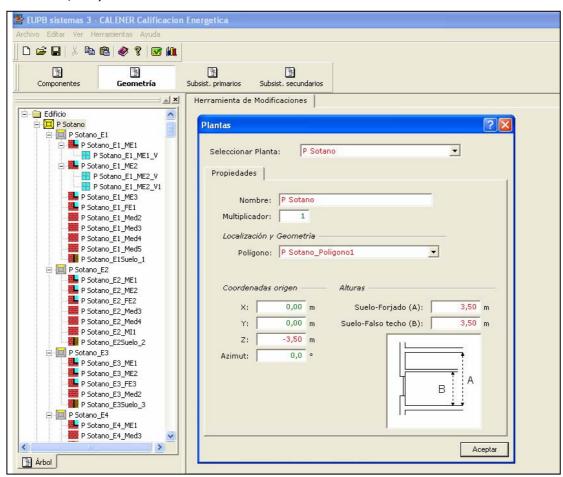


Fig. 3.3.3. CALENER definición geométrica y componentes importados de LIDER.

A partir de la definición general del edificio, CALENER permite definir el perfil de uso y ocupación del edificio que condicionará el funcionamiento de los sistemas y el consumo de recursos energéticos para generar el clima interior. Es así como es posible definir horarios de funcionamiento, ocupación, utilización de persianas, etc.

En cuanto a las cargas internas asociadas a los diferentes perfiles de uso, CALENER ofrece un menú de usos con valores prefijados que sirven de referencia al introducir los datos del edificio y que es posible modificarlos si se tienen datos detallados de cada aspecto (número de usuarios, potencia instalada de aparatos, iluminación, etc.).

Nombre	1	Danasisaii				
Nombre		Descripció	on			
Espacio Docencia	Espacios destinad	dos a la docencia				
		Ocupación				
Horario Ocupación	Área/Ocupante	Q sensible/Ocupante	Q latente/Ocupante			
Ocupación-Docencia	6,97	71,79	45,42			
		Equipos				
Horario equ	iipos	Potencia/Área				
iluminación-Do	ocencia	10,76				
	i	nfiltraciones				
Horario infiltra	aciones	Renovaciones/hr				
Infiltración-Do	cencia	1				
lluminación						
Horario Ilumi	nación	Potencia/Área	Tipo de luminaria			
iluminación-Do	ocencia	17,22	Fluorescente encastrada No V			

Nombre	Descripción						
Espacio Oficina	Espacios tipo ofic	Espacios tipo oficinas					
Ocupación							
Horario Ocupación	Área/Ocupante	Q sensible/Ocupante	Q latente/Ocupante				
Ocupación-Oficina	25,55	73,25	58,6				
Equipos							
Horario equ	ipos	Po	tencia/Área				
iluminación-O	ficina		16,15				
	ı	Infiltraciones					
Horario infiltra	ciones	Ren	ovaciones/hr				
Infiltración-Of	icina		1				
		lluminación					
Horario Ilumir	nación	PotencialÁrea -	Tipo de luminaria				
iluminación-O	ficina	13,99	Fluorescente encastrada No V				
Nombre		Descripción					
Espacio Sala-Reuniones	Espacios tipo sala	de reuniones					
		Ocupación					
Horario Ocupación	Área/Ocupante	Q sensible/Ocupante	Q latente/Ocupante				
Ocupación-Reuniones	4,65	71,78	45,42				
		Equipos					
Horario equ	ipos	Potencial Área					
iluminación-Reu	ıniones	10,76					
		Infiltraciones					
Horario infiltra	ciones	Renovaciones/hr					
Infiltración-Reu	niones	1					
		lluminación					
Horario Ilumin	nación	PotencialÁrea -	Tipo de luminaria				
iluminación-Reu	iniones	17,22	Fluorescente encastrada No V				

La Librería de CALENER ofrece diferentes perfiles de uso con cargas internas asociadas a: ocupación, la potencia instalada de aparatos e iluminación, renovaciones de aire por infiltración.

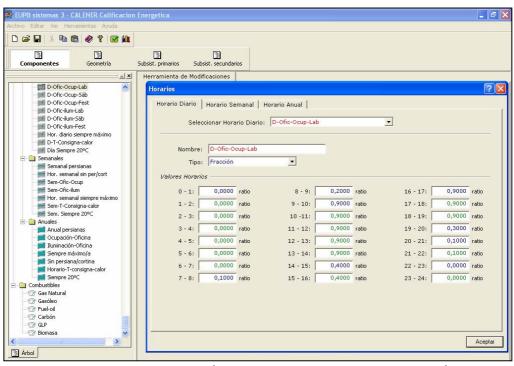


Fig. 3.3.4. CALENER definición de horarios de funcionamiento y ocupación.

Una vez se han definidas las características generales y el perfil de uso del edificio, se han de definir los sistemas previstos para atender la demanda energética del edificio, comenzando por el esquema general de funcionamiento (zonificación, subsistemas, etc.) pasando por la definición de cada uno de los componentes que posean, con la posibilidad de singularizarlos en cuanto a sus características y patrones de funcionamiento (Temperaturas de referencia, sistemas de control, horarios, etc.).

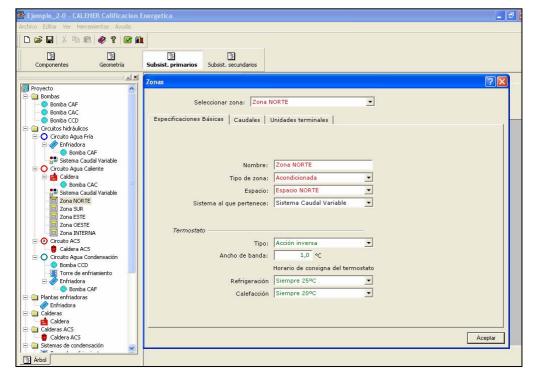


Fig. 3.3.5. CALENER definición de sistemas y zonificación.

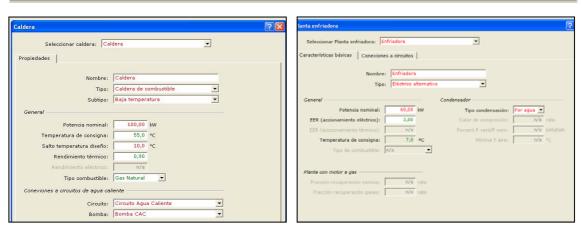
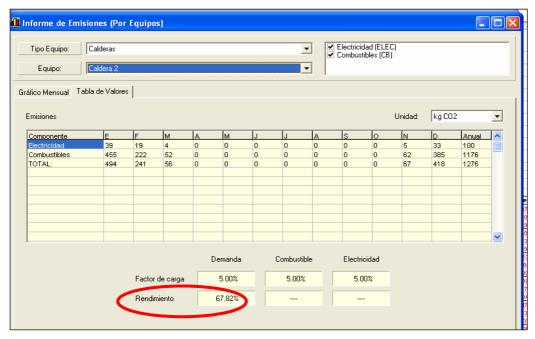
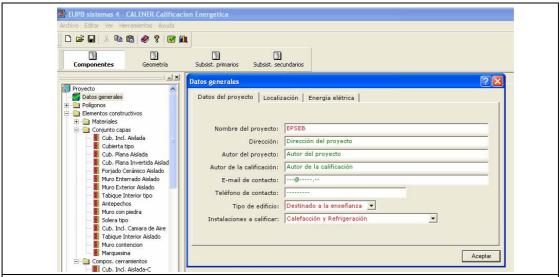


Fig. 3.3.6. CALENER definición de elementos de sistemas

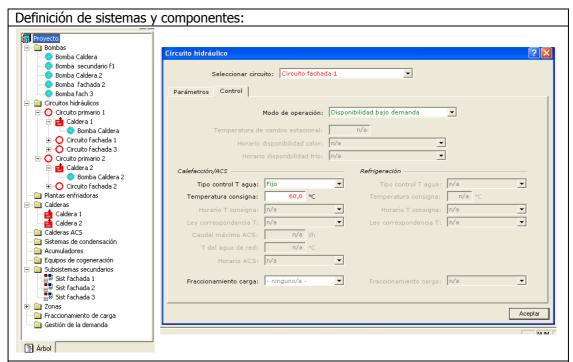
Resultados:

CALENER dispone de una herramienta que permite visualizar y comparar los resultados del análisis que realiza (demanda y emisiones asociadas de CO₂). En este trabajo interesa fundamentalmente el informe de emisiones asociadas, ya que en él se expresa el rendimiento de cada equipo, que a su vez tiene asociado todos los componentes y elementos que lo integran. Por ejemplo: el rendimiento de una caldera tendrá asociado la cantidad de zonas que alimente, si se hace fraccionamiento de carga, el tipo de control y regulación que se realice y la programación horaria que se haya definido.



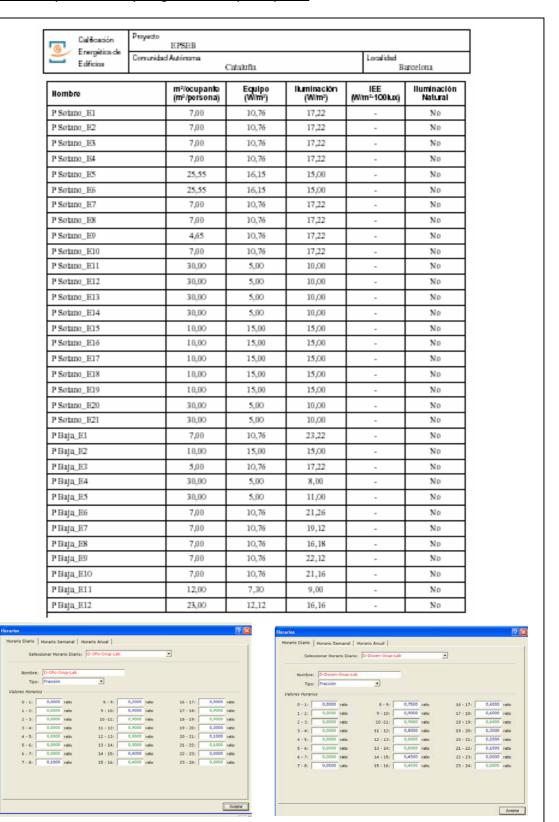

Fig. 3.3.7. CALENER resultados por equipos: rendimiento

En el caso de la refrigeración, al disponer la mayoría de edificios de soluciones individuales en algunos locales que no llegan a cubrir la demanda requerida, la valoración del rendimiento simplemente será la relacionada con el COP de cada máquina, y solamente en el caso del edificio C-3 del Campus Nord es posible hacer una valoración del rendimiento global del sistema.


Evaluación del rendimiento de los sistemas de climatización con la herramienta CALENER

Edificios autónomos – EPSEB

Definición del edificio:



Desde LIDER se importa la definición de las características geométricas, de emplazamiento, tipo de uso, así como las soluciones constructivas que se disponen en el edificio. En CALENER es posible definir otros usos diferentes a los 2 especificados en LIDER, de esta manera es posible definir para el caso de la EPSEB el uso de "Edificio para la enseñanza".

Se definen como sistemas primarios en el caso de la calefacción los que están asociados a las 2 calderas dispuestas en el edificio, que a su vez atienden a cada uno de los circuitos de fachada y de planta en que se divide la zonificación del sistema. Cada circuito tiene una agrupación de zonas a las que sirve, con características y régimen de control y funcionamiento que es posible definir en forma detallada.

Definición de perfil de uso y cargas internas por espacio:

Para cada espacio se han definido las cargas internas de ocupación (m2/persona), equipos e iluminación (W/m2) de acuerdo al levantamiento de datos realizado. También se han definido perfiles de ocupación para los principales usos presentes en el edificio (docente, oficinas, almacenes) y rutinas de uso de iluminación y persianas como protección solar.

Resumen de características de los sistemas:

Calificación	Proyecte EPSEB	
Energética de	Comunidad Autónoma	Localidad
Edificios	Cataluña	Barcelona

9. SUBSISTEMAS PRIMARIOS

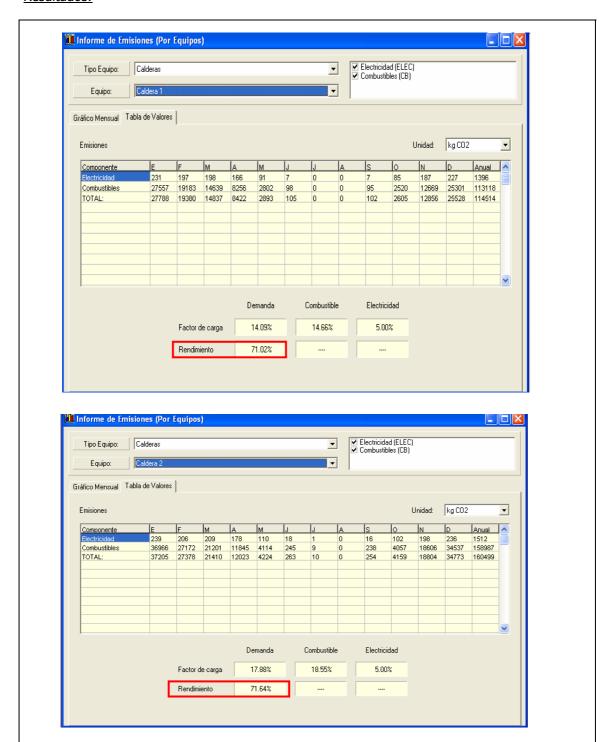
9.1. Bombas de circulación

Nombre	Tipo de control	Caudal (I/h)	Altura (m)	Potencia nominal (KW)	Rendimiento global
Bomba Caklera	Caudal constante	10,808	15,0	0,66	0,62
Bomba fachada 1	Caudal constante	4.250	15,0	0,28	0,62
Bomba Caldera 2	Caudal constante	10.000	15,0	0,66	0,62
Bomba fachada 2	Caudal constante	4.250	15,0	0,28	0,62
Bomba fachada 3	Caudal constante	3.500	15,0	0,23	0,62
Bomba fachada 4	Caudal constante	3.500	15,0	0,23	0,62
Bomba circuito comunes	Caudal constante	3.200	15,0	0,21	0,62
Bomba circuito anexos	Caudal constante	2.590	15,0	0,17	0,62

9.2. Circuitos hidráulicos

Nombre	Tipo	Subtipo	Modo de operación	T. consigna calor (°C)	T. consigna frio (°C)
Circuito primario 1	Agua caliente	Primario	Disp. demanda	60,0	-
Circuito primario 2	Agua caliente	Primario	Disp. demanda	60,0	-
Circuito fachada 1	Agua caliente	Secundario	Disp. demanda	60,0	-
Circuito fachada 2	Agua caliente	Secundario	Disp. demanda	60,0	-
Circuito fachada 3	Agua caliente	Secundario	Disp. demanda	60,0	-
Circuito fachada 4	Agua caliente	Secundario	Disp. demanda	60,0	-
Circuito zonas comunes	Agua caliente	Secundario	Disp. demanda	60,0	-
Circuito espacios anexos	Agua caliente	Secundario	Disp. demanda	60,0	-

9.3. Plantas Enfriadoras


Nombre	Tipo	Potencia nominal (kW)	EER Eléctrico	EER Térmico

9.4. Calderas

Nombre	Subtipo	Combustible	Potencia nominal (kW)	Rendimiento nominal
Caldera 1	Convencional	Gas Natural	600,00	0,80
Caldera 2	Convencional	Gas Natural	600,00	0,78

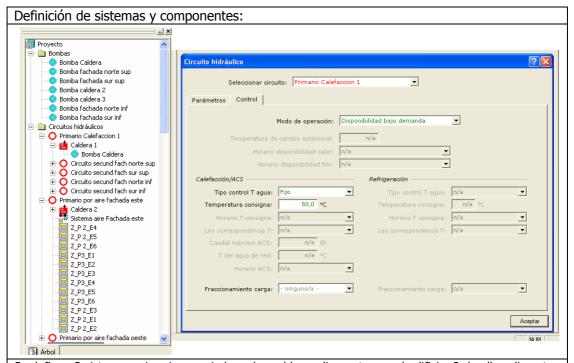
La herramienta administrativa del programa, que hace un resumen de todos los parámetros del análisis, permite resumir las principales características de los elementos del sistema analizado.

Resultados:

Valoración del rendimiento global del sistema:

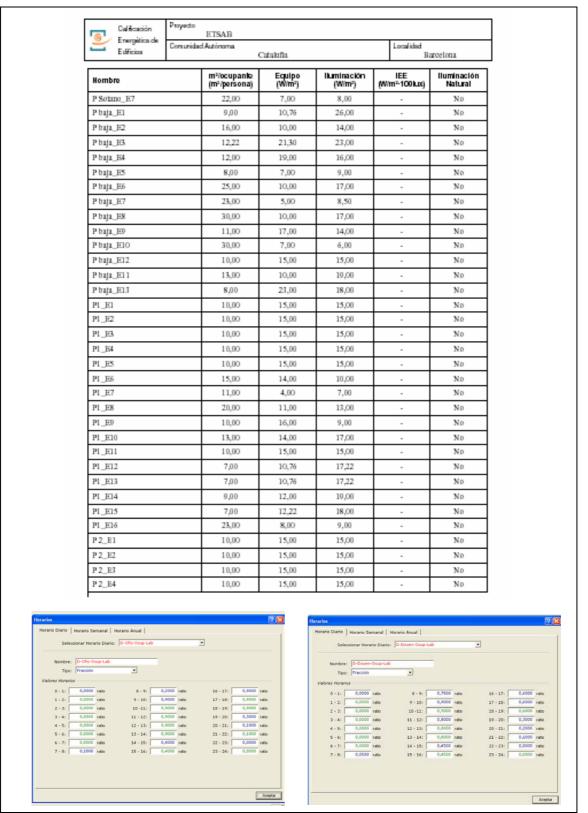
Como se ha mencionado, el valor del rendimiento global se presenta en el informe de emisiones asociadas a los equipos que generan el Calor/frío en el sistema. En el caso de la EPSEB únicamente se dispone de la valoración del sistema de calefacción a través del rendimiento global de los subsistemas asociados a las calderas 1 y 2 que es de **71.02%** y **71.84** % respectivamente, lo que supone un rendimiento global del sistema de **71,43%**.

En el caso de la refrigeración, al ser sistemas individuales independientes, la valoración con CALENER del rendimiento global de los sistemas no tiene sentido. Se tomará como valores de referencia el promedio de los COP de las unidades individuales dispuestas en los locales del edificio. **2.016** %


Evaluación del rendimiento de los sistemas de climatización con la herramienta CALENER

Edificios autónomos – ETSAB

Definición del edificio:



Desde LIDER se importa la definición de las características geométricas, de emplazamiento, tipo de uso, así como las soluciones constructivas que se disponen en el edificio. Se define el uso Docente como principal y se especifican los restantes usos (despachos, pasillos, bar, etc.) de forma individual en cada local.

Se definen 3 sistemas primarios asociados a las calderas dispuestas en el edificio, 2 de ellas alimentan a los circuitos por aire de la torre de aulas y despachos (planta 1ª a 7ª) y la 3ª caldera alimenta el circuito por agua de las plantas inferiores del ala norte. Cada circuito tiene una agrupación de zonas a las que sirve, con características y régimen de control y funcionamiento que es posible definir en forma detallada.

Definición de perfil de uso y cargas internas por espacio:

Para cada espacio se han definido las cargas internas de ocupación (m2/persona), equipos e iluminación (W/m2) de acuerdo al levantamiento de datos realizado. También se han definido perfiles de ocupación para los principales usos presentes en el edificio: Docente, Oficinas, Almacenes. Y rutinas de uso de iluminación y persianas.

Resumen de características de los sistemas:

Control ventilador de impulsión

Sección de humectación

Enfriamiento evaporativo

Recuperación de energia

Enfriamiento gratuito

Caudal ventilador de retorno (mªh)

Potencia ventilador de retorno (kW)

											,
	Calificación		ETSAB								
	9 Energética	Comunida	d Autónoma					Т	Localidad		1
	Edificios			Cataluñ	a				Ba	rcelona	
	9. SUBSISTEN	IAS PRIMA	RIOS								
	9.1. Bombas d	e circulació	òn]
						$\overline{}$			tonala		
	Nombre		Tipo de cont	rol	Cauda (I/h)	'	Altura (m)	n e	otencia ominai (kW)	Rendimiento global	
	Bomba Caklera		Caudal con	stante	10.000		15,0		0,66	0,62	
	Bomba facha no	rte sup	Caudal con	stante	3.750		15,0		0,25	0,62	
	Bomba fachada su	rsup	Caudal con	stante	3.750		15,0		0,25	0,62	
	Bomba caklera 2		Caudal con	stante	8.000	\top	15,0		0,53	0,62	
	Bomba caklera 3		Caudal con		8.000	+	15,0		0,53	0,62	
	Bomba fachada no	ate inf	Caudal con		2.950	+	15,0				
						+			0,20	0,62	
	Bomba fachada su	riat	Caudal con	sante	2.950		15,0		0,20	0,62	_
	9.2. Circuitos	.2. Circuitos hidráulicos									
	Nembro				8	Hac	Mode		T. consign	na T. consigna frio	
	Nombre		TIp	0	Subi	про	operaci	ōn	(°C)	(°C)	
	Primario Caleface		Agua ca		Prim		Disp. dem		80,0	-	
	Primario calefacci		Agua ca		Prim		Disp. dem		80,0		
	Primario calefacci		Agua ca		Prim	ario	Disp. dem	anda	80,0	-	
	Circuito sech no	rte sup	Agua ca	diente	Secun	dario	Disp. dem	anda	80,0	-	
	Circuito seach se	ır sup	Agua ca	diente	Secun	dario	Disp. dem	anda	80,0	-	
	Circuito sech no	rte inf	Agua ca	diente	Secun	dario	Disp. dem	anda	80,0	-	
	Circuito secach	ur inf	Agua ca	diente	Secun	dario	Disp. dem	anda	80,0	-	
	9.3. Plantas Er	friadoras]
			Τ				Poteno	la	T	T	
	Nombre			TIpo			nomin (kW)		EER Eléctrice	EER Térmico	
	9.4. Calderas										1
			1					_	5-4		-
	Nombre		Su	ibtipo		Co	mbustible		Potencia nominal (KW)	Rendimiento nominal	
	Caldera 1		Conv	rencional		G	as Natural	I	450,00	0,80	
	Caldera 2		Conv	encional		Gas Natural		\perp	350,00	0,75	
	Caldera 3		Conv	rencional		G	as Natural		350,80	0,75	
bre	Sis	tema aire Facha	da este] [Nombre					Sixtems six	Fachada cest
		Aut. caudal vari		1							dal variable
te de calor		Agua calient			Tipo Euceto e	to entr					
de condensación		Por aire			Fuente d						caliente
		2,80			Tipo de	conde	nsación				r aire
		2,80			EER						2,80
sola bataria frio (kW)		3,00			COP						-
cla bateria frio (kW)		350.00					ria frio (kW)				3,00
cia bateria calor (kW)	(m2da)						ria calor (kW				50,00
al ventilador de impulsión		1,000					dor de Impu				.080
acia ventilador de impulsió	llador de impulsión (kW)			Potencia ventilador de impulsión			n (kW)		3,00		

Se resumen las principales características de los elementos que conforman el sistema de calefacción, que en el caso de la ETSAB es mixto, de 3 calderas que alimentan 2 sistemas; por aire y por agua (ver descripción detallada del sistema).

Control ventilador de impulsión

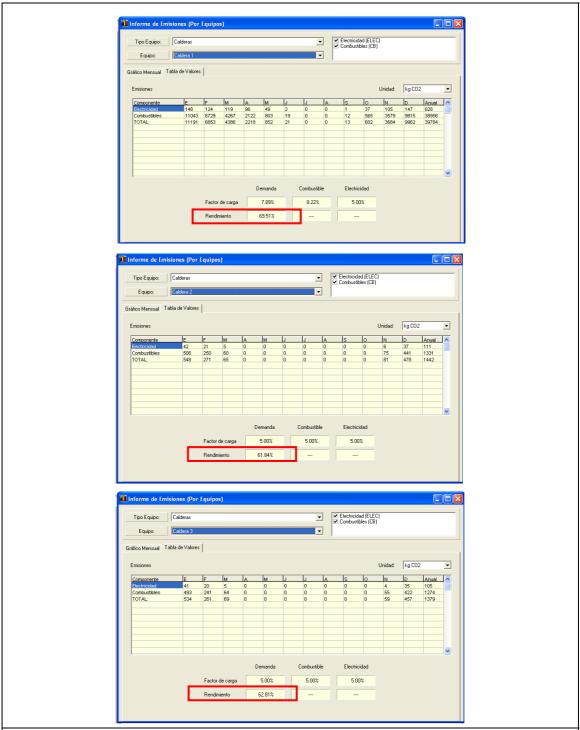
Sección de humectación

Enfriamiento evaporativo

Recuperación de energía

Enfriamiento gratuito

Caudal ventilador de retorno (mªh)


Potencia ventilador de retorno (kW)

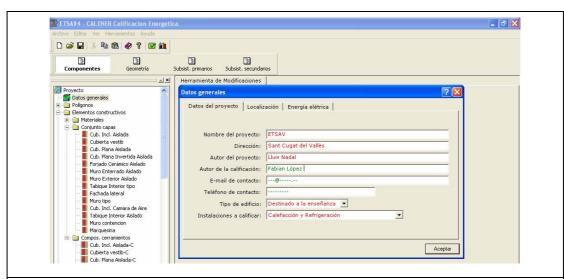
Velocidad variable

-

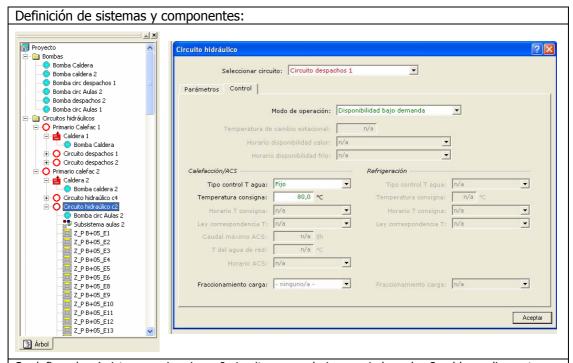
Velocidad variable

Resultados:

Valoración del rendimiento global del sistema:

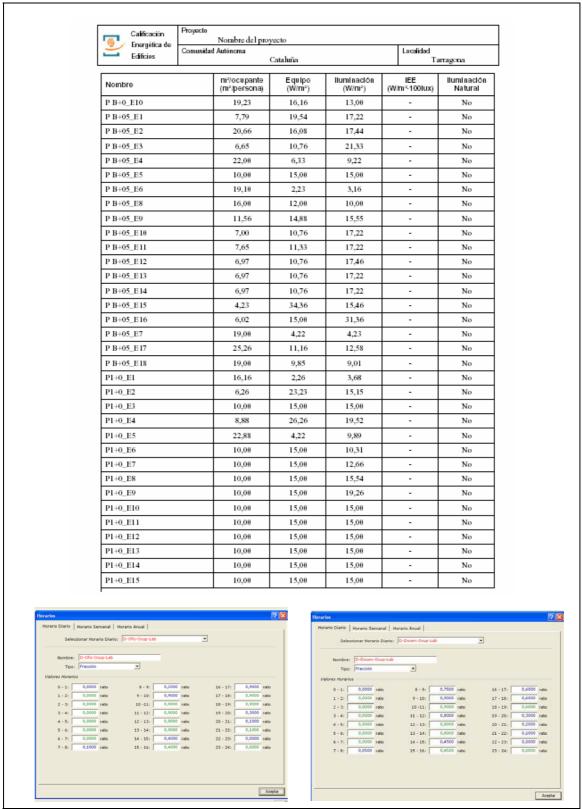

En el caso de la ETSAB se dispone de la valoración del sistema de calefacción a través del rendimiento global de lo sistemas asociados a las calderas: La caldera 1 que atiende al sistema de calefacción por agua de las plantas inferiores tiene un rendimiento global de **69,51%** y las 2 calderas que atienden el sistema por aire tienen un rendimiento inferior de **61.84 %** y **62,81%** respectivamente, lo que supone un rendimiento global del sistema de **64,72%**.

En el caso de la refrigeración, al ser sistemas individuales independientes, la valoración con CALENER del rendimiento global de los sistemas no tiene sentido. Se tomará como valores de referencia el promedio de los COP de las unidades individuales dispuestas en los locales del edificio. **2.023** %


Evaluación del rendimiento de los sistemas de climatización con la herramienta CALENER

Edificios autónomos – ETSAV

Definición del edificio:



Desde LIDER se importa la definición de las características geométricas, de emplazamiento, tipo de uso, así como las soluciones constructivas que se disponen en el edificio. Se define el uso Docente como principal y se especifican los restantes usos (despachos, pasillos, bar, etc.) de forma individual en cada local.

Se definen los 4 sistemas primarios y 9 circuitos secundarios asociados a las 2 calderas dispuestas en el edificio, 2 circuitos principales alimentan al edificio de despachos y los restantes a la zona de aulas divididos por plantas y zonas este y oeste. Cada circuito tiene una agrupación de zonas a las que sirve, con características y régimen de control y funcionamiento que es posible definir en forma detallada.

Definición de perfil de uso y cargas internas por espacio:

Para cada espacio se han definido las cargas internas de ocupación (m2/persona), equipos e iluminación (W/m2) de acuerdo al levantamiento de datos realizado. También se han definido perfiles de ocupación para los principales usos presentes en el edificio: Docente, Oficinas, Almacenes. Y rutinas de uso de iluminación y persianas.

Resumen de características de los sistemas:

(B)	illicacion	Proyecto Nombre del proyecto	
Energética de	Comunidad Autónoma	Localidad	
Edificios	Cataluña	Tarragona	

9. SUBSISTEMAS PRIMARIOS

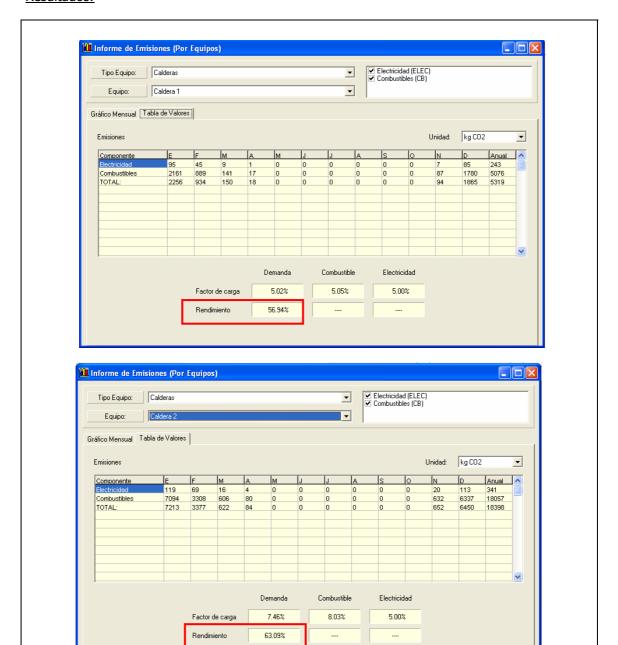
9.1. Bombas de circulación

Nombre	Tipo de control	Caudal (I/h)	Altura (m)	Potencia nominal (kW)	Rendimiento global
Bomba Caklera	Caudal constante	10.000	15,0	0,66	0,62
Bomba caklera 2	Caudal constante	10.000	15,0	0,66	0,62
Bomba circ despachos 1	Caudal constante	4.000	15,0	0,27	0,62
Bomba circ Aulas 2	Caudal constante	4.000	15,0	0,27	0,62
Bomba despachos 2	Caudal constante	4.000	15,0	0,27	0,62
Bomba circ Aulas 1	Caudal constante	4.000	15,0	0,27	0,62

9.2. Circuitos hidráulicos

Nombre	Tipo	Subtipo	Modo de operación	T. consigna calor (°C)	T. consigna frio (°C)
Primario Calefac 1	Agua caliente	Primario	Disp. permanente	80,0	-
Primario calefac 2	Agua caliente	Primario	Disp. permanente	80,0	
Circuito hidraúlico e4	Agua caliente	Secundario	Disp. demanda	80,0	-
Circuito despachos 1	Agua caliente	Secundario	Disp. demanda	80,0	-
Circuito despachos 2	Agua caliente	Secundario	Disp. demanda	80,0	-
Circuito hidraúlico e2	Agua caliente	Secundario	Disp. demanda	80,0	-

9.3. Plantas Enfriadoras


Nombre	ТІро	Potencia nominal (kW)	EER Eléctrico	EER Tërmico

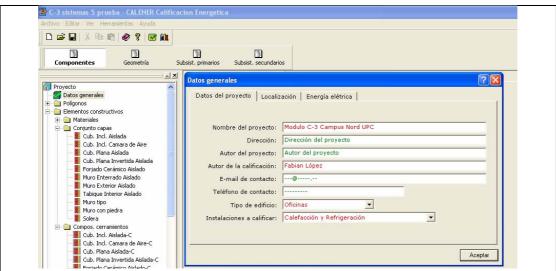
9.4. Calderas

Nombre	Subtipo	Combustible	Potencia nominal (kW)	Rendimiento nominal
Caldera 1	Convencional	Gas Natural	560,80	0,75
Caldera 2	Convencional	Gas Natural	560,00	0,70

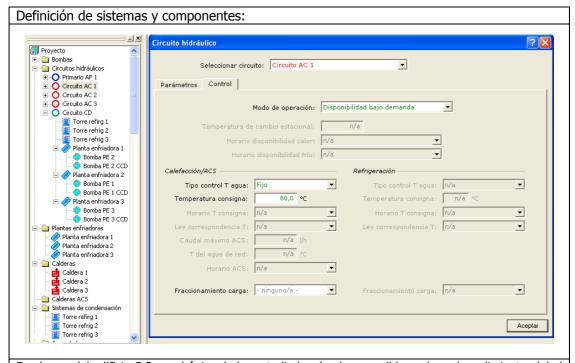
Se resumen las principales características de los elementos que conforman el sistema de calefacción de la ETSAV a partir de las 2 calderas, y de acuerdo a las características de los diferentes elementos que conforman el sistema (ver descripción detallada del sistema).

Resultados:

Valoración del rendimiento global del sistema:

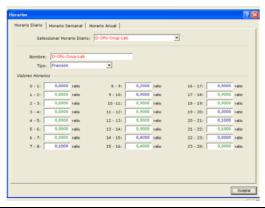

La valoración del sistema de calefacción a través del rendimiento global de lo sistemas asociados a las calderas es el siguiente: Para la caldera 1 se obtiene un rendimiento global de **56,94%** y para la caldera 2 un rendimiento de **63,09**, lo que supone un rendimiento global del sistema de **60,01%**.

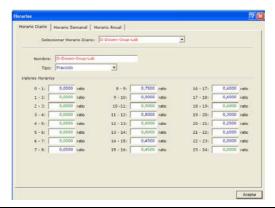
En el caso de la refrigeración, al ser sistemas individuales independientes, la valoración con CALENER del rendimiento global de los sistemas no tiene sentido. Se tomará como valores de referencia el promedio de los COP de las unidades individuales dispuestas en los locales del edificio. **2.00 %**


Evaluación del rendimiento de los sistemas de climatización con la herramienta CALENER

Edificios en campus – Módulo C-3 Campus Nord

Definición del edificio:

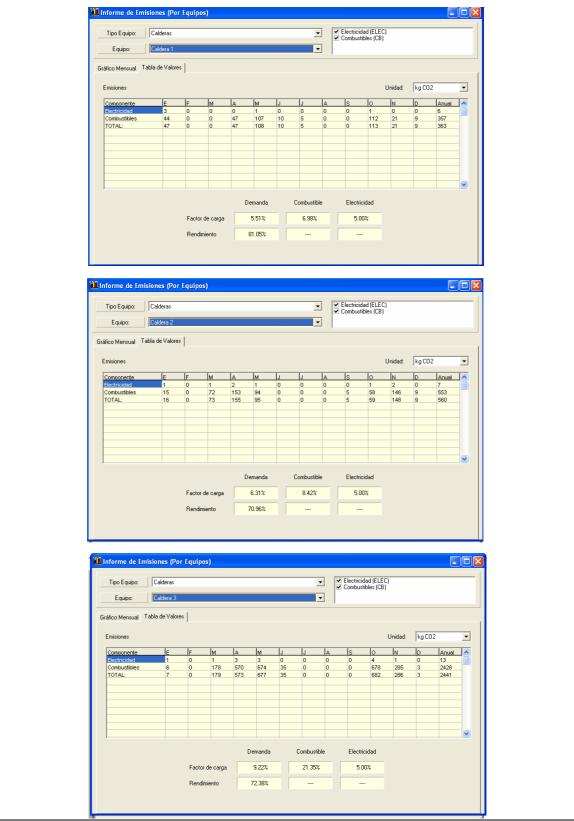

Desde LIDER se importa la definición de las características geométricas, de emplazamiento, así como las soluciones constructivas que se disponen en el edificio. Se define el uso de oficinas como principal y se especifican los restantes usos (Aulas, laboratorios, pasillos, etc.) de forma individual en cada local.



En el caso del edificio C-3, es el único de los estudiados donde es posible evaluar el rendimiento global de los sistemas de calefacción y refrigeración que utilizan la misma infraestructura de distribución y regulación (ver descripción detallada del sistema). Cada circuito hidráulico tiene una agrupación de zonas a las que sirve, con características y régimen de control y funcionamiento que es posible definir en forma detallada.

Definición de perfil de uso y cargas internas por espacio:

Nombre	m²/ocupante (m²/persona)	E quipo (W/m²)	lluminación (W/m²)	IEE (W/m²-100lux)	lluminación Natural
P Sotano_E1	19,32	22,08	19,36	-	No
P Sotano_E2	12,56	19,46	17,45	-	No
P Sotano_E3	9,87	13,79	19,46	-	No
P Sotano_E4	23,00	3,34	4,54	-	No
P Sotano_E5	8,00	34,00	17,22	-	No
P Sotano_E6	10,00	15,00	15,00	-	No
P Sotano_E7	10,00	15,00	15,00	-	No
P Sotano_E8	7,76	10,76	18,98	-	No
P Sotano_E9	10,00	15,00	15,00	-	No
P Sotano_E10	10,00	15,00	15,00	-	No
P Sotano_E11	21,20	11,00	10,43	-	No
P Baja_E1	10,00	15,00	15,00	-	No
P Baja_E2	10,00	15,00	15,00	-	No
P Baja_E3	6,77	10,34	18,67	-	No
P Baja_E4	7,43	10,78	17,87	-	No
P Baja_E5	10,00	15,00	15,00	-	No
P Baja_E6	10,00	15,00	15,00	-	No
P Baja_E7	12,32	18,00	21,21	-	No
P Baja_E8	10,00	15,00	11,34	-	No
P Baja_E9	10,00	15,00	8,65	-	No
P Baja_E10	10,00	15,00	19,67	-	No
P Baja_E11	10,00	15,00	16,65	-	No
Pl_E1	10,00	15,00	9,65	-	No
P1_E2	32,32	21,22	9,76	-	No
P1_E3	10,00	15,00	15,00	-	No
P1_E4	10,00	15,00	15,00	-	No
P1_E5	10,00	15,00	15,00	-	No


Para cada espacio se han definido las cargas internas de ocupación (m2/persona), equipos e iluminación (W/m2) de acuerdo al levantamiento de datos realizado. También se han definido perfiles de ocupación para los principales usos presentes en el edificio: Oficinas, Aulas, Almacenes. Y rutinas de uso de iluminación y persianas.

Resumen de características de los sistemas:

Energética de	Calificación Proyecto Modulo C-3 Campus Nord UPC							
Edificios Comu	nidad Autónoma Cataluña			L	ocalidad Ba	rcelona		
9. SUBSISTEMAS PRIN	AADIOS							
9. SUBSISTEMAS PRIM	IARIUS							
9.1. Bombas de circula	ción							
Nombre	Tipo de control	Caudal (I/h)	Altura (m)	no	tencia minal kW)	Rendimiento global		
Bomba Caklera 1	Caudal constante	10.000	15,0	0	0,66	0,62		
Bomba AF 1	Caudal constante	9.000	15,0		0,60	0,62		
Bomba secund AC 1	Caudal constante	4.000	15,0	(),27	0,62		
Bomba PE 1	Caudal constante	10.000	26,0		1,15	0,62		
Bomba PE 1 CCD	Caudal constante	10.000	29,0		1,28	0,62		
Bomba AF 2a	Caudal constante	9.000	15,0		0,60	0,62		
Bomba secund AC 2 Bomba PE 2	Caudal constante	4.000 10.000	15,0 26,0),27 1,15	0,62 0,62		
Bomba PE 2 CCD	Caudal constante	10.000	29,8		1,28	0,62		
Bomba Caklera 2	Candal constante	10,808	15,0		0,66	0,62		
Bomba secund AC3	Caudal constante	4.000	15,0),27	0,62		
Bomba AF 3	Caudal constante	9.000	15,0		0,60	0,62		
Bomba AF 4	Caudal constante	9,000	15,0		0,60	0,62		
Bomba secund AC 4	Caudal constante	9,000	15,0		0,60	0,62		
Bomba PE 3	Caudal constante	10.000	25,0		1,11	0,62		
Bomba PE 3 CCD	Caudal constante	10.808	25,0]	1,11	0,62		
Bomba Caldera 3	Caudal constante	10.000	15,0	0	0,66	0,62		
Bomba AF 5	Caudal constante	9.000	15,0	0	0,60	0,62		
Bomba secund AC 5	Caudal constante	4.000	15,0	0),27	0,62		
9.2. Circuitos hidráulic	os							
			Modo d		T. consign	na T. consigna		
Nombre	Tipo	Subtipo	operacle	'n	calor (°C)	frio (*C)		
Circuito AC 1	Agua caliente	Primario	Disp. dema	_	80,0	-		
Primario AF 1	Agua fria	Primario	Disp. dema	_	-	7,0		
Circuito CD	Circuito Condensación	Primario	Disp. dema		•	30,0		
Circuito AC 2	Agua caliente	Primario	Disp. dema		80,0	-		
Circuito AC 3 Circuito AF 4	Agua caliente Agua fria	Primario Secundario	Disp. dema	_	80,0	7,0		
Circuito AF 1	Agua fria	Secundario	Disp. dema Disp. dema	_	-	7,0		
Circuito secund AC 1	Agua caliente	Secundario	Disp. dema	_	80,0			
Circuito secund AC 2	Agua caliente	Secundario	Disp. dema	_	80,0	-		
Chemio secularite 2	Agai carene	becundanto	Disp. demi		100,0			
Nombre	Tipo	Subtipo	Modo o operaci		T. consig calor (°C)	na T. consigna frio (°C)		
Circuito secund AC 3	Agua caliente	Secundario	Disp. dem	anda	80,0	-		
Circuito AF 3	Agua fria	Secundario			-	7,0		
Circuito AF 2	Agua fria	Secundario	Disp. dem	anda	-	7,0		
Circuito secund AC4	Agua caliente	Secundario	<u> </u>		80,0	-		
Circuito AF 5	Agua fría	Secundario	Disp. dem		-	7,0		
Circuito secund AC5	Agua caliente	Secundario	Disp. dem	anda	80,0	-		
9.3. Plantas Enfriadora	s							
Nombre	Tipo		Poteno nomin (kW)	al	EER Eléctric	o EER Térmico		
Planta enfriadora 1	Eléctrico centri	fugo	26,00)	4,30	-		
Planta enfriadora 2	Eléctrico centri	fugo	27,50)	4,30	-		
Planta enfriadora 3	Eléctrico centri	fugo	27,00)	4,30	-		
9.4. Calderas	· · · · · · · · · · · · · · · · · · ·							
					Potencia	Rendimiento		
Nombre	Subtipo		ombustible		nominal (kW)	nominal		
Caldera 1	Convencional		as Natural	\perp	122,80	0,70		
						0.70		
Caldera 2 Caldera 3	Convencional Convencional	_	as Natural as Natural	+	122,80	0,70		

Se resumen las principales características de los elementos que conforman cada uno de los sistemas de calefacción y refrigeración del edificio.

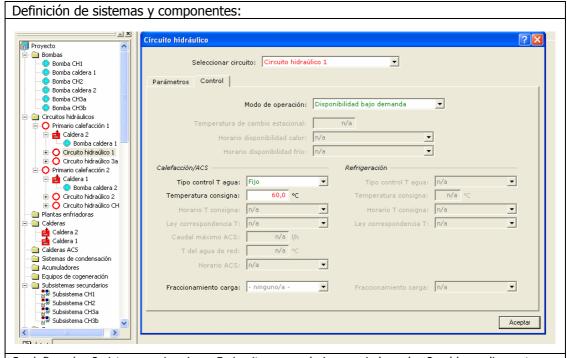
Resultados sistema de calefacción:

Valoración del rendimiento global del sistema:

La valoración del sistema de calefacción a través del rendimiento global de lo sistemas asociados a las calderas es el siguiente: Para la caldera 1 se obtiene un rendimiento global de **81,05%**, para la caldera 2 un rendimiento de **70,96%**, y para la caldera 3 de un **72,38%**, lo que supone un rendimiento global del sistema de **74,79%**.

Valoración del rendimiento global del sistema:

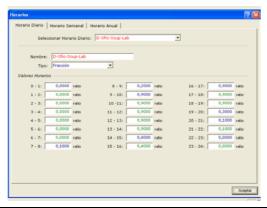
En el caso de la refrigeración se obtiene un rendimiento global del sistema de **130%** asociado al coeficiente de eficiencia energética de las plantas enfriadoras. La planta 1 tiene un coeficiente de **1,278** la planta 2 de **1,279**, y la planta 3 de **1,278**.

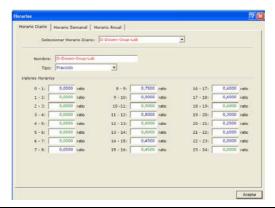

Evaluación del rendimiento de los sistemas de climatización con la herramienta CALENER

Edificios en campus – Módulo D-4 Campus Nord

Definición del edificio:

Desde LIDER se importa la definición de las características geométricas, de emplazamiento, así como las soluciones constructivas que se disponen en el edificio. Se define el uso de oficinas como principal y se especifican los restantes usos (Aulas, laboratorios, pasillos, etc.) de forma individual en cada local.




Se definen los 2 sistemas primarios y 5 circuitos secundarios asociados a las 2 calderas dispuestas en el edificio (1 por fachada y 1 interior para la zona de circulación y espacios comunes). Cada circuito tiene una agrupación de zonas a las que sirve, con características y régimen de control y funcionamiento que es posible definir en forma detallada.

Definición de perfil de uso y cargas internas por espacio:

7.2. Espacios - Características ocupacionales y funcionales

Nombre	m²/ocupante (m²/persona)	E quipo (W/m²)	lluminación (W/m²)	IEE (W/m²-100lux)	lluminación Natural
P Soterrani_E1	23,00	16,00	16,34	-	No
P Soterrani_E2	7,00	12,33	17,22	-	No
P Sotemani_E3	9,00	9,78	9,34	-	No
P Sotemani_E4	10,00	15,00	15,00	-	No
P Sotemani_E5	10,00	15,00	15,00	-	No
P Sotemani_E6	13,56	10,75	9,98	-	No
P Sotemani_E7	8,43	34,23	13,00		No
P Sotemani E8	11.32	10.76	8.89	-	No
P Sotemani_E9	11,87	10,03	19,90	-	No
P Sotemani_E10	23,00	32,21	15,65	-	No
P Sotemani_E11	10,00	15,00	15,00	-	No
P Sotemani_E12	10,00	15,00	15,00	-	No
P Baja_E1	8,34	10,21	18,87	-	No
P Baja_E2	6,98	11,48	34,00	-	No
P Baja_E3	18,95	9,76	8,87	-	No
P Baja_E4	17,00	16,13	17,22	-	No
P Baja_E5	10,00	15,00	10,66	-	No
P Baja_E6	10,00	15,00	9,32	-	No
P Baja_E7	10,00	15,00	6,44	-	No
P Baja_E8	10,00	15,00	14,23		No
P Baja_E9	12,00	9,78	18,43	-	No
P Baja_E10	20,67	9,54	6,67	-	No
P Baja_E11	23,98	15,00	11,90	-	No
P Baja_E12	10,00	15,00	15,00	-	No
P Baja_E13	10,00	15,00	15,00	-	No

Para cada espacio se han definido las cargas internas de ocupación (m2/persona), equipos e iluminación (W/m2) de acuerdo al levantamiento de datos realizado. También se han definido perfiles de ocupación para los principales usos presentes en el edificio: Oficinas, Aulas, Almacenes. Y rutinas de uso de iluminación y persianas.

Resumen de características de los sistemas:

Cal il cación Energidos de	Proyecto Môdulo D-4 campus nord				
100000000000000000000000000000000000000		Comunidad Autónoma	Localidad		
Edficion	Catalufia.	Barcelona			

9. SUBSISTEMAS PRIMARIOS

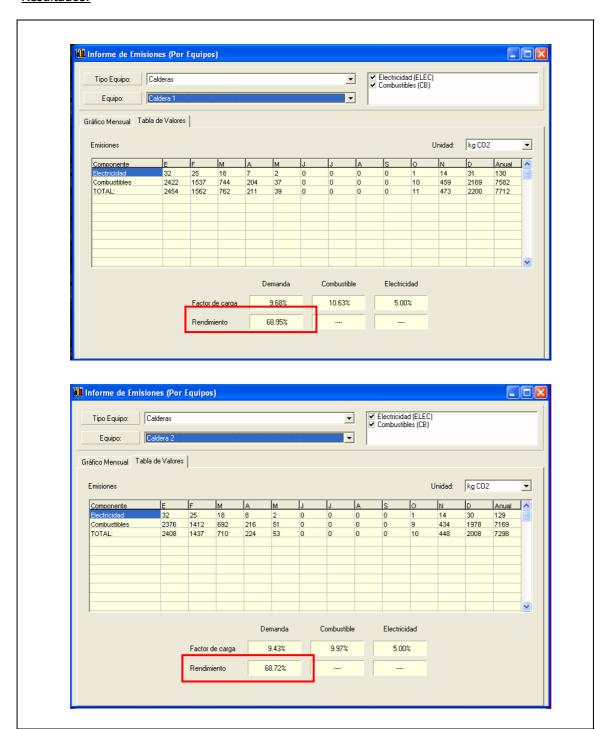
9.1. Bombas de circulación

Nombre	Tipo de control	Caudal (l/h)	Altura (m)	Potencia nominal (kW)	Rendimiento global
Bomba CH1	Caudal constante	2.500	15,0	0,17	0,62
Bombi caldera l	Caudal constante	10.000	15,0	0,66	0,62
Bomba CH2	Caudal constante	2.500	15,0	0,17	0,62
Bombi caldera 2	Caudal constante	10.000	15,0	0,66	0,62
Hemba CH3a	Caudal constante	6.200	15,0	0,41	0,62
Bomba CH3b	Caudal constante	6.200	15,0	0,41	0,62

9.2. Circuitos hidráulicos

Nombre	Tipo	Subtipo			T. consigna frio (°C)
Primario culefacción 1	Agun caliente	Primario	Horario	60,0	-
Primario culefacción 2	Agun caliente	Primario	Horario	60,0	
Ctrouite hidraúlice 1	Agun caliente	Secundario	Disp. demanda	60,0	-
Ctrouite hidraúlice 2	Agun caltente	Secundario	Horario	60,0	-
Ctrouite hidraúlice 3a	Agun caltente	Secundario	Disp. demanda	60,0	-
Ctrouto hiúlico CH3b	Agun caliente	Secundario	Disp. demanda	60,0	-

9.3. Plantas Enfriadoras


Nombre	Tipo	Potencia nominal (kW)	EER Eléctrico	EER Tërmico

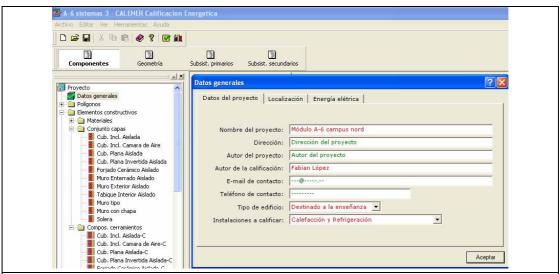
9.4. Calderas

Nombre	Subtipo	Combustible	Potencia nominal (kW)	Rendimiento nominal
Caldera 2	Convencional	Gus Natural	114,00	08,0
Caldera I	Convencional	Gus Natural	114,00	08,0

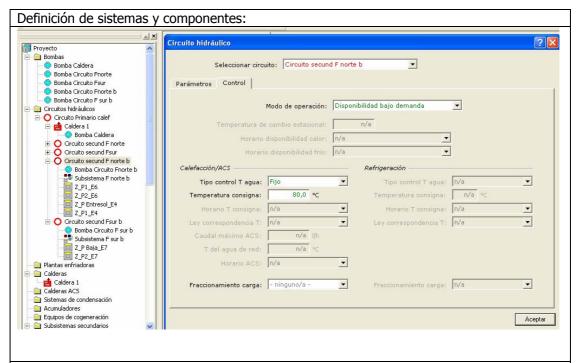
Se resumen las principales características de los elementos que conforman el sistema de calefacción del edificio.

Resultados:

Valoración del rendimiento global del sistema:


La valoración del sistema de calefacción a través del rendimiento global de lo sistemas asociados a las calderas es el siguiente: Para la caldera 1 se obtiene un rendimiento global de **68,95%**, y para la caldera 2 un rendimiento de **68,72%**. Lo que supone un rendimiento global del sistema de **68,83%**.

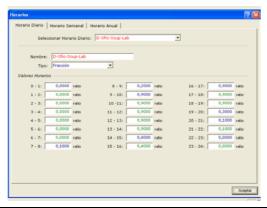
En el caso de la refrigeración, al ser sistemas individuales independientes, la valoración con CALENER del rendimiento global de los sistemas no tiene sentido. Se toma como valor de referencia el promedio de los COP de las unidades individuales dispuestas en los locales del edificio. **2.00 %**

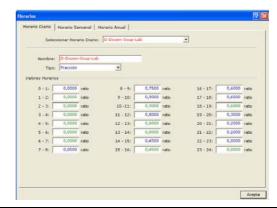

Evaluación del rendimiento de los sistemas de climatización con la herramienta CALENER

Edificios en campus – Módulo A-6 Campus Nord

Definición del edificio:

Desde LIDER se importa la definición de las características geométricas, de emplazamiento, así como las soluciones constructivas que se disponen en el edificio. Se define el uso de Aulas como principal y se especifican los restantes usos (Lavabos, pasillos, etc.) de forma individual en cada local.




Se definen el sistema primario de calefacción con 4 circuitos secundarios asociados a la caldera dispuesta en el edificio. Cada circuito tiene una agrupación de zonas a las que sirve, con características y régimen de control y funcionamiento que es posible definir en forma detallada.

Definición de perfil de uso y cargas internas por espacio:

7.2. Espacios - Características	ocupacionales	v funcionales
---------------------------------	---------------	---------------

Nombre	m³/ocupante (m²/persona)	Equipo (W/m²)	lluminación (W/m²)	IEE (W/m²-100lux)	lluminación Natural
P Sotano _E1	30,00	10,00	9,00	-	No
P Baja_E2	16,00	9,36	8,86	-	No
P Baja_E3	32,00	4,65	6,52	-	No
P Baja_E4	32,00	6,58	5,87	-	No
P Baja_E5	6,77	10,76	17,22	-	No
P Baja_E6	7,88	11,20	10,33	-	No
P Baja_E7	6,85	9,56	14,80	-	No
P EntresoLE1	32,00	3,65	4,36	-	No
P EntresoLE2	20,45	7,50	6,22	-	No
P EntresoLE3	26,20	9,63	8,85	-	No
P EntresoLE4	6,87	9,62	18,74	-	No
P EntresoLE5	7,75	10,96	18,54	-	No
P EntresoLE6	7,10	8,54	9,43	-	No
Pl_E1	28,23	6,23	5,00	-	No
P1_E2	6,23	9,65	8,97	-	No
P1_E3	24,10	3,35	5,62	-	No
P1_E4	6,93	10,76	17,22	-	No
P1_E5	8,36	9,78	5,74	-	No
P1_E6	7,32	8,74	6,52	-	No
P1_E7	24,51	11,20	18,52	-	No
P2_E1	16,77	9,65	8,36	-	No
P2_E2	8,22	11,88	19,62	-	No
P2_E3	26,23	5,33	6,37	-	No
P2_E4	7,31	10,85	9,36	-	No
P2_E5	10,00	15,00	15,00	-	No
P2_E6	10,00	15,00	15,00	-	No
P2_E7	10,00	15,00	15,00		No

Para cada espacio se han definido las cargas internas de ocupación (m2/persona), equipos e iluminación (W/m2) de acuerdo al levantamiento de datos realizado. También se han definido perfiles de ocupación para los principales usos presentes en el edificio: Oficinas, Aulas, Almacenes. Y rutinas de uso de iluminación y persianas.

Resumen de características de los sistemas:

Calificación	Proyecto Médulo A-6 campus nord	
Energética de Edificios	Comunidad Autónoma Cataluña	Localidad Barcelona

9. SUBSISTEMAS PRIMARIOS

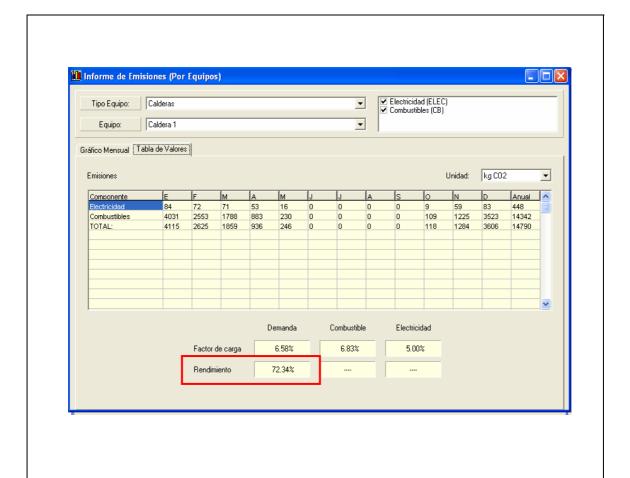
9.1. Bombas de circulación

Nombre	Tipo de control	Caudal (I/h)	Altura (m)	Potencia nominal (kW)	Rendimiento global
Bomba Caklera	Caudal constante	10.000	15,0	0,66	0,62
Bomba Circuito Fnorte	Caudal constante	5,500	15,0	0,37	0,62
Bomba Circuito Fsur	Caudal constante	5.500	15,0	0,37	0,62
Bomba Circo Frierte b	Caudal constante	4.000	15,0	0,27	0,62
Bomba Circuito F sur b	Caudal constante	4.000	15,0	0,27	0,62

9.2. Circuitos hidráulicos

Nombre	Tipo	Subtipo	Modo de operación	T. consigna calor (°C)	T. consigna frio (°C)
Circuito Primario calef	Agua caliente	Primario	Disp. demanda	80,0	-
Circuito secund F norte	Agua caliente	Secundario	Disp. demanda	80,0	-
Circuito secund Fsur	Agua caliente	Secundario	Disp. demanda	80,0	-
Circuito secd F norte b	Agua caliente	Secundario	Disp. demanda	80,0	-
Circuito secund Fsur b	Agua caliente	Secundario	Disp. demanda	80,0	-

9.3. Plantas Enfriadoras


Nombre	ТІро	Potencia nominal (kW)	EER Eléctrico	EER Térmico

9.4. Calderas

Nombre	Subtipo	Combustible	Potencia nominal (KW)	Rendimiento nominal
Caldera 1	Convencional	Gas Natural	250,00	0,86

Se resumen las principales características de los elementos que conforman el sistema de calefacción del edificio.

Resultados:

Valoración del rendimiento global del sistema:

La valoración del sistema de calefacción a través del rendimiento global de lo sistemas asociado a la caldera que genera el calor en el edificio es el siguiente: **72,34%.**

En cuanto a la refrigeración, el módulo A-6 (al menos en la parte objeto del presente estudio correspondiente al aulario) no dispone de sistema alguno de refrigeración.

4. Anexo 4. Evaluación del factor de gestión

- 4.1. Parámetros del análisis
- 4.2. Resultados obtenidos por edificio

4. Anexo 4: Evaluación del factor de gestión

4.1. Parámetros del análisis

En el apartado 4.3 se define el procedimiento empleado y los objetivos del análisis. Según lo allí expuesto era necesario, en primer lugar, segregar el consumo de energía para climatización, y posteriormente identificar cual es la incidencia del aporte energético en los niveles de confort del edificio para un período de tiempo determinado.

Del levantamiento de datos, se conocían los perfiles de consumo energético total para los diferentes "días tipo" del año de cada edificio. Era necesario entonces segregar, de ese consumo total, el consumo destinado a la climatización de los edificios, para lo cual como se referencia en el apartado 3.3.1, fue necesario hacer un seguimiento detallado de un lado del consumo de gas en los edificios para el caso de la calefacción, y de otro lado del consumo de electricidad en los meses en que funcionan los sistemas/aparatos de refrigeración.

En el caso de la refrigeración, simplemente con el seguimiento del consumo realizado que permitió obtener valores cada 30 minutos, era posible identificar (por el diferencial de consumo respecto a un mes en que no se utilice sistema de climatización alguno) en los meses de verano la incidencia de la refrigeración en el consumo total.

En el caso del consumo de gas, en el que no se tenían lecturas tan detalladas y se contaba únicamente con la referencia de consumo registrada en el contador de gas en cada edificio, no era posible realizar este nivel de seguimiento. Fue necesario realizar lecturas diarias del contador en los períodos de funcionamiento de la caldera, e incluso lecturas en diferentes franjas horarias que se complementaron con un seguimiento del consumo eléctrico de los diferentes elementos que conforman el sistema y su funcionamiento (quemadores de las calderas y bombas de impulsión).

En el caso de los edificios autónomos, en los quemadores de las calderas se instaló un analizador de redes portátil que fue necesario programar para obtener medidas de consumo cada 5 minutos, lo que permitió identificar los períodos de puesta en marcha y apagado de la caldera a lo largo de un día. Adicionalmente, como esta información no permitía identificar la cantidad de consumo, se controló el funcionamiento de las bombas de impulsión de los diferentes circuitos hidráulicos para poder identificar si al entrar en funcionamiento la caldera lo hacía a plena carga, alimentando todos los circuitos a la vez, o de forma parcial alimentando solo los que se pusieran en marcha. Con esta información y con las lecturas de consumo en el mismo período fue posible establecer perfiles de consumo energético para lo días tipo.

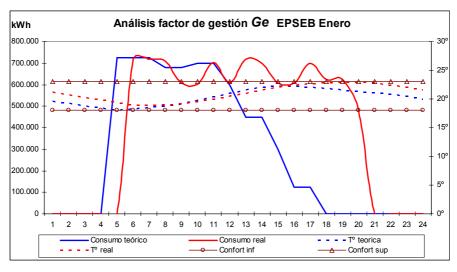
En los edificios en campus, el trabajo fue menos complejo ya que se disponía de un lado del seguimiento ON-LINE del consumo eléctrico, y se disponía además de información del sistema de gestión SAUTER, que permitía identificar las entradas y salidas del sistema (On-Off), las horas de funcionamiento de las calderas, la simultaneidad del funcionamiento (cuando son mas de una por edificio) y adicionalmente se hizo el seguimiento de la arranque y parada de los diferentes circuitos. Al igual que en el caso de los edificios autónomos esta información se contrastó con los registros del contador de gas en cada período.

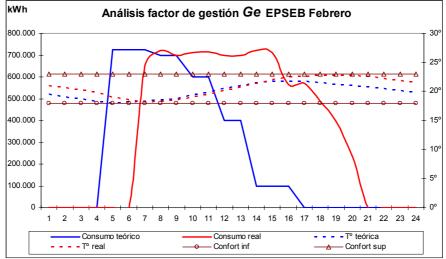
En cuanto a la incidencia del consumo identificado en los parámetros de confort interior de los edificios, se utilizó como referencia el tipo de análisis que realiza la herramienta BALANÇ ENERGÈTIC (ver explicación detallada en el anexo 2.3 de este documento), ya que como se ha mencionado, de las herramientas empleadas en el análisis de la demanda energética, es la única que permite visualizar el balance hora a hora, y la incidencia del aporte energético de climatización respecto a la temperatura interior.

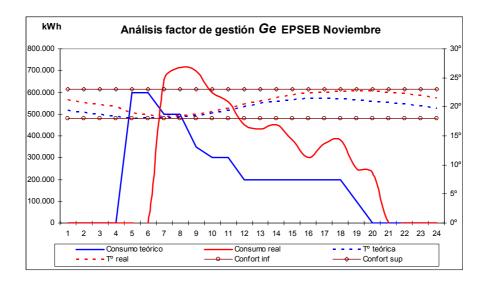
Los datos de balance energético y temperaturas interiores para los diferentes días tipo del año, obtenidos con BALANÇ ENERGÈTIC, se incorporaron a una hoja Excel donde se simularon las

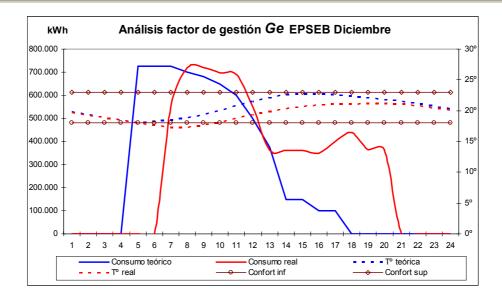
posibilidades de variación del aporte energético (perfil teórico y perfil real), y su incidencia en la evolución de la temperatura interior, para poder evaluar el diferencial de consumo.

4.2. Resultados obtenidos por edificio


Para cada edificio estudiado se realizó el análisis del factor de uso y gestión, referido a las condiciones de confort interior, definiendo bandas de confort para los días tipo de cada mes del año: en invierno entre 18º - 23ºC de temperatura interior, en primavera entre 20º - 24º y en verano entre 24º-28º, lo que permitió obtener los valores de *Ge* a operar en la ecuación del consumo energético planteada.

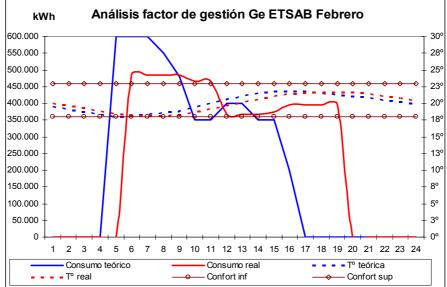

Como se explica también en el apartado 4.3, aunque el análisis se realizó para todos los meses del año, salvo en el caso del módulo C-3 del campus nord, aquí se presentan únicamente los resultados de los meses representativos del período de invierno, ya que el análisis de los meses de verano presenta perfiles de aporte energético teórico y real incomparables, al no disponer los edificios de sistemas centralizados o individuales que cubran la demanda de todos los espacios que lo requieren. En el caso del edificio C-3 en que si es posible realizar el análisis por tener un sistema centralizado de refrigeración, se presentan los resultados obtenidos para todos los días tipo analizados.

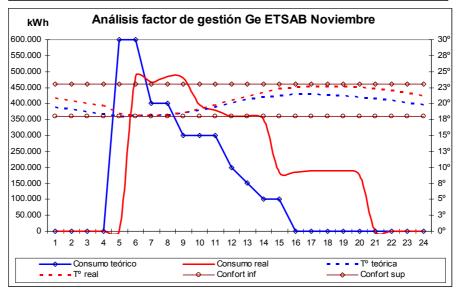

Evaluación del factor de gestión Ge.

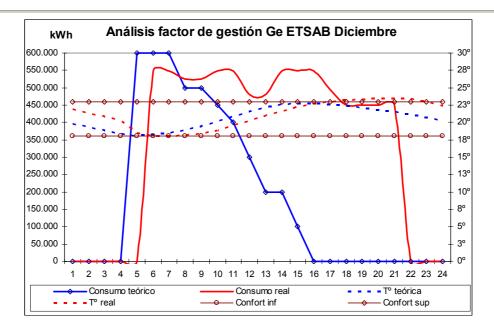

• Edificios autónomos - EPSEB

Perfiles obtenidos para el análisis del período de invierno:


EPSEB		ENEI	RO			FEBR	ERO			NOVIE	MBRE		DICIEMBRE				
Hora	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	
1	0	19,6	0	21,2	0	19,5	0	21,1	0	19,5	0	21,2	0	19,8	0	19,7	
2	0	19,2	0	20,7	0	19,1	0	20,6	0	19,1	0	20,8	0	0 19,4		19,3	
3	0	18,8	0	20,3	0	18,7	0	20,2	0	18,7	0	20,4	0	18,9			
4	0	18,4	0	19,8	0	18,4	0	19,8	0	18,4	0	20,1	0	18,4	0	18,5	
5	725.000	18,0	0	19,4	725.000	18,0	0	19,0	600.000	18,0	0	19,0	725.000	18,0			
6	725.000	18,2	720.000	18,9	725.000	18,2	0	18,6	600.000	18,1	0	18,7	7 725.000 18,3 0				
7	725.000	18,5	720.000	19,0	725.000	18,4	653.000	18,2	500.000	18,2	658.000	18,3					
8	680.000	18,8	710.000	19,0	700.000	18,6	720.000	18,3	500.000	18,2	715.000	18,4	700.000 18,9 720.000				
9	680.000	19,2	608.232	19,2	700.000	18,9	698.000	18,6	350.000	18,4	698.000	18,7	680.000	17,6			
10	700.000	19,7	602.000	19,5	600.000	19,4	710.000	19,0	300.000	18,9	598.000	19,2	650.000	20,1	696.000	18,1	
11	700.000	20,3	702.000	20,0	600.000	20,0	715.000	19,6	300.000	19,5	558.000	19,8	600.000	20,8	690.000	18,7	
12	600.000	21,0	608.232	20,5	400.000	20,6	698.000	20,2	200.000	20,1	450.000	20,5	500.000	21,5	551.093	19,3	
13	450.000	21,6	720.000	21,0	400.000	21,0	698.000	20,8	200.000	20,6	432.000	21,1	375.000	22,1	360.000	19,9	
14	450.000	22,0	698.000	21,6	100.000	21,5	720.000	21,4	200.000	21,0	450.000	21,6	150.000	22,6	360.000	20,3	
15	300.000	22,2	608.232	22,5	100.000	21,7	710.000	22,0	200.000	21,3	380.000	22,1	150.000	22,8	360.000	20,6	
16	125.000	22,2	608.232	22,8	100.000	21,8	563.000	22,4	200.000	21,5	300.000	22,4	100.000	22,8	350.000	20,9	
17	125.000	22,1	700.000	23,0	0	21,7	569.641	22,7	200.000	21,5	365.000	22,6	100.000	22,7	400.000	21,0	
18	0	21,9	623.000	23,5	0	21,5	489.000	22,8	200.000	21,3	380.000	22,7	0	22,4	440.000	21,1	
19	0	21,6	623.000	23,8	0	21,3	396.000	22,8	100.000	21,2	250.000	22,8	0	22,1	365.000	21,2	
20	0	21,4	480.000	23,6	0	21,1	235.000	22,7	0	21,0	232.000	22,8	0	21,8	365.000	21,1	
21	0	21,1	0	23,1	0	20,8	0	22,6	0	20,8	0	22,6	0	21,5	0	21,1	
22	0	20,8	0	22,9	0	20,5	0	22,2	0	20,5	0	22,3	0	21,1	0	20,8	
23	0	20,1	0	22,6	0	20,0	0	21,9	0	20,0	0	21,9	1,9 0 20,1 0				
24	0	19,6	0	22,4	0	19,5	0	21,5	0 19,5 0 21,6 0 19,8 0					,	20,0		
Ge	6.985.0	00 Wh 0,7	9.730.92	28 Wh	5.875.0	00 Wh 0,6	8.574.6 69	41 Wh	4.650.000 Wh 6.466.000 Wh 0,72			00 Wh	(h 6.180.000 Wh 6.928.186 Wh 0,89				
F	actor d	e gesti	ión Ge	prom	edio pa	ra mes	es de i	nvierno	rno Ge =			0,75					

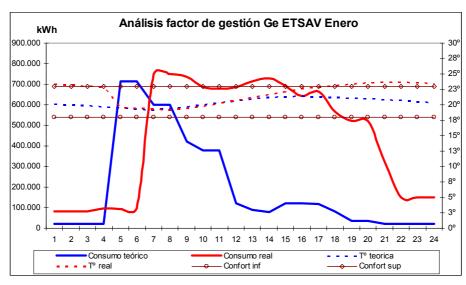

En los perfiles obtenidos para la EPSEB, se observa que en todos los meses sería posible consumir menos recursos energéticos y mantener la temperatura interior del edificio dentro de la banda de confort, o en el caso en que la variación de temperatura interior estimada esté dentro de la banda de confort, se trataría de balancearlo para que la To de entrada y salida sea la misma.

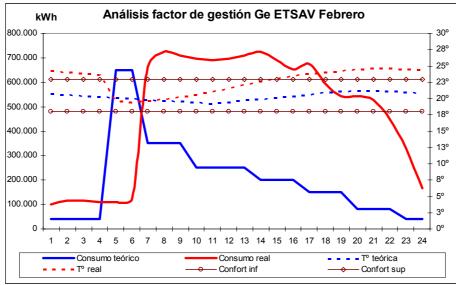

Es significativo el potencial de ahorro que se podría obtener en el mes de febrero (31%) considerando que es uno de los meses de mayor consumo en calefacción, mientras que en diciembre sería mínima el ahorro (8,9%). Todas las curvas para los "Días tipo" analizados y el valor promedio obtenido del factor de gestión para los meses de invierno, permiten suponer en términos de energía consumida (kWh) importantes cantidades de energía "sacrificada".

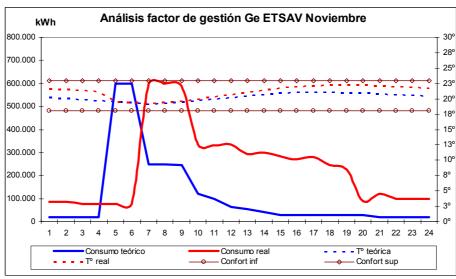

Evaluación del factor de gestión *Ge*. Edificios autónomos – ETSAB

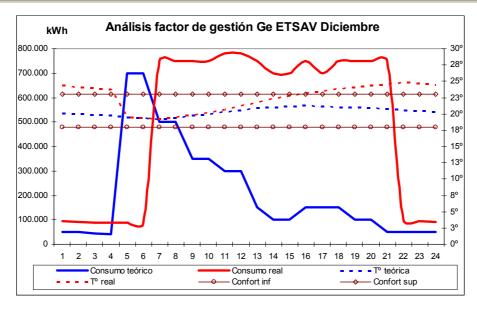
Perfiles obtenidos para el análisis del período de invierno:

ETSAB		ENE	RO		FEBRERO					NOVIE	MBRE		DICIEMBRE				
Hora	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	
1	0	20,0	0	19,8	0	19,5	0	20,0	0	19,5	0	20,9	0	19,8	0	21,9	
2	0	19,2	0	19,4	0	19,1	0	19,6	0	19,1	0	20,5	0	19,4	0	21,4	
3	0	18,8	0	19,0	0	18,7	0	19,3	0	18,7	0	20,0	0	18,9	0	20,8	
4	0	18,4	0	18,6	0	18,4	0	18,9	0	18,4	0	19,6	0	18,4	0	20,3	
5	600.000	18,0	0	18,5	600.000	18,0	0	18,5	600.000	18,0	0	18,5	600.000	18,0	0	18,5	
6	600.000	18,2	485.000	18,1	600.000	18,2	485.000	18,1	600.000	18,1	485.000	18,1	600.000	18,3	548.292	18,0	
7	500.000	18,5	485.000	18,0	600.000	18,4	485.000	18,1	400.000	18,2	466.352	18,2	600.000	18,6	548.292	18,1	
8	500.000	18,8	480.000	18,0	550.000	18,6	485.000	18,1	400.000	18,2	485.000	18,2	500.000	18,9	525.000	18,1	
9	450.000	19,2	460.000	18,2	480.000	18,9	485.000	18,3	300.000	18,4	480.000	18,6	500.000	19,4	525.000	18,4	
10	450.000	19,7	476.000	18,6	350.000	19,4	465.000	18,7	300.000	18,9	395.036	19,2	450.000	20,1	548.292	18,9	
11	350.000	20,3	466.000	19,1	350.000	20,0	465.000	19,1	300.000	19,5	380.000	19,8	400.000	20,8	548.292	19,6	
12	300.000	21,0	425.000	19,6	400.000	20,6	368.000	19,7	200.000	20,1	360.000	20,5	250.000	21,5	480.000	20,3	
13	250.000	21,6	463.300	20,1	400.000	21,0	368.000	20,1	150.000	20,6	360.000	21,1	225.000	22,1	480.000	20,9	
14	150.000	22,0	465.000	20,6	350.000	21,5	368.000	20,6	100.000	21,0	350.000	21,8	225.000	22,6	450.000	21,6	
15	100.000	22,2	450.000	21,1	350.000	21,7	375.000	21,1	100.000	21,3	150.000	22,3	100.000	22,8	450.000	22,2	
16	0	22,2	385.000	21,5	200.000	21,8	385.000	21,4	0	21,5	150.000	22,6	0	22,8	450.000	22,7	
17	0	22,1	336.300	21,7	0	21,7	385.000	21,6	0	21,5	150.000	22,7	0	22,7	350.000	23,0	
18	0	21,9	300.000	21,7	0	21,5	350.000	21,6	0	21,3	100.000	22,7	0	22,4	250.000	23,2	
19	0	21,6	300.000	21,7	0	21,3	350.000	21,7	0	21,2	100.000	22,6	0	22,1	150.000	23,3	
20	0	21,4	0	21,6	0	21,1	0	21,7	0	21,0	100.000	22,5	0	21,8	100.000	23,4	
21	0	21,1	0	21,3	0	20,8	0	21.4	0	20,8	0	22,4	0	21,5	0	23,4	
22	0	20,8	0	21,0	0	20,5	0	21.1	0	20,4	0	22,0	0	20,8	0	23,4	
23	0	20,4	0	20,6	0	20,0	0	20,8	0	19,9	0	21,6	0	20,3	0	22,9	
24	0	20,0	0	20,2	0	19,5	0	20,4	0	19,5	0	20,9	0	19.8	0	22,4	
	4.250.0		5.976.60		5.230.0		5.819.0		3.450.00								
Ge		0,7	1			0,	90		0,76				0,69				
F	actor d	e ges	tión pro	omed	lio para	mes	es de i	nviern	0	(3e			0,77			


En los perfiles obtenidos para la ETSAB, al igual que en el caso de la EPSEB, se observa que en todos los meses sería posible consumir menos recursos energéticos y mantener la temperatura interior del edificio dentro de la banda de confort, o en el caso en que la variación de temperatura interior estimada esté dentro de la banda de confort, se trataría de balancearlo para que la Tº de entrada y salida sea la misma.

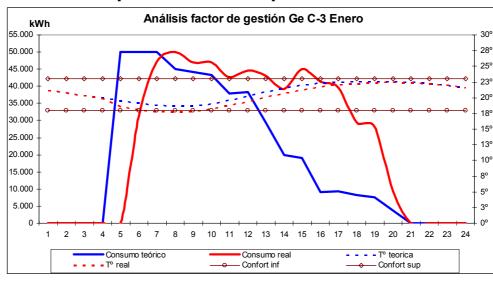

Se podrían obtener ahorros significativos en meses como: Diciembre (31%), Enero (29%), por ser meses de consumo elevado si se tiene en cuenta los valores de consumo en kWh suponen una importante cantidad de energía "sacrificada". En el mes de Febrero el potencial de ahorro es bajo de acuerdo al comportamiento de los parámetros de confort con el perfil de consumo real, pero supone que se podría ahorrar un 10% de la energía consumida para balancear el edificio en el período estudiado.

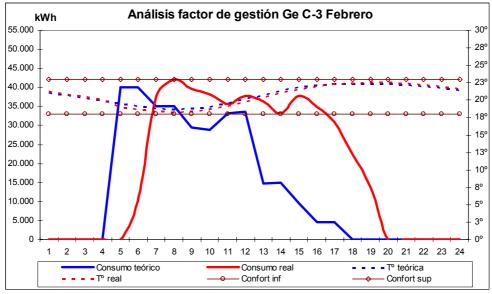

Evaluación del factor de gestión Ge.

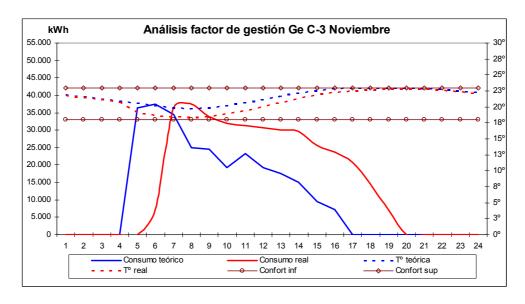

Edificios autónomos – ETSAV

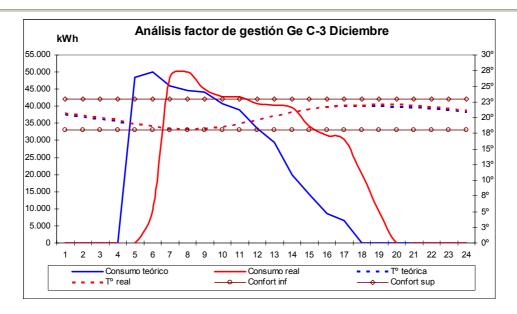
Perfiles obtenidos para el análisis del período de invierno:

ETSAV		ENE	RO			FEBF	ERO			NOVIEMBRE				DICIEMBRE				
Hora	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real		
1	20.000	20,2	86.000	23,3	40.000	20,7	100.000	24,2	20.000	20,2	92.000	21,7	50.000	20,1	95.000	24,3		
2	20.000	20,0	86.000	23,2	40.000	20,5	115.000	24,0	20.000	20,1	92.000	21,5	50.000	20,0	90.000	24,1		
3	20.000	19,8	86.000	23,0	40.000	20,4	115.000	23,9	20.000	19,9	92.000	21,3	21,3 45.000 19,8 88.000					
4	20.000	19,7	95.000	22,8	40.000	20,3	110.000	23,7	20.000	19,7	80.000	21,2	42.000	19,7	88.000	23,8		
5	716.055	19,5	92.000	19,5	650.000	20,1	110.000	19,5	600.000	19,5	80.000	19,5	700.000	19,5	88.000	19,5		
6	716.055	19,3	98.000	19,4	650.000	20,0	126.000	19,4	600.000	19,3	78.000	19,3	700.000	19,3	85.000	19,4		
7	600.000	19,2	788.000	19,3	350.000	19,8	663.000	19,6	250.000	19,1	600.000	19,2	500.000	19,2	750.000	19,2		
8	600.000	19,4	788.000	19,1	350.000	19,7	725.000	19,9	250.000	19,3	600.000	19,4	500.000	19,4	750.000	19,5		
9	420.000	19,7	735.000	19,4	350.000	19,5	710.500	20,2	245.000	19,5	588.000	19,6	350.000	19,7	750.000	19,8		
10	380.000	20,0	687.413	19,8	250.000	19,4	696.000	20,6	120.000	19,7	350.000	20,0	350.000	20,0	750.000	20,2		
11	380.000	20,3	680.252	20,2	250.000	19,2	688.750	21,0	100.000	19,9	360.000	20,3	300.000	20,3	780.000	20,7		
12	120.000	20,6	687.413	20,7	250.000	19,5	696.000	21,5	65.000	20,2	360.000	20,6	300.000	20,6	780.000	21,2		
13	90.000	20,9	715.400	21,2	250.000	19,7	710.500	22,1	55.000	20,4	300.000	21,0	150.000	20,9	760.000	21,8		
14	80.000	21,2	730.000	21,7	200.000	19,9	725.000	22,6	40.000	20,7	300.000	21,4	100.000	21,1	760.000	22,3		
15	120.000	21,3	693.500	22,2	200.000	20,1	688.750	23,1	30.000	20,9	290.000	21,7	100.000	21,2	700.000	22,8		
16	120.000	21,4	644.450	22,6	200.000	20,4	652.500	23,5	30.000	21,0	280.000	21,9	150.000	21,2	750.000	23,2		
17	116.250	21,3	665.931	22,9	150.000	20,6	600.000	23,8	30.000	21,0	279.000	22,1	150.000	21,2	730.000	23,5		
18	82.000	21,2	568.260	23,1	150.000	20,9	600.000	24,0	30.000	21,0	285.000	22,2	150.000	21,1	750.000	23,8		
19	37.500	21,1	559.000	23,4	150.000	21,1	543.750	24,2	30.000	20,9	240.000	22,2	100.000	21,0	760.000	24,1		
20	37.500	21,0	546.000	23,6	80.000	21,1	543.750	24,4	30.000	20,9	90.000	22,2	100.000	20,9	760.000	24,4		
21	20.000	20,8	320.000	23,7	80.000	21,2	526.000	24,5	20.000	20,8	130.000	22,1	50.000	20,7	750.000	24,6		
22	20.000	20,7	160.000	23,7	80.000	21,0	450.000	24,5	20.000	20,7	110.000	22,0	50.000	20,6	130.000	24,8		
23	20.000	20,5	160.000	23,6	40.000	20,9	330.000	24,5	20.000	20,5	110.000	1 ' 1 ' 1 ' 1				24,7		
24	20.000	20,3	160.000	23,5	40.000	20,0	166.000	24,4	20.000	20,0	110.000	0 21,8 50.000 20,4 90.000 24						
Ge	4.775.3		10.831.6		4.880.0		11.391.		2.665.0		5.896.0		5.087.0		12.129.0			
Ge		0,4	4			0,	43		0,45			0,42						
F	actor d	e ges	tión pro	omed	lio para	mes	es de i	nviern	0	(Эе			0,44				

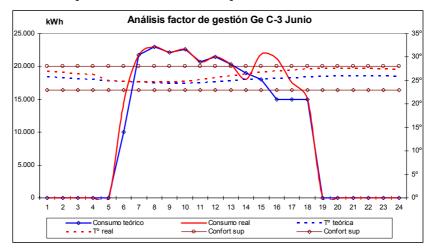

En los perfiles obtenidos para la ETSAV, se observa una marcada incidencia del factor de gestión, no solo en la cantidad de recursos energéticos desperdiciados, sino en el perfil del temperatura interior con valores en muchos casos fuera de la banda de confort o completamente descompensados respecto al balance energético.


Los valores del factor de uso y gestión en todos los casos se sitúa en torno al 40%, lo que supone "despilfarrar" cerca de un 60% de los recursos que se emplean. Es importante observar el comportamiento de la temperatura interior en esos períodos donde se advierte un edificio descompensado que consume energía en las cantidades que no se requieren y totalmente ajeno a las condiciones de confort interior.


Evaluación del factor de gestión Ge.


Edificios en campus – Módulo C-3 Campus Nord.

Perfiles obtenidos para el análisis del período de invierno:

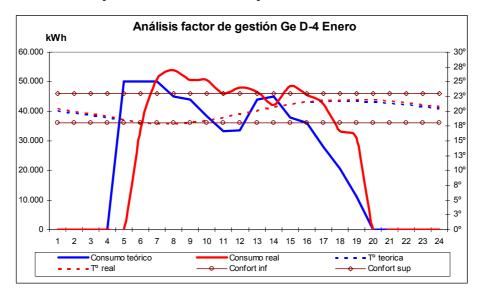


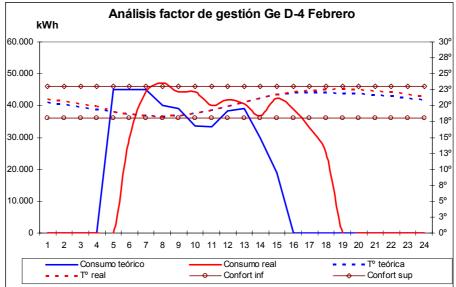

C-3		ENE	RO			FEBRE	:RO			HOVIEN	MBRE		DICIEMBRE				
Hora	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	
1	0	21,2	0	21,2	0	21,0	0	21,3	0	21,9	0	21,8	0	20,5	0	20,8	
2	0	20,8	0	20,7	0	20,7	0	20,9	0	21,6	0	21,4	0	20,2	0	20,4	
3	0	20,3	0	20,3	0	20,3	0	20,5	0	21,2	0	21,1	0	19,8	0	20,0	
4	0	19,9	0	19,9	0	19,9	0	20,1	0	20,9	0	20,7	0	19,4	0	19,6	
5	50.000	19,5	0	18,5	40.000	19,5	0	19,0	36.375	20,5	0	19,0	48.500	19,0	0	19,0	
6	50.000	19,1	31.487	18,1	40.000	19,1	10.133	18,6	37.500	20,1	7.125	18,7	50.000	18,6	9.500	18,6	
7	50.000	18,8	47.117	17,9	35.000	18,8	37.578	18,3	34.500	19,9	36.375	18,4	46.000	18,3	48.500	18,3	
8	45.000	18,7	50.000	17,8	35.000	18,6	42.222	18,2	25.000	19,7	37.500	18,3	44.500	18,2	50.000	18,2	
9	44.100	18,7	47.040	17,8	29.400	18,8	39.723	18,3	24.500	19,9	33.810	18,5	44.100	18,2	45.080	18,2	
10	43.200	19,1	47.040	18,2	28.800	19,1	38.101	18,6	19.200	20,2	32.040	18,9	40.800	18,6	42.720	18,6	
11	38.000	19,6	42.750	18,8	33.250	19,6	35.699	19,2	23.250	20,6	31.388	19,4	38.950	19,1	42.750	19,1	
12	38.400	20,2	44.640	19,4	33.600	20,1	37.696	19,7	19.200	21,1	30.600	20,1	33.600	19,7	40.800	19,7	
13	29.400	20,9	43.120	20,1	14.700	20,8	36.412	20,4	17.640	21,7	30.135	20,7	29.400	20,3	40.180	20,3	
14	20.000	21,5	39.226	20,7	15.000	21,3	33.124	21,0	15.000	22,1	29.625	21,3	20.000	20,9	39.500	20,9	
15	19.000	21,9	45.125	21,3	9.500	21,8	37.704	21,5	9.500	22,5	25.650	21,9	14.250	21,3	34.200	21,4	
16	9.000	22,3	41.400	21,7	4.500	22,1	34.960	22,0	7.200	22,8	23.625	22,3	8.550	21,7	31.500	21,7	
17	9.300	22,5	39.525	22,0	4.650	22,3	31.021	22,3	0	22,9	20.719	22,5	6.510	21,8	30.225	21,9	
18	8.200	22,5	29.520	22,2	0	22,3	22.504	22,4	0	23,0	14.700	22,7	0	21,9	20.090	22,0	
19	7.500	22,6	28.125	22,3	0	22,3	13.617	22,5	0	23,0	7.031	22,8	0	21,8	9.375	22,1	
20	3.750	22,5	9.375	22,4	0	22,3	0	22,5	0	22,9	0	22,8	0	21,8	0	22,0	
21	0	22,4	0	22,4	0	22,2	0	22,4	0	22,9	0	22,7	0	21,7	0	21,9	
22	0	22,2	0	22,2	0	22,0	0	22,2	0	22,8	0	22,6	0	21,5	0	21,7	
23	0	22,0	0	22,0	0	21,7	0	22,0	0	22,5	0	22,4	0	21,2	0	21,5	
24	0	21,2	0	21,6	0	21,0	0	21,6	0	21,9	0	22,1	0	20,5	0	21,1	
Ge	464.85		585.49	0 Wh	323.40		450.49	5 Wh	268.80		360.323	3 Wh	425.160 Wh 484.420 V				
96		0,7	9		0,72				0,75			0,88					
	Factor	r de ge	stión <i>G</i>	e pro	medio _l	oara m	eses d	e inv	ierno			Ge =			0,78		

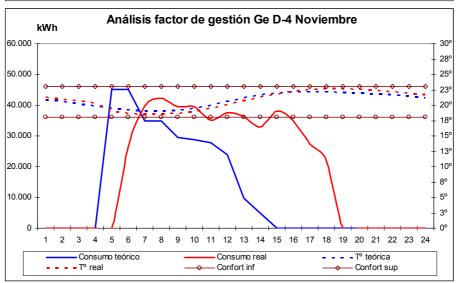
Para el análisis en período de invierno, se observan valores de *Ge* bajos, si se considera que es un edificio con una infraestructura adecuada, y con una gestión y mantenimiento más cuidadoso que otros de los edificios analizados.

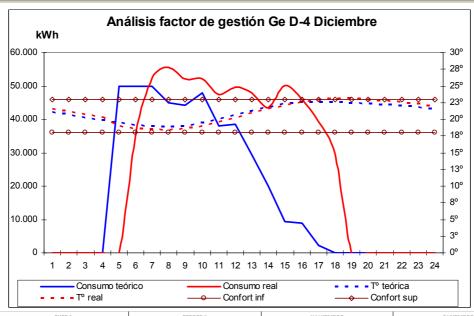
Estos valores posiblemente reflejan las dificultades del diseño del sistema (zonificación), y especialmente por el nivel de control y regulación, para adaptarse a la variabilidad y dispersión del uso respecto a lo teóricamente previsto. (Ver explicación detallada de las características del sistema **anexo 3**.)

Perfiles obtenidos para el análisis del período de verano:

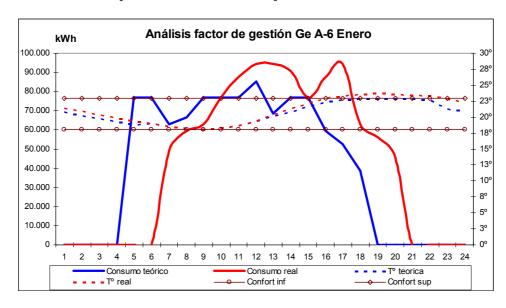


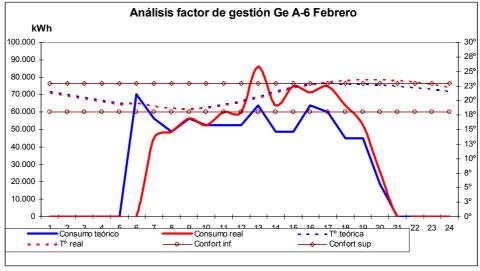

En situación de verano el potencial de ahorro en promedio es cercano al 6% lo que supondría una gestión óptima de los recursos que se emplean, con un potencial de mejora que pasaría por optimizar los sistemas de control y regulación ya mencionados.

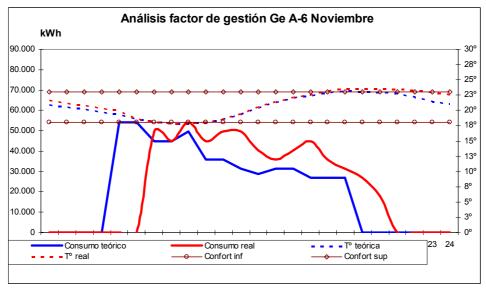

	JU	NIO		JULIO								
Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° rea					
0	25,8	0	27,0	0	26,7	0	27,8					
0	25,6	0	26,8	0	26,5	0	27,6					
0	25,4	0	26,5	0	26,4	0	27,4					
0	25,2	0	26,3	0	26,2	0	27,2					
0	25,0	0	25,0	0	26,0	0	25,0					
10.000	24,9	14.511	24,9	12.000	25,9	12.000	24,9					
21.715	24,7	21.715	24,7	18.000	25,8	18.000	24,8					
23.043	24,6	23.043	24,7	25.000	25,6	25.000	24,8					
22.122	24,4	22.122	24,7	28.000	25,4	28.000	24,9					
22.583	24,4	22.583	24,9	27.500	25,4	27.500	25,1					
20.739	24,5	20.739	25,2	25.000	25,5	28.000	25,4					
21.430	24,8	21.430	25,6	25.000	25,8	27.350	25,9					
20.278	25,0	20.278	26,0	24.000	26,0	26.000	26,3					
19.000	25,2	18.078	26,4	24.000	26,2	28.000	26,7					
18.000	25,4	21.891	26,8	24.000	26,4	27.500	27,0					
15.000	25,6	21.200	27,1	24.000	26,5	25.000	27,3					
15.000	25,6	17.513	27,3	16.000	26,6	18.000	27,6					
15.000	25,8	14.978	27,5	12.000	26,7	12.000	27,9					
0	25,9	0	27,6	0	26,8	0	28,0					
0	26,0	0	27,7	0	26,9	0	28,1					
0	26,1	0	27,7	0	26,9	0	28,2					
0	26,1	0	27,7	0	26,9	0	28,2					
0	26,0	0	27,6	0	26,9	0	28,1					
0	25,8	0	27,4	0	26,7	0	28,0					
243.91	0 kWh		33 KWh	284.500 kWh 302.350 kWh								
	0	94			94							
Fact	or de gest	ión promo	dia mara m	oooo do w	rana	Ge =	0,94					

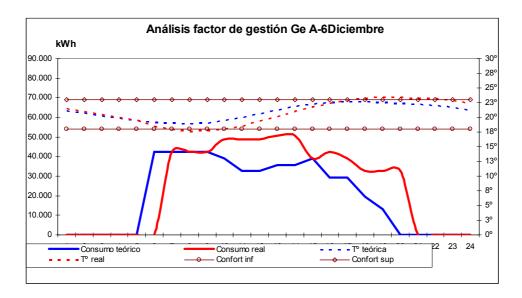

Evaluación del factor de gestión Ge.

Edificios en campus - Módulo D-4 Campus Nord Perfiles obtenidos para el análisis del período de invierno:




D-4	ENERO				FEBRERO					NOVIE	MBRE		DICIEMBRE				
Hora	Consumo teórico	T° teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	T° teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	
1	0	20,1	0	20,4	0	20,5	0	21,1	0	20,9	0	21,4	0	21,1	0	21,6	
2	0	19,7	0	20,0	0	20,1	0	20,7	0	20,6	0	21,0	0	20,7	0	21,6	
3	0	19,3	0	19,6	0	19,8	0	20,3	0	20,2	0	20,7	0	20,3	0	21,2	
4	0	18,9	0	19,2	0	19,4	0	19,9	0	19,9	0	20,3	0	0 19,9 0			
5	50.000	18,5	0	18,5	45.000	19,0	0	19,0	45.000	19,5	0	19,0	50.000	19,5	0	20,4	
6	50.000	18,1	33.909	18,1	45.000	18,6	29.587	18,6	45.000	19,2	26.511	18,7	50.000	19,1	34.942	19,0	
7	50.000	17,9	50.741	17,9	45.000	18,4	44.273	18,4	35.000	19,1	39.671	18,5	50.000	19,0	52.286	18,6	
8	45.000	17,9	53.846	17,9	40.000	18,4	46.982	18,4	35.000	19,0	42.098	18,5	45.000	18,9	55.486	18,5	
9	44.100	18,0	50.658	18,0	39.200	18,4	44.201	18,4	29.400	19,1	39.606	18,6	44.100	19,1	52.201	18,4	
10	38.400	18,4	50.658	18,4	33.600	18,7	44.201	18,7	28.800	19,5	39.606	19,0	48.000	19,5	52.201	18,6	
11	33.250	18,9	46.038	18,9	33.250	19,3	40.170	19,3	37.000	20,0	35.236	19,6	38.000	20,1	47.440	19,0	
12	33.600	19,5	48.074	19,5	38.400	19,9	41.946	19,9	24.000	20,6	37.585	20,2	38.400	20,7	49.538	19,6	
13	44.100	20,1	46.437	20,1	39.200	20,6	40.517	20,6	9.800	21,2	36.305	20,8	29.400	21,3	47.851	20,3	
14	45.000	20,7	42.243	20,7	30.000	21,2	36.858	21,2	5.000	21,7	33.027	21,4	20.000	21,9	43.530	21,0	
15	38.000	21,2	48.596	21,2	19.000	21,7	42.401	21,7	0	22,0	37.994	21,9	9.500	22,3	50.076	21,6	
16	36.000	21,6	45.575	21,6	0	22,0	38.901	22,2	0	22,2	34.857	22,3	9.000	22,6	45.942	22,2	
17	27.900	21,7	42.565	21,8	0	22,1	33.207	22,4	0	22,2	27.195	22,5	2.325	22,6	39.217	22,6	
18	20.500	21,8	33.342	21,9	0	22,0	25.041	22,5	0	22,2	21.891	22,6	0	22,6	29.574	22,9	
19	11.250	21,8	31.096	22,0	0	22,0	0	22,6	0	22,1	0	22,7	0	22,5	0	23,1	
20	0	21,6	0	22,0	0	21,9	0	22,5	0	22,0	0	22,6	0	22,4	0	23,2	
21	0	21,4	0	21,8	0	21,7	0	22,3	0	21,9	0	22,4	0	22,2	0	23,0	
22	0	21,2	0	21,5	0	21,5	0	22,1	0	21,7	0	22,2	0	22,1	0	22,8	
23	0	20,8	0	21,2	0	21,2	0	21,8	0	21,5	0	22,0	0	21,8	0	22,6	
24	0	20,1	0	20,8	0	20,5	0	21,4	0	20,9	0	21,7	7 0 21,1 0				
Ge	567.10		623.78	1 Wh	407.65		508.28	34 Wh	294.00		451.58	2 Wh	433.72		600.285	5 Wh	
36		0	91			1,0	30			0,	65			0,7	2		
	Factor	de ge	stión pi	omed	io para	meses	de inv	ierno		(Ge			0,77			


Los perfiles obtenidos para el módulo D-4, reflejan un "despilfarro" energético que en promedio es del 23%, con valores a destacar como el 35% del mes de noviembre aunque es uno de los meses de menor consumo en el período, y de un 28% en el mes de diciembre que sí supone uno de los de mayor consumo energético. Estos valores pueden reflejar los problemas de la infraestructura y el diseño del sistema para atender períodos de demanda reducida, con poca capacidad de respuesta rápida a necesidades puntuales.


Evaluación del factor de gestión Ge.

Edificios en campus - Módulo A-6 Campus Nord Perfiles obtenidos para el análisis del período de invierno:

A-6		ENE	RO			FEBR	ERO			NOVIE	MBRE		DICIEMBRE					
Hora	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real	Consumo teórico	Tº teórica	Consumo real	T° real		
1	0	20,7	0	21,4	0	21,6	0	21,4	0	21,0	0	21,6	0	21,1	0	21,5		
2	0	20,2	0	20,9	0	21,1	0	20,8	0	20,5	0	21,2	0	20,7	0	21,5		
3	0	19,8	0	20,3	0	20,6	0	20,3	0	20,1	0	20,8	0	0 20,3 0 2				
4	0	19,3	0	19,8	0	20,0	0	19,8	0	19,7	0	20,3	0	19,9	0	20,5		
5	77.000	18,8	49.000	19,3	0	19,5	0	19,3	54.000	19,3	0	19,9	0	19,5	0	20,0		
6	77.000	19,0	59.500	19,0	70.000	19,5	0	19,5	54.000	18,5	0	18,5	42.250	19,5				
7	63.000	18,6	63.000	18,6	56.250	19,0	45.000	19,0	45.000	18,1	49.500	18,1	42.250	18,5				
8	66.500	18,1	77.000	18,1	48.750	18,6	48.750	18,6	45.000	17,8	45.000	17,8	42.250	18,9	42.250	18,1		
9	77.000	18,1	87.500	18,1	56.250	18,5	56.250	18,5	49.500	17,8	54.000	17,8	42.250	19,1	42.250	17,7		
10	77.000	18,2	94.500	18,2	52.500	18,7	52.500	18,7	36.000	18,0	45.000	18,0	39.000	19,5	48.750	17,7		
11	77.000	18,7	94.500	18,7	52.500	19,2	60.000	19,1	37.000	18,5	49.500	18,6	32.500	20,1	48.750	18,0		
12	85.400	19,3	91.000	19,4	52.500	19,9	60.000	19,7	31.500	19,4	49.500	19,4	32.500	20,7	48.750	18,6		
13	68.600	20,1	77.000	20,3	63.750	20,7	86.250	20,4	28.800	20,4	40.500	20,5	35.750	21,3	50.700	19,4		
14	77.000	20,8	87.500	21,2	48.750	21,6	63.750	21,3	31.500	21,3	36.000	21,5	35.750	21,9	50.700	20,2		
15	77.000	21,6	94.500	22,2	48.750	22,4	75.000	22,2	31.500	22,0	40.500	22,2	39.000	22,3	39.000	21,0		
16	59.500	22,4	63.000	23,0	63.750	22,8	71.250	22,7	27.000	22,4	45.000	22,6	29.250	22,6	42.250	21,7		
17	52.500	22,7	56.000	23,3	60.000	23,0	75.000	23,2	27.000	22,9	36.000	23,1	29.250	22,6	39.000	22,3		
18	38.500	22,9	45.500	23,5	45.000	22,9	63.750	23,5	27.000	23,1	31.500	23,5	19.500	22,6	32.500	22,9		
19	0	22,8	0	23,6	45.000	22,8	52.500	23,5	0	23,1	27.000	23,6	13.000	22,5	32.500	23,2		
20	0	22,9	0	23,5	18.750	22,6	26.250	23,5	0	23,0	18.000	23,6	0	22,4	32.500	23,3		
21	0	22,8	0	23,5	0	22,4	0	23,5	0	22,7	0	23,4	0	22,2	0	23,3		
22	0	22,6	0	23,0	0	22,1	0	23,2	0	22,1	0	23,2	0	22,1	0	23,3		
23	0	21,2	0	22,4	0	22,0	0	22,8	0	21,5	0	22,9	0 21,8 0 23,2					
24	0	20,7	0	21,4	0	21,6	0	22,4	0	21,0	0	22,5	0 21,1 0 22,8					
Ge	973.000		1.039.50	00 Wh	782.50		836.25	0 Wh	524.800		567.00	0 Wh	Wh 474.500 Wh			.150 Wh		
	<u> </u>	0,	94			0,9	14			0,	93				0,80			
	Fac	tor de g	estión <i>G</i>	e promo	edio para	meses o	le invierr	10	Ge = 0,90)					

Los perfiles obtenidos para el aulario A-6 reflejan un potencial relativamente bajo de ahorro asociado al diferencial de uso y gestión de los recursos que consume el edificio, considerando el perfil de uso intermitente, que carga y descarga de usuarios al edificio durante el día (aportes internos) y la baja "flexibilidad" de los sistemas e instalaciones para adaptarse a esta variabilidad.

Las medidas que permitirían aprovechar al máximo este potencial de ahorro pasarían por inversiones en el sistema para zonificarlo mejor y dotarlo de los elementos de control y regulación adecuados, que permitan un seguimiento permanente de las condiciones de confort interior individualmente (por aula), con una capacidad de respuesta mucho más rápida del sistema.