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ABSTRACT 
 
Although High-Strength Concrete has been increasingly used in the construction 
industry during the last few years, current Spanish Structural Concrete code of practice 
(EHE) only covers concrete of strengths up to 50 MPa. An increase in the strength of 
concrete is directly associated with an improvement in most of its properties, in special 
the durability, but this also produces an increase in its brittleness and smoother crack 
surfaces which affects significantly the shear strength.  
 
The aim of this research is to enhance the understanding of the behaviour of high-
strength concrete beams with and without web reinforcement failing in shear. In order to 
achieve this objective, an extensive review of the state-of-the-art in shear strength for 
both normal-strength and high-strength concrete beams was made, as well as in-depth 
research into previous experimental campaigns. 
 
An experimental programme involving the testing of eighteen high-strength beam 
specimens under a central point load was performed. The concrete compressive strength 
of the beams at the age of the tests ranged from 50 to 87 MPa. Primary design variables 
were the amount of shear and longitudinal reinforcement. The results obtained 
experimentally were analysed to study the influence of those parameters related to the 
concrete compressive strength. 
 
With the aim of taking into account, in addition to the results of our tests, the large 
amount of information available, a large database was assembled based on the 
University of Illinois Sheardatabank for normal-strength and high-strength concrete 
beams. These test results were compared with failure shear strengths predicted by the 
EHE Code, the 2002 Final Draft of EuroCode 2, the AASHTO LRFD Specifications, 
the ACI Code 318-99, and Response-2000 program, a computer program based on the 
modified compression field theory.  
 
Furthermore, two Artificial Neural Networks (ANN) were developed to predict the 
shear strength of reinforced beams based on the database beam specimens. An ANN is a 
computational tool made up of a number of simple, highly-interconnected processing 
elements that constitute a network. The main feature of an ANN is its ability to learn, by 
means of adjusting internal weights, even when the input and output data present a 
degree of noise. Based on the ANN results, a parametric study was carried out to study 
the influence of each parameter affecting the failure shear strength. 
 
New expressions are proposed, taking into account the observed behaviour for the 
design of high-strength and normal-strength reinforced concrete beams with and 
without web reinforcement. A new equation is given for the amount of minimum 
reinforcement as well. The new expressions correlate with the empirical tests better than 
any current code of practice. 
 
Finally, as a natural corollary to the evolution of our understanding of this field, some 
recommendations for future studies are made. 
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RESUMEN 
 
Aunque el hormigón de alta resistencia se está utilizando de manera creciente en los 
últimos años para la construcción de estructuras, la norma Española vigente, la 
Instrucción EHE, sólo abarca hormigones de resistencias características a compresión 
inferiores a 50 MPa. El aumento de resistencia del hormigón está directamente asociado 
a una mejora en la mayoría de sus prestaciones, especialmente de la durabilidad, aunque 
también produce un aumento en la fragilidad y una disminución de la rugosidad de las 
fisuras, lo que afecta de forma muy especial a la resistencia a cortante. 
 
El objetivo principal de este trabajo es contribuir al avance del conocimiento del 
comportamiento frente a la rotura por cortante de vigas de hormigón de alta resistencia. 
Para ello, y en primer lugar, se ha llevado a cabo una extensa revisión del estado actual 
del conocimiento de la resistencia a cortante, tanto para hormigón convencional como 
para hormigón de alta resistencia, así como una profunda investigación de campañas 
experimentales anteriores.  
 
Se ha realizado una campaña experimental sobre vigas de hormigón de alta resistencia 
sometidas a flexión y cortante. La resistencia a compresión del hormigón de las vigas 
variaba entre 50 y 87 MPa. Las principales variables de diseño eran la cuantía de 
armadura longitudinal y transversal. Los resultados obtenidos experimentalmente han 
sido analizados para estudiar la influencia de las distintas variables en función de la 
resistencia a compresión del hormigón. 
 
Con el objetivo de tener en cuenta, no sólo los resultados de nuestros ensayos, sino 
también la gran cantidad de información disponible en la bibliografía técnica, se ha 
preparado una base de datos con vigas de hormigón convencional y de alta resistencia a 
partir del banco de datos de la Universidad de Illinois. Los resultados empíricos han 
sido comparados con los cortantes últimos calculados según la Instrucción EHE, las 
especificaciones AASHTO LRFD, el Código ACI 318-99 y el programa Response-
2000, basado en la teoría modificada del campo de compresiones. 
 
Se han construido dos Redes Neuronales Artificiales (RNA) para predecir la resistencia 
a cortante en base a la gran cantidad de resultados experimentales. La principal 
característica de las RNA es su habilidad para aprender, mediante el ajuste de pesos 
internos, incluso cuando los datos de entrada y salida presentan un cierto nivel de ruido. 
Con los resultados de la RNA se ha realizado un análisis paramétrico de cada variable 
que afecta la resistencia última a cortante. 
 
Se han propuesto nuevas expresiones que tienen el cuenta el comportamiento observado 
para el diseño frente al esfuerzo cortante de vigas tanto de hormigón convencional como 
de alta resistencia con y sin armadura a cortante, así como una nueva ecuación para la 
determinación de la armadura mínima a cortante. Las nuevas expresiones presentan 
resultados que se ajustan mejor a los resultados experimentales que los obtenidos 
mediante la utilización de las normativas vigentes. 
 
Finalmente se han planteado varias sugerencias de futuras líneas de trabajo, que son 
resultado de la propia evolución del conocimiento sobre el tema de estudio durante el 
desarrollo de esta tesis. 
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Chapter 1 
 
Introduction 
 
The use of High-Strength Concrete (HSC) has increased considerably during the last 

decade, since it can be produced reliably in the field using low water-cement ratios 

thanks to high-quality water-reducing admixtures. Furthermore, HSC will be more and 

more frequently used in columns, in precast elements and in structures where durability 

is an important design parameter. 

 

To give a simplified explanation, HSC is obtained by improving the compactness of the 

concrete mix, which increases the strength of both the paste and the interface between 

the paste and the coarse aggregate. However, an increase in the strength of the concrete 

produces an increase in its brittleness and smoother shear failure surfaces, leading to 

some concerns about the application of high-strength concrete. Since most of the current 

shear procedures are based on tests carried out on beams with a concrete compressive 

strength lower than 40 MPa, and one of the shear transfer mechanism is shear-friction 

across the cracks, the failure shear strength needs to be re-evaluated. 

 

Moreover, despite the more and more frequent utilisation of high-strength concrete in 

Spain, the current Spanish code of practice, the EHE Code, only covers concrete of 

strengths up to 50 MPa, although it gives some recommendations for the use of HSC in 

its Annex 11. For this reason, in 1999, the Spanish Ministry of Science and Technology 
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launched the project entitled “Design basis of high-strength reinforced concrete 

structural elements - CICYT-TRA99/0974”† directed by Professor Antonio R. Marí 

Bernat and with the collaboration of the companies ALVISA and TEC’4. The research 

described in this thesis was included in this project and its main objective was to 

determine the shear strength at failure of structural high-strength concrete members.  

 
 
 
1.1 Objectives of the Thesis 
 
 

The prime objective of this research is to improve the understanding of the behaviour of 

high-strength reinforced concrete elements failing in shear, helping to extend the use of 

this material in Spain. Furthermore, we intend to develop more accurate procedures for 

predicting the shear strength of these elements. 

 

In order to achieve these general aims, the following specific objectives are proposed: 

 

- To contribute to the understanding of the mechanism of shear strength in 

reinforced concrete beams with or without shear reinforcement and how the 

use of high-strength  concrete may affect them. 

 

- To study the shear-loading capacity of full-scale high-strength concrete 

elements specially designed to be able to evaluate the influence of different 

parameters on the failure shear strength. 

 

- To evaluate the performance of the shear procedures laid down in different 

code of practice for normal-strength and high-strength concrete beams. 

 

- To propose a simplified shear design method for predicting the failure shear 

strength for both normal-strength and high-strength concrete beams, 

including a proposal for the minimum amount of transverse reinforcement. 

 

                                                 
†

  Original title: “Establecimiento de bases de cálculo y criterios de proyecto de elementos estructurales de hormigón de alta 
resistencia para infraestructuras viarias y ferroviarias” 
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1.2 Structure of the Thesis 
 
 
The thesis is divided into seven chapters. In Chapter 2 a state of the art is presented, in 

which  different conceptual models and shear design procedures for evaluating the 

failure shear strength of reinforced concrete beams with and without web reinforcement 

are introduced. Moreover, the basic characteristics of high-strength concrete are pointed 

out and previous experimental research is summarised. 

 

In order to better understand the response of high-strength concrete beams that fail in 

shear, eighteen beam specimens are designed in Chapter 3. The details of beam 

specimens, material properties, instrumentation and the testing procedure used are 

carefully described. 

 

The results obtained from the experimental campaign carried out at the Structural 

Technology Laboratory of the Technical University of Catalonia (UPC) are presented 

and discussed in Chapter 4. The influence of each design parameter is studied 

separately, and test results are compared with different shear approaches. 

 

Chapter 5 compares the experimental results obtained in 316 beams tested in different 

laboratories around the world with the failure shear strength predicted by the EHE code, 

the Final Draft of Eurocode 2, the AASHTO LRFD Specifications, the ACI Code 318-

99, and the program Response 2000, based on the Modified Compression Field Theory. 

Furthermore, two Artificial Neural Networks that were used to predict the empirical 

results and a parametric study carried out based on the Artificial Neural Network 

predictions are both described in detail. 

 

A new shear design method based on the observed behaviour is proposed in Chapter 6 

for normal-strength and high-strength reinforced concrete beams with and without web 

reinforcement, attempting, however, to keep it simple enough to make it suitable for 

implementation in a code of practice. 

 

Finally, Chapter 7 presents general and specific conclusions, together with 

recommendations for future research. 
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Annexes A to E give further information of the test results, experimental database, 

weights and biases of the Artificial Neural Networks and other relevant data. 




