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Universitat Politècnica de Catalunya

School of Civil Engineering

Department of Construction Engineering

Doctoral Program in Construction Engineering

A non-linear coupled model for the analysis

of reinforced concrete sections

under bending, shear, torsion and axial forces

Thesis submitted for the degree of

Doctor Engineer
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Summary

Most RC structures are subjected to combined normal and tangential forces,

such as bending, axial load, shear and torsion. Concrete cracking, steel

yielding and other material nonlinearities produce an anisotropic sectional

response that results in a coupling between the effects of normal and shear

forces, i.e. normal force or bending moments may produce shear strains and

vice versa. Although this interaction is sometimes taken into account, in

a simplified manner, in the design of RC structures, a deep analysis of the

coupling effects of RC sections using fiber models has not yet been made for

arbitrary shape sections under general 3D loading.

The main objective of this thesis is to generalize the fiber-like sectional

analysis of reinforced concrete elements, to make it capable of considering

the coupled non-linear response under tangential and normal internal forces,

from a general 3D loading. Similarly, it is desired to obtain, for torque

and shear forces, the same capacity and versatility in reproducing complex

geometry and materials combination that fiber-like sectional representations

offers for bending and stretching.

The first problematic lies in finding a proper representation of the section’s

kinematics under such general loading. Except for in-plane normal strains,

there is no single kinematical theory capable of a-priori representing the

correct distribution of the others strains or stresses satisfying, at the same

time, inter-fiber equilibrium and continuity. On the other hand, for rather

anisotropic materials, such as cracked concrete, all internal forces are, in

general, coupled. It is also required that distortion is allowed for the section’s

kinematics in order to guarantee satisfaction of internal equilibrium.
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The problem is dealt in a general form considering arbitrary shaped sec-

tions and any material behaviour. Starting from the differential equilibrium

of a solid, an inter-fiber equilibrium system (equilibrium at the sectional

level) was deduced. This system, which is complementary to the standard

equilibrium problem of a beam-column, allows to recuperate information of

the three-dimensional problem that is generally lost when solving a beam

problem.

Further, a solution of the equilibrium at the sectional level is proposed in

which the section’s warping and distortion are posed as a function of the gen-

eralized beam-column strains (axial and shear strains, bending and torsion

curvatures). No additional degrees of freedom are required at the structural

level nor a-priori hypotheses on the distribution of the internal strains or

stresses.

After the theoretical formulation, a planar finite element model for cross-

sectional analysis is developed. The model can be used as a constitutive law

for general beam-column elements at their integration points.

A series of constitutive models have been implemented for several mate-

rials. In particular, a triaxial constitutive model for cracked concrete is

implemented considering crack-induced anisotropy and a multiaxial failure

criterion.

The sectional formulation is validated by means of various theoretical and

experimental case studies. Non-linear coupled response under normal and

tangential internal forces is reproduced with accuracy, as can be seen both

in the predicted internal force-strain curves and in the sectional stiffness

matrixes.

Finally, the conclusions drawn from the current research are summarized

and recomendations for future works are given.

J. M. Bairán



Resumen

La mayoria de las estructuras de hormigón armado se someten a solic-

itaciones combinadas de esfuerzos axiles, flexión, cortante y torsión. La

fisuración del hormigón, plastificación de las armaduras y otros efectos no-

lineales hacen que las secciones transversales de estos elementos presenten un

comportamiento anisótropo que deriva en el acoplamiento de los esfuerzos

normales y tangenciales. Es decir, esfuerzos normales o momentos flectores

pueden producir deformaciones de corte y vice versa. Aunque en algunas

ocaciones, esta interacción es considerada de forma simplificada en el di-

mensionamiento de estructuras, hasta el momento no se ha realizado un

análisis profundo de los efectos acoplados en secciones de forma arbitraria

bajo cargas 3D generales utilizando modelos de fibras.

El objetivo principal de esta tesis es generalizar el análisis de secciones de

hormigón armado mediante fibras, de forma que se pueda reproducir la res-

puesta no-lineal acoplada frente a esfuerzos normales y tangenciales bajo so-

licitaciones tridimensionales generales. De igual forma, se pretende obtener,

para los esfuerzos cortante y torsión, la misma capacidad de representación

de geometŕıas y combinación de materiales que ofrecen los modelos de fibras

para esfuerzos de flexo-compresión.

La primera problemática estriba en representar adecuadamente la cinemática

de la sección transversal. Con la excepción de las deformaciones normales

contenidas en el plano de la sección, no existe una teoŕıa cinemática que

a priori pueda dar la distribución del resto de deformaciones o tensiones

en la sección, sin dejar de satisfacer las condiciones de equilibrio interno o

continuidad entre las fibras que componen la misma. Por otra parte, para
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materiales anisótropos, como el hormigón fisurado, en general todos los es-

fuerzos internos pueden estar acoplados. Además, es preciso considerar la

distorsión de la sección transversal para satisfacer el equilibrio entre fibras.

El problema se aborda de forma general, considerando una sección de forma

y materiales cualesquiera. Se parte del problema diferencial de equilibrio

de un sólido con el que se ha podido deducir un sistema de equilibrio entre

fibras (equilibrio a nivel sección). Se puede demostrar que éste es comple-

mentario al problema estándar de vigas. El sistema complementario permite

recuperar información tridimensional que normalmente se pierde al resolver

un problema de vigas.

Posteriormente, se propone una solución interna del problema complemen-

tario, en la que el alabeo y la distorsión de la sección quedan expresados

como una función de las deformaciones generalizadas de una viga: deforma-

ciones axil y cortantes, curvaturas de flexión y torsión. No son necesarios

grados de libertad adicionales a nivel estructura ni hipótesis a-priori sobre

la forma de los campos de deformación o tensión interna.

A partir de la formulación teórica, se desarrolla un modelo de elementos

finitos plano de la sección transversal. El modelo está preparado para servir

como respuesta constitutiva de cualquier tipo de elemento viga en sus puntos

de integración.

Se implementan una serie de modelos constitutivos para distintos materiales.

En particular, se implementa un modelo constitutivo triaxial para hormigón

fisurado, considerando la anisotroṕıa inducida por la fisuración e incluyendo

la superficie de rotura según un criterio multiaxial.

La formulación seccional es validada mediante varios casos de estudio teóricos

y experimentales. La respuesta no-lineal acoplada bajo diversas combina-

ciones de esfuerzos normales y tangenciales es reproducida con precisión, lo

cual queda patente tanto en las curvas esfuerzo-deformación obtenidas como

en las matrices de rigidez seccionales.

Finalmente, se recopilan las conclusiones derivadas de la presente investi-

gación y se ofren recomendaciones para futuros trabajos.

J. M. Bairán
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Chapter 1

Introduction and objectives

1.1 Motivation and problem statement

All real structures are three dimensional and are subjected to multiaxial

stress states. However, many of them can be assimilated to strucutal systems

composed by linear elements either because one dimension is much larger

than the other two or the stress in one direction is higher than in the other

two. In that case, the structure can be simulated as a planar or space frame,

as shown in figure 1.1, so that the response of each point in the linear element

is defined by the cross section mechanical characteristics.

Using this type of representation it is possible to derive simpler governing

equations than in the case of complex solid three-dimensional formulations.

In the same way, model generation and results interpretation is usually eas-

ier, more versatile and more directly related to engineers reasoning.

This fact, together with the higher computational costs and engineering-

time demanded by three-dimensional finite element modeling, compared to

one-dimensional elements, makes frame type elements the most employed in

structural engineering analysis and simulations.

The demand more accurate design procedures that could produce safer and

more economical structures, made necessary to simulate the structural per-

formance under all load levels, including the inelastic range until failure.

1



2 1.1. Motivation and problem statement

Figure 1.1: Frame structure.

This necessity is even more evident if constructions are designed against

accidental and seismic loads, where good non-linear performance is the key

to assure safety in a reliable and economic way. Most of the state-of-the-art

on seismic design and assessment procedures proposed recently for common

engineering practice require some kind of non-linear analysis either dynamic

or static.

These non-linear analyses are mostly carried out using frame elements with

different levels of accuracy. The most basic type of non-linear analysis using

frame elements assumes that the inelastic behaviour is lumped at a series of

fixed points with given generalized force-displacements characteristics, such

as moment-rotation (M − θ) or axial force-elongation (N −u), called plastic

hinges. These approaches are referred, in general, as lumped-inelasticity.

More general procedures consider the fact that inelastic behaviour can occur

in any point of the structures. These approaches are generally referred to

as smeared-inelasticity. The first possibility is to use given generalized non-

linear force-strains curves, for instance moment-curvature (M − φ), axial

force-elongation (N − ε0), etc., at every integration point within the beam

J. M. Bairán
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element. The frame non-linear response is obtained by direct integration

along the element’s length.

The previous two approaches present an important drawback in the case of

RC beam-column elements. This is given by the dependency of the axial

load on the moment-curvature curves or moment-rotation in the axial load

and vice-versa (coupling). More realistic results are obtained by means of

the so-called fiber beam elements, figure 1.2.

Figure 1.2: Fiber beam element cross section.

Fiber beam elements have been developed since more than twenty years and

successfully applied in the non-linear analysis of all levels of normal forces,

i.e. bending moments and axial force. These elements are based on the cross

section discretization in a series of point elements or fibers characterized by a

tributary area and a non-linear uniaxial constitutive model. Uniaxial strain

at each fiber is computed from the generalized strains by means of the plane-

section (PS) hypothesis. Generalized strains are thus directly integrated

with as much accuracy as fine the section mesh is. When fiber discretization

is combined with a flexibility based element, the highest degree of accuracy

and stability is obtained in a frame structural model at the current state of

knowledge.

Though normal solicitations are frequently dominant in the behaviour of

frame structures, they are not the only type of stresses that can act on

them. In the general case of loading, a beam cross section can subjected to a

maximum of six stress resultants: three generalized normal forces (one axial

force and two bending moments) and three tangential forces (one torsional

moment and two shear forces). Fiber elements, as described above, are not

J. M. Bairán
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capable of considering shear stresses, therefore shear forces and torsion can

not be integrated as is done with normal forces.

Usually, when a member is subjected to combined loading, the effect of

normal and shear stresses are treated separately. A fiber sectional approach

is used to integrate normal stresses ignoring the presence of shear stresses.

Sectional response to shear forces is considered, in an uncoupled fashion, by

means of a given generalized force-deformation curve or simply is considered

as perfect elastic. In any case, the level of accuracy achieved in considerable

less than the obtained with the concomitant normal stresses, figure 1.3.

More important than the difference in accuracy is the fact that the interac-

tion between tangential and normal stresses is not being taken into account,

neither in strength nor in the overall non-linear behaviour. Moreover, the

accuracy apparently achieved in normal forces by means of the fiber inte-

gration scheme can be reduced in some cases.

Figure 1.3: Different treatment for non-linear tangential and normal gener-

alized stresses.

In the case of reinforced concrete (RC) structures in general (also for pre-

stressed concrete structures) the described phenomena are of relevant impor-

tance. It is well known that cracked concrete exhibits anisotropic behaviour,

so called crack-induced anisotropy. Post-cracking coupling between shear re-

lated forces (torsion and shear forces) and axial related forces (axial force

and bending moments) takes place. Figure 1.4 shows a representation of

this phenomenon.

If, for instance, a concrete section is subjected to torsion, diagonal cracks

will form at a certain cracking load and the stresses in the two principal

directions can not longer be equal; then shear stresses can not be developed

J. M. Bairán
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Figure 1.4: Generalized stresses coupling in a cracked RC beam.

unless volumetric compression is supplied by the reinforcements. Coupling

between tangential and normal forces occurs and the equilibrium conditions

among fibers have to be satisfied in the three dimensions. It is precisely this

coupling that loads transversal reinforcement allowing, the element to resist

higher shear stresses after cracking.

As another example, consider the case of shear-bending interaction in a

cracked RC beam. As will be seen in the next chapter, it is recognized in

the current design codes the existance of an increment of tensile stresses in

the longitudinal bending reinforcements due to the presence of a concomitant

shear force, ∆Ts = f(V ). Nevertheless, it is reasonable to think, and so is

reflected by the experimental evidence, that a concomitant bending moment

produces an increment of stresses in the transverse reinforcements ∆Tt =

f(M) in the presence of inclined cracks. However, this phenomenon is not

considered in current design approaches.

The problem of non-linear coupled axial-bending of concrete sections is con-

sidered nowadays solved, since plane-section hypothesis allows a rational sec-

tional analysis producing fairly good results. However, the same statement

can not be said about the non-linear shear and torsion problems. From the

above paragraph it is clear that, in order to do a rational evaluation of the

behaviour of cracked concrete sections in shear and torsion, the inter-fiber

equilibrium must be suitably considered.

J. M. Bairán



6 1.1. Motivation and problem statement

The aim of developing a rational theory to analyse concrete sections under

shear and torsion is not new. The most frequently used method of analysis

was stated more than a century ago by Ritter and extended by Morsch.

Even though, there is no shear theory equivalent to the plane-section hy-

pothesis in axial-bending loading. This is evident from differences in the

approaches given in the design codes of several countries and also by the

series of historical and recent failures in shear that have been occurred.

This is the case of a series of American Air Force warehouses that failed

in shear during 1955 and 1956 that strongly influenced the 1963 ACI code

shear provisions. More recently in the summer of 1998, a parking garage

collapsed in Toronto due to shear failure.

Figure 1.5: American Air Force warehouse shear failure.

The case of shear forces coming from cyclic or seismic loading is less under-

stood, Paulay and Priestley (1992), Petrangeli, Pinto and Ciampi (1999),

Ranzo (2000). Even slender members, that mainly work in flexure with ap-

parently moderate shear, have failed in cyclic shear because of the bending

interaction at high levels of ductility demand. It could be stated that in

the late great earthquakes occurred in the last years, most failure observed

in concrete structures were related to shear. Some remarkable examples
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were observed in Loma Prieta (1989), Northridge (1994), Kobe (1995) and

Taiwan (1999) earthquakes.

Figure 1.6: Shear failure of Hanshin express piers during Kobe earthquake

1995.

Figure 1.7: Shear failure of squat bridge pier during Taiwan 1999 earthquake.

Some dramatic cases deserving a special mention are the Cypress viaduct,

that collapsed in Loma Prieta, and the more than 600m of the Hanshin
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expressway, that collapsed in the 1995 Kobe earthquake (Japan) due to lack

of concrete confinement and shear strength of the piers. Particularly in

the case of Hanshin expressway in Kobe, it must be noticed that these piers

were rather slender members (shear span to section’s depth ratio was greater

than 3). In the 1999 Taiwan earthquake, shear failures of bridge piers were

observed also in squat elements.

Currently, most modern design codes recognize the influence of flexure ductility-

demand in shear resistance.

During the last twenty years, several researches were conducted with the

aim of developing rational models for RC in shear. The joint ACI-ASCE

Committee 445 “Shear and Torsion” published a state of the art report in

1998 (ACI-ASCE Committee 445, 1998) where these research works were

comprehensibly reviewed. Even though, it was also recognized that the

performance of RC members subjected to severe shear demand is still not

fully understood and more research is called for. The need for improvements

in the design regulations for torsional strength was also identified as the next

challenge to be faced.

In the last two decades several coupled in-plane bending-shear sectional

models were developed and good agreement with the experimental evidence

was obtained for this particular loading case. A description of the some of

these models will be presented in the next chapter. However, there is no

rational sectional model capable of considering the situation of full coupled

loading (with the six generalized stresses components) for any cross sec-

tion shape or reinforcement arrangement, both longitudinal and transverse

(stirrups).

With respect to this last statement, it has been observed, Bigaj (1999),

that the non-linear rotation capacity of beams is very influenced by the

reinforcement arrangement. Particularly, in order to have a ductile RC

structure, the reinforcement arrangement should be related to the member

size. Adequate detailing of reinforcements represents the difference between

adequate or poor rotation capacity of beams in the presence of a shear force.

It is apparent that, in order to achieve a beam theory with equivalent level
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of thoroughness for tangential and normal 3D loading, good estimation of

the full 3D stress tensor distribution in the cross section domain is essential.

It has been recognized that in a beam model the main assumptions, such as

that of PS in flexure, are more important than the details on more specific

aspects related to the materials behaviour.

Precisely, the major drawback presented in the current shear-bending mod-

els, that disables their applicability in full 3D loading, is the way in which

shear stresses are computed. Mainly two approaches have been used: either

a fixed strain shape of the in-plane shear strains are used or shear stresses

are computed from 2D fiber equilibrium considering the gradients of the

axial stresses.

The first approach is somehow arbitrary and not justified for non-linear

analysis of concrete-sections. Besides being strongly affected by the sec-

tion’s geometry, the shear strain distribution experiences important shape

changes influenced by cracks distribution, width, slope, inelastic response

of reinforcements and compressed concrete. As a result, these approaches

tend to exaggerate shear stresses in the compression zone of the beam and

underestimate the effects of the transversal reinforcements.

The second approach is based on explicitly considering the equilibrium be-

tweeen each fiber, thus predicting more accurate stress-strain fields than the

latter. The inconvenience is that straightforward application of this proce-

dure is only possible for 2D loading. Strictly, this approach should only be

used in situations where bending moments and shear forces are contained

in a plane of symmetry. This limitation exists because the inter-fiber equi-

librium equations are statically defined only for 2D loading.

The interest of determining the distribution of all stress tensor components

in a beam’s section is shared by other structural technologies besides that of

concrete. In particular, for composite laminate structures this problem is of

relevant importance. Composite laminates present an anisotropic coupled

response of extension, bending and shear. Furthermore, accurate evaluation

of interlaminar out-of-plane stresses (shear an axial stresses in the thick-

ness direction originated from inter-layers equilibrium) is needed to prevent
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delamination, which strongly limits the performances of composites. Some

advanced beam theories are available in this field, basically they can be

included in two classes of theories: equivalent single layer theories and mul-

tilayer theories. These approaches will be discussed in the state of the art

chapter as well as their advantages and disadvantages.

The described problematic motivated the development of this thesis with the

goal of contributing in the achievement of a fully coupled sectional model

capable of correctly reproducing the response under all possible 3D loading

situations. Although mainly inspired in the problematic of cracked concrete

frame sections, a contribution of this type could be useful to other structural

technologies with strong anisotropic behaviour.

1.2 Objectives

General objective

The main objective of this thesis is to develop an analytical model capable of

capturing the response of arbitrary shaped reinforced concrete cross-sections

subjected to general coupled loading: biaxial bending and shear with axial

force and torsion. It is desired to obtain similar level of accuracy and gener-

ality than in the analysis under pure normal forces (i.e. bending and axial

loading) when transversal internal forces are included (i.e. shear loading

and torsion). Namely, direct integration of the generalized stresses from a

fiber-like discretization is aimed.

Specific objectives

As it was explained in the previous section, in the case of full 3D load-

ing, several difficulties exist in comparison with the 2D problem of in-plane

bending-shear-axial loading making the former considerably more involved

than the latter. Particularly in the case of reinfoced concrete sections, addi-

tional complexity arises from the need of considering all components of the

3D stress and strain tensors. In order to achieve the general goal with an
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adequate balance of accuracy, the following set of specific objectives are also

considered:

• To develop a rational methodology to compute the actual distribution

of three-dimensional stress and strain tensors in the cross section’s

domain made of an arbitrary anisotropic material.

• To express the rational model as a function of the beam’s generalized

strains in order to make it independent of any beam element formula-

tion.

• To model post-cracking coupling of transversal and normal general-

ized forces; namely, include the effects of cracking inclination in the

response of concrete sections.

• To model the effects of transversal reinforcements in the response of

concrete sections: confinement and resistance to shear and torsion.

• To implement the mathematical model in a suitable numerical for-

mulation to make possible, with similar versatility as a fiber sectional

discretization, its utilization in sections of arbitrary geometry, material

heterogeneity and reinforcement arrangement.

• To evaluate the accuracy that can be obtained with the proposed for-

mulation.

• To study the non-linear behaviour of reinforced concrete sections under

combined normal and tangential loading.

1.3 Research significance

In this thesis the problem of non-linear coupled behaviour of reinforced

concrete-sections has been investigated. The problem is dealt in a general

form considering any anisotropic material. Subsequently, non-linear cracked

concrete was included as a particular case by means of suitable constitu-

tive equations. This approach makes the model versatile and suitable of

analysing structures made of any type of materials.
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The resulting model is independent of any frame element formulation. In

fact, one objective was that the proposed formulation could be posed as

function of solely the generalized strains of the single section. Thus it can

be implemented as sectional constitutive law into any frame element in the

standard form: input consisting of generalized strains and output consisting

of generalized stresses and a set of state variables.

Neither fixed a-priori kinematic constraints nor dual-section analysis is re-

quired. Accurate evaluation of the three-dimensional stress and strain tensor

is achieved by the superposition of a warping-distortion field to the section’s

deformability. From inter-fiber equilibrium and compatibility equations, the

new displacement field was effectively expressed as a function of the compo-

nents of the generalized strains by means of an original procedure in which

non-local effects, such as stress increments, are evaluated from the sectional

characteristics derivatives.

The sectional formulation is considered the main contribution of this inves-

tigation. Though coupled shear-bending loading and torsion-bending model

exist in the current state of the art of concrete sectional analysis, to the

knowledge of the author, no sectional model was capable of handling the

full coupled problem (biaxial bending, shear, torsion and axial load) for any

geometry, satisfying all mechanical conditions of equilibrium and compati-

bility at the same time.

In fact, the formulation produces full three-dimensional information in a sec-

tional bidimensional analysis. With a model of this characteristics, three-

dimensional effects that traditionally were analyzed using expensive solid

element models are now at the reach of frame element analysis at the ex-

pense of some simplifications but with the advantages of a simple system of

monodimensional elements and a set of bidimensional sectional analysis.

It is recognized that the resulting model is more computationally demand-

ing than a traditional uniaxial fiber sectional model. The interest of the

this sectional model is evident when three-dimensional effects are of rele-

vant importance and traditional uniaxial fiber sectional discretization fails

to produce correct results.
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On the other hand, the problem size is smaller than solid finite element mod-

els since the proposed formulation is in the middle way of the two previous

approaches. Moreover, computational cost optimization can be easily done

in a frame element model thanks to the versatility of the sectional analysis.

Thus, traditional fiber elements could be used in structure regions known

to be dominated by normal solicitation, while the proposed 3D sectional

model can be used only at the sections known to be dominated by combined

tangential loading or other three-dimensional effects.

1.4 Contents of this document

This thesis is divided in seven chapters, being the current introduction the

first of them.

In the second chapter a brief review of the state of the art is presented.

Emphasis is given in highlighting the problems arising from the non-linear

3D coupled analysis of RC sections. A review of simulation methodologies

to include shear and torsion in RC sectional analysis is presented. Similar

interests were found between the general coupled problem of RC sections

and the analysis of composite laminate sections; some methodologies for the

accurate determination of the stress fields of these type of sections are also

commented. Finally a critical analysis of the state of the art is presented.

In chapter three, a mathematical framework, in the form of general hypothe-

ses and unified notations, for the representation of beam theories is offered.

Some classical and modern beam approaches are presented as particular

cases that can be casted in the presented framework. After commenting

the applicability of the available approaches in general loading situations of

concrete sections, a generalized beam theory capable of considering the full

three-dimensional state is proposed based on mechanical conditions: equilib-

rium and compatibility. No a-priori fixed kinematical constraint is required.

In chapter four, the proposed sectional model is implemented in a 2D finite

element formulation. The developed numerical formulation and algorithm

are deeply explained. The resulted finite element code constitute a sectional
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subroutine capable of analysing any type of cross-section with any shape and

constitutive material with independence of the frame element formulation

used at the structural level. Full 3D inter-fiber equilibrium is satisfied for any

normal-tangential loading combination or anisotropic material behaviour. A

library of finite elements was developed in order to properly discretize a wide

number of sectional typologies; the formulation of these elements are given

in the second part of this chapter.

Chapter five describes a series of four material models that were imple-

mented together with the sectional model. In general 3D material consti-

tutive equations are required for the solid matrix elements while a uniaxial

constitutive equation is enough for the reinforcement elements. The devel-

oped materials include a 3D orthotropic linear elastic material, a linear-

brittle material that allows for cracking along principal tensile directions

thus crack-induced anisotropy. A 3D constitutive model for concrete was

also developed after state-of-the-art knowledge of this material behaviour.

Finally a uniaxial elasto-plastic model has been developed for reinforcement

elements.

Validation of the model is carried out in chapter six by performing a series

of case studies with the developed sectional model. The chapter is com-

posed of two parts, where theoretical and experimental studies are analysed

respectively.

Finally, conclusions are summarized in chapter seven. Recommendations of

future researches that could be carried out after this work are also given

in order to improve the proposed formulation or to use it as an aid in the

understanding of concrete-sections under complex load combinations.
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Chapter 2

State of the art

2.1 Non-linear analysis of RC elements under bend-

ing and axial loads

The problem of non-linear analysis of RC frame structures under bending

and axial loads has been extensively investigated. In general the plane-

section hypothesis has proved to be a suitable approximation of the sec-

tion’s kinematics in all range of loading. As a result, available formulations

present robustness and generality, being the most versatile the ones based on

direct integration of the cross-section discratization based on fiber or layer

elements. These formulations have been successfully employed to study

complex non-linear and time-dependent phenomena on RC and prestressed

elements, such as those proposed by Kang and Scordelis (1980), Buckle and

Jackson (1981), Chan (1983), Mari (1984) (2000) and Ulm et. al. (1994).

Effects of segmental construction process have been investigated using sim-

ilar approaches by Ghali and Elbadry (1985), Kang and Scordelis (1990),

Abbas and Scordelis (1993), Ketchum (1986), Murcia and Herkenhoff (1994),

Cruz, Mari and Roca (1998) and Mari (2000).

Virtually “exact” solutions for non-linear analysis of frame structures can

be obtained, independently of the discretizaton mesh, by means of equilib-

rium or flexibility based frame elements. These are a generalization of the

15
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matrix flexibility formulations that, in contrast to displacement based ele-

ments, frame deformation shapes are a result of the exact integration of the

equilibrium and compatibility equations of a beam element. An historical

presendent of this approach can be found in Baron (1961). More recent

formulations were proposed by Backlund (1976), Grelat (1978). Carol and

Murcia (1989) extended the flexibility-based elements to non-linear time-

dependent analysis. Carrascon et al (1987) generalized the formulation to

curve elements in space with variable sections.

Spacone, Ciampi and Filippou (1996) used the flexibility formulation for

earthquake analysis and also proposed an specific integration scheme at ele-

ment level. Molins, Roca and Mari (1995) applied the formulation to man-

sory structures and in Molins, Roca and Barbat (1995) a virtually “exact”

mass matrix for the element was developed.

2.2 Behaviour of RC elements under shear and

torsion

2.2.1 Shear resistance mechanism

Beams without transverse reinforcement

Shear forces in a beam element always act in combination with bending

moments to produce a multi-axial stress state. When principal tension stress

reaches the tensile strength a crack pattern at an approximate inclination

of 45 ◦. Frequently shear cracks are extensions of vertical cracks previously

formed in the tension zone of the beam due to bending. Park and Paulay

(1994).

Drawing the free body of a beam cut across the inclined crack (figure 2.1),

the following sources of shear forces shows:

• Shear stresses transfered in the uncracked compression zone of the

beam.
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Figure 2.1: Mechanism of concrete shear resistance

• Shear stresses transfered along the crack plane by means of friction

and aggregate interlock.

• Dowel action of the longitudinal reinforcements.

• Residual tensile stresses transfered across the crack plane, as a unper-

fect discontinuity (ASCE-ACI Commitee 445, 1998).

Note that, from equilibrium analysis, the longitudinal reinforcing steel is

governed by the moment acting on the section at upper end of the crack,

therefore it must account for an increment in tension force of value:

∆Ts = V cot θ

In beams without transverse reinforcement, dowel action can not be devel-

oped to important terms since this force reacts directly on the concrete cover

which is lost at low dowel forces.

Considering the total variation of bending moments (M = zT ):

V =
dM

dx
=

∂M

∂T

dT

dx
+

∂M

∂z

dz

dx
= z

dT

dx
+ T

dz

dx

Where z is the effective lever arm between internal tension and compression

resultant forces. The term considering the variation of tensile force for con-

stant lever arm is referred to as beam action and represents the mechanisms

previously descrived. The variation of the lever arm at constant tensile force

represents an additional mechanism for resisting shear forces reffered to as
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18 2.2. Behaviour of RC elements under shear and torsion

arch-action. Arch-action, represented in figure (2.2) is only important when

longitudinal steel presents bond-slip or begins to yield.

Figure 2.2: Arch action

Beams with transverse reinforcement

Transverse reinforcement is beneficial to RC beams by providing support

to the dowel action of longitudinal bars, limiting the crack width thus aug-

menting the aggregate interlock effect and enhancing bond resistance as well

as confiniment on the compression zone. More important to these effects is

the fact that transverse streel introduces a new resisting mechanism known

as truss-action. The first rational model considering this mechanism was

described by Ritter in the late XIX century and latter improved by Morsch.

This mechanism can be explained by considering the field of compression

stresses in concrete that forms parallel to the cracks. This field is anchored

against the longitudinal and transverse reinforcements producing an effec-

tively shear bearing mechanism that resembles a truss, figure (2.3).

Figure 2.3: Truss mechanism of shear resistance
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It can be noticed (figure 2.4) that by means of the truss analogy, longitudinal

reinforcements must account for an additional tensile force of:

∆Ts =
1

2
Vs (cot θ − cot α)

Figure 2.4: Mechanism of transverse reinforcement shear resistance

The stirrups arrangement influences the distribution of the compression

field. This effect can be important in wide beams with stirrups around

the perimeter, figure 2.5. In this case, only the bars in the corners tend to

anchor the compression field.

Figure 2.5: Influence of stirrups arrangement on the post-cracked in-plane

shear flow of a wide RC section

2.2.2 Torsion resistance mechanism

Before cracking, the response of a concrete section under torsion can be

reasonably predicted by the elastic theory of Saint-Venant. However, crack-

ing occurs at relatively low torque values producing a sudden and brittle

collapse of the element. The behaviour does not change much if the beam

is reinforced with longitudinal bars, it was observed that, with this type of

J. M. Bairán
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reinforcement, ultimate torsion rarely exceeds the cracking moment in more

than 15% (Hsu, 1984).

When transverse and longitudinal reinforcements are used together, an al-

ternative torsion bearing mechanism is developed after cracking. Similarly

to shear resistance, the new mechanism can be interpreted as a spatial truss

as seen in figure 2.6.

Figure 2.6: Truss mechanism of torsion resistance

In experimental observations, Onsongo (1978) and Hsu (1984) noticed that

the beam’s length increases under augmenting torque. This stretching is re-

quired to produce tensile stresses in the longitudinal reinforcements in order

to provide anchorage to the diagonal struts of the spatial truss mechanism.

Distortion of the section’s shape is also required in order to produce tensile

stresses in the transverse reinforcements. These phenomena also take place

in shear loading.

The post-cracking stiffness of a hollow concrete section and a solid one with

similar external dimensions are of similar magnitude. This observations

reinforces the spatial-truss analogy. An analitical expression for torsion

stiffness of cracked concrete sections was proposed in Lampert (1973).
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2.3 RC sectional analysis under combined loading

2.3.1 Preamble

In general, the analysis of a cross section requires two main ingredients:

a constitutive model of the materials and a suitable representation of the

sectional kinematics in order to obtain the distribution of strains in the

section. If the load produces shear stresses, the difficulty of the problem

increases considerably both in the constitutive model to be used (which

must be multi-axial) and the adoption of valid kinematical hypotheses.

Modeling the behaviour of concrete under multi-axial loading is a difficult

task. Under rather small values of stresses, concrete exhibits non-linear

tensile cracking and stress-strain relationships. Time dependent shrinkage

and creep under sustained loads, complex stress-strain curves under cyclic

loading and dilatation under high compressions are also phenomena related

to concrete behaviour. Particularly, the markedly different behaviour on

tension and compression is the source of anisotropic behaviour under multi-

axial stresses.

Many constitutive models have been proposed in the last decades for the

analysis of concrete structures. These models can be generally classified

into non-linear elasticity (Elwi and Murray, 1979), plasticity models (Chen,

1982; Simo et al., 1988]), damage and fracture mechanics (Bažant and Oh,

1983, Mazars, 1982, Saouridis and Mazars, 1992) and micro-plane models

(Bažant and Prat, 1988, Carol et al., 1990), among others. Damage with

directionality have also been considered, hence producing anisotropic be-

haviour, some recent works on this subject can be found in Jefferson (2000),

Luccioni and Oller (2003), amog others. Combination of the previous mod-

els have also been carried out. A comprehensive review can be found in

CEB (1996).

Among the available spectrum of constitutive models for concrete, those that

handle cracking as a distributed effect with directionality are particularly

suitable for sectional analysis under combined loading. This is so, because

in this approach cracked concrete is simulated as a continuos medium with
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anisotropic characteristics, hence in an integration point there is enough

information of the directionality of the response. In general, these models

are referred to as “smeared cracks approaches”.

In the next section, a review of some constitutive models for reinforced

concrete suitable for sectional analysis under combined loading will be pre-

sented. Further, the available methods for integration the sectional are

examinated.

2.3.2 Smeared-crack approaches to material response mo-

deling

Two basic possibilities exist for the smeared crack approaches, referred to as

rotating crack and fixed crack approaches if the cracking directions are allow

to change with the load direction or not. Combining the two methodologies

is also possible. General discussions of these approaches are available in

Bažant (1983) and Petrangeli and Ozbolt (1996).

In the following some extensively used smeared crack constitutive models

will be presented.

Modified Compression Field Theory (MCFT)

The Modified Compression Field Theory (MCFT) was originally developed

in Vecchio and Collins (1982) and Vecchio and Collins (1986) with further

changes in Collins and Mitchell (1987). It is a constitutive model to evalu-

ate the stress-strain response of RC material points under shear and axial

stresses. The MCFT is also a further development of the Comprression

Field Theory (CFT), developed by Mitchell and Collins (1974), in orther to

account for the influence of tensile stresses in the shear loading of cracked

concrete. Both CFT and MCFT were developed in the University of Toronto

and were inspired in the solution, proposed by H. A. Wagner in 1929, to the

problem of shear loading of metal beams with very thin webs.

The MCFT was formulated after experimental tests carried out in bidimen-
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sional RC panels subjected to plane-stress loading. These tests were carried

out on specially built panel-tester.

Originally the MCFT was developed for plane-stress monotonic loading and

neglecting the so-called “Poisson-effect”. Further extensions to 3D loading

(Vecchio and Selby, 1991; Vecchio, 1992; Selby and Vecchio, 1997), cyclic

loading (Vecchio, 1999; Palermo and Vecchio, 2003) and confinement effects

(Vecchio, 1992; Montoya, Vecchio and Sheik, 2001) were carried out. In the

following the basic formulation is explained.

The main assumptions of the MCFT are that cracks are considered dis-

tributed in the concrete and the the principal directions of the stress and

strain tensor coincide; therefore, it can be called a smeared-crack model

with rotating-cracks. Reinforcing steel is also considered smeared in the

concrete. It is recognized that the local stresses in both concrete and steel

vary from point to point in the cracked concrete. Therefore, equilibrium

and compatitibility equations are evaluated with the average value of the

stress and strain in the crack plane and in the concrete in between cracks.

Additionally, to account for the probable fact of steel yielding first at the

crack location than in its average value, a local check of the stress state at

the crack plane is required. Figure 2.7 summarizes the main aspects of the

MCFT.

For clarity of the exposition, it has been considered that reinforcing steels

are located in the global directions (X − Y ).

Reinforcing steel The response of reinforcing steel is considered by means

of a bilinear elasto-plastic σ − ε curve as shown in figure 2.7. Besides the

mechanical properties, the steel in each direction will be characterized by

the steel-concrete volume ratio: ρx and ρy.

Concrete in compression It was early recognized, since the CFT for-

mulation, that the compression σ− ε relationship in cracked concrete differs

from that of uniaxial loading. In the MCFT, the maximum stress that

cracked concrete can resist in the principal direction (f2max) is considered a
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Figure 2.7: Summary of the Modified Compression Field Theory

function of the concomitant transverse tensile strain (ε1) as follows:

f2max =
fc

0.8 + 170ε1

≤ fc [MPa] (2.1)

where fc is the uniaxial strength.

The σ − ε response is computed using the following parabolic equation:

σ2 = f2max

[

2

(

ε2

ε0

)

−
(

ε2

ε0

)2
]

(2.2)

Where ε0 is the strain at peak stress. More sophisticated expressions, see

eq. (5.8), have also been used to account for the change of shape of the σ−ε

curve depending on the concrete strength (Selby and Vecchio, 1997).

Concrete in tension A tensile σ− ε relationship was included feature of

the MCFT that marked the main difference between it and the CFT; this

relationship was requiered to account for the tension-stiffening effect and its

influence in shear resistance. The original equation (Vecchio and Collins,
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1982) was based on 30 experimental results from tests on 70mm thick shear

panel elements. The proposed equation was:

σ1 =
ft

1 +
√

200ε1

[MPa] (2.3)

Latter, tests were conducted on larger panels (285mm thick). It was found

that adjustments in the previous equation was requiered to fit the new se-

ries of data. Therefore, Collins and Mitchell (1987) proposed the following

modified expression:

σ1 =
ft

1 +
√

500ε1

[MPa] (2.4)

Moreover, equation (2.4) was not able to fit properly the test results carried

out in the University of Houston on 178mm thick elements and different

reinforcement ratio. To fit these data, a factor of 1500 is required in the

previous equations.

This problem was explained recently in Bentz (2005) as a size effect phenom-

enon. Bentz proposed the following new equation for the tension response

considering the size-effect:

σ1 =
ft

1 +
√

3.6Mε1

[MPa] (2.5)

Where M is a size effect parameter (expressed in mm) computed as:

M =
Ac

∑

dbπ
[mm] (2.6)

here db is the diameter of the reinforcing bar and Ac is the tributary area of

concrete for each reinforcing bar.

Crack-check The local stress state in the crack plane must be investigated

to check if the averaged stresses can be transmitted across the crack. To

perform this checking, the actual complex crack pattern is idealized as a

series of parallel cracks, spaced at sθ. If τxy is the shear stress in the X −Y

system and τci the shear at the crack plane, the stresses in the reinforcing

steel can be determined form equilibrium perfoming a cut along the crack
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plane as follows:

ρxσsxcr = τ cot(θ) + τci cot(θ)

ρyσsycr = τ tan(θ)− τci tan(θ)
(2.7)

The maximum shear stress that can be transfered across a concrete crack

is computed by means of the model proposed by Walraven (1981), equation

(2.8), after tests on different concrete up to a cube strengths of 59 MPa.

It must be considered that for concrete of very high strength, the cracks

tend to cut the coarse aggregates, therefore, equation (2.8) might not be

appropiate for such concretes.

τci ≤
0.18
√

fc

0.3 + 24w
a+16

[MPa, mm] (2.8)

In the above equation, a is the size of the coarse aggregate. On the other

hand, the averaged stress of the steel and concrete are related by equilibrium

conditions that can be derived by using the Mohr circle:

ρxσsx = τ cot(θ)− σ1

ρyσsy = τ tan(θ)− σ1

σ2 = τ (tan(θ) + cot(θ))− σ1

(2.9)

At high loads, reinforcement will typically yield, both the local stress at the

carck plane and in the average stress, thus right hand side of the first two

equations in (2.9) will equal the right hand side of (2.7) and can be equated;

doing so and substituting τci from (2.8), the following limit to the concrete

principal tensile stress is obtained:

σ1 ≤
0.18
√

fc tan(θ)

0.3 + 24w
a+16

[MPa, mm] (2.10)

This crack check is of particular relevance in the MCFT, since it limits the

tension stiffening effects of equations (2.3), (2.4) and (2.5), which predicts

rather important tensile stresses, by taking into account the possibility of

failure of the aggregate interlock. If this check is not considered or properly

performed the MCFT will produce unsafe results.
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Disturbed Stress Field Model (DSFM)

In year 2000 Vecchio presented the Disturbed Stress Field Model (DSFM)

as an extension of the MCFT, Vecchio (2000). It is a smeared-crack model

with a hybrid formulation in between a fully rotating-crack approach and

a fixed-crack approach. The implementation and validation of the model

was published latter in Vecchio (2001) and Vecchio, Lai and Schim (2001).

For clarity of the exposition, in the following it has been considered that

reinforcing steel bars are located in the global directions (X − Y ).

This new model was motivated by some deficiencies observed in the MCFT

when compared to some experimental results of shear panels and beams,

namely:

• Underestimation of the shear strength and stiffness in heavily rein-

forced panels in both directions and subjected to high concomitant

compression stresses.

• Overestimation of the shear strength and stiffness in uniaxially rein-

forced panels.

• Overestimation of the ductility and both overestimation or understi-

mation of the strength in beams with little or null transverse reinforce-

ments.

Nevertheless, in Vecchio (2000) it is also stated that the MCFT remains a

simple but powerful model applicable with enough accuracy in most practical

situations.

These deficiencies were attributed to hypothesis of coincidence of stress and

strain principal directions used in the MCFT. It was noticed from the exper-

imental observations that after cracking and yielding both stress and strain

tensors experimented reorientation of the principal directions, but in gen-

eral, strains rotate more than stresses. Therefore, a “lag” exists in the stress

rotation. It was observed that this lag is usually between 5 ◦ and 10 ◦.

This difference in the strains orientation can be assimilated as a rigid shear

slip in the crack plane and taken into account explicitly in the compatibility
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equations as an elastic strain offset in the following form:

ε = εc + εs (2.11)

Where ε if the total strain tensor, εc is the strain tensor directly related

to stresses in concrete, also referred to as non-mechanical strain, εs is the

strain offset due to rigid shear slip along the crack plane.

To compute the εs tensor lets consider the shear slip occuring in the crack

plane with orthogonal direction defined by the angle θ, figure 2.8. A local

shear strain associated to this slip can be defined as:

γs =
δs

s
(2.12)

Where δs is the crack slip and s the crack spacing.

Figure 2.8: Rigid shear-slip in a cracked concrete element

By rotating this strain to the reference coordinate system, the strain offset

tensor is defined as:
εs
x = −γs

2
sin (2θ)

εs
y =

γs

2
sin (2θ)

εs
x = γs cos (2θ)

(2.13)

The shear slip (δs) is related to the local shear stress in the crack and

the crack width (w) by means of the crack shear-slip model proposed by

Walraven (1981):

δs =
τci

1.8w−0.8 + (0.234w−0.707 − 0.20) fcc
[MPa, mm] (2.14)
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Where fcc is the concrete cube strength.

On the other hand, based on the experimental observations, the lag angle is

limited to a maximum value of θl:

θσ − θε ≤ θl (2.15)

Where θl is 5 ◦ for elements reinforced in both directions, 7.5 ◦ for elements

reinforced in one direction and 10 ◦ for non-reinforced elements.

Rotating-Angle Softened Truss Model (RA-STM)

The Rotating-Angled Softened-Truss Model (RA-STM) is a smeared-crack

constitutive model for reinforced concrete elements with a rotating crack

approach in which reinforcements are also considered smeared in the con-

crete. It was developed in the University of Houston by the research group

lead by T. Hsu based on shear panel tests similar to those carried out in the

University of Toronto. Detailed explanation of this element can be found in

Belarbi and Hsu (1994), (1995) and Pang and Hsu (1995) (1996). For clar-

ity of the exposition, in the following it has been considered that reinforcing

steels are located in the global directions (X − Y ).

Many of the hypothesis of the MCFT are shared by the RA-STM, namely:

stresses and strains are considered to have the same principal directions,

compressed concrete experiences softening after cracking occurs in an or-

thogonal direction.

Different softening model and stress-strain relationships are used for the

cracked concrete under compression. The expressions for concrete in com-

pression are taken as:

σ2 = ζσ0fc

[

2

(

ε2

ζε0ε0

)

−
(

ε2

ζε0ε0

)2
]

∀ ε2

ζε0ε0

≤ 1

σ2 = ζσ0fc



1−
(

ε2

ζε0ε0
− 1

2
ζε0
− 1

)2


 ∀ ε2

ζε0
> 1

(2.16)
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Where ζσ0 is the concrete softening parameter to be computed as:

ζσ0 =
0.9√

1 + 400ε1

for proportional loading

ζσ0 =
0.9√

1 + 250ε1

for sequential loading

(2.17)

ζε0 defines the strain of maximum stress in the σ−ε curve and it is computed

as:

ζε0 =
1√

1 + 500ε1

for proportional loading

ζε0 = 1 for proportional loading

(2.18)

The concrete post-cracked behaviour in tension is simulated by the following

tension-stiffening equation:

σ1 =
fcr

(12500ε1)
0.4

[MPa] (2.19)

Another important difference with the MCFT is that the RA-STM does not

requires a check of the stress-state in the crack location. Instead, this model

adjusts the average stress-strain curve of the reinforcement to account for

the possibility of local yielding in at the crack. The σ− ε curve for the steel

are as follows:

σs = Esεs∀εs ≤ εn

σs = fy

[

(0.91 − 2B) + (0.02 + 0.25B)
Es

fy
εs

] [

1− 2− α2

45

1000ρ

]

∀εs > εn

(2.20)

Where εn is the average strain producing local yielding at the cracks. It is

computed as:

εn =
fy

Es
(0.93 − 2B)

[

1− 2− α2

45

1000ρ

]

(2.21)

B is a tension-stiffening parameter defined as:

B =

(

fcr

fy

)1.5

ρ
(2.22)

In the above expressions, α2 is the angle between the initial crack direction

and the longitudinal reinforcement, ρ is the reinforcement ratio, fy is the
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reinforcement yielding stress, Es is the elastic modulus of reinforcement, fcr

is the concrete cracking stress.

In general the RA-STM and the MCFT give similar predictions for low

amounts of reinforcements. For high reinforcement ratios, the MCFT pre-

dicts somewhat higher stresses than the RA-STM.

Cyclic versions of the above stress-strain equations for concrete and steel

were presented latter in Mansour et al (2001).

Fixed-Angle Softened Truss Model (FA-STM)

In addition to the RA-STM, Hsu and his colleagues have proposed the Fixed-

Angle Softened Truss Model (FA-STM), Pang and Hsu (1996). This model

assumes that concrete struts remain parallel to the initial cracks direction;

which in turn are defined by the concrete principal stress directions in the

moment of cracking.

The model uses three different coordinate systems, as shown in figure 2.9,

namely: the reference coordinate system (X − Y ), the local coordinate sys-

tem at the cracks (1− 2) defined by the angle φ, and the coordinate system

of the current principal stress directions in concrete (1′ − 2′) defined by the

angle θ. During loading the angle φ is remains fixed after craking has oc-

cured while the angle θ changes constantly with the current stress-state.

For clarity of the exposition, in the following it has been considered that

reinforcing steels are located in the global directions (X − Y ).

The same stress-strain expressions of the RA-STM for concrete in tension

and compression are used in this model. The important difference is that

these stresses are defined now in the local crack coordinate system (1 − 2).

Since this is not necessary a principal direction, both shear stress and strain

will generally exist in the crack plane, these quantities are related by the

following expression:

τ c
21 = τ c

21m

[

1−
(

1− γc
21

γ210

)6
]

(2.23)
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Figure 2.9: Coordinate systems in the Fixed-Angle Softened Truss Model

where

γ210 = 0.85εx0

[

1− ρyfy,y − σy

ρxfy,x − σx

]

(2.24)

and

τ c
21m =

1

2
[(ρyfy,y − σy) + (ρxfy,x − σx)] sin (2φ) + τltm cos (2φ) (2.25)

Where τ c
21 and γc

21 are the shear stress and strain in the local crack directions

(1 − 2). τ c
21m and γ210 are the concrete maximum shear stress and strain

respectively. τltm is the maximum shear stress applied in the plane where

the longitudinal and transverse reinforcement, notice in this exposition this

plane is coincides with the reference coordinate system (X−Y ). fy,x and fy,y

are the reinforcement yielding stress in the X and Y directions respectively.

Latter in Zhu, Hsu and Lee (2001), a different scheme for determining the

crack shear behaviour was proposed where an explicit τ c
21− γc

21 relationship

is not necessary. This approach was based on an explicit shear modulus

original developed for rotating-crack approaches, Bažant (1983), equation

(2.26).

Gc
21 =

τ c
21

γc
21

=
1

2

σc
1 − σc

2

εc
1 − εc

2

(2.26)
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Other smeared-crack approaches to concrete

Recently, many other smeared crack formulations for concrete have been

proposed. An interesting formulation, similar to the ones explained above,

for 2D monothonic loading with smeared-reinforcements was proposed by

Belleti et al. (2001).

Balan, Filippou and Popov (1997) proposed a 3D smeared crack formulation

for concrete that allows for cyclic loading and confinement effects.

2.3.3 Integration of the sectional response

Once a suitable constituive model for concrete is available, in principle it

is possible to deduce the response of the cross-section by direct integration

over all material points. As shown above, this procedure was straightforward

when the RC section was only subjected to bending moments and axial forces

since the Navier-Bernoulli (NB) hypotheses produce a suitable kinematic

constraint between the cross-section deformations and the normal strains

at every point in the section. In addition, it has been observed that this

hypothesis remain valid for all range of loading.

When in addition to normal forces, the section is subjected to an in-plane

shear force, the distribution of shear stresses required to keep together all

fibers in the section was deduced by D. J. Jourawski in 1856. The process

considered by Jourawski is sketched in figure 2.10.

As it is known from equilibrium considerations, the presence of a shear force

implies an increment of the bending moments along the beam’s axis; there-

fore, along the horizontal direction a fiber will be subjected to normal stress

and an increment of axial stress which must be equilibrated by horizontal

out-of-plane shear stresses. These horizontal shear stresses are in equilibrium

with the in-plane vertical components by beams of moment equilibrium. The

equilibrium of a fiber will be given by the following equation:

∂σx

∂x
+

∂τxz

∂z
= 0 (2.27)

Equation (2.27) can be solved directly resulting that the shear stress at any
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Figure 2.10: Jourawski solution for in-plane shear stresses in a beam

point of the beam can be computed as:

τxz(z) = −1

b

∫ z

−c

∂σ

∂x
bdz (2.28)

Where −c is the coordinate of the bottom fiber. If the beam is homogenous

and made of an isotropic-elastic material, the previous integral reduces to

the well-known equation:

τxz(z) = −1

b

∫ z

−c

V bz

I
dz =

V Q(z)

Ib(z)
(2.29)

Q(z) is the first moment of area integrated from the bottom of the section

to point z, b(z) is the section’s width in coodinate z. Keeping the previous

constitutive assumptions, the shear strain in the point will depend exclu-

sively on the shear stress and the elastic tangential modulus (τxz = Gγxz),

therefore:

γxz(z) =
1

Gb

∫ z

−c

V bz

I
dz =

1

G

V Q(z)

Ib(z)
(2.30)

Using the concept of effective shear area (Ae = αA = V
Gγ0

), the following

constraint between the section shear deformation and the shear strain in a

fiber can be stated:

γxz(z) =
αAQ(z)

Ib(z)
γ0 (2.31)

After manipulating the equilibrium equation and introducing the constitu-

tive relationships, a kinematic constraint (i.e. only geometric parameters
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are present) between the generalized sectional shear deformation (γ0) and

the shear strain at a point of the cross section was obtained in equation

(2.31).

Nevertheless, some remarks must be mentioned about this solution. Firstly,

unlike the Navier-Bernoulli kinematic constraint for normal forces, this con-

straint varies with the sectional geometry. In praticular, for a rectangular

section, equation (2.31) reduces to the following parabola:

γxz(z) =
5

4h2

(

h2 − 4z2
)

γ0 (2.32)

On the other hand, even though the final solution only includes geometric

quantities, implicitly, it is material dependent. Recall that it was derived

from an internal equilibrium equation in which isotropic linear material was

assumed. In fact, the assumption that shear stresses are decoupled from

normal stresses (suitable for isotropic materials and orthotropic materials

along the planes of material symmetry) was what allowed the step from

equation (2.29) to (2.30).

Particularly this last remark represents the first issue that makes the simu-

lation of the non-linear response of RC sections with tangential forces con-

siderably more involved than the case of bending and stretching.

It is known that concrete under combined normal-shear loading develops

crack patterns that in general are not parallel to the section’s plane. Since

cracked concrete exhibits considerably different non-linear response along

compression and tension directions, it will present strong anisotropic behav-

iour resulting in general coupling of normal and tangential stress and strains.

This situation is schematized in figure 2.11 where a stress σx is applied to

fiber with an oblique crack pattern; as a result, this fiber will be distorted

(shear strain) as well as deformed in the (X − Y ) plane. It is evident that,

if a correct kinematic constraint for the shear strains can be deduced in this

case, it must be a function of all generalized sectional strains, including the

elongation and bending curvatures.

Finally, consider the possibility of a bidimensional shear stress flow in a

section. This case is more frequent than it might seem in a first instance.
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x
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sx
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gxy

Figure 2.11: Crack induced anisotropy phenomenon

2D shear flows not only occurs in beams under torsion, but also in beams

that are not loaded along a symmety plane (biaxial bending), see figure

2.12. Transverse reinforcement arrangement also influences the shear flow

of cracked sections, which can be strongly bidimensional for moderately wide

beams (figure 2.5).

Figure 2.12: Skew shear force in a RC section. a) normal stresses situation.

b) 2D flow of shear stresses.

Under this situation the increment of longitudinal stress will be equilibrated

by the two components of shear stresses indicated in figure 2.13. Instead of
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equation (2.27), the differential equation to be solved will be the following:

Figure 2.13: Free body under biaxial shear flow

∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
= 0 (2.33)

Unlike equation (2.27), the differential equation (2.13) is statically indeter-

minate, there are two unknowns (shear modulus and direction) and only one

equation. Hence, compatibility conditions must be explicitly considered in

order to solve the correct 2D shear flow. This was not necessary for the 1D

case.

The solution of this problem for an elastic isotropic beam was obtained by

Saint-Venant, first for pure torsion in 1855 and then for an elastic beam with

arbitrary load at its boundaries in 1856, Timoshenko and Goodier (1972).

In the last two decades there have been considerable efforts in extending the

capabilities of frame elements to loading combinations more general than

bending and extension. Therefore, some models for integrating the sectional

response in RC sections with shear forces or torsion have been proposed

in this period. As a necessity, these models require some procedures for

estimating the shear stress or strain distribution. In general, the approaches

available are based either on an a-priori fixed kinematic constraint during the

whole loading process (equivalent to a displacement based sectional model)

or the explicit consideration of the inter-fiber equilibrium (equivalent to a

force based sectional model). In the following, some of the most extensively

used proposals for RC sections will be described.
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Fixed pattern approaches

The most direct procedure to estimate the internal shear stress-strain dis-

tribution in the cross section is by a-priori assuming a fixed pattern either

for the shear stress or strain and taking it as constant during the whole

loading process. Thus, the stress or strain at a point is considered as the

value of the assumed pattern multiplied by a generalized quantity of the

cross-section state.

Formally, one of the equations (2.34) or (2.35) is assumed. In the first

case a compatibility constraint is considered, while in the second a mean-

equilibrium constraint is used. Although only the case of shear load has

been represented in the mentioned equations, in principle, any type of load

can be casted in this approaches, including torsion.

γ(y, z) = Fγ(y, z)γ0 (2.34)

τ(y, z) = Fτ (y, z)V (2.35)

These approaches have been used by many authors both for the case of

shear and torsion loading: Mitchell and Collins (1974), Onsongo (1978), Hsu

(1984), Lopez (1987), Vecchio and Collins (1988), Rahal and Collins (1995),

Petrangeli, Pinto and Ciampi (1999), Rahal and Collins (2003), Recupero

et al. (2003), Recupero et al. (2005), among others.

Particularly, the formulation in equation (2.35) is more suitable for de-

velopment of simple procedures. Therefore, some design code guidelines

(AASHTO, 2001; ACI-318, 1999) are based on this type of approach includ-

ing the spanish design provisions for structural concrete EHE (1999). From

a plasticity point of view, the pattern in (2.34) will produce an upper-bound

value of the failure load while approach (2.35) gives a lower-bound value of

the ultimare load. Nevertheless, the assimilation of concrete as a plastic ma-

terial is only possible in some situations since concrete has limited ductility.

Therefore, the plasticity theorems must be carefully applied and attention
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must be paid to the type of pattern chosen.

The choice of an adequate pattern is not always an easy task since it will

depend on the section’s shape, reinforcement arragements, etc. Fortunately,

for most common situations in practice guidelines are somewhat available.

It is worth to mention the case of pure torsion in a solid section and the

usual assimilation of it to a thin-walled section.

Note that the role of the patterns is to fix the direction of the shear (stress

or strain) flow at each fiber both in terms of direction and relative value

with respect to a generalized sectional quantity. By knowing this informa-

tion, each fiber can be considered to be in plane-stress along the respective

direction.

Fixed strain patterns: The choice of a strain pattern is usually based

on the elastic solution of strain field. When coupled with the NB kinematic

constraints in the axial strain field, the pair (εx, γxz) is known in any point as

a function of the generalized stretching, curvature, shear deformation and,

if it is the case, torsion curvature:

(εx, γxz)← (ε0, γxz, φz)

For simplicity, only the process for shear loading is sketched bellow. The

procedure for torsion has equivalent steps.

A suitable constitutive model is invoked resulting the following set of stress

components at each fiber: (σx, σz, τxz).

The presence of a vertical normal stress violates the equilibrium along the

vertical direction. Equilibrium is reestablished by computing the corre-

sponding vertical elongation that cancels the total normal stress in the ver-

tical direction taking into account the presence of a lateral reinforcement

across the fiber, figure 2.14. Recalling that in cracked concrete normal and

shear stresses are typically coupled, the increment of vertical normal stresses

is computed considering perfect bond between concrete and lateral steel:

σc
z = D21εx + D22εz + D23γxz (on concrete)

σs
z = Esεz (on lateral reinforcement)

(2.36)

J. M. Bairán



40 2.3. RC sectional analysis under combined loading

Figure 2.14: Fiber equilibrium in the transverse direction inducing distor-

tion.

The equilibrium along the vertical direction is set out as:

Σσz = σc
z + ρT σs

z = D21εx + D22εz + D23γxz + ρT Esεz = 0 (2.37)

where ρT is the ratio of transverse reinforcement. The following vertical

strain results:

εz = −D21εx + D23γxz

D22 + ρT Es
(2.38)

It should be noticed that this vertical strain implies that the distortion

of the section’s shape is needed to achieve internal equilibrium. It is also

remarkable that this process is what loads the transverse reinforcement and

sets up the shear bearing mechanism of reinforced concrete; this reflects the

importance of a suitable evaluation of the section’s distortion.

Although compatibility of the section’s warping can be always guaranteed

by choosing a suitable strain pattern in equation (2.34), the compatitiblity

along the vertical direction (involving the section’s distortion) is not explic-

itly considered. This is not a problem in the case of 1D analysis (compatible

strains are always obtained), but it does affect the 2D problem. On the

other hand, fiber equilibrium in the vertical direction, equations (2.27) and

(2.33), are not explicitly considered. Therefor, the integrity of the section

(all fibers are kept together) is not verified.

Fixed stress patterns: In this case, the constrained quantities in the

fiber are: εx and τxy. The material constitutive model is invoked to compute

normal stress: σx. Similarly to the fixed-strain-approach, the vertical axial

strain at each fiber is computed to restablish the equilibrium along the
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vertical direction. The following transverse and shear strains result at each

fiber:

εz =
(D23D31 −D33D21) εx −D23τxz

D̂22D33 −D23D32

(2.39)

γxz =

(

D32D21 − D̂22D31

)

εx + D̂22τxz

D̂22D33 −D23D32

(2.40)

where D̂22 = D22 + ρT Es

In this approach strain compatitibility is not explicitly guaranteed neither

in the warping component nor in the distortion (transverse) component. As

for the fixed strain pattern approach the internal fiber equilibrium is not

directly verified.

Approaches considering the inter-fiber equilibrium

To satisfy the internal equilibrium among fibers for a non-linear material

such as reinforced concrete, the shear stress and strain distributions should

be a state-dependent property of the section and hence change during load-

ing process.

For in-plane loading, the fiber equilibrium equation can be statically de-

terminated from direct evaluation of the integral (2.28) along the section’s

depth. In the general cases where bidimensional shear flows are important,

to author’s knowledge, no formulation has been presented in the context of

RC structural analysis to explicitly guarantee the internal fiber equilibrium.

It has been proved that the satisfaction of internal fiber equilibrium strongly

influences the shear stress and strain distribution, Ranzo (2000). Although

the failure load can be reasonably estimated in some cases with the fixed-

pattern approaches, the predicted failure mode and the overall non-linear

behaviour often do not reflect the real response. This effect can can be

seen in figure 2.15, Vecchio and Collins (1988), where the shear stress-strain

pattern to satisfy equilibrium is compared to a fixed stress pattern approach

and a fixed strain approach applied to a RC section under a high shear force.

It can be seen that the fixed strain pattern tends to concentrate the shear
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Figure 2.15: Comparision of different approaches for the estimation of shear

distribution. Vecchio and Collins (1988)

stresses in the compression side thus underestimating the effects of the stir-

rups and the strain in the tension side. On the contrary, a reasonably chosen

fixed shear-pattern produces a good strain distribution, slightly overestimat-

ing the strains and underestimating the stresses.

Currently, two type of approaches have been presented in the specialized

litarature differing each other in the way the gradient of normal stresses

(∂σx

∂x
) of equation (2.28) is computed at each fiber. These methods are

presented next.

Dual-section analysis: The Dual-section analysis was first presented in

Vecchio and Collins (1988) and also was used by Ranzo (2000) to extend the

capabilities of the fixed strain pattern model proposed by Petrangeli et al.

(1999) to achieve internal fiber equilibrium. In this method, the gradient

of normal stress of expression (2.28) is approximately computed by finite

differences of the normal stress value on each side of a finite-length fiber, see
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figure (2.17).

∂σx

∂x
≈ σx(x2)− σx(x1)

S
(2.41)

Where σx(x1) and σx(x2) are the normal stresses of the fiber in the two

analysed sections, S is the distance between the sections. Vecchio and

Collins (1988) recomended a value of S ≈ H
6

being H the beam’s depth.

Figure 2.16: Dual section analysis scheme. Vecchio and Collins (1988)

Figure 2.17: Free body diagram of a finite fiber in 2D

Note that in this method, the response of the section depends on information

from outside of the section’s geometric plane, therefore it can be said that

the approach is non-local. If this scheme is to be implemented within a

frame analysis, some conditions are required on the beam element. Hence,

a special beam element formulation has to be developed for this sectional

model. As it is seen in figure 2.18, a minimum of two integration points are

required for flexure. Besides, shear has to be computed on different points,

being always one less than for bending, and further be translated to the two

adjacent flexure points.

It is evident that, from the point of view of implementing a sectional analy-

sis procedure within a frame element (as the constitutive generalized stress-
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Figure 2.18: Dual section analysis implemented in a frame element

strain model of a frame), it would be preferred that all the information

required by the sectional model is contained in a single integration point

of the frame. If this is achieved, the sectional analysis model will be in-

dependent of the frame element used. Moreover, an independent sectional

model is also interesting in order to take advantage of the flexibility based

frame elements which, as mentioned above, give exact solution for the frame

problem and are, therefore, free from shear-locking phenomenon.

On the other hand, it has been noticed, Bentz (2000), that the dual-section

analysis has inherent difficulties in accurately evaluating the shear stress

profile on the two sections in a stable manner. Particullarly, the method

requires that the two sections are evaluated to the same value of axial forces

and shear with high accuracy. Even a small difference of axial force, that

would have been acceptable for the evaluation of the internal normal forces

resultants, implies a spurious distributed load on the beam that might have

important effects in the distribution of shear stresses, see figure 2.19. Hence,

discontinuities on the shear stresses or non-closed shear diagrams are pro-

duced.

This approach explicitly considers the inter-fiber equilibrium in non-linear
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Figure 2.19: Effect of unbalanced axial forces in dual section analysis

analysis. However, the same comments about continuity, sectional warping

and distortion mentioned above are also applicable.

Longitudinal stiffness method: The longitudinal stiffness method was

proposed by Bentz (2000) in order to solve accuracy and instability prob-

lems noticed in the Dual-section analysis method. It was noticed that the

influence of the distance separating the two sections influenced the results

of the dual-section scheme.

In the longitudinal stiffness method, the gradient of normal stress is effec-

tively computed as the derivative of the stress with respect to the element’s

axis by means of the chain-rule. Although the method was explained slightly

different in Bentz (2000), it will be presented here in a more compact-formal

format which in essence is equivalent.

The method requires an initial shear strain pattern as a function of the mean

sectional shear deformation (γxz(z) = Fγ(x, z)γm). For the first load step

this pattern can be taken as the elastic Jourawski solution:

γxz(z) =
AQ(z)

Ib(z)
γm (2.42)

note that in eq. (2.42) γm is the the mean shear strain of the section, i.e.

considereing the complete area of the section instead of the shear effective

area. For further load steps, the previously obtained profile is used.
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Combining the NB hypothesis to compute the axial strain and the current

strain pattern, the strains at any fiber can be computed from the section’s

elongation, curvature and mean shear strain:

[

εx

γxz

]

=

[

1 z 0

0 0 Fγ(y, z)

]









ε0

φy

γm









ε(z) = B(z)es

(2.43)

At each fiber, the differential increment of stress can be computed as follows:









dσx

dσz

dτxz









=
∂σ

∂ε









dεx

dεz

dγxz









dσ = Dtdε

(2.44)

Where Dt is the tangent stiffness matrix of a fiber, recall that, because of

the post-crack anisotropic behaviour, tangent constitutive matrix of concrete

will be in general full. Therefore the derivatives must be taken with respect

to every strain component:

Further, transverse equilibrium is imposed independently at each fiber by

condensing the σz component in (2.44).

[

dσx

dτxz

]

= D̂t

[

dεx

dγxz

]

(2.45)

Where D̂t is the condensed [2× 2] constitutive matrix of the fiber including

the reinforcing steel smeared in it. Now it is possible to compute the deriva-

tive of the normal and shear stress with respect to X by means of the chain

rule and using equations (2.43) and (2.45):

∂σ

∂x
=

∂σ

∂ε

∂ε

∂es

des

dx
= D̂tB(z)

des

dx
(2.46)

The derivatives of the generalized stresses are computed by direct integration
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as:








dNx

dx
dMy

dx

dV
dx









=

∫∫

A









1 0

z 0

0 1









[

∂σx

∂x

∂τxz

∂x

]

dA

dss

dx
=

∫∫

A

A(z)D̂tB(z)dA
des

dx
= Ks

des

dx

(2.47)

In the above equations, the A matrix is used to integrate the stress of a point

to a generalized sectional force, while B is used to interpolate local strains

from the generalized sectional strains. Since in this approach matrixes A

and B are different, the resulting sectional matrix will always be asymmetric.

It can be also demostrated, that the obtained pair of generalized stress and

strains is not energetically consistent with the actual distribution of stress

and strain.

Considering that a shear force V =
dMy

dx
is applied to the section, the corre-

sponding increment of generalized strains can be computed as:

des

dx
=









dε0

dx
dφy

dx
dγm

dx









= K−1
s









0
dMy

dx
= V

0









(2.48)

The normal stress gradient (∂σx

∂c
) required in equation (2.29) is directly ob-

tained by substituting the previous result in equation (2.46).

This formulation is an effective local sectional model (it only requires infor-

mation of a single point of the frame) that satisfies inter-fiber equilibrium.

Therefore this formulation is more susceptible than the dual-section analysis

to be implemented within frame element. However, in this approach only

monodimensional shear flows are possible. Therefore it can only be applied

for in-plane bending and shear. Besides, as commented above, the stiffness

matrix for this cross-section, although reflecting the coupling of tangential

and normal internal forces, will be asymmetric in all cases.

Nevertheless, the type of sectional model looked for in this research is in

the same line of the “Longitudinal stiffness method” but extended to three

dimensional loading and arbitrary sectional geometry. To achive this tasks,
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compatibility and equilibrium must be considered and a suitable framework

of the cross-section mechanics be stablished.

2.4 Sectional analysis of composite laminated struc-

tures

A composite material is formed by the combination of two or more different

materials to obtain a new material with enhanced properties, either me-

chanical (higher strength and stiffness, less weight, etc. ), thermic (higher

or less conductivity), accustic isotlation, chemical (durability, corrosion re-

sistance), etc. In this sense, plain concrete is a composite material formed by

aggregates and cement. When more than one reinforcing material is used,

the composite is called hybrid, this is the case of reinforced concrete.

Other modern composite materials are made with metal, ceramic or polymer

matrix reinforced with a variety of fibers or particles (for instance: fiberglass,

graphite, etc.). Composite laminates are constructed by stacking layers of

different composite materials or fiber orientations, typically forming thin-

panel members.

Extensively explanation of the mechanical behaviour of these materials can

be found in: Nettles (1994), Reddy (1997), Barbero (1998), Oller (2002)

among others.

The use of modern composite materials has been notably increasing in the

last decades in all types of engineering structures: aerospace, automobile,

medical prosthesis, etc. In civil engineering, these materials have been tradi-

tionally used as repairing reinforcements: Priestley, Seible and Calvi (1996);

Fam, et al. (2002); Oller, Cobo and Mari (2004). Although scant, they have

also been used as the main material in some bridges: Cobo et al (2000),

Sobrino and Pulido (2002).

As a rule, composite laminates present anisotropic response with strong

coupling of bending, extension and shear. The stack arrangement produces

irregular stress distribution on the cross-section and out-of-plane stresses
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(auto-equilibrated shear stresses and normal stress in transverse direction)

producing delamination, effect that strongly limits the performance of these

materials. The sectional analysis of this type of structures must be capable

of reproducing these multi-axial stress state.

Currently, several laminate sectional models are available in the literature,

in general these approaches can be classified in two groups: equivalent single

layer theories and layerwise theories. In the following an overview of these

approaches is presented.

Equivalent single layer theories (ESL)

Equivalent single layer theories (ESL) are derivations of the 3D elastic prob-

lem based on suitable fixed patterns of the deformation or the stress fields

along the laminate thickness. Therefore, they are equivalent to the fixed-

pattern approaches described above. These assumptions allow the reduction

of the problem dimension, from 3D to 2D in plate problems and from 3D to

1D in beam problems.

The simplest ESL theory available is the “Classical laminated theory” (CLT)

which is an extension of the NB beam theory (for beams) or the Kirshoff

theory (for plates) to composite structures. In this theory, shear deformation

is neglected. It is followed by the “First order shear deformation theory”

(FSDT) which in turn is an extension of the Timoshenko theory of beams

and the Reissner-Mindlin theory of plates. This theory accounts for shear

deformation keeping the plane-section hypothesis.

In both theories mentioned above, the inextensibility along the element

thickness (or section distortion) can be removed to account for delamination.

Although considering the shear deformation, FSDT requires shear correction

factors which are difficult to determine for arbitrary laminated sections. This

is so because the shear correction factor not only depends on the lamaninate

geometry, but also on the loading and boundary conditions, this aspects gain

importance because of the anisotropic behaviour of the composite.

Higher order theories have been developed to describe more complicated
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displacement fields along the thickness in order to eliminate the need of a

shear correction factor. However, additional unknowns are often introduced

that are difficult to interpret in physical terms.

One high order theory is the “Reddy’s third order theory”, Reddy (1996) and

Reddy (1997). Reddy’s approach is to use a third order field for the sec-

tion’s normal displacement obtaining a parabolic strain profile. The theory

eliminates the need of a shear correction factor without introducing addi-

tional unknowns. This approach can be classified as a particular case of a

fixed-strain pattern approach in which a second order shear strain profile is

used. By energetically consistant integration of the shear forces there’s no

need of shear correction factors.

Auricchio and Sacco (2003) have proposed a series of mixed variational

ESLT formulations where shear correction factors are also eliminated. In

these formulations shear stress profile are represented by either independent

quadratic functions or by satisfying the 3D equilibrium and compatibility in

a weak fashion from a variational principle.

Although FSDT represent a good compromise between accuracy and sim-

plicity, their applicability to all composite structure problem is limited. The

accuracy of the global predicted response tends to degrade with the mainate

thickness. Also, these models often fail to describe the state of stress and

strain near geometric and material discontinuities (so called “free edge ef-

fect”), structural zones were concentration of stresses typically take place.

Layerwise theories (LWT)

Layerwise teories (LWT) explicitely consider the equilibrium and compatitibil-

ity at the inter-fiber level. These theories are obtained assuming indepen-

dent deformation within each layer; linear piecewise functions are typically

considered to describe the section’s displacement field.

LWT are capable of much more correct kinematic representation of moderate

to severe section’s warping associated to thick laminates. On the other hand,

the number of unknowns functions to be solved depend on the number of
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layers of the laminate. Some LWT formulations have been proposed, among

others, by Barbero (1992), Reddy (1996), Carrera (1999).

Other approaches

The “Variational asymptotic beam sectional analysis” (VABS) (Cesnik and

Hodges, 1994; Yu et al., 2002) is a procedure that splits the full 3D problem

into a 2D sectional analysis and a 1D beam analysis. This is done by means

of a suitable scheme to asymptotically approximate the strain energy up to

any desire order (in the mentioned work a second order approximation of

the strain energy is used) so called “Variational asymptotic method”.

2.5 Discussion about the state of the art

The understanding of shear resistant mechanisms of RC beam elements have

experienced considerable increase in the last three decades. After a suitable

characterization of the material response, models for the cross-section analy-

sis have been developed with different degree of thoroughness and accuracy.

Currently, there is no sectional theory that has been proved to suitable

evaluate the complete 3D interactions among the possible six internal forces

and general geometry and reinforcement arrangement that is generated after

cracking.

In the simplified models presented, the influence of transverse reinforcement

arragement and other sources of bidimensional shear flows are limited by the

approach of layer discretization and the fact that the compatibility is not

satisfied along the distortion field. Implicitly, the discretization and/or the

fixed-pattern used implicitly contains a-priori hypotheses on the shear flow

direction and the way the effects of transverse reinforcement is effectively

distributed.

In reinforced concrete, the role of section’s distortion is crucial. In a first in-

stance because it is the distortion of the sectional shape that makes possible

that transverse reinforcements be loaded. On the other hand, the stresses
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that a reinforcing bar transmits to concrete in a point are effectively distrib-

uted to other fibers thanks to compatibility of the fiber’s distortion. The

efficiency of a transverse reinforcement arrangement and the evolution of

the bearing mechanisms from pre-cracking to collapse can only be simulated

in an objective way if distortion is considered in the sectional model.

High level sectional analysis models have also been developed to accurately

analyse composite laminated structures. The relevance of a correct sectional

displacement field for these highly anisotropic materials has been recognized,

mostly in a 1D domain to account for delamination of the stack of laminae.

To this extent, it was considered worthy to include transverse distortion

in some sectional analysis theories. Although due to different causes, the

interesest of an accurate sectional model capable of representing the behav-

iour of complex materials is common to several specializations of structural

engineering.

It is considered that a more sophisticated cross-sectional model that could

take into account the sectional distortion considering the cross section as

a 2D domian was of special importance for achieve a realistic and accurate

analysis of general RC sections. Moreover, to propertly analyze the evolution

of damage in the material the warping and distortion should be non-fixed.

An original proposal to compute the sectional displacement field is presented

in the next chapter based on the the satisfaction of 3D mechanical princi-

ples in a variational form especially derived to this matter. An advantage

of the proposal is that it does not requires additional degrees of freedom

different from those associated to traditional generalized deformation of a

frame element.
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Chapter 3

A generalized beam theory

3.1 Introduction

The most basic theory capable of analyzing beam-column elements is the

Navier-Bernoulli (NB) approach. It is based on the assumption that plane

sections (PS) remain plane after the deformation and orthogonal to the

beam’s axis.

The use of the NB theory for beam-columns is well extended since it is

capable of reproducing correctly the actual response of this type of members

under combined axial forces and bending moments (referred to as normal

generalized stresses).

The drawback of the NB theory is its incapability of accounting for shear

forces and torsion moments in a general way (referred to as tangential gener-

alized stresses). When tangential stress effects are important in the response

of the element, more refined theories must be used.

Several beam theories are available to consider tangential stress effects with

different levels of generality. After setting a general hypotheses framework,

in the following, some of the most important approaches will be described

with the aim of identifying their common aspects, differences, benefits and

drawbacks.
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The presentation of these theories will be organized distinguishing between

“classical approaches” (i.e. theories which can be found in the classical

strength of materials or theory of elasticity literature) and “new approaches”

(i.e. theories which have been presented more recently in the literature).

It is worthy to emphasize that, besides the NB theory, all the more-advanced

models available can be obtained by superimposing an additional distortion

field to the PS displacement field. In other words, the total displacement

field on the section is enhanced, with respect to the PS, in order to enable

a more accurate description of the tangential stress effects in the modeling.

It will be seen that by choosing particular forms for the distortion field,

the described beam theories can be deduced. In general, the different forms

of the distortion field give exact solution for particular loading cases under

assumptions of isotropy and homogeneity.

Finally, a beam theory is proposed that generalizes the use of the distortion

field as an enhancement of the PS field for heterogeneous and anisotropic

beam elements under general 3D loading. The aim is to account for 3D

effects that occurs under the mentioned situations using a beam approach.

In the following, the section is defined in the plane y − z with normal x

parallel to the beam axis, see fig. 3.1. The beam axis intersects the section

in point defined by the position vector r0. At this position, there are six

generalized section displacements defined: three rigid body translations in

each direction (u0, v0, w0) and the corresponding rigid body rotations (θx,

θy, θz).

3.2 General hypotheses

Firstly, the general assumptions common to all beam theories are devel-

oped. These assumptions are presented in a general fashion; then, specific

theories are deduced introducing more restrictive considerations on the dis-

placement/strain fields.
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u0 qx

v0

qy

w0 qz

x
y

z

z0

y0

x
y

z

Figure 3.1: Local axes in the sectional domain

Displacement decomposition

The displacement field is decomposed in two parts as indicated in equation

(3.1), see fig. 3.2.

= +

= +

u u
ps

u
w

e
ps

e
we

Figure 3.2: Typical PS-distortion decomposition

u = ups + uw (3.1)

Where ups is a “plane-section” (PS) displacement field, consistent with the

beam theory of Navier-Bernoulli which will be described bellow.
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The other component of the displacement (uw) is a 3D field which are

referred to, equivalently, as “3D distortion”, or “warping-distortion”. Since

uw is a three component field, it actually can reproduce both out-of-plane

warping and section’s change of shape.

It should be noticed that, in this work, warping is considered as any dis-

placement additional to the PS field of the Navier-Bernoulli beam theory.

Therefore, it can be itself a planar deformation in some theories. This is the

case of the Timoshenko beam theory.

Small strains

Strains are considered small. Therefore, they are computed as linear com-

bination of the first derivatives of the displacement field by means of the

standard linear operator L as follows:

ε = Lu (3.2)

L can be further divided in the following two linear operators:

L = Lx + Lyz (3.3)

Where:

Lx =









∂
∂x

0 0 0 0 0

0 0 0 ∂
∂x

0 0

0 0 0 0 ∂
∂x

0









T

= Ex
∂

∂x
(3.4)

Lyz =









0 0 0 ∂
∂y

∂
∂z

0

0 ∂
∂y

0 0 0 ∂
∂z

0 0 ∂
∂z

0 0 ∂
∂y









T

(3.5)

Considering the displacement decomposition (3.1) and the linearity of the

L operator, the strain field can be also decomposed in an additive way in a

part arising from the PS displacements and another part due to the section’s

distortion.

ε = Lups + Luw = εps + εw (3.6)
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Stresses

Following (3.6) we introduce a similar decomposition also for the stress field

σ, i.e.:

σ = σps + σw (3.7)

Where σps is the stress field detected in a Navier-Bernoulli beam theory and

σw is the enhanced stress. It is interesting to observe that relation (3.7) is

trivially satisfied for the case of linear elastic materials. However, for more

general conditions (such as inelastic materials), it is possible to prove the

validity of equation (3.7) in an incremental format which still makes possible

to use it.

3.3 Classical approaches

3.3.1 Theory of Navier-Bernoulli

The theory of beams of Navier-Bernoulli is based on the assumption that

plane cross-sections remain plane after deformation and orthogonal to the

beam axis. This statement imposes the following relationship between the

beam’s axis deflections and rotations:

v′0 − θz = 0 w′

0 + θy = 0 (3.8)

Where v0 and w0 are the beam axis deflections in the y and z directions

respectively. θy and θz are the section rotations along y and z axis respec-

tively.

In this theory the displacement field is completely defined using only the

previous assumptions. Hence, the distortion field in (3.1) is null, uw = 0.

Vector ups is computed, using (3.8), as follows:
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







ups

vps

wps









=









1 0 0 0 z −y

0 1 0 −z 0 0

0 0 1 y 0 0

































u0

v0

w0

θx

θy = −w′

0

θz = v′0

























ups(x, y, z) = Nps(y, z)us(x)

(3.9)

In (3.9) us is a vector whose components are the displacements and rotations

of the beam’s axis.

The strain field resulting from ups is, after applying the L operator, as

follows:

εps = Lxu
ps + Lyzu

ps =

























ups′

0

0

vps′

wps′

0

























+

























0

0

0

−θz

θy

−θx + θx

























=

























u′

0 + zθ′y − yθ′z

0

0

v′0 − zθ′x − θz

w′

0 + yθ′x + θy

0

























Taking into account (3.8), one may write

εps =

























u′

0 + zθ′y − yθ′z

0

0

−zθ′x

yθ′x

0

























The previous equation can be rearranged in a matrix form
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
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xz
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
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














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εps = Bps(y, z)es(x)

(3.10)

Where Bps(y, z) is the strain interpolation matrix according to the PS hy-

pothesis. The vector of generalized strains of the section or beam’s strains

has been defined as:

es(x) =

























ε0

γ0y

γ0z

φx

φy

φz

























(3.11)

In es, ε0 is the beam axis elongation, γ0y and γ0z are the generalized shear

deformation in the directions y and z, φx is the beam torsion curvature, φy

and φz are the bending curvatures along y and z axis.

Notice that only the subset of the generalized strains:

e∗s(x) =















ε0

φx

φy

φz















(3.12)

is relevant in the Navier-Bernoulli beam theory. A shorter form of equation

3.10 is:
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
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ε0

φx
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













εps = Bps∗(y, z)e∗s(x)

(3.13)

The following aspects are remarkable:

• The strains components related to section’s change of shape or distor-

tion, namely εps
y , εps

z and γps
yz , are always null for this theory.

• The in-plane shear strains, γps
xy and γps

xz, are simply linear functions of

the torsion curvature. This constraint only produces correct solutions,

under tangential interal forces, in the case of circular shafts under pure

torsion without shear forces.

3.3.2 Timoshenko’s theory for shear forces

The Timoshenko beam theory allows considering the effects of the gener-

alized shear strains, in a simplified manner, by means of a constant shear

strain distribution along the section. The main statement of this theory is

that cross-sections remain plane after deformation but not orthogonal to the

beam’s axis.

The angle between the cross-section and the plane orthogonal to the beam’s

axis is considered equal to the generalized shear strain on the corresponding

plane:

v′0 − θz = γ0y w′

0 + θy = γ0z (3.14)

Equation (3.14) implies that the distortion field, uw, has only a component

in the out-of-plane direction. This additional displacement is linear and

proportional to the generalized shear strain of the beam.
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
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(3.15)

The strain field associated to this form of uw is:
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(3.16)

The following aspects from the Timoshenko shear theory must be remarked:

• The distortion field only takes into account the warping of the section.

Actual distortion of the shape is not considered by this theory.

• The in-plane shear strains due to the distortion field, γxy and γxz,

are enhanced with respect to the PS. The current theory considers

a constant distributionof the in-plane shear strains that are linearly

dependent on the generalized shear deformation.

3.3.3 Saint-Venant’s theory for torsion

Saint-Venant theory of torsion solves, in an “exact” way, the problem of an

homogeneous isotropic shaft of constant cross-section with torsion moments

on its ends.
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Under these conditions, the distortion field consists only on the out-of-plane

warping expressed by:
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(3.17)

With the torsion curvature, φx, is constant.

The corresponding strain field is:
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(3.18)

3.3.4 Saint-Venant’s theory for stretching, bending and shear

Saint-Venant theory for stretching, bending and shear solves, in an “exact”

way, the problem of an homogeneous isotropic shaft of constant cross-section

with shear and bending moments on the extremes.

Saint-Venant assumes that the field of normal stress σx has the same dis-

tribution as in the PS hypothesis. Shear stresses exist on the cross-section

which can be resolved in their components τxy and τxz. The fields of σy, σz

and τyz stresses are assumed to be null. The distortion results in an out-of-

plane constant warping, proportional to the shear loads and the change of

shape of the cross-section due to Poisson effects.
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The total strain field consists on the same as the PS hypothesis plus the

strains due to distortion that has the following form:
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(3.20)

It should be noted that the strain field of γyz are always zero. This is so

because the stress field τyz is null and the considered material is isotropic,

i.e. shear stresses are decoupled from all other components.

3.4 Recent approaches

3.4.1 Reddy’s third-order beam theory

The distortion field in the Reddy Third-Order Beam Theory consists on two

third order polynomials along the directions y and z proportional to the two

shear generalized strains respectively.
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Where

αy =
4

3
b3 αz =

4

3
h3

b and h are the section’s width and height respectively.

The corresponding strain field is:
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3.5 General remarks on the presented approaches

The plane section hypothesis (PS) is a fixed kinematical constraint that

gives a unique distribution of strains in the cross section as functions of

the generalized strains. For general 3D loading and section’s shape, the

PS strains distribution is not correct. Under certain assumptions, namely

homogeneity and isotropy, some exact solutions are available for the strain

distribution in the cross-section domain.
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The application of these solutions in the case of anisotropic and heteroge-

neous medium, as can be the case of a cracked reinforced concrete element,

is necessarily an approximation.

Therefore, a beam theory general enough to consider these special cases is

proposed in the following section.

3.6 Proposed beam theory for coupled 3D loading

3.6.1 Equilibrium equations

Consider the set of 3D differential equilibrium equations:

LT σ = 0

∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
= 0

∂τxy

∂x
+

∂σy

∂y
+

∂τyz

∂z
= 0

∂τxz

∂x
+

∂τyz

∂y
+

∂σz

∂z
= 0

(3.23)

It can be shown that the following weighted residual form is equivalent to

the previous equation.

∫∫∫

Ω

δuT LT σdxdydz = 0

∫

L

(∫∫

A

δuT LTσdA

)

dx = 0

(3.24)

In the term between parentheses one can identify the equilibrium residual

of a differential element of beam.

R(x) =

∫∫

A

δuT LT σdA (3.25)

After integrating by parts equation (3.25) in the y−z domain, the following
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Figure 3.3: Neuman boundary conditions

result is obtained:

R(x) =

∫∫

A

δuT LT
x (σ) dA−

∫∫

A

Lyz (δu)T
σdA

=

∫∫

A

δuT ET
x σ′dA−

∫∫

A

Lyz (δu)T
σdA

R(x) = G(σ′)− F (σ) (3.26)

Where

G(σ′) =

∫∫

A

δuT ET
x σ′dA (3.27)

F (σ) =

∫∫

A

Lyz (δu)T
σdA (3.28)

Equation (3.26) represents the projection of the equilibrium equations on

the space of the displacement field used. It means that a generic body is in

equilibrium in the u space if the overall residual along direction x is null.

If the u space is not general enough, there might be important equilibrium

terms not captured by the space of solution. These terms exist in the exact

solution space as components orthogonal to u. Therefore, even if the residual

(3.26) is null, exact solution, equation (3.23), wont be achieved.
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The equilibrium residual when the PS space is used will be analyzed next.

Residual on the plane-section displacement field

In this section we shall compute the equilibrium residual by using the PS

displacement field. This is, the projection of the residual on the space of

ups computed from the PS hypothesis:

ups = Nps(y, z)us(x)

Substituting the variation of this field in equation (3.26):

Rps(x) = Gps(σ′)− F ps(σ)

Gps(σ′) = δus
T

∫∫

A

NpsTET
x σ′dA

F ps(σ) = δus
T

∫∫

A

Lyz (Nps)T σdA

(3.29)

Expanding Gps and F ps:
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T
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It can be noticed that, by making Rps(x) zero in each cross section for all

δus, the residual (3.29) coincides with the system of equilibrium differential

equations of a beam element.

Rps(x) = 0 represents the equilibrium among sections of the beam. It ac-

counts for the integrity of the beam, assuming that it can only be dissociated

through its vertical cross-sections. The integrity of each section itself, the

equilibrium among all fibers in the section, is not considered in Rps(x) since,

when projecting the residual (3.25) to displacement field ups, this part of

the 3D equilibrium is lost.

Tangential forces, i.e. shear forces and torsion moments, produce stresses

that tends to dissociate the section’s fibers, figure 3.4. It is possible then to

call equilibrium at the beam level, or structure level, the one among entire

sections of the beams or frames. On the other hand, the one among inner

fibers will be referred to as equilibrium at the section level.

Figure 3.4: Equilibrium at the beam and sectional levels

Residual on the distortion displacement field

To consider equilibrium at the section level in a beam formulation, one

needs an enhanced displacement field which allows more general deformation

modes than ups. In particular one may consider the total displacement field
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as the superposition of the PS displacement field and a distortion field as

the one in equation (3.1):

u = ups + uw

The decomposition of the displacement field implies, in the same way, the

decomposition of the strain fields and thus of the stress field.

ε = εps + εw

σ = σps + σw

It should be clear that, in the limit, if the most general displacement field

is chosen, the resulting formulation will be equivalent to a full 3D theory

both in accuracy and in computational cost. The goal is now to properly

enhance the beam’s displacement field, to consider inter-fiber equilibrium,

maintaining a beam element formulation.

After computing the residual (3.26) in the space of the section’s distortion,

uw, results:

Rw(x) = Gw(σ′)− Fw(σ) (3.30)

Where

Gw(σ′) =

∫∫

A

δuwTET
x σ′dA (3.31)

Fw(σ) =

∫∫

A

Lyz (δuw)T σdA (3.32)

The complete 3D equilibrium at the structure and section levels is governed

by the following system of functionals. Notice that it is also an implicit

system of equations with unknowns ups and uw.
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Rps(x) = Gps(σ′)− F ps(σps)− F ps(σw) = 0

Rw(x) = Gw(σ′)− Fw(σps)− Fw(σw) = 0
(3.33)

The system (3.33) can be weighted along the length of the element. How-

ever, following such approach will produce a system of differential beam

equilibrium equations on ups and uw and thus, a beam element with more

degrees of freedom in general, since uw must be discretized along the beam’s

length.

An alternative way to solve (3.33) is to impose Rw(x) = 0 at each cross

section and obtain the σw field as a function of ups at each section:

σw = Fw−1
{

Gw(σ′)− Fw(σps)
}

= Hw
(

σ′,σps
)

(3.34)

This stress component can now be replaced in Rps, which represents the

traditional beam equilibrium equations. The important difference is that,

now the two components of stress fields are effectively considered.

Equation (3.34) can be used to define a cross-section constitutive relation.

The equilibrium at the structure level can be solved using beam-column

elements formulated in the standard fashion. The resulting formulation will

be similar to an equivalent single layer theory (ESLT) of higher order, see

chapter 2. However, no fixed shape strain or stress fields are needed, instead

strain patterns they are computed directly from inter-fiber equilibrium and

continuity conditions in the sectional-level.

3.6.2 Distortion spaces

Additional assumptions have to be done on the form of the distortion func-

tion in order to reduce the space of possible solutions. It is evident that if

one take a completely general distortion function the beam formulation will

reduce to the full 3D continuum problem.
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In this section orthotropic linear elastic materials have been assumed for

performing the derivations. This should not imply a lack of generality on

the following analyses since extension to non-linear inelastic materials is

straightforward in an incremental form.

Boundary conditions on the distortion field

To avoid trivial solutions of the equilibrium equation (3.30), a field uw free

of rigid body movements, must be used. In fact, it may be noticed that a uw

consisting on rigid translation along the three directions as well as a rigid

rotation along x axis do not produce any deformation when the operator

(3.5) is applied to it (this is not the case for plane rotation along axes

y and z since they produce constant shear strains). One can notice that

these displacements coincide with the subset of generalized displacements

contained in the PS hypothesis:
[

u0, v0, w0, θx

]T

.

In principle, the previous four displacement modes can be reproduced both

by the distortion field and the PS field. This situation will produce redun-

dancy on the total displacement (3.1) not guaranteeing a unique displace-

ment solution. The possible redundancies can be eliminated if the distortion

field satisfies the following equations:
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uR = R(uw) = 0

(3.35)

Relation (3.35) requires uw to be orthogonal to the PS displacement, see

figure 3.6.2, coming from us excluding θy and θz.

The previous condition is equivalent to impose the projection of uR on any

arbitrary variation of the rigid displacement δuR to be null.
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Figure 3.5: Typical solution on the PS-distortion system

δuRT
uR = R(δuw)TR(uw) = 0 (3.36)

Distortion as implicit function of the beam’s strains

Assume the following form for the distortion function:

uw = U(y, z)â (3.37)

U is a collection of functions in the section’s space weighted by a vector

of coefficients, â, defining the distortion of the section. In addition, these

coefficients are independent of X.

εw = LxU(y, z)â + LyzU(y, z)â

= LyzU(y, z)

εw ′ = 0

(3.38)

Computing the residual along this space, by substituting this distortion in

(3.30) and equating to zero, one obtains:
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Rw =

[∫∫

A

UTET
x DBps∗dA

]

e∗s
′ −
[∫∫

A

Lyz(U)TDBps∗dA

]

e∗s

−
[
∫∫

A

Lyz(U)TDLyz(U)dA

]

â = 0

(3.39)

The former functional equation is linear on U. e∗s is the subvector of the

section’s generalized strains that are relevant for the Navier-Bernoulli beam

theory:

e∗s(x) =















ε0

φx

φy

φz















Bps∗ is the corresponding strain interpolation matrix for e∗s:

Bps∗ =

























1 0 z −y

0 0 0 0

0 0 0 0

0 −z 0 0

0 y 0 0

0 0 0 0

























Let A1, Ba and C1 be the following matrixes:

A1 =

∫∫

A

UT ET
x DBps∗dA (3.40)

B1 =

∫∫

A

Lyz(U)TDBps∗dA (3.41)

C1 =

∫∫

A

Lyz(U)TDLyz(U)dA (3.42)

By means of the residual in equation (3.39), the following equation can be

deduced:

C1â = A1e
∗

s
′ −B1e

∗

s (3.43)

and â can be solved as:

â = C−1
1

{

A1e
∗

s
′ −B1e

∗

s

}

= H1

[

e∗s

e∗s
′

]

(3.44)
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Defining:

ξ∗ =

[

e∗s

e∗s
′

]

(3.45)

the section’s distortion results:

uw = U(y, z)H1ξ
∗

The following remarks can be made:

• uw is a linear function of the generalized strains relevant for the PS

hypothesis (e∗s) and theirs derivatives with respect to x (e∗s
′).

• Even that uw is only function of y and z, in general there can be

different fields for every section since on each one will depend on the

values of e∗s and e∗s
′ who in general vary along the beam’s length. This

variation is neglected with this distortion function.

• The distortion field on a section is univocally determined from infor-

mation on the same x coordinate.

• Non-local information is obtained from the derivatives of the general-

ized strains.

3.6.3 Localization of the distortion solution

The sectional distortion can be posed as a set of functions in the plane (y, z)

times the four generalized strains that are relevant in the PS hypothesis

and their derivatives. The distortion solution requires non-local information

that appears in the form of the generalized strains derivatives. The fact that

the section’s distortion depends also on some generalized strains derivatives

might seem odd as a first impression. This is due to dependence of the shear

stress distribution on the increment of longitudinal stresses.

The goal of this section is to make uw a function only of the complete vector

generalized strains (es). This is possible since an equilibrium relationship

exists between the derivatives of generalized forces due to normal stresses

and the generalized shear forces. This relationship in forces, will be used to
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derive a transformation from generalized strains derivatives to generalized

shear strains.

On the other hand, from (3.29) it results that the terms in e∗s
′ are not

independent, but have to satisfy certain equilibrium requirements in the

domain of the beam element. The aim of this section is then to state the

relationship between the generalized strains derivatives and the complete

vector of generalized strains (e∗s
′ ← es).

Particularly ε′0 and φ′

x can be obtained from the condition that N ′

x = 0 and

T ′

x = 0, hence they can be condensed in the domain of the cross-section. φ′

y

and φ′

z must satisfy a relationship with γ0y and γ0z implicit in the mentioned

equation.

Since the generalized shear strains (γ0s) are not an input argument in the

non-local solution of distortion, the relationship (3.29) can be used to obtain

γ0s given e∗s and e∗s
′.

After the previous arguments, consider that a relationship between es, e∗s

and e∗s
′ can be written in the following form:

es = Q−1(e∗s, e
∗

s
′) (3.46)

with the inverse relationship:

(e∗s, e
∗

s
′) = Qes (3.47)

Using this expression it is possible to write:

uw = A(es) (3.48)

Computation of the distortion strains is straight forward. The distortion

stresses are computed as in (3.50).

εw = LA(es)

εw = Bwes

(3.49)
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σps =

∫

Ddεps

σw =

∫

Ddεw

σ = σps + σw

(3.50)

3.6.4 Generalized stresses

The generalized stresses in the mixed (PS-distortion) displacement field can

be defined by means of the Principle of Virtual Works (PTW). This is as

follows:

∫

L

δeT
s ssdx =

∫

L

∫∫

A

δεT σdAdx

Identifying the the work densities as:

δeT
s ss =

∫∫

A

δεT σdA

=

∫∫

A

δεpsT σdA +

∫∫

A

δεwT σdA

= δeT
s

[

∫∫

A
BpsT σdA +

∫∫

A
BwT σdA

]

The vector of generalized stress is defined as follows. Notice that it involves

the traditional PS generalized stress plus an additional term that represents

the stress projection on the distortion space.

ss =

∫∫

A

BpsT σdA +

∫∫

A

BwT σdA

ss = sps
s + sw

s

(3.51)

3.6.5 Section’s stiffness matrix

The stiffness or constitutive matrix of the cross-section can be computed by

linearization of equation (3.51).
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ṡs =

∫∫

A

BpsTDε̇dA +

∫∫

A

BwTDε̇dA

Where D is a material constitutive matrix which can be of any type, in

general anisotropic.

ṡs =

∫∫

A

BpsTDε̇psdA +

∫∫

A

BpsTDε̇wdA + · · ·
∫∫

A

BwTDε̇psdA +

∫∫

A

BwTDε̇wdA

ṡs =

∫∫

A

[

BpsTDBps + BpsTDBw + BwTDBps + BwTDBw
]

dAės

Resulting that the section’s stiffness matrix is defined as:

Ks =

∫∫

A

[

BpsTDBps + BpsTDBw + BwTDBps + BwTDBw
]

dA (3.52)

3.6.6 Special considerations for non-linear analysis

In the previous analysis sectional generalized stresses, strains and the corre-

sponding stiffness matrix were presented as the projection of the 3D solution

in a smaller space formed by the PS field and a distortion field. Passing from

the full 3D domain to the PS-distortion space is possible by means of Bps

and Bw matrixes, while the former is an a priori fixed matrix, the latter is

deduced from internal equilibrium at each fiber.

In case the material has a non linear behaviour, it is obvious that the trans-

formation matrix, Bw, can not remain fixed and still satisfy the load internal

equilibrium at every load step. On the other hand using the updated ma-

trixes to compute the new generalized stress will result in an unconsistency

since the generalized stress definition; hence at each new step or iteration

one might be comparing two generalized stresses defined in different spaces.

To avoid this inconsistency, when working in a non-linear problem, the ma-

trixes used in equations (3.51) and (3.52) must belong to the same space.
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This means that they should remain fixed for the whole analysis. An internal

iteration is still needed to eliminate the residual Rw of equation (3.39) and

then assure that the solution is also satisfied in a distortion space currently

parallel to the PS space.

3.6.7 Remarks on the proposed scheme

• Isotropy or anisotropy can be directly included by using the proper

form of the constitutive matrix, D.

• The implications in the shape of the strains ditributions are considered

by means of the warping-distortion kinematics.

• Complete 3D inter-fiber equilibrium is explicitly considered.

• Different degrees of accuracy can be achieved by means of more com-

plex spaces of the distortion field.

• Neglecting the variation of distortion along the length is a very com-

mon assumption on slender beams with compact cross-section based

on the Saint-Venant Principle. This can be achieved by means of the

distortion space presented in 3.6.2.

• Higher order distortion fields along x would allow to consider warping

strains normal to the beam axis. Two main practical application are of

interest for this effect: “warping torsion” (mentioned in the previous

remark), and “shear-lag”, which is rather a 2D elasticity problem than

a beam problem. For these reasons such possibility is not considered

in this work and it is left as possible future developments.

3.7 Closure

In general, the use of beam theories implies partial satisfaction of the full

3D equilibrium equations (3.23). It was shown that if the functional given

in equation (3.26) is equated to zero only on the PS displacement space,
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the system of differential equations of a beam element, in its strong form, is

obtained (equilibrium at the beam level).

Beam differential equation satisfies the equilibrium between vertical sec-

tions without considering the equilibrium among fibers inside the section

(equilibrium at the sectional level). To consider the latter, the functional

residual must be computed in a more complex space, referred to as warping-

distortion.

All beam theories derived only to satisfy the beam’s differential equation

neglect the portion of the equilibrium condition in the sectional level. The

complete 3D equilibrium can be posed as the dual equilibrium system in

equation (3.33). Where Rps = 0 represents the traditional beam equilib-

rium system and Rw = 0 is an enhancement to recuperate the inter-fiber

equilibrium, lost in the former system. Hence, the simultaneous solution of

the exact solution of these two systems is equivalent to the full 3D equilib-

rium.

The proposed scheme consists on expressing the distortion field as a func-

tion of the generalized stresses by means of the condensation of new set of

equations (Rw = 0) at each section. The equilibrium among fibers can be

then considered locally in the sectional domain by means of a cross-section

constitutive model. The problem is separated from the beam formulation.

Any beam element formulation can then be used together with the resulting

sectional model.

By choosing the distortion field from specific function spaces increasing com-

plexity it is possible to account for different effects from the full 3D problem.

Generalized stresses are consistently defined and the section’s stiffness ma-

trix is deduced by means of the Principle of Virtual Works.
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Chapter 4

Cross-section numerical

model

4.1 Introduction

In the previous chapter, a generalized beam theory was proposed that was

able to consider the full 3D stress state due to combined loading conditions

of beams with arbitrary shapes and material composition. The proposition

aims to satisfy inter-fiber equilibrium conditions that traditionally beam

theory is not able to achieve. This is done by considering that the complete

displacement field of the section is the superposition of the traditional plane-

section (PS) displacement field, used by standard beam theories, and an

additional 3D field to consider the section’s warping-distortion.

The problem is then defined in a dual space (plain section and warping-

distortion) were equilibrium is to be imposed by means of variational meth-

ods, i.e. integral forms. It was shown that if the chosen weak form, equation

(3.26), is applied to the PS displacement field, the standard set of equilib-

rium equations of a beam element in space is obtained.

All frame elements formulations existing in literature are derived to solve this

set of equations in some way achieving different degrees of accuracy. In the

context of this work, the mentioned set of equations were called equilibrium
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at the structural level.

On the other hand there is the equilibrium in the distortion-warping space

which complements the former, so each fiber is in equilibrium and compati-

bility among each other and maintain section’s integrity. It is this proposal’s

aim to solve this part of the equilibrium internally in the cross-section space

given the vector of sectional generalized strains:

es =
[

εx γy γz φx φy φz

]T

Therefore, a suitable cross-section model is required.

Developing of frame elements to solve the equilibrium of in the structural

level is not in the scope of this work. Instead, it has been considered this part

of the equilibrium can be suitably solved by means of any frame structure

model while the sectional level problem is internally handled by the proposed

scheme.

Solving the sectional equilibrium problem usually will require complex cal-

culations specially if the materials have a non-linear behaviour or general

shaped sections are to be analysed. The need of implementing the theory in

a numerical model allowing a systematic and versatile use of it is evident.

One possibility to carry out this task is to use the finite elements method

in the sectional problem. Geometrically the problem to be solved is in a

bidimensional domain, i.e. the cross-section’s plane, so 2D discretizations

are used although the theory allows the full 3D material state to be computed

as described before.

This chapter is divided in two parts. The first part deals with the implemen-

tation of the proposed model specifically in a finite element environment.

In the last part, the implementation of three types of elements is described,

namely:

• 2D element to simulate solid matrix materials.

• 1D element to simulate transversal reinforcements.

• Point element to simulate longitudinal reinforcements.
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The last to elements are typically applied in reinforced concrete sections in

whose applications this work is mainly oriented.

4.2 Finite element model

Consider the finite element (FE) discretization of the distortion field:

uw = Nw(y, z)dw (4.1)

Where dw is the vector of distortion nodal values and N(y, z) is the inter-

polation matrix containing the shape functions.

The distortion strain field can be computed as:

εw(y, z) = LxN
w(y, z)dw + LyzN

w(y, z)dw

= LyzN
w(y, z)dw

= Bw
yzd

w

(4.2)

with

Bw
yz = LyzN

w(y, z) (4.3)

Note that the derivatives of this strain field with respect to x are null.

The nodal values of the distortion field (dw) are computed to satisfy both

Dirichlet type conditions and internal equilibrium at the sectional level.

The Dirichlet boundary condition shown in (3.36) guarantees that the solu-

tion is unique by imposing, in a weak-manner, that the warping-distortion

displacements are orthogonal to those belonging to the PS field.

δuRT
uR = R(δuw)T R(uw) = 0
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Where the rigid body movement of the distortion field is:

R(uw) =

∫∫

A















1 0 0

0 1 0

0 0 1

0 −z y























uw

vw

ww









dA

As shown before, full 3D equilibrium is satisfied if the unbalanced stresses are

null in the PS and in the distortion spaces, see equations (3.29) and (3.39).

After the former the classical equilibrium equation of a beam element is

deduced. This condition was referred to as equilibrium at the beam level.

The latter represents the part of the equilibrium which is neglected by the

classical beam theory casted in the following equation.

Rw =

∫∫

A

δUT ET
x DBps∗dAe∗s

′ −
∫∫

A

Lyz(δU)TDBps∗dAe∗s

−
∫∫

A

Lyz(δU)TDLyz(U)dA = 0

With e∗s being the subset of generalized strains relevant in the Navier-

Bernoulli beam theory as defined in (3.12). Bps∗ is the corresponding oper-

ator to compute strains in the PS space, defined in (3.13).

4.2.1 Dirichlet boundary conditions

By substitution of the finite element discretization in equation (4.1) on the

equation of rigid body movement one obtains the projection of uw on the

PS space.

uR = R(Nw)dw =

∫∫

A















1 0 0

0 1 0

0 0 1

0 −z y















Nw(y, z)dAdw

The weak condition to be satisfied can be posed as:
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R(Nw)TR(Nw)dw = 0 (4.4)

4.2.2 Equilibrium in the sectional level

After substituting the finite element discretization (4.1) the equilibrium in

the sectional level is written as:

Rw = δdwT

∫∫

A

NwTET
x DBps∗dAe∗s

′ − δdwT

∫∫

A

Bw
yz

TDBps∗dAe∗s

− δdwT

∫∫

A

Bw
yz

TDBw
yzdAdw = 0

Since the previous equation must be satisfied for any arbitrary virtual vari-

ation δdw:

∫∫

A

NwTET
x DBps∗dAe∗s

′ −
∫∫

A

Bw
yz

TDBps∗dAe∗s

−
∫∫

A

Bw
yz

TDBw
yzdAdw = 0

(4.5)

4.2.3 Non-local solution

By subtracting equations (4.4) and (4.5) we arrive to the following system

of equations with dw as the only unknown:

∫∫

A

NwT ET
x DBps∗dAe∗s

′ −
∫∫

A

Bw
yz

TDBps∗dAe∗s

−
∫∫

A

Bw
yz

T DBw
yzdAdw −R(Nw)TR(Nw)dw = 0

(4.6)

Defining:

K∆ps = −
∫∫

A

NwTET
x DBps∗dA (4.7)

Kps =

∫∫

A

Bw
yz

TDBps∗dA (4.8)

Kww =

∫∫

A

Bw
yz

TDBw
yzdA + R(Nw)T R(Nw) (4.9)
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Equation (4.6) is written as:

Kpse
∗

s + K∆pse
∗

s
′ + Kwwdw = 0 (4.10)

Solving for dw:

dw = −K−1
wwKpse

∗

s −K−1
wwK∆pse

∗

s
′

= A∗

1e
∗

s + A∗

2e
∗

s
′ = A∗ξ∗

(4.11)

Where:

A∗

1 = −K−1
wwKps (4.12)

A∗

2 = −K−1
wwK∆ps (4.13)

ξ∗ =

[

e∗s

e∗s
′

]

(4.14)

4.2.4 Local Solution

Finite element solution obtained in (4.11) requires information of stresses

from the surroundings of the section, this is obtained by means of e∗s
′, see

figure 4.1.a. A completely local solution will solely involve information of

the cross section, as shown in figure 4.1.b.

Using equilibrium conditions at the beam level (3.29) it is possible to define

a relationship between e∗s
′ and the complete vector of generalized strains es.

Hence only local variables are required to compute the distortion field. The

procedure followed involves the reduction of the number of required degrees

of freedom in the non-local model from 8 to 6 by means of static conden-

sation. In second place, a constraint between the bending curvatures and

the shear generalized strains is obtained using the equilibrium relationship

between shear forces and the derivatives of the bending moments.
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Figure 4.1: Internal equilibrium solutions: a) non-local solution b)local so-

lution

Reduction of the required degrees of freedom

Notice that in (4.11) the distortion field is a linear function of the eight

component vector ξ∗ =
[

e∗s e∗s
′

]T

. Even though eight variables appear in

the internal 3D equilibrium equation, it should be noticed that two of these

components are not independent since increments of generalized axial force

and torsion should be produced only by applied distributed loads. By a

static condensation process, it results that only six independent variables

are needed. From equation (3.29) one can write:

∫∫

A

σ′dA = 0

∫∫

A

(

−zτ ′

xy + yτ ′

xz

)

dA = 0

Or equivalently
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∫∫

A

[

1 0 0 0 0 0

0 0 0 −z y 0

]

DBps
1

∗
dA

[

ε′0

φ′

x

]

+ . . .

∫∫

A

[

1 0 0 0 0 0

0 0 0 −z y 0

]

DBps
2

∗
dA

[

φ′

y

φ′

z

]

=

[

0

0

]

P̄1

[

ε′0

φ′

x

]

+ P̄2

[

φ′

y

φ′

z

]

= 0

[

ε′0

φ′

x

]

= −P̄1
−1

P̄1

[

φ′

y

φ′

z

]

= P

[

φ′

y

φ′

z

]

e∗s1
′ = Pe∗s2

′

(4.15)

Vector ξ∗ can be univocally defined from the six components vector ξ as:









e∗s

e∗s1
′

e∗s2
′









=









1 0

0 P

0 1









[

e∗s

e∗s2
′

]

ξ∗ = Ξξ

(4.16)

Generalized shear strains

In the proposed scheme, there is no need of a-priori kinematic constraints be-

tween the shear strain pattern and the generalized shear strains: γ0y and γ0z.

Instead, the full 3D stress-strain field is computed solely from internal equi-

librium conditions. This procedure has clear benefits in terms of correctness

of the solution, accuracy and capabilities of the sectional model to repro-

duce more complex phenomena (i.e. non-linear shear loading might change

the correct shear strain pattern, influence of different stirrups arrangements,

sectional confinement or sectional distortion).

Because of the mentioned generality, the sectional generalized shear defor-

mations are not required in the model, instead curvatures derivatives are

used. Nevertheless, in order to build a standard sectional formulation and
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also to know the corresponding shear deformation applicable to a frame ele-

ment using this sectional model, suitable γ0y and γ0z shall be defined, figure

4.2.

Figure 4.2: One-to-one transformation of the shear strain distribution to a

generalized shear deformation of the whole section.

Basically we will use two new generalized strains that allow the standard

vectors of generalized forces and strains to balance the internal virtual work

(VW) performed by the stresses and strains. It is also necessary to consider

compatibility requirements between torsion twist curvature (φx) and gen-

eralized shear strains located at the beam’s axis (r0 =
[

y0 z0

]

) since, as

shown in figure (4.3), in general this point won’t coincide with the shear cen-

ter (rcs =
[

ycs zcs

]

); and specially on a non-linear analysis the shear center

might be state dependent, i.e. not on a fixed location. This compatibility

requirement is:

γ0 = γcs + φx (rcs − r0)× i (4.17)

Where γ0 is a vector defined by the two generalized shear strains located

at the beam’s axis, γcs is the vector of the two generalized shear strains

located at the center of shear forces (i.e., point where a shear force does

not produce a twist of the beam) of the section, i is a unit vector parallel

to the beam’s axis. By applying unit shear forces in the two orthogonal

directions the components of γ0 are defined as the mean shear strain in the

corresponding direction times a constant for each direction.
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Figure 4.3: Compatibility between shear and torsion deformations

γm =
1

∫∫

A
dA

∫∫

A

[

γxy

γxz

]

dA

γcs = kγm

Where k is a diagonal matrix whose components are defined to guarantee

energetic balance between the sectional and continuous models. Namely, the

density of virtual work done by the strain and stress field shall be balanced

by the density of virtual work done by the generalized stresses and strains,

evaluated in the center of shear forces. Therefore, to compute the ith com-

ponent of k consider that a pure shear force is applyed to the section so that

it is parallel to the ith direction (at this stage the shear force is applied by

means of the corresponding bending moment derivative). The virtual work

produced in the sectional domain is the following:

V W =

∫∫

A

δε · σdA∆L = δes · ss∆L

Where δes · ss shall be called the virtual work density and represented by

V W ′. The ith component of k is found to be:
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∫∫

A

δε · σdA =















δε0

δφx

δφy

δφz















·















Nx

Tx

My

Mz















+ ki

[

δγmy

δγmz

]

·
[

Vy

Vz

]

ki =
V W ′ − δe∗s · s∗s

δγm ·V
=

SW ′

δγm ·V
(4.18)

Where SW ′ is the density of virtual work performed by the shear forces.

Replacing the previous result into (4.17) the generalized shear strain can be

computed for every component of ξ defining the following 6× 6 matrix:

























ε0

γ0y

γ0z

φx

φy

φz

























=

























1 0 0 0 0 0

a1 a2 a3 a4 a5 a6

a7 a8 a9 a10 a11 a12

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

















































ε0

φx

φy

φz

φ′

y

φ′

z

























es = Ω−1ξ

The previous relation can be inverted as:

























ε0

φx

φy

φz

φ′

y

φ′

z

























=

























1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

b1 b2 b3 b4 b5 b6

b7 b8 b9 b10 b11 b12

















































ε0

γ0y

γ0z

φx

φy

φz

























ξ = Ωes

(4.19)

Which has the following closed-form solution:
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b1 =
a6a7 − a1a12

a5a12 − a11a6

b7 =
a1a11 − a5a7

a5a12 − a11a6

b2 =
a12

a5a12 − a11a6

b8 = − a11

a5a12 − a11a6

b3 = − a6

a5a12 − a11a6

b9 =
a5

a5a12 − a11a6

b4 =
a8a6 − a2a12

a5a12 − a11a6

b10 =
a8a5 − a2a11

a5a12 − a11a6

b5 =
a6a9 − a3a12

a5a12 − a11a6

b11 =
a3a11 − a5a9

a5a12 − a11a6

b6 =
a6a10 − a4a12

a5a12 − a11a6

b12 =
a4a11 − a5a10

a5a12 − a11a6

Note that for the case of an isotropic material and if the position of the

reference coordinate system coincides with the center of shears of the section,

shear forces are uncoupled from all generalized stresses and only a5, a6, a11

and a12 will be non-zero.

Furthermore, if the section is double-symmetric then only a6 and a11 will

be non-zero, these two are the components linking the shear forces and

the derivative of bending moments around their orthogonal direction in the

simplest uncoupled case. In all situations the inverted form of eq. (4.19) is

well posed.

4.2.5 Generalized stresses

The generalized stresses of the cross section, or sectional forces, are defined

as the energetically equivalent forces in the space of sectional strains (es).

Hence the virtual work density performed by the generalized stresses, must

balance the virtual work density of the stress field in the section.

δeT
s ss =

∫∫

A

δεT σdA (4.20)

According to our previously posed hypotheses, both the plane section (PS)

and distortion (w) components of the strain field can be written respectively

as:
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εps = Bpses (4.21)

and

εw = Bw
yzd

w (4.22)

Where Bps was defined in (3.10). The virtual work density is then decom-

posed as:

δeT
s ss = δes

T

∫∫

A

BpsT σdA + δdwT

∫∫

A

Bw
yz

T σdA (4.23)

The nodal values of the distortion field (dw) can be written as a function of

the generalized strains, as was shown in section 4.2.4. The complete process

included three transformations concerning internal equilibrium, condensa-

tion of redundant degrees of freedom and definition of generalized shear

strains.

dw = A∗ΞΩes (4.24)

The previous transformation can be introduced in (4.23), resulting:

δeT
s ss = δes

T

∫∫

A

BpsT σdA + δes
TΩTΞTA∗T

∫∫

A

Bw
yz

T σdA

and the following generalized stress definition:

ss =

∫∫

A

BpsT σdA + ΩTΞTA∗T

∫∫

A

Bw
yz

T σdA (4.25)

A special mention must be done however in the case of non linear analy-

sis, see also section 3.6.6. Transformation (4.24) was defined after tangent

material properties at each point, namely the tangent constitutive matrix,

center of shear forces, etc. Hence, as these material properties changes in

a non-linear analysis the transformation (4.23) will also change; in other

words, it is state-dependent.
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To keep a consistent definition of the generalized stresses during a non-linear

analysis, they should be computed using equation (4.25) and the initial

values of Ξ, Ω and A∗ fixed for all load steps. However, the stress field

must satisfy internal equilibrium equation (4.5) at all load step. An internal

iteration process on the nodal distortion vector is needed to satisfy this

requirement.

4.2.6 Sectional constitutive matrix

Computing the increment of the sectional forces from equation (4.25) and

taking into account the equation (4.24) one gets:

ṡs = Ksės

Where Ks is the sectional constitutive matrix (or sectional stiffness matrix)

which can be computed as:

Ks =

∫∫

BpsT DBpsdA +

∫∫

BpsT DBw
yzdAA∗ΞΩ+

ΩTΞT A∗T

∫∫

Bw
yz

T DBpsdA+

ΩTΞT A∗T

∫∫

Bw
yz

T DBw
yzdAA∗ΞΩ

(4.26)

In the previous sectional matrix, three-dimensional effects due to inter-fiber

interaction are indeed included, integrated and characterized as functions of

the beam generalized strains. As a result the matrix is in general full with

terms out of the principal diagonal producing the coupling of any degrees

of freedom contrary to typical sectional matrixes computed solely from PS

hypothesis and uniaxial material behaviour, where only bending and axial

force coupling can be captured.

The last statement is easily demonstrated noticing that the first integral

in equation (4.26) is the stiffness matrix obtained using exclusively a PS

displacement field in the cross-section.

J. M. Bairán



Chapter4. Cross-section numerical model 95

Consider the following uniaxial tangent constitutive matrix:

D =

























E 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

























after substituting it, as well as the Bps matrix, the following PS sectional

matrix results:

Kps
s =

∫∫

BpsT DBpsdA =

∫∫

























E 0 0 0 Ez −Ey

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Ez 0 0 0 Ez2 −Eyz

−Ey 0 0 0 −Eyz Ey2

























dA

In the previous integrals, if the uniaxial modulus (E) linear elastic and

the section is homogenous, the sectional linear elastic mechanical properties

(area, first and second moments of inertia) can be identified. If this is not the

situation, this quantities are not obtained. Nevertheless, the following set

of mechanical quantities are defined with the physical meaning of sectional

tangent stiffness:

ĒA =

∫∫

EdA

¯EQy =

∫∫

EzdA

¯EQz =

∫∫

EydA

¯EIyy =

∫∫

Ez2dA

¯EIzz =

∫∫

Ey2dA

¯EIyz =

∫∫

EyzdA

Where ¯(•) stands to highlight that these are tangent sectional stiffness quan-

tities coming from a sectional integration; hence they are not the multipli-
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cation of the elastic modulus times the sectional mechanical quantities.

This stiffness matrix is identical to the one obtained from traditional uniaxial

fiber sectional discretization. Note that the terms corresponding to the de-

grees of freedom of shear and torsion (2nd, 3rd and 4th rows and columns) are

not considering by this matrix. The only coupling that can be reproduced is

between bending moments and axial forces due to geometric matters. If this

matrix is referred to the section’s center of gravity and along their principal

axes, the matrix will only have terms in the principal diagonal.

Kps
s =

























ĒA 0 0 0 ¯EQy − ¯EQz

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

¯EQy 0 0 0 ¯EIyy − ¯EIyz

− ¯EQz 0 0 0 − ¯EIyz
¯EIzz

























It can be seen that the former matrix is a particular case of the one resulting

from the proposed sectional scheme, equation (4.26). Note that any type of

constitutive matrix (D), either isotropic or anisotropic, can be used in the

proposed formulation. Three additional integrals contribute to the sectional

stiffness compared to the traditional fiber section formulation allowing to

properly handle inter-fiber three-dimensional processes.

The proposed sectional matrix is in general full and is able to take into

account all internal forces couplings due to sectional anisotropies (namely

initially anisotropic materials or cracked induced anisotropy typical on RC

sections under normal and tangential loading) or section’s kinematics while

internal equilibrium and compatibility are both satisfied.

4.3 Algorithm

To have a compact description of the implemented algorithm, it is useful to

unify all internal variables of the lower level calculations in a single vector

as follows:
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d =

[

ξ∗

dw

]

(4.27)

At a higher level computations, the input-output variables are the general-

ized sectional strains

es =
[

ε0 γy γz φx φy φz

]T

The input of the algorithm will be a new es vector which can be transformed

into a d vector in the following form:

d = Bdses (4.28)

where, as can be seen in equations (4.16), (4.19) and (4.24), Bds is

Bds =

[

ΞΩ

A∗ΞΩ

]

(4.29)

In the above equations, Bds gives a set of deformation modes for ξ∗ and dw

for each component of es. These modes are used to define the generalized

stresses and stiffness matrix of the section. It was mentioned in section 3.6.6

that to be consistent with a single energetic definition of the generalized

stresses in the case of non-linear behaviour, Bds is computed only once at

the beginning of the analysis with the initial state. Throughout the whole

analysis, this matrix is maintained constant as a sectional property.

Latter in this section it will be shown that both internal equilibrium and

consistency can be achieved if the increments of d resulting from non-linear

iteration process are assured to be orthogonal to the deformation modes

defined in Bds.

From an arbitrary given d vector, the generalized strains can be computed

using the mean values of the strain field given by ξ∗ and dw. In general,

this transformation will be in the form of the following matrix:

es = Bsdd =
[

B1sd B2sd

]

[

ξ∗

dw

]

(4.30)
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Where matrix

B1sd =

























1 0 0 0 0 0 0 0

0 zcs 0 0 0 0 0 0

0 −ycs 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

























(4.31)

gives the contribution of ξ∗ to the vector es. Note that the first four compo-

nents of ξ∗ are present in the es vector. From the shear-torsion compatibil-

ity condition, see equation (4.17), torsion curvature affects the values of the

shear generalized strains located in the reference coordinate r0. Quantities

ycs and zcs are the coordinates of the center of shear forces with respect to

the beam’s reference axis:
[

ycs

zcs

]

= rcs − r0 (4.32)

The distortion contribution to es is evaluated by the following matrix:

B2sd =



















0

kBγm

0

0

0



















(4.33)

where Bγm is a matrix that extracts the mean values of the in-plane shear

strain field given a distortion vector dw. This matrix can be computed as:

Bγm =
1

A

[

0 0 0 1 0 0

0 0 0 0 1 0

]

∫∫

Bw
yzdA (4.34)

k is a [2× 2] diagonal matrix containing shear effective coefficients on the

non-zero terms. Each component is computed as indicated in equation

(4.18).

Note that given a vector of generalized strains Bds gives a d vector according

to certain criteria, formed from a combination of mode shapes. While, on
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the other hand, Bsd extracts a vector of generalized strains from an arbitrary

d vector just taking into consideration the mean strain values. It can be

verified, and also follows from the previous reasoning, that the following

product will always result in an identity matrix:

BsdBds = I (4.35)

The verification will be as follows: consider a vector of internal degrees of

freedom formed from a combination of modes after a certain set of sectional

strains: d̄ = Bdses. If the generalized strains are extracted from this vector,

one should obtain the same set of generalized strains given in first instance:

es = Bsdd̄ = BsdBdses. From which equation (4.35) results.

However, the complementary product does not give an identity matrix:

BdsBsd 6= I (4.36)

which means that the generalized strains extracted from an arbitrary d

vector by means of mean values of the strain field, may not be a combination

of modal shapes contained in Bds.

The previous result is important since it can be used to decompose any d

vector into a part belonging to the space of fixed mode shapes, after which

the generalized stresses are defined, and a part orthogonal to this space. This

will be done in the following way: let d be an arbitrary vector of internal

variables, then after equation (4.36)

d̄ = BdsBsdd

is the part of d that can be formed by a superposition of fixed mode shapes

and

d− d̄ = (I−BdsBsd)d

is orthogonal to all fixed mode shapes, will have null generalized strains.

To prove this statement lets extract the generalized strains from the previous

vector:
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ēs = Bsdd̄

= Bsd (I−BdsBsd)

= Bsd −BsdBdsBsd

= Bsd −Bsd = 0

The previous result is useful to assure that during internal iterations of d

there are no spurious changes of the generalized strains es.

The algorithm to compute the state of a cross-section is described in the

flow chart shown in figure 4.5.

Figure 4.4: Strain field decomposition. a) Total strain field, b) strain com-

bined from fixed mode shaped, c) orthogonal iterative component

4.4 Library of finite elements

A computer code was written to implement the presented cross-section

model. As was already mentioned, this model uses a specific plane finite

element model to compute the section’s distortion. A full 3D stress-strain

state is obtained at every point of the section. This is successfully done by

means of the proposed scheme for the 3D equilibrium conditions described

above. Virtually, this procedure offers the same level of information as a
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Figure 4.5: Sectional model flow chart.
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full solid model of the structure but avoiding complex and expensive finite

element computations.

It is an aim of this thesis to apply the proposed model to the study of

reinforced concrete (RC) sections under fully coupled loading, more pre-

cisely skew bending-shear-torsion-axial force loading. A set of finite ele-

ments where implemented to discretize the section’s domain. The typical

components of a reinforced concrete frame element are projected into the

section’s plane, the components are then represented by the corresponding

bidimensional objects, see figure 4.6.

In this way, a 2D plane element can be used to represent solid parts of the

frame, like can be the concrete matrix. Line elements in the section’s plane

represents lateral reinforcements that can be or not inclined with respect to

the section’s plane (not contained in the section’s plane). Line elements can

also simulate a family of lateral reinforcements with different inclinations

that might have the same projection on the section. Finally, point elements

are used to simulate longitudinal reinforcements that rather intersects the

section’s plane.

4.4.1 2D finite elements for matrix of solid material

Bidimensional elements are employed to simulate solid parts of the cross

section. The 2D element type currently available in the written compute

code is a four nodes quadrilateral with three degrees of freedom at each

node corresponding to the three-dimensional components of the distortion

part of the section displacement.

Additional degrees of freedom include the four components of the PS sec-

tion’s generalized strains (es) and their derivatives (e′s) all cast in the ξ∗

vector. This gives a total of twenty degrees of freedom for each element.

It must be noticed, however, that the eight degrees of freedom in ξ∗ are

common to all elements in the section.

For distortion interpolation, first order Lagrange polynomials are used. Dis-

tortion strains (εw) are interpolated by means of the corresponding Bw
yz
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Figure 4.6: In-plane elements implemented for sectional discretization.

matrix, see equation (4.2). Gauss-Legendre quadrature with four integra-

tion points was used to integrate over these elements.

Figure 4.7: Linear shape functions: a) 2D element b)1D element
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4.4.2 1D finite elements for lateral reinforcements

Unidemensional elements uses linear Lagrange polynomials as shape func-

tions with two nodes making a total of fourteen degrees of freedom; three

nodal values of distortion at each node and the eight generalized quantities

in ξ∗. A Gauss-Legendre quadrature with a single integration point was

used.

To perform the surface integrals defined above along the line elements some

special considerations must be taken. For instance, consider the integration

of the first term in Kww matrix (4.9):

Kww =

∫∫

A

Bw
yz

TDBw
yzdA

Considering that, as a good approximation, a reinforcing bar will respond

uniaxially with a tangent modulus Es in the direction of its longitudinal

axis, that, in general will have an inclination. One can write its constitutive

matrix in the section’s reference coordinate system as:

D = nT
ε Esnε

where:

nε =
[

l2,m2, n2, 2lm, 2ln, 2mn
]

is a vector that transforms a strain tensor, defined in the reference coordi-

nate system, to the axial strain in the direction defined by the directional

cosines: l, m, n. Consequently, nε also rotates an axial stress in the previous

direction, to the reference coordinate system.

The differential of area in the Y −Z of this bar can be deduced by dividing

the volume that corresponds to a differential projected length, see figure 4.8,

by the bar spacing along X direction.

dA =
dV ol

Sx
=

Aφ

cos θSx
dl (4.37)
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Figure 4.8: Differential volume of an inclined bar

where Aφ, Sx are the bar’s cross section and spacing along X direction. The

inclination angle with respect to the cross section’s plane is θ, see figure 4.9,

and dl is the differential of length projected in the section’s plane.

Figure 4.9: Angle between bars and the section’s plane

By means of the chain rule, the derivatives in the strain interpolation ma-

trixes Bw
yz will be computed in the following fashion:

∂

∂y
=

m

cos θ

∂

∂l

∂

∂z
=

n

cos θ

∂

∂l

(4.38)
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4.4.3 1D finite elements for double lateral reinforcements

A multi-bars 1D element is also available. This element is useful to simulate

set of bars with different space inclination, but with the same projection

on the section’s plane, as can be the case of truss type reinforcements, see

figure 4.10.

Figure 4.10: Multiple reinforcements line element

The implementation of this element is straight forward starting from the

single bar element. Also linear Lagrange polynomials and Gauss-Legendre

quadrature, are employed in this element. Different bars with their cor-

responding inclination angles, area and material properties are handled as

different integration points, located in the same position. Each integral is

evaluated independently at each gauss point; then all integrals are added.

4.4.4 Point finite elements for longitudinal reinforcements

Finally, a point element was implemented to simulate longitudinal reinforce-

ments that intersects the section’s plane in a single point. Longitudinal bars

by a certain area of reinforcing material concentrated in a single point, the

shape or the extension that the bar’s cross-section represents in the total

beam section is then neglected.

Consequently, the distortion field on single point elements will have a single

point value. As seen in the figure 4.11 , the point element will have a

warping-distortion value following the section’s deformation, nevertheless
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no variation of the warping-distortion field is possible inside the element’s

domain.

Figure 4.11: Warping-distortion in a point element

Recalling that the Saint-Venant type of warping has been considered, the

warping variation along element’s length is neglected. Then, it follows that

longitudinal strains in the axial direction due to section’s warping and distor-

tion are always null and so will be for this element. Only the PS component

is present in the strain and stress tensors.

4.5 Closure

The solution of the complementary equilibrium problem in the sectional

level might require complex computations in the general case, specially in

the case of arbitrary shaped sections and non-linear problems. To allow a

suitable and versatile application of the sectional model proposed in chapter

3 a numerical implementation using the finite element method was carried

out in this chapter.

Firstly it was necessary to apply the generic expression presented in chap-

ter 3 to the finite element context. The algorithm of the sectional model

was then presented. Finally, the implementation into three type of finite

elements were shown. These elements are the minimum requirement to rep-
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resent a typical reinforced concrete section: concrete matrix, transverse and

longitudinal reinforcements.

From the resulting numerical model a computer code named TINSA was

written, whose name corresponds to the acronym of Total Interaction Non-

linear Sectional Analysis. The code was written in Matlab using some basic

techniques from object oriented programming philosophy easing the inter-

action with other structural objects and the future expansion of the code.

Matlab was chosen at this level of development because it is a powerful

tool for handling matrix expressions and graphics and allows for a struc-

turated programming with independently developed functions. In the fu-

ture, a stand-along application can be compiled or easily translated to a

more efficient language such as C, C++ or FORTRAN.

Additionally, a compact structural analysis toolbox was witting including a

non-linear structural solver with some aids to ease or accelerate convergency,

such as: automatic increments generation based on convergence difficulty in

the previous sub-step, line searches and displacement control. These tech-

niques were properly implemented in the solver although they are not de-

scribed in this document since they are not a development of the author but

rather part of the state of the art tools for non-linear analysis. Exhaustive

information on these topics can be found in many books on Non-linear fi-

nite element analysis books such as: Crisfield (1991), (1998); Bathe (1998),

Belytschko et al. (2001), among others.

The toolbox also includes a library of material constitutive models that are

independent of the elements used. The toolbox structure easily permits

the future inclusion of new elements and materials models. They might be

independently developed if they are written respecting simple standards in

the input-output interface, thus becoming a new object of the toolbox.

The next chapter describes a set of developed and implemented material

models.
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Chapter 5

Materials modeling

5.1 Introduction

In the current chapter constitutive models developed to simulate the be-

haviour of some types of materials are described. A total of four material

models were developed and implemented in the numerical toolbox. In this

chapter, the name of the implemented object in quotation marks is included

together with each section’s name when it is the case.

The first two materials to be described include linear elastic orthotropic

behaviour and a linear-brittle material with cracked induced anisotropy.

These models are good and simple representations of orthotropic materials

in elastic range, such as composite materials and concrete under service

loads.

A complete triaxial non-linear model for plain concrete was also devel-

oped. The model allows for cracked induced anisotropy by means of a

rotating crack approach. Behaviour under complex loading such as Pois-

son effects, strength enhancement due to confinement and the effects of

concrete strength in the non-linear σ − ε curve are considered by means of

state-of-the-art specific models. Cyclic loading in concrete is possible. It

exhibits plastic compression behaviour previous to crushing, i.e. unloading

and reloading with initial stiffness. In tension, concrete presents anisotropic
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110 5.2. Orthotropic linear elastic material

damage represented by a damage tensor.

The series is completed with an uniaxial elastoplastic model to simulate the

stress-strain relationship of reinforcing steel. This material allows for cyclic

loading including kinematic strain-hardening to account for Bauschinger ef-

fect.

5.2 Orthotropic linear elastic material: “OrthoE-

lastic”

The simplest constitutive model implemented is an orthotropic linear elastic

solid. This solid material has three orthogonal principal directions defined by

a set of three unit vectors: ~e1, ~e2 and ~e3. An isotropic linear elastic material

has not been implemented since it is a special case of the orthotropic linear

elastic solid which reduces to the former when all three principal material

directions have the same material properties.

Several physical bodies can be represented by this constitutive law, ranging

from stratified soils or rocks, brick masonry to modern composite materials

in elastic range.

Pre-strain is possible in this material thanks to a pre-strain tensor given as

input.

Along each principal direction, i, the solid has a linear elastic behaviour

with elastic modulus Ei. Three shear modulus define the stiffness to shear

distortion in a plane. An arbitrary shear modulus Gij represents the shear

stress required to produce a unit shear strain in the plane i− j.

The set of material properties is completed by three Poisson coefficients:

ν12, ν13 and ν23. A generic coefficient νij represents the free strain along

direction j when a stress is applied along direction i.

To guarantee symmetry in the constitutive matrix, the following three com-

plement Poisson coefficients are internally computed, according to Reddy

(1996).
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ν21 = ν12

E2

E1

ν31 = ν13

E3

E1

ν32 = ν23

E3

E2

(5.1)

The material constitutive matrix can be computed as follows:

D12 =

1

Ω

























E1(1− ν23ν32) E1(ν21 + ν23ν31) E1(ν31 + ν21ν32) 0 0 0

E2(ν12 + ν13ν32) E2(1− ν13ν31) E2(ν32 + ν12ν31) 0 0 0

E3(ν13 + ν12ν23) E3(ν23 + ν13ν21) E3(1− ν12ν21) 0 0 0

0 0 0 ΩG12 0 0

0 0 0 0 ΩG13 0

0 0 0 0 0 ΩG23

























(5.2)

Where:

Ω = 1− ν21ν12 − ν31ν13 − ν32ν23 − ν12ν23ν31 − ν21ν32ν13

5.3 Elastic linear-brittle material: “L3DSCT”

An isotropic linear material with brittle failure in tension and compression

has been developed and implemented. Material responds to a Rankine type

failure surface with different strengths in tension and compression, referred

as ft and fc respectively, see figure 5.1.

Initially the material behaves as isotropic linear elastic, until the failure

surface is reached. When in a principal stress direction the strength is

exceeded, the resisted stress and the corresponding elastic modulus drop to

zero as indicated in figure 5.2. At this state, the behaviour is orthotropic

with material principal directions are not fixed but rather vary according

directions of the principal stresses.
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112 5.3. Elastic linear-brittle material

Figure 5.1: Rankine type failure surface. a) σ− τ space, b) Deviatoric view

in σ1 − σ2 − σ3 space.

Figure 5.2: Elastic linear-brittle σ − ε law.
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The isotropic state is characterized by a single elastic modulus E0 and a

Poisson coefficient ν0.

In all cases, the constitutive matrix is evaluated as in equation (5.2). Where

the principal direction’s elastic modulus can be either E0 or null depending if

the directional state is elastic or not respectively. Poisson in principal planes

(νij) coefficients are evaluated as follows to satisfy symmetry condition in

the constitutive matrix.

νij =











ν0,∀i < j

νji
Ei

Ej
,∀i > j

(5.3)

Shear modulus in each principal plane Gij is computed to assure consistency

on the principal directions of stress and strain tensors before and after the

current load step. Bazant equation (5.4) has been adopted for these case:

Gij =
1

2

σi − σj

εi − εj
(5.4)

5.4 Constitutive model for concrete: “OU3DC”

A non linear hypoelastic constitutive model is employed for modelling con-

crete material. The model allows, among other capabilities, for 3D loading,

tension cracking with stiffness degradation, non linear compression loading

considering the effect of concrete strength, etc. In the current section, the

constitutive model is extensively described.

5.4.1 Hypotheses

Inelastic concrete is modeled as an orthotropic material whose behaviour

along each principal loading direction is governed by an equivalent uniaxial

non-linear relationship between stress and mechanical strain. The concept

of mechanical strain is described bellow.
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Material’s principal directions are always coincident to the ones of the prin-

cipal stress tensor, hence they are allowed to rotate in order to simulate the

crack induced anisotropy phenomenon sketched in figure 2.11.

Mechanical and non-mechanical strains

Total strain in a material point is assumed to be the sum of a mechanical

part, which is directly related to the stress, and a strain offset that is referred

to as non-mechanical since it is not directly related to stresses. Although

this offset may be a source of secondary stresses due to compatibility re-

quirements. The same decomposition is also applicable to the strain rates

as indicates equation (5.5).

ε = εm + εnm

ε̇ = ε̇m + ε̇nm
(5.5)

All type of free deformations, or strains offstets, such as creep, shrinkage or

thermal displacements may be handled as non-mechanical strains by adding

them as shown in equation (5.6). Since stress-strain relationship along each

direction is considered as uniaxial, Poisson strains must be considered as a

free strain to be added to the non-mechanical ones. In the context of this

work, the only non-mechanical strain to be considered will be the Poisson

strains; although, all other strains offsets can be treated in the same manner.

εnm = εc + εs + εt + εν + . . . (5.6)

The mechanical strain is related to the direct instantaneous application of

stresses to the material. It is assumed that the mechanical strain is com-

posed of two addends, equation (5.7). Namely an elastic part (εe) which

is completely recoverable after the applied stress is removed. The second

term corresponds to a plastic strain (εp) which remains in the material after

unloading.
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εm = εe + εp (5.7)

Loading, unloading and reloading concepts

Inelastic materials like concrete and steel exhibit different σ − ε behaviour

when they are loaded for the first time or in strain range that was previously

reached. This situation makes necessary to distinguish between new-loading

and unloading-reloading states.

For the present constitutive model, loading state is defined independently

in each principal direction by means of an envelope (backbone) σ− ε curve.

When a virgin material is loaded it follows the backbone curve while when

it is unloaded to a smaller strain level, the material will follow a typically

different σ − ε law.

When reloading the material will follow a different σ − ε curve until the

threshold, defined by of the backbone curve, is reached again. If load is

augmented after this point, a new-loading state will take place again.

In the constitutive model here described, both unloading and reloading take

place along linear σ − ε curves. The tangent of the unloading-reloading

branch might differ in tension and compression loading. While in the latter

unloading-reloading curve will always take place using the elastic modulus,

in tension the tangent modulus will degrade after concrete cracking with a

damage performance.

5.4.2 Compression behaviour

When loading in compression, the relationship between stress and the me-

chanical strain follows the non linear equation of Collins and Porasz (1989),

see equation 5.8, as backbone envelope.

This curve is capable of reproducing the influence of concrete strength on

the shape of the σ-ε curve, being suitable to simulate both normal and high

strength concretes.
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σi = σp
i = fci

εm
i

ε0,i

n

n− 1 +
(

εm
i

ε0,i

)nk

n =
E0

E0 + fci

ε0,i

k =















1,∀ εm
i

ε0,i
≤ 1

0.67 +
fc

62
,∀ εm

i

ε0,i
> 1 [MPa]

(5.8)

Where E0 is the initial modulus of concrete, fci and ε0,i are the current

strength and the corresponding strain at peak stress on direction i. These

two quantities are to be computed considering the 3D stress state as will be

explained below, in section 5.4.4.

The parameter fc is the uniaxial compression strength in MPa. It controls

the shape of the curve by means of the parameter k, see figure 5.3. The

variable σp represents a stress situated in the non linear backbone curve.
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fc=20 MPa
fc=50 MPa
fc=80 MPa

Figure 5.3: Collins and Porasz family of normalized curves (σ/fc, ε/ε0)
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During new loading in compression the plastic strain in the corresponding

directions increases, see figure 5.4. The value of the plastic strain along each

principal direction must be updated after new loading has occurred. This

updated value is computed depending on the last stress value reached in the

backbone curve, see equation (5.9).

εp
i = εm

i −
σi

E0

(5.9)

When unloading and reloading in compression concrete σ− ε curve is linear

according to equation (5.4), without any increase of plastic strain. This

state is valid until the backbone is reached again, then the state is that of

new loading.

Figure 5.4: Compression cyclic behaviour

σi = E0 (εm
i − εp

i ) = E0ε
e
i (5.10)

5.4.3 Tension behaviour

Before cracking, concrete is considered to behave linearly. The same equa-

tion of unloading-reloading (5.10) is considered valid in this situation. When

the current cracking stress is reached in a tensile principal direction a strain
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softening behaviour begins. The non-linear equation equivalent to the pro-

posed by Cervenka (1985), equation (5.11), has been adopted as the tension

backbone envelope in each tensile principal direction.

σi = ft,i

[

1−
(

εe
i

c

)k2

]

≥ 0,∀εe
i >

ft,i

E0

(5.11)

Where c represents the strain at which tension stress is reduced to zero, k2 is

a coefficient defining the shape of the softening curve. These two parameters

are employed to control the shape of tension stiffening in concrete. Typical

values for c are between 0.004 and 0.005; for k2 typically 0.5 is used; see

CEB (1996).

After cracking has occurred, and when the elastic strain is positive, the crack

is considered active. In the direction in which a crack is active, the material

exhibits damage. This means that less effective material collaborates in

stress transferring, as seen in figure 5.4. Hence the longitudinal stiffness is

degraded in tension loading and unloading regimes following equation (5.12).

s
s

s

e

Figure 5.5: Schematic representation of damage process

σi = (1− di)E0 (εe
i ) (5.12)
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Where di is the damage variable in the loading direction, understood as the

fraction of the material that is no longer effective in i direction. While un-

loading and reloading, damage is fixed but when the tension stress is on the

backbone curve, the damage variable increases in the respective direction.

The new damage is computed as:

di = 1− σp
i

E0ε
e
i

(5.13)

The damage variable is bounded to a maximum value of one; consequently

the tangent modulus has a lower bound of zero. A close σ−ε loop in tension

will be as shown in figure 5.6.

Figure 5.6: Tension cyclic behaviour

5.4.4 Triaxial characteristics: Failure surface

3D strength

Concrete strength under a general triaxial stress state is defined by means

of a failure surface. Many failure theories are available for concrete and

geomaterials, see Chen (1982). In the implemented code, failure surfaces

are independent of the constitutive model. Any failure surface can be pro-

grammed in a separated code. In this section only the five parameters
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surface of Willam and Warnke (1975). will be presented since it was the

implemented surface for this work.

The reasons why this surface was chosen are because its excellent capabilities

for reproducing the behaviour of concrete under a wide range of loading at

low and high hydrostatic stress levels as exposed bellow.

The main characteristics of this surface are: curve parabolic meridians on the

renduric plane distinguishing between tension and compression meridians.

When cutting the deviatoric plane a smooth and convex curve is always

obtained, as shown in 5.8. Its shape in the deviatoric plane features a

transition from a more or less triangular shape for low hydrostatic stress

levels, tending to the Rankine failure surface, and more or less circular shape

for high hydrostatic stress, tending to the Drucker-Prager failure surface.

A compression meridian, defined by fixed similarity angles (θ) of 60 ◦, 180 ◦

and 300 ◦, is given by:

rc√
5fc

= b0 + b1

σm

fc
+ b2

(

σm

fc

)2

A tensile meridian, defined by fixed similarity angles (θ) of 0 ◦, 120 ◦ and

240 ◦, is given by:

rt√
5fc

= a0 + a1

σm

fc
+ a2

(

σm

fc

)2

where the a’s and b’s terms are coefficients to be adjusted from the five

parameters defining the surface, as will be shown next, and:

σm =
1

3
(σx + σy + σz) =

1

3
I1

is the mean value of the stress components,

cos (3θ) =
3
√

3

2

J3
√

J3
2

=

√
2J3

τ3
oct

is the orientation angle in the deviatoric plane or angle of similarity:

r =
√

2J2 =
√

3τoct
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Figure 5.7: Geometric representation of a stress tensor. a) Space view, b)

deviatoric view.

is a measure of the deviatoric stress, geometrically it is the distance from the

stress to the hydrostatic axis. Figure 5.7 shows a geometrical representation

of a tensor in the space of it principal directions.

The surface is defined by extending the two basic meridians by means of

elliptic interpolation between them. Therefore, for an arbitrary angle of

similarity, r (σm, θ)) is given by:

r (σm, θ) =
c1 + c2c3

c4

where:

c1 = 2rc

(

r2
c − r2

t

)

cos θ

c2 = rc (2rt − rc)

c3 =
√

4
(

r2
c − r2

t

)

cos θ2 + 5r2
t − 4rcrt

c4 = 4
(

r2
c − r2

t

)

cos θ2 + (rc − 2rt)
2

Coefficients a0, a1, a2, b0, b1 and b2 are function of five material parameters

which correspond to five points in the failure surface. The five parameters of

the Willam and Warnke failure surface are defined in table 5.1. Substituting

these parameters as points in the failure surface one can isolate the required
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Table 5.1: Parameters of the Willam and Warnke failure surface

Uniaxial compression strength fc

Uniaxial tension strength f̄t = ft

fc

Biaxial compression strength f̄bc = fbc

fc

Point in tensile meridian (θ = 0 ◦)
(

ξ̄1, r̄1

)

=
(

ξ1
fc

, r1

fc

)

Point in compression meridian (θ = 60 ◦)
(

ξ̄2, r̄2

)

=
(

ξ2
fc

, r2

fc

)

coefficients which finally they are computed as follows as shown in Chen

(1982):

Tensile meridian

a2 =

√

6
5
ξ̄1

(

f̄t − f̄bc

)

−
√

6
5
f̄tf̄bc + r̄1

(

2f̄bc + f̄t

)

(

2f̄bc + f̄t

)

(

ξ̄1
2 − 2

3
f̄bcξ̄1 + 1

3
f̄tξ̄1 − 2

9
f̄tf̄bc

)

a1 =
1

3

(

2f̄bc − f̄ t
)

a2 +

√

6

5

f̄t − f̄bc

2f̄bc + f̄t

a0 =
2

3
f̄bca1 −

4

9
f̄bc

2
a2 +

√

2

15
f̄bc

Compression meridian

ρ =
−a1 −

√

a2
1 − 4a0a2

2a2

b2 =
r̄2

(

ρ + 1
3

)

√

2
15

(

ρ + ξ̄2

)

(

ξ̄2 + ρ
) (

ξ̄2 − 1
3

) (

ρ + 1
3

)

b1 =

(

ξ̄2 +
1

3

)

b2 +

√

6
5
− 3r̄2

3ξ̄2 − 1

b0 = −ρb1 − ρ2b2

Figure 5.8 shows a general view of the failure surface and its renduric and

diviatoric planes. These characteristics make the surface suitable for both

low and high confinements.
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Figure 5.8: View of the Willam and Warnke failure surface

To determine the current strength first a trial stress is computed assuming

elastic loading using equations (6) or (8) for compression or tension direc-

tions respectively. The 3D elastic stress is plotted on the failure surface’s

space. Along the imaginary line connecting the elastic stress and the origin,

the intersection with the failure surface is searched. If the elastic stress falls

inside the surface, then it is projected until the surface is reached. If oth-

erwise the stress is outside the surface, then it projected backwards to the

surface.

Each intersection point, figure 5.8, defines the current strength in all three

principal directions for tension or compression.

Strain at peak load

The strain at peak stress depends on the degree of confinement. If the

strength on a principal direction is enhanced compared to the uniaxial

strength because of confinement, the strain at peak stress is computed from

the following equation, Mander et al (1988).
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ε0,i = ε0

[

1 + 5

(

fc,i

fc
− 1

)]

,∀fci > fc (5.14)

If strength is reduced because the combined tension-compression state is

dominating, strain at peak stress is reduced as:

ε0,i = ε0

fc,i

fc
,∀fci ≤ fc (5.15)

On the previous equations fc and ε0 are the uniaxial strength and the cor-

responding strain at peak stress. fc,i and ε0,i are the 3D strength and the

corresponding peak strain in i direction respectively.

5.4.5 Poisson strains

It has been said that stress-strain relation is considered uniaxial on each

principal direction. Nevertheless, on the orthogonal directions of loading free

strain is produced due to Poisson effect. Poisson strains may be computed

from the mechanical strains as:









εν
1

εν
2

εν
3









−









0 ν2 ν3

ν1 0 ν3

ν1 ν2 0

















εm
1

εm
2

εm
3









(5.16)

For high loads the Poisson coefficient is non-linear; it is being possible to ex-

press it as a function of the current mechanical strain. non-linear equations

for the Poisson coefficient can be found in Chen (1982), Vecchio (1992) and

Montoya et al. (2001). The expression adopted in this paper is the third

degree polynomial function described in Chen (1982), equation 5.17, which

is an adjustment of the experimental data of Kupfer et al (1969) proposed

by Elwi and Murray (1979).

νi = ν0

[

1 + 1.3763
εm
i

ε0,i
− 5.36

(

εm
i

ε0,i

)2

+ 8.586

(

εm
i

ε0,i

)3
]

≤ 0.5 (5.17)

Where ν0 is the initial Poisson coefficient.
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5.4.6 Constitutive matrix

The previous stress-strain relations are functions of the mechanical strain or

the elastic part of it, i.e. they are not functions of the complete strain tensor

on equation (2). In deducing an expression for the constitutive matrix of

equation (16) we shall assume that the increment of total strain, equation

(17), is such that the non mechanical part of it does not change.

Dij =
∂σi

∂εj
(5.18)

ε̇ = ε̇m + ε̇nm = ε̇e + ε̇p + ε̇nm (5.19)

The latter is only an approximation since some so-called non mechanical

strains depend, directly or indirectly, on the applied load or mechanical

strain. This is the case, for example, of creep or Poisson strains. Thus

if an increment of mechanical strain takes place it is to expect an indirect

variation of the non mechanical part. By neglecting this secondary increment

of total strain, equation (18) is considered valid enough for the purpose of

computing the constitutive matrix. The constitutive modulus resulting is an

approximation of the exact one. Non mechanical strains are, nevertheless,

considered for compatibility conditions. During iteration procedure, the

error on using an approximate constitutive matrix is eliminated.

ε̇ ≈ ε̇m (5.20)

On compression loading, i.e. when compression stress is located within the

backbone curve, the longitudinal modulus on the corresponding direction

used is:

Ei =
σp

i

εm
i

(5.21)

During unloading and reloading in compression, the initial elastic modulus

is used in the corresponding direction:
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Ei = E0 (5.22)

On tension loading damage is considered. The longitudinal modulus to

be used for new loading or unloading is the one in equation (21). Before

cracking the damage variable is zero, therefore equations (21) and (20) are

initially equivalent.

Ei = (1− di)E0 (5.23)

In the case of the shear modulus, the following equation proposed by Bažant

(1983) for rotating-crack models is adopted, equation (5.24). It was deduced

from the condition that on the predicted step the principal directions of both

stress and strain keep being coincident.

Gij =
1

2

σi − σj

εi − εj
(5.24)

On the principal directions, the constitutive matrix will be:

D12 =

























E1 0 0 0 0 0

0 E2 0 0 0 0

0 0 E3 0 0 0

0 0 0 G12 0 0

0 0 0 0 G13 0

0 0 0 0 0 G23

























(5.25)

This matrix is rotated to the global orientation in the way (23) indicates.

As can be seen this matrix is orthotropic with principal angles depending

on the applied stress.

D = TT
ε D12Tε (5.26)

In the previous equation, Tε is the transformation matrix that rotates the

strain tensor from the global coordinate system X−Y to the principal direc-

tion 1− 2. The transposed of this matrix coincides with the transformation
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matrix that rotates a stress tensor in direction 1 − 2 to direction X − Y .

This matrix will be given below in section 5.4.7.

5.4.7 State update algorithm

The concrete model described above needs three history variables for each

loading direction: plastic strain, tension damage, strain offsets (in this case

only Poisson strain).

Because of triaxial load history, the principal directions may change from

one state to another. When this happens, the state variables values should

be coherent with previous and new load directions.

To handle this problem, state variables are stored as tensors on a fixed global

coordinate system in an incremental fashion as proposed by Vecchio (1999).

When the new state variables are computed as above, their incremental

variable on each direction may be computed as:

ε̇
p
12 = ε

p
12,new − ε

p
12,old (5.27)

ε̇ν
12 = εν

12,new − εν
12,old (5.28)

ḋ12 = d12,new − d12,old (5.29)

These increment values are accumulated in the global coordinate system:

ε
p
XY = ε

p
XY,old −TT

σ ε̇
p
12 (5.30)

εν
XY = εν

XY,old −TT
σ ε̇ν

12 (5.31)

dXY = dXY,old −TT
ε ḋ12 (5.32)

Where:

Tε =

























l21 m2
1 n2

1 l1m1 l1n1 m1n1

l22 m2
2 n2

2 l2m2 l2n2 m2n2

l23 m2
3 n2

3 l3m3 l3n3 m3n3

2l1l2 2m1m2 2n1n2 l1m2 + l2m1 l1n2 + l2n1 m1n2 + m2n1

2l1l3 2m1m3 2n1n3 l1m3 + l3m1 l1n3 + l3n1 m1n3 + m3n1

2l2l3 2m2m3 2n2n3 l2m3 + l3m2 l2n3 + l3n2 m2n3 + m3n2

























(5.33)
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Tσ =








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
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
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























(5.34)

The unit vector along principal direction i is

~ei =
[

li mi ni

]T

li, mi and ni are the corresponding directional cosines.

Tε is a matrix that rotates the engineering strain tensor from the global

coordinate system to the current system of principal loading. Tσ rotates the

engineering stress tensor from the global coordinate system to the current

system of principal loading.

It can be shown that T−1
ε = T T

σ and T−1
σ = T T

ε . Therefore, to rotate strains

from the local principal coordinate system to the global coordinate system

T T
σ is used, T T

ε is used to rotate stresses back to the global system.

In the new time step the history variables on the principal directions are

obtained from the stored tensors in the global coordinate system:

εP
12 = Tεε

p
XY (5.35)

εν
12 = Tεε

ν
XY (5.36)

d12 = TσdXY (5.37)

The procedure described above is schematized in the flow chart of figures

5.9 and 5.10.
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Figure 5.9: Concrete constitutive model flow chart (1)
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Figure 5.10: Concrete constitutive model flow chart (2)
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5.4.8 Material response

To investigate the capabilities of the proposed constitutive model in repro-

ducing the monotonic and cyclic behaviour of concrete, a set of tests were

performed and will be presented next.

Biaxial compression loading

Figure shows the predicted response of three different concrete strengths

under increasing proportional confinement rates. It was aimed to represent

the behaviour of what can be called “normal strength”, “moderete strength”

and “high strength” concretes. These grades of strength were respectively

represented by 30MPa, 50MPa and 80MPa concretes.

The three specimens were montonically loaded in two principal directions

according to the following pattern:

σ1 = σx

σ2 = ασx

σ3 = 0

were α took the values 0, 0.05 and 0.1.

Figure 5.11 shows that the model predicts similar strength enhancements

for all three types of concrete although different evolution of the σ − ε law.

It is noticed that the higher the concrete strength, the model predicts lower

relative tangent modulus than in the case of a normal strength concrete.

Confined shear loading test

Shear loading in concrete is a rather complex phenomenon. Before cracking,

concrete is able to resist shear as a couple of compression and tension stresses

in two orthogonal directions usually located in a system rotated 45 ◦ from

the direction of the shear stress. The first difference compared to a purely

isotropic linear material is that, due the different behaviour in tension and
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Figure 5.11: Confined compression loading for different concrete strengths

(compression positive). a) 30 MPa, b) 50 MPa and c) 80 MPa

compression, the shear performance of concrete is not uncoupled to the

normal stresses behaviour.

Even before cracking, although in a considerable minor amount, this effect

is present since concrete is almost linear in tension until cracking stress

while in compression presents non-linear σ− ε behaviour from the very first

moment. This phenomenon can be neglected compared to the post-cracked

behaviour were tension and compression differences are considerable greater

an so is the dependence of the shear performance to the concomitant normal

stresses.

Figure 5.12 shows several simulations in a 30MPa concrete subjected to

monotonic shear loading with proportional concomitant normal stresses in

the two in-plane direction. Slightly differences in the τ − γ curve can be

seen before cracking as mentioned in the previous above.

The influence of the concomitant normal stresses in the cracking shear stress

is notorious in the same figure (5.12). After this point, concrete presents a
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strain-softening behaviour.
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Figure 5.12: Shear loading with different confinement stress (σ = σx = σy).

Cyclic compression test

Figure 5.13 shows a uniaxial cyclic compression loading of 30MPa strength

concrete. While loading concrete responds with the non-linear σ − ε law

described above. Figure 5.14 shows the plastic strains as a function of the

total strains. Note that variations of plastic strains only take place during

new-loading state.

When unloading and reloading, compressed concrete responds linearly. In

this situation plastic strain do not change as seen in figure 5.14.

Cyclic tension test

Under tensile loading, concrete is linear elastic until cracking stress is reached.

After this point it exhibits strain-softening and strain-softening as shown in

figure 5.15. Unloading and reloading present linear behaviour according to

a degrading longitudinal modulus affected by the normal component of the

damage tensor projected to the loading directions. In this case, the loading
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Figure 5.13: Stress-strain loops under uniaxial cyclic compression (compres-

sion positive).
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Figure 5.14: Plastic strain-total strain under uniaxial cyclic compression

(compression positive).
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direction does not change so damage tensor has a single component in the

whole process.

In figure 5.16 it is shown the evolution of the relevant damage component.

Note that the variable is asymptotic increasing to a maximum of one, which

corresponds to total degradation. While unloading and reloading damage

remains constant as an irreversible process.
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Figure 5.15: Stress-strain loops under uniaxial cyclic tension.
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Figure 5.16: Damage-strain under uniaxial cyclic tension.
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Cyclic pure shear test

Cyclic pure shear loading of a 30MPa concrete is shown in figure 5.17. A

slight non-linear behaviour can be noticed in the τ −γ curve before cracking

occurs. After cracking, strain softening is noticed.

It can be seen that cyclic loading is strongly characterized by tensile damage

behaviour being dominant in comparison to the compression in the orthog-

onal principal direction. Because of this, shear resistance under unconfined

loading degrades in the same way as the tension strength when increasing

cycles.
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Figure 5.17: Shear stress-strain loops under zero confinement loading.

In this loading condition, principal tensile directions are alternating produc-

ing directional damage in the damage tensor as can be seen in figure 5.18

which is a representation of the damage tensor for different loading steps.

Each figure represents, in polar coordinates, the magnitude of the normal

component of the damage tensor projected in the direction given by the

angular coordinate.

Figure 5.18.a show the damage tensor in one of the first load steps, prior

to the first loading reversal. It is noticed that the damaged tensor has a

principal direction in 45 ◦ with respect to the applied shear, corresponding

J. M. Bairán



Chapter5. Materials modeling 137

to the tensile principal stress component. When moving from this direction,

the influence of the applied damage gradually decreases until reaching the

principal compression direction at −45 ◦.
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Figure 5.18: Evolution of damage tensor’s intensity and direction

After load reversal, cracking in the opposite direction is also reached and so

damage in the orthogonal direction. Eventually, practically isotropic damage

can be achieved as shown in figure 5.18.b and 5.18.d. Figure 5.18.c is an

example of a typical state were it has occured damage in all directions but

there is a principal damage direction.

Cyclic confined shear test

As mentioned above, shear performance of cracked concrete is strongly de-

pendent on the concomitant normal stresses. The following two tests cor-

respond to cyclic shear forces with to limit type of concomitant normal
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stresses, proportional normal stress and constant compression.

Figure 5.19 shows the predicted response of a 30MPa concrete under pro-

portional stress in the same plane as the shear load is applied, in figure

5.20 the corresponding concomitant normal stress is presented. The overall

response has similar characteristics as the pure shear cyclic loading: strain

softening after cracking and degrading stiffness. There is, however, a re-

markable difference in the hysteretic loops in the first and fourth quadrants,

corresponding to compression and tension concomitant normal stresses re-

spectively, both in the maximum and sustainable shear strains.

−1.5 −1 −0.5 0 0.5 1 1.5

x 10
−3

−3

−2

−1

0

1

2

3

4

τ

γ

fc=30 MPa

Figure 5.19: Shear stress-strain loops under proportional confinement load-

ing.

It should be mentioned that while proportional loading enhances shear be-

haviour when the concomitant stress is in compression, the overall response

still shows damage and stiffness degradation making the σ − ε to follow a

secant to the origin in each loading loop. However, when concomitant stress

is a fixed compression during the whole cyclic loading differences are evident

as seen in figure 5.21.

Plastic components in shear strains are more evident, although still small,

due to higher principal compressions. The typical cyclic loop shows an al-

most linear zone where some plastic strains are developed and a second zone
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Figure 5.20: Axial stress-shear strain loops under proportional confinement

loading.

where the lower principal direction is decompressed. In this stage, higher

shear stresses are sustained until cracking occurs, then concrete begins a

strain-softening process with damage and degrading stiffness.

The difference now is that it does not reaches the origin but the shear stress

that starts the decompression. Degradation tends asymptotically to the

decompression shear stress. Where degradation is complete, material will

almost have a bilinear behaviour, with loading and unloading following the

same path.

The two previous simulations are ideal loading conditions that are not ex-

actly reproduced in a concrete cross-section with transverse reinforcement.

The typical situation is in between the two presented examples, since stir-

rups will present, in elastic regime, a proportional concomitant confinement.

However, this proportional stress does not have a constant proportionality

coefficient, since it is always compressive no matter the sign of the shear

stress. On the other hand, stirrups stress also depend on other parame-

ters such as cracks angle, longitudinal reinforcements, other applied forces,

section’s shape, etc. The exact cyclic behaviour will be given by the inter-

action of all these parameters that will be a result of the sectional model
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after satisfaction of the warping-distortion problem described in the previous

chapters.
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Figure 5.21: Shear stress-strain loops under fixed confinement load.

5.5 Constitutive model for reinforcing steel: “BilPla-

Cyclic”

To simulate the behaviour of reinforcing steel bars an uniaxial constitutive

model is used. The model is a bilinear elasto-plastic constitutive law that

allows for kinematic strain hardening and cyclic loading by means of an

scalar state variable to store the plastic strain. An extensive description of

the constitutive law is given below.

5.5.1 Hypotheses

The non-linear behaviour of steel reinforcement is considered only to resist

normal stresses, therefore an uniaxial σ−ε law has been considered sufficient

for these elements.

Elastic offsets, such as temperature strains or steel relaxation can be treated

as non-mechanical strains in the same way as it was done for concrete, see
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section 5.4. The concepts of mechanical and non-mechanical strains are also

useful for this material to store all elastic offsets.

Steel pre-strains is also possible by means of a non-mechanical strain.

As for concrete, a state of new-loading is defined when the current (σ, ε) is

loading along the envelope curve. A unloading state will be defined when

loaded to a smaller strain level than the one in the current state. A reloading

state will occur if the material is loaded to a higher strain level but the (σ, ε)

point is not on the backbone curve.

5.5.2 Elastoplastic behaviour

Steel is simulated using a bilinear elastoplastic model with kinematical hard-

ening. For the simulation of reinforcement bars it will be sufficient an uni-

axial equation like the one in figure 5.22. Its bilinear backbone curve is

characterized by three parameters: an elastic modulus E0, a plastic modu-

lus E1 and a yielding stress fy.

Figure 5.22: Stress-strain law for steel
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5.5.3 State update algorithm

A single scalar history variable is needed to store the plastic strain. The

scheme to follow in the state evaluation in a material point of reinforcement

steel is described bellow.

The first step is to compute the elastic strain and stress given an incremental

strain. A trial elastic strain is taken as the difference of the new strain and

the current plastic strain:

εe = ε− εp (5.38)

The trial stress is given by the following equation.

σe = E0ε
e (5.39)

This trial stress has to be compared with the current elastic yielding stress,

which according is evaluated considering a kinematical hardening rule as

follows:

σp = sign (εp) fy + εpE1 (5.40)

In the previous equations E0 and E1 are the elastic and yielding modulus

respectively.

If the inequation (5.41) is true, the trial state will be valid. Then the actual

stress will be equal to the trial elastic strain σe. If on the contrary inequation

(5.42) holds, the material will be yielding and the trial state will have to be

corrected.

|σe| < |σp| → elastic, σ = σe (5.41)

|σe| ≥ |σp| → plastic (5.42)

If the material is yielding, equation (5.42) is true, then the plastic strain

changes in the following amount, see figure 5.23.

ε̇p =
σe − σp

E0

(5.43)

In the same way, the correct stress will be given by equation (5.44) as can

be explained after figure 5.23.
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σ = σp + E1ε̇
p (5.44)

Figure 5.23: State updating during yielding

5.5.4 Material response

To investigate the capabilities of the proposed constitutive model to repro-

duce accurately the behaviour of reinforcing steel is a uniaxial loading test

is presented next. An elastic modulus of Es = 2E5MPa and yielding stress

of fy = 500MPa where considered. During yielding, a hardening modulus

of E1 = 0.01Es was used.

The response of the proposed uniaxial constitutive model can be seen in fig-

ure 5.24; where a cyclic tension-compression strain history has been applied

to the material. In the same figure, the evolution of the internal variables

during the cyclic loading are also shown. It can be seen that, as expected,

plastic strains are only changing during material yielding and they are sus-

tained until a new yielding state, in tension or compression, is occurred.

Kinematic hardening is noticed in both σ − ε hysteretic loop and σ − time

curve.
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Figure 5.24: Cyclic behaviour of reinforcing steel
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Chapter 6

Validation and case studies

6.1 Introduction

In this chapter, a series of case studies of sections under combined loading

are analysed using the proposed model and the developed program. Two

objectives have motivated this analyses: to verify the accuracy of the results

provided by the proposed scheme comparing to theoretical or experimental

solutions and to show the model’s ability to reproduce complex situations

of combined loading that conventional fiber cross-section formulations fail

to capture.

The model was proved to simulate complex interactions that occurs under

shear or torsion loading combined with normal forces and bending moments.

These type of actions in general results in the warping and distortion of the

original section’s shape, phenomena accuratly caught by the proposal.

In the particular case of RC beams, it is shown how, because of the capa-

bilities of the model to hanlde material non-linearity, crack-induced effects

are properly simulated satisfying internal fiber equilibrium and further im-

plications in the full non-linear behaviour until failure is reached.

The presented case studies are subdivided into two groups:

1. Theoretical case studies: where the model is used to analyse proposed
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examples, for which analytical closed form solutions are available or the

phenomenological behaviour has been observed although a close form

solution might not be available, in order to compare the theoretical

and the numerically predicted results.

2. Experimental case studies: where the model is employed to repro-

duce experimental investigations. Advantage of the numerical model

is taken to show the evolution of internal variables and fields that are

difficult or impossible to measure in laboratory tests, makeing easer

the understanding of the simulated processes.

6.2 Theoretical case studies

A total of five theoretical examples are presented in the following section for

which either closed form solutions or well-established models are available or

the complex phenomenological response has been observed. The examples

are presented starting from an equilateral triangular section made of an

isotropic elastic material under pure torsion. The exact solution of this

problem is known and can be found in Timoshenko and Goodier (1972).

An also linear but anisotropic problem is presented next in the form of two

different composite laminate wide beams under bending and shear loading.

The problem is compared to a middle-plane solution that can be found in

Reedy (1996).

A set of theoretical case-studies on RC sections are then presented. The

first one is an investigation on a cantilever RC element with a point lateral

load. The element was subdivided into a series of sections and subsequently

analysed. Elemental response was obtained by integration along all cross-

sections.

The influence of the concomitant shear force on the moment-curvature curves

of an RC section is investigated in the next case.

Finally, a square concrete section confined with stirrups was loaded in com-

pression, all load stages including cover spalling were reproduced. Ultimate
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load was compared with the predicted by the well-established model of Man-

der et al. (1988).

6.2.1 Triangular section under pure torsion

An isotropic linear elastic section with an equilateral triangular cross section

of 200mm height is analysed under torsion loading; see figure 6.1. The

applied torsional load corresponds to a torsional curvature of 1E − 6 rad
mm

.

The material properties considered in this analysis are summarized in table

6.1. The aim of this example is to show the capabilities of the proposed

model in reproducing theoretical problems whose solutions are known in

a closed form. The analytical solution of this problem can be found in

Timoshenko and Goodier (1972); the cited authors utilized the membrane

analogy to solve the problem.

It is known that, since section is not circular its correct solution is not given

by Navier torsion theory, which is included in the plain section space of

solutions (PS) mentioned in previous chapters. But section’s warping must

be takien into account to obtain a correct strain-stress field satisfying both

compatibility and equilibrium conditions. Figure 6.2 shows the predicted

sectional warping.

Table 6.1: Material properties of equilateral triangular section

E (Elastic modulus) 30, 000MPa

G (Shear modulus) 12, 500MPa

ν (Poisson coefficient) 0.2

Figure 6.3.a shows the predicted vertical component of the shear stress field,

τxz. In figure 6.3.b the bidimensional shear flow can be appreciated; one

may note in this figure how shear the vertices of the triangle correspond to

singularity points where shear stresses must be vanished in order to satisfy

boundary conditions. The proposed model was able to reproduce this field

with enough accuracy as can be concluded from table 6.2 were numerical
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Figure 6.1: Equilateral triangle. Undeformed shape and finite element mesh.
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Figure 6.2: Warping of equilateral triangle.
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and closed form solutions are compared both for the maximum τxz and the

integrated torsional moment.
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Figure 6.3: Shear stresses in equilateral triangle. a) τxz stresses; b) shear

stress flow.

Table 6.2: Comparison between theoretical and numerical solutions of a

triangular isotropic section under torsion.

Theoretical value Numerical value Error

T [KNm] 0.7698 0.7725 0.34%

τxz[MPa] 1.1881 1.1880 0.01%

6.2.2 Composite laminate beam under coupled bending and

shear

To investigate the capability of the proposed formulation to deal with sec-

tions made of anisotropic materials, two specimens made of composite or-

thotropic plates assemblies under three point loading will be analyzed next,
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figure 6.4. The solution of these beams is presented by Reddy (1996) using

a one dimensional solution characterized by the beam’s middle plane.

Figure 6.4: Composite beam loading scheme.

The dimensions, material’s properties and loads of the two specimens’ sec-

tions are the same but have different ply arrangements, as shown in figure

6.5. Lamination schemes are commonly denoted by listing the fiber orienta-

tion angle of each ply from bottom to top; if the stack is symmetric about

the midplane, it is possible to list only half of the plies and add a S subscript

to denote symmetry. With this notation, the schemes for sections 1 and 2

are respectively (0/45/ − 45/90)S and (90/45/ − 45/0)S .

The section’s dimensions are: b = 0.2, h = 0.1. The critical section is located

in the element’s midspan; in this point, the internal forces are a vertical shear

force F0 and a bending moment 0.5F0. Solutions will be presented in terms

of normalized stresses in the following form:

σ̄ = σ
bh

F0

In the same manner, the materials properties are normalized with respect

to the elastic modulus in the material direction 2− 2 like in table 6.3.

The mesh employed for both sections is the one seen in figure 6.5.c. Figures

6.6.a and 6.6.b show the warping-distortion state of both sections.

The influence of the plies distribution both in normal stresses and shear

stresses is evident. It is known that, because of the orthotropy of the plies,

auto-equilibrated shear stresses appear to maintain the sectional integrity,

producing that under any arbitrary load, even though it is a pure normal
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Figure 6.5: Composite cross-sections analyzed. a) section 1; b) section 2; c)

finite element mesh.

Table 6.3: Material properties of composite plies.

E1

E2
25

E2, E3 1
G12

E2
, G13

E2
0.5

G23

E2
0.2

ν12, ν13, ν23 0.25
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Figure 6.6: Sectional distortion under loading. a) section 1; b) section 2.

force or shear force, distortion and warping occur as the general case. This

fact can be seen in figure 6.7 were the six distortion-warping modes of section

2 have been plotted. These modes correspond to the sectional distortion

after a unit value of the indicated generalized degree of freedom is applied.

Note that, even for the normal generalized strains, axial strain and bending

curvatures, the cross section experiments distortion.

As noticed from figure 6.6, warping modes of sections 1 and 2 differ being

the last one more influenced by coupled effects between bending and torsion.

This statement can be confirmed from the two sections’ stiffness matrixes

reproduced in equations (6.1) and (6.2) respectively. While 0 ◦ layers are

located in an optimun position to resist bending moments in section 1, in

section 2, they are located close to the midplane. In the second case, bending

moment is mainly resisted by the ±45 ◦ plies. Horizontal shear stresses

and out-of-plane stresses, produced because the orthotropic material is not

loaded along its principal directions (as schematically indicated in figure

6.8), are higher in the second beam.

The section gets distorted to maintain inter-fiber equilibrium . In figure

6.9 it is seen that these auto-equilibrated shear stresses are as much as ten

times higher in section number two, reflecting the stronger bending-torsion
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Figure 6.7: Warping-distortion modes for the six generalized strains in sec-

tion 2.

Figure 6.8: Sketch of the horizontal shear stresses developed in the ±45 ◦

plies.
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coupling.
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Figure 6.9: Shear stress field (τxy). a) section 1; b) section 2.
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In figure 6.10 the normal stress field (σx) is shown for both analysed cases;

figure 6.10.b evidences slightly higher edge effects on section 2 than in section
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Figure 6.10: Normal stress field (σx). a) section 1; b) section 2.
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Figure 6.11: Shear stress field (τxz). a) section 1; b) section 2.
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1. Nevertheless, these effects are more marked in both sections in the case

of the vertical shear stress field (τxz), see figure 6.11.

Figures 6.12 and 6.13 represent vertical cuts of the σx and τxz fields respec-

tively. The analytical middle plane solution found by Reddy (1996) has been

also plotted in a blue wide line. Perfect coincidence exists between Reddy’s

middle plane solution and the cut passing through the zero ordinate both for

normal and shear stresses. However, middle plane solution is not capable of

reproducing edge effects captured by the proposed model, as shown in the

figures.
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Figure 6.12: Vertical cuts of σx field and comparison with theoretical solu-

tion (wide blue line). a) section 1; b) section 2.

J. M. Bairán



Chapter6. Validation and case studies 157

0

0.05

0.1

0.15

0.2 −0.1

−0.05

0

0.05

0.1

−0.05

0

0.05

a) Section 1

−0.5

0

0.5 −0.1

−0.05

0

0.05

0.1

−0.05

0

0.05

b) Section 2

Figure 6.13: Vertical cuts of τxz field and comparison with theoretical solu-

tion (wide blue line). a) section 1; b) section 2.

6.2.3 RC cantilever

A reinforced concrete cantilever of 3000mm long is subjected to an horizontal

point load in the free end as shown in figure 6.14.a. The cross section of

figure 6.14.b is constant along the length of the element. The section was

discretized in layers with the mesh of figure 6.14.c.

The material properties used in this example are summarized in table 6.4.

The longitudinal reinforcement was assumed to have a plastic modulus of

2000MPa (not shown in the table).

Along its length, the element has been subdivided in ten increments produc-

ing eleven control sections. The overall response of the structure is obtained

by numerical integration each section. In this situation all sections are sub-

jected to a combination of bending moment and shear load. The objective of

this case study is to investigate the non-liner behaviour of this simple struc-

ture considering the shear-bending interaction effects in non-linear regime.

Is in these type of cases where the proposed model is a powerful and inter-

esting tool.
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Table 6.4: Material properties of the RC cantilever.

Concrete

fc 28.2MPa

ft 1.75MPa

Ec 25600MPa

ν 0.2

Longitudinal steel
fy 442MPa

Es 200, 000MPa

Transversal steel
fy 400MPa

Es 200, 000MPa

Figure 6.14: RC cantilever. a) test configuration, b) cross section, c)section

discretization.
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Figure 6.15.a shows the force-displacement response of the cantilever identi-

fying the flexural, shear and total deformations. It is a common assumption

in most of the non-linear formulation of frame elements to maintain shear

stiffness fixed and linear elastic along the whole non-linear process, attribut-

ing all non-linearities to bending. In figure 6.15.b the contribution of shear

deformation to the total displacement of the cantilever free end has been

plotted. It is shown that this assumption is not accurate in zones where

strong shear and moments exist together.

At early load stages, it is shown that shear displacements are around 3% of

the total deformation. This was expected due to the slender aspect ratio of

the element and usually shear deformation will be neglected. Early cracks

are due to flexural loading, thus bending stiffness is reduced while shear stiff-

ness remain constant, being coincident with regular non-linear frame element

formulations as mentioned above. If shear cracks appear, as did happen for

a displacement of around 3mm, the situation changes completely. Shear

stiffness degrades faster than bending stiffness does, thus shear contribution

to total displacement increases to levels that can not be neglected any more

(exceeding 10%) until the section yields in bending.

The distribution of the sectional curvature and shear deformation along the

beam length if presented in figures 6.16 for different load levels. In order to

make the shape of the generalized strains law more noticeable, the ordinates

have been normalized to a unit maximum value.

Both curvature and shear deformation follow similar laws as the correspond-

ing internal forces distribution for low level forces, i.e. linear for bending

moments and constant for shear forces. For high level loads, curvatures tend

to concentrate at the fixed end forming a plastic hinge that spreads in length

under increasing loading (figure 6.16.a) until collapse.

The distribution of shear strains changes rapidly after cracking has occurred.

Even at load of 70KN , when bending curvatures are still almost linear, it

can be seen that shear strains are already not following the same (constant)

distribution as the shear forces. In figure 6.17 the stress at the middle

height of stirrups is shown along the length. Even for a constant shear
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Figure 6.15: RC cantilever force-displacement. a) bending, shear and total

displacements, b) contribution of shear deformation to total displacement.
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Figure 6.16: RC cantilever strain distribution along length. a) normalized

curvature distribution, b) normalized generalized shear strain distribution.
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load, stirrups stresses are concentrated at the fixed end, where maximum

moments are localized.

Figure 6.17: RC cantilever stirrups stress distribution along length.

A series of stress distributions are shown in figure 6.18 for different load

levels. It is interesting to note a crack-induced anitostropy effect under

shear-bending loading that occurs in the tensile zone. This situation is seen

in figure 6.18.a for high load intensities when compression stresses occur

below the neutral axis. These normal stresses correspond to the horizontal

component of the diagonal strut forces necessary to resist the applied shear

force as explained in figure 6.19.c.

During loading, the critical section (figure 6.18) goes through different shear

resistance schemes. In figure 6.19 the main stages are represented. The

first stage represents the behaviour before cracking where the section can

be considered as isotropic, as can be confirmed in figure 6.18, this is the

situation for a load level of 10KN .

At a certain level, the element cracked in flexure. The traditional hypotheses

of Strength of Materials predicts, under decoupled shear-normal stresses as-

sumptions, a stress distribution as in figure 6.19.b. As has been commented,

this result is not completely correct; nevertheless it can be acceptable at rel-

atively low loads, see stress distributions at 100KN in figure 6.18. This is

possible because at this load level, softening tensile stress is relevant in the

transfer of shear stresses and diagonal compression stresses are relatively
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Figure 6.18: RC cantilever stresses in the fixed-end section. a) normal

stresses, b) shear stresses, c) stresses in stirrups.
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small, thus Strength of Materials hypotheses are acceptable.

When shear force is increased, the effects of anisotropic cracked-concrete

are more apparent. Cracks in the tension zone become wider and transfer

of shear stresses is limited. Softened tensile stresses get smaller thus in

order to transfer shear stresses compression confinement is required. These

compression is supplied by diagonal compression and steel reinforcements.

The actual stress distribution is like the one sketched in figure 6.19.c. This

mechanism is noted in the analysed element from a load of 150KN .

When longitudinal reinforcements yield, the new increments of shear forces

are mainly sustained by the shear capacity in the compression zone. The

mechanism is evident for loads 180KN and 220KN . Strains keep growing

and concentrating in the tensile zone; however, since cracking are exten-

sive, the increment of new shear stresses is considerably less than in the

compression zone.

Figure 6.19: In-plane normal and shear stresses distribution under different

material hypotheses: a) linear-isotropic, b) cracked isotropic, c) cracked with

anisotropic behaviour.
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6.2.4 Moment-curvature of a RC section with concomitant

shear forces

The influence of a concomitant shear force in the non-linear characteristics

of an RC section will be investigated in the following case study. Usually,

the more important non-linear response of a frame section is considered to

be governed by its moment-curvature (M−φ) diagram, on which some char-

acteristic points can be identified (cracking, yielding and failure). Further,

the non-linear performance can be quantified by means of the curvature duc-

tility (µ = φu

φy
), which measures the section’s deformation capacity in the

inelastic regime while sustaining the loading.

A concomitant axial compression is known to influence the M − φ diagram.

In general, it reduces the section’s ductility and increase the resisting mo-

ment until moderate values of the axial load, a high axial force reduces the

resisting moment. Results that can be easily obtained by means of a fiber-

sectional model using only the Navier-Bernoulli kinematics. These aspects

are specially relevant for the geometric-second order behaviour of compres-

sion members (Bairan, 1999) and for the seismic performance of columns

(Moreno et al., 2004).

On the other hand, the effects of a concomitant tangential force is not easy

to evaluate, it is evident that the traditional fiber-sectinal analysis is unable

of doing it.

It has been traditionally assumed (Park and Paulay, 1978) that moderate

shear forces on “well-designed” sections should not significantly affect the

moment-curvature diagram. However, it is difficult to objectively stablish

the limits for this statement and the qualitative and quantitative conse-

quencies of high shear forces, see Bairan and Mari (2004). Moreover, as

previously mentioned (see chapter 1) and noticed from the previous case

study (section 6.2.3) the influence of shear forces gain importance in the

non-linear range.

The same cross-section used in section 6.2.3 will be analysed next to obtain

the M−φ curves under different levels of shear forces quantified as the shear
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Figure 6.20: Moment-curvatures curves for various shear-spans

span to effective depth ratio ( M
V d

). The section’s geometry and discretization

are the same as sketched in figure 6.14.b and 6.14.c, the materials properties

are summarized in table 6.4. In this study, a lower plastic modulus, of

200MPa, was used for the longitudinal reinforcements.

The obtained M − φ diagrams for shear to span ratios ( M
V d

) of 2, 3, 4 and 5

(considered as flexure dominated), are shown in figure 6.20.

It can be noticed that for increasing shear force (reducing shear span) all

non-linear characteristics are altered, specially for M
V d
≤ 3. Reduction of

ultimate bending moment and ductility are evident, but also are affected

the yielding moment, post-cracked bending stiffness and the hardening of

the inelastic branch.

Figure 6.21 shows the yielding and the ultimate bending-shear interaction

diagrams for this section. Note that the higher the shear force, the distance

between the two limit surfaces increases. The definition of the yielding point

is based on a biliniear representation of the moment-curvature that has the

same ultimate moment and curvature strain energy (area under the curve)

as the original curve.
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Figure 6.21: Bending-shear interaction diagrams for yielding and failure

loads.

Having identified the yielding point, the ductility can be computed for each

case. As shown in figure 6.22 ductility is reduced on increasing shear. Only

the four computed points are shown, however it is known that the curve has

a lower bound of 1 and a upper bound at the pure bending ductility.

The effect of shear force on the flexure stiffness is to reduce it in the elastic

range as seen in figure 6.23; but at the same time it increases the inelastic

stiffness and therefore the curve’s hardening, see figure 6.24. Under very

high shear forces, a convex shape is prediceted in the pre-yielding branch of

the moment-curvature, see the M
V d

= 2 curve in figure 6.20. This was also

noticed for non-proportional loading with more marked convex shapes, see

Bairan and Mari (2004).

The effect can be explained as an influence of the diagonal compression field

on the integration of the bending moment. Note in figure 6.20 that until a

curvature close to 0.002 rad
m

the M − φ curve softens, this is attributed to

an augmenting inclination angle of the diagonal compression field. As this

angle differs from the element’s axis, the diagonal compression influences

less on the σx stress component and hence on the effective inertia of the
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Figure 6.22: Influence of the shear-span ration on the curvature ductility

(µ = φu

φy
).

Figure 6.23: Influence of the shear-span ratio on secant bending stiffness.
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Figure 6.24: Influence of the shear-span ratio on flexure hardening.

beam.

In figure 6.25 the inclination angle of the principal compression stress has

been plotted for two fibers in the tension side (their coordinates are shown

in figure). After the mentioned curvature value, the M − φ diagram tends

to recover some of its stiffness. Figure 6.25 shows that this corresponds to

a reduction of the inclination angle thus to a higher component on the σx

field and effective inertia.

The fact that the shear force affects the longitudinal reinforcements in or-

der to equilibrate the diagonal compressions is a well accepted fact. This

is considered in some design provisions by prolonging these bars a certain

distance from that predicted by the bending moment diagrams. The span-

ish design code requires that the longitudinal reinforcement is designed for

an increment of stress in addition to the predicted by the applied moment.

Since the proposed model jointly considers both actions, this effect is catched

automatically as can be seen in figure 6.26.a. Here, the strains in the lon-

gitudinal bars have been plotted together with the bending moments for

different shear forces. It can be confirmed that for a given bending moment

an additional strain is present due to the shear force advancing the yielding.
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Figure 6.25: Compression field inclination at two crackes fibers for M
V d

= 2

However, as the shear force affects the longitudinal reinforcements, the bend-

ing moment also influences the stresses on the transverse reinforcement. This

fact is not yet recognized by the design codes though it has been experimen-

tally observed. It is also a consequence of the inclined compression on the

cracked side of the beam interacting with the normal forces and the bending

moments. The effect is also reproduced by the proposed sectional model as

seen in figure 6.26.b.

J. M. Bairán



Chapter6. Validation and case studies 171

Figure 6.26: Shear span influence on different reinforcements, a) strains in

longitudinal reinforcements, b) strains in transverse reinforcements.
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6.2.5 Confinement of a RC section

A square RC section of 120mm side is analyzed under compression load.

The section is confined with closed stirrups of a theoretical area of 61.5mm2

each 100mm, considered smeared for what conserns the numerical model.

Section core is a square of 100mm side. Concrete unaixial strength was taken

as fc = 30MPa. Stirrups yielding stress is fy = 340MPa, with an elastic

modulus of Es = 200, 000MPa and a yielded modulus of E1 = 20MPa.

The cross section discretization is presented in figure 6.27. With these para-

meters the theoretical failure load for the unconfined section is 432KN .

The theoretical ultimate load of the confined-core, considering complete

spalling of concrete cover, computed after the analytical model of Man-

der et al (1988), is 390KN ; a confinement effectiveness coefficient of 0.333

was used for these hand calculations.
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Figure 6.27: Cross section and finite element mesh.

In figure 6.28 the predicted force-strain deformation is shown, where a set of

six load stages are identified. In figure 6.29 these load stages are represented

in the form of normal stress fields and sectional distortion.

Two peak loads can be noticed in the force-strain curve. The first one

corresponds to the maximum load of the not spalled section, stage III.

However, even though confinement has not been completely developed, some

confined zones exists mainly on the core corners; for this reason, the first

peak load is slightly higher than the one computed as an unconfined section.
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Figure 6.28: Axial force-strain.
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Figure 6.29: Sectional distortion and σx distribution at certain load states.
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As seen in figure 6.28, after this stage, cover spalling develops rapidly and

softening occurs in the force-strain curve. Such effects can be properly

captured by the proposed model.

After complete spalling, a positive stiffness branch takes place since the

confined core is capable of resist higher stresses. A second peak load is

reached at stage V I. In figure 6.30 both stress and strain of the stirrups are

plotted as a function of the normal axial strain. It is shown that stirrups

begin to yield at load stage V .

Note that excellent correlation exists between confined core load predicted

by the model and the one predicted by the confinement analytical model of

Mander et al. (1988).
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6.3 Experimental case studies

In this section four sets of examples are presented for which experimental

information on RC elements is available in the literature. The first case

study deals with the problem of estimating the cracked torsional stiffness.

The elastic linear-brittle material L3DSCT presented in section 5.3 was used

to simulate crack effects in tension and linear compression in concrete. This

example is compared with the un-cracked and cracked stiffness predicted by

a well-established analytical formulation, Lampert (1972), corroborated by

a series of experimental tests carried out by Collins and Lampert (1972); in

fact, the cross section analysed corresponds to one of the specimens tested

by the mentioned authors.

The next two verification examples correspond to typical combined load

cases on RC elements, namely: combined bending-torsion and bending-

shear. Though these load combinations are typical in almost all type of

RC structures, there is not a unique rational formulation to properly design

and estimate the behaviour under such loads; instead, they are designed

under rather empirical or semi-empirical models.

The fourth set corresponds to a type of one-way RC slabs of common use

in Spain with unidirectional ribs and whose lateral reinforcement is a basic

3D steel truss.

6.3.1 Torsion stiffness of a RC section

In this section the proposed model is employed to compute the torsional

stiffness of a RC spandrel beam section tested by Collins and Lampert (1972)

after which they developed a formulation for estimating the cracked and un-

cracked torsional stiffness of the critical concrete section. In figure 6.31 the

analyzed section and the corresponding discretization are shown.

The obtained stiffness are compared to the analytical model developed by

Lampert (1972):

GJcr =
Es (b0h0)

2 Ah

2 (b0 + h0) s
(1 + m) (6.3)
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Figure 6.31: Studied section. a) dimensions and details, b) finite element

mesh.

where Ah is the cross-sectional area of the hoop bar, b0 and h0 are the

horizontal and vertical directions between the corners bars respectively, s is

the hoops’ spacing, m is the volume ratio of longitudinal reinforcement with

respect to the hoop reinforcement and Es is the steel’s elastic modulus.

This equation has been proved to be a well established formulation to pre-

dict torsional stiffness at first yielding, thus with uniform cracking and low

tension stiffening influence. For this reason the elastic linear-brittle material

L3DSCT presented in section 5.3 was used to simulate crack effects in ten-

sion and linear compression in concrete. The materials properties relevant

in this study are the elastic modulus of both concrete and steel, summarized

in table 6.5.

Table 6.5: Material properties for RC section under pure torsion

Ec 25, 364MPa

Es 200, 000MPa

It is well known that the mechanism of torsion resistance of reinforced con-

crete sections shows strong variations when comparing to the pre-cracked

and post-cracked situations, Hsu (1984). Before cracking, RC may be accu-
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rately considered as an elastic and homogeneous material. In this situation,

neither the transverse nor the longitudinal reinforcements collaborate to the

section torsion resistance. Because concrete exhibits low tensile strength,

the material cracks at a certain load and therefore the previous mechanism

can not be sustainable. After cracking, concrete is only capable of resist-

ing compression stresses; concrete will behave as orthotropic with material

principal directions depending on the principal stress directions. See figure

6.32
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Figure 6.32: Un-cracked-cracked torsion-curvature relationship.

If torque is increased after cracking, a new resistant mechanism is developed

in which longitudinal and transverse reinforcements are determinant. It has

been demonstrated, and used as basic hypothesis by many modern struc-

tural codes, that a cracked RC section under pure torsion can be assimilated

to a thin-walled section. The determination of the equivalent wall-thickness

is not a trivial task and still is not a closed problem. Although it is known to

depend on section’s geometry and reinforcement arrangement, codes guide-

lines are not objective enough for this problem. Empirical expressions are
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proposed for the minimum and maximum values of the equivalent thickness,

as is the case of the spanish code EHE (1999), but it is left to the designer

the responsibility of choosing the final value.

In figure 6.33 the shear stresses flow predicted by the model for the un-

cracked and cracked sections are shown.

The proposed model was capable of reproducing the phenomenon of thin-

walled effective section automatically without imposing additional hypothe-

sis other than no tensile resistance on concrete (by means of the appropriate

constitutive model) and the inherent hypothesis of the model already de-

scribed in the previous chapters.
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Figure 6.33: Shear stress flow. a) Un-cracked section, b) Cracked section.

Warping of the cracked section is shown in figure 6.34 together with the field

of vertical shear stresses. Relevant differences exist among the deformation

of the un-cracked and cracked sections. The most obvious one is the fact

that although un-cracked section does warps, its shape is not distorted as

does happens to the cracked section. This is plotted in figure 6.35 together

with the principal compression stress field. Again the tubular thin-walled

equivalent section is evident in figure 6.35.b.

Another difference of the two warping fields is related to the equivalent
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Figure 6.35: Cross-section distortion and compression stress field. a) Un-

cracked section , b) Cracked section.
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section’s shape and the influence of the reinforcing steel. To appreciate this

fact a lateral view of the deformed sections are presented in figure 6.36.

Note that the influence of reinforcement is poor and imperceptible since the

warped shape is perfectly symmetric with a zero value in the middle height.

On the other hand, the unsymmetrical distribution of the top and bottom

longitudinal reinforcements is evident in figure 6.36.b.
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Figure 6.36: Cross-section distortion and compression stress field. a) Un-

cracked section , b) Cracked section.

Stresses in lateral steels are plotted in figure 6.37, vertical and horizontal

branches are distinguished. As expected from the rectangular shape of the

section, vertical branches is more demanded.

Torsion-bending-axial coupling are apparent from figure 6.38 where stresses

in longitudinal reinforcements are plotted against torsion curvature. Both

top and bottom bars are positive loaded when a pure torsion is applied indi-

cating the torsion-axial load coupling arising from the cracked pattern. The

fact that top bars are more loaded than the bottom ones reflects the incre-

ment of bending-curvature, hence flexure-torison coupling directly related

to the asymmetric reinforcement scheme used (bottom steel ratio is higher

than top ratio).

Force couplings due to the cracked pattern can be perfectly verified if one
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compare both stiffness matrixes: for un-cracked section, equation 6.4, and

cracked section 6.5. The degrees of freedom in these matrixes are organized

as: εo, γy, γz, φx, φy, φz .

Focusing on the gross section matrix, equation 6.4, note that as for typical

isotropic sections, normal forces (axial load and bending moments) are un-

coupled from tangential forces (shear forces and torsion). Torsion is slightly

coupled to the shear force along Y direction since, do to the difference be-

tween bottom and top reinforcements, there is a little difference between the

center of shear forces and point the reference point. A similar statement can

be said with respect to the coupling of bending moment in direction Y − Y

(My) and the axial load (Nx).

Ks =
























3.06E09 0 0 0 −1.57E10 0

0 1.17E09 0 3.17E08 0 0

0 0 1.21E09 0 0 0

0 3.17E08 0 1.98E13 0 0

−1.57E10 0 0 0 5.31E13 0

0 0 0 0 0 1.79E13

























(6.4)

On the other hand, the cracked section’s stiffness matrix, equation 6.5 shows,

besides the expected smaller stiffness values, general coupling between nor-

mal and tangential forces. This effect is produced because cracks are inclined

with respect to the section’s plane.

Ks =
























6.22E08 −1.31E07 0 −3.04E10 −2.46E10 0

−1.31E07 1.15E08 0 2.42E09 2.57E10 0

0 0 1.80E08 0 0 2.19E10

−3.04E10 2.42E09 0 3.58E12 8.38E11 0

−2.46E10 2.57E10 0 8.38E11 1.88E13 0

0 0 2.19E10 0 0 5.99E12

























(6.5)
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Lampert’s model for cracked torsion stiffness considers pure torsion. There-

fore, to compute this value one must condensate degrees of freedom 1, 2, 3, 5

and 6 of the previous sectional matrixes. Results are compared in table 6.6.

Good agreement was obtained. It has to be mentioned that the proposed

model offers a far more complete information of the torsional stiffness, since

the interaction between all degrees of freedom is also obtained.

Table 6.6: Torsion stiffness comparison.

Collins & Lampert Numerical value Error

Gross stiffness KTg 19, 940KNm2 19, 851KNm2 0.45%

Cracked stiffness KTc 2, 200KNm2 2, 020KNm2 8.2%

6.3.2 RC sections under combined bending-torsion

In this section a series of RC beams under different combinations of bending-

torsion loading are analysed. The numerical solutions of the proposed model

are compared to the results of an experimental campaign carried out by

Onsongo (1978). Figure 6.39 shows the general test setup, internal forces

diagrams as well as the beam’s cross-section and mesh employed.

The tests were carried out varying the lengths XM and XT in order to

reproduce different torsion-moment relations. The campaign included two

different sets namely: TBO for over-reinforced beams designed to fail on

concrete compression and TBU for under-reinforced beams designed to fail

on steel tension. The analyzed sets are summarized in table 6.7, where R

stands for the torsion-bending ratio in the interaction diagram.

All beam tested had the same reinforcement shown in figure 6.39.c. The

failure mode was controlled by varying the concrete strength. Materials

properties considered are summarized in table 6.8.

In figure 6.40.a and 6.40.b the predicted interaction diagrams for both, over-

reinforced and under-reinforced sets, are plotted together with the experi-

mentally obtained diagrams. Figures 6.41.a and 6.41.b show the numerical
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Figure 6.39: Onsongo tests for bending-torsion interaction. a) test setup, b)

internal forces distribution, c) typical cross-section reinforcement, d) cross-

section mesh.

Table 6.7: Series of bending-torsion tests modeled

TBO series TBU series

fc = 20MPa fc = 35MPa

TBO1 TBO2 TBO3 TBO4 TBU1 TBU2 TBU3 TBU4

XT (m) 0.000 0.610 1.200 1.911 0.000 0.616 1.200 1.911

XM (m) 2.321 2.321 1.711 1.254 2.359 2.359 1.724 1.267

R = T
M

0.000 0.261 0.701 1.524 0.000 0.261 0.696 1.509
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Figure 6.40: Bending-torsion interaction diagrams. a) Over-reinforced sec-

tion, b) Under-reinforced section.
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Table 6.8: Material properties for bending-torsion tests

fc (TBO beams) 20MPa

ft (TBO beams) 2MPa

fc (TBU beams) 35MPa

ft (TBU beams) 3.5MPa

fy (φ10) 400MPa

fy (φ12) 393MPa

fy (φ25) 436MPa

Es 200, 000MPa

and experimental T −φx curves for TBO4 and TBU2 beams are plotted. In

general the proposed model showed good correlation with the experimental

data.

To show the predicted stress fields, in figure 6.42 the principal compression

stress distribution is plotted for beam TBO4. At a cracked load stage it

is shown that compression normal stresses (σx) are present all along the

section’s perimeter due to the presence of shear stresses in a cracked domain.

This situation is clearly appreciated in figure 6.42 where horizontal and

vertical cuts on the σx field were performed along the flanges and webs

respectively.
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Figure 6.41: Experimental and numerical torsion-curvature curves. a) Over-

reinforced section, b) Under-reinforced section.
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6.3.3 RC sections under shear loading

In this section, the developed model is tested under shear loading of RC sec-

tions. Two types of experimental tests are used to corroborate the predicted

numerical results. The first type corresponds to a normal strength concrete

beam under shear loading tested by Kani (1977). The second type of beams

corresponds to a shear loading campaign on high strength concrete, Cladera

(2002).

Normal strength reinforced concrete beams (Kani tests)

The test setup is shown in figure 6.44, together with the critical cross section

definition and the sectional discretization used. The materials properties

considered are indicated in table 6.9.

Table 6.9: Material properties for shear test of normal strength concrete

beam.

Concrete

fc 28.2MPa

ft 1.75MPa

Ec 25600MPa

ν 0.2

Longitudinal steel
fy 442MPa

Es 200, 000MPa

Transversal steel
fy 400MPa

Es 200, 000MPa

The test was thought so the region of study is localized between positive and

negative bending moments of equal magnitude. The goal is to reproduce an

inflection point in the middle of the study region where only shear forces

exist.

The test was designed so that a section of null moment but non-zero shear

force exists in the middle of the region of study. This was achieved by
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assuring that the analyzed zone was bounded by moments of different signs

and the same magnitude at every time. The objective was to evaluate the

pure shear strength of the element.

Figure 6.44: Pure shear loading test. a) test setup, b) cross-section, c)

cross-section mesh.

The experimental results and the numerical prediction of the proposed model

are plotted in figure 6.45 showing good correlation.
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Figure 6.45: Experimental and numerical shear force-strain curve normal

strength beam.

High strength reinforced concrete beams (Cladera tests)

In the following, some experimental high-strength RC beams tested under

shear loading by Cladera (2002) are analyzed. The test setup consisted in a

simple supported beam with a single load in the middle-span at a distance

a = M
V

= 3d from the support,see figure 6.46. Under this conditions, all

sections of the beams are subjected to combination of shear and bending

moments with a critical section in the middle span. Nevertheless, this section

is influenced by the presence of the applied load making it to behave as a

D −Region rather than according to beam theories.

Because of this, the critical section was considered to be located a distance

equal to the beam’s height from the applied load. Thus in the numeri-

cal analysis of the critical section, shear forces and bending moments were

applied with a fixed ratio of M
V

= 680mm.

In figure 6.47 the experimental set H50 of RC beams, with a concrete

strength fc = 50MPa, is presented together with the typical mesh used

for the numerical study. In this work, only the study of three of such beams

is presented, corresponding to the specimens H501, H502 and H505.

Specimen H502 beam was reinforced with stirrups to resist shear loads, and
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Figure 6.46: Shear-bending tests. a) test setup, b) internal forces diagrams.
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was designed to assure the yielding of stirrups. On the other hand, both

specimens H501 and H505 were beams without transversal reinforcement

and the same main longitudinal reinforcement. The difference between these

two beams is that specimen H505 had skin longitudinal reinforcement along

its height in contrast with beam H501.

Figure 6.47: Set of beams analyzed. a) cross sections, b) typical cross-section

mesh.

In figure 6.48 the numerical and experimental V −γ curves are plotted for the

three beams analyzed. Excellent agreement among numerical and predicted

solutions is observed for beams H501 and H505, figures 6.48.a and 6.48.c.

Good agreement in the non-linear response was obtained for Beam H502.

The model predicts well the yielding load and plateau including the observed

hardening up to 90% of the experimental failure load.

In figure 6.49 the shear force is plotted with respect to longitudinal bottom

reinforcement and stirrup strains comparing the predicted results of the

model with a series of experimentally measured strains by means of strain-

gauges. In figure 6.49.b the plot includes two measures of the same stirrup at

half the section’s depth and at 50mm from the bottom edge. The possition

of the strain gauges in the beam is shown in figure 6.50.
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Figure 6.48: Experimental and numerical shear force-deformation curves.

a) H501 beam, b) H502 beam, c) H505 beam.
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Figure 6.49: Experimental and numerical shear force vs. various reinforce-

ment strain for H502 beam. a) shear vs. longitudinal bars strain, b) shear

vs. stirrups strain.

Figure 6.50: Typical location of strain gauges. Cladera (2002)
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Specimens H501 and H502 can be used to illustrate the differences in the

stress fields of sections with and without lateral reinforcement for shear

resistance and with equivalent bending reinforcements. With this objective

the corresponding σx and τxz fields are plotted just before failure, in figures

6.51 and 6.52 respectively. Figures 6.53 and 6.54 show vertical cuts of the

normal and shear stress fields. Three cuts were performed to specimens

H501 and H502, one along the center line and two close to the section’s

edge.

The specimen with stirrups, H502, presents a more uniform distribution of

both normal and shear stresses in the cracked zone than the specimen with-

out transversal reinforcement. In beam H501, figures 6.51.a and 6.53.a, it

can be seen a concentration of compression normal stresses (originated from

the horizontal component of the generated diagonal diagonal compression

field) around the two tensile reinforcements, while they tend to disappear in

the center lower zone. This is interpreted as the effect of the bidimensional

shear field flowing to the longitudinal steel to get anchored. Distribution

of shear stresses tend be higher on the compressed zone of the beam and

around the perimeter in the tension zone, as confirm from figures 6.52.a and

6.54.a. It is interesting to notice the marked influence of the diagonally com-

pression field in the cracked concrete of H502 which can be seen in figures

6.51.b, 6.53.b.

To show the influence of skin longitudinal reinforcements, two vertical cuts

of the vertical shear fields are plotted in figure 6.55 for H501 and H505

specimens. These cuts correspond to the penultimate load step before fail-

ure. It is observed that skin reinforcement, figure 6.55.b allows the upper

fibers of the cracked region to collaborate more in shear resistance than in

case of null skin reinforcement. As a result, section H505 resists 20% more

than the failure load of section H501.
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Figure 6.51: Computed σx stress field at a high level load. a) H501 beam,

b) H502 beam.
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Figure 6.52: Computed τxzx stress field at a high level load. a) H501 beam,

b) H502 beam.
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Figure 6.53: Vertical cuts in the τxz stress field at a high level load. a) H501

beam, b) H502 beam.
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Figure 6.54: Vertical cuts in the τxz stress field at a high level load. a) H501

beam, b) H502 beam.
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Figure 6.55: Vertical cut in the τxz stress field in the section’s perimeter at

a high level load. a) H501 beam, b) H505 beam.

6.3.4 Behaviour of RC ribbed-slabs with basic truss rein-

forcements

In the following case study, the behaviour of an one-way RC ribbed-slab

of common use in Spain will be investigated using the proposed sectional

analysis formulation. Thes main characteristic of this structural type is the

use of a basic 3D steel truss as shear reinforcement.

An experimental campaign was carried out in the Structural Technology

Laboratory of the Technical University of Catalonia, Mari et al. (2005),

on two sets of two nominal identical specimens each. Sets one and two

correspond to a truss height of 200mm and 225mm respectively.

Test setup and typical cross-sections of both types of beams are shown in

figures 6.56 and 6.57. After the tests were conducted, the proposed numeri-

cal model was used to reproduce the response of the critical sections and to

achieve a better understanding of the behaviour of such beams.

In the present analysis only one rib of each element type was modeled. The

cross-section meshes used for the two types of beams are presented in figure
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Figure 6.56: One way slab test setup.

6.58. The actual material properties of the beams were obtained by means

of characterization tests. The mean values are summarized in table 6.10.

Table 6.10: Material properties for one-way slabs.

Type 1: 200mm truss Type 2: 225mm truss

fc 35.1MPa 35.1MPa

ft 3.47MPa 3.47MPa

fy (Truss steel) 809MPa 778MPa

fy (Long. steel) 588MPa 661MPa

In figure 6.59 a comparison between the experimental and numerical results

are shown for both types of beams in the form of total shear (for the two

ribs element) against strains in inclined bars of the truss reinforcements.

Relatively high dispersions exist on the measured strains for the same ap-

plied shear force. In figure 6.59 it is only shown the mean, the maximum

and minimum experimental truss strains together with the prediction of the
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Figure 6.57: One way slabs cross-sections. a) Type 1 beam, b) Type 2 beam.
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Figure 6.58: One way slabs cross-section mesh. a) Type 1 beam, b) Type 2

beam.
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proposed model.

This dispersion can be attributed to the fact that, because of the geometry

of the steel truss used as shear reinforcements, spacing of each truss branch

is unusually large. Thus cracking occurs in a rather discrete fashion with

large spacing and widths. Therefore, if a truss branch is crossed by a crack

it will be considerably more loaded than another branch. The expected

variability of cracking patterns and concrete tension behaviour justifies the

observed dispersion.

The constitutive model used in this analysis (section 5.4) is based under the

assumption that cracked concrete can be simulated as new material were

cracking is a continuum material property. Therefore, cracking is consid-

ered smeared instead of discrete. Although patterns characterized by few

and wide cracks, as the one obtained in this experiment, are not strictly con-

sistent with this material hypotheses, the model presented good agreement

with the average observed behaviour, see figures 6.59.a and 6.59.b.

In figure 6.60 views of the two distort sections and the normal stress field

are shown for a load step close to failure. The vertical shear stress fields

corresponding to this stage are shown in figure 6.61.

It is remarkable that the shallow truss produces a more uniform shear stress

distribution, being more effective than the tall one. This effect can also be

seen in figures 6.62 and 6.63 where cuts on the vertical shear distribution

in the web and flange have been plotted together with the horizontal shear

distribution on the flange. In spite of the large spacing of the transverse

reinforcemet, their influence can be appreciated.

The estimation of the values of stresses in the inclined truss branches are

plotted in figure 6.64. The left branch corresponds to the truss member

with positive inclination with respect to the element axis, hence it is loaded

with negative stresses under the applied load. The branch on the right is

representing the elements with negative inclination, therefore loaded with

positive stresses.

As the shallow-truss beam, type 1, branch inclination is closer to the theo-
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Figure 6.59: Shear force - truss strain curves. a) Type 1 beam, b) Type 2

beam.
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Figure 6.60: Normal stress field (σx) and warping. a) Type 1 beam, b) Type

2 beam.
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Figure 6.62: Cuts on shear stress field for type 1 beam. a) Vertical shear

stress (τxz), b) Horizontal shear stress (τxy)

Figure 6.63: Cuts on shear stress field for type 2 beam. a) Vertical shear

stress (τxz), b) Horizontal shear stress (τxy)
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Figure 6.64: Stresses in truss reinforcement. a) Type 1 beam, b) Type 2

beam.

retical optimum direction of 45 ◦, higher levels of stress can be seen in figure

6.64.a with respect to figure 6.64.b.
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Chapter 7

Conclusions

7.1 Global results

The main objective of this thesis is to extend the fiber-like cross-section

analysis of frame elements so that it is able of capture the coupling ef-

fects between the six possible stress resultants under 3D loading: normal

force, biaxial shear force, torsion and biaxial bending moment. In addition,

the resulting methodology must be applicable to the non-linear analysis of

reinforced concrete elements of any cross-section shape and reinforcement

arrangement. These requirements introduce important difficulties compared

to the bidimensional shear-bending interaction analysis or trhee-dimensional

coupling under bending and axial load as were highlighted in section 1.1 of

this thesis.

At the ending of this research, it is considered that both general and specific

objectives stated in section 1.2 were achived with the desired generality,

thoroughness and formality.

The global results of this research can be summarized in the following:

1. A generalized cross-section formulation, valid for any material behav-

iour and capable of reproducing the coupling effects, under any com-

bination of internal forces, without renouncing to a bidimensional sec-
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tional domain.

2. The implementation of the proposed formulation in a finite element

scheme and the development of a computer program for non-linear

structural analysis that contains the proposed cross-section model.

3. A series of constitutive material models, particularly a 3D non-linear

constitutive model for cracked concrete capable of non-linear Poisson

deformation, confinement enhancement, cyclic loading and prepared

for non-mechanical strain offsets.

4. A series of investigations on the detailed coupled behaviour RC sec-

tions under different combinations of normal and tangential loadings,

thus contributing to the understanding of the resistance mechanism of

reinforced concrete and cross-section mechanics.

7.2 General conclusions

The general conclusions derived from this research are the following:

1. By means of the adequate cross-section kinematics, three-dimensional

and local stress states can be reproduced in the scope of a cross-section

analysis in the 2D domain. This is valid for any material, section’s

geometry and load combination.

2. A variational formulation was proposed that complements the stan-

dard set of beam equilibrium equation and enhances the solution ob-

tained from a frame analysis to 3D equilibrium. It can be used to

express the sectional warping-distortion kinematics as a function of

the beam genaralized strains.

3. The developed model assures internal fiber equilibrium under 3D load-

ing. The equilibrium is evaluated locally using a single cross-section in

a differential form (no dual-sectional analysis is required). As a result

the sectional model is independent of any frame element formulation

and only required input are generalized strains at a single point.
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4. For complex materials, such as cracked RC concrete, local stress distri-

butions and coupling effects between concrete matrix, transverse and

longitudinal reinforcements can be propertly captured at the sectional

analysis level.

In summary, it can be stated that combining a one-dimensional structural

model (by means of beam-column elements), the proposed two-dimensional

model of the cross-section and a three-dimensional constitutive equation, it

is possible to reproduce three-dimensional phenomena without need of 3D

solid discretization of the geometry.

The specific conclusions obtained from the different stages of this research

are described in the next section.

7.3 Specific conclusions

7.3.1 Integration of the response of RC sections under cou-

pled 3D loading

1. Constitutive models of the smeared-cracks type are a feasible approach

to take into account the directional response of cracked concrete under

combined normal-tangential loading in a cross-section analysis.

2. Unlike to the distribution of normal strains, which is well character-

ized by the plane-section hypothesis, the distribution of tangential and

out-of-plane strains and stresses depend on the section’s shape and

material response. In the case of reinforced concrete sections, these

patterns vary with the evolution of concrete damage and reinforcement

yielding.

3. When constituent materials present anisotropic response, inter-fiber

equilibrium can not be satisfied without considering the section’s dis-

tortion.

4. Shear and torsion resistance mechanisms of cracked reinfoced concrete

sections with transverse reinforcements are possible because the sec-
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tion’s shape distorts. Therefore, a correct distortion kinematics is es-

sential for a rational evaluation of the bearing mechanims in all loading

range.

5. The proposed formulation is based on a consistent decomposition of

the full 3D equilibrium problem into the beam equilibrium problem

(“equilibrium at the structural level”) and a complementary orthogo-

nal solution (“equilibrium at the sectional level”) to account for the

inter-fiber equilibrium problem lost in beam problem. The comple-

mentary problem is solved within the cross-section domain, by means

of static condensation it is posed as a function of the structural level

problem. Therefore, the sectional model does not requires additional

input variables.

6. A sectional stiffness matrix was derived based on the proposed for-

mulation. It reflects the internal forces coupling effects observed in

cracked-concrete elements consistently with the principles of mechan-

ics (energy conservation, internal equilibrium and compatitibility). In

general, the matrix has terms outside of the principal diagonal for any

degree of freedom, depending on the anisotropic material arrangement

or crack pattern in the case of RC. If the constitutive relation used pro-

duces a symmetric constitutive matrix, the sectional stiffness matrix

will also be symmetric.

7.3.2 Implemented constitutive models

1. A concrete material model was implemented in order to realistically

simulate its three-dimensional behaviour considering cyclic loadings.

It presents stiffness degradation (damage-like) in tension and residual

strains (plastic-like) in compression. Full three-dimensional non-linear

behaviour is achieved by means of a non-linear Poisson coefficients and

a three-dimensional failure surface. Effects of the concrete strength is

taken into account in the compression backbone stress-strain curve.

2. Response directionality can be traced during general loading by means

of non-isotropic damage and plastic strain tensors. The former allows
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to store the tensile stiffness degradation in all directions in a compact

form. In the same manner, the residual compression strains are stored

in all diretions by means of the plastic strain tensor.

3. All developed materials model allow for elastic offset strains, therefore

creep, shrinkage and other non-stress related deformations as well as

prestrains can be further implemented.

4. Concrete and steel constitutive models were tested under single-point

stress-strain loading combinations obtaining good agreement with the

expected phenomenological responses.

7.3.3 Case studies

1. A series of case studies were carried out and presented in chapter 6.

The model was employed to simulate theoretical and experimental case

studies of different combinations of tangential and normal forces. The

results were in good agreement with the known theoretical response

and the experimental observations.

2. The model was proveed capable of automatically reproduce some ef-

fects that other sectional formulations would require additional hy-

potheses to approximately do so. This is the case of local and free-

edge effects in composite laminates, evolution of confinement and cover

spalling under axial loading, cracked torsion stiffness and the correct

shear flow pattern under cracked torsion and shear considering the

reinforcements arrangement.

3. The importance of shear deformation on the displacement of a RC

frame element is variable under non-linear loading. Particularly, it

was shown that for slender RC elements, with small shear deformation

contribution in the elastic analysis, after cracking it can increase up

to non-neglectable values (exceeding 10% for the case studied).

4. Under inclined cracking, a component of the diagonal compression

field is present in the distribution of normal stresses in the tensile

zone. This effect can be beneficial to the bending stiffness.
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5. High concomitant shear forces reduce the secant bending stiffness, duc-

tility, ultimate and yielding bending moments. However, hardening

tends to increase.

6. In the same way that tangential forces affect the stresses at the lon-

gitudinal reinforcements under inclined crack patterns, normal forces

and bending moments influence the stresses at the transverse rein-

forcements. This effect was reproduced by the proposed model.

7. Experimentally obtained bending-torsion interaction diagrams were

reproduced with good accuracy, both for underreinforced and overre-

inforced elements. For the rectangular sections studied, it was shown

that up to about 40% or 60% of the ultimate bending moment, torsion

resistance is essentially the same as for pure torsion. After this point

torsion resistance decreases to zero for the ultimate bending moment.

8. As shown in the case study of the ribbed-slab with truss-like trans-

verse reinfocements (section 6.3.4), very large spacing of transverse

reinforcements results in rather discreate cracking patterns and con-

siderably dispersed strains in such bars. These types of arrangements

are not consistent with the sectional analysis concept. However, the

predicted response of the transverse reinforcements was a mean value

of the experimental observation.

7.4 Recomendations for future studies

The present research work has opened many possibilities for future stud-

ies, both under the theoretical and practical viewpoints, some of these are

summarized in the following:

• To study the overall non-linear response of complete frame structural

systems considering the influence of strong tangential internal forces.

Particularlly, the seismic response of concrete structures and other

cyclic actions producing high tangential internal forces are of interest.
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• To study the behaviour of repaired structures and the use of composite

materials in strengthening of frame elements. The role of coupled shear

and torsion internal forces in the developement of secondary failure

modes and the overall ductility can be investigated.

• To study the behaviour of structures made mainly of composite mate-

rials considering local stresses effects that traditional sectional analysis

are not capable of reproducing.

• To study the confinement of hollow-core and complex shaped sections,

usually used as columns and bridge piers.

• To investigate the confinement of high-strength concrete elements.

• To develop simplified rational models for shear and torsion resistance

accounting for irregular section’s shapes. In particular, the case of

variable section’s width in the shear resistance should be considered.

• To develop simplified and rational proceedures to evaluate the shear-

torsion bearing mechanism of sequentially constructed concrete ele-

ments with more than one type of concrete.

• To enhance the sectional model to consider reinforcements bond-slip

by means of a rational scheme, similar to the one used in this thesis to

include tangential generalized stresses. Furhter, the influence of this

phenomenon on the sectional response under tangential forces can be

studied, specially on the post-yielded state.

• To include the variation of warping and distortion with respect to the

frame element’s axis. This will allow to simulate higher order effects

such as shear-lag and warping-torsion.

• To develop a “D-region” element to simulate the non-linear response

of joints and the effect of point loads in the scope of frame element

analysis.
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