
Chapter 4

Continuous

Color Formation Model

4.1 Introduction

The main endeavour in this Chapter is the study from a theoretical point of
view of the nature of the transformations which drive the change in the color
of objects due to a variation of the lighting conditions that may exist at the
moment two different images from roughly the same scene are taken. The
precise knowledge of the kind of applications involved in such a process is an
a priori stage in the treatment of any color constancy issue as will be more
specifically tackled in the next Chapter.

To this purpose a framework is suggested undertaking both analytically and
numerically that question as a natural generalization of the usual color formation
equations. This formulation is able to describe the formation of multispectral
color signals by means of a continuous expression that is discretized as needed
in order to attain handier computational schemes. Such a reformulation of the
color formation equations presents some advantages, e.g., sounder mathematical
foundations, independence from the particular discretization employed, along
with that of encompassing several other previous well–known approaches that
have been suggested physically modeling the color phenomenon.

The continuous color formation equation turns out to be identified as a Fred-
holm’s Integral equation of the First Kind (IFK), which is helpful to establish
the least theoretical conditions for the solution to exist, be unique, and numer-
ically well–behaved, as it is more deeply explained in Appendix A. We also
propose an analytical solution to both the spectral recovery and the color map-
ping computation from where more useful numerical schemes are derived. The
theoretical framework gives an inner insight on what is involved in the color
change problem, besides being an interesting starting point to other matters
such as numerical stability or the sort of constraints that should be fulfilled in
order a proper solution exists.

As said before, a numerical version of the aforementioned IFK approach
is given in order to make practical computations along with the type of data
commonly available in this kind of research. The continuous equation has to be
discretized and this can not be done in an unkindly manner, as sometimes it is
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the case. In Appendix A some helpful examples of discretization methods are
described. This way, the IFK model can be related with several widely known
physical models of color formation.

In the Section devoted to results two problems are numerically studied,
namely, the spectral recovery of reflectance functions from sensor measures and
the explicit computation of color mappings by applying the previous group of
physical models. Our aim is that of comparing the results obtained using the
IFK model to those obtained with other alternative models to evaluate their
mutual performance in the two types of experiments. Independently, a least
squares fitting of the maps accounting for the color change is also undergone.
The goal of this approach is to discern whether or not actual data really fulfills
the linear transformations that the physical models suggest and to what extent.
Results show the accuracy for both the linear hypothesis and the physical mod-
els considered so far. Accordingly to these results, some simplifications to the
general linear model can be established to ease the color constancy algorithms
that will be proposed in the next Chapter.

4.2 Outline of the Chapter

In Section 4.3, we briefly describe the classical color formation model which will
be used as the starting point in this Chapter. In Section 4.4, we rewrite this
model as an integral equation exploited in Section 4.5 to set out the theoretical
basis of the color change problem. In Section 4.6, the generalized color transfor-
mation is analytically proposed in terms of the solution of an integral equation.
We also study its numerical properties and stability. In Section 4.7, a discretiza-
tion of the previous color transformation is described. In Section 4.8, we relate
the present approach to some of the most interesting former physical models
which color constancy is based on to explicitly state how the latter ones can be
derived from the former. Experiments and results are described in Section 4.9.
Different subsections are concerned with sensor fitting, spectral recovery, and
computation of color mappings. Finally, in Section 4.10, we briefly present our
conclusions.

4.3 Color Formation Model

To begin with, we need a mathematical model embodying the predominant
phenomena occurring in the formation of color images. Basically, there are
two main processes involved, namely, light reflection on the object’s surfaces
and camera measurement of the light coming out from this reflection. For the
first one, it is necessary to describe the mutual interaction between light and
surfaces as it is seen from a point upon the image plane. Accounting for the
second issue, the way a sensor integrates the light falling onto the image plane
must be established.

These two issues are concisely dealt in this Section, where a complete mathe-
matical model is put forward describing the physical process involved in the color
formation, which are common to a number of other multispectral approaches.
By a natural generalization of these equations, a continuous color formation
function is suggested in the next Section. This model will not be used in pos-
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terior Sections to only study the spectral recovery, but also the color constancy
problem.

4.3.1 Reflection Model

The alteration followed by a light beam from its birth to its fall into the camera
sensor can be described as a set of successive reflections on the surfaces of the
objects in the scene. This way, light changes its wavelength composition as
it touches different surfaces. To explain this apparently chaotic process, it is
usually defined a reflection model tying the light arriving onto and leaving from
an infinitesimal surface element. This information is encompassed by the surface
spectral reflectance function.

The diversity of reflection models found in literature is huge and their review
is out of the scope of our work. However, let us cite those of Lambert (1760),
Torrance and Sparrow [TS67], Wolff [Wol94], Phong [Pho75], the Bidirectional
Reflectance Distribution Function (BRDF), and the dichromatic model [Tom91]
just as the most widespread in both computer vision and computer graphics.

Basically, all of them model the surface spectral reflectance function as a
linear combination of different approximating functions each one describing a
specific physical hint of the reflection phenomenon. In order to avoid being
computationally expensive or excessively complex, most of the above models
only take into account two aspects of the reflection phenomenon, namely, the
diffuse reflection and the specular reflection.

The first one appears when a surface reflects the same proportion of incident
light in all directions. This reflection component is known as the Lambertian
component and is the basic constant component for all the surface reflectance
models. The specular reflection shows up when the incident light is mainly
reflected in a particular direction. In this case, the proportion of reflected light
depends upon both the incident and viewing directions and upon the physical
structure of the surface (texture). This component causes highlights and the
glossy aspect of objects.

If we assume that there is no specular component – because it was removed
or did not exist – in the surface reflectance function, i.e., a Lambertian model
for the surface reflectance, then the image irradiance I defined as the total light
focused by the optical system on the camera onto the image plane in a surface
element, forming an image pixel x, will be the quantity

Ix(λ) = Rx(λ)Ex(λ) (4.1)

where Rx(λ) is the spectral reflectance function of the piece of surface that
optically corresponds to the pixel x and Ex(λ) is the spectral power distribution
of the light beam falling onto x. Both I , E, and R are all nonnegative functions
of both the wavelength λ and the pixel x, but they depend neither on the
incident nor on the viewing directions.

In this model, the geometry of the object surface is merely a scale factor
in function E since the surface is Lambertian. Such a factor can be removed
by normalization of this function. Despite its simplicity, this surface reflectance
model is pretty correct unless sever interreflection and specular reflection occur.
This is the reflection model we are using throughout this work.

At last, empirical studies showed that both real illumination and reflectance
are relatively smooth functions of the wavelength of light in the visual spec-
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trum (400÷ 700 nm). Hence, finite–dimensional linear models were introduced
to describe spectral power distributions by Buchsbaum [Buc80], who extended
previous works by Helson [Hel38] and Judd [Jud40, JMW64]. Similarly, re-
flectance functions of a great variety of materials have also been studied. Cohen
[Coh64], Parkkinen et al. [PHJ86], and Maloney [Mal86] studied the reflectance
properties of the Munsell chips as well as Vrhel et al. [VGI94], Krinov [Kri47],
and Wyszecki and Stiles [WS82] considered the reflectance of naturally occur-
ring surface materials.

4.3.2 Sensor Model

A general camera can be seen as an array of p sensors Sh(λ), where h = 1, . . . , p.
Usually, p = 3 in color cameras, but this framework is likewise valid for mul-
tispectral imaging sets, where p > 3. Each of these sensors, Sh(λ), measures
the light Ix(λ) arriving onto the image plane and giving rise to the hth channel
value yxh for the pixel x in the image [VFTB97a, VFTB97b, VFTB97c, KAPH94,
ST97]. This is generally modeled as

yxh =

∫ λ1

λ0

Sh(λ) Ix(λ) dλ , h = 1, . . . , p (4.2)

where [λ0, λ1] is the interval where these sensors operates (400÷ 700 nm).
However, accordingly to Vora et al. [VFTB97a, VFTB97b, VFTB97c], in

most of real CCD cameras some other processes may occasionally take place
distorting the output signal of the sensor. For example,

• Sensor response is not always linear along with the amount of energy onto
it and a nonlinear function Fh should be taken into account to model the
sensor output.

• Since cameras were made for grabbing images to be displayed in a TV
set, sensor outputs are softened by an exponential factor called gamma
correction, γh.

• Also, there is an amplifying factor, αh, that accounts for the white correc-
tion in color cameras and other electronic signal amplifications.

• The dark current, βh, may also occur. This is caused by an offset noise of
sensors that detect some light while in darkness.

For the hth sensor in a camera and for every pixel x in an image, its corre-
spondent output signal, yxh , is

yxh = αh

[

Fh

(

∫ λ1

λ0

Sh(λ) I x(λ) dλ

)]
1

γh

+ βh , h = 1, . . . , p (4.3)

To go further in our color research first we should remove all these sensor non-
linearities. Vora et al. [VFTB97a, VFTB97b, VFTB97c] and Vrhel and Trussell
[VT93] showed some feasible methods to calibrate color devices. Barnard [BF99]
also suggested calibration as a first step in any color research. Nevertheless, for-
mer calibrations are difficult to carry out because the needed set is expensive
and pretty restrictive. Alternatively, there also exists a kind of calibration called

Jaume Vergés–Llah́ı MMV
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radiometric [DM97, MN99]. In the underlying idea of this method, the sensor
response is estimated varying the exposure under which the picture is taken.
This observation permits estimating of a linearized response without any prior
knowledge of the scene radiance and no special device. Without going into more
details on this subject, from now on we suppose we are always using linearized
sensors following Eq. (4.2).

4.4 Continuous Color Formation Model

Hence, it has been assumed that the response of any channel for any pixel in
the image plane can be expressed with a set of equations as

yh =

∫ λ1

λ0

Sh(λ)E(λ)R(λ) dλ , h = 1, . . . , p (4.4)

where yh is the value in the hth channel at a certain pixel1. Thus, we define
the color vector as the set of values y = (y1, . . . , yp), where p is the number of
channels.
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Figure 4.1: Example of an idealized sensor function.

From the sensor functions found in practice, we build up the new continuous
function in a way that each of the former sensor functions can be derived as
an instance centered at a particular wavelength. Let us define the continuous
sensor sensitivity function S as a real–valued, smooth, nonnegative, bounded,
and nonsingular function such that

• S : [µ0, µ1] × [λ0, λ1] → [0, 1]

• 0 ≤
∫ µ1

µ0

∫ λ1

λ0

S(µ, λ) dµ dλ ≤ 1

• S(µh, λ) = Sh(λ), ∀h = 1, . . . , p

1From now on we obviate the explicit reference to the pixel x.
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for a finite set of wavelengths µh. For example, an idealized sensor would be

S (µ, λ) = k · exp
(

− (µ− λ)
2

σ2

)

(4.5)

as seen in Fig. 4.1, where some instances of that function are shown at a discrete
set of wavelengths µh.

Then, as a consequence of the previous definition, we can also think of a
continuous sensor output signal expressed as

y : [µ0, µ1] −→ [0, 1]

µ 7−→ y(µ) =

∫ λ1

λ0

S(µ, λ)R(λ)E(λ) dλ (4.6)

The function y(µ) is the continuous color function whose discretization is
given by a set of physical sensors. These sensor outputs have the following
property

y(µh) = yh , h = 1, . . . , p (4.7)

so, any color output is a vector as y = (y(µ1), . . . , y(µp)). This way, we have
naturally generalized the equations for the formation of a color response into
only one and continuous general expression, which therefore includes Eq. (4.4) as
a particularization of it, despite the number and nature of the sensors involved.

It can be argued about the reasons of appending a new parameter to the
original sensor model. Some reasons for such a generalization are

• It allows a more general and mathematically sounder theoretical treatment
of the color formation issue.

• Other former well–known models of color formation can be derived from
this continuous equation, as will be seen later.

• Any property developed from this equation is discretization–dependent,
since it lives in the continuous domain, being valid for no matter the num-
ber of sensors, which should be considered prior to any particularization.

• This equation relates the color formation expressions to the set of Fred-
holm’s Integral equation of the First Kind (IFK), whose properties and im-
plications to color change will be extensively studied later on this Chapter
and also in Appendix A.

Let us define the following functions, called kernels, in order to transform
Eq. (4.6) into a proper IFK-like formulation

KE(µ, λ) = S(µ, λ)E(λ)

KR(µ, λ) = S(µ, λ)R(λ)







(4.8)

These functions represent, in a generalized way, a measurement process. De-
pending on the problem, we select one of the two functions to write the cor-
responding IFK. For example, in case we want to calculate the spectral power
distribution E(λ) from the spectral reflectance function R(λ), we should use the
kernel KR(µ, λ) since function E is the unknown and R is the data.
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In our case, we are interested in using the KE(µ, λ) kernel because any
change in the illumination can be thought as a change in the measurement of
the color function, i.e., a change in kernel KE . The kernel reflects how this
measure is carried out by melting down sensors and illumination, which forms a
new set of virtual sensors. If the illumination conditions change, the kernel will
change accordingly. This is the reason why the illumination information must
be embedded in the kernel function.

Finally, for any pixel, we get an IFK equation like those described in [Pip91,
Kre89, Han00, Win91] and in Appendix A, i.e.,

y(µ) =

∫ λ1

λ0

KE(µ, λ)R(λ) dλ, µ ∈ [µ0, µ1] (4.9)

4.5 Generalized Color Transformation

As seen, while it is the information about a surface that is carried by the surface
reflectance function R(λ), what color cameras provide is just a measure of the
color function y(µ) at a discrete set of wavelengths {µh}. Therefore, whereas the
reflectance function is an obvious invariant descriptor for a surface, its color is
largely dependent on two factors, namely, the sensor S(µ, λ) and the illumination
E(λ).

In order the data provided by a camera to be useful in machine vision, it
is necessary to distill a better description from the surficial properties. This
problem can be faced in two different ways. We could guess to directly recover
the spectral surface reflectance function, R(λ), from the raw data provided by
the camera as has been suggested in [GJT88, MW86, TW89, TW90, Fin98].
An alternative approach opts for recovering only a description for the surfaces
which is constant to changes of illumination in terms of color. We theoretically
consider the two options hereafter.

Spectral recovery scheme can be viewed as solving an integral equation

finding R : [λ0, λ1] → [0, 1] so that y(µ) =

∫ λ1

λ0

KE(µ, λ)R(λ) dλ

(4.10)
where µ ∈ [µ0, µ1] and the kernel function is KE(µ, λ) = S(µ, λ)E(λ). To
explicitly solve this type of equations both functions KE(µ, λ) and y(µ) should
be known at least at some points, along with some other mathematical and/or
physical properties that could be applied to help to search for a result.

Nevertheless, as it is known from Appendix A, this equation lacks of a unique
and stable solution unless some constraints on the function spaces are estab-
lished. Specifically, both the solution space R = {R(λ)} and the data space
Y = {y(µ)} must have a finite dimension. A usual problem with this approach
has to do with the difficulty of finding a realistic solution space to model the
reflectance functions for everyday objects. Besides, it is pretty normal to have
only a reduced number of measures from existing sensors, which may restrict
too much the solutions and hinder the attaining of good approximations for the
reflectance functions R(λ).

An alternative consists in avoiding the more involved process of completely
recovering the surface reflectance functions and envisaging the computation of a
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color transformation from a set of color data to another set the way it was intro-
duced by Forsyth in [For90]. If we maintain the camera features constant and
only the scene illumination is changed, the function E(λ) will change accord-
ingly, and so will the kernel KE(µ, λ). Then, it follows that for the same surface
with reflectance R(λ), we get two color measurements, each one corresponding
to each illumination condition, E1 and E2, i.e.

y1(µ) =
∫ λ1

λ0

KE1
(µ, λ)R(λ) dλ

y2(µ) =
∫ λ1

λ0

KE2
(µ, λ)R(λ) dλ











(4.11)

Hence, we need to relate two color representations, y1(µ) and y2(µ), coming
from the same unknown surface R(λ). Conceptually, it is the same case found
when representing a point x in two given coordinate systems, i.e., ψ1(x) =
x1 and ψ2(x) = x2. In our situation, the point is the function R(λ) and its
representation in two different coordinate systems are, respectively, y1(µ) and
y2(µ). Thus, an approach based on the color representation of surfaces can be
thought as that of finding the change of coordinates mapping y1(µ) onto y2(µ).
In general, a change of coordinates of a point is the composition of two basic
operations, namely, recovering the point from the old coordinates and projecting
this point onto a new set of coordinates, i.e.,

x2 = (ψ2 ◦ ψ−1
1 )(x1) (4.12)

In terms of integral equations, the recovery involves the solution of Eq. (4.9),
whereas the projection stands for the use of the solution previously obtained to
get a new color measure. Id est,

�
�

�
�

��	?

-R (λ) y1 (µ)

y2 (µ)

KE2

KE1

KE2
◦K−1

E1

The study of integral equations in Appendix A provides a general expression
for the inverse kernel K−1

E1
which will be used in the next Section to compute

the analytical expression for the color map between two illuminant conditions
in terms of the compound transformation KE2

◦K−1
E1

.

4.6 Analytical Color Transformation

In this Section we infer the analytical expression for the transformation between
two different data (color) functions, each one corresponding to different lighting
conditions, as explained in Section 4.5, in terms of the singular functions and
values of the kernel functions in the integral equations – see Appendix A. Notice
this is a completely general expression for the color change which is independent
of any particular discretization scheme. This way, the problem of color change
can be studied in a wider framework and results will be valid for any posterior
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approach. In order this equation to be useful in practice it is necessary to further
reduce and discretize it, which is carried out later in Section 4.7 and Section 4.8.

Let us think on a certain function f which is measured using two different
operator, K1 and K2, giving rise to two, in general, different data functions
g1 ∈ G1 and g2 ∈ G2. Our problem is that of

finding K21 : G1 −→ G2 so that g2 = K21 g1 (4.13)

Formally, operator K21 is the composition of operators K2 and inverse op-
erator K−1

1 , as graphically expressed above. Theoretically, the operator K−1
1

brings function g1 onto f , that is, the solution to the IFK equation. Afterwards,
the operatorK2 projects the solution f just obtained onto its new representation
as a function g2.

So as to express those ideas in a more precise manner by means of two
different IFK equations we obtain that

g1 = K1f

g2 = K2f







=⇒ g2 = K2K
−1
1 g1 = K21g1 (4.14)

If we express functions g1, g2, and f in terms of the singular values and
singular functions of kernels K1 and K2, as it is obtained in Section A.4.3 in
Appendix A, we get that

g1 =
∑∞

j=1 σ1j (f, v1j)u1j

f =
∑∞

j=1
1

σ1j
(g1, u1j) v1j

K1 =
∑∞

j=1 σ1j u1j v1j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g2 =
∑∞

i=1 σ2i (f, v2i)u2i

f =
∑∞

i=1
1

σ2i
(g2, u2i) v2i

K2 =
∑∞

i=1 σ2i u2i v2i

(4.15)

where {u1j , v1j} and σ1j are the singular functions and the singular values of
K1, respectively. The same holds for {u2i, v2i} and σ2i with regard to K2.

If we now go on, step by step, translating every operational relation into
a series, we first get that the inversion involves, in fact, solving the equation
g1 = K1f , i.e.,

Inversion: f = K−1
1 g1 =⇒ f =

∞
∑

j=1

(g1, u1j)

σ1j
v1j (4.16)

Then, by projecting the solution function f in accordance to K2 we get that

Projection: g2 = K2f =⇒ g2 =

∞
∑

i=1

σ2i (f, v2i)u2i (4.17)

Putting these two steps together, the composition is expressed as

g2 = K2

(

K−1
1 g1

)

=⇒ g2 =
∞
∑

i=1

σ2i (
∞
∑

j=1

(g1, u1j)

σ1j
v1j , v2i)u2i (4.18)

Then, the data function g2 can be written in terms of the data function g1

g2 =

∞
∑

i=1

∞
∑

j=1

[

σ2i

σ1j
(v2i, v1j)

]

(g1, u1j)u2i (4.19)
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Bearing in mind that each data function can be expressed in terms of singular
functions {u1j} and {u2i}, respectively, we obtain that their coefficients are
related as follows

g1j = (g1, u1j)

g2i = (g2, u2i)







=⇒ g2i =

∞
∑

j=1

[

σ2i

σ1j
(v2i, v1j)

]

g1j (4.20)

Hence,

g2i =

∞
∑

j=1

bij g1j (4.21)

where
bij =

σ2i

σ1j
(v2i, v1j) , ∀i, j = 1, . . . ,∞

From this expression, two things can be said if the two parts corresponding
to the singular values and to the singular functions are separately considered.
First, the terms (v2i, v1j) tell us how different functions v2i are from v1j , and
vice versa. These functions can not be anyone but depend on the kernels, and
thus constrain the solution subspace, as it is appreciated in Eq. (4.15). Hence,
there exists a constraint about the portion of the solution that can be recovered
since it is only the part expressible as an expansion in both sets of functions, v2i

and v1j . Also, the structure of the color map is limited since the dot–product
(v2i, v1j) can be zero to a great extent.

In case we assume there exists an orthonormal basis {ωk} encompassing
both spaces [v2i] and [v1j ], as suggested by Forsyth in [For90], then the values
(v1j , v2i) can be changed into (ωi, ωj), which equal to the Kronecker’s delta
function δij . This way,

bij =
σ2i

σ1j
δij (4.22)

which suggests that the important terms are the diagonal ones bii.
Secondly, the term σ2i

σ1j
can look like pretty dangerous at once because of

the division between tiny values, which tend to zero as indexes grow. However,
the series converges because Eq. (A.28) and Eq. (A.32) in Appendix A also
converge. So, there is no problem with this expression, at least, theoretically.
Difficulties may arise in real data because of errors, so that the series can be
ill–conditioned. Nevertheless, in this case the ill–condition is slightly different
from the case of the solution of an IFK and depends on the decreasing rate of
both σ2i and σ1j .

Hansen in [Han00] points out that the singular values follows either a har-
monic progression σi ≈ i−α or a geometric progression σi ≈ e−αi, where α is a
positive real constant. The worst case appears when values σ1j are very small.
In that case, from the previous approximation it can be stated that the quotient
σ2i

σ1j
will not grow as fast as that of 1

σ1j
, which is an improvement after all.

In case there exists a basis whose coefficients are bij = σ2i

σ1i
δij , the only

interesting values to study are those in the diagonal, i.e., bii. Therefore,

bii =
σ2i

σ1i
≈ i(α1−α2) or bii =

σ2i

σ1i
≈ ei (α1−α2) (4.23)

Hence, in both cases, depending on whether α1 > α2, α1 = α2, or α1 < α2,
bii will surge to ∞, stabilize to one, or decrease to zero, respectively. As it is
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quite likely than α1 ≈ α2, the coefficients bii will tend to increase (or decrease)
very slowly since |α1 − α2| ≈ 0. Consequently, Eq. (4.21) behaves in general
better than Eq. (A.32), which tells us that it is more advisable computing color
transformations than to recover reflectance functions, in terms of stability.

In addition, since it is necessary that both the data (color) and the solution
(reflectance) spaces be of finite dimension in order the IFK has a unique and
well–conditioned solution, it is habitually useful to truncate the series to a finite
number of elements in order to approximate them at the same time that errors
are removed and really the important information is kept, as seen in Appendix A.
Furthermore, finite dimensional expansions can be imposed to the equation.
This way, Eq. (4.21) is easily expressed in a matrix framework as proposed in
Section 4.7 hereafter.

4.7 Discrete Color Transformation

Despite the beauty of continuous functions, we need more practical expressions
to handle IFK and to translate the previous framework into the language of
matrices and vectors, where numerical schemes for the explicit computation of
color mappings can be undergone. This task in relation to the IFK approach is
carefully exposed in this Section.

As seen in Appendix A, any IFK is discretized as a linear system of equations,
and solved in terms of its Singular Value Decomposition (SVD). Additionally,
the SVD framework can be used to get a discretization of the general relation
between color functions that is shown in Section 4.6.

Suppose we have a pair of matrices K1 and K2 (or their truncated versions)
belonging to kernels K1 and K2, respectively. Using the SVD decomposition to
compute inverse matrices, we get that the color mapping matrix K21 is

K1 = U1 Σ1 Vt
1

K2 = U2 Σ2 Vt
2







=⇒ K21 = K2 K−1
1 = U2

[

Σ2

(

Vt
2 V1

)

Σ−1
1

]

Ut
1

(4.24)
Knowing that matrices U1 and U2 are merely a pair of changes of coor-

dinates, the important information of the color mapping K21 is embodied in
matrix B, defined as

B = Σ2

(

Vt
2 V1

)

Σ−1
1 (4.25)

Then
K21 = U2 BUt

1 (4.26)

For simplicity, let us write color vectors g1 and g2 in the vector spaces defined
by matrices U1 and U2, respectively. That is,

g̃1 = g1 U1

g̃2 = g2 U2

}

(4.27)

So, Eq. (4.21) turns into
g̃t

2 = B g̃t
1

where
(B)ij = σ2i

σ1j

(

v2i · v
t

1j

)

g̃1 = (g̃11, . . . , g̃1n1
)

g̃2 = (g̃21, . . . , g̃2n2
)

(4.28)
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The dimension of vectors g̃1 and g̃2 are n1 and n2, respectively. B is a n1×n2

matrix. Since the sensor is usually the same, the number of data components
does not vary, i.e., n1 = n2. Vectors vt

1j and vt
2i are the jth and ith columns

of matrices V1 and V2, respectively. These vectors are fixed by the sensor and
the illumination subspace. Therefore, it is clear that any color transformation
can be written as a linear transformation B between color vectors.

The next step consists in computing any particular matrix K from real
data. In Section A.4 of Appendix A we describe some ways of discretizing an
IFK equation for the obtaining of the previous matrix. Due to the kind of
data used in spectral recovery and color constancy, we think a good election is
to consider the discretization attained using two different families of orthonor-
mal basis functions to span the data (color) g and the solution (reflectance) f
subspaces, respectively.

Precisely, if there are two sets of orthonormal basis functions {ψi}i=1,...,n

and {θj}j=1,...,m to expand functions g and f , respectively, we get that

g(µ) =

n
∑

i=1

gi ψi(µ) and f(λ) =

m
∑

j=1

fj θj(λ) (4.29)

Thus, the IFK equation is discretized in the following way

g(µ) =

n
∑

i=1

gi ψi(µ) =

m
∑

j=1

fj

∫ b

a

KE(µ, λ) θj(λ) dλ (4.30)

so that

gi = (g, ψi) =

m
∑

j=1

fj

∫ b

a

∫ b

a

KE(µ, λ)ψi(µ) θj(λ) dµdλ (4.31)

In matrix formulation, the system is

gt = Kf t

where
(K)ij =

∫ b

a

∫ b

a KE(µ, λ)ψi(µ) θj(λ) dµdλ

g = (g1, . . . , gn)
f = (f1, . . . , fm)

(4.32)

Given a matrix that encompasses a set of data vectors as columns, an or-
thogonal basis spanning these vectors is straightforwardly obtained from the
SVD decomposition of the data matrix by taking from matrix U the set of
vector columns corresponding to the greatest singular values [PFTV93]. This
technique is widely used in Section 4.9, devoted to experiments and results.

However, as also will be seen later, the number of dimensions of the data
vector g̃, which corresponds to the continuous color functions, are not always
the same as these of the RGB color vectors we are given in a real case. So, a
way to relate the RGB coordinates and the continuous color components must
be provided. A feasible method consists in computing, by least squares fitting,
a matrix A relating the RGB data matrix Y and the continuous color data
matrix X, i.e., Y = AX. Hence, the matrix A is obtained as

A = Y Xt
(

XXt
)−1

(4.33)
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This way, if RGB values are the available data, the discretized IFK will be
given by

ct = Agt = (AK) f t (4.34)

where c is the RGB color vector. Therefore, the color mapping between two
RGB colors c1 and c2 is as follows

ct
2 =

(

A2 K21 A−1
1

)

ct
1 = K̃21 ct

1 (4.35)

where K21 is the color mapping computed in Eq. (4.24), and A1 and A2 are the
matrices changing continuous components onto RGB under the two conditions
of illumination. Thus, matrix K̃21 is the color mapping in RGB coordinates.

4.8 IFK Relation with Former Color Models

Now we want to manifest explicitly how the IFK generalization relates with some
other well–known existing models on which color constancy has been based. It
is our intention to show that these models can be derived from an IFK–based
model taking into consideration some of the various mechanisms of discretization
suggested in Appendix A.

There are an important lot of researchers who have studied this problem and
so are there many different approaches, as was seen in Chapter 2. Nevertheless,
three are the main directions into which these multiplicity of models are split
hereafter. Basically, we are referring to as Bilinear, Quadrature, or Diagonal
models, which are briefly taken into account next.

4.8.1 Bilinear Model

Finite–dimensional linear models for color constancy were introduced by Buchs-
baum [Buc80] who extended previous works by Helson [Hel38] and Judd [Jud40].
Their use is based on empirical studies showing that both illumination and re-
flectance are relatively smooth functions of the wavelength of light in the visual
spectrum.

Specifically, Judd et al. [JMW64] showed that the daylight could be accu-
rately described by a linear mixture of three fixed basis functions. The re-
flectance functions of a great variety of materials have also been studied. Cohen
[Coh64], Parkkinen et al. [PHJ86], Maloney [Mal86] studied the reflectance prop-
erties of the Munsell chips, which finally were described by anything from three
to eight basis functions. The reflectance of naturally occurring surface materials
can, with a few exceptions such as fluorescent materials and some metals, be
approximated in a similar way (Vrhel et al. [VGI94], Krinov [Kri47], Wyszecki
and Stiles [WS82]).

Formally, we have that functions E(λ) and R(λ) can be approximated as

E(λ) ≈
n
∑

i=1

eiEi(λ) and R(λ) ≈
m
∑

j=1

rj Rj(λ) (4.36)

where Ei(λ) and Rj(λ) are the basis functions for the illumination and the re-
flectance, respectively, and ei and rj are the corresponding coefficients. Numbers
n and m are the dimension of the basis and are different in general. The main
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advantage of using finite–dimensional linear models is to provide a compact de-
scription of data, that is, very few basis functions can represent pretty general
functions of both illumination spectrum and surface reflectance functions.

In general, these basis functions must fulfill some physical properties so
as to correspond to feasible illumination and reflectance functions. The most
important constraints are these of being real–valued and nonnegative. Other
properties would be related with their well–behavior, such as being bounded,
continuous and integrable functions – depending upon the context. SVD analy-
sis gives a set of orthonormal basis functions which is optimal, although some
function can happen to be negative for some λ. It might be therefore preferable
to use a nonorthogonal, positive everywhere, basis even if it is not optimal in
the sense of the least squares.

The relation between the discretization methods in Appendix A and the
finite–dimensional linear model is pointed out in the following paragraphs. First,
this approach is embedded into the general series expansion scheme where both
data and solution functions are described in terms of their basis functions. As
previously said, the set of basis functions representing the surface reflectance
might be nonorthonormal, in which case we should use the Galerkin method to
get a discretization of the IFK. Additionally, a real sensor having a finite set
of responses is straightforward described using the collocation method over the
solution function.

These two constraints over the data and solution functions supply us with
the next expression

y(µ) =
∑p

h=1 yh δ(µ− µh)
R(λ) =

∑m
j=1 rj Rj(λ)

}

=⇒ yh =

m
∑

j=1

rj

∫ λ1

λ0

KE(µh, λ)Rj(λ) dλ

(4.37)
In order to approximate the kernel KE, we use its definition and turn it

into a separable kernel thanks to representing the illumination function as a
(truncated) series

KE(µh, λ) = S(µh, λ)E(λ)
S(µh, λ) = Sh(λ)

E(λ) =
∑n

i=1 eiEi(λ)







=⇒ yh =
n
∑

i=1

m
∑

j=1

eirj

∫ λ1

λ0

Sh(λ)Ei(λ)Rj(λ) dλ

(4.38)
Thus, we obtain the following system of linear equations

yh =

n
∑

i=1

m
∑

j=1

ei rj (Ki)hj =

m
∑

j=1

(

n
∑

i=1

ei (Ki)hj

)

rj , h = 1, . . . , p (4.39)

where

(Ki)hj =

∫ λ1

λ0

Sh(λ)Ei(λ)Rj(λ) dλ (4.40)

In a matrix framework, it can also be written as

yt =

(

n
∑

i=1

ei Ki

)

rt = Krt (4.41)

where
(K)hj =

∑n
i=1 ei (Ki)hj

r = (r1, . . . , rm)
y = (y1, . . . , yp)

(4.42)
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This model is usually referred to as the Bilinear model and relates the mea-
sured color y to the coefficients that represent the surface reflectance r by means
of the matrix K, which encompasses the information about the basis functions
for both light and reflectance, along with the sensor sensitivity. A given illumi-
nation induces its own matrix K as a linear combination of matrices Ki, each
one belonging to the ith illumination basis function. Coefficients of this mixture
generate a particular illumination by means of a linear combination of basis
functions.

Finally, it is interesting to state that the finite–dimensional model has been
extensively used in some color constancy algorithms where the main aim was
that of recovering either the illumination or the reflectance functions, or both
of them. Main works in such topics are those of Maloney and Wandell [MW86],
Marimont and Wandell [MW92], and its extension by D’Zmura and Inverson
[DI93], which uses various surfaces viewed under several different illuminants.

An interesting work by Ho et al. [HFD90] wants to recover both illumina-
tion and reflectance employing an iterative algorithm. This scheme was later
extended into a nonlinear iterative scheme by Chang et al. [CH95], but the
improvement was just marginally better. Other methods not trying to sepa-
rate both types of signals but still based on finite–dimensional models are those
of Tominaga and Okajima [TO00] and Cheng et al. [FC84]. Recently, Sapiro
[Sap98, Sap99] proposed a procedure for color constancy whose first step was
the recovery of the illumination by voting among some of the possibilities2.

4.8.2 Quadrature Model

Some algorithms, such as those of Wandell [Wan87] and Sharma and Trussell
[ST93, ST96], use a discretization of both illumination and reflectance functions
instead of that of their basis functions. This procedure is related to the quadra-
ture rule described in Section A.5 of Appendix A. If we apply a numerical
integration and the collocation method we get the following discretization

y(µh) =
n
∑

i=1

ωiKE(µh, λi)R(λi), h = 1, . . . , p (4.43)

Thus, the kernel has been approximated by its values at points (µh, λi)

KE(µh, λi) = S(µh, λi)E(λi)
Shi = S(µh, λi)

}

=⇒ yh =

n
∑

i=1

ωi ShiE(λi)R(λi) (4.44)

Defining the set of constants ei and ri, we can rewrite the equation as

ei = E(λi)
ri = R(λi)

}

=⇒ yh =

n
∑

i=1

ωi Shi ei ri, h = 1, . . . , p (4.45)

In order to obtain a linear system of equations in terms of reflectances, it
is useful to define two matrices representing the sensor and the illumination
separately. Matrix S embodies the sensor sensitivity functions, while matrix E
is a diagonal matrix with the discrete illumination spectrum

(S)hi = ωi Shi

E = diag(ei)

}

(4.46)

2Equations can be reversed to compute the illumination E if KR is used instead of KE .
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In matrix formalism
yt = (SE) rt = K rt (4.47)

where
(K)hi = ωi Shi ei

r = (r1, . . . , rn)
y = (y1, . . . , yp)

(4.48)

Therefore, the color transformation between two illumination conditions is
as follows

K21 = (S2 E2) (S1 E1)
−1 = S2

(

E2 E−1
1

)

S−1
1 (4.49)

Since the sensor has not changed, S1 = S2 = S, the final color map is

K21 = S

[

diag

(

e2i

e1i

)]

S−1 (4.50)

This approach is pretty similar to the Bilinear model previously exposed,
but rather here the transference matrix has been split into two independent
matrices with information about the illumination and the sensor each, whereas
in the previous approach the transference matrix was a linear combination of
them. As mentioned in Section A.5 of Appendix A, the quadrature approach
is not the best way to discretize an IFK, being numerically unstable and little
accurate, as reported in [ST96]. Furthermore, the splitting of matrix K21 into
illumination and sensor matrices is kind of simplistic and artificial, while parallel
objectives and better precision are attained by the SVD decomposition.

4.8.3 Diagonal Model

A diagonal model for the color change was first introduced by von Kries [WS82]
and is based on the hypothesis by which the set of sensors are totally indepen-
dents one another in a way that any variation in one of these sensors does not
affect the measures carried out by the rest of them.

This supposition can be mathematically written in several ways, such as
by means of a set of sensor functions which do not overlap at all one another.
Nevertheless, the usual expression is the one called sharp sensor functions, which
can be simply written down in terms of Dirac’s δ-functions [FDF93b, FDF94b,
BF98, DF00], despite it may not be the most accurate approach.

If we express the fact of having a finite number of sensors as taking a finite
set of measures by a collocation scheme, we will obtain the following expression

y(µ) =

p
∑

h

yh δ(µ− µh) =⇒ yh =

∫ λ1

λ0

KE(µh, λ)R(λ) dλ , h = 1, . . . , p (4.51)

Now, every sensor is considered as a sharp sensor with its δ–function center
at a precise wavelength

KE(µh, λ) = Sh(λ)E(λ)
Sh(λ) = Sh δ(λ − λh)

}

=⇒ yh =

∫ λ1

λ0

Sh δ(λ− λh)E(λ)R(λ) dλ

(4.52)
As a consequence,

yh = ShE(λh)R(λh) , h = 1, . . . , p (4.53)
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With the help of the set of constants eh and rh as values of the illumination
and reflectance functions, respectively, evaluated in a series of points λh, we get
that

eh = E(λh)
rh = R(λh)

}

=⇒ yh = ShE(λh)R(λh) = Sh eh rh (4.54)

In matrix terms
yt = Krt

where
K = diag(Sh eh)
r = (r1, . . . , rp)
y = (y1, . . . , yp)

(4.55)

Here, the transference matrix K21 is the simplest possible and is composed
of only a diagonal matrix. Coefficients at the diagonal embrace both sensor
sensibility and illumination. This structure is similar to the models considered
before, but in the present case the relation is even far simpler. Therefore, the
color transformation between two illumination conditions is

K21 = K2 K−1
1 = diag

(

S2h e2h

S1h e1h

)

(4.56)

Since the sensor has not changed, S1h = S2h, the final color map is

K21 = diag

(

e2h

e1h

)

(4.57)

The diagonal model has been extensively used in several color constancy
algorithms because of its simplicity. Forsyth [For90] applied this model as a
simplification of a linear transformation in his method based on the gamut–
mapping. Afterwards, Finlayson et al. in a very extensive number of works
[FDF93a, FDF94a, Fin95a, Fin95b, FF96, Fin96, FH97, FH98b, FH99, FH00,
Fin00, FHH01] have been using as well the diagonal model along with the habit-
ual RGB coordinates and a modified version of them named perspective color,
which consists in factoring out the intensity from the original responses dividing
them by the response of one of the color channels, usually the blue (B) one.

4.9 Experiments and Results

This Section encompasses a set of experiments whose aim is to evaluate the
performance of the former physical models in two kind of tasks, namely, the
recovery of spectral functions and the explicit computation of color mappings.
Nonetheless, after describing the set of data employed in the subsequent com-
putations, the first problem to considered is that of fitting the sensor sensitivity
in order to obtain a continuous function.

Afterwards, our continuous color formation approach is compared with the
Bilinear model in the spectral recovery task in order to study their similarities
and differences as well as their respective performances. Later, a similar analysis
is carried out comparing the IFK approach with all other physical models con-
sidered in the previous Section in computing color mappings between different
lighting conditions.
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Since linear applications are suggested as the general model for the color
mappings taken into account here, a regression using a linear least squares
fitting is accomplished as an additional way to evaluate the feasibility of such
linear assumption. These results are also a reference for the performance of
previous physical models because they represent the best possible result as long
as a linear transformation is taken into consideration.

4.9.1 Data Description

First of all, let us briefly talk about the data employed throughout this Chap-
ter to carry out the set of experiments mentioned before. We are using illu-
mination and reflectance information that has been previously recorded by a
number of authors, and put together and made completely available to research
at http://www.cs.arizona.edu/~kobus/ by Barnard. This data is divided
into spectral power distributions describing usual illuminants and spectral re-
flectance functions for the surfaces. A complete description of the whole set of
data can be found in [BFC00, BCF02, BMFC02], though we succinctly take it
into account hereafter.
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Figure 4.2: Examples of spectral power distributions of some usual illuminants.

The set of illuminant data consists of four different groups of illuminants
corresponding to both real and simulated lights. Leading the collection, there is
a set of 11 illuminants commonly encountered in human–made indoor environ-
ments (fluorescent lamps and bulbs). Since these seemed to be too few illumi-
nants, there are two other sets of 102 and 11 measured lights, respectively. In
addition to them, there still exist two other sets created as linear combinations
of randomly selected existing illuminants in order to generate more samples to
enlarge the total number of available lights.

Barnard generated 287 and 87 illuminants in two new sets. The total number
of feasible illuminations is then 498. Nevertheless, we only took into account
124 of them – those corresponding to real illuminants – since it is a sufficient
number of samples for our purposes. A special consideration is given to the first
11 illuminants, which have been used as canonic lights along this work. These
functions are exhibited as an example of spectral power distributions in Fig. 4.2.
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From this graph, it is at once evident that we are managing at least two
kinds of illuminant functions. Basically, some illuminants have smooth and
slow–varying functions, while others have pretty steep peaks at a quite restricted
group of wavelengths. First kind of illuminations corresponds to incandescent
sources, such as bulbs or the sun. The second family is the one generated by
fluorescent lamps.

In respect to the reflectances, there are many available sets, such as the
measures by Cohen [Coh64], Parkkinen et al. [PHJ86], Maloney [Mal86], Vrhel
et al. [VGI94], Krinov [Kri47], and Wyszecki and Stiles [WS82], estimating
both Munsell chips and surface reflectances of natural objects. The importance
of the job done by Barnard dwells in the fact of collecting all those disperse
sets into a huge compilation of 3989 different reflectance functions. Some of
these functions, corresponding to natural objects, can be seen in Fig. 4.3. In
general, reflectances are smooth functions and do not present defects such as
discontinuities, highly varying episodes, peaks, notches, gaps, or ripples.
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Figure 4.3: Examples of spectral reflectance functions of some natural surfaces.

In some of the following applications described by and by it is necessary to
extract orthonormal basis spanning the above sets of data. The right way to
construct an orthonormal basis for a subspace is by means of the SVD decompo-
sition of a data matrix A. Hence, if A = UΣVt, then the columns contained in
matrix U encompass the vectors of the desired orthonormal basis. In addition,
it might be advisable checking the resulting singular values in Σ for zero values.
If any occurs, then the spanned subspace has not, in fact, the same dimension
as the number of rows of A. Hence, the columns of U corresponding to zero
singular values should be discarded from the orthonormal basis. As will be seen
later, sometimes it is better to reduce even further the number of vectors in
order to span the subspace with a higher precision, taking into account only the
vectors corresponding to a few of the greatest singular values.

4.9.2 Fitting of Continuous Sensors

In order to apply any computational scheme derived earlier from the IFK model
we need to rebuild a continuous virtual sensor function S(µ, λ) out of the set of
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real sensor sensitivities Sk(λ), such that Sk(λ) = S(µk, λ), for k = 1, . . . , p and
p being the number of camera sensors. Note that in the RGB case, B = S(µ1, λ),
G = S(µ2, λ), and R = S(µ3, λ).

The main problem we face at this stage is the scarce number of real measures
Sk(λ) we commonly possess. As known, a usual color camera has only three
responses RGB, so p = 3. In multispectral cameras, p > 3. For the purpose of
increasing the available number of such responses, the first thing to account for
is the interpolation of the existing measures so as to be able to extract new data
in a posterior extrapolation stage. Since extrapolated points have no measurable
counterpart, our only constraint on the feasible sensor functions is that of being
as smooth as possible. The method applied to build such a continuous sensor
function is fully described hereafter.

Unfortunately, it was not feasible to interpolate any result smooth and pre-
cise enough for our requirements taking as the source of information the one
provided by the sensor sensitivities in Fig. 4.4. To solve this lack of informa-
tion, we suggest employing the idea of continuously deforming a function until it
reaches any other function we want. This way, once a morphing scheme is pro-
posed, it will be possible to get any intermediate value between two real sensor
sensitivity functions satisfying the smoothness constraint. In other words, we
get all the in–between functions S(µ, λ), ∀µ ∈ [µk, µk+1], where k = 1, . . . , p−1.
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Figure 4.4: Sensor sensitivity functions of the camera Sony XDC–930.

The idea to get a function S(µ, λ) is pretty simple and consists in computing
for each point µ ∈ [µk, µk+1] a linear blending of the two functions S(µk, λ) and
S(µk+1, λ). Nevertheless, this will not be directly carried out on the original
functions, but rather on a shifted version of them. More precisely, each of the
two functions, S(µk, λ) and S(µk+1, λ), will differently shift depending on the
side of the interval it is placed. The right–hand function S(µk+1, λ) shifts to
the left, while the left–hand function S(µk, λ), to the right. Note that functions
S(µk, λ), for any k = 1, . . . , p, correspond to actual sensor sensitivities Sk(λ).

Mathematically, we define an intermediate sensor function S(t, λ) parame-
trized by t ∈ [0, 1] spanning between sensors S(µk, λ) and S(µk+1, λ) as

S(t, λ) = (1 − t) · S̃k(t, λ) + t · S̃k+1(t, λ) , t ∈ [0, 1] (4.58)
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Figure 4.5: Continuous sensor sensitivity function S(µ, λ): (a) Slice view, y =
S(µi, λ), where each µi remains constant. (b) 3D view, z = S(µ, λ).
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where functions S̃k(t, λ) and S̃k+1(t, λ) are the shifted versions of functions
S(µk, λ) and S(µk+1, λ), respectively. Precisely, if ∆ = µk+1 − µk, we get that

Rightmost: S̃k+1(t, λ) = Sk+1(λ+ ∆ · (1 − t))

Leftmost: S̃k(t, λ) = Sk(λ− ∆ · t)







(4.59)

Consequently, it is true that S(0, λ) = S̃k(0, λ) = Sk(λ) and S(1, λ) =
S̃k+1(1, λ) = Sk+1(λ). Moreover, S̃k(1, µk+1) = Sk(µk) and S̃k+1(0, µk) =
Sk+1(µk+1). For any t ∈ (0, 1), the function S(t, λ) is, as shown in Fig. 4.5(a),
a continuous function spanning somewhere in between Sk(λ) and Sk+1(λ).

The variable µ ∈ [µk, µk+1] is straightforwardly transformed into the pa-
rameter driving the above equations t ∈ [0, 1] using the expression t = (µ −
µk)/(µk+1 − µk), for any k = 1, . . . , p − 1. Therefore, we are able to get a
piecewise–defined function S(µ, λ) for any µ ∈ [µ1, µp]. The interval domain
can be further stretched if functions at the edges, S1 and Sp, are indefinitely
repeated for any wavelength smaller than µ1 and greater than µp, respectively.
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Figure 4.6: Continuous sensor response: (a) Spectral Reflectance. (b) Continu-
ous Color Function. Black squares represent RGB response.

The result of the above set of equations is exhibited in Fig. 4.5(a), where
the sensor sensitivity functions of the camera Sony XDC–930 CCD3 depicted
in Fig. 4.4 were extended through the parameter µ as an example of the sensor
fitting method exposed here. These functions were normalized so that their
maximum value was the unity. As a way to make our point clearer, in Fig. 4.5(a)
real sensor functions are painted in their correspondent color. This way, it is
easy to notice how the shape smoothly changes from one sensor to another.

Due to the discretization and the different distances between S1 and S2, and
S2 and S3, middle functions thus built are not evenly spaced. Moreover, it is
necessary to get some more intermediate values in order to properly integrate the
equations related with the set of aforementioned physical color models. Hence,
we make use of these functions as a way to interpolate the surface z = S(µ, λ),

3This is a typical example of CCD color camera and was employed to take the images that
will be posteriorly used in the Chapter devoted to color constancy. Further information about
it can be found at http://www.cs.arizona.edu/~kobus/
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which encompasses all of those sensor functions, employing the bicubic inter-
polation scheme. The resulting surface that represents the continuous sensor
sensitivity function S(µ, λ) is displayed in Fig. 4.5(b). We painted its height – z
value – using the color scale on the right side, where blue stands for zero and
red stands for one. It is important to notice that the original sensor functions
represent only three slices of the new function, so there has been an increase in
the available information related to the sensors.

As an example of the IFK–based color formation for the generation of con-
tinuous responses, we show in Fig. 4.6(b) the continuous color function obtained
from the reflectance depicted in Fig. 4.6(a). We marked the true RGB responses
as black squares in Fig. 4.6(b). Smoothness of the color function is clearly appre-
ciable as well as the coincidence with the true responses provided by the camera.
Both of these features are fully desirable in the definition of a continuous sensor
function S(µ, λ) .

4.9.3 Spectral Recovery of Reflectance Functions

This Section is versed on the study of the spectral recovery of reflectance func-
tions from sensor responses. To that purpose, we employ both the responses
generated by the continuous sensor as well as those which were obtained from
the more common RGB measures for the color of surfaces. In addition to our
IFK description of that issue, the Bilinear model described in Section 4.8.1 is
also applied in order to compare both approaches.

Besides the interest that spectral recovery might arise by itself, our final
concern in this Chapter is the explicitly computation of color mappings. As
explained in Section 4.5, any color map may be see as the composition of two
applications, an inversion by solving an IFK, and the projection of the recovered
function onto a new color subspace. The first step, the inversion, also implies a
spectral recovery and follows the basic principles stated in Appendix A, where
some general numeric schemes to invert IFKs are suggested. The method which
best suits our data is the one described in Section A.5, where two families
of orthonormal functions are used to describe the data (reflectance) and the
solution (color) functions.

Because of the ill–conditioning of the inversion problem, the number of basis
vectors selected to build a particular solution drastically affects the quality of it.
This is not a problem of simply taking more dimensions, but one of choosing the
correct set of vectors. This issue is investigated hereafter, namely, the selection
of the correct basis which best recovers reflectance functions in order to later
compute a complete color mapping. As explained in Section 4.9.1, those basis
are fruit of the SVD decomposition of the reflectance and the continuous color
functions, and will be different each other in general.

Under a certain illuminant, the IFK color formation model generates a con-
tinuous color function for each reflectance. Since 124 illuminants were utilized,
there will be 124 sets containing 3498 color functions each. An orthonormal
basis will be extracted for each of these sets, valid only for one single illumi-
nation conditions each. On the other hand, similarity between recovered and
actual reflectance functions are also dependent on the number of basis vectors
used. Hence, in order to obtain the best recovery results when using the Bilinear
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model the optimal number of basis vectors for the reflectance subspace is also
investigated.

The main difference between the two approaches at these stage lies on how
continuity is translated into their finite–dimensional counterparts. While the
Bilinear model uses orthonormal expansions for both the illuminant and the
reflectance functions, our model does likewise for the continuous color func-
tions and the reflectance functions, leaving both the sensor and the illumination
functions alone. The chief advantage of the IFK technique dwells, besides its
mathematical soundness, not only in not being restricted to the usual three
color coordinates, but also in coping with the intrinsic multispectral nature of
the recovery problem.

The next experiments compute an error measure between every recovered
function and its corresponding actual one. We employ the 2–norm of the dif-
ference between these two functions, which are, in fact, expressed as vectors in
a certain orthonormal basis. Thus, for the ith illuminant the total amount of
error is

Ei =
n
∑

k=1

‖rk − r̃k‖ =
n
∑

k=1

‖rt
k −K+

i yt
k‖ (4.60)

where yk and rk are, respectively, the color and the reflectance functions ex-
pressed as vectors. The number of functions is always the same – n = 3498 –,
so it is not necessary to compute the mean error.

Matrix Ki corresponds to the particular method of discretization applied in
the spectral recovery. On the one hand, if we follow the IFK approach, matrix
Ki is computed using Eq. (4.32) in Section A.5 of Appendix A. On the other
hand, if the Bilinear method is applied, Ki is computed employing Eq. (4.42)
in Section 4.8.1. Furthermore, the inverse matrix K+

i is computed using the
pseudoinverse procedure4, along with the removal of null singular values.

Results corresponding to the spectral recovery experiments are depicted in
a series of graphics from Fig. 4.7 to Fig. 4.10. Each of these graphics exhibits
the evolution of the error Ei in Eq. (4.60) as a function of the number of basis
vectors employed for spanning both the reflectances and the continuous color
functions. The latter only affects to the IFK approach, while the former, to
both of them.

Precisely, the number of vectors of the reflectance basis are marked in the
abscissas, whereas there exists a curve for each group of color basis vectors.
NCCB in the legends stands for the Number of Continuous Color Basis vectors
spanning the continuous color subspaces (IFK model). Both kinds of basis
vectors are sorted accordingly to the decreasing magnitude of the corresponding
singular values. A maximum of 10 reflectance and 6 color basis vectors are
considered, since no more precision is gained by a higher number of components.
More specifically, in all of those graphs the results from the Bilinear model are
painted in black.

The above set of Figures can be grouped into two pairs, Fig. 4.7 and Fig. 4.8,
and Fig. 4.9 and Fig. 4.10. The first pair shows the results using the continu-

4If K = UΣVt, then K+ = VΣ+ Ut, where Σ+ = diag( 1

σ1

, . . . , 1

σn
) so that σi 6=

0 , ∀i = 1, . . . , n.
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Figure 4.7: Error of the recovery of the reflectance functions employing contin-
uous colors (I). From Illuminant no. 1 – (a) – to Illuminant no. 6 – (f).
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Figure 4.8: Error of the recovery of the reflectance functions employing contin-
uous colors (II). From Illuminant no. 7 – (a) – to Illuminant no. 11 – (e).
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Figure 4.9: Error of the recovery of the reflectance functions employing RGB
values (I). From Illuminant no. 1 – (a) – to Illuminant no. 6 – (f).
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Figure 4.10: Error of the recovery of the reflectance functions employing RGB
values (II). From Illuminant no. 7 – (a) – to Illuminant no. 11 – (e).
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ous color functions to recover reflectances, whereas the second pair uses RGB
coordinates. This only affects to the IFK approach, since the Bilinear model
is always expressed in RGB coordinates and merely the number of reflectance
basis vectors varies (1 ÷ 10).

As explained in Section 4.7, it is possible to compute a change of basis
to transform RGB components onto those continuous color basis. Since the
number of components of the continuous color may be higher (3 ÷ 6), eventually
there can be a loss of information when using just RGB values. Nevertheless,
since RGBs are the color data immediately available from cameras, any method
should be able to use this kind of coordinates.

To better understand the former results, in Table 4.1 we put into figures
the best errors in regard to the recovery method and the canonic illuminant.
The column IFK(C) means that the IFK model was used in conjunction to
RGB coordinates, whereas the use of continuous color components is noted as
IFK(CC). We also provide the percent error reduction of the IFK approaches in
respect to the Bilinear model, as well as the mean through all the illuminants.

As it can be appraised from Fig. 4.7 to Fig. 4.10, results in Table 4.1 were
obtained using 5 and 4 basis vectors for the reflectance and continuous color
subspaces, respectively, for IFK(C) and most illuminants, except for illuminants
n◦ 2, n◦ 10, and n◦ 11, which used 6 and 5 basis vectors each. For IFK(CC),
the number of basis vectors were also 5 and 4 for illuminants n◦ 1, n◦ 4, n◦ 7,
and n◦ 8; 5 and 5 for illuminants n◦ 3, n◦ 5, n◦ 6, and n◦ 9; and 4 and 3 for
illuminants n◦ 2, n◦ 10, and n◦ 11. Hence, it seems a good election to use 5
basis vectors for the reflectances and 4 for the continuous color for any further
application of the IFK approach in this work. In respect to the Bilinear model,
only 4 reflectance basis functions were employed by all the illuminants.

Illum. Bilinear IFK (C) % Red. IFK (CC) % Red.

n◦ 1 33.45 29.20 12.72 17.17 48.66
n◦ 2 35.62 31.56 11.40 30.46 14.47
n◦ 3 36.27 30.72 15.31 14.38 60.34
n◦ 4 34.36 29.45 14.29 18.59 45.89
n◦ 5 37.32 31.02 16.88 14.55 61.03
n◦ 6 35.63 30.06 15.65 21.70 39.10
n◦ 7 38.57 31.54 18.24 24.08 37.57
n◦ 8 32.88 29.15 11.35 15.80 51.94
n◦ 9 36.01 30.45 15.44 14.43 59.92
n◦ 10 40.69 34.78 14.51 30.25 25.66
n◦ 11 38.98 33.21 14.79 28.04 28.07

Mean 36.34 31.01 14.60 20.86 42.97

Table 4.1: Error of the spectral reflectance recovery. Bilinear : Bilinear model,
IFK(C): IFK using RGB, IFK(CC): IFK using continuous color, % Red.: per-
cent error reduction.

Two principal conclusions are drawn from these values. First, the IFK
method beats in terms of precision of the recovered reflectances compared with
the Bilinear model, for both continuous colors and RGB values. Secondly, pre-
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cision increases whenever the continuous color components is used instead of
the RGB coordinates. This directly follows from the fact that, in general, con-
tinuous color handles some more dimensions than RGB values.

Nevertheless, an interesting point derived from Table 4.1 is that, in the
continuous case – IFK(CC) –, by using only one (maybe two) more dimensions
than in RGB, there is a mean error reduction of 42.97%. Besides, even in
case the same number of coordinates is used – IFK(C) –, there still exists an
appreciable error reduction of 14.60%. That is, the continuous description of
color does not mean as a consequence an extremely high number of dimensions,
rather a lot of information is gained with the addition of just one or two more
dimensions.

Partial loss of information could be overcome by a more suitable technique
to identify continuous colors from RGB responses than the least squares fitting
of the basis change matrix in Section 4.7. A likely solution would be the addi-
tion of one or two more actual sensors. For example, in [Gui04] an intelligent
system adds yellow and cyan coordinates to the standard RGB from a classic
video signal to impressively increase the number of colors pictured in a TV set.
Nevertheless, we are not going into further details on this subject by now.

4.9.4 Color Mapping Computations

As a conclusion of the previous Section, this one is devoted to the explicit com-
putation of color mappings between different lighting conditions in order to
evaluate the performance of each one of the physical models previously men-
tioned in terms of the error of prediction for the color change. To that purpose,
we exploit both the IFK and the Bilinear models, as before, along with the two
other models that were described in Section 4.8.2 and Section 4.8.3, namely, the
Quadrature and Diagonal models.

Additionally, since the correspondence between colors under different illu-
minations is known a priori in our experiments, we can take advantage of it
and use a regression approach to compute color maps too. In that case, three
kinds of linear applications are checked as likely to explain the color change,
i.e., affine, homogeneous, and diagonal applications. Each of them is computed
using two different algorithms, a standard linear least squares fitting method
and the constrained version of this algorithm by Lawson and Hanson [LH74],
which generates nonnegative solutions.

Next, a brief description of the regression schemes employed in the experi-
ments is provided within the context of the linear least squares fitting. Let us
suppose that two color sets, {xi}i=1,...,n and {yi}i=1,...,n, are furnished, each
generated under some illumination condition. There is a correspondence be-
tween vectors xi and yi

xi ∼ yi ⇐⇒ ∃ A ∈ L(Rp) | A(xt
i) = yt

i (4.61)

where L(Rp) is the set of all linear mappings defined in R
p. These vectors can

be put together forming two matrices Xt = [xt
1, . . . ,x

t
n] and Yt = [yt

1, . . . ,y
t
n].

Then, our aim is to find a linear transformation mapping set X onto Y, that is,
A(Xt) = Yt. What comes next is a description of the three different approaches
followed to compute the application A by means of the least squares fitting.

Jaume Vergés–Llah́ı MMV



4.9 Experiments and Results 83

Affine Applications: For any color xi, a general affine transformation will
project it onto another color yi in the following way

yt
i = Axt

i + bt (4.62)

This expression can be more compactly rewritten as
(

yt
i

1

)

=

(

A bt

0 1

) (

xt
i

1

)

(4.63)

where 0 = [0, n. . ., 0]. If all the colors in X and Y are considered at the
same time, the previous expression turns into the next one

(

Yt

1

)

=

(

A bt

0 1

) (

Xt

1

)

(4.64)

where 1 = [1, n. . ., 1]. This linear system can be solved in terms of its
normal equations

(

A bt

0 1

)

=

(

Yt · X Yt · 1t

1 ·Y 1 · 1t

) (

Xt · X Xt · 1t

1 · X 1 · 1t

)−1

(4.65)

Nevertheless, since normal equations are generally ill–conditioned, it would
be better to employ the SVD decomposition in the computation of the
pseudoinverse of the system matrix.

Homogeneous Applications: The previous general linear application can be
simplified to a homogeneous one, that is, Yt = AXt. Therefore, the
resultant color mapping is computed as

A =
(

Yt X
) (

Xt X
)−1

(4.66)

Diagonal Applications: If our intuition or the facts drive us to think that
the map is likely to have tiny or null values off the diagonal components,
it might be advisable even reducing the corresponding structure of the
linear application into a diagonal one. Hence, the diagonal elements ak

are calculated as

ak =

∑n
i=1 yikxik
∑n

i=1 x
2
ik

, k = 1, . . . , p (4.67)

where p is the number of elements in the diagonal, i.e., the number of
color components. Therefore, A = diag(a1, . . . , ap).

The set of experiments considered hereafter tries to establish the perfor-
mance of all of the above mentioned computational schemes. Performance is
measured as the total error in predicting the set of colors under a canonic light
and is computed, for the ith canonic illuminant, as the total amount of distances
between actual colors and transformed ones

Ei =

m
∑

j=1

n
∑

k=1

‖yk − ỹk‖ =

m
∑

j=1

n
∑

k=1

‖yt
k −Kij xt

k‖ , i = 1, . . . , l (4.68)
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where l = 11 is the number of canonic lights, m = 124 is the total number of
illuminants, and there are n = 3989 different surfaces (colors). Matrix Kij is
the color mapping transforming colors under the jth illuminant into those under
the ith canonic light.

The resulting errors for each of the above schemes are depicted in Fig. 4.11
and Fig. 4.12. The first group of graphics in Fig. 4.11 shows the results belonging
to the linear regression, whereas the second one exhibits those belonging to the
physical models. Each Figure consists of a set of vertical lines in red, spanning
from the minimum (H) to the maximum (N), with additional marks for the
mean (•) and the median (∗) values of the distribution of errors computed for
each canonic illuminant (numbers 1÷ 11 in the abscissas). There is also a black
line showing the performance attained for the whole set of data by each scheme.
These graphics succinctly illustrate the way error values distribute. Notice that
ordinate scales are the same in all plots but those in Fig. 4.12(c) and Fig. 4.12(d),
which are significantly greater, specially the latter.

In order to clarify the results obtained, in Table 4.2 and Table 4.3 we also
collected the mean values for each scheme and canonic illumination. As before,
Table 4.2 encompasses the results belonging to the least squares fitting and
Table 4.3, those attained using the physical models. The bottom row of these
tables displays the mean values computed through the 11 canonic illuminants.

Let us now consider the results obtained specifically from the linear regres-
sion. The idea in carrying out this experiment was to guess which is the best
linear model to be used as a general color map, and if there exists any further ad-
vantage in constraining the applications to only have nonnegative coefficients5.
The conclusion that can be drawn from the results in Fig. 4.11 and Table 4.2 is
that the difference between using an affine transformation in front of a simple
homogeneous model is very small.

Moreover, when the nonnegative constraint is put, the difference between
affine and homogeneous transformations is almost null. In that case, from simple
eye inspection on the resulting maps, we checked that mappings were almost
completely diagonal. That is why the diagonal scheme generates nearly the
same error than the nonnegative ones, either affine or homogeneous. Thus,
despite other linear models better predict the color change, it is a rather good
approximation to apply just a simple diagonal mapping when sensors are of a
similar class to those employed here. Secondly, physical models are not all of
them equally helpful in regard to their error results. Both the IFK and the
Bilinear models behave far better than the Quadrature and the Diagonal ones.
This is a fair aftermath of the particular discretizing rules applied to derive
these models, specially the latter.

The reader should be aware that in Table 4.2 and Table 4.3 two approxi-
mations were used that are equally named as Diagonal. They correspond to
the physical model proposed in Section 4.8.3 and to the regression scheme in-
troduced earlier in this Section. The former performs pretty badly, whereas
the latter comparatively does better. There is no contradiction here because,
despite the two approaches share a common diagonal structure, the hypotheses
applied to compute the coefficients are essentially different.

5The nonnegativity constraint comes from physical considerations about the nature of all
the functions involved in color in order to be physically feasible.
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Figure 4.11: Error of the color transformations using least squares fitting: (a)
Affine model, (b) Homogeneous model, (c) Nonnegative affine model, (d) Non-
negative homogeneous model, and (e) Diagonal model.
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Figure 4.12: Error of the color transformations using explicit physical models:
(a) IFK model, (b) Bilinear model, (c) Quadrature model, and (d) Diagonal
model.
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Pseudoinverse Nonnegative
Illum. Affine Homogen. Diagonal Affine Homogen.

no. 1 0.0377 0.0384 0.0620 0.0588 0.0588
no. 2 0.0688 0.0698 0.1077 0.1050 0.1050
no. 3 0.0137 0.0139 0.0230 0.0172 0.0172
no. 4 0.0247 0.0251 0.0410 0.0368 0.0368
no. 5 0.0117 0.0118 0.0203 0.0151 0.0151
no. 6 0.0114 0.0116 0.0192 0.0156 0.0156
no. 7 0.0697 0.0070 0.0119 0.0091 0.0091
no. 8 0.0431 0.0439 0.0724 0.0701 0.0701
no. 9 0.0121 0.0123 0.0198 0.0160 0.0160
no. 10 0.0470 0.0480 0.0744 0.0614 0.0614
no. 11 0.0540 0.0550 0.0888 0.0731 0.0731

Mean 0.0301 0.0306 0.0491 0.0435 0.0435

Table 4.2: Error of the color transformations using least squares fitting.

Illum. IFK Bilinear Quadrat. Diagonal

no. 1 0.0393 0.0458 0.2782 1.5273
no. 2 0.0707 0.0731 0.2206 1.1692
no. 3 0.0147 0.0170 0.1179 0.8467
no. 4 0.0266 0.0295 0.2004 1.2561
no. 5 0.0126 0.0138 0.1014 0.7116
no. 6 0.0122 0.0146 0.1015 0.7092
no. 7 0.0081 0.0080 0.0590 0.3992
no. 8 0.0450 0.0527 0.2929 1.3514
no. 9 0.0135 0.0162 0.1047 0.7271
no. 10 0.0489 0.0555 0.2506 1.1683
no. 11 0.0562 0.0636 0.2774 1.0198

Mean 0.0316 0.0354 0.1822 0.9896

Table 4.3: Error of the color transformations using physical models.
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Changing out interest to another question, we realize that a seemingly sur-
prising result is obtained if the errors of the IFK and Bilinear models are com-
pared, i.e., both results are nearly the same. However, in the previous Section
we showed not only that the IFK approach outperformed the Bilinear one, es-
pecially when the continuous color was used, but also that this was true in RGB
coordinates. In our opinion, there is one main reason for obtaining such similar
results now.

As we showed in Section 4.8.1, the Bilinear model was derived as a discretiza-
tion of the continuous IFK equation, and appeared to be very similar to the one
obtained along with the IFK approach once the color coordinates were fixed
to be RGB in both sides of the color mapping, though no finite–dimensional
approximation was taken for the illumination.

Therefore, despite the IFK approach attained better results than the Bilinear
model in spectral recovery, as a consequence of projecting the recovered function
again onto their RGB values to get a color mapping, any additional information
that might be brought by the IFK model and its continuous color is lost in
the way, giving rise both approaches to very close color mappings consequently.
Thus, it seems as if no room is left to obtain more exact color mappings unless
more coordinates are used.

Nonetheless, the precision of IFK model (0.0316) is almost as good as the
best one attained by the least squares fitting (0.0301), which is the best result
possible in terms of error of prediction, outperforming both the nonnegative and
the diagonal schemes, as can be appreciated in Table 4.2 and Table 4.3.

4.10 Conclusions

In this Chapter a continuous framework is suggested analytically tackling the
color change issue as a natural continuous generalization of the usual color for-
mation equations. This model is able to describe the formation of multispectral
color signals by means of a unique expression which is particularized as needed
in order to attain handier discrete formulations. As a result, the continuous
color formation equation is identified as a Fredholm’s integral equation of the
first kind (IFK). Based on the description of the IFK equations in Appendix A,
several numerical schemes are provided so as to undergo practical computations
related with the recovery of spectral functions and the calculation of color maps.

Some conclusions can be derived from the work accomplished hitherto. First,
the IFK model is a general model which contributes to the analytical study of the
solutions to the color change problem, its existence, uniqueness, and behavior.
Second, constraints to be fulfilled by the solution and the data subspaces in
order a solution to the problem exists are established. This is new since that
issue has always been approached from an ad hoc point of view, materialized
into a discrete model, as one of those described above. Moreover, we explicitly
show the structure of the solution function, as well as translate the continuous
general expression into a numerical approach. Third, we relate several former
well–established color constancy models to the one suggested by means of a set
of discretization tools extensively detailed in Appendix A. In addition, it is
clearly shown how those models are derived from an IFK and which of them are
allegedly likelier to furnish better results in describing the color change problem.

After the theoretical study, some results are provided to support the state-
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ments done before. First, the problem of generalizing a discrete sensor is solved.
Without this step, the IFK model would be a pure discrete model which could
not provide any extra information based on the continuity of the sensor function.
Once such a sensor is obtained, the spectral recovery is posteriorly investigated,
where it is shown that the IFK model in general provides better results than
the Bilinear model, both in the continuous color subspace and within the more
restricted case of RGB coordinates, despite the fact that in the latter the im-
provement is not as great as in the former. This makes the IFK model an
optimum candidate to be used in deeper recovery schemes, which are not our
main goal in this work. Furthermore, by computing the combination of ba-
sis that provides the best results, we state that, by the addition of only one
more sensor, it could be possible to recover pretty good approximations of the
reflectance functions and the amount of such improvement is display.

Thereafter, the explicit computation of color mappings using physical models
is as well attempted. We apply all the models described so far, as well as a linear
fitting scheme to determine two different things. First, which linear model is
the best at explaining the color change and how much the error of each of them
is. Secondly, we compare the physical models with the results obtained by
regression in order to determine which models do better. Results confirm that
almost there is no difference between a general linear (affine) transformation
and a homogeneous one, principally when the coefficients of the applications
are constrained to be positive. Additionally, the error made by a diagonal
application is taken into account, which turns out to be of the same order
as the error made by the rest of models. These facts confirm that a linear
transformation suffices to model color changes and that a diagonal map can be
taken as a simplification of the general linear model with only a marginal loss in
precision. Despite those are not new results, they are proven here for a greater
number of surfaces and illuminations.

Finally, it is shown that the IFK and the Bilinear models almost provide
as good results as regression, whereas the Quadrature and the Diagonal models
perform poorly. Hence, it seems clear that both the IFK and the Bilinear models
closely predict the variation of colors due to light changes, while Quadrature
and Diagonal discretizations are too weak for the same purpose, especially the
latter. In particular, both the IFK and the Bilinear models present very similar
error values, which suggests that in case a transformation in RGB coordinates
is computed, both schemes basically converge. This is because both sides of
those mappings are equally discretized to be RGB coordinates and no further
information can be comparatively drawn from the continuous color description
of the IFK model.
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