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ABSTRACT 
Advances in neurosciences have induced the development of complex models of 

artificial neurons closer to their biological counterparts. These models improved 
functionality of artificial neural networks and novel applications have appeared. 
Nevertheless, complexity of new neuron models makes their simulation difficult, and 
time and power consuming. This is not a major drawback for applications that have no 
restrictions on power consumption and system complexity as simulation of natural 
neurons or exploration of different abilities of artificial neural networks. But, there are 
other applications, as found in real time portable systems, that require fast and small 
systems and low power requirements for which simulating complex artificial neurons 
is not a good solution. Finding a feasible solution to this problem is the aim of this 
work. 

This dissertation describes and analyzes a hardware model of an artificial neural 
network based on coupled oscillators that have been adapted to fit VLSI requirements 
and its applications to scene segmentation tasks. To reduce area overhead and power 
consumption, neurons, which are modeled as astable oscillators, are implemented on a 
full custom ASIC instead of being simulated on a standard hardware architecture. The 
implementation of a physical oscillator instead of their simulation, allows the system to 
perform the same tasks and reduce power consumption compared to requirements 
needed for a computer to simulate the network. 

First, a current-mode astable oscillator is modeled as an integrator and a hysteresis 
comparator. Then, this scheme is used to study algebraically and numerically the 
synchronization of excitatory coupled oscillators with and without external inhibition 
and mismatch. After this, the analysis is repeated with an improved model composed 
of two integrators with different timescales. This allows us to simulate secondary 
effects as oscillator output capacitance. From these results, the behavior of one–
dimensional and two–dimensional arrays of coupled oscillators is studied and then, 
the network is applied to synthetic image segmentation. 

Based on results of the mathematical analysis, a microelectronic network is 
designed on a double-poly 0.8µm CMOS ASIC. This circuit is described and 
extensively simulated to check its functionality as a segmentation layer. Then, 
experimental results validate the network functionality as a segmentation network and 
confirm the importance of secondary effects modeled in the mathematical analysis 
section. Finally, this dissertation ends with an estimation of the scheme complexity, 
compares it to other methods, sets out concluding remarks and explores future trends 
on implementation of neuromorphic segmentation schemes. 

Mathematical analysis and simulations demonstrate that astable oscillators can be 
used as basic cells of segmentation networks. They also demonstrate that delays due to 
cell output capacitance combined with device mismatch have to be limited below 
certain boundaries for the network to work properly. The physical implementation of a 
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neuron model based on a non-linear oscillator demonstrates that it is possible to 
implement an oscillatory segmentation scheme that runs much faster that its simulated 
counterpart on powerful computers. 

Future lines of research are the deeper study of synchronization mechanisms with 
weaker coupling strength combined with device mismatch, the use of faster current 
comparators with low power consumption figures and the use of gray level input 
images. 
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