
 

CHAPTER I 

INTRODUCTION 
This thesis presents a practical microelectronic implementation of a visual 

segmentation scheme which consists of a network of coupled oscillatory cells. The 
implementation approach is inspired in neural activity observed in living beings. 
Based on previous work of biologists and computer scientists that focused on 
mimicking biological structures on computer simulations, a novel microelectronic 
approach of these schemes will be proposed. The aim is to achieve acceptable 
segmentation algorithms that need lesser power and area overhead thanks to low 
power microelectronic analog structures. 

In this introductory chapter, we first overview this new branch of electronic 
engineering inspired in living beings known as neuromorphic engineering. Then, we 
show the complexity and we present problems of vision systems. After that, a rough 
overview of artificial vision segmentation schemes is presented. Since living beings 
seem to solve this complex problem apparently so easily, present knowledge of how 
they perform it is given and afterwards, some computing algorithms based on the 
same principles that animals are supposed to use. Finally we conclude this chapter 
with an overview of neuromorphic implementations applied to image processing and a 
brief outline and objectives of this thesis. 
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I.1 NEUROMORPHIC ENGINEERING 
Since the dawn of technology, humans have dreamt of building machines that are 

able to solve the same problems that animals successfully do. With the advent of 
digital computers and artificial intelligence it seemed that we were able to reach this 
objective in few years. Nevertheless, experience has shown us that we are still far from 
this objective. 

Modern computers can solve complex numeric problems a million times faster 
than human beings can do but they are still in their childhood when they have to 
perceive and understand a natural scene or sound. Even less evolved animals like flies 
or spiders are able to perceive their environment easily and fast enough to get food and 
avoid any danger. Since living beings evolved to such a good solution, an artificial 
approach that uses structures based on natural systems seems the way to follow. 

Artificial Neural Networks [Lippman,87][Hush and Horne,93] have been the first 
approach to mimicking living being structures. These structures demonstrated their 
efficiency in solving classification and interpolation problems. Nevertheless further 
studies have shown that these networks have also severe limitations and the 
perception problem has not been solved yet. 

Recent progress in neuroscience has brought us a clearer idea of the structure and 
organization of nerves and brain. This knowledge has led scientists to improve the 
model of the nervous system. Furthermore, advances in microelectronics have 
permitted the embedding of millions of transistors in a single integrated circuit. This 
progress led some years ago to the birth of a new engineering branch that mimics 
biological systems on silicon, it is known as Neuromorphic Engineering [Mead,89a]. 

Instead of using numerical and symbolic processing as digital computers do, 
neuromorphic systems exploit the physics of electrical circuits to perform operations 
similar to those found in the nervous system. Microelectronic analog circuitry allows 
the massively parallel, nonclocked and collective processing of these structures. 

Compared to other approaches, neuromorphic engineering provides many 
advantages like: 

• Speed: Parallel processing and transmission of data avoids an important bottleneck 
in serial processes. 

• Size: Implementing an algorithm in a single chip reduces considerably the area 
overhead that is needed in other approaches as a microprocessor implementation. 
Moreover, various modules can be implemented in a single chip increasing system 
integration. 

• Power: The possibility of using analog circuitry, which can operate in subthreshold 
region, instead of high-speed digital gates, reduces considerably power needs. 

• Analog nature: Real world data is analog and no A/D conversion is needed, 
reducing the complexity of the circuitry. 

However neuromorphic engineering faces some drawbacks. 
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• Full custom design: Neuromorphic circuits implement specific algorithms in a 
limited area, thus, off-the-shelf circuits cannot be used. This involves full custom 
design processes and they are slow, error-prone and more expensive than high 
level design techniques or programming a standard microprocessor. 

• Use of a non-conventional technology: At present, efforts to improve 
microelectronic technology are focused on digital circuitry that covers the great 
majority of the market. The use of analog circuitry has some problems related to 
the use of a technology that is not well characterized. However, analog design 
techniques are improving to accommodate analog circuits in digital designs using 
cheaper and more compact digital processes. 

• Low precision: Precise analog circuitry consumes a lot of area compared to its 
digital counterpart. Analog technology is only advantageous when high precision 
is not required or it can be compensated by design techniques. Furthermore, design 
techniques should account for this lack of precision and use robust algorithms. 

• Lack of flexibility: To reduce area overhead, circuits are hardwired and cannot be 
programmed to change the algorithm for which they have been designed. 

• Low Resolution: Full parallel implementations, although being very fast, require 
large areas to be implemented. As a result, present technology circuits cannot 
accommodate a large number of sensing and processing elements. Vision 
algorithms are especially sensitive to this problem due to CMOS photosensor large 
area overhead. This leads to low-resolution designs compared to conventional CCD 
cameras. However this is a problem related to technology maturity and it will 
probably be solved in the next years. 

For these reasons, digital computers are preferable for developing and testing new 
algorithms while analog neuromorphic implementations are more suited for 
implementing these well-tested and error-free algorithms to portable systems. 

I.2 THE VISION PROBLEM 
Vision systems must deal with the problem of interfering geometrical and physical 

properties of surfaces under analysis. The available data consists of two-dimensional 
arrays of light intensity captured by sensing devices, which we call the image or a 
temporal sequence of some of them. When physical properties as distance, orientation, 
texture or motion are understood by the vision system, it can react properly as to 
navigate through the environment, manipulate different objects, recognize their 
surroundings or even reason about them. 

However, these problems are usually very complex and involve a great amount of 
data processing. In addition, they are considered to be ill posed problems because they 
may admit from no solution to infinitely many solutions. To cope with this complexity, 
the whole task is split in different stages. As a first approach to this, it can be said that 
first, the image must be detected by photosensing devices (as retinal cells in living 
beings or CCD and CMOS sensing devices in artificial systems) and filtered in the 
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spatial and temporal domains to reduce noise and extract some basic characteristics. 
Then, this preprocessed information must be segmented in coherent objects and 
organized in hierarchical structures to be understood in higher stages. In addition, as 
so much information is stored in any image, in most cases, some attentional layer must 
concentrate the attention of the system to a specific part of the scene while ignoring the 
rest. For these reasons, it is easy to admit that understanding a natural image is a very 
complex process that requires different levels of processing and it is very expensive for 
artificial systems in terms of computer load. 

First levels of visual processing, also known as early vision, consist in acquiring 
the scene, filtering image noise and extracting some characteristic features of the image 
as edges or motion. Unlike higher level vision processes, first stages of early vision are 
mainly a bottom up approach, that is to say, they only rely in optical data captured by 
sensors and not in a previous knowledge of the scene to be analyzed. Some examples 
of it are noise filtering or motion detection. On the other hand, higher levels of vision 
use top down approaches. They need some knowledge of what they are ‘seeing’ as to 
recognize objects or distinguish dangerous obstacles in a navigation system. Other 
stages, which can be regarded as higher stages of early vision or lower stages in high 
level vision as segmentation and attention, may use a bottom up or a top down 
approach. Bottom up approaches are simpler because they do not need higher levels of 
visual processing to be implemented while their results may not be accurate. Top 
down approaches may obtain better results but they are more complex because they 
need some knowledge of what it is being seen and available data in these stages is still 
too large and redundant. For these reasons, in multiple visual schemes, these 
intermediate levels use both approaches. First, a bottom up approach to infer some 
results. Then, based on previous knowledge of what can be seen, these results must be 
fitted or parameters in the bottom up approach adjusted. 

In living beings, early vision tasks are solved in the retina. Rods and cones are the 
two types of photosensitive cells but there are other cells in this organ. In addition to 
detecting light, the retina makes a preprocessing of the information through other cells 
as bipolar and ganglionary cells. Then, information is lead through the optical nerve to 
the thalamus and the visual cortex where higher processing vision stages take place. 

Traditional artificial approaches usually detect images with a dedicated system as 
a CCD camera. Then, this information is digitized and led to a processing unit as a 
DSP, a microprocessor or a traditional neural network to be filtered, extract some 
characteristics and/or make other signal processing until the task for which it has been 
designed is accomplished. One of the main drawbacks of this approach is the need of a 
high speed link between detecting and processing elements, besides being in most 
cases serial processing schemes, which make them slow for high resolution images. 

In addition to traditional artificial approaches, neuromorphic engineering presents 
new possibilities with its advantages and particular problems, which are presented in 
this chapter. For early visual tasks that take place in the retina as photosensing, 
filtering and characteristic extraction, they have been extensively studied in the 
literature and a large number of neuromorphic implementations exist. Few examples 
of this effort are: [Delbrück,93], [Harris et al, 90], [Koch and Li,95] [Mead,89b] among 
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others. However, neuromorphic implementations of intermediate levels of processing 
that take place in brain areas as attention and scene segmentation have not been 
studied under this perspective as much as retinal stages. Since these intermediate 
levels are also necessary for a complete image processing and understanding system, if 
they are embedded in the early vision system, transmitted data could be reduced and 
also computer load in higher stages. This may lead to a substantial reduction of system 
complexity and suit compact and low power system needs. This thesis focuses on the 
electronic implementation of such intermediate algorithms in view of embedding them 
in other circuits to perform complete vision tasks. 

I.3 COMMON SCENE SEGMENTATION TECHNIQUES 
Scene segmentation is one of the key stages in visual perception processes. The 

aim is to divide an image in different parts that correspond to physical objects in the 
scene. Then, results can be parsed to higher levels of processing for recognition, 
classification or interpretation. 

Achieving a good segmentation is not a trivial problem since there are different 
kinds of images. A non-exhaustive classification is given below [Pal and Pal,93]: 

• Light intensity images (LI): The light intensity (gray level or color) is represented in 
each pixel of the scene. These are the most common types of images. The ones we 
see in our daily experience. 

• Range image (RI): Where each pixel represents the depth (distance from the viewer) 
of different points of the scene. These images are used in radar applications or 
stereoscopic vision. 

• Nuclear Magnetic Resonance Image (MRI): These images represent the intensity 
variation of radio waves generated by biological systems when exposed to radio 
frequency pulses. They are mainly used in medicine applications. 

• Thermal image (TI): Each pixel represents the temperature of each point of the 
object. They are obtained with IR sensors. 

Hundreds of segmentation techniques have been published in the literature, but 
no single method can be considered good for all images. In addition to this, each 
method is not equally good for all kinds of image, i.e. an algorithm developed for MRI 
images, could not properly be used to another class of image as an ordinary LI.  
Segmentation algorithms are basically ad-hoc and rely on some particular properties 
that are not common to all images. They differ in the way they emphasize one or more 
desired properties and in the way they balance one property against another. 
Therefore, the choice of the optimal segmentation algorithm depends on the computer 
capacity available and the kind of images to segment. 

Obviously, this step is integrated to a whole recognition system. It means that 
various segmentation schemes can be used simultaneously, at expense of higher 
computational load. Then results of  these schemes can be compared at higher 
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processing levels and extract the best of them. Also higher levels of processing can 
feedback lower levels to improve segmentation. 

 A complete survey of image segmentation techniques is beyond the aim of this 
work but a quick overview is given below. 

Various classifications exist in the literature [Pal and Pal,93] [Nevatia,86] [Haralick 
and Shapiro,85] [Fu and Mui,81]. Mainly, scene segmentation algorithms are Edge or 
Region Based whether they detect sharp changes in the image or they group pixels of 
similar characteristics, respectively. 

I.3.1. Edge Detection Schemes 

Edge detection techniques are based on the detection of a discontinuity. 
Boundaries are placed where there is an abrupt change in a certain feature. Algorithms 
can be sequential (the decision of an edge pixel is dependent on results obtained at 
previously examined pixels) or parallel (the edge detection operator can be applied 
simultaneously everywhere in the scene). Usually, detected edges are not continuous 
or they are placed on a discontinuity of the image that does not correspond to an object 
boundary. Therefore, a following step is connecting these edges together to form closed 
curves and deleting edges that not belong to any boundary. This last step has a 
sequential nature. 

I.3.1.1. Gradient Operators 

The simplest method is to compute the gradient of the image intensity. Then, 
edges are said to be present when the magnitude of the gradient exceeds a certain 
threshold. Gradient can be approximated by differences in any two orthogonal 
directions of the image or using a more complex operator as Roberts' [Roberts,65]. 
They require low computation cost but only perform reasonably well in images of low 
noise and texture. Operators that are more complex exist in the literature. They have a 
better performance at the cost of a higher computational load. 

I.3.1.2. High-Emphasis Spatial Frequency Filtering 

Sharp changes in image intensity are associated with higher spatial frequencies. 
Thus, high-pass filtering the image enhances these changes and edges can be detected 
because they are usually associated with these frequencies. Filtering is achieved by 
applying the Fourier transform to the image, applying the filter in frequency domain 
and taking the inverse transform of the result. The main problem of this method is the 
filter design. 

I.3.1.3. Functional approximations 

This method considers edge detection as an approximation problem. Small parts of 
the image are considered as noisy analytical functions and these ideal functions are 
used to compute the derivative and obtain the edges. 
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I.3.1.4. Template matching 

Template matching is not only used in segmentation but also in other areas as 
object extraction. In this approach, some ideal templates are convolved with the 
surroundings of each pixel of the image. These templates represent ideal boundaries in 
different orientations and high output is expected where the image is like the mask. 
Note that the output is high at edge-pixels and at their neighbors.  This property can be 
used to detect edges with more confidence and must be taken into account to pick only 
maxima to avoid thick edges. Mask size is an important choice. The bigger the mask is 
the better performance on low contrast edges and against noise but lower precision 
and higher computation cost. 

An important drawback of this method is that it fails when there is a great 
variation of patterns to be matched. 

I.3.1.5. Second derivative methods 

First derivative methods (as gradient schemes) respond erratically on a ramp 
intensity profile. Second derivative algorithms eliminate this difficulty. For a step edge, 
the second derivative is zero at the step and has a positive and a negative value in 
either side. The problem reduces to locating zero crossings. 

The best known second derivative method is the Laplacian operator [Eq. I.1]. 
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This consists of the sum of the second derivatives, thus providing information on 
the "acceleration" in the variation of the light intensity of the image. The main 
drawback of this method is its response to noisy pictures. Noise produces higher 
Laplacian values than edges. 

To improve this method, the Laplacian Gaussian (LG) operator has been 
introduced. It is the result of applying the Laplacian of Eq. I.1 to the two-dimensional 
Gaussian distribution with standard deviation σ: 

)2/()( 222 πσyxeG +−=  Eq. I.2 

The Gaussian part of the LG operator blurs the image wiping out all structures 
smaller than σ. A combination of four LG operators with different deviation has been 
suggested because it seems to be a good model of human visual processing. Then, the 
four results can be combined at higher processing layers. 

On the other hand, the LG operator is computationally expensive and it is 
approximated by a difference of Gaussian functions (DOG): 

)2/()2/( 2222
ie yx eeDOG πσπσ −− +=  Eq. I.3 
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I.3.1.6. Sequential Techniques 

When using sequential techniques for edge detection, the result at a point depends 
on results at previously examined pixels. For a good sequential procedure, one must be 
careful in selecting the initial point, the criterion to determine when the algorithm must 
finish and how the results obtained may affect the selection of the next point to process 
and the way it is affected. 

Some sequential techniques are heuristic search, dynamic programming and 
guided search. 

I.3.2. Region Segmentation Schemes 

In Region segmentation schemes, the scene is segmented based on connected set of 
pixels that share a common property as color or intensity. 

I.3.2.1. Thresholding 

This is the simplest method of region segmentation. All pixels that share a 
common property, as intensity, are grouped together. These groups give us the desired 
scene segmentation. 

This method is suited for images containing homogeneous objects against a high-
contrast uniform background. 

The main problem of this method is to find the proper threshold and various 
techniques have been proposed. Basically, they can be classified in global, local and 
dynamical threshold [Fu and Mui,81] 

Global threshold: The same threshold applies to the whole image. It can be 
computed from selected typical images or from statistics of the analyzed image. One of 
the simplest is computing the histogram of intensity values (x-axis measures the gray-
level and y-axis measures the number of pixels with that gray-level). Then histogram 
valleys are detected and their values are selected to become thresholds. This method 
can be improved by processing the histogram at expense of higher computational load. 

Local threshold: Threshold varies throughout the image and it depends on the 
characteristics of the neighborhood of each pixel. 

Dynamical threshold: Threshold varies for each pixel or group of pixels and 
depends on the characteristics of the neighborhood and the position of the pixel in the 
image. 

I.3.2.2. Clustering 

Clustering is the multidimensional extension of thresholding. Two or more 
features are used, as gray-level, color, texture of a local neighborhood, the result of 
applying a template operator or any other characteristic that can be helpful. Then 
points in the feature space are grouped into clusters and mapped back to the original 
spatial domain to obtain the segmented image. 
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Grouping of points in a multidimensional space is not as easy as in the univariate 
histogram clustering of thresholding and specific techniques for it have been 
developed. 

I.3.2.3. Region growing 

The objective is to merge regions of the image (or even single pixels) in function of 
some of their characteristics. Regions can be merged using different criteria: 

Single Linkage Region Growing: Each pixel is considered a node of a graph and 
neighboring pixels are joined with an arc if they are similar enough. The result is 
maximal sets of pixels that all belong to the same connected component. The similarity 
criterion is very important. The simplest is the pixel difference, but others have been 
proposed. 

This method is the simplest and needs images with well-defined objects and little 
noise. The main problem is that only one arc is needed to join neighboring clusters of 
the image so unwanted merging is very common. However, boundaries are placed in a 
spatially accurate way. 

Hybrid Linkage Region Growing: This method is more powerful that the single 
linkage. Each pixel is assigned a property vector that depends on the NxN 
neighborhood of the pixel and the similarity between pixels is computed through this 
vector. Therefore, pixels are similar because their neighborhoods are similar. This 
vector can be computed through applying edge detector operators to the image or 
comparing textures. 

This method is more robust to noisy data and can segment more complex images 
but it is computationally more expensive. 

Centroid Linkage Region Growing: This method does not compare similarity 
between pixels but pixel characteristic is compared to existing neighboring segments, 
which are not complete yet. If pixel characteristic is similar enough to the mean 
characteristic of any of existing objects, this pixel is merged to that object. If it is 
different enough, a new object is created. Scanning of the image is sequential and 
predetermined and it can lead to different segmentation solutions. 

Single pass algorithms have problems with some object shapes and may segment 
them in two objects. A V-shape segment is a good example.  Solutions to this problem 
can be double pass algorithms or a combination of single-pass algorithm followed by a 
connected component algorithm. 

Hybrid Linkage combination: This technique extracts the best of linkage methods 
detailed above. Centroid linkage computes pixels that are not on edges and single or 
hybrid linkage is used to compute edges. It avoids excessive merging due to single 
linkage and boundaries are spatially accurate. 
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I.3.2.4. Spatial Clustering 

Haralick and Shapiro [Haralick and Shapiro,85] call spatial clustering a technique 
that mixes clustering and region growing. Region growing is computed considering 
histogram calculation. 

I.3.2.5. Split and Merge 

This method consists in dividing zones of the image that are not homogeneous 
enough and merging zones that are similar. Homogeneity and similarity are computed 
through a proper feature as the difference of the largest and the smallest gray tone 
intensity. 

I.3.3. Color images 

Color images are a special case of multispectral scenes and algorithms for this kind 
of images usually can be used. Color can be described by the distribution of the three-
color components (RGB) or psychological components (hue, saturation and intensity) 
but combinations of these sets can also be used and found more effective as the 
Karhunen-Loave transform. 

However, experience indicates that information in color components is highly 
correlated, thus, extra computation for color edge detection is not cost-effective in 
general cases. 

I.4 BIOLOGICAL PRINCIPLES OF OSCILLATORY NEURAL 
NETWORKS 
Although the first approach to neural networks simplified neurons to simple 

comparator units [Lippman,87], more accurate models demonstrated that oscillations 
and pulsed behavior of neurons are also an important computing characteristic, e.g. 
[Maass and Bishop,99]. For this reason, the scientific community is doing a great effort 
to understand them through microelectrode recordings and simulations. 

Vision is one important field of study for oscillatory neural networks. It is well 
known that human visual system captures light from its surroundings through 
photosensory cells of the retina. At this level, the representation of the exterior is just a 
set of pixels of different colors and intensities. However, Gestalt theory [Rock and 
Palmer,90] states that the external world is not perceived as pixels in our minds. We 
'see' differentiated objects that follow perception laws (Proximity, Similarity, Good 
Continuation, Connectedness, Common Fate, and Prior Knowledge). Hence, there 
exists a segmentation and binding process of different properties of the image seen in 
higher levels of mind. 

When an artificial system concentrates its attention on something, it must follow 
the same process except that the external information are pixels sensed by a CCD or 
CMOS camera or a digitized photograph instead of being nervous pulses generated by 
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light sensitive cells from the retina. Afterwards, this information is used in a higher 
level stage to recognize or follow the objects. 

When light emitted from one object impinges retinal cells, these cells activate 
neurons of different areas of visual cortex that correspond to a distributed 
representation of its properties (color, shape, motion, etc.) [Engel et 
al,91a][Eckhorn,97][Eckhorn et al,88][Gray et al,89]. It seems that visual cortex neurons 
are specialized in different visual characteristics and they are grouped in different 
areas [Livingstone and Huble,88]. It is still unknown how these features are grouped to 
perceive the object as a whole, but it has been suggested that this association is made 
by an oscillatory mechanism of the electrical activity of neurons. 

Experiments on animals (especially cats and monkeys) demonstrate the existence 
of correlation in electrical activity of neurons in the visual cortex when a simple 
stimulus is applied to the retina. These correlations suggest that image segmentation is 
carried out in these zones by means of a synchronization mechanism of neuronal 
activity. 

Models of neuron behavior have been simulated and they proved that correlation 
of electrical responses depends on the spatial coherence of stimulus. These networks 
have been simulated using different neuron models: binary neurons with stochastic 
behavior [Kappen,97] or analog and deterministic neurons [Sporns et al.,89]. 

Engel et al. [Engel et al,91a] have demonstrated experimentally the existence and 
characteristics of these oscillations. When an animal retina is stimulated with the image 
of a bar, the activity of a group of neurons in visual cortex synchronizes. But, if two 
bars with different orientation appear in the image, two groups of neurons emerge. 
Electrical activity is correlated within each group and uncorrelated between groups. 
Hence, each group of neurons is sensitive to a certain orientation. 

Frequencies of these oscillations range from 40 to 60Hz [Gray et al,89] [Engel et 
al,91a] or from 35 to 80Hz [Eckhorn et al,88]. Eckhorn and his team announced in the 
same paper that coherent signals exist within a vertical column, between neighbor 
hypercolumns and between different areas of cortex. It is reasonable to assume that 
synchronizing connections exist between neurons that are sensitive to the same 
characteristic, whether they are in the same cortex area or not. In addition to this, this 
correlation is also found between both cerebral hemispheres. Experiments show that 
synchronization is achieved through connections that cross corpus callosum because 
synchronization disappears when this part of the brain is cut [Engel et al,91b]. 

Other scientists suggest that information is based on chaotic behavior of oscillatory 
neurons [Freeman,92] [Skarda and Freeman,87]. Their work is based on 
electroencephalographic (EEG) potentials; that is to say, the activity of groups of 
neurons is measured instead of individual potentials. From this point of view, they 
have concluded that information processing of olfactory system is carried out using the 
envelope of electrical activity of groups of neurons. Information lays in the kind of 
chaotic behavior that neurons generate instead of being the exact form of signals. 
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Based on that premises, the olfactory bulb has been modeled [Li and Hopfield,89] 
[Freeman,87] using non-linear oscillator networks that generate chaotic behavior. 

Chaotic oscillatory networks have been used for pattern recognition [Yao and 
Freeman,90] [Shimoide and Freeman,92]. In the first paper, a mathematical model is 
presented. It has interesting properties as scalability, spatial coherence and it is 
independent of initial conditions. The second paper shows an application example of 
Japanese character recognition. The system can recognize five Japanese vowels if the 
acoustic input signal is previously preprocessed. 

Also motion can be a characteristic to segment objects of an image from the 
background. In [Reichard et al,83] the domestic fly visual system is analyzed and a 
model of it is proposed. Finally, results from simulations are compared to measures of 
biological systems. 

I.5. OSCILLATORY SEGMENTATION SCHEMES 

I.5.1. Introduction 

Making the most of findings presented in the previous section, computer scientists 
have developed various algorithms for visual information processing based on arrays 
of oscillators that are supposed to use the same principles as living being structures do. 
Some of them are analyzed in this section. 

Mainly, in these schemes, each oscillator of the network is associated with a pixel 
of the input image or a feature of it. The objective is that pixels belonging to the same 
object oscillate synchronously, pixels that belong to different objects oscillate out of 
phase and pixels that do not belong to any object do not oscillate. At present, different 
research groups have focused their activities to that subject and a brief review is given. 

Baldi and Meir [Baldi and Meir,90] studied the possibility of using coupled 
oscillators for texture discrimination. Oscillators under study were linear and they 
were applied to segment synthetic images of textures. Input was preprocessed through 
Gabor filters before exciting oscillatory network. This paper stated some of the most 
important features of this new paradigm of computing: 

i. It is robust and fast because few oscillations are needed 

ii. Hardwired implementations seem very straight 

iii. However, little information is kept in oscillations 

iv. Additional machinery is needed to process and route information 

I.5.2. Malsburg's model 

In 1986, von-der-Malsburg and Schneider [Malsburg and Schneider,86] proposed a 
system to solve the Cocktail Party Problem. This is, the problem to differentiate voices 
in a noisy and interfering environment, as it can be found in a cocktail party where 
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many people are talking at the same time, music is playing in the background and 
other noises are also present. Even in these adverse conditions, anyone can understand 
his interlocutor. Malsburg and Schneider system is a one-dimensional matrix of 
excitatory cells plus an inhibitory one also connected to all other cells. The network 
receives two stimuli with 10 spectral components each, hence, there are 20 inputs to the 
network. It should be stressed that this network includes a global inhibitor to produce 
oscillations but also to achieve desynchronization and maintain it, a very important 
element in posterior models. However, this network uses global connectivity, that is to 
say, each cell is connected to all other cells, which means a non practical number of 
connections in bigger networks. Connections are on the order of n2 where n is the 
number of cells. The aim was of this paper was to demonstrate that 
synchronization/desynchronization could be achieved and the network was only 
applied to synthetic images. 

A subsequent paper of the same group [Malsburg and Buhmann,92], defines a 
model made of individual oscillators, partial inhibitors and a global inhibitor. The 
network is a three-dimensional matrix of coupled oscillators that are sensitive to 
localized input from the sensory field and encode local feature types. The network is 
made of layers of two-dimensional arrays and a specific feature of the input excites 
each layer. Connections are global within a layer and several inhibitors are also used. 
This means that there exist a large number of connections, which makes it difficult to 
implement. They show the possibility of synchronizing/desynchronizing oscillators 
although their network is not applied to real images. Applications to real world data 
can be found in [Vorbrüggen and Malsburg,95]. Features of gray level images are used 
as input to the network and objects are successfully segmented in few cycles. However, 
manual intervention is required to code input data. 

I.5.3. LEGION 

Using the same principles as in networks introduced above, Wang and Terman 
proposed the Locally Excitatory Globally Inhibitory Oscillator Network (LEGION) 
[Wang and Terman,95]. The most important advantage of this network from the point 
of view of its implementation is that it has few global connections and all other 
synapses are local. This reduces considerably the difficulty of implementing it. 

The network is composed of a 2-D array of coupled nonlinear oscillators, each one 
being described by means of a pair of ordinary differential equations. Inputs to these 
cells are input stimuli, local excitatory connections, noise and a global inhibitory 
connection. Input stimuli establish excitatory connections when oscillators are 
associated with pixels that belong to the same object. When these couplings are 
established, they are responsible of synchronizing oscillators while a global inhibitor is 
responsible of desynchronizing them. When two oscillators are excitatory coupled, 
excitation is stronger than inhibition and oscillators synchronize. However, when there 
is no excitatory coupling, inhibition desynchronizes oscillators. After few cycles of 
operation, the network reaches an oscillatory stable state that stores enough 
information to distinguish objects. 
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In addition to the 2-D oscillator array, there is an extra cell, the global inhibitor, 
that is coupled to all cells of the network. This global cell shows an important 
improvement in network segmentation skills in front of other schemes without global 
connections. The use of the global inhibitor is a good trade-off between the cost of the 
global connectivity and performance. 

It is important to stress the importance of noise in this network. Since all simulated 
oscillators are equal, an unstable equilibrium state may be reached. Then, noise is 
responsible of breaking this equilibrium producing small differences between cells. 
These differences allow the global inhibitor to desynchronize oscillators that are not 
associated with the same object. Further details on LEGION scheme are given in 
chapter II. 

Various kinds of differential equations have been used to describe basic oscillators. 
A hyperbolic tangent and a cubic are used in most cases [Wang and Terman,95] [Wang 
and Terman,97] [Wang,96a] [Shareef et al.,99] but also sigmoids [Wang and 
Buhmann,90], linear oscillators [Wang,95], integrate-and-fire oscillators [Campbell and 
Wang,98a] and Wilson-Cowan systems [Campbell and Wang,96]. This shows how the 
choice of oscillators is not essential [Shareef et al.,99]. This characteristic is very 
important in an electronic implementation because oscillators can be implemented 
with a higher degree of freedom. 

Most papers simulate LEGION on synthetic binary images, especially the first 
ones, but gray level real images have also been used [Wang and Terman,97] [Shareef et 
al.,99]. Models for binary images stimulated oscillators associated with foreground 
pixels and relaxed background oscillators. On the other hand, for gray level images, all 
oscillators are stimulated and synapses are proportional to gray level correlation of 
neighbor pixels. Hence, all oscillators oscillate. Up to our knowledge, LEGION has 
been applied to light intensity images [Wang and Terman,97], MRI [Shareef et al.,99] 
and range images [Liu and Wang,97]. 

An important characteristic of the last papers mentioned above is that they include 
a new term in oscillator equations. This is the lateral potential. This term excites 
oscillators that belong to big objects. Thus, in real noisy images segmentation is also 
successfully achieved provided that noise is low. 

To speed up simulations considerably, a new algorithm (G-LEGION) has been 
developed. It uses a higher level model of oscillators that ignores their precise 
dynamics. Although this simplification is accurate enough to test dynamics of an ideal 
system and obtain successful segmentation results, it is too rough to obtain the exact 
waveform of oscillators and test its non-idealities as time delays. 

Finally, LEGION has been also applied to attention problems [Wang,96b]. This 
system is able to concentrate its attention to the biggest object of an image. 

A major drawback of LEGION is the high computational load when it is simulated 
on a computer. Each oscillator is a differential equation that should be solved. Their 
behavior is very similar to an astable multivibrator. Dynamics are very fast when 
changing its output state and very slow the rest of the time. A 32x32 network has 1024 
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basic oscillators plus an inhibitor, thus, 1025 equation systems must be solved for a 
small image. On the other hand, oscillators are easily implemented in microelectronics 
and no differential equation has to be solved because circuit laws perform it. Thus, in 
spite of LEGION being difficult to implement on a computer for real time applications, 
it seems to be a good candidate for a VLSI implementation. 

In physical implementations, delays of oscillators and synapses play also an 
important role. First models of LEGION did not consider delays because they were not 
implemented in the algorithm. However they must be considered when using real 
oscillators to implement the network. Campbell and Wang [Campbell and Wang,98b] 
simulated a network with time delays, and demonstrated that delays degrade 
synchrony and they can even prevent synchrony if they are large enough. Chen and 
Wang [Chen and Wang,97] [Chen and Wang,98] also studied the problem and gave a 
biological interpretation of it. 

Brown and Wang used LEGION to segregate spoken sounds [Brown and 
Wang,97] [Wang and Brown,98]. These models filtered the input sound using a 
cochlear model, then autocorrelated filtered sounds and obtained a three-dimensional 
representation of them along time, frequency and lag. Then, segmentation and binding 
using LEGION is carried out to segregate sounds or speech from interfering noise. 

Simulations shown in papers demonstrate good performance of models. However, 
preprocessing of signals is computationally expensive and the three dimensional 
representation of sound forces a serial processing on a two-dimensional representation 
that makes its implementation more difficult. 

I.5.4. Other Oscillatory models 

Zhaoping Li introduced another oscillatory model of the primary visual cortex 
[Li,98a] [Li,98b] [Li,97] for contour enhancement and edge binding. Her network is 
made of oscillators whose dynamics are defined by a non-linear system equation. 
Inputs are edges of an image. When edges are close to each other and they have similar 
orientation, neighbor cells associated with these edges are excited and their oscillation 
grows. Thus, oscillators associated with straight line have a big amplitude oscillation, 
larger than oscillators associated with close contours, while oscillators associated with 
isolated edges stay silent. Simulations on synthetic images show good results and this 
model works reasonably well on gray level real images. 

Labbi et al [Labbi et al,97] used a network of oscillators embedded in a three-layer 
architecture to detect salient regions of an image. There is a layer for the input data, 
another layer for the feature map and finally an attention map, which feeds back the 
feature map. Basic cells are FitzHugh-Nagumo oscillators, which are derived from 
Hodgkin-Huxley neuron model. It has to be stressed that one important feature of 
these oscillators is that their frequency is almost constant and it is independent of input 
strength while their amplitude is strongly dependent of input. The aim of the network 
is to detect salient regions of the input image and simulations show good results when 
applied to real gray level images. 
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Bosch et al [Bosch et al,98] improved the aforementioned network. They used a 
four-layer scheme where a location map is added. Also spiking neurons are used 
instead of FitzHugh-Nagumo oscillators. Possibilities of spiking neurons for attention 
applications are studied in [Bosch et al,97]. 

I.5.5. Cellular Neural Networks 

Although Cellular Neural Networks (CNN) are not oscillatory networks, they are 
included in this chapter because of their analog and cellular nature. 

Since CNN's were first introduced by Chua and Yang [Chua and Yang'88a] [Chua 
and Yang'88b] in 1988, intensive research has been done in that direction. 

A CNN is an analog dynamic processor array whose elements interact directly in a 
finite neighborhood. However, due to dynamic propagation, cells that are not directly 
connected interact with each other. Chua and Roska [Chua and Roska,93] defined a 
CNN as a n-dimensional array of mainly identical systems (cells) in which most 
interactions are local and all state variables are continuous valued. When a template is 
loaded and an external stimulus is applied to the network, it starts its evolution 
towards a stationary state, which is the result of the desired operation. Since CNN 
processes in parallel, a reduced time is needed to reach this state and thus, find the 
solution to the problem. 

Microelectronic implementation of CNN's is straightforward due to their small 
number of connections, which is proportional to the number of elements that compose 
the net. Some CNN implementations are: [Cruz and Chua,91] 6x6 array focused on 
connected component analysis, [Dalla Betta et al,93] 10x10 simulated analogically 
programmable array, [Slot et al,96] simulated array for edge extraction and image half 
toning. 

The main advantage of such networks is that they can be programmed to carry out 
a wide range of mathematical operations. A template specifies the interaction between 
each cell and its neighbors. However, this flexibility comes at the price of a very large 
basic pixel circuitry and thus its power needs. 

Sample applications of such networks are: approximation of partial differential 
equations [Chua and Yang'88a], noise removal and edge detection [Chua and 
Yang'88b], connected component detection [Matsumoto et al, 90], etc. 

I.6. NEUROMORPHIC VISION IMPLEMENTATIONS 
Next, an overview of different early vision algorithm implementations using the 

neuromorphic approach is given. Typically, these implementations include 
photodetection and preprocessing stages in the same die. Obviously, as not all silicon 
area is dedicated to image acquisition and technology processes used are not 
specifically oriented to photodetection but to signal processing, performance of such 
circuits cannot be compared to dedicated image acquisition circuits, i.e. CCD’s. The 
aim of visual neuromorphic implementations is to optimize image processing 



CHAPTER I. INTRODUCTION 17 

capabilities, besides acquiring it, using as less power as possible and occupying the 
minimum silicon area while standard CCD sensors are focused on obtaining the 
maximum image quality. A typical example for it, it is Mead and Mahowald’s silicon 
retina [Mead and Mahowald,88]. 

The reason of such an effort for this specific task is that vision is computationally 
very expensive. As standard hardware (i.e. computers) is inefficient in terms of area 
and power consumption, dedicated hardware is an interesting alternative when these 
constraints are important. 

Although special-purpose digital hardware is a first approach to this problem, its 
power consumption and area needs are very important. Moreover, if a digital 
processor is not integrated in the sensing device, and important amount of data must 
be transferred from the camera to the central processing unit. This limits resolution and 
scan frequency. 

On the other hand, if image quality is not the main objective, why not integrate 
acquisition and early image processing analog stages as the visual system does. It will 
free the central processing unit of doing computationally expensive tasks and also, it 
could reduce transferring speed. In addition to this, preprocessing simplifies the A/D 
conversion requirements. 

First analog circuits for image processing were proposed in 1974 [Koch and Li,95] 
although technology was still not mature enough for practical implementations. In 
1989, Mead [Mead,89a] published a book that stated the basics for this area. 

Up to now, neuromorphic implementations have mainly focused on early visual 
tasks as image filtering, stereo vision and edge or motion detection. However, some 
efforts have been done in attention and segmentation. 

I.6.1. Phototransduction 

The first issue for an intelligent image sensing circuit is phototransduction. To cut 
down costs, most implementations use standard CMOS technology (it is the cheapest). 
CCD (Charge Coupled Device) technology is more expensive and it is reserved for 
applications that need high quality images. In addition to this, if analog circuits are 
placed near the CCD, sensor clocking may easily interfere in the normal operation of 
analog cells. 

Another issue to take into account is that dynamic range of light in the natural 
world swings over eight orders of magnitude, thus, a phototransducer that exhibits 
logarithmic output is desired. A simple photodiode can logarithmically compress 
current (induced by light) into a voltage. However, its response is very slow for low 
intensities and device mismatch can be so important that errors become larger than 
signal. 

The solution to this problem is adaptive phototransduction. Delbrück and Mead 
[Delbrück and Mead,94] designed a phototransducer that can adapt to slow changes of 
six orders of magnitude in light intensity within the image, while preserving high gain 
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for transient changes in the image. Although it does not need complex clocking 
circuitry, an important drawback of this design is its area overhead. Delbrück's 
phototranducer is 55 times bigger than a simple CCD pixel. Thus, up to now, high 
resolution can not be achieved using this technology. However, it does not seem to be a 
serious problem. While human beings have one or two million sensing cells, simpler 
animals cope with less photoreceptors. For instance, a common house fly has less than 
7000 picture elements and can perfectly survive in hostile environments. This 
demonstrates that for many visual tasks, high resolution is not needed. 

I.6.2. Image Filtering 

Since filtering a two-dimensional signal as an image is very expensive in terms of 
computing cost, parallel architectures have been developed. Most of these architectures 
convolve the image with a Laplacian operator (a common operation in visual 
processing to extract important features of an image) and only use local connections. 
As this reduces connections considerably, electronic implementations are feasible. 

Greatly simplifying the structure of a real image, when two neighboring locations 
are very similar, it is assumed that there is no information because they belong to the 
same object. Therefore, any difference between these elements is due to noise and it 
should be reduced. However, when difference between two neighboring pixels is high, 
they must belong to different objects and differences should be stressed. If the voltage 
across two pixels is small, their connection must behave as a conductance proportional 
to their gradient. However, if the voltage is high enough, the connecting element must 
saturate as a Horizontal Resistor [Mead,89a] or drop current to zero as a resistive fuse 
[Harris et al,90]. This mechanism performs a local gain control in contrast to global 
gain control of standard CCD cameras. This allows seeing details on shadowed parts of 
an image and also detecting edges. 

One of the first designs is Mead's and Mahowald's silicon retina [Mead and 
Mahowald,88] that presents a resistive hexagonal grid that can compute a discrete 
approximation of the Laplacian operator. Since resistive elements are difficult to 
implement on CMOS technology, transistors are used instead. This design allows 
controlling resistance by an external input and its devices saturate at high voltages, 
which improves circuit behavior. This design uses a parasitic vertical bipolar transistor 
as photosensing device, which is a by-product of the CMOS process, and feeds its 
current to a circuit with an exponential current-voltage characteristic. Thus, voltage out 
of the photoreceptor is over four orders of magnitude of incoming light intensity. In 
addition to this, Mead's retina also performs a temporal filtering of the image, 
removing temporal low frequency information. 

An interesting design for image segmentation has been presented in [Bair and 
Koch,91]. It takes the difference of two resistive-networks that smoothes the input of 
photoreceptors and finds zero-crossings. This network performs a difference of 
exponentials, which is an approximation of the difference of Gaussians. Simulations 
show its good performance to detect edges on a two-dimensional image. A one-
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dimensional version of the algorithm has also been implemented. Simulations of a 
design that also stores edges in a digital memory were presented in [Yi et al,97]. 

An important amount of work has been done in silicon retinae and designs have 
been considerably improved to reduce mismatch [Mead'89b] based on floating gate 
technology, to improve the approximation of the Gaussian response with negative 
impedance converters [Kobayashi et al,95], the foveated chips (chips with increasing 
resolution in their center) [Wodnicki et al. 95], etc. 

I.6.3. Motion Computation 

Koch [Koch and Li,95] stated that no chip described in the literature reliably solves 
the problem of motion computation. It is a complex problem to signal speed and 
direction of motion over a reasonable range of velocities, spatial frequencies and 
contrasts. Furthermore, reported experiments are done under controlled laboratory 
conditions. It demonstrates the difficulty of such an important task for practical 
applications as calculating time-to-contact, segmentation and attention based on 
motion and so on. 

In Neuromorphic Engineering, short range (or intensity) methods are used to 
compute motion. These methods use image brightness to estimate motion in every 
pixel so they are noise-prone and present the aperture problem. 

The first commercial application of a neuromorphic motion implementation is the 
control of an optical mouse. Instead of using the mechanical movement of a tracking 
ball, a vision algorithm was used to perform the same task with no moving parts. 

Most implementations use the algorithm method [Delbrück,93]. They subtract the 
incoming image with a delayed and transposed version of it. Thus, it maximizes 
output of pixels that I(x,t)=I(x-vt,t+t), that is, pixels that are moving at velocity v. It 
means that it can only be computed a velocity direction and module at a time. 

I.6.4. Segmentation 

Although segmentation has not focused as much interest as early vision tasks, 
some effort has been done in that direction. 

Luo et al. [Luo et al,92] published a design that segregates figure from ground. 
Input was a binary representation of the edges of an image that can be obtained 
through the design presented in [Bair and Koch,91]. It was a switched resistive 
network. Each pixel was connected to each of its neighbors through a resistive element 
and a switch. When there was an edge in the connection, the switch was open and no 
current flowed through the elements. If there was no edge, a resistive connection was 
established. Pixels of the periphery were connected to a low voltage (Vlow) and the 
center pixel of the network was supposed to belong to the figure and was stuck to a 
higher voltage (Vhigh) . Then, this higher voltage was 'spread' on the resistive network, 
thus, pixels that were inside the contour delimited by edges, relaxed to Vhigh and pixels 
outside the contour relaxed to Vlow.  As connections were established through resistors, 
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small discontinuities of the contour did not degrade the overall performance of the 
system. 

The circuit was implemented on CMOS technology and successful results have 
been reported. However major drawbacks of this design are that it can only segregate 
one centered figure and it can not recognize figures with large gaps in their contour. 

Synchronization has also been used for segmentation. In 1994, Andreou and 
Edwards [Andreou and Edwards,94a] [Andreou and Edwards,94b] presented a design, 
which used the self-resetting neuron [Mead,89a] as basic oscillator. Synchronization 
was achieved through connecting capacitors of cells that have no edge between them 
and mismatch easily desynchronized non-connected cells. A one-dimensional version 
of the model that correctly phase-locked has been implemented. However, results must 
be extracted from cross-correlation instead of phase coupling because no random 
synchronization can be guaranteed due to the lack of a global element that breaks away 
synchrony of non-coupled groups of oscillators. 

In addition to these, we have done some work in LEGION implementation. First, 
we proposed a system that used oscillators very similar to LEGION [Cosp et al.,98] and 
a sample implementation of a simplified oscillator was presented. Numerical MATLAB 
and SPICE simulations showed its feasibility. However, this implementation had 
significant area overhead. Therefore, the costly oscillators were substituted by astable 
oscillators and applied to a simple synthetic image [Cosp and Madrenas,99a]. This 
demonstrated that simple electronic oscillators could be used instead of the 
complicated (in terms of VLSI implementation) oscillators used in LEGION 
simulations, which are simple to simulate and analyze but difficult to implement using 
transistors. Further work [Cosp and Madrenas,99b] extracted a higher model of 
oscillators that allowed us to simulate a bigger network and confirmed that 
propagation delays are an important limitation for high resolution images. 

I.6.5. Neuron Oscillator Implementation 

When mimicking a neuron behavior, we must bear in mind its application. If an 
exact approximation and parameter control are desired for biological research 
purposes, a large silicon area overhead and power are needed, while if some 
computing abilities are wanted, the neuron can be simplified to reduce its cost. 
Although scientific community has done a great effort in modeling neurons, this work 
is going to focus on simplified models because our aim is to extract computing abilities 
of neurons. 

The first oscillatory electronic artificial neuron was built in 1983 by Keener 
[Keener,83] and used standard circuitry available at the moment (Op.Amps., discrete 
resistors and capacitors). Keener designed and implemented a piecewise-linear 
approximation of the FitzHugh-Nagumo equations and reported successful results. 
However, this design was focused to a discrete technology and it is not suited for a 
microelectronic technology. 
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A piecewise-linear microelectronic implementation of an oscillator is presented in 
[Rodríguez-Vázquez and Delgado-Restituto,93]. This design is focused on a systematic 
approach to designing linear systems for modeling chaotic oscillators. Thus, oscillators 
are too big for a specific application where not so much control on parameters is 
needed. 

A simpler implementation of a neuron is the one presented by Mead in his book 
on Neuromorphic Engineering [Mead,89a]. Mead's self-resetting neuron is well suited 
to model an axon circuit but not enough control on its parameters is available for 
computing purposes treated in this work.  

Integrate-and-fire neuron implementations have been designed in [Schultz and 
Jabri,95]. The design is claimed to behave as ideal integrate-and-fire neurons found in 
the literature but no practical implementation is given. 

The Morris-Lecar model is a neuron model that possesses physiological properties 
similar to those of actual neurons. This model has been designed and successfully 
implemented [Patel and DeWeerth,97]. However oscillations are on the order of 
hundreds of millivolts when power supply is 5V that makes difficult reading of the 
output. A digital signal (VDD-GND) is desired for computing purposes. 

The model that best suits computing purposes for oscillatory computation 
presented in section 1.5 was presented in [Linares-Barranco et al,89] [Linares-Barranco 
et al,91]. Various models of oscillatory neurons were presented. Some of them were 
precise but large. However, others were smaller as the current-mode version of the 
hysteresis neuron cell. A current mode hysteresis comparator, a nonlinear resistor and 
an integrator performed oscillations at low cost and hysteresis was easily controlled 
through input currents. This approach is very useful in oscillatory implementations of 
neural networks because no additional circuitry is needed to sum input synapses thus 
considerably simplifying the design. An improved version of this design has 
demonstrated its computing capabilities in [Cosp and Madrenas,99a]. 

I.7. THESIS OBJECTIVES AND OUTLINE 
The work presented here focuses on the microelectronic implementation of 

oscillatory neural networks for image segmentation and connected component 
labeling. The goal is to analyze, implement and study the possibilities of an electronic 
circuit that is able to segment and label different objects of an image using very large 
scale integration electronics for low power applications. 

• Based on bioinspired computational models, a VLSI oriented algorithm has been 
proposed and studied analytically and by simulations in Chapter II. 

• In Chapter III, a microelectronic design for a specific available technology is 
presented and their characteristics are checked to accomplish segmentation 
algorithm conditions. 
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• Chapter IV presents the experimental results of the implementation of the circuit 
presented in Chapter III. Its functionality as an image segmentation device is 
validated as its power requirements. 

• Finally, in Chapter V, having explored the possibilities of such networks, this 
dissertation ends with concluding remarks and presents some future lines of 
research for neuromorphic segmentation circuits. 


