
 

APPENDIX A 

DELAY OSCILLATOR 
Dynamics of a single delay oscillator have six different zones as depicted in Figure 

A.1. 
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Figure A.1: Temporal evolution of the delay oscillator during one 
cycle with its different six zones. 
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Differential equations that describe oscillator behavior are: 
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 Eq.A.1 

where w is the hysteresis comparator threshold; z the nonlinear function and v the 
integrator slope: 
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 Eq.A.2 

Zone 1. Silent state, z state variable limited. 
In this zone, state variables are: 

w=γ; v=-q; x<C. 

Equations and initial conditions (chosen for simplicity) for this system are: 
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 Eq.A.3 

y is a linear function of time and, as v and (w-z) are on the same order of 
magnitude and ε is much smaller than 1, dynamics of y state variable are much slower 
than variations of x; thus, y can be considered constant when solving the second 
equation. 

The result of Eq.A.3: 
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For the time scale of oscillations, x exponential tends to 1, thus x is proportional to 
the inverse of the square of y, which is a first order polynomial. y decreases linearly 
and x increases monotonically until t=t1 when it reaches C and w and z are 
approximately equal as demonstrated in Eq.A.5: 
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Zone 2. Silent state, integrator state variables not limited. 
In this zone, z and w are very similar, thus their difference is very small and x has 

to shift from C to 1-C. It causes that dynamics of x must be taken into account and it 
cannot be done a similar approximation as in the previous zone. 

State variables for this zone are: 

w=γ; v=-q; C<x<R 

Thus equations and initial conditions are: 
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 Eq.A.6 

The first equation is independent of the second one and is easily solved taking t1 as 
the time reference: 

Γ+−= qty  Eq.A.7 

After applying this value and initial conditions to the second equation: 
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Which is still a monotonically growing function between C<x<R but faster than in 
the previous zone. 

This equation allows calculating how much time (t2-t1) it takes to shift w since y has 
reached threshold Γ (at t=t1), thus, delay of oscillators to shift from the silent state to the 
active one. We only have to fix x(t2)=R. In addition to this, using Eq.A.7 it is easy to 
calculate state variable z at t=t2 and, thus, y-threshold with delay Γ -D. 
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Zone 3. Active state, integrator state variables not limited. 
x has already reached R, thus, y changes its slope to p and x-threshold increases to 

Γ+Θ(γ). 

Equations and initial conditions in this zone are: 
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Again, the first equation is easily solved and the second one, as in the previous 
zone, is solved by substituting the value of y and initial conditions: 
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Zone 4. Active state, w state variable limited. 
Equations and initial conditions for this zone are: 
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As in zone 1, dynamics of x are faster than dynamics on the slow integrator, thus, 
to solve the second equations we can consider that y is constant. This assumption 
produces a small discontinuity at t=t3, 1-C=x(t3-)≠x(t3+) that it is not important for 
analysis purposes due to the fast dynamics of the output node at this stage. 

Solution for this system is: 
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 Eq.A.13 

As in Eq.A.3, the exponential of x tends to 1 due to its fast dynamics; it makes x 
decrease proportionally to the square of y. When y, which increases in this zone, 
reaches the threshold that makes z=γ+θ, the positive current source leaves saturation 
and starts the next zone. 
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Zone 5. Active state, integrator state variables not limited. 
Equations for this zone are equal to zone 3 but initial conditions differ. In addition, 

dynamics of nodes x and y must be considered. Differential equations are shown in 
Eq.A.10 and initial conditions are: 
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The upper threshold of y has been reached but as dynamics of the output node are 
not instantaneous, appears a delay until x reaches the threshold voltage that changes v 
and w and making the oscillator to enter back to the silent state. 

Solution for the equation system is: 
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These equations allow us to calculate the time it takes the oscillator to shift to the 
active state and thus threshold Γ+Θ(γ)+D. 
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Zone 6. Silent state, integrator state variables not limited. 
After switching from the active state to the silent state, the oscillator enters in zone 

6 where equations are equal to zone 2 but initial conditions change to: 
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Solution to the system is: 
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Then, oscillator is governed by these equations until x reaches C where the 
negative current source saturates and it enters to zone 1 of the next cycle. 

Oscillator Characteristics 
Once calculated the analitical approximation of the oscillator, its fundamental 

characteristics as frequency and duty cycle can be easily calculated by solving 
equations for each zone, which are simple first and third order polynomials. Thus 
frequency (f0) and duty cycle (∆) are: 
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To check the validity of the results and approximations made in zones 1 and 4, 
next, we present some examples of oscillators whose characteristics have been 
estimated by solving analytical equations presented in this chapter and also simulating 
differential equations that describe oscillators. From typical parameter values, a 
variation of each one has been performed to verify the very similar behavior of the 
model compared to the numerical simulation. 

Characteristics estimated are T0:period; f0:frequency; TA:Time active during one 
period; ∆0=Duty cycle; Γ-D:Equivalent Γ threshold and Γ+Θ(γ)+D:Equivalent Γ+Θ(γ) 
threshold. 
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Example #1 

γ θ p q R ε 

0.3 1 0.9 0.1 0.3 0.165 
 

 T0 f0 TA ∆0 [%] Γ-D Γ+Θ(γ)+D 

Num. sim. 6.64 0.151 0.669 10.08 0.2298 0.8262 

Analytical 6.69 0.150 0.669 10.01 0.2304 0.8318 

Example #2 

γ θ p q R ε 

0.1 1 0.9 0.1 0.3 0.165 
 

 T0 f0 TA ∆0 [%] Γ -D Γ+Θ(γ)+D 

Num. sim. 7.90 0.127 0.794 10.05 0.0743 0.7847 

Analytical 7.93 0.126 0.794 10.01 0.0754 0.7889 

Example #3 

γ θ p q R ε 

0.3 2 0.9 0.1 0.3 0.165 
 

 T0 f0 TA ∆0 [%] Γ -D Γ+Θ(γ)+D 

Num. sim. 8.66 0.115 0.870 10.04 0.2299 1.0088 

Analytical 8.71 0.115 0.871 10.00 0.2304 1.0138 

Example #4 

γ θ P q R ε 

0.3 1 1.9 0.1 0.3 0.165 
 

 T0 f0 TA ∆0 [%] Γ -D Γ+Θ(γ)+D 

Num. sim. 7.19 0.139 0.365 5.08 0.2298 0.9118 

Analytical 7.25 0.138 0.364 5.02 0.2304 0.9193 
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Example #5 

γ θ p q R ε 

0.3 1 0.5 0.5 0.3 0.165 
 

 T0 f0 TA ∆0 [%] Γ -D Γ+Θ(γ)+D 

Num. sim. 2.58 0.388 1.294 50.23 0.1314 0.7771 

Analytical 2.58 0.387 1.292 49.98 0.1349 0.7808 

Example #6 

γ θ p q R ε 

0.3 1 0.9 0.1 0.6 0.165 
 

 T0 f0 TA ∆0 [%] Γ -D Γ+Θ(γ)+D 

Num. sim. 6.47 0.156 0.649 10.03 0.1963 0.7782 

Analytical 6.48 0.154 0.649 10.02 0.1967 0.7796 

Example #7 

γ θ p q R ε 

0.3 1 0.9 0.1 0.3 0.0165 
 

 T0 f0 TA ∆0 [%] Γ -D Γ+Θ(γ)+D 

Num. sim. 4.59 0.218 0.463 10.08 0.2787 0.6925 

Analytical 4.60 0.218 0.460 10.01 0.2788 0.6923 

 


